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Abstract The analysis of the passive rotation feature of a micro Flapping Rotary Wing (FRW)

applicable for Micro Air Vehicle (MAV) design is presented in this paper. The dynamics of the wing

and its influence on aerodynamic performance of FRW is studied at low Reynolds number (�103).

The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping

wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A

quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and

moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic

rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that

the passive rotation motion of the wings is a continuous dynamic process which converges into an

equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing

inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the

normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis

also shows that in order to acquire a high positive lift generation with high power efficiency and small

dynamic time-lag, a relative high mid-up stroke angle within 7–15� and low mid-down stroke angle

within �40� to �35� are necessary. The results provide a quantified guidance for design option of

FRW together with the optimal kinematics of motion according to flight performance requirement.
� 2018 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Micro Air Vehicle (MAV) has become an active research
area due to the potentiality for the civil and military applica-
tion.1 The typical characteristics of MAV are small dimension

(wing spans within 15 cm), low weight (gross take-off weight
ranging from 100 to 200 g) and low flight speed (between 10
and 15 m/s). In recent two decades, a variety of MAV layouts,

which mainly include fixed wing, rotary wing, and flapping
wing, had been put forward. However, due to the extremely
small dimension and high lift and efficiency requirements at
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Nomenclature

CH; CV translational force coefficient along xw axis

and yw axis
CL; CD lift and drag coefficients
�CL stab period average lift coefficient
Cr rotational force coefficient

Ct translational force coefficients
c chord length of the wing
�c mean chord length of the wing

dMq aerodynamic torque of the above two forces
dFa virtual mass force
dMa virtual mass moment

ex;w; ey;w; ez;w unit vectors of right wing frame
Faero; Maero total aerodynamic forces and moments
F�
i inertia force of the ith rigid body

Ft; Fr translational and rotational forces

fF flapping frequency
Ii resulting mass moments of inertia matrices

for each rigid body

istab flapping period while FRW has been in the
ERS

M�
i inertia moment of the ith rigid body

Mmass gravity moments due to the mass of wings
Mw aerodynamic moments produced by flap-

ping wings

mi mass of the ith rigid body
Obxbybzb body frame
Orxryrzr rotary plane frame
Owxwywzw wing-fixed frames
�Pf average power output
�Pf stab power efficiency coefficient
Q�

j functions of generalized inertia force

R span length of wing
Rbr rotation matrix from the body frame to

rotation plane frame

RbwR; RbwL rotation matrix from the body frame to
right wing and left frames

RIb transfer matrix from inertial frame to body
frame

rCP location of the Centre of Pressure (CP) at a

chord-wise location
Sw the size of wing
TF flapping period
�t time courses of wing motion during a

flapping period
t0 initial time at the beginning of one flapping

period

ui related quasi-velocities of coordinates
vi velocities of the ith rigid body
vwðrÞ velocity of a chord-wise location on the

wing
vt flapping velocity at the wingtip
xb; yb; zb axes of the body frame
xi generalized coordinates of the five degrees

of freedom
ae effective angle of attack of the wing
aU; aD mid up-stroke and down-stroke angles

bij angular velocity coefficients
cij velocity coefficients
Dcw flapping amplitude angle

Da pitching amplitude
#w; cw pitch angle and flap angle
ka; kax added mass force coefficients
�lf stab nondimensional rotational velocity
q density of the surrounding air
qi reference vectors of the ith rigid body
wj0 rotating speed

wr rotation angle of rotary base
xi angular velocities of the ith rigid body

Subscripts

b the body of FRW
i the number of rigid bodies
j the number of generalized coordinates
wL; wR the left and right wing
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low Reynolds numbers Re, few practical MAVs with load car-
rying capabilities has been accomplished. Research efforts for

new and practical designs of MAVs have never been stopped.
In 2004, Vandenberghe et al.2 employed the experimental

method and found that a pair of wing flapping up and down

can freely rotate spontaneously around the horizontal shaft
as a critical frequency was exceeded. Based on this discovery,
Guo et al.3,4 proposed the design of Flapping Rotary Wing

(FRW) flight vehicle as a new configuration of MAV. Similar
concept was also proposed and applied in full-scaled helicopter
rotor by Van Holten et al.5 As shown in Fig. 1, a pair of anti-
symmetrically mounted wings, which can flap along the verti-

cal direction by a drive shaft, is fixed on the rotary rigid base.
The thrust generated by the wings’ vertically flapping motion
drives them to rotate around the shaft, resulting in a flapping

and simultaneously rotating kinematics. Combined with tun-
ing the pitch angles of the wings asymmetrically in the up-
stroke and down-stroke, the high lift force is produced to make

FRW take-off and hover.
Recently, experimental works6 were used to measure the
force produced and proved that the lift from flapping rotary

wing was larger than that from conventional rotary wing in
the range of Re from 2600 to 5000. Wu et al.7 conducted a
computational fluid dynamics method to research the unsteady

aerodynamic behavior of FRW. It is observed that the leading-
edge vortex attached on the wing surface during the whole
flapping period, which is the main reason for the high lift gen-

eration by FRW. Unlike the ordinary Flapping Wing (FW)
flight vehicle which is driven by its own motor to rotate, the
flapping rotary wing is driven by the aerodynamic force to
rotate passively. Previous works on FRW have mostly

assigned a constant rotation velocity by assuming an ‘equilib-
rium’ state. However, for a practical wing, the inertia forces
associated with the complicated kinematics will essentially

interact with the aerodynamic force production. The influence
of the wing inertia and the dynamic process as the wing con-
verges to the equilibrium status will necessarily have a nontriv-

ial effect on the aerodynamic performance of FRW. The



Fig. 2 Reference frames definition of FRW.

