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Abstract: This article presents a new command shaping guidance law by change of Lagrange multiplier
(LM), called CSGL-LM. The Schwarz inequality approach is used to solve the optimal guidance
problems considering both terminal constraints on interception and impact angle control. LM is
introduced to combine two terminal constraints into a single equation. The main idea of this paper is to
use LM as a design parameter for shaping the guidance command as well as controlling the terminal
constraints. The guidance command of CSGL-LM is given a unified functional form of the time-to-go,
the state variables, and LM. Therefore, through an appropriate choice of LM, we can achieve various
shapes of the guidance commands for the interception case, as well as the impact angle control case. As
illustrative examples, this paper also shows that a class of previous guidance laws is just one of particular
solutions of CSGL-LM. Numerical simulations are performed to validate the properties of CSGL-LM,
compared with the conventional guidance law.
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1. INTRODUCTION

The main goal of the guidance systems is to deliver the
vehicles to a target position. In the application of the missile
systems, the interception of a target is the most important
requirement for the guidance systems. The proportional
navigation guidance (PNG) in Ben-Asher et. al. (1998) and
Zarchan (2007) has been widely accepted in many missile
systems due to its effectiveness and simplicity in practice.
Considering only target interception, PNG has been regarded
as an attractive solution.

Recently, as battlefields and targets have been continuously
diversified and modernised, the missile guidance system is
demanded to take such changes into account. Consequently,
the requirements of the guidance systems have gradually
adapted to these changes. For the anti-tank or anti-ship
missile systems, the terminal impact angle constraint is
widely requested to maximize the lethality of the warhead.
For the surface-to-air missile systems, the flight path angle
constraint at the beginning of homing phase has been widely
considered to achieve an advantageous initial homing
position against a highly manoeuvring target.

The guidance law intended to achieve this additionally
constraint is called the impact angle control guidance (IACG)
law. Over the past several years, there have been extensive
research activities on IACG in Idan et. al. (1995), Ryoo et. al.
(2005) and Lee et. al. (2013a, 2013b). These works have been
performed in the optimal control framework because it
enables to handle the terminal constraints easily and to
provide a state-feedback form solution.

In the field of the guidance technology, command shaping
capability while keeping the terminal constraints has been
widely demanded to meet various operational goals of
guidance. However, in most of previous guidance laws such
as PNG or IACG, the guidance command is decided by a
selection of guidance gain. This leads to no degree of
freedom remained for shaping the guidance command. In
order to solve this issue, numerous command shaping
guidance laws have been devised. Most of these works have
been also performed under the optimal control framework.
The underlining idea of these works was to introduce a
weighting function to the control energy so as to provide an
additional degree of freedom for shaping the guidance
command. Various weighting functions have been
successfully applied: for example time-to-go functions in
Ryoo et. al. (2006), Ohlmeyer et. al. (2006) exponential
function in Rusnak et. al. (1996), Ryu et. al. (2015) and
sinusoidal function in Lee et. al. (2015). Also, in the
reference Lee et. al. (2013a), the authors have proven that any
positive functions can be used to shape the guidance
command in this framework.

These approaches were to successfully provide the command
variability, but there was still a point to be improved. That is,
in this framework, guidance laws for the interception and for
the impact angle control are not given by a unified form.
Thus, guidance laws for the interception and the impact angle
control should be separately designed. This implies that
command shaping across the terminal constraints is not
allowed in this approach unless the guidance configuration
changes. It would be desirable to obtain a guidance law for
the interception and the impact angle control in a unified
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form such that command shaping across the terminal
constraints is possible. In general, the guidance phases
consist of several sub-phases such as the initial phase, the
mid-course phase, and the terminal homing phase. Each
guidance phase requires different terminal constraints.
Therefore, if a guidance command is given by a unified form,
such different guidance phases and their constraints can be
handled with a single guidance command without changing
guidance configuration and a complicated logic.

To this end, this paper proposes a new command shaping
guidance law across the terminal constraints, named as
CSGL-LM. In this study, Schwarz inequality approach is
used to solve the optimal guidance problem. In this approach,
LM is used to combine two terminal constraints. The main
idea of the proposed approach is to use LM as a design
parameter to shape the guidance command. Since the role of
LM is also to combine two terminal constraints, we can
satisfy the terminal constraints and at the same time shape the
guidance command through an appropriate choice of the LM
value. As illustrative examples, this paper shows that CSGL-
LM can be converted to other guidance laws under a specific
LM setting.

