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This study investigates the aerodynamic efficiency of a
bioinspired flapping wing rotor kinematics which combines
an active vertical flapping motion and a passive horizontal
rotation induced by aerodynamic thrust. The aerodynamic
efficiencies for producing both vertical lift and horizontal thrust
of the wing are obtained using a quasi-steady aerodynamic
model and two-dimensional (2D) CFD analysis at Reynolds
number of 2500. The calculated efficiency data show that
both efficiencies (propulsive efficiency-ηp, and efficiency for
producing lift-Pf ) of the wing are optimized at Strouhal
number (St) between 0.1 and 0.5 for a range of wing pitch
angles (upstroke angle of attack αu less than 45°); the St for
high Pf (St = 0.1 ∼ 0.3) is generally lower than for high ηp

(St = 0.2 ∼ 0.5), while the St for equilibrium rotation states lies
between the two. Further systematic calculations show that the
natural equilibrium of the passive rotating wing automatically
converges to high-efficiency states: above 85% of maximum Pf
can be obtained for a wide range of prescribed wing kinematics.
This study provides insight into the aerodynamic efficiency
of biological flyers in cruising flight, as well as practical
applications for micro air vehicle design.

1. Introduction
Flapping wing based propulsion has several aerodynamic benefits
for the application of micro air vehicles (MAVs), as demonstrated
by the superior flight skills of natural flyers such as insects or
birds. In particular, flapping wing produces higher lift force than
conventional aerofoil at an angle of attack (AoA) above the stall
angle, due to the delayed stall of the leading edge vortex (LEV)
[1–3]. On the other hand, flying insects and birds have shown
the extraordinary capability of vertical take-off, landing, hovering
and manoeuvrability. These features of the flapping wing have
brought a strong interest in developing MAVs that mimic the wing
motion of insects or birds [4,5].

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1. Flapping and passive rotation kinematics of FWR.

For aeronautical vehicles and flying animals, the wings produce significant lift to support weight
in the air, the aerodynamic efficiency is often defined by the cost of energy to stay aloft or to travel
a certain distance, which is associated with lift production. For example, the current studies on insect
flight primarily focus on a ‘normal hovering’ state, where the aerodynamic force of the flapping wings
averages to a net lift primarily to support the weight in the air. The aerodynamic efficiency of the wing
is therefore mainly concerned with the production of lift for a given power. On the other hand, moving
animals such as swimming fish and cruising flyers use their wings or fins to produce thrust against
the drag of the fluid, for which the propulsive efficiency associated with thrust production is often
used to measure the efficiency of their movement of wings or fins. For flying and swimming animals,
a dimensionless parameter which describes the kinematics of their wings or fins is the Strouhal number
St [6–8]. This dimensionless number is known to govern a well-defined structure of the wake shed from
an oscillating aerofoil in the free stream, and is closely related to the efficiency of flying and swimming
animals for propulsion [6,8]. In particular, optimum propulsive efficiency is found for wing motions
with St lying between 0.2 and 0.4, corresponding to a stably formed wake structure and average velocity
profile equivalent to a jet [6–10]. Further extensive literature reviews on data from flying and swimming
animals showed that many animals cruise at this interval of St [6,8].

The existing studies on flapping wing efficiencies have been primarily focused on one of the above
two aspects. For the normal hovering kinematics of insects, because the body assumes no forward
speed, the flapping wing produces no net thrust in a flapping cycle. Thus, the aerodynamic efficiency
for producing lift is of primary concern for such wing motions. On the other hand, most study on the
undulatory swimming fish tails have been devoted to propulsion, while the force perpendicular to the
free stream in the form of lift is of secondary factor. However, natural flyers in cruising flight use their
flapping wings to generate both lift and thrust. The aerodynamic efficiency of such wing motion in terms
of both propulsive efficiency and efficiency of lift production has received less study.