Fig. 1 Configuration of FRW flight vehicle.
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varying rotation velocity conversely affects the aerodynamics

and flow structure of the flapping rotary wing,8 resulting in a
coupling between the passively rotary motion and aerody-
namic force. Therefore, the nonlinear dynamic model, espe-
cially for FRW, is needed to analyze its aerodynamic

performance.
To date, only a few studies have focused on the dynamics of

FRW. However, many studies have been relevant to flapping

wing flight vehicle. In these studies, dynamics of FW are gen-
erally investigated using standard aircraft equations with six
degrees of freedom.9,10 However, this approach neglects the

inertial effects of the mass of the wings. Recently, some studies
have investigated the dynamics from the aspect of multiple-
body nonlinear system, such as Gebert11 and Sun12 et al.

Orlowski and Girard13 modeled a flapping wing micro air vehi-
cle as a system of three rigid bodies, a body and two wings, and
studied the influence of the mass of the wings to the dynamics.
Mahjoubi and Byl14 developed the dynamic multi-body model

using Lagrangian method and the proposed control approach
to optimize the wings’ mass and mechanical impedance prop-
erties of the joints. These studies have indicated that the

multiple-body dynamic theory may be used to analyze the
dynamics of FRW.

In this paper, a simplified FRW is modeled as three rigid

bodies, one for the body of rotary base and others for each
wing. The wing pitching motion is assumed to be actively dri-
ven through a control servo, as shown in Fig. 1. Thereby, each

flapping wing owns three degrees of freedom: the actively flap-
ping, pitching and the passively rotating. Using the D’ Alem-
bert’s Principle given in Ref.15, a multi-body dynamic model
is derived for FRW. In addition, a quasi-steady aerodynamic

model is utilized for the calculation of the aerodynamic forces
and moments. The motion process of wings is simulated in a
selected typical parameter set to understand the coupling with

the lift/thrust production. Finally, the effects of the kinematics
of wings on the dynamic rotational equilibrium of FWR and
the aerodynamic performances are presented.

2. Reference definition

To describe the motion of rotary base in the FWR body frame,

and the motion of wings with respect to rotary base, four
reference frames are used. The body frame Obxbybzb is
attached to the center of the body of FWR. As shown in

Fig. 2, the positive xb axis is along the longitudinal axis of
the central body. The yb axis locus in the vertical symmetry
plane of body and is perpendicular to the xb axis with a
positive upward. The zb axis is perpendicular to the xOy plane.

The unit vectors of the body frame are presented by ex;b; ey;b
and ez;b.

After rotating an angle wr about the yb axis of the body

frame for the rotary base, it becomes the rotary plane frame
Orxryrzr (shown as the subscript ‘‘r”). The rotate plane frame
defines the rotary motion of two connected wings.

The wing-fixed frames Owxwywzw are two fixed frames
attached to the wings. The initial orientation of the wing-
fixed frames is parallel to the rotate plane frame with an origin

coincident with the rotation of the wings joint. The orientation
of the wings with respect to the rotary plane is determined by
the pitch angle #w and flap angle cw of the wings. Here we use
the subscripts L, R to represent the left and right wings,

respectively.
The rotation matrix from the body frame to rotation plane

frame is

Rbr ¼ RyðwbÞ ð1Þ

As shown in Fig. 2, the wings successively rotate about the

xr and zw axis with the angles of cw and #w to reach the ulti-
mate position. The rotation matrices for the right wing are

RrwR ¼ Rzð#wRÞRxðcwRÞ ð2Þ
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The rotation matrices for the left wing, with respect to the
rotary base, are combined in the same manner as in Eq. (2).
The only difference that the signs of cw and #w are inter-

changed for the right and left wings.
Combining Eqs. (1) and (2), the rotation matrices from the

body frame to right and left wing-fixed frames are

RbwR ¼ RrwRRbr;RbwL ¼ RrwLRbr ð3Þ
3. Dynamic model of FRW

3.1. Method and assumption

The flapping wing vehicle is modeled as a system of three rigid

bodies: a central body of rotary base with two rigid wings
attached at ideal hinges. The method chosen to derive the
equations of motion is D’Alembert’s Principle Extended to

Multiple Rigid Bodies.15 The functions of generalized inertia
force are described as

