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a b s t r a c t 

In this paper the assessment and the enhancement of the computational performance of a high-order fi- 

nite volume CFD code is presented. Weighted Essentially Non-Oscillatory (WENO) schemes are considered 

to be from the most computationally expensive numerical frameworks, in the context of high-resolution 

schemes particularly on hybrid unstructured grids. The focus of this study is to assess the computational 

bottlenecks of the solver for the WENO schemes for Implicit Large Eddy Simulation (ILES) and optimise 

the performance and efficiency through a series of code modifications e.g. formula rewriting, reduction 

of number operations, inclusion of linear systems libraries, non-blocking communications amongst oth- 

ers. The code is assessed on five different HPC systems; significant speed-up is achieved ranging from 

1.5 to 8.5, with very high-order schemes benefiting the most. Good scalability is also obtained up to 

10 4 number of cores, demonstrating viability and affordability of WENO type schemes for scale resolving 

simulations. 

Crown Copyright © 2018 Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Numerical methods of the high-order family were prohibited a

ecade ago in terms of great computational effort for large scale,

oderate to high -Reynolds number cases; now these methods are

eing increasingly adopted for various industrial applications e.g.

coustics, combustion, rotating wings and turbo machinery and are

vailable in commercial solver packages. 

High-order numerical methods can provide improved accu-

acy at a reduced computational cost for transient CFD applica-

ions compared to second-order schemes. There is a wealth of

igh-order numerical methods for unstructured meshes developed

cross different frameworks including the finite volume (FV) [1–

0] , the Discontinuous Galerkin (DG) [11–16] , the Spectral Finite

olume (SFV) methods [17–22] and the flux reconstruction scheme

FR) [23–28] . 

High-order methods such as WENO or DG with explicit time-

tepping schemes for time advancement of time-dependent simu-
ations have demonstrated to be attractive solutions for scale re- 
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olving simulations. The popularity of these solutions is mainly at-

ributed to the favourable scalability of these solvers, where higher

omputational over communication load ratios can be obtained

ompared with lower-order spatial schemes. 

WENO type schemes are considered to be computationally ex-

ensive particularly for unstructured meshes and for very high-

rder accuracy ( > 5th order). This is mainly due to their non-

niform stencils construction, cumbersome mesh partitioning,

omplex communication strategies; however, their enhanced ac-

uracy, robustness, conservation properties, flexibility for multi-

hysics model extensions and ability to provide spurious-free so-

utions counterbalances the aforementioned drawback and makes

hem attractive to a wider set of applications. The method pre-

ented in this work is based on a series of works published over

he past years; In references [7,29] the WENO framework is em-

loyed to discretise the Euler equations on hybrid unstructured

rids; the extension of the method for time dependent lami-

ar, transitional and turbulent flows are presented in [9] and for

ndustrial scale applications and high-order discretisation of the

ANS equations in [10] . The present higher-order WENO meth-

ds are producing significantly smaller errors for a series of test

roblems, compared to a standard 2nd-order Monotonic Upwind

cheme for Conservation Laws (MUSCL) scheme at approximately

imilar computing times [9,30] . Additionally they offer superior
cle under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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scalability compared to lower-order schemes since their ratio of

computation over communication time is larger than a MUSCL

2nd-order scheme [9] . 

Writing an efficient program code of WENO type method for

mixed-element unstructured grids can be a daunting task. The

complexity of the scheme and the explicit graph-type data for-

mat inherited by the unstructured framework results to several

challenges: memory size limitation, random memory access pat-

terns and computational cost amongst others. Major changes in the

types of hardware utilised for scientific computing such as graphi-

cal processing units (GPUs), lower clock speeds, and many-core ar-

chitecture processors and co-processors set additional challenges

to the solver’s efficiency. CFD codes will require radical changes

in order to utilise the full potential of these new architectures. A

possible and attractive direction would be the extension of current

CFD solvers is to incorporate high-order and even very high-order

methods which would be tuned to the extreme levels of paral-

lelism of the new hardware. Additionally, that may imply that new

implementation techniques of numerical methods need to be de-

veloped, taking into account the changes in hardware in terms of

the different characteristics from the hardware architectures of the

previous decades. 

The prime objective of this current work is to assess the com-

putational characteristics of WENO finite volume schemes for un-

structured meshes for time dependent explicit Implicit Large Eddy

Simulations (ILES). This is accomplished by identifying the code

sections and subroutines that have the highest computational cost

and memory footprint. The workflow pattern of unstructured fi-

nite volume CFD codes, includes operations characterised by non-

coalescent memory accessing patterns, conditional branching for

fluxes approximations, cell-based fine-grained adaptivity of the nu-

merical methods. These type of operations prevents the CFD code

from belonging to the embarrassingly parallel framework of appli-

cations. 

As it is demonstrated in this work, the associated cost of these

operations is insignificant compared to the cost of the numer-

ous polynomial reconstructions that take place within the WENO

framework. In this study we are interested in reducing the compu-

tational cost of WENO schemes, although other techniques for im-

proving their compactness could be explored similarly to Dumbser

et al. [31] , we are pursuing this through a series of enhancements

in the execution of the algorithms and operations rather altering

the numerical methodology. These enhancements are tested across

five different HPC architectures including a Intel Xeon Phi Knights-

Landing manycore processor, and to the best of our knowledge this

is the first time that very high-order finite volume WENO schemes

for unstructured meshes, have been assessed, optimised and de-

ployed for ILES of turbulent flows in this type of manycore archi-

tectures. 

The rest of the paper is organized as follows. Section 2 is ded-

icated to the description of the general numerical framework, the

implementation of these algorithms along with a brief description

of the CFD solver code name UCNS3D (Unstructured Compressible

Navier–Stokes 3D). In Section 3 we discuss the performance ob-

tained with the original implementation of the code, identifying

the most expensive processes, the optimisations explored for im-

proving the computational performance, and the performance of

the revised CFD code across five different HPC clusters for various

schemes. Finally the conclusions of the present study are outlined

in the last section. 

2. Methodology 

An overview of the governing equations, spatial and temporal

discretisation schemes is presented; followed by the implementa-
ion of the schemes, where their computational and communica-

ion patterns are discussed in detail. 