One particularly interesting kinematics is a wing that flaps and rotates at the same time.
Vandenberghe et al. [11] studied these kinematics experimentally with a rectangular wing mounted on a
vertical shaft and free to rotate horizontally. As the wing flaps up and down above a threshold frequency,
it starts to rotate and finally reaches a stable speed with St ∼ 0.26 for a range of input frequencies. Similar
wing kinematics has been proposed for the design of new helicopters without the reaction torque [12].
Guo et al. [13] investigated a new type of bioinspired flapping wing vehicle, namely the flapping wing
rotor (FWR), for which a pair of antisymmetric configured wings is rotated by the aerodynamic thrust
produced by vertical flapping motion, as illustrated in figure 1. The positive average aerodynamic lift can
be obtained by varying the wing pitch angle in an asymmetric manner. Further numerical investigation
has shown that the flow on the flapping and rotating wing forms compactly attached three-dimensional
(3D) vortex ring structure which connects the LEV, trailing edge vortex and wingtip vortex that enhances
lift production [14]. Li et al. [15] and Wu et al. [16] used quasi-steady (QS) aerodynamic analysis and CFD
models, respectively, and showed that the FWR kinematics in hovering flight can produce higher lift
coefficient than the conventional insect-like flapping wings and rotary wing. The aerodynamic efficiency
of the FWR for lift production (defined by the dimensionless power factor Pf [17,18]) is standing between
the other two conventional types.

For animals in cruising flight, the equilibrium between the thrust produced by the flapping wing and
the aerodynamic drag results in a wing kinematics pattern that closely resembles the wing motion of
the FWR. In this study, investigations have been made into the aerodynamic efficiency for producing
both vertical lift and horizontal thrust of the FWR kinematics. A 3D QS aerodynamic model which
adapts the empirical coefficients obtained from high-fidelity CFD simulation is used to calculate the

 on March 14, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


3

rsos.royalsocietypublishing.org
R.Soc.opensci.5:171307

................................................

rotation

o

o

flapping

x

y

z
f

y

xw

wing

pitching

a

yw

zw

global coordinate
system wing-attached coordinate

system

Figure 2. Coordinate systems definition for the FWR wing.

aerodynamic force and power of the wing. Additionally, analysis using a two-dimensional (2D) CFD
model is carried out to capture the transient status of the flow field and unsteady forces. A typical wing
model of elliptical shape and aspect ratio λ= 3.6 and semi-span R = 0.098 m is chosen for the FWR model.
The wing flapping motion follows a simple harmonic function (SHF) at a constant rotating speed. The
wing flapping frequency is f = 10 Hz, flapping amplitude Φ = 70° corresponding to a Reynolds number
of 2500.

The results of this study show that both the propulsive efficiency and efficiency for producing lift
of the FWR wing peaks within a narrow interval of St: between 0.1 and 0.5 for certain range of wing
pitch angles, which agrees closely with reported data of natural flyers in cruising flight [8]; however, the
St for high efficiency of lift and high efficiency of propulsion in general differs. The higher propulsive
efficiency corresponds to St between 0.2 and 0.5 and the higher efficiency of lift corresponds to St between
0.1 and 0.3; in particular, the St for the rotational equilibrium state of the wing lies between the maximum
propulsive efficiency state and the maximum efficiency of lift state. Furthermore, systematic calculations
show that high efficiency of lift (above 85% with respect to maximum Pf ) can be obtained at the natural
equilibrium state of the wing for wide range of prescribed wing kinematics. Insights of the results for
biological flyers in cruising flight as well as for MAVs design are provided.

2. Model and method
2.1. Wing kinematics definition
The coordinate system to define the FWR wing motion is shown in figure 2. The kinematics of the wing is
defined by three elementary motions: rotation, flapping and pitching. The wing rotates about the vertical
y-axis, and the rotation speed is fixed constant and indicated by ψ̇ . The dimensionless wing rotation
speed is defined as

η= ψ̇

2Φf
, (2.1)

where Φ is the flapping angle amplitude and f is the flapping frequency.
The wing flaps vertically with the flapping angular velocity φ̇ described by the SHF:

φ̇ = −π fΦ sin(2πτ ), (2.2)

where τ = ft is the dimensionless time ranging from 0 ∼ 1 in a flapping period.
The wing pitches at the same frequency f, with a phase shift of π/2. The pitch motion of the wing

is confined to stroke reversals. At the mid-upstroke and mid-downstroke, the wing has angle of attack
(AoA) denoted by αu and αd, respectively. In the reversal phase at the end of each stroke, the pitch
angular velocity of the wing α̇ is described by the following equation:

α̇ = 2f (αu − αd)

τr

{
(−1)[2τ+0.5] − cos

(
4πτ

τr

− [2τ − 0.5]π
)}

, (2.3)

where 
τr = 0 ∼ 1 indicates the dimensionless wing pitch time with respect to the flapping period, and
the bracket notation [·] indicates the floor function giving the greatest bounding integer. In this study, the
wing pitch time takes half of the flapping period, corresponding to 
τr = 0.5.
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Figure 3. Geometry and parametric definitions of the wing.