Q�
j ¼

X3

i¼1

ðF�
i cij þM�

i bijÞ ð4Þ

where i presents the number of rigid bodies and j denotes the

number of generalized coordinates. cij represents velocity coef-

ficients. bij are angular velocity coefficients. The inertia force

F�
i and moment M�

i of the ith rigid body are given as

F�
i ¼ mið _vi þ €qiÞ

M�
i ¼ Ii _xi þ xi � Iixi þmiqi � _vi

ð5Þ

where mi; vi; qi; xi and Ii denote the mass, velocities, reference
vectors, angular velocities and the resulting mass moments of

inertia matrices of the ith rigid body.
In this study, the two wings are assumed to be attached to

the rotary base body by joints that allow two degrees of free-

dom respectively with a common rotation degree of freedom.
To simplify the derivation, firstly, the inertia tensors for the
individual bodies are calculated with respect to the reference

point and they do not need to be calculated at the time-
varying center of mass of the system. Then, the body of
FRW is assumed to be always fixed on the ground, thereby

its motions relative to inertial space are neglected and the body
frame is equal to inertial frame. As a result, a dynamic system
of three rigid bodies: one for the rotary base, the other two for
each wing, are considered. The five degrees of freedom are

selected to be described by the generalized coordinates xi,
listed together as

xi ¼ wr #wR cwR #wL cwL½ � ð6Þ

The related quasi-velocities of coordinates, expressed in
inertia frame, are

ui ¼ xy;r xz;wR xx;wR xz;wL xx;wL½ � ð7Þ
The variables xx; xy and xz describe the angular velocity of

the each selected center rigid bodies in the body frame. Espe-
cially, xy;r denotes the rotation angular velocity of the rotary

base with two wings, and the flapping and pitching angular

velocities of each wing are expressed as ½xz;wR xx;wR � and
½xz;wL xx;wL �, respectively.
3.2. Velocities and reference vectors

The angular velocity vector of the wing related to rotary base
and expressed in rotation plane frame can be obtained by the

time derivative of the two Euler angles _cw and _#w, which are
assumed to be known as the command input. For right wing,

the equation is defined as

xr
wR;r ¼

_cwR
0

0

2
64

3
75þ RxðcwRÞT

0

0

_#wR

2
64

3
75 ð8Þ

Related to body mass center, the joint point owns an angu-
lar velocity

x1 ¼ xb
r;b ¼ ½ 0 _wr 0 �T ð9Þ

With the combination of Eqs. (8) and (9), the angular veloc-

ity of the right and left wings with respect to the body frame,
and expressed in the body frame, are

x2 ¼ xb
r;b þ Rrbx

r
wR;r; x3 ¼ xr

wL;r þ Rrbx
r
wL;r ð10Þ

The reference vectors denote the position of the center of
mass of the ith body with respect to the reference point. For
the rotary base, the reference point is chosen to be its respec-
tive center of mass, thereby the reference vector q1 equals zero.

In each wing-fixed frame, the positon of mass center owns two
components along xw axis and zw axis directions:

cwR ¼ ½ cx;wR 0 cz;wR �T
cwL ¼ ½ cx;wL 0 cz;wL �T

(

The related reference vectors are transformed from the

wing-fixed frames according to

q2 ¼ RwRbcwR

q3 ¼ RwLbcwL

�
ð11Þ

Since the translational velocity of the rotary base, the refer-

ence velocity v1 equals zero. And for each of the wings, the ref-
erence point of translational velocity is its joint point. The
vectors from the center of rotary base to wing joint points,
are expressed as rwR and rwL. As shown in Fig. 1, the vectors

defined in body frame own two components along yb axis
and zb axis directions:

rwR ¼ ½ 0 ry �rz �T; rwL ¼ ½ 0 ry rz �T

The reference velocity, for each of the wings, is the velocity
of the respective wing joint in the inertia frame. The velocities
of the wings are

v2 ¼ x1 � rwR

v3 ¼ x1 � rwL

�
ð12Þ

The acceleration can be derived by differentiating the above
equation

_v2 ¼ _x1 � rwR þ x1 � ðx1 � rwRÞ
_v3 ¼ _x1 � rwL þ x1 � ðx1 � rwLÞ

�
ð13Þ
3.3. Coefficients

The angular velocity coefficients bij are necessary for the

derivation of dynamic model, which arise from the calculation



Nonlinear dynamics of a flapping rotary wing 1045
of virtual work performed by moments. Each coefficient is vec-
tor and is determined for each rigid body and velocity combi-
nation. The angular velocity coefficients are defined as

bij ¼
@xi

@uj

The coefficients of center body of FWR are

b1j ¼ ey;b 03�1 03�1 03�1 03�1½ � ð14Þ
The angular coefficients of right and left wings are

b2j ¼ RT
Ibey;b RT

Ibex;b RT
Ibez;b 03�1 03�1

� �
b3j ¼ RT

Ibey;b 03�1 03�1 RT
Ibex;b RT

Ibez;b
� �

(
ð15Þ
3.4. Mass moments of inertia

For the rotary base, the mass symmetry for xOy and xOz
planes is assumed. No planes of mass symmetry are assumed
for either wing during the model development. As a result,

the resulting mass moments of inertia matrices for each rigid
body are

I1 ¼
Ix;b 0 0

0 Iy;b 0

0 0 Iz;b

2
64

3
75

I2 ¼
Ix;wR �Ixy;wR �Ixz;wR

�Ixy;wR Iy;wR �Iyz;wR

�Ixz;wR �Iyz;wR Iz;wR

2
64

3
75

I3 ¼
Ix;wL �Ixy;wL �Ixz;wL

�Ixy;wL Iy;wL �Iyz;wL

�Ixz;wL �Iyz;wL Iz;wL

2
64

3
75

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð16Þ
3.5. Motion equations of rotary base

The derived equations of passive rotation motion, with all of
the individual pieces together, are presented in vector notation.