.1. Governing equations 

The compressible Navier–Stokes equations are considered, writ-

en in conservative form as: 

∂U (x , t) 

∂t 
+ ∇ · F ( U , ∇U ) = 0 , (1)

here U is the vector of the conserved mean flow variables, and F

s the non-linear flux tensor given by: 

 = [ ρ, ρ�
 u , E ] 

T 
, (2)

 ( U , ∇U ) = 

( 

�
 u 

T ρ
�
 u 

T 
� ρ�

 u + σ ( U , ∇U ) 

�
 u 

T (I E + σ ( U , ∇U )) − κ∇T 

) 

, (3)

here the stress tensor σ is given by: 

= 

(
p + 

2 

3 

μ∇ 

�
 u 

)
I − μ

(∇ 

�
 u + ∇ 

�
 u 

T 
)
. (4)

In the above equations, ρ is the density and ideal gas is

ssumed where the total energy is given by E = p/ ( γ − 1 ) +
(1 / 2) ρ(u 2 + v 2 + w 

2 ) , where p is the pressure, γ = 1 . 4 is the ra-

io of specific heats for air at normal atmospheric conditions; The

aminar viscosity is related to the temperature through Sutherland

aw: 

μl 

μ0 

= 

(
T 

T 0 

) 3 
2 T 0 + S 

T + S 
, (5)

 is the Sutherland temperature and the subscript 0 denotes a ref-

rence state for the corresponding variables. 

.2. Numerical framework 

The discretisation in a domain � is achieved by combining

onforming arbitrary shaped elements of volume | V i |. Integrating

q. (1) over a mesh element using the finite volume formulation

he ordinary differential equation is obtained as follows: 

dU i 

dt 
= 

1 

| V i | 
N f ∑ 

l=1 

N qp ∑ 

α=1 

F n , l ( U (x α, t) , ∇U (x α, t) ) ω α| A l | , (6)

here U i is the volume averaged conserved variable vector, N f is

he number of faces per element, N qp is the number of quadrature

oints used for approximating the surface integrals. | A l | is the sur-

ace area of the corresponding face, and α corresponds to different

aussian integration points x α and weights ω α over the face. The

eight and distribution of the quadrature points depend upon the

rder of the Gaussian quadrature integration rule employed, and

or the present study suitable rules for the employed polynomial

rder are used. The interface fluxes are computed based on the

oundary extrapolated reconstructed values, which are obtained by

 polynomial reconstruction from element-averaged data. The fol-

owing section describes the methodology adopted for the spatial

iscretisation. 

.2.1. High-order finite volume k-exact least-square reconstruction 

The main objective of the reconstruction process is to build a

igh-order polynomial p i ( x, y, z ) of arbitrary order r , for each con-

idered element V i that has the same average as a general quantity

 i this yields: 

 i = 

1 

| V i | 
∫ 

V 

U (x, y, z) dV = 

1 

| V i | 
∫ 

V 

p i (x, y, z) dV. (7)

i i 
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Fig. 1. Examples of central stencil and directional stencils for a 5th-order WENO scheme on a 3D tetrahedral mesh, with the considered element in red colour. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he present reconstruction algorithm is based upon the approaches

f [7,29] , that has been successful applied to smooth and discon-

inuous flow problems [9,30,32–34] . The reconstruction is carried

ut in a transformed system of coordinates in order to minimize

caling effects that appear in stencils consisting of elements of dif-

erent size as shown in Fig. 1 and in order to improve the condi-

ion number of the system of equations. The reader is referred to

7,29,35] and references therein for more details of the approach

dopted. The transformation is achieved by decomposing each el-

ment into tetrahedral elements. This transformation is only com-

uted once at the initialisation phase of the simulation since the

esh does not change with time for the present study. Using an

nverse mapping the considered element V i can be transformed to

he element V ′ 
i 

in the reference co-ordinate system. 

The spatial average of the conserved variable U i does not

hange during coordinate transformation 

 i = 

1 

| V i | 
∫ 

V i 

U (x, y, z) dV ≡ 1 

| V 

′ 
i 
| 
∫ 

V ′ 
i 

U (ξ , η) d ξd ηd ζ . (8)

o perform the reconstruction on the target element V i , we con-

truct the central reconstruction stencil S by recursively adding

eighbouring elements, consisting of M + 1 elements, including the

arget element V i as shown in Fig. 1 , 

 = 

M ⋃ 

m =0 

V m 

, (9) 

here the index m refers to the local numbering of the elements

n the stencil, with the element with index 0 being the considered

lement i . The r th order reconstruction polynomial at the trans-

ormed element V ′ 
0 

is sought as an expansion over local polynomial

asis functions φk ( ξ , η, ζ ) given by: 

p(ξ , η, ζ ) = 

K ∑ 

k =0 

a k φk (ξ , η, ζ ) = U 0 + 

K ∑ 

k =1 

a k φk (ξ , η, ζ ) , (10)

here U 0 corresponds to the general quantity at the considered

lement i , and ξ , η, ζ are the coordinates in the reference sys-

em. a k are the degrees of freedom and the upper index in the

ummation of expansion K corresponds to the number of the de-

rees of freedom and is related to the order of the polynomial r by

 = 

1 
6 (r + 1)(r + 2)(r + 3) − 1 . For computing the degrees of free-

om a k , a minimum of K element are required within the stencil,

n addition to the target element. For improving the robustness of

he algorithm we use M = 2 · K as described in [7,9,29,35] . 

To find the unknown degrees of freedom a k for each element m

rom the stencil the cell average of the reconstruction polynomial
 ( ξ , η, ζ ) must be equal to the element average of the solution

 m 

: 

 

 

′ 
m 

p(ξ , η, ζ ) d ξd ηd ζ = | V 

′ 
m 

| U 0 + 

K ∑ 

k =1 

∫ 
V ′ m 

a k φk d ξd ηd ζ

= | V 

′ 
m 

| U m 

, m = 1 , . . . , M. (11) 

here V ′ m 

is the volume of the element m in the stencil, in the

ransformed coordinate system. Additionally the basis functions φk 

ill satisfy the constraint of Eq. (7) irrespective of the values of

egrees of freedom. The basis functions φk for all the elements in

he stencil are defined as follows: 

k (ξ , η, ζ ) ≡ ψ k (ξ , η, ζ ) − 1 

| V 

′ 
0 
| 
∫ 
V ′ 

0 

ψ k d ξd ηd ζ k = 1 , . . . , K. 

(12) 

n the present study the basis functions are based on the Legendre

ype polynomial. Denoting the integrals of the basis function k over

he considered element m in the stencil, and the vector of right-

and side by A mk and b respectively as given by: 

 mk = 

∫ 
V ′ m 

φk d ξd ηd ζ , b m 

= | V 

′ 
m 

| (U m 

− U 0 ) , (13)

e rewrite the equations for degrees of freedom a k in a matrix

orm as 

K 
 

k =1 

A mk a k = b m 

, m = 1 , . . . , M. (14)

he complete linear system is given as: ⎡ 

⎢ ⎢ ⎣ 

φ1 , 1 (ξ , η, ζ ) φ1 , 2 (ξ , η, ζ ) · · · φ1 ,K (ξ , η, ζ ) 

φ2 , 1 (ξ , η, ζ ) φ2 , 2 (ξ , η, ζ ) · · · φ2 ,K (ξ , η, ζ ) 
. . . 

