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Abstract 

This study investigated the behaviour of dynamic membrane (DM) filtration for the treatment 

of stabilised landfill leachate in a bench-scale pre-anoxic and aerobic submerged dynamic 

membrane bioreactor (DMBR). Four meshes with different openings (10, 52, 85 and 200 µm) 

were tested to support the development of DM. Differences were observed among the meshes 

in supporting the development of the cake layer constituting the DM. The treatment of landfill 

leachate had an impact on sludge characteristics resulting in deteriorated filtration 

performance of the DM. Effluent turbidity was often higher than 100 NTU for larger mesh 

pore size (85 and 200 µm). Low effluent turbidity was achieved with meshes with 10 and 52 

µm (13±2 and 26±4 NTU, respectively) although at membrane fluxes lower than 10 L m
- 2

 h
-1

. 

The bioreactor exhibited a moderate organics removal of 50-60% and an ammonia oxidation 

between 80 and 90%. Incomplete nitrification was observed due to increased concentrations 

of free ammonia and free nitrous acid, with nitrite effluent concentrations up to 1062 mgNO2
-

-N L
-1

. Due to the large presence of refractory organic matter in landfill leachate, 

denitrification was limited resulting in a total nitrogen removal of approximately 20%.  

 

Keywords: Dynamic membrane; fouling; landfill leachate; mesh filtration; nitrification; 

denitrification. 
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1. Introduction 

Sanitary landfill has been acknowledged as the most economically viable ultimate disposal 

option for municipal solid waste in most parts of the World, despite being placed at the 

bottom of waste management hierarchy (Fudala-Ksiazek et al., 2016). A major concern 

arising during landfill operation is the production of leachate resulting from the infiltration of 

water through the landfill body and the decomposing of waste. If not properly managed, 

leachate could severely contaminate groundwater sources, raising concerns regarding the 

protection of natural environment and public health (Renou et al., 2008).  

Landfill leachate (LFL) treatment is challenging due to the high levels of contaminants 

including organics, ammonia, inorganic substances, heavy metals and toxic hydrocarbons 

(aromatic and phenolic compounds) together with the variability in its quantity and quality in 

both space and time (Kulikowska and Klimiuk, 2008; Renou et al., 2008). Moreover, the 

worldwide application of recent environmental legislation is changing the waste management 

chain reducing the disposal to landfills and, as a result, changing the leachate production and 

composition (Fudala-Ksiazek et al., 2016).  

Biological processes have been proved to be effective in treating young leachates whereas 

their efficacy reduces with the increase of leachate age due to a shortage of biodegradable 

matter and an increase of refractory organics (Brennan et al., 2017; Mohammad-pajooh et al., 

2017; Renou et al., 2008; Oloibi et al., 2017). 

Membrane bioreactor (MBR), which consists in the integration of microfiltration or 

ultrafiltration (MF/UF) membranes with biological reactors, has gained much appreciation 

over the last decade and has been perceived as an advanced treatment process considering its 

excellent effluent quality and flexible operation (Judd, 2011). Studies on leachate treatment 

have demonstrated that MBRs are very effective under a wide range of loading conditions as 

compared to conventional biological treatment systems, particularly in treating LFL from old 
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landfills (Alvarez-Vazquez et al., 2004; Hashisho and El-Fadel, 2016). However, the 

application of high loading conditions, long hydraulic retention time (HRT) and solids 

retention time (SRT) and the high concentrations of contaminants can increase membrane 

fouling (Ahmed and Lan, 2012). In addition, excessive amount of humic and fulvic acids 

usually present in LFL have shown to speed up membrane fouling (Sutzkover-Gutman et al., 

2010). In a recent review on MBR application treating LFL, Hashisho and El-Fadel (2016) 

concluded that membrane fouling was the main bottleneck in the widespread application of 

MBR in leachate treatment due to its high fouling potential especially while treating stabilised 

LFL.  