2.2. Quasi-steady model and dimensionless parameters
The wing planform is in ellipse as illustrated in figure 3. The pitching axis of the wing (zw) is located
near the leading edge; c is the local chord length at a 2D wing strip dr; h is the vertical distance between
the mid-chord axis and the pitching axis of the wing. The pitching axis of the wing is taken to be located
at 0.25 chord [19,20], corresponding to h = 0.25 c.

The aerodynamic force of the wing is solved by employing a QS aerodynamic model. The details
of the model are provided in the previous study [15]. On a 2D wing strip, the aerodynamic forces and
pitch moment in the local wing-attached frame (xw, yw and zw, as shown in figure 2) are obtained by the
equations:

dFx =
{

1
2
ρU2CHc + [λyuyωz + λyωω

2
z ]

}
dr, (2.4)

dFy =
{

1
2
ρU2CVc + CROTρUωzc2 − [λyu̇y + λyωω̇z]

}
dr (2.5)

and dτz =
{
−1

2
ρU2CVx̂CPc2 − 1

2
ρωz|ωz|CRDx̂RDc4 + [λyuxuy + λyω(u̇y + uxωz) + λωω̇z]

}
dr, (2.6)

where ρ is the air density; U is the translational velocity; ωz and ω̇z are the wing pitch rate and pitch
acceleration; ux, uy and u̇y are the translational velocity components in the xw- and yw-axes and the
acceleration; λy and λyω are the added mass force coefficients, which are given by λy = π/4ρc2 and λyω =
π/4ρhc2; λω is added mass moment coefficient, which is given as: λω = π/4ρh2c2 + π/128ρc4 [21].

The QS aerodynamic coefficients CH, CV and CROT are empirical coefficients for the translational force
and rotational force [20,22]; CRD is the rotational damping moment coefficient; x̂CP is the dimensionless
centre of pressure (CP) of the translational force; x̂RD is the dimensionless location of the rotational
damping force; The relation of the empirical coefficients with the effective AoA αe are provided in our
previous study [15].

The 2D aerodynamic forces and pitch moment for each wing strip are integrated along the wing-span
to obtain the 3D forces and moments. The vertical lift force and rotational moment of the wing can then
be obtained by projecting the 3D force and moment vectors onto the global y-axis of the coordinate, as
shown in figure 2. The lift and rotational moment coefficients are defined as

Cl = l

0.5ρU2
2S

(2.7)

and

Cm = m

0.5ρU2
2Sc̄

, (2.8)

where l is the vertical lift force and m is the rotational moment, i.e. moment along the global y-axis, c̄ is
the mean chord length, S is the wing area. The reference velocity U2 is defined by

U2 = 2Φf r2, (2.9)

where r2 =
√∫

r2dS/S is the radius of the second moment of wing area. The mean coefficients C̄l and C̄m

are defined similarly with the mean lift force (l̄ = ∫T
0 ldt/T) and rotational moment (m̄ = ∫T

0 mdt/T) put
into the equations instead of the instantaneous values.
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The dimensionless parameters that govern the flow and the shedding of vortices are the Strouhal

number and the reduced frequency. The Strouhal number St is defined by

St = fA
U

, (2.10)

where the characteristic width A is taken to be the stroke amplitude at the wingtip, and the forward
speed U is taken to be the rotation speed of the wing at the wingtip [8]. For a 2D aerofoil, the reduced
frequency kc is defined by

kc = 2π fc
Uc

, (2.11)

where Uc is the rotation speed at the specific chord.