. . . · · ·
. . . 

φM, 1 (ξ , η, ζ ) φM, 2 (ξ , η, ζ ) · · · φM,K (ξ , η, ζ ) 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

a 1 
a 2 
. . . 

a K 

⎤
⎥⎥⎦

= 

⎡ 

⎢ ⎢ ⎣ 

| V 

′ 
1 | (U 1 − U 0 ) 

| V 

′ 
2 | (U 2 − U 0 ) 

. . . 
| V 

′ 
M 

| (U M 

− U 0 ) 

⎤ 

⎥ ⎥ ⎦ 

(15)

Where φm,k corresponds to the integral of the basis function φk 

or element m . The matrix A mk is purely based on the geometry of

he stencil’s elements, which remains unchanged during the simu-

ation. On the other hand the information on the right-hand vector
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b m 

is dependent upon the solution, and the volume of each of the

element in the stencil in the transformed coordinate system. The

matrix A 

T 
km 

A mk , is invertible and the Eq. (14) , can be rewritten in

the following form: 

a k = 

(
A 

T 
km 

A mk 

)−1 
A 

T 
km 

b m 

= A 

† 

km 

b m 

, (16)

where the matrix A 

† 
km 

corresponds to the Moore–Penrose pseudo-

inverse of A mk . The polynomial coefficients are therefore obtained

through a matrix vector multiplication of A 

† 
km 

with b m 

. A QR de-

composition based on Householder transformation is employed

where the pseudo-inverse is decomposed in an orthogonal matrix

Q and an upper triangular one R , and the inverse of R T R is obtained

by a forward-substitution followed by a backward-substitution, this

yields: 

A 

† 

km 

= 

(
( QR ) 

T 
( QR ) 

)−1 
A 

T 
km 

= 

(
R 

T R 

)−1 
A 

T 
km 

. (17)

The main memory requirements of the least-square reconstruction

are associated with the storage of the pseudo-inverse matrix A 

† 
km 

,

that is only computed once at the initialisation stage of the simu-

lation. 

2.2.2. WENO scheme 

The WENO scheme employed in this study, utilises a non-linear

combination of various reconstruction polynomials from the cen-

tral stencil and the directional stencils; which are shown in Fig. 1 ,

where each polynomial is weighted according to the smoothness of

its solution, and it is based on the approaches of [7,35] . The poly-

nomials are given as: 

p weno 
i = 

s t ∑ 

s =1 

ω m 

p s (ξ , η, ζ ) , (18)

where s t is the total number of WENO stencils. Substituting back

to Eq. (10) for p s ( ξ , η, ζ ), we obtain the following expression: 

p s ( ξ , η, ζ ) = 

K ∑ 

k =0 

a (s ) 
k 

φk (ξ , η, ζ ) . (19)

Using the condition that the sum of all weights is unity, yields: 

p weno 
i = U 0 + 

K ∑ 

k =1 

( 

s t ∑ 

s =0 

ω s a 
s 
k 

) 

φk (ξ , η, ζ ) 

≡ U 0 + 

K ∑ 

k =1 

˜ a k φk (ξ , η, ζ ) , (20)

where ˜ a k are the reconstructed degrees of freedom; and the non-

linear weight ω m 

is defined as: 

ω s = 

˜ ω s 

s t ∑ 

s =1 

˜ ω s 

where ˜ ω s = 

λm 

(ε + SI s ) b 
. (21)

The smoothness indicator SI m 

is given by: 

SI s = 

∑ 

1 ≤| β|≤r 

∫ 
V ′ 

0 

(
D 

β p s (ξ , η, ζ ) 
)2 

(d ξ , d η, d ζ ) , (22)

where β is a multi-index, r is the polynomial’s order, λm 

is the

linear weight. The central stencil is assigned a large linear weight

of λ1 = 10 0 0 and a value to prevent division by zero of ε = 10 −6

is used and D is the derivative operator. The reader is referred to

[7,29] for the definition of geometrical sectors and a detailed expla-

nation of the different set of geometrical conditions. The smooth-

ness indicator is a quadratic function of the degrees of freedom

( a s 
k 
) and Eq. (22) can be rewritten as: 

SI s = 

K ∑ 

k =1 

a s k 

( 

K ∑ 

q =1 

OI kq a 
s 
q 

) 

, (23)
here the oscillation indication matrix OI kq is given by: 

I kq = 

∑ 

1 ≤| β|≤r 

∫ 
V ′ 

0 

(
D 

βφk (ξ , η, ζ ) 
)(
D 

βφq (ξ , η, ζ ) 
)
(d ξ , d η, d ζ ) , 

(24)

nd can be easily precomputed and stored at the initialisation

tage of the simulation. Additionally the WENO reconstruction is

arried out with respect to the characteristic variables for the

resent study. An average value in the direction normal to each

lement face is defined defined as U 

′ 
n , the conserved vector U L, n ,

nd the U R, n correspond to the left and right states at the cell in-

erface l in the normal direction. Denoting the right and left eigen-

ectors of the convective Jacobian matrix on the normal direction

o the cell interface as R l and L l respectively, both of which are cal-

ulated based on the average cell state U 

′ 
n . Then the projections of

he degrees of freedom for each stencil s , a s 
k 
, are projected to the

haracteristic variables as: 

 

s 
ikl = L l a 

s 
k , s = 1 , · · · , s t , k = 0 , · · · , K, (25)

here the WENO reconstruction is applied to each characteris-

ic variable. Then the WENO modified degrees of freedom 

˜ B ikl are

ransformed back to the conserved formulation by the right eigen-

ector R l as follows: 

˜ 
 k,l = R l ̃

 B ikl , k = 0 , · · · , K, (26)

ith the final WENO reconstruction polynomial for face l being

iven by: 

 il (ξ , η, ζ ) = U 0 + 

K ∑ 

k =1 

˜ a k,l φk (ξ , η, ζ ) . (27)

he WENO reconstruction with respect to characteristic variables

s more computationally expensive as opposed to the conservative

ariables, since the WENO weights are different for each element’s

nterface, and due to the forward and backward projection of the

egrees of freedom to characteristic variables. 