The rest of this paper is organised as. In section 2, the
engagement kinematics is explained. CSGL-LM is derived in
section 3. Numerical simulations are performed in section 4.
Finally, section 5 concludes this study.

Fig. 1. Planar engagement kinematics.

2. ENGAGEMENT KINEMATICS

This section devotes to describe the planar engagement
kinematics for deriving CSGL-LM. Fig. 1 shows the
engagement kinematics for a stationary target. In this

engagement kinematics, ( ),I IX Y represents the inertial

frame and ( ),f fX Y represents the reference frame. The

reference frame is rotated from the inertial reference frame by

the desired impact angle (i.e., fγ ) and introduced for

linearization purpose. The missile and target are denoted by
M and T , respectively. The line-of-sight (LOS) angle and
the relative distance between M and T are denoted by σ
and R . The flight path angle, the velocity, and the normal
acceleration of missile are given by Mγ , MV , and Ma ,

respectively. In the missile systems, the normal acceleration
is considered as the input variable and leads to change of the
flight direction. Additionally, the variables with bar such as

σ and Mγ represent the angles measured from the reference

frame and the physical meanings are the same. The variable

y denotes the lateral position perpendicular to fx -axis. In

Fig.1, the nonlinear engagement kinematics with respect to
y is given by
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where the variable v is defined to be the lateral velocity

perpendicular to fx -axis. In order to achieve the interception

as well as the satisfaction of the desired impact angle, the
constraints at the final time are given by

( ) ( ) 0f fy t v t= = (2)

where ft represents the final time. Under the constant

velocity assumption and small angle approximation of Mγ ,

the above equation can be linearized as follows:
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This equation can be rewritten in the state-space form as
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Note that this linearized kinematics has been widely used to
devise optimal guidance laws from many researchers in Ryoo
et. al. (2005, 2006) and Lee et. al. (2013a, 2013b, 2014,
2015).

3. GUIDANCE LAW DESIGN

2.1 Derivation of CSGL-LM

This section provides the derivation of CSGL-LM. During
the course of years, there have been a lot of approaches to
devise new guidance laws. Among them, the optimal control
approach has a great attention because it is systematically
well-posed. Just solving optimal guidance problem can
provide a practical and a capturability-proven guidance law.
In addition, a guidance law obtained is given by a state-
feedback form. This property can be a merit for
implementing it.

In the optimal control approach, Schwarz inequality is one of
ways to obtain the optimal solution. In the process of
Schwarz inequality method, LM is introduced to merge two
constraints into one equation. In this approach, there is a
degree of freedoms in choosing LM. Accordingly, the main



idea of this paper is to use LM as a design parameter that
enables various shapes of the guidance command as well as
control the terminal constraints.

Based on the linear control theory, the general solution of Eq.
(4) is determined as

( ) ( ) ( ) ( ) ( ) ( )
ft

f go ft
x t t x t t B u dτ τ τ τ= Φ + Φ −∫ (6)

where ( )gotΦ is the state transition matrix, which is obtained

as
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where go ft t t= − represents the time-to-go that is the

remaining time of the interception. For a stationary target, got

can be simply determined as
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M
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t
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Substituting Eqs. (5) and (7) into Eq. (6) yields:
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Then, imposing the terminal constraints to Eq. (9) gives
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As shown in Eq. (10), we have two equations. Here, we
introduce LM λ in order to combine above two equations as
follows:

( ) ( )( ) ( ) ( )1 2

ft

go ft
x t x t t t u dλ λ τ τ τ + − = − − ∫ (11)

Then, applying Schwarz inequality to Eq. (11) provides:
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Rearranging above equation gives:
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For convenience’s sake, let the left-hand side of Eq. (13) be
defined as
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By using this definition, we can rewrite Eq. (13) as follows:

( )2ft

t
J u dτ τ≤ ∫ (15)

Then, we can readily observe that the physical quantity of the
right-hand side of Eq. (15) is the control energy and the left-
hand side of Eq. (15) represents the minimum value of the
control energy. From Eq. (15), when the equality holds, the
control energy can achieve its minimum value. According to
Schwarz inequality, if there is a linear relationship between

( )ftλ τ− − and ( )u τ , then the equality holds as:

( ) ( )fu K tτ λ τ = − −  (16)

where K is a constant value. In order to determine K , we
substitute Eq. (16) into Eq. (10).
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Substituting Eq. (17) into Eq. (16) gives:
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By using Eq. (5), the guidance command can be rewritten
with the original variables as
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As shown in Eq. (19), CSGL-LM is given by the function of
the lateral position and velocity, the time-to-go, and LM. As
mentioned in before, in the proposed approach, LM can be
used to vary the guidance command as well as control the
terminal constraints.