In this regard, dynamic membranes (DMs) could represent an innovative approach by 

purposefully exploiting fouling as a mean for solid liquid separation (Alibardi et al., 2014, 

2016; Saleem et al., 2016; Xiong et al., 2016; Zhang et al., 2010). DM is defined as a self-

forming and regenerative fouling surface that is formed by the deposition of suspended solids, 

colloids and microbial cell particles over a coarse underlying support material (Ersahin et al., 

2012; Li et al., 2011; Liu et al., 2009).  

Most of the studies on DM have been carried out on synthetic or real municipal wastewater 

under aerobic or anaerobic conditions and for anaerobic sludge digestion (Alibardi et al., 

2014, 2016; Saleem et al., 2016; Ersahin et al., 2016; Jeison et al., 2008; Li et al., 2011; Liu et 

al., 2009; Kiso et al., 2000; Hu et al., 2016; Xiong et al., 2016; Zhang et al., 2010). Xie et al. 

(2014) studied the performances of an anaerobic dynamic MBR for the treatment of leachate 

by using a 40 µm mesh as support material. Although these authors achieved solids retentions 

of the DM that were not comparable to those from MF/UF membranes, they reported a better 

effluent quality than conventional anaerobic treatment systems. To the best knowledge of the 

authors, no studies have yet evaluated the optimisation of organic matter and nitrogen 

removal for biological LFL treatment by using DMs. Similarly, the effect of the use of 
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meshes with different pore sizes on the filtration performances of DMs treating LFL is also 

lacking. 

This study aimed at evaluating the application of DMs in anoxic-aerobic process for the 

treatment of LFL from an old landfill. In particular, the effect of the use of different mesh 

sizes on the development of the DM was evaluated. The behaviour of developed DM was 

studied in conjunction with the effect of change in feed characteristics and operating 

conditions.  

 

2. Materials and methods 

2.1. Experimental setup  

The study was conducted using a laboratory-scale, continuously mixed, anoxic-aerobic 

system (Fig. 1a). The experimental setup consisted of a pre-anoxic tank with a working 

volume of 2.8 L connected to an aerobic tank with a working volume of 7.5 L. The tanks were 

made up of 5 mm thick Plexiglas cylinders. The internal diameter was 24 cm and 18 cm for 

aerobic and anoxic tanks, respectively, while depth was 30 cm for both tanks. 

The filtration modules were constituted by a nylon mesh wounded over a cylindrical frame. 

The frame was a plastic body having an external diameter of 15 mm and a length of 70 mm 

with uniformly distributed openings of 5 mm X 3 mm. The total surface area of the filtration 

module was 33 cm
2
 and approximately 61% (ca. 20 cm

2
) was the effective filtration area of 

each mesh. Three filtration modules were continuously immersed in the aerobic vessel and 

operated in parallel, resulting in a total effective filtration area of 60 cm
2
. Filtration flux were 

controlled through a three-line peristaltic pump (Watson Marlow SCI 400) which was 

connected to the three modules. 

Four different meshes with pore sizes of 10, 52, 85 and 200 µm were tested (Table 1). Meshes 

with porosities of 10, 85 and 200 µm were initially evaluated; however, due to changes in 
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filtration behaviour of the sludge of the bioreactor, after 105 days of continuous operation the 

mesh with openings of 200 µm was replaced with a new one of 52 µm pore size.  

The study was performed at ambient temperature (21±1 °C). Aeration of the aerobic tank was 

provided by a small air pump and diffusers. The air flow was controlled by using an air 

flowmeter (ColeParmer 1-800-323-4340). Leachate was fed to the anoxic tank through a 

peristaltic pump (Watson Marlow SCI 400) connected to a level sensor. Sludge recirculation 

flow was approximately four to five times the influent flow and was provided by means of a 

peristaltic pump (Watson Marlow SCI 400). The two bioreactors were kept completely mixed 

by using two overhead stirrers (LS F201A0151, VELP Scientifica). Solids retention time was 

maintained at 30-40 days. 

 

2.2. Inoculum and Feed  

Sludge collected from a full-scale municipal wastewater treatment plant (Padova, Italy) was 

used as inoculum. The sludge had a total suspended solids (TSS) concentration of 8.7 g L
-1

 

and volatile suspended solids (VSS) of 5.4 g L
-1

. 