.2.3. Gradients for viscous terms 

For the evaluation of the viscous fluxes the boundary extrap-

lated values for velocity ∇u i, l, a and temperature ∇T i, l, a for el-

ment i , for face l and Gaussian quadrature point a are required.

hey are computed by multiplying the transpose of the inverse

acobian (J −1 ) T 
i 

with the first order derivatives of the polynomial

f the central stencil. For the gradient of u-velocity ∇u i, l, a this is

omputed as follows: 

 

 

 

 

 

∂u 

∂x 
∂u 

∂y 
∂u 

∂z 

⎞ 

⎟ ⎟ ⎟ ⎠ 

i,l,a 

= 

(
J −1 

)T 

i 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂ p(ξ , η, ζ ) 

∂ξ
∂ p(ξ , η, ζ ) 

∂η
∂ p(ξ , η, ζ ) 

∂ζ

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

i,l,a 

(28)

or the evaluation of the velocity and temperature gradients at the

o-slip wall boundaries, the Dirichlet and Neumann boundary con-

itions are satisfied respectively through the least-square recon-

truction similarly to [6,9] ( Fig. 3 ). 

.2.4. Numerical fluxes 

For the evaluation of the convective fluxes the approximate

arten-Lax-van Leer-Contact (HLLC) Riemann solver [36] is imple-

ented for the inter-cell numerical flux. For the evaluation of the

iscous fluxes the extrapolated interface variables U 

±
i,a 

and their

nlimited gradients ∇U 

±
i,a 

from the k-exact least-square reconstruc-

ion are averaged from two discontinuous states as detailed in

9,37] . For the gradients however additionally penalty terms are
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Fig. 2. Flow chart diagram of the UCNS3D code. 
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Fig. 3. Schematic of the communication requirement of stencil element variables 

between two partitioned domains. 

Fig. 4. Schematic of the communication requirement of boundary extrapolated 

variables at Gaussian quadrature points between two partitioned domains. 
ncluded following the formulation of Gassner et al. [38] for sup-

ressing odd-even decoupling modes in the numerical solutions

39] , in the following manner: 

 U = 

1 

2 

( ∇ U L + ∇ U R ) + 

α

L int 
( U R − U L ) � n , (29)

here L int is the distance between the cell-centres of the adjacent

ells, and α = 4 / 3 similarly to [39,40] . 

.2.5. Time stepping algorithms 

Having constructed the numerical fluxes F n, l as expressed in

he semi-discrete conservative formulation, the next step involves

he advancement of the solution in time. The explicit Strong Stabil-

ty Preserving (SSP) Runge–Kutta 3 rd -order method [41] has been

mployed for the time integration, and a CFL number of 0.9 for

nsplit finite volume schemes [36] is used for all the test-cases

 Fig. 4 ). 

. Code profiling and performance 

The UCNS3D solver, is written in Fortran 2003 programming

anguage, making use of object oriented programming, includ-

ng abstract data types. It employs the message passing interface

MPI), and the Open Multi-Processing (OpenMP) application pro-

ramming interface (API). The Metis partitioner [42] is used to de-

ompose the mesh to numerous partitions; the total number of

artitions is equal to the number of MPI processes. The work flow

f the solver is composed into two main phases: the initialisation

nd the run-time as shown in Fig. 2 . 

Processes 1–7 correspond to the initialisation phase and the

rocesses 8–15 correspond to the time advancement stage. In the
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Table 1 

Least-square system statistics. 

Polynomial 

order r 

Number of elements m 

per stencil 

Number of degrees of 

freedom k per stencil 

1 8 4 

2 20 10 

3 40 20 

4 70 35 

5 128 56 

6 168 84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Pseudocode for WENO weights computation for cell 

i . 

1: procedure WENO WEIGHTS ( a k, j,s ) 

2: for each face l do 

3: ! Averaging 

4: Compute U 

′ 
n = 

1 
2 (U L,n + U R,n ) 

5: Compute eigenvectors R l and L l 
6: for each admissible stencil s do 

7: for each degree of freedom k do 

8: ! Project to characteristic variables 

9: Compute B 

s 
j,ikl 

= MATMUL (L j, j , a 
s 
j,k 

) 

10: end for 

11: for each conserved variable j do 

12: SI s = MATMUL ( OI kq , B 

s 
j,ikl 

) 

13: SI s = DOTPRODUCT ( SI s , B 

s 
j,ikl 

) 

14: end for 

15: end for 

16: ! Compute Weights 

17: for each conserved variable j do 

18: Set ˜ ω s = 0 , ω s = 0 

19: for each admissible stencil s do 

20: Compute ˜ ω s = 

λs 

(ε+ SI s ) 4 
21: end for 

22: Compute sum 

s t ∑ 

s =1 

˜ ω s 

23: for each admissible stencil s do 

24: Compute ω s = 

˜ ω s 
s t ∑ 

s =1 

˜ ω s 

25: end for 

26: end for 

27: for each degree of freedom k do 

28: ˜ B j,ikl = 

(
s t ∑ 

s =0 

ω s B 

s 
j,ikl 

)
29: end for 

30: ! Project to conserved variables 

31: for each degree of freedom k do 

32: Compute ˜ a j,ikl = MATMUL (R j, j , ̃  B j,ikl ) 

33: end for 

34: end for 

35: end procedure 
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present study the main focus would be to improve the perfor-

mance of the code for the run-time phase, therefore the I/O op-

erations and the initialisation phases of the simulations are not

accessed. As it can be seen in Fig. 2 , the grey coloured boxes cor-

respond to processes that are associated with floating point op-

erations, the pink coloured boxes correspond to processes associ-

ated with communication between CPUs. In the following subsec-

tion details regarding the most expensive sections both in terms of

computational and communication are discussed. 

3.1. Least-squares reconstruction 

For the least-squares reconstruction as shown in Eq. (16) the

Moore–Penrose pseudo-inverse of A mk matrix, A 

† 

mk 
is stored in the

computer memory at the initialisation phase and the polynomial

coefficients are therefore obtained through a matrix vector multi-

plication of A 

† 

mk 
with b m 

as 

a k = A 

† 

mk 
b m 

. (30)

This operation is repeated for all the conserved variables, and for

all the admissible stencils. As the order of the polynomial increases

the size of these matrices grows rapidly as shown in Table 1 . This

operation is implemented by making use of the intrinsic Fortran

function MATMUL , and is performed as shown in the Algorithm 1 .

Algorithm 1 Pseudocode for least-square reconstruction proce-

dure for cell i . 

1: procedure LSQ RECON ( a k, j,s ) 

2: for each admissible stencil s do 

3: for each variable j do 

4: a k, j,s = MATMUL (A 

† 

mk,s 
, b m, j,s ) 

5: end for 

6: end for 

7: end procedure 

3.2. WENO weights computation 

The weights of Eq. (21) are computed for all element’s face of

the considered element, and for all the admissible stencils. As the

order of the polynomial increases the size of these matrices grows

fast as shown in Table 1 . This operation is implemented by making

use of the intrinsic Fortran function MATMUL , and DOTPRODUCT

and is performed as shown in the Algorithm 2 . 