2.2 Discussion of CSGL-LM

In the previous, we observe that CSGL-LM is given by the
function of LM. In this section, we will show that various
shapes of the guidance commands across the terminal
constraints can be achieved using the proposed solution
according to selections of LM.

We suppose that LM is given by a linear function of the time-
to-go in order to match the physical unit from Eq. (11).

( ), , go goS y v t tλ = (20)

Wher ( ), , goS y v t represents the shaping function of LM,

which is possibly given by a function of state variables and
the time-to-go.

First, if we choose ( ), , goS y v t as a function of time-to-go (not

dependent on the state variables), then we have



( ) ( ) ( ), , , where 0go go goS y v t f t f t= ≥ (21)

By substituting Eq. (21) with Eq. (20) into Eq. (19), the
guidance command can be expressed as follows:
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where ( )( )' goN f t is the time-varying gain which is given by

( )( )
( )( )
( )

6 1
'

2 3

go

go

go

f t
N f t

f t

−
=

−
(23)

Note that in that case CSGL-LM can become the well-known
proportional navigation guidance (PNG) with the time-
varying gain. Therefore, according to selection of any

positive functions ( )gof t , we can generate various guidance

commands while keep satisfying the interception condition.

Here, there are some interesting properties for the specific

choice of ( )gof t . Especially, ( )gof t is chosen as a constant

value ( )gof t α= , where 0α ≥ , then we have
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N

α

α

−
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In that case, the time-varying gain becomes a constant value
which exactly corresponds to the navigation constant of the
conventional PNG. The above equation can be rewritten with
respect to α as follows:

2 ' 6

3 ' 6

N

N
α

−
=

−
(25)

Therefore, through appropriate choices in α , we can mimic
any values of the navigation constant. From Eq. (24), when
the value of α approaches zero, then we have

0
lim ' 3N
α →

= (26)

This result is natural because the condition of 0α = (that is
0λ = ) in Eq. (11) means that it does not take the constraint

regarding the impact angle into account in the derivation.
Accordingly, the guidance problem becomes the optimal
interception problem and it is well-known that the PNG with
N = 3 is the optimal solution for the interception case.
Additionally, as α → ∞ , we have

lim ' 2N
α →∞

= (27)

Next, let us assume that the shaping function of LM is given
by the trajectory dependent function as

( ) 1 2
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where 1p , 2p , 3p , and 4p are constant values. First, we

choose these parameters as follows

1 2 3 43, 1, 6, 3p p p p= = = = (29)

Then, CSGL-LM becomes the following form

2
6 4M
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This result is identical to the optimal impact angle guidance
law (OGL) as studied in Ryoo et. al. (2005). Also, LM with
Eqs. (20), (28), and (29) can satisfy the condition of

/ 0J λ∂ ∂ = . It means that this shaping function of LM gives
the optimal solution from the control energy minimization
standpoint.

Additionally, we choose 1p , 2p , 3p , and 4p as follows:
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where 0N ≥ . In that case, substituting Eq. (28) with Eq. (31)
into Eq. (19) provides

( )( ) ( )2
2 3 2 2M
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CSGL-LM is the same as the time-to-go weighted optimal
guidance law (TWOGL) in Ryoo et. al. (2006) and Ohlmeyer
et. al. (2006).

Finally, we choose 1p , 2p , 3p , and 4p as follows:
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where 0n m> ≥ . In that case, substituting Eq. (28) with Eq.
(33) into Eq. (19) gives

( )( ) ( )2
2 2 3M
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CSGL-LM in this setting is equivalent to the time-to-go
polynomial guidance (TPG) as studied in Lee et. al. (2013b).

Accordingly, through specific choices in LM, CSGL-LM can
contain a class of previous guidance laws. Therefore, CSGL-
LM can be regarded as a more general guidance law
compared with other guidance laws. Also, we can observe
that CSGL-LM can be converted to both the interception



guidance law such as PNG and IACG laws such as OGL,
TWOGL, and TPG. Therefore, CSGL-LM can provide
various guidance commands across the terminal constraints.