Q1 ¼ ðI1 _�x1 þ x1 � I1x1ÞTey;b
þ ðI2 _�x2 þ x2 � I2x2 þm2q2 � _�v2ÞTðRT

brey;bÞ
þ ðI3 _�x3 þ x3 � I3x3 þm3q3 � _�v3ÞTðRT

brey;bÞ ð17Þ
The rotations of the right wing and the left wings are

described by Eqs. (18) and (19), respectively.

Q2 ¼ ðI2 _x2 þ x2 � I2x2 þm2q2 � _v2ÞTðRT
Ibex;bÞ

Q3 ¼ ðI2 _x2 þ x2 � I2x2 þm2q2 � _v2ÞTðRT
Ibez;bÞ

(
ð18Þ

Q4 ¼ ðI3 _x3 þ x3 � I3x3 þm3q3 � _v3ÞTðRT
Ibex;bÞ

Q5 ¼ ðI3 _x3 þ x3 � I3x3 þm3q3 � _v3ÞTðRT
Ibez;bÞ

(
ð19Þ

Here, Q1 is the rotational moment acted on rotary base. The
generalized forces Q2;Q3 are the control moment for the right

wing, and Q4;Q5 are the control moments for the left wing.
The rotation moment, expressed in body frame, can be

dived as aerodynamic moments Maero produced by flapping

wings and gravity moments Mmass due to the mass of wings.
In this study, the quasi-steady theory is used to calculate the
aerodynamic moments Mw produced by flapping wings. The
calculation model is given in the following chapter. For each
wing, the Mmass is calculated according to

MmassR ¼ ðq2 þ rwRÞ � RIb

0

m2g

0

2
64

3
75

0
B@

1
CA ð20Þ

MmassL ¼ ðq3 þ rwLÞ � RIb

0

m3g

0

2
64

3
75

0
B@

1
CA ð21Þ

where RIb denotes the transfer matrix from inertial frame to
body frame. As the assumption of this study, we have

RIb ¼ I. As a result, the Mmass along the yb axis equals zero.
That means the gravity of wings will not produce the rotation
moment, if the body of FWR does not have angular motion in

inertial frame. Then, the rotation moment has an expression as

Q1 ¼ ðMaeroR þMaeroLÞey;b ð22Þ
4. Aerodynamic model

In the numerical study of Wu et al.7 on FRW, a strong span-
wise flow on the wing was observed, and the LEV on the FRW

wing merged with the tip vortex and the Trailing Edge Vortex
(TEV), forming a vortex ring structure that stayed attached on
the wing throughout the flapping cycle. These findings suggest

that the quasi-steady model used in this study is applicable for
modeling the aerodynamic forces of FRW. As a result, in this
study, we extended the quasi-steady aerodynamic model to the

application of the flapping and simultaneously rotating wing
kinematics of FRW.

Firstly, a geometric model of the FWR wing is chosen and

the detailed shape and definition of geometric parameters of
the wing are given in Appendix A. For blade element analysis,
it is convenient to write down the velocity and acceleration of a
2D wing chord due to the gyration of the wing at span-wise

location r. The resultant velocity and acceleration vector when
expressed in the wing-fixed frame are planar vectors with only
two nontrivial indices, i.e. the xw and yw components:

vwðrÞ ¼ xw � r ¼ xy;wrex;w � xx;wrey;w ð23Þ

and

_vwðrÞ ¼ ð _vx;w; _vy;wÞ ¼ _xw � rþ xw � ðxw � rÞ
¼ ð _xy;w þ xx;wxz;wÞrex;w þ ð� _xx;w þ xy;wxz;wÞrey;w ð24Þ

where ex;w; ey;w and ez;w denote the unit vectors of right wing

frame; xw is the angular velocity vector of the right wing
related to inertia frame and expressed in wing frame. For

two wings, the related xwR and xwL are obtained as

xwR ¼ R�1
IwRx2; xwL ¼ R�1

IwLx3 ð25Þ
Since the velocity and acceleration of wing are expressed in

wing frame, the effective Angle of Attack (AOA) of the wing ae
can be easily found by inverse trigonometric function of the
velocity components ratio of the wing:

ae ¼ arctan
vy;w
vx;w

� �
ð26Þ



Fig. 3 Kinematic pattern and parameter definition of FRW

wing.
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In quasi-steady theory of flapping wing, this relationship
holds, except that the force vector acts perpendicular to the
wing chord.16 The quasi-steady forces are divided by transla-

tional forces, rotational forces and virtual mass forces, and
the corresponding coefficients are experimentally mea-
sured.17–19 Here, we will use this definition. The corresponding

equations for translational force Ft and rotational force Fr for
two wings are expressed as

dFt ¼ ðdFx;t; dFy;tÞ ¼ 1

2
CtqkvðrÞk2cðrÞdr ð27Þ

And

dFr ¼ dFy;r ¼ �CrqkvðrÞkxz;wcðrÞ2dr ð28Þ
where q is the density of the surrounding air.Cr is the rotational

force coefficient due to wing pitching, and the value of this coef-
ficient is chosen as Cr = 1.6 in our calculation. The vector Ct is
the translational force coefficient and can be treated as a unit

force vector acting on the wing. In the velocity direction, Ct

is expressed as life coefficient CL and drag coefficient CD, and
can be approximated by the following equations20:

CL ¼ CLmax sinð2aeÞ
CD ¼ 0:5ðCDmax þ CD0Þ � 0:5ðCDmax � CD0Þ cosð2aeÞ

�
ð29Þ

where the constant coefficients CLmax; CDmax and CD0 at the
specific Reynolds number (Re � 4000) are valued from 3D
CFD case calculations result. The values are given as: CLmax

= 0.18, CDmax = 3.4, CD0 = 0.05.
Since we calculate the force and moment in the wing frame,

the translational force coefficient Ct can be obtained as

Ct ¼
CH

CV

� �
¼ cos ae � sin ae

sin ae cos ae

� �
CD

CL

� �
ð30Þ

where CH is the translational force coefficient along xw axis,
and CV is the translational force coefficient along yw axis.

For the calculation of the aerodynamic torque, the location

of the Centre of Pressure (CP) at a chord-wise location r is
defined as rCP ¼ xCPex;w þ rez;w. As a result, the aerodynamic

torque of the above two forces can be decided by the following
equation:

dMq ¼ rCP � ðdFt þ dFrÞ ð31Þ
The virtual mass force and moment are calculated using

Sedov’s formula,18 which is suitable for our coordinate

definition:

dFa ¼ ðdFx;a; dFy;aÞ
¼ xzðkavy þ kaxxzÞex;wdr
� ðka _vy þ kax _xzÞey;wdr

dMa ¼ rCP � dFa

ð32Þ

where vy and xz can be obtained from the vectors xw; vw of the

each wing. ka and kax are the added mass force coefficients,
which are obtained as

ka ¼ p
4
qcðrÞ3

kax ¼ p
4
ĥ2 þ p

128

	 

qcðrÞ4

ð33Þ

After integrating Eqs. (22), (28), (31) and (32) along the
wing span orientation, as a result, the total aerodynamic forces
and moments, expressed in body frame, are obtained as
Faero ¼ RT
bwðFt þ Fr þ FaÞ

Maero ¼ RT
bwðMq þMaÞ

ð34Þ

The forces and moments for each wings are calculated
based on its velocity and angular velocity respectively. Then,
the necessary aerodynamic moments MaeroR and MaeroL in
Eq. (22) are obtained.

5. Simulation conditions

5.1. Kinematic functions of wings

In this study, we use simple harmonic functions to describe the

flapping and pitching motion of the wing, as previous studies
for insects flight.21,22 The kinematic functions of the wing is
specified by giving the variation functions:

cw ¼ �Dcw
2

sinðfFtÞ ð35Þ

#w ¼ Da sin fFtþ
p
2

	 

þ a0 ð36Þ

where fF is the flapping frequency, Dcw is the flapping ampli-
tude angle, and Da is the pitching amplitude; for modeling

the asymmetric pitching, the angle a0 is introduced. By this
definition, the calculation functions between Da; a0 with the
geometric AOA of the wing at mid up-stroke angle aU and
mid down-stroke angle aD are given as

Da ¼ aD � aU
2

; a0 ¼ aD þ aU
2

ð37Þ

The time history of flapping motion and pitching motion is
plotted as an example in Fig. 3 to illustrate the relationship
between flapping motion cw and pitching motion

#w (Dcw = 30�, fF = 22 Hz, aU = �30�, aD = 20�).

5.2. Nondimensional coefficients

We used the mean chord length of the wing �c and the mean
flapping velocity at the wingtip vt ¼ 2DcwfFR as the reference
length and reference velocity. The aerodynamic lift and rota-

tion moment coefficients are thus defined as

CL ¼ Fy

0:5qv2tSw

; CR ¼ �Mx aero

0:5qv2tSwc
ð38Þ



Fig. 4 Comparisons of instantaneous lift and rotational moment

coefficients.
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Here, Fy and Mx aero mean aerodynamic lift and rotational

moment, �CL and �CR are the averaging aerodynamic lift and

rotational moment coefficients during one flapping period,
which are obtained by

�CL ¼
R t0þTF

t0
CLdt

TF

; �CR ¼
R t0þTF

t0
CRdt

TF

ð39Þ

where t0 is the initial time at the beginning of one flapping per-
iod and TF means the flapping period. If the effect of geometric

shape on aerodynamics is not considered, then the flapping
period TF only depends on frequency fF.The energetic cost
of the FRW’s wings can be calculated by the time averaged

power efficiency coefficient over a flapping period TF. For a
practical MAV design, elastic storage is desirable for energy
efficiency, of which the order is decided by the design property
of the mechanical system.