3.3. Extrapolation of variables and gradients 

The WENO reconstructed degrees of freedom are computed ac-

cording to Eq. (20) , the next step involves the extrapolation of the

reconstructed variables, along with the extrapolation of the unlim-

ited gradients that are required by the viscous fluxes at the Gaus-

sian quadrature points at element’s interface. This operation is im-

plemented by making use of the intrinsic Fortran function MAT-

MUL , and is performed as shown in the Algorithm 3 . 
.3.1. Communication of stencil elements variables 

The first communication requirement between different proces-

ors, is to exhange the mean variables of the elements in the sten-

ils b m, j, s that belong to other processors, in order to solve the

east-square reconstruction problem. It must be noted that due to

he nature of the WENO directional stencils, and the geometrical

ectors defined by the considered cells, there are instances where

ue to the high-aspect ratio cells the directional stencils might ex-

end farther away from the central stencil. This implies that there

ight be cases where information might be needed from some

rocessors, that they might not require any information from the

urrent processor. Therefore resulting in cases where it is only

eeded to receive rather than send data from some processors. The

PI_SENDRECV function is used as shown in Algorithm 4 . 

.4. Communication of variables/gradients at quadrature points of 

alo cells 

The second requirement between different processors, is to ex-

hange the reconstructed variables and their gradients at each

lement’s interface between processor blocks for each Gaussian

uadrature point. The operation is performed by using the MPI

ENDRECV function as shown in Algorithm 5 . 
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Algorithm 3 Pseudocode for extrapolation of variables/gradients 

at cell faces i . 

1: procedure EXTRAPOL ( U (x α, t) , ∇U (x α, t) ) 

2: for each face l do 

3: for each Gaussian quadrature point α do 

4: for each degree of freedom k do 

5: Compute the basis functions φk (ξ , η, ζ ) 

6: end for 

7: ! Convective part 

8: for each variable j do 

9: Compute the sum 

K ∑ 

k =1 

˜ a j,ikl φk (ξ , η, ζ ) 

10: Compute the reconstructed solution as 

11: U i, j,l,α = U i, j + 

K ∑ 

k =1 

˜ a j,ikl φk (ξ , η, ζ ) 

12: end for 

13: ! Diffusive part 

14: Using only the central stencil s = 1 

15: for each variable j do 

16: The variables now are (u, v , w, T ) 

17: for each degree of freedom k do 

18: Obtain 

∂ φk (ξ ,η,ζ ) 

∂ξ
, 

∂ φk (ξ ,η,ζ ) 

∂η
, 

∂ φk (ξ ,η,ζ ) 

∂ζ

19: end for 

20: Compute 
∂ U i, j,l,α

∂ξ
= 

K ∑ 

k =1 

∂ φk (ξ ,η,ζ ) 

∂ξ
a k, j 

21: Compute 
∂ U i, j,l,α

∂η
= 

K ∑ 

k =1 

∂ φk (ξ ,η,ζ ) 

∂η
a k, j 

22: Compute 
∂ U i, j,l,α

∂ζ
= 

K ∑ 

k =1 

∂ φk (ξ ,η,ζ ) 

∂ζ
a k, j 

23: ∇ U i, j,l,α(x ) = 

24: = MATMUL ((J −1 ) T 
i 
, ∇ U i, j,l,α(ξ )) 

25: end for 

26: end for 

27: end for 

28: end procedure 
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Algorithm 4 Pseudocode for stencil elements communication. 

1: procedure COMMSTENCIL ( U m 

) 

2: COMMUNICATION 1 

3: for each CPU J that only receives information from the cur- 

rent CPU N do 

4: Create 1D array to store the cell average values U m 

to be 

sent from CPU N 

5: end for 

6: for each CPU J that only receives information from the cur- 

rent CPU N do 

7: CALL MPI_SENDRECV 
8: end for 

9: COMMUNICATION 2 

10: for each CPU L that only sends information to the current 

CPU N do 

11: Create 1D array to store the cell average values U m 

to be 

received from CPU L 

12: end for 

13: for each CPU L that only sends information to the current 

CPU N do 

14: CALL MPI_SENDRECV 
15: end for 

16: COMMUNICATION 3 

17: for each CPU R that receives/sends information from/to the 

current CPU N do 

18: Create 1D array to store the cell average values U m 

to be 

received from CPU R 

19: Create 1D array to store the cell average values U m 

of all 

the elements to be sent to CPU R 

20: end for 

21: for each CPU R that receives/sends information from/to the 

current CPU N do 

22: CALL MPI_SENDRECV 
23: end for 

24: end procedure 

Algorithm 5 Pseudocode for inter-processor quadrature points 

communications. 

1: procedure COMMBOUND ( U (x α, t) , ∇U (x α, t) ) 

2: for each CPU P that receives/sends information from/to the 

current CPU N do 

3: Create 1D array to store the boundary extrapolated val- 

ues and gradients to be received from CPU P 

4: Create 1D array to store the boundary extrapolated val- 

ues and gradients to be sent to CPU P 

5: end for 

6: for each CPU P that receives/sends information from/to the 

current CPU N do 

7: CALL MPI_SENDRECV 
8: end for 

9: end procedure 
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. Numerical setup 

This section presents the results obtained for various three di-

ensional test cases. The performance of the original implementa-

ion of CFD code is assessed in terms of scalability and efficiency

s well as identifying the most time-consuming procedures. Then,

 justification of the improvements that were pursued are detailed

nd finally the performance of the revised implementation of the

FD code is discussed. For all test cases the statistics in terms

f maximum computational time, and maximum communication

ime are collected for 10 0 0 iterations and the process is repeated

t least three times to ensure reproducibility of the statistics and

nally the average of those is used. 

.1. Data sets 

For the numerical experiments, two test-problems are assessed

f different computational and communication requirements. The

rst test problem is the ILES of the viscous Taylor–Green Vor-

ex flow at a Reynolds number of Re = 1 , 600 which is used to

tudy vortex stretching and dissipation characteristic of numerical

chemes. It has been widely employed by many authors to quan-

ify the dissipation behaviour of various high-order methods [43–

8] . For the Taylor-Green Vortex flow case, two grids are utilised

onsisting of 0.2 and 2.1 million tetrahedral elements and two nu-

erical schemes a WENO 2nd-order and a WENO 6th-order since

hey have vastly different computational requirements and hence

ill provide a representative indication of the relative performance
mprovements. Indicative results obtained on the fine mesh with a

ENO 6th-order scheme are shown in Fig. 5 where the turbulent

tructures are shown with the q-criterion isosurfaces for two in-

tances, one at the start and one at the end of the simulation. 