2.3. Aerodynamic power and efficiency measures
The mean aerodynamic power over a flapping cycle T can be obtained by summing the aerodynamic
power of each independent axis of rotation:

P̄ =
∑

i=x,y,z

P̄i, (2.12)

where P̄i = − ∫T
0 ωiτidt/T is the mean aerodynamic power of the ith axis. The mean aerodynamic power

coefficient can be defined as

C̄P = P̄

0.5ρU3
2S

. (2.13)

The mean aerodynamic power P̄ is the total power required for the wing to overcome the fluid
forces. Therefore, when measuring the efficiency of lift production, C̄P can be used directly to define
the dimensionless power factor Pf [17,18], which measures the power efficiency of flying animals and
vehicles for sustaining a specific weight:

Pf = C̄1.5
l

C̄P
. (2.14)

However, when measuring the propulsive efficiency, the mean aerodynamic power of each
independent axis P̄i needs to be treated differently. The propulsive efficiency of the wing ηp is defined
by the ratio of aerodynamic power output (for propulsion) to the power input:

ηp = |P̄y|
P̄ − P̄y

. (2.15)

When the flapping wing is producing positive propelling moment, this definition agrees with the
usual definition of propulsive efficiency for oscillating foils in the free stream [6,7].

3. Comparison of 3D quasi-steady and 2D unsteady forces
This study employs a 3D QS aerodynamic model for modelling the forces and power of the FWR wing.
Additionally, a 2D CFD analysis is carried out using the commercial CFD solver ANSYS Fluent, which
solves the 2D unsteady, incompressible Navier–Stokes equations based on a finite volume method. The
accuracy of this solver has been extensively validated against several experimental and numerical studies
in flapping wing aerodynamics [23]. The 2D aerofoil is chosen as flat plate of 2% thickness. The choice of
the simplified models is due to the efficiency for computing the various wing kinematic cases.

In this investigation, the QS model and 2D CFD model are compared with the high-fidelity 3D
CFD results from the previous study. A particular kinematic case from Wu et al. [16] is chosen with
the kinematic parameters of the wing specified by: Φ = 70°, αu = 60°, αd = −20° and the rotation speed
η= 1.10. In this case, the wing model is of rectangular shape and with aspect ratio 5.8 (λ= R/c̄). The
wing semi-span R and the flapping frequency f are given by R = 0.098 m and f = 10 Hz, corresponding
to Re ∼ 1600 (Re = U2c̄/υ, where U2 is the mean flapping velocity at the radius of the second moment
of wing area r2, and c̄ is mean chord length). For the 2D CFD analysis, a series of wing chords located
along the wing-span (ranging between 0.2 and 0.7 wing-spans) is taken for investigation. To compare the
2D model with 3D results, the thrust coefficient of the 2D results (CT = T/0.5ρŪ2c, where T is the thrust
force and Ū is the local mean flapping velocity) is converted to the 3D rotational moment coefficient Cm
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using a scale factor of λ(I3/I2) obtained from a standard blade element analysis, λ is the wing aspect ratio
and Ik is the kth dimensionless moment of wing area defined by the equation:

Ik =
∫

rkdS
RkS

. (3.1)

The time courses of the forces and rotational moments by different models are shown in figure 4a,
and the flow field for the 2D wing chord is shown in figure 4b. All the cases have the same St = 0.45;
the 2D CFD result presented here is taken at 0.35 wing-span, with reduced frequency kc = 1.15. The full
spectrum of 2D results at different span-wise locations ranging between 0.2R and 0.7R is provided in the
electronic supplementary material.

From the results in figure 4a, it is clear that the time courses of the 3D QS forces and moments
agree very well with the 3D CFD results (a more comprehensive validation of the QS model for both
transient and mean aerodynamic forces is provided in [15]); while for the given wing chord at 0.35
wing-span, the 2D CFD results appear larger due to the well-known downwash of the wingtip vortex
for a 3D wing. However, the variations of the 2D transient forces agree qualitatively with the 3D
transient forces.

In figure 4b, the flow over the 2D wing chord shows a dynamic formation and shedding of vortices
that closely resembles the dynamic stall of conventional aerofoil. In the downstroke, a strong LEV first
forms on the upper surface until a reverse flow emerges from the trailing edge and the LEV starts to
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shed from the surface. The shedding of the LEV is near the end of the downstroke, corresponding to a
decrease in lift coefficient.

The particular choice of wing chord at 0.35R to represent the flow field follows from the observation
that the shedding of LEV is at the end of the downstroke. In previous studies on 2D flapping wing,
the frequency of LEV shedding was shown to play a significant role in determining the transient forces.
Lewin & Haj-Hariri [24] and Wang [25] used numerical simulation to analyse an aerofoil in 2D flow
undergoing heaving oscillating. They show that the dimensionless reduced frequency kc and the Strouhal
number St serve to govern the time scale associated with the growth and shedding of the vortices on the
wing. The kc is the primary factor governing the LEV shedding and St the secondary factor related to
the growth of LEV. For a smaller value of kc, the LEV tends to separate and advect along the freestream,
leading to an early separation of the LEV; while for larger kc, the LEV tends to separate later and stays
longer on the wing in each flapping stroke. Similar flow phenomenon is observed in this study. The LEV
on the outer wing chords (with smaller kc) tends to separate early while it stays longer on the inner wing
chords with larger kc (see the electronic supplementary material).