In the current study, we consider that the mechanical sys-
tem of the FRW can fully store the input power. The instanta-
neous aerodynamic power efficiency coefficient for hovering

flight due to gyration equals directly minus dot product of
the angular velocity vector xw with the aerodynamic torque
Maero:

Pf ¼ �xwR �MaeroR � xwL �MaeroL ð40Þ
then, the average power efficiency coefficient is given by

�Pf ¼
R t0þTF

t0
ðPfÞdt

TF

ð41Þ

A nondimensional variable �t ¼ t=TF is defined to describe
clearly the time courses of wing motion during a flapping per-
iod. As shown in Fig. 3, �t 2 ½0; 0:5� indicates that the wing’s

motion is in the phase of up-stroke, whereas �t 2 ½0:5;1:0� indi-
cates that the wing’s motion is in the phase of down-stroke.

5.3. Validation

To validate the compatibility of the aerodynamic model, we
compare the calculation results of our model with 3D CFD
results presented by Wu et al.,7 who studied the aerodynamic

characteristic of FRW at a low Reynolds Number. In Wu’s
work,7 the CFD mode employed a boundary fitted dynamic
grid to orientate the wing boundary at a different time with

the prescribed kinematics. An OH type mesh was used for flow
simulation. Grid 1 has dimensions of 31 � 33 � 37 (in normal,
chordwise, and spanwise directions, respectively); and grids 2

and 3 have dimensions of 51 � 57 � 61 and 81 � 81 � 91,
respectively. The outer boundary for these grids is located
30c away from the wing surface and 15c away from the wing-
tip. The first grid spacings from the wing surface of the three

grids are 0.002, 0.001, and 0.0005.
In the benchmark case, the flapping and pitching motions

may be defined by the previous descriptions. In the example

in CFD results of Wu et al.,7 the dynamic of rotation motion
is ignored and the rotation speed is assumed to be constant,
and we use the same model to describe the rotation motion

in this case.

wj ¼ �wj0t ð42Þ
where wj0 is the rotating speed.

Since the kinematics of FWR is combined by steady
rotation and reciprocal flapping motion, a nondimensional
rotation speed kR is defined to measure the deflection of the
effective AOA:

kR ¼ wj0

fF
ð43Þ

Based on Eq. (43), wj0 can be obtained.

The necessary parameters in Eqs. (35), (37) and (43) for val-

idation case are Dcw = 30�, fF = 22 Hz, aU = �30�, aD = 0�,
kR = 0.25. The Reynolds number for flapping flight may be
defined by Re ¼ vt�c=v, where v is the kinematic viscosity of
the air. In this case, we have Re = 4058. As shown in Fig. 4,

a reasonable agreement is achieved between the lift and rota-
tion moment trends obtained from the present model and
CFD results. The averaging coefficients of the present model

are �CL = 0.99 and �CR = 0.173, while �CL = 0.972 and �CR =
0.168 in CFD results. Thereby, the case study shows that the

model employed in the present study is credible.

6. Results and analysis

6.1. Analysis of a typical case

A typical case (Dcw = 30�, fF = 22 Hz, aU = -30�, aD = 20�,
Re= 4058) is selected and discussed in this section to investi-
gate the rotation performance of the FRW with the structural
parameters listed in Table 1.

The result of the rotation angular velocity varying with time
is presented in Fig. 5, and the rotational moment coefficient CR

and its averaging value �CR in each flapping periods are given in
Fig. 6. It can be clearly seen that the aerodynamic rotational
moment in the up-stroke decreases to negative value with the

increase of the rotational velocity, and the aerodynamic aver-
age rotational moment finally decreases close to zero after fif-
teen flapping periods, and then maintains at a small value
continually. It differs from other existing kinematics with pre-

scribed wing motion, such as rotary wing and insects flapping
wing.

However, note that �CR of each period cannot converge to
zero strictly and xyr oscillates continuously with an amplitude

of ±0.5 r/s, even after a lot of flapping periods. It is caused by
inertia coupling phenomenon of two wings, which are not sym-
metrical about the axis of rotation. According to Table 1, if the

inertial products Ixy;w; Ixz;w and Iyz;w are small and ignored,

according to Eqs. (17) and (22), the inertia coupling rotation
moment Mcoupl can be expressed as



Table 1 Basic parameters of FRW.