The feed to the reactor consisted of raw LFL collected from an old (> 25 years) landfill site 

located in Veneto Region, Italy. The characteristics of the LFL samples are reported in Table 

2. The LFL sample used for this study can be considered as stabilised and typical of old 

landfills (Kjeldsen et al., 2002). The leachate was collected approximately every month and 

stored at 4 °C before use. To ensure the availability of essential micronutrients to support 

biomass activity following micronutrients were added in the feed wastewater: 

Na2MoO4*2H2O (0.22 mg Mo L
-1

), ZnSO4*7H2O (0.23 mg Zn L
-1

), CuSO4*5H2O (0.128 mg 

Cu L
-1

), NiCl2*6H2O (0.1 mg Ni L
-1

), H3BO4 (0.007 mg B L
-1

), Ne2SeO3 (0.06 mg Se L
-1

), 

MnCl2*4H2O (0.56 mg Mn L
-1

) and CoCl2*6H2O (0.124 mg Co L
-1

). 
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Since the leachate used in this study has low BOD5/N ratio, after approximately two months 

of operation, sodium acetate was also added with the leachate to the anoxic vessel in order to 

support the denitrification process. The amount of sodium acetate was provided to sustain the 

denitrification process. 

 

2.3. Short-term filtration experiments  

Short-term filtration experiment is a simple way to evaluate the performance of the coarse 

meshes used to develop DM (Li et al., 2012). These experiments were performed in a separate 

filtration system according to the procedure previously described in Saleem et al. (2017). 

Briefly, filtration was performed under a constant transmembrane pressure (TMP) of 3.43 kPa 

provided by the hydrostatic water head maintained above the filtration module connected to a 

5 L stirring tank by a peristaltic pump (Fig. 1b). Filtration fluxes were estimated by measuring 

the time required to collect a known volume of permeate.  

Short-term gravity driven filtration experiments were carried out with 200, 85 and 10 μm 

meshes. New meshes were used in the filtration module. The experiments were carried out 

with the initial inoculum and with the sludge sampled from the aeration tank after 67 days of 

continuous bioreactor operation (bulk sludge). TSS and VSS concentration inside the 

bioreactor on 67
th

 day of the continuous bioreactor operation was 7.4 and 4.3 g L
-1 

respectively.  

Only for the experiments with bulk sludge, the filtration fluxes were increased to 

approximately 100 L m
-2

 h
-1

 by means of a peristaltic pump (Watson Marlow 505U) when the 

fluxes reduced to less than 5 % of the initial values. 

 

2.4. Dynamic membrane operation and cleaning 
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Periodical cleaning of the excessively fouled DM layer was performed at the same time for all 

meshes when the TMP values were higher than 20 kPa or the fluxes were lower than 2 L m
-2

 

h
-1

 for any of the mesh under investigation (set as the lower limit for this study). The meshes 

were cleaned in situ (i.e. inside the aerobic bioreactor) with the help of a brush.  

Since the formation of DM layer after every cleaning operation could greatly compromised 

the effluent quality in terms of suspended solids removal (Alibardi et al., 2014; 2016), after 

every cleaning operation, a constant hydrostatic water head of 1.7 kPa was applied to the 

filtration module to establish high initial filtration fluxes in order to expedite the process of 

DM formation (Saleem et al., 2016). After the development of DM layer, characterised by the 

production of a “clear” permeate (visual inspection), constant flux filtration operation (to 

maintain the design HRT) was resumed. The permeates collected during this interval were 

returned to the bioreactor. A similar recirculation strategy was also proposed by Ersahin et al. 

(2012), Alavi Moghaddam et al. (2002) and Fan and Huang (2002) for the start-up of DMs 

systems. 

 

2.5. Analytical Method and Measurements  

Total suspended solids (TSS), volatile suspended solids (VSS), ammonium, nitrates, nitrites 

nitrogen, total phosphorous, 5-day biochemical oxygen demand (BOD5), were measured 

according to standard methods (APHA, AWWA, WEF 2012). Organics matter and alkalinity 

were estimated measuring the total carbon (TC) and total organic carbon (TOC) by using 

Shimadzu TOC-VCSN analyser. Inorganic carbon (IC) was calculated as difference between 

TC and TOC. 