4. NUMERICAL SIMULATIONS

In this section, we perform two linear simulations in order to
demonstrate the properties of CSGL-LM from the command
shaping standpoint. In the first simulation, LM is chosen by a
function which is independent of the state variables as shown
in Eqs. (20) and (21). The second simulation is conducted to
determine the characteristics of CSGL-LM when LM is
designed by a function which is dependent on the state
variables as shown in Eqs. (20) and (28). In these simulations,
CSGL-LM is compared with PNG with N = 3 in order to
show the superiority of CSGL-LM in the term of the
command variability.

(a) Normalized Lateral Position

(b) Normalized Lateral Velocity

(c) Normalized Guidance Command

Fig. 2. The simulation results when λ is independent of the
state variables

Table 1. Design parameters for simulation I

Nomenclature Design of ( )gof t

Case I-1 0.5

Case I-2 ( )( )0.5sin / f got tπ

Case I-3 ( )0.5exp /go ft t−

Fig. 2 (a), (b), and (c) show the normalized position, velocity,
and guidance command in the first simulation. In that case,
the shaping functions of LM are designed as provided in
Table 1. As shown in Fig. 2(a), the lateral position converges
to zero for all cases. It means that CSGL-LM can
successfully intercept a target. In these cases, we can readily
observe that the lateral velocity does not approach zero at the
final time as shown in Fig. 2 (b). Therefore, in this setting of
LM (e.g., independent of the state variables), the terminal
constraint on the interception is only possible. These results
match with the analytical results as provided in above section.
Fig. 2 (c) shows that compared with the conventional PNG,
CSGL-LM can produce various patterns of the guidance
command while satisfying the interception condition.
Especially, in Case I-2, CSGL-LM demands a small guidance
command at the initial phase and the guidance command
quickly approaches zero in the terminal phase. This
command shape is desirable for reducing the sensitivity
against to the initial heading error as well as ensuring the
operational margin to cope with unexpected situation in the
vicinity of a target.

(a) Normalized Lateral Position

(b) Normalized Lateral Velocity



(c) Normalized Guidance Command

Fig. 3. The simulation results when λ is dependent on the
state variables.

Table 2. Design parameters for simulation II

Nomenclature Parameters

Case II-1 1 2 3 43, 1, 6, 3P P P P= = = =

Case II-2 1 2 3 49, 3, 15, 6P P P P= = = =

Case II-3 1 2 3 417, 5, 27, 9P P P P= = = =

Fig. 3 (a), (b), and (c) describe the normalized position,
velocity and guidance command in the second simulation.
The shaping function is designed as shown in Eq. (28) and
their parameters are chosen as provided in Table 2. As shown
in Fig. 3 (a) and (b), both the lateral position and velocity
converge to zero as the time-to-go goes to zero. Therefore,
through specific choices in the shaping function of LM (e.g.,
dependent on the state variables), CSGL-LM can be
converted to IACG laws. As shown in Fig. 3 (c), the
simulation results show that CSGL-LM can produce various
shapes of the guidance command according to the
combinations of the shaping function’s parameters while
keeping the impact angle control capability.

In this section, we reveal that CSGL-LM can become
interception guidance law as well as impact angle control
guidance law according to selection of shaping function of
LM. Additionally, by changes of parameters of shaping
function, CSGL-LM enables to produce various shapes of the
guidance command. These properties of CSGL-LM are
desirable for achieving various and extensive operational
goals of guidance.

5. CONCLUSIONS

This paper suggests a new command shaping guidance law
using LM. In this study, the optimal guidance problems with
the terminal constraints of interception and impact angle
control are considered. Schwarz inequality approach is used
to obtain solution of given optimal guidance problem. In the
proposed method, LM is used to combine two constraints into
one equation as well as provide additional degree of freedom
in shaping the guidance command. The proposed guidance
law called CSGL-LM is given by the function of the time-to-
go, the state variables and LM. We show that for a specific
selection of LM, CSGL-LM can become PNG law with a

time-varying gain as well as a class of impact angle control
guidance laws. Therefore, this observation provides that
CSGL-LM is a unified solution across the terminal
constraints. Also, CSGL-LM is a more generalized guidance
law compared with other guidance laws.
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