Parameter Value

Mass of wing m2; m3 (g) 0.15

Mass of rotation body m1 (g) 0.38

Inertia moment of wing Ix;w (10�6 kg�m2) 2.225

Iy;w (10�6 kg�m2) 1.308

Iz;w (10�7 kg�m2) 9.020

Ixy;w (10�7 kg�m2) 1.128

Ixz;w (10�8 kg�m2) 5.516

Iyz;w (10�8 kg�m2) 1.478

Inertial moment of rotary base Iy;b (10�8 kg�m2) 4.8

Fig. 5 Rotation angular velocity with varying time.
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Mcoupl ¼ ðIz;w � Ix;wÞðx2xx2z þ x3xx3zÞ
Similar to coefficients CR and �CR, the coefficients of Mcoupl

are defined as

CRcoupl ¼ �Mcoupl

0:5qv2t Swc

�CRcoupl ¼
R t0þTF

t0
CRcoupldt

TF

Fig. 7 gives the result of rotation coefficients CRcoupl and
�CRcoupl in each flapping period. After the comparison with

Fig. 7, it can be seen that the inertia coupling rotation moment
Fig. 6 Rotation moment coefficients CR varying in the 1st, 10th, 15th

each flapping period.
always exists even because of the high-speed flapping and
pitching motions of two wings. As a result, the rotational
moment is balanced with not only the resistance drag of the

fluid, but also inertia coupling moment. However, the inertia
coupling moment is small compared with the aerodynamic
moment, and the total moment is still zero. Consequently, an

FWR would reach and stay in an equilibrium rotation speed.

In this study, we define the motion status of �CR near zero as

the Equilibrium Rotational Status (ERS) for FRW.

Fig. 8 gives the results of lift coefficients CL and �CL in each
flapping period. As a comparison, constant rotational velocity

model with kR = 0.47 is used to calculate the same case. It can
be seen from Fig. 8(a) that the lift coefficient vastly increases
with the increasing rotational velocity, especially in the up-

stroke, where the large negative lift becomes positive at the
rotational equilibrium state. As a result, as shown in Fig. 8

(b), the variance of �CL is increasing gradually and reaches
the equilibrium value finally. Only in this time, the lift force
of FRW keeps stable with certain kinematic parameters input.
Notably, the lift generation of FRW presents first-order inertia

system characteristics for a new kinematics of wings input
because of the inertia damping in passive rotation motion.
That is different from the motions of rotary wing and insect

flapping wing, the life force of whom changes and reaches
stable immediately with the variance of wings kinematics.4,13

Thereby, the dynamic inertia time-lag phenomena of lift gener-

ation due to passively induced rotational velocity is a unique
feature of the FRW configuration.

In order to assess the dynamic system for lift generation, a
time-lag constant parameter saero is defined to present the time

cost of arriving ERS. In this case, the saero is obtained as 0.68 s,
which equivalent to 15 flapping period.

The following figures present a comparison between the

simulation results of �CR and �CL with the full, 2 times, 4 times
and 1/2 times rotational moment of inertia of wings Iy;w. Fig. 9

shows that as the rotational moment of inertia of the wings rel-
ative to the central body increase, the inertia time-lag phenom-

ena of lift generation becomes serious. saero changes from 0.41
s, corresponding to 1/2 times Iy;w, to 2.72 s, corresponding to 4

times Iy;w. However, once FWR reaches and stays in an
flapping period and averaging rotation moment coefficients �CR in



Fig. 7 Inertial rotation coupling moment coefficients CRcoupl varying in the 1st, 10th, 15th flapping period and averaging inertial rotation

coupling moment coefficients �CRcoupl in each flapping period.

Fig. 8 Lift coefficients CL varying in the 1st, 10th, 15th flapping period and averaging lift coefficients �CL in each flapping period.
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equilibrium rotational status, the lift generation is stable and
not affected by the variance of Iy;w. Thus, a small rotational

moment of inertia of wings is useful to decrease time-lag
constant.

6.2. Effects of the kinematics of wings

As given in Eq. (36), the pitching kinematics of wings is
described as sinusoidal wave functions. For a certain flapping

frequency fF, the pitch angle of the wing at any instantaneous
time is decided by AOAs parameters: mid up-stroke aU and
mid down-stroke aD. The two parameters, donated pitching

kinematics, may be selected to analyze the influence of wings
kinematics to aerodynamic performance.

In order to present the aerodynamic performance of FRW
in the equilibrium rotational status, the period average lift

coefficient �CL stab, power efficiency coefficient �Pf stab and
nondimensional rotational velocity �lf stab are defined as
�CL stab ¼
Pistabþj

i¼istab
�Ci
L

j

�Pf stab ¼
Pistabþj

i¼istab
�Pi
f

j

�����
�����

�lf stab ¼
Pistabþj

i¼istab
xi

yr

j
� 1

DcwfF

where istab means the flapping period while FRW has been in
the ERS, j is the total number of flapping period used to cal-

culate coefficients, and �Pf stab is defined as positive always. In
this case, we let j = 10 to acquire accurate description of aero-
dynamic performance for FRW.

In a typical case of Dcw = 30�, fF = 22 Hz, Re = 4058,

Fig. 10 presents the results of coefficients �CL stab; �Pf stab;
�lf stab and saero, while the mid-up stroke aU varies from 0� to



Fig. 9 Averaging rotation moment coefficient �CR and averaging lift coefficient �CL in each flapping period.
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�90� with increments of �2.5�, and the mid-down stroke aD is
fixed to aD = 10�, 20�, 30�.