The concentrations of free ammonia (FA) and free nitrous acid (FNA) were estimated 

according to Anthonisen et al. (1976). 
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Transmembrane pressure (TMP) was measured separately for each DM by using an electronic 

pressure gauge (COMARK C9505/IS, Pressure Meter, 0–30 PSI). Darcy’s equation was used 

to estimate total DM resistance as follows (Li et al., 2012): 

 

𝑅 =
Δ𝑃

𝜇 ∙𝐽
        (1) 

 

Where J is the permeate flux, ΔP is TMP across the membrane, μ is the viscosity of the 

permeate (assumed of clean water), and R is total membrane resistance. 

Dissolved oxygen (DO) concentration inside the bioreactors was monitored by using a DO 

meter (HANNA HI 9147). Effluent turbidity and pH were measured using a turbidimeter 

(HACH 2100 P ISO TURBIDIMETER) and a pH-meter (Crison GLP 22), respectively. 

Average daily fluxes from the three DM modules were estimated by dividing the volume of 

the filtrate collected from each filtration module by the filtration area of each module.  

 

3. Results and Discussion 

3.1. Dynamic membrane behaviour  

Filtration was started up applying high fluxes in order to speed up the formation of the cake 

layer on the mesh supports (Saleem et al., 2016). Effluent quality improved rapidly, indicating 

a quick formation of DM for all meshes and confirming previous results obtained under batch 

and continuous conditions (Alibardi et al., 2016; Saleem et al., 2017). 

The TMP of the different meshes showed similar trends characterised by a typical progressive 

increase in value during operational filtration (Fig. 2). However, the behaviour of these trends 

showed a significant change during the study (Fig. 2). For the first 25-30 d, a slow and 

gradual rise in TMP was observed, according to the local flux theory proposed for 

conventional membranes (Cho and Fane, 2002). The first week of operation was characterised 
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by very low and stable TMP of approximately 1-2 kPa for all meshes, irrespective of the 

considerable difference in porosities. Afterwards, TMP values gradually and almost steadily 

increased up to approximately 60 kPa in about 20 days. Owing to the high TMP, the meshes 

were cleaned following the procedures described in Section 2.4. Thereafter, contrariwise to 

the first 30 days of operation, the TMP trends were characterised by sharp and fast increases 

after every cleaning procedure with different maximum values for each mesh pore size. 

The result obtained over the first 30 days of operation confirms a previous study (Saleem et 

al., 2017) which demonstrated that the mesh pore size does not significantly affect the 

filtration flux (Fig. 2). However, after the first 30 days of operation (corresponding to the first 

filtration period ending with mesh cleaning), the mesh with larger pore-size showed the 

lowest maximum TMP values when reaching the minimum flux value of 2 L m
-2

 h
-1

 (Fig. 2). 

This suggests that a lower resistance (Fig. 3) was obtained when DM developed on larger 

pore size. It is of note that the maximum TMP achieved during each filtration cycle (where a 

filtration cycle can be identified between two cleaning procedures) decreased during the entire 

duration of the study (Fig. 2). This is particularly evident for the mesh with large pore size 

(i.e. 200 and 85 µm) where maximum TMP decreased from approximately 60 kPa to less than 

20 kPa (Fig. 2a and 2b). 

The variation of TMP also affected the filtration fluxes (Fig. 2). Despite the use of a 

peristaltic pump to control effluent flow, fluxes through each filtration module resulted 

variable and the observed fluxes were in general higher for larger mesh pore sizes. Due to the 

very variable J, HRT of the system also showed a fluctuating profile with an average value of 

209 days.  