In this study, in order to obtain the qualitative characteristics of the flow, the 2D CFD analysis is taken
at different span-wise locations of the FWR wing, which has the same St but different kc (ranging between
0.6 and 2.0 for different St cases). The particular cases of the 2D results with LEV shedding frequency
that matches with the flapping frequency of the wing (i.e. LEV shed at the end of the downstroke) is
then chosen to represent the flow field, the resulting transient forces of the 2D calculations are found in
qualitative agreement with 3D models.

4. Results and discussion
4.1. Propulsive efficiency versus the efficiency of lift
The FWR kinematics makes use of aerodynamic thrust produced by flapping motion to drive the wings
to rotate about the vertical axis. At the same time, lift is obtained by biasing the pitch angle of the wing
in the upstroke and downstroke. In this study, both the propulsive efficiency ηp and the efficiency for
producing lift Pf are investigated for the FWR kinematics. These two efficiency measures are calculated
in different kinematic conditions defined by the dimensionless St and wing pitch angles.

An FWR wing model with wing shape illustrated in figure 3, wing semi-span R = 0.098 m, aspect
ratio λ= 3.6, flapping amplitude Φ = 70° and flapping frequency f = 10 Hz at Re ∼ 2500 is taken for this
study. The wing pitch angles are defined for four cases, varying from symmetric pitching to asymmetric
pitching as: αd = −15° and αu = 15°, 30°, 45°, 60°. The St for each of the above cases are chosen to vary
between St = 0.1 ∼ 1, which determines the rotation speeds of the wing uniquely (η= 0.5 ∼ 5 for the given
St range). The computed results for aerodynamic efficiencies (ηp and Pf ) and force (moment) coefficients
(C̄l and C̄m) against the St are shown in figure 5. The St for maximum ηp and Pf at different αu cases is
given in table 1.

As shown in figure 5a, the variation of the propulsive efficiency ηp and the efficiency of lift Pf against
the St follows a similar trend. As the St increases from 0.1 to 1, both ηp and Pf first increase rapidly to the
maximum values and then decrease. It is also observed that both the maximum ηp and Pf occur within a
narrow interval of St = 0.15 ∼ 0.5 when the wing upstroke pitch angle is within 15° ∼ 45°. However, these
two efficiencies appear to be complementary with respect to each other, hence do not reach maximum at
the same time. In one of the extreme cases at the lower end of St = 0.19, the flapping motion of symmetric
up- and downstroke pitching (αd = −15°, αu = 15°) leads to the optimal propulsive efficiency ηp = 0.37 at
the cost of zero mean lift coefficient (figure 5b) and efficiency Pf = 0. When the flapping motion becomes
asymmetric with αu = 30° ∼ 45°, figure 5b shows that the C̄l, C̄m and also Pf increased dramatically, but
the ηp is reduced. The complementary nature of ηp and Pf can also be seen from figure 5a,b that the
maximum Pf always occur at small St with negative C̄m, where the FWR wing produces net drag instead
of thrust.

Previous studies have shown that the propulsive efficiency of flapping aerofoils is closely related
to the evolution of the flow structure on the wing. Triantafyllou et al. [6,7] studied the propulsive
efficiency of 2D oscillating aerofoil and proposed that the optimal efficiency is obtained when an aerofoil
is flapped at the frequency that results in the maximum amplification of the shed vortices, and the
velocity profile behind the aerofoil is in the form of an inverted von Kármán vortex street indicative
of a jet. Later, by using an inviscid panel method to investigate the wake structure of a 2D oscillating
aerofoil, Jones et al. [26] noted a remarkable similarity between the simulated wake and the experiment
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Table 1. The St for maximum ηp and Pf for fixedαd = −15°.

kinematic case maximum ηp St for maximum ηp maximum Pf St for maximum Pf
αu = 15° 0.37 0.19 0 /

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αu = 30° 0.35 0.29 1.72 0.15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αu = 45° 0.24 0.48 1.73 0.22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

αu = 60° 0.14 0.77 1.32 0.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wake structure, indicating that the formation of the well-defined wake structure is essentially an inviscid
phenomenon.