The second test case is an ILES of the transitional turbulent sub-

onic flow past the SD7003 wing at an angle of attack of 8 °, a

ach number of 0.2, and a Reynolds number of Re = 60 , 0 0 0 . This

est case is widely employed for assessing the behaviour of vari-

us numerical schemes for external aerodynamics by Visbal [49] ,

ranga et al. [50] , Rizzetta and Visbal [51] , Garmann et al. [52] ,

eck et al. [53] , Bassi et al. [54] , and Vermeire and Vincent [23] .
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Fig. 5. Isosurfaces of Q criterion at Q = 0 . 5 , coloured by kinetic energy at different instants for the 3D Taylor Green Vortex test problem using a WENO 5th-order scheme 

on the tetrahedral mesh. 

Fig. 6. Isosurfaces of Q criterion at Q = 100 , coloured by Mach number for the 

SD7003 wing test problem using a WENO 4th-order scheme. 
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One hybrid grid is generated consisting of approximately 5 million

hexahedral and 6 million prismatic elements with periodic bound-

ary conditions on z-axis and farfield boundary conditions else-

where apart from the surface of the wing where no-slip boundary

conditions are enforced. For this test problem the WENO 4th-order

scheme is employed since it was considered to have a good bal-

ance between accuracy and cost, given the computational budget

available. The flow over the wing is shown in Fig. 6 where the sep-

aration possible transition near the leading edge is shown with the

help of isosurfaces of q-criterion coloured by the Mach number. 

4.2. HPC platforms 

Five HPC platforms are utilised two assess the solver per-

formance on both test-cases; each platform has different spec-

ifications in terms of interconnect, processors and memory, the

information is listed in Table 2 . For all the HPC platforms

apart from ARCHER (KNL) platform, the MPI implementation
s used with Intel MPI 5.1.3 and Intel Fortran compiler ver-

ion 16.0.3. For all the runs apart from ARCHER (KNL) plat-

orm the exact compilation flags are set -i4 -r8 -O3 -ipo
xHost -fp model precise . For the ARCHER (KNL) plat-

orm the MPI+OpenMP implementation is employed with In-

el MPI 2017, and Intel Fortran compiler version 17.0.0. For all

he runs in the ARCHER (KNL) platform the compilation flags

re set as -i4 -r8 -O3 -xmic-avx512 -ipo -fp-model
recise -qopenmp -qopenmp-link = static and a guided

chedule is used for all the OpenMP regions, since it was found to

e fastest. Enabling the inter procedural optimisation has shown

o have a significant effect on the performance, approximately 30%

peed up and it is therefore used for all the tests. The computa-

ional times presented hereafter correspond to the maximum time

cross all CPUs, in other word the slowest CPU was taken into ac-

ount for all the simulations, since it was found to be the most

epresentative of the time that the simulation will take. 

.3. Original code performance 

Assessing the performance of the original code implementation

he Taylor Green Vortex on the finest tetrahedral mesh test case

as utilised using the WENO 6th-order scheme. The purpose of

his initial test is to identify the time-consuming processes of the

imulation, and proceed with optimisation of only the most com-

ute intensive operations. The test was performed on the Hazelhen

PC platform using 384, 3072 and 12,288 cores. The breakdown

f the percentage of the total time taken by various processes is

llustrated in Fig. 7 top three pie charts. It can be noticed that

he WENO weights calculation is the most expensive operation fol-

owed by the least-square reconstruction and the extrapolation of

he flow variables and gradients at the cell interfaces. In terms of

ommunication cost the most expensive part is the communication

f the reconstructed solutions and their gradients for the Gaus-

ian quadrature points between inter-processor boundaries rather

han the communication of the solutions for the stencil elements

cross inter-processor boundaries. Therefore only three processes

ere identified as having the potential to significantly improve

he performance of the CFD code namely the WENO weights cal-

ulation, the least-squares reconstruction and the communication

or the Gaussian quadrature points between inter-processor bound-

ries and the optimisation of those will be pursued. 
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Table 2 

Description of HPC resources used for the numerical tests. 

Specifications Hazelhen (HW) SuperMUC (SB) SuperMUC (HW) ARCHER (IB) ARCHER (KNL) 

Computing Site High Performance 

Computing Center Stuttgart 

(HLRS) 

Leibniz 

Supercomputing Centre 

(LRZ) 

Leibniz 

Supercomputing Centre 

(LRZ) 

UK National 

Supercomuting Centre 

(EPCC) 

UK National Supercomuting 

Centre (EPCC) 

Location Stuttgart, Germany Garching, Germany Garching, Germany Edinburgh, UK Edinburgh, UK 

Processor Type Intel Haswell E5-2680 v3 Intel Sandy Bridge 

E5-2680 

Intel Haswell E5-2697 

v3 

Intel Ivy Bridge 

E5-2697 v2 

Intel Knights Landing Xeon 

Phi (7210) 

Processor 

Frequency 

2.5 GHz 2.7 GHz 2.6 GHz 2.7 GHz 1.3 GHz 

Cores per node 24 16 28 24 64 (4 hardware threads) 

Memory per node 128 GB 32 GB 64 GB 64/128 GB 96 GB and 16 GB on chip 

(MCDRAM) 

Number of nodes 7712 9216 3072 4544 (64 GB), 376 

(128 GB) 

12 

Interconnect Cray Aries Infiniband FDR10 Infiniband FDR14 Cray Aries Cray Aries 

Fig. 7. Top : baseline code performance profile, bottom : optimised code performance profile. 3D Taylor Green Vortex test problem using a WENO 6th-order scheme on the 

finest tetrahedral mesh, at Hazelhen HPC platform. 
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.4. Reconstruction optimisation performance 

The two processes associated with the reconstruction method

ncluding the WENO weights computation and the least-square re-

onstruction are further assessed using the Intel Vtune profiler.

t was confirmed what already has been seen from manual time

easurement and log output, the main computational hotspot is
he WENO weights calculation algorithm. Within this routine the

ost costly part was the projection to characteristic variables for

ach degree of freedom and the weights calculation, since this is a

rocess repeated for all the stencils, and all the faces of the consid-

red cell. For both processes most of the time was spent in dense

inear algebra operations including matrix-vector products and dot

roducts using the intrinsic Fortran MATMUL functions. The key
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Table 3 

CPU times and speed ups for the WENO reconstruction routine and two of its sub-routines, for the Taylor–Green vortex test problem, using 

a WENO 6th-order scheme on Hazelhen at 512 processes for the coarse tetrahedral mesh. 

Routine Original code time Preliminary code (GEMV) Time | Speed up Final code (GEMM) Time | Total speed up 

WENO Reconstruction 3073 s 1466 s|2 × 478 s|6.5 ×
WENO weights 2135 s 429 s|5 × 197 s|10 ×
LSQ Reconstruction 780 s 367 s|2 × 157 s|5 ×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 7 Pseudocode of optimised WENO weights computa- 

tion for cell i . 