A variation of the characteristics of the DM can be highlighted also by the trends of the 

membrane resistance (R) as calculated by equation 1 (Fig. 3). During the first filtration cycle 

of approximately 30 days of operation, DM resistance increased gradually from 
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approximately 1.0×10
12

 to 1.0×10
14

 m
-1

 for all the meshes under investigation, without large 

differences among them (Fig. 3). Results suggest that the resistance of the DM was the main 

contributor of the total resistance of the filtration module, as the intrinsic R of all the meshes 

measured using tap water was of the order of 1×10
9
 m

-1 
(Table 1). 

The behaviour of DM R changed after the first 30 days of operation, showing a much faster 

build-up at any filtration cycle (Fig. 3). This observation confirms what observed also for 

TMP, despite J resulted variable. The R measured immediately after every cleaning procedure 

was always higher than the values measured during the first filtration cycle. This result 

indicates either that the cleaning process was not able to completely remove the cake layer 

from the mesh or that the sludge characteristics changed over the experimental study with a 

measurable impact on DM formation. Moreover, the initial resistance increased with 

decreasing mesh pore size (Fig. 3). 

The change of the characteristics of the sludge and the impact on DM formation is also 

evident from the measured effluent turbidity (Fig. 3). Very low effluent turbidity values were 

measured over the first filtration cycle (with values less than 5 NTU), for all the three meshes, 

demonstrating an excellent solid rejection of the DM, regardless of the difference in mesh 

size. Despite TMP greatly increased during the first filtration cycle (Fig. 2), effluent turbidity 

remained almost stable (Fig. 3) confirming the formation of a stable cake layer over the mesh 

independently, once more, of the pore size. After the first cleaning procedure, the effluent 

turbidity increased and remained above the low values measured during the first 30 days for 

the rest of the experimental period (Fig. 3). The related mean turbidity values for 200, 85 and 

10 μm meshes were 2126±253, 615±81 and 37±20 NTU, respectively. As a result, the 

different DM showed different suspended solid rejection. The DM developed over the mesh 

of 10 μm exhibited very high suspended solids rejection which was always above 95%, while 
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the meshes with openings of 85 and 200 μm achieved mean solid rejection of approximately 

85 and 55 %, respectively (data not shown). 

In order to find a trade-off between high filtration fluxes observed for 200 and 85 μm meshes 

and high effluent quality observed for 10 μm mesh, it was decided to evaluate the 

performance of 52 μm mesh by starting on day 104 of the continuous bioreactor operation. 

The results showed that the solids rejection performance of 52 μm mesh was comparable to 

that of 10 μm in terms of effluent turbidity (Fig. 3c and 3d). Furthermore, the average 

filtration fluxes of the DM developed on the mesh with openings of 52 µm was higher than 

those obtained for 10 μm mesh and was rather comparable to 200 and 85 μm meshes (Fig. 2).  

The difference in behaviour of the DMs developed over the different meshes between the first 

filtration cycle (first 30 days) and the cycles during the following three months of operation 

could be due to two reasons. On the one hand, the cleaning procedures based on brushing, 

could have been not effective in completely removing the material deposited over the mesh. 

On the other hand, the applied operating conditions could have changed the sludge 

characteristic, increasing its fouling propensity. Li et al. (2016) observed by scanning electron 

microscopy that a significant amount of fouling material remained deeply entrapped inside the 

mesh of an anaerobic bioreactor, even after intense water flushing and scraping. It is also well 

documented that the operating conditions of MBR or DMBR affects sludge filtration 

performance (e.g. Ersahin et al., 2017; Sabia et al., 2013). In addition, the high fouling 

propensity of landfill leachate, as observed in conventional membrane bioreactor (Ahmed and 

Lan, 2012), could have changed filtration characteristics of the aerobic/anoxic sludge 

developed in the experimental bench-scale plant. 