At low Re and large AoA, the well-defined structure of the wake is complicated by the flow separation
at the leading edge and interactions with the vortices shed from the trailing edge. Wang [25] studied the
flow over an impulsively started 2D aerofoil using CFD method and observed that the thrust production
is correlated with the time scale that governs the shedding of the LEV. He proposed that optimal
efficiency is obtained when the duration of the flapping stroke is inside the ‘thrust window’ that exists
before the LEV is shed.

In the view of the previous results in 2D, we have taken the optimal kinematic cases (shown in
figure 5 and table 1) that result in the highest propulsive efficiency and efficiency of lift to investigate
the 2D flow and forces. The 2D calculations are conducted for the cases with symmetric pitch angles:
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αu = 15°, αd = 15° at St = 0.19, and asymmetric pitch angles: αu = 30°, αd = −15° at St = 0.29 that yield
the maximum ηp; and the case with: αu = 45°, αd = −15° at St = 0.22 that yields the maximum Pf .
The calculated time courses of forces and flow for maximum ηp cases are shown in figure 6.

In figure 6, large thrust is produced in both the upstroke and downstroke for the two cases. In the
symmetric pitching case, the production of thrust is equal in the up- and downstroke; while in the
asymmetric pitching case, the thrust produced in the downstroke is larger than in the upstroke. Figure 6a
shows that the LEVs of the symmetric pitching case are of equal strength on both sides of the wing in the
up- and downstroke, which contributes equally large thrust in each stroke. By contrast, figure 6b shows
that asymmetric LEVs are formed on the wing for the asymmetric pitching case. In the downstroke,
a strong LEV is formed on the upper wing surface which contributes significant lift and thrust; while
in the upstroke, a weak LEV is formed on the lower wing surface which contributes small thrust and
negative lift.

It is observed that the scales of the LEVs associated with the above cases are relatively small. This is
due to the small effective AoA at the given St. In general, the formation of LEV decreases the propulsive
efficiency, as indicated in previous studies for oscillating 2D aerofoils [27–29]. However, LEVs also serve
as a source of thrust production. It is noted that the St serves to balance these two effects. As shown in
figure 5b, when St decreases from moderate to small value, a transition from large rotational moment to
negative is observed, indicating a decrease of the effective AoA from large value to negative. Maximum
propulsive efficiencies occur at medium St where small positive effective AoA forms small LEV, as shown
in figure 6.

Figure 7 shows the time courses of lift, rotational moment and 2D flow structure of the wing for the
maximum Pf case with an even larger pitch angle (αu = 45°). The forces and moments of the 2D CFD
results follow qualitatively the trends of the 3D QS forces and moments. However, disturbances of the
2D forces are observed due to the shedding of LEVs. In this case, lift is produced in both upstroke and
downstroke. Large anti-rotating moment is produced in the upstroke and only a small rotational moment
is produced in the downstroke. It is noted that in both up- and downstroke, large LEVs are formed on
the upper surface of the wing and significant vortices shedding are observed near the end of each stroke.
This is most likely due to the fact that the wing has consistently large effective AoA in a whole flapping
cycle at this St.

From the above analysis, it is noted that as the wing pitch angles change from symmetric to
asymmetric in the up- and downstroke, a transition of the LEV structure from symmetric to asymmetric
is observed. The asymmetry of the LEV structure on the wing surface results in net lift production.
However, as the flow forms large LEV in the downstroke, higher power is required to overcome the
vertical lift force, which leads to a diminished propulsive efficiency. The transition of the flow structure
from symmetry to asymmetry thus indicates a transfer of flapping energy from propulsion to weight
suspension.

4.2. Aerodynamic efficiency of passive rotating wing
When the FWR wing is free to rotate horizontally, the rotation speed will reach an equilibrium state
when the mean rotational moment over a flapping cycle is zero. The rotational equilibrium state of the
FWR kinematics has been proposed for practical design of MAVs. Several previous studies have shown
that this kinematics may have certain benefits in terms of system simplicity and aerodynamic efficiency
compared with other conventional type (fixed wing, rotary wing and insect-like flapping wing) when
applied for MAV design [13,15,16]. Apart from practical applications, the passive rotating kinematics
also has a notable similarity with the cruising flight of natural flyers, where the flapping wings produce
both lift and thrust, and the cruise speed is determined by the equilibrium of the body drag and the
flapping propulsive thrust.