1: procedure WENO WEIGHTS ( a k, j,s ) 

2: for each face l do 

3: ! Averaging 

4: Compute U 

′ 
n = 

1 
2 (U L,n + U R,n ) 

5: Compute eigenvectors R l and L l 
6: for each admissible stencil s do 

7: ! Project to characteristic variables 

8: Compute B 

s 
j,ikl 

= GEMM (L j, j , a k, j,s ) 

9: SI s = GEMM ( OI kq , B 

s 
j,ikl 

) 

10: for each conserved variable j do 

11: SI s = DOT ( SI s , B 

s 
j,ikl 

) 

12: end for 

13: end for 

14: ! Compute Weights 

15: for each conserved variable j do 

16: Set ˜ ω s = 0 , ω s = 0 

17: for each admissible stencil s do 

18: Compute ˜ ω s = 

λs 

(ε+ SI s ) 4 
19: end for 

20: Compute sum 

s t ∑ 

s =1 

˜ ω s 

21: for each admissible stencil s do 

22: Compute ω s = 

˜ ω s 
s t ∑ 

s =1 

˜ ω s 

23: end for 

24: end for 

25: for each degree of freedom k do 

26: ˜ B j,ikl = 

(
s t ∑ 

s =0 

ω s B 

s 
j,ikl 

)
27: end for 

28: ! Project to conserved variables 

29: Compute ˜ a j,ikl = GEMM (R j, j , ̃  B j,ikl ) 

30: end for 

31: end procedure 
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ingredients to improve the performance of these routines are listed

below: 

1. Modify the storage of multidimensional arrays to optimise

memory access patterns. 

2. Rewrite loops of matrix-vector multiplications, into matrix-

matrix multiplications when possible. 

3. Utilise BLAS library for matrix multiplications instead of intrin-

sic Fortran functions. 

4.4.1. Least-square reconstruction optimisation 

For the least-square reconstruction, outlined in Algorithm 1 ,

we improve the memory access patterns by storing all matrices

with the fastest varying index stored first following the Fortran

column major order. Moreover, the loops are organised in such

a way that the largest index is looped last in order to minimize

loop overheads. The matrix-vector product of MATMUL in line 4

of Algorithm 1 is replaced with the equivalent call to GEMV pro-

vided by Fortran 95 BLAS binding from Intel MKL, version 11.3.

This can be seen in Table 3 , in the columns “Original Code” and

“Preliminary Code (GEMV)”, in that way the computation of the

least-square reconstruction is speeded up by a factor of 2. Pur-

suing additional optimisation within the loop where all the con-

served variables are computed in line 3 of Algorithm 1 , by remov-

ing the MATMUL Fortran function to perform the matrix-vector

multiplication of the pseudo inverse matrix and the vector of each

of the conserved variables for all the stencil elements. This func-

tion is replaced with a matrix-matrix multiplication of the pseudo-

inverse matrix with the matrix containing the conserved variables

b m, j, s for all the stencil elements using the GEMM library function

as shown in Algorithm 6 . This modification resulted in the least-

Algorithm 6 Pseudocode of optimised Least-square reconstruction

procedure for cell i . 

1: procedure LSQ RECON ( a k, j,s ) 

2: for each admissible stencil s do 

3: a k, j,s = GEMM (A 

† 

mk,s 
, b m, j,s ) 

4: end for 

5: end procedure 

square reconstruction process to take 5 times less time as shown

in Table 3 . 

4.4.2. WENO weights computation optimisation 

For the WENO weights computation a similar optimisation

strategy as the least-square reconstruction is adopted. MATMUL

functions are replaced by calls to GEMV BLAS library functions.

This optimisation resulted in a speed up of a factor of 5 compared

to the original code as it can be seen in Table 3 . By eliminating

the loops performed at lines 7, 11 and 31 of Algorithm 2 , and re-

placing the MATMUL function of the matrix-vector product with

the GEMM BLAS library functions of the equivalent matrix-matrix

products, and the DOTPRODUCT by the DOT BLAS library functions

as seen in Algorithm 7 a speed-up of 10 is achieved compared to

the original demonstrated in Table 3 . 
.5. Communication optimisation performance 

The Communication of stencil elements variables has a

uch smaller footprint in terms of time taken compared

o the communication of the boundary extrapolated variables

nd gradients for all the test runs performed. Therefore the

ptimisation efforts were focused on the communication of

he boundary extrapolated variables and gradients. The MPI-

 sparse collective operations is considered for the optimi-

ation of the boundary extrapolated variables and gradients

ommunication exchange at each Gaussian quadrature point

t each element/block interface. The collective operations with

PI Types such as MPI_Dist_graph_create_adjacent and

PI_Neighbour_alltoall for avoiding the overhead of man-

al send and receive buffer packing and unpacking are consid-

red. However, it got apparent that the time required for copy-

ng data to and from send and receive buffers was negligible



P. Tsoutsanis et al. / Computers and Fluids 173 (2018) 157–170 167 

Table 4 

Runtime for the communication routine of the boundary extrapolated variables at Gaussian quadrature points and 

two of its sub-routines, for the SD7003 test problem, using a WENO 4th-order scheme on Hazelhen at 1024 pro- 

cesses. 

Routine Original code time Non-blocking communication time | Total speed up 

Reconstructed solution exchange 3084 s 2642 s|1.16 ×
� MPI_SENDRECV 3059 s –

� MPI_WAITALL – 2616 s 
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Fig. 8. Strong scalability results for the ILES of the Taylor-Green vortex using the 

WENO 2nd-order scheme on the finest tetrahedral mesh. 
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ompared to the communication of the messages and therefore

his approach was not implemented. On the other hand the block-

ng MPI_SENDRECV calls are replaced by non-blocking communi-

ations of MPI_ISEND , MPI_IRECV and MPI_WAITALL as shown

n Algorithm 8 . This resulted in an improvement of 16% with re-

lgorithm 8 Pseudocode for optimised inter-processor quadrature

oints communications. 

1: procedure COMMBOUND ( U (x α, t) , ∇U (x α, t) ) 

2: for each CPU P that receives/sends information from/to the

current CPU N do 

3: Create 1D array to store the boundary extrapolated val-

ues and gradients to be received from CPU P 

4: Create 1D array to store the boundary extrapolated val-

ues and gradients to be sent to CPU P 

5: end for 

6: for each CPU P that receives/sends information from/to the

current CPU N do 

7: CALL MPI_ISEND 
8: CALL MPI_IRECV 
9: end for 

10: CALL MPI_WAITALL 
11: end procedure 

pect to the original code as shown in Table 4 . 