A previous study on the evaluation of DM development (Saleem et al., 2017) indicated that 

mesh pore size does not affect DM development, similarly to the results of the first filtration 

cycle in this research study. It is of note that the results in Saleem et at., 2017 were obtained 
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in short term experiments with an anaerobic sludge. On the contrary, other authors (Wu et al., 

2003) reported that large mesh pore size favours high filtration fluxes under similar 

conditions of applied TMP and this observation is in agreement with the second phase of the 

present research study. The diversity of results between the two phases of the dynamic MBR 

treating landfill leachate suggests that the operating condition and/or the feed and sludge 

characteristics influence the development of the cake layer composing the DM and thus its 

filtration characteristics. As a consequence of this, a proper selection the mesh pore size could 

facilitate the filtration performance of the DM in particular for those cases where excessive 

amount of organic foulants (humic and fulvic substances, largely present in stabilized LFL) 

would have contributed towards much faster DM fouling in the later stage of bioreactor 

operation (Ahmed and Lan, 2012). 

 

3.2. Short-term filtration experiments 

During the short-term filtration tests under gravity driven filtration, the inoculum showed flux 

reduction to less than 10% of the initial values in 30 minutes (Fig. 4). On the contrary, when 

the sludge collected from the aerobic tank after more than two months of leachate treatment 

was used, fluxes reduced to less than 5% of their initial values within 10 to 15 min 

demonstrating a much higher fouling propensity of the bulk sludge than the inoculum (Fig. 4). 

As a result, the fluxes measured filtering the inoculum were of approximately 10 time higher 

than those obtained by using the bulk sludge from the reactor if compared after approximately 

the same filtration time. The much higher fouling propensity of the bulk sludge if compared 

with the inoculum, can also be evinced in the filtration resistance (Fig. 4). 

Since the fluxes reduced very quickly to values well below the 5% of the initial flux when 

using the bulk sludge, the fluxes were increased (using a peristaltic pump) to constant values 

of approximately 100 L m
-2

 h
-1

. This operation was carried out in order to assess the 
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behaviour of the DM filtration under constant flux as typical condition for MBRs operation. 

The constant flux filtration caused a slight decrease of filtration resistance for 200 and 85 

meshes which was however quickly followed by an increase (Fig. 4). The initial decrease of 

the filtration resistance for 200 and 85 μm meshes suggests the initial formation of a weak 

DM structure under gravity driven filtration, that was not resistant to the increased flux and 

the resulting TMP (Fig. 4). Alibardi et al. (2014) have reported a similar observation, during 

flux-step experiment performed to assess the strength of DM formed under anaerobic 

conditions treating synthetic wastewater. These results suggest that larger mesh pore sizes 

form unstable DM which can be easily destabilised with sudden increases of flux.  

The different behaviour of the bulk sludge if compared with inoculum is also well evident in 

the turbidity measured in the short-term experiments. During the filtration tests of the 

inoculum, effluent turbidity reduced to values lower than 10 NTU in 5-10 min, with no 

particular differences among the three meshes (Fig. 4). When the bulk sludge was used, 

turbidity remained above 400 NTU although the much lower fluxes and higher resistance. 

Under constant flux condition, turbidity values increased markedly for 85 and 200 µm mesh 

(Fig. 4) and effluent quality deteriorated due to the loss of loosely bounded particles at high 

TMP (Fig. 4). In contrast, the continuous deposition of materials on the 10 μm mesh formed a 

DM which was more resistant to much higher TMP values, averaging around 50 kPa (Fig. 4), 

resulting in an improved effluent quality (Fig. 4). 

These results suggest that the cake layer formed by the bulk sludge has a higher propensity to 

fouling, a more unstable structure and cannot effectively reject solids, if compared to 

performance obtained from inoculum sludge. The results also indicate that the operation of a 

DM treating landfill leachate causes a significant deterioration of biofilm on the mesh, at least 

for its filtration characteristics. The use of large mesh openings seems beneficial on the basis 

of higher filtration flux and lower operating TMP values for 200 and 85 μm meshes than 
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those measured for 10 μm mesh (Fig. 4); however, such advantages were associated with 

highly deteriorated effluent quality due to loss of biomass in the effluent. Therefore, these 

results demonstrate that the behaviour of the DM is affected by the characteristics of the 

filtered sludge and by the operating conditions applied (i.e. flux and TMP).  