The present investigation focuses on the rotational equilibrium state of the FWR wing. As the wing
produces no net propelling moment at this state, the efficiency for producing lift Pf is of particular
interest. In this investigation, the aerodynamic efficiency at the equilibrium state is compared with the
maximum aerodynamic efficiency, which is the highest aerodynamic efficiency that can be obtained by
actively tuning the rotation speed (or equivalently the St, as shown in figure 5) of the wing. The efficiency
for producing lift at the rotational equilibrium state is denoted by Pfe, while the maximum efficiency for
the given wing pitch angles (αu and αd) is indicated by Pfm.

In this investigation, the two efficiencies Pfe and Pfm are calculated with the downstroke wing pitch
angle αd prescribed between −45° and −10° and the upstroke wing pitch angle αu prescribed between
25° and 70°. Specifically, the individual cases when αd is fixed at −15°, −30° and −45° are taken out to
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Figure 6. Time courses of C l and Cm and vorticity contours for maximum ηp cases. (a) Symmetric case: αu = 15°, αd = −15° at
St= 0.19; (b) asymmetric case:αu = 30°,αd = −15° at St= 0.29.
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Figure 7. Time courses of C l and Cm and vorticity contours for maximum Pf case:αu = 45°,αd = −15° at St= 0.22.

analyse the efficiency variations with αu. For all the cases, the wing semi-span is taken as R = 0.098 m,
wing aspect ratio λ= 3.6, the flapping frequency f = 10 Hz, flapping amplitude Φ = 70° and the Re is
about 2500. The variation contours of Pfe, Pfm and the ratio Pfe/Pfm with αu and αd are shown in
figure 8b. The efficiency curves with fixed αd are shown in figure 8a. In figure 8b, the negative lift regions
correspond to wing kinematic cases with larger negative αd in the downstroke than positive αu in the
upstroke, which consequently yields negative mean lift force in a flapping cycle.

The results in figure 8 shows that, in general, the efficiencies (Pfe and Pfm) are sensitive to the variation
of wing pitch angles (αu and αd). Increasing the downstroke AoA αd generally leads to decreases in the
aerodynamic efficiencies; while the optimal upstroke AoA αu for Pfe and Pfm always takes intermediate
values between 30° and 60°, depending on αd. However, despite these variations with wing pitch angles,
the efficiency at the equilibrium states Pfe appears to be very close to the maximum efficiency Pfm. In
most of the investigated kinematic cases (i.e. αd between −45° and −15°), the ratio Pfe/Pfm is above 85%;
furthermore, when the downstroke wing pitch angle is large (i.e. αd between −45° and − 30°), the ratio
Pfe/Pfm reaches even higher value of above 90%.

The above results imply that for the passive rotating wing, the forces equilibrium of the flapping
propulsive thrust and anti-rotating drag in the up- and downstrokes results in a wing kinematic state
of high aerodynamic efficiency. It is therefore expected that the passive rotation kinematics may be
favourable for bioinspired MAV design, because the rotation speed automatically converges to a high-
efficiency state. Furthermore, because flapping wing flyers in cruising flight are in a state of equilibrium
where the production of thrust by their flapping wings balances with the drag from the body, the above
results imply that cruising flyers may also benefit from this natural equilibrium to gain high aerodynamic
efficiency of lift production at this state.

In order to fully characterize the kinematics of the three statuses of the wing, i.e. the maximum
propulsive efficiency state, the state with maximum efficiency of lift and the equilibrium state, the St
of these respective states at different wing pitch angles are further calculated. It should be noted that
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Figure 8. The variations of efficiency at equilibrium state Pfe, the optimal efficiency Pfm and the ratio Pfe/Pfm with αu and αd.
(a) Variations of efficiencies with αu for fixed αd = −15°, −30° and −45°; (b) efficiency contours at αu = 25◦ ∼ 70◦ and
αd = −45◦ ∼ −10◦.

because the St serves to determine the production of aerodynamic forces from propulsive thrust to
anti-rotating drag, the St at equilibrium state stands in the middle of the other two states.