.6. Final performance gains 

The performance gains of the revised code are assessed on the

ame tests and the same number of processors for the Taylor Green

ortex on the finest tetrahedral mesh test case using a WENO 6th-

rder scheme. The purpose of this test is to identify significant dif-

erences in the breakdown of computational time similarly to the

ig. 7 . The tests are performed on the Hazelhen HPC platform us-

ng 384, 3072 and 12,288 cores. The breakdown of the percent-

ge of the total time taken by processes is illustrated in Fig. 7 .

ENO weights process have equivalent cost to the least-square re-

onstruction, also noticed in Table 3 . The percentage of total time

aken by the communication of the boundary extrapolated values

nd gradients is reduced from 24% to 20%. 

Since the computational load increases as the polynomial order

ets higher, we are expecting different gains for different orders of

ccuracy for the same test problem. This is reflected by the perfor-

ance improvements of the greater size of the matrix operations

hile employing the GEMM library calls. At the same time there

re overheads associated with making calls to the external library.

owever, these overheads become increasingly insignificant with

igher order discretisation. 

We perform simulations employing the WENO 2nd-order

cheme on the finest tetrahedral mesh for the Taylor–Green vortex

n the SuperMUC (SB) cluster by performing a strong scalability

est of the original code and the optimised code. The simulations

re performed from 48 to 1024 CPUs as seen in Fig. 8 ; there isn’t

ignificant drop in performance in terms of scalability. It apparent

hat optimised code is approximately 50% faster per iteration than
he original code, even with the overheads associated with GEMM

alls, since the cumulative improvements. It has to be noted that

n 1024 CPUs, approximately 2050 elements are assigned to each

PU. 

The second test is composed of simulation employing the

ENO 6th-order scheme on the finest tetrahedral mesh for the

aylor-Green vortex, on the SuperMUC (SB) and (HW) cluster, and

n the Hazelhen (HW) cluster. The goal is to perform strong scala-

ility test of both codes and assess the improvement across differ-

nt machines. The simulations are performed from 384 to 12,288

PUs as seen in Fig. 9 . The speed up for the WENO 6th-order

cheme spans from 5 to 6.5, across all CPU counts. Similar perfor-

ance is obtained for the simulation running on 384 CPUs on the

evised code with the same case running on 2400 CPUs on orig-

nal code. It needs to be stressed that at the highest core counts

ach CPU holds is approximately 160 elements, highlighting that

he ratio of computational to communication load is still high even

or low number of elements assigned to each CPU block. Further-

ore, the scalability performance hold at a acceptable level for the

umber of cpu tested, suggesting that higher core counts could be

xplored with lower number of elements per CPU. For very high-

rder of accuracy it is expected that the improvements in perfor-

ance will be even greater, since the performance of the GEMM

ibrary calls are proportional to the size of the matrices. 

The flow past the SD7003 wing is considered in the context

f ILES; the discretisation scheme employed is the WENO 4th-

rder scheme and the case is run on the SuperMUC (HW) cluster.

he simulations are performed from 864 to 7200 CPUs as seen in

ig. 10 . Speed up for the WENO 4th-order scheme ranges between

.8 and 2.2, across all CPU counts. The WENO 4th-order scheme
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Fig. 9. Strong scalability results for the ILES simulation of the Taylor–Green vortex 

using the WENO 6th-order scheme on the finest tetrahedral mesh. 

Fig. 10. Strong scalability results for the ILES of the SD7003 wing using the WENO 

4th-order scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Strong scalability results for the ILES simulation of the Taylor-Green vor- 

tex using the WENO 6th-order scheme on the coarsest tetrahedral mesh using the 

ARCHER(IB) and ARCHER(KNL) platform. 
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is not experiencing the same performance increase as the WENO

6th-order scheme. This can be attributed to the fact that the poly-

nomial order is smaller and the fact that mixed-element grids in-

troduces additional overheads in terms of element imbalance be-

tween partitioned blocks. 

We assess the performance and scalability of the optimised

solver on the ARCHER Knights Landing-(KNL) platform cluster com-

posed of Xeon Phi processors. The test case is the Taylor-Green

vortex flow with the WENO 6th-order on a coarse resolution grid

composed of 0.2 million elements. The performance gains of us-

ing the GEMM library calls in an architecture with a much wider

512-bit vector units, and faster memory bandwidth. 

The simulations are performed on the (KNL) from 1 to 8 nodes

as seen in Fig. 11 . A speed up from 7 to 8.5 is achieved across

all CPU counts with the optimised code compared with the orig-
nal one. The performance increase in this architecture is even

ore pronounced since the data for the simulation fits within the

ast memory of the (KNL) processor. Due to the nature of the un-

tructured CFD solver, where non-coalescent memory access pat-

erns are present, the increased memory bandwidth in combina-

ion with the much wider 512-bit vector units in this architecture

esults in significant performance improvements. Initially 64 MPI

rocesses per Knights Landing chip were used, but this was found

ot to be the optimum configuration. With the utilisation of hy-

rid MPI+OPENMP implementation of the code, it was found that
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[  
he ideal combination for running the simulations was with 4 MPI

rocesses per Knights Landing chip, and 64 threads spawned from

ach one of them, resulting a total of 256 threads per chip. By us-

ng the hybrid MPI+OPENMP a speed up of approximately 1.4 was

bserved compared to the pure MPI implementation of the revised

ode. Finally the utilisation of the ARCHER (KNL) platform results

n higher computational performance per purchasing cost of the

PUs in each computational node, as compared to the ARCHER (IB)

odes as seen in Fig. 11 . This is a good indication on the potential

f these architectures for pushing the boundaries of efficiency and

ost, for large scale scientific computing applications. 

. Conclusions 

In this work the performance of high-order WENO schemes of

he UCNS3D CFD solver is assessed under the ILES framework.

he code is profiled, optimised and tested across five different

PC clusters. Optimisation of the most compute-hungry processes

s performed i.e. WENO weights computation, least-square recon-

truction and communication of inter-processor boundary extrapo-

ated variables and gradients. Significant performance benefits are

chieved by making use of BLAS library functions and replacing

atrix-vector operations with matrix-matrix. Blocking MPI com-

unication functions are replaced with non-blocking ones for the

xchange of inter-block variables. Across five different HPC plat-

orms the speed-up observed between the revised and the orig-

nal code, spanned from 1.5 to 8.5. Finally, the use of hybrid

PI+OpenMP capability of the code resulted in an additional per-

ormance gains of 1.4 on the ARCHER Knights Landing cluster.

he results obtained are encouraging as one of the major chal-

enges of high-order schemes is the inherited cost. Future-proofing

igh-order solvers by incorporating enabling technologies for new

nd future hardware architectures will ensure that the high-order

ovement will remain relevant and better bridge the gap with the

FD workhorse of lower-order methods. 
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