 

3.3. Landfill leachate treatment 

Dissolved oxygen concentration of the aerobic vessel was always maintained above 1.0 mg L
-

1
 (data not shown) during the entire bioreactor operation to sustain nitrification. The pH value 

of aerobic bioreactor varied between 6.4 and 8.9 (Figure S1 supplementary material).  

The bioreactor exhibited moderate TOC removal performance due to the recalcitrant nature of 

the organics in the leachate. The average TOC removal recorded after 20 days of continuous 

bioreactor operation was 58±1.4% (Figure 6). Moderate organic removals from leachate 

collected in old landfill are usually observed applying conventional biological processes (e.g. 

Spagni et al., 2007). In addition, Ahmd and Lan, (2012) reported that conventional MBRs 

treating stabilised LFL achieve COD removal efficiencies ranging from 54-78%, similarly to 

the results of this study. Galleguillos et al. (2011) evaluated the performance of a pilot MBR 

with a microfiltration membrane in treating stabilised LFL. The system exhibited high BOD 

and ammonia removal of 94% and 98% respectively; however, COD removal was rather low 

(approx. 40%) due to the high concentration of recalcitrant organics, confirming the results 

obtained in this study using a DM bioreactor. 

NH4
+
-N oxidation showed a fluctuating trend throughout the study, ranging from 70 to 99%, 

and despite the high influent NH4
+
-N concentration (1073-1767 mgN L

-1
), the average NH4

+
-

N oxidation was of 84±1.4% (Figure 6b). Although the system exhibited high NH4
+
-N 

oxidation, the biological nitrification process was incomplete and NO2
-
-N was the main 

product of ammonia oxidation (Figure 6b). Along with the increase in influent NH4
+
-N 
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concentration towards the end of the experimental phase, a progressive increase in effluent 

NO2
-
-N concentration was observed, reaching NO2

-
-N values as high as 1062 mg L

-1
 (Figure 

7a). As a consequence of incomplete nitrification, the effluent NO3
-
-N concentration always 

remained below 160 mgN L
-1

 (Fig. 6) with average concentration of 86±6 mgN L
-1

, showing a 

limited activity of nitrite oxidising bacteria (NOB).  

The severe inhibition of NOB activity can be explained by considering the free ammonia (FA) 

and free nitrous acid (FNA) concentrations inside the bioreactor (Fig. 7). Their concentrations 

were above the minimum threshold proved to be toxic for NOB. Anthonisen et al. (1976) 

reported FA and FNA inhibitory concentrations for NOB bacteria ranging from 0.1 to 150 

mgN L
-1

 and 0.2 to 2.8 mgN L
-1

, respectively. Similar inhibitory concentrations have also 

been confirmed by other authors (Kim et al., 2006; Zhou et al., 2011). Figure 7 shows that 

inhibition of NOB was triggered by FA concentrations since this compound was mostly above 

the highest toxicity limit (according to Anthonisen et al., 1976) while FNA was only 

occasionally higher than the toxicity concentration.  

It should also be highlighted that the addition of external carbon to support denitrification 

could have affected the nitrification activity: Remmas et al. (2016) have recently observed a 

significant nitrification inhibition when glycerol was added to MBR to sustain denitrification.  

Although acetate was used in this study instead of glycerol to support nitrogen removal, the 

addition of external organic material could have affected the microbial community including 

the specific abundance of nitrifying populations (Remmas et al., 2016).  

Even though denitrification via the nitrite route could have offered considerable cost savings 

in terms of organics and aeration requirements (Spagni and Marsili-Libelli, 2010), the 

denitrification performance and consequently the total nitrogen removal were rather poor 

(Fig. 6). Average total nitrogen removal after 20 days of continuous bioreactor operation and 

before the addition of supplemental organics was only 25±3%. Moreover, the gradual addition 
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of external organics did not bring significant improvement in the denitrification performance 

(Fig. 6). Furthermore, it can also be inferred that the contribution of heterotrophic 

denitrification in total TOC removal was very limited and a large fraction of TOC was 

removed in the aerobic tank instead of anoxic one (data not shown).  