Figure 9a shows the variations of St at the typical states with αu for fixed αd cases; the full contours
of typical St for different wing pitch angles are shown in figure 9b. In figure 9, the St for maximum
ηp states are denoted by Stp, for maximum Pf states are denoted by Stm, and for equilibrium states are
denoted by Ste.

The variations in figure 9a show that the St for typical states (Ste, Stm and Stp) increase monotonically
with the increase of αu. Figure 9a,b shows that reducing the wing pitch angle (i.e. decrease αu and
increase αd) lowers the St for the high-efficiency states, indicating that higher efficiencies (ηp and Pf )
are obtained at higher rotation speed at smaller wing pitch angles (because St is inversely proportional
to the rotation speed).
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Figure 9. Distributions of St in typical states (Stp: maximum ηp state; Stm: maximum Pf state and Ste: rotational equilibrium state) with
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and Stp forαu = 25◦ ∼ 70◦ andαd = −45◦ ∼ −10◦.

Figure 9b shows that for most of the kinematic cases with αu between 25° and 70° and αd between
−45° and −10°, the St at equilibrium states Ste and maximum Pf states Stm fall in the interval between
0.1 and 0.5; while the St at maximum ηp states appears to be higher between 0.2 and 0.9 for most of
the cases. Particularly, the distribution of the data shows that when the upstroke AoA is small, i.e. αu

less than 45°, nearly all the St for high-efficiency states Stm, Stp and the equilibrium state Ste converge
to the interval of 0.1 ∼ 0.5. The lower end of St (between 0.1 and 0.3) corresponds to higher Pf states,
while the higher end (between 0.2 and 0.5) corresponds to higher ηp states. The current results are in
close agreement with previously reported data of flying animals in cruising flight, which show that
many natural flyers cruise with St between 0.2 and 0.4 [8]. The above results imply that the various
wing kinematics of flapping wing flyers in cruising flight may result in high aerodynamic efficiency
states for both lift production and propulsion, although these two efficiencies cannot be optimized at
the same time.

5. Conclusion
The aerodynamic efficiency of a novel FWR kinematics which combines vertical flapping motion and
passive horizontal rotation is investigated by using a QS aerodynamic model and 2D CFD analysis.
The propulsive efficiency ηp for producing horizontal thrust and the efficiency Pf for producing vertical
lift of the wing are investigated for a wing model of elliptical shape with wing semi-span R = 0.098 m,
wing aspect ratio λ= 3.6, flapping vertically with a frequency of f = 10 Hz and amplitude Φ = 70° at
the Re of 2500.
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The calculated data show that both the propulsive efficiency ηp and efficiency of lift Pf depend on

the dimensionless St and wing pitch angles (αu and du). For small wing pitch angles (upstroke AoA αu

less than 45°), both efficiencies ηp and Pf are found to peak at St between 0.1 and 0.5. However, these
two efficiencies are complementary to each other: when maximum ηp is obtained, the Pf is relatively
low; while maximum Pf always occurs when the flapping wing produces net drag instead of thrust. In
particular, high efficiency of lift production is found when St is between 0.1 and 0.3, which is, in general,
lower than the St for high propulsive efficiency (between 0.2 and 0.5). Further analyses of the 2D flow of
the wing in typical kinematic states show that the production of lift and thrust is closely related to the
LEV structure on the wing. Maximum ηp occurs when the wing forms small and symmetric LEVs in the
up- and downstroke; while asymmetric LEVs large in the downstroke are associated with the production
of lift and decrease in propulsive efficiency ηp.

The rotational equilibrium state of the FWR kinematics is investigated. The results show that the
aerodynamic efficiency at this state Pfe is above 85% compared with the maximum efficiency Pfm for a
wide range of wing kinematics. Furthermore, systematic calculations show that most of the St for the
high-efficiency states (maximum Pf state and maximum ηp state) and the equilibrium state of the wing
are within the interval of St between 0.1 and 0.5. These results show that the natural equilibrium between
thrust and drag of the flapping wings result in a state of high aerodynamic efficiency. The agreement
of our results with reported data of cruising flight of animals indicates that flapping wing flyers may
benefit from this equilibrium to gain high efficiency for both lift and thrust production, although these
two efficiencies cannot be optimized at the same time. The above results also have implications for
bioinspired MAV design, because for the passive rotating kinematics of FWR, no fine tuning of the
rotation speed is needed to achieve a high-efficiency state.
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