As shown in Fig. 10(a), notice that the lift of FRW is near

zero when the aU equals -aD, e.g. the lift produced in up-stroke
and down-stroke may cancel each other. In order to acquire a
high positive lift generation of FRW, we need to increase aU
and decrease aD. Since in the up-stroke, the high value of aU
makes the wing surface close to the airflow direction decided
by rotation motion and flapping motion together. As a result,

the negative effective AOA of wing ae decreases, or even
changes to be positive. The negative lift generated in up-
stroke phase decreases consequently. On the contrary, the
small value of aD increases the ae at down-stroke phase, which
Fig. 10 Period average lift coefficient �CL stab, power coefficient �Pf sta

parameter saero variations with mid-up stroke aU and mid-down strok
produces more positive lift force. The power efficiency does
not increase with the lift performance improving, while com-
pared with Fig. 10(a) and (b). Since the high drag force follows

as high life generation, the optimal lift generation does not cor-
respond to the optimal power efficiency. In addition, a high
equilibrium rotation velocity occurs at small AOA parameters

while both aU and aD are within 20� to �20�. However, as
shown in Fig. 10(c) and (d), high �lf stab means more time is
required to arrive ERS, thereby the saero becomes large for a

small aU and aD.
In order to present the effect of pitching kinematic on

FRW, three zones are defined, which include high lift force

zone ( �CL stab P 1:5), high power efficiency zone
b, nondimensional rotational velocity �lf stab and time-lag constant

e aD.



Table 2 Maximum nondimensional parameters and the corresponding geometric AOAs.

Parameter Maximum value Related parameter

aU (�) aD (�) �CL stab
�Pf stab saero

�CL stab 1.975 �20 6 1.51 0.97
�Pf stab 3.14 �44 30 0.758 0.36

Fig. 11 Zones of high lift, power efficiency and less time-lag

distribution variations with mid-up stroke aU and mid-down

stroke aD.

Fig. A1 Geometric parameters definition of FWR wing.
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( �Pf stab P 1:6) and low time-lag zone (saero 6 0:6 s). The maxi-
mum nondimensional parameters and the corresponding geo-
metric AOAs are listed in Table 2. Fig. 11 shows three zones

distribution as aU varies from �80� to 0� and aD varies from

0� to 50�. The maximum lift coefficient �CL stab = 1.97

responses the point at aU = �20.0�, aD = 6�, and the maxi-
mum power efficiency coefficient happens at aU = �53�, aD
= 34�. If taking the high lift, high power efficiency and low
time-lag into consideration, as given in Fig. 11, an optimal

AOAs parameters occur at the point where aD is relative small
(within 7–15�), and aU is in the range �35� to �40�.

7. Conclusions

The passive rotation motion and aerodynamic performance of
a rotary base with two flapping wings as a simplified model of

FRW flight vehicle are studied. The nonlinear, multiple body
equations of motion for an FRW is derived using D’Alem-
bert’s Principle for Multiple Rigid Bodies. In addition, a

quasi-steady aerodynamic model is utilized for the calculation
of the aerodynamic forces and moments at a low Reynolds
number (Re � 4000).

The simulation of typical case shows that the passive rota-

tion motion of FRW is a continuous dynamic process of con-
vergence into rotary velocity equilibrium status due to an
interaction between aerodynamic thrust and rotation velocity.

That causes the unique time-lag of stable lift generation. Even
in the rotation equilibrium status, the lift force is still oscillat-
ing with small amplitude.
The pitching kinematics of wings greatly affects the
equilibrium rotational characteristics, thus the aerodynamic

performance of FRW. The lift force generation, power effi-
ciency, equilibrium rotational velocity and dynamic time-lag
are studies for various AOA parameters of wings. The result

shows that in order to acquire a high positive lift generation
with high power efficiency and small dynamic time-lag, a rela-
tive high mid up-stroke aU and low mid down-stroke aD are

necessary. In the zone where aD is within 7–15� and aU is
within �35� to �40�, the performance of FRW is optimal.

Appendix A.

The geometry of the FRW wing is modeled by keeping the
morphological parameters of quasi-static analysis similar with
available insects’ data. In generation, we assume that the thick-

ness of the wing is small enough and has little effect on the
wing’s aerodynamic. Thereby, a 2D wing with a span length
R is shown in Fig. A1. Along the span direction, the wing is

dived by infinite small strip with width dr. The chord length
cðrÞ is shown at a chord-wise location r; h refers to the coordi-
nate of the major axis of the ellipse in xw axis. The Center of

Gravity (CG) of wing has two components xCG; zCG in the
wing frame. The AR is within 3–5; the shape parameters,
including wing aspect ratio AR, the first, second and third

radii of nondimensional moment of wing area (r̂1ðsÞ; r̂2ðsÞ
and r̂3ðsÞ) are: AR= 3.6, r̂1ðsÞ= 0.55, r̂2ðsÞ= 0.59, r̂3ðsÞ =
0.63.

The chord-wise location of Centre of Pressure (CP) is in the

xw axis. Referring to Dickinson et al.,17 the xCP with respect to
location r varies linearly with the change of the effective AOA
ae (given in Eq. (26) and the linear relation can be expressed as

xCPðrÞ ¼ ĥþ 0:82

p
jaeðrÞj � 0:45

� �
cðrÞ

where ĥ is the nondimensional local coordinate of the chord:

ĥ ¼ h=cðrÞ.
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