Zhou et al, (2011) summarised the results of several studies done on determining the toxicity 

threshold of FNA concentration on denitrification activity. Depending upon the microbial 

community structure and operating conditions (pH, temperature, etc.), FNA concentration as 

low as 0.01-0.025 mgHNO2-N L
-1

 can initiate inhibition (up to 40%) while concentration up 

to 0.2 mgHNO2-N L
-1

 was proved to be extremely toxic on denitrification activity. In this 

study, the observed FNA concentration in the anoxic tank ranged from 0.001 to 0.079 

mgHNO2-N L
-1

 and averaging around 0.011 mgHNO2-N L
-1 

that might have contributed to 

the poor denitrification activity of the system (Fig. 6).   

 

4. Conclusions 

This study showed the possibility of using DM developed over nylon meshes (10, 52, 85 and 

200 µm) in a two-stage anoxic/aerobic bioreactor for the treatment of stabilised LFL.  

The results demonstrated the change of the filterability characteristics of the bulk sludge due 

to the applied operating conditions and to the use of stabilised LFL. As a consequence, severe 

DM fouling was observed, which was characterised by very sharp increase in TMP. DM 

solids rejection was also deteriorated and the effect of mesh porosity on solid-liquid 

separation was heightened. Effective solids rejection was achieved with the mesh with the 

smallest openings tested in this study of 10 µm, though at low permeate fluxes (approximately 

of 5 L m
-2

 h
-1

). In this regard, among the four meshes tested in this study, 52 μm mesh showed 

to be a reasonable compromise in terms effluent turbidity and achievable operating fluxes.  
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The bioreactor achieved organics removal similar to values reported in literature for 

conventional MBR systems. Even though bioreactor exhibited high ammonia oxidation, the 

increased concentrations of free ammonia (FA) and free nitrous acid (FNA) inside the system 

severely affected the nitrification and denitrification performance that resulted in high nitrite 

accumulation. 
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Table captions 

Table 1. Properties of the meshes used in this study.  

Table 2. Average characteristics of the leachate samples. 
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Table 1. Properties of the meshes used in this study.  

 Product 

information 

Mesh 

opening 

(µm) 

Open 

area 

(%) 

Mesh 

count  

(cm
-1

) 

Thread 

diameter 

(µm) 

Resistance
 

(Clean mesh)  

 (m
-1

)
 (2)

 

Tap water 

permeability 

(L m
-2

 h
-1

 kPa
-1

)
 (3)

 

SaatiMil PA
(1)

 7  200 39 31 120 5.5 × 10
9
 1570 

SaatiMil PA 15  85 49 81 37 5.4 × 10
9
 1580 

Saatifil PA 52/32 52 32 110 38 5.6 × 10
9
 1530 

Saatifil PA 10/4 10 4 200 x 220 30 x 38 6.5 × 10
9
 1330 

(1) PA is an acronym for polyamide  

(2) Resistance of the mesh measured at TMP of 5 kPa 

(3) 20 
o
C normalised permeability measured at TMP of 5 kPa  
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Table 2. Average characteristics of the leachate samples.  

Parameter Value 

BOD5 (mgO2 L
-1

) 400 

TOC (mgC L
-1

) 1300 

TKN (mgN L
-1

) 2060 

NH4
+
-N

 
(mgN L

-1
) 1700 

NO3
-
-N (mgN L

-1
) < 1 

NO2
-
-N (mgN L

-1
) 7.7 

Total phosphorus (mgP L
-1

) 9.6 

pH 8.56 

Alkalinity (mg CaCO3 L
-1

) 14600 

Cd (µg L
-1

) < 10 

 Cr (µg L
-1

) 753 

Cu (µg L
-1

) 52 

 Fe (µg L
-1

) 3860 

 Mn (µg L
-1

) 

 

172 

 Ni (µg L
-1

) 

 

148 

 Pb (µg L
-1

) 

 

< 10 

 Zn (µg L
-1

) 112 
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Figure captions 

Figure 1. Schematic diagrams (a) experimental setup and (b) short-term filtration test set-up 

Figure 2. Observed filtration flux and TMP profiles for (a) 200 µm, (b) 85 µm, (c) 52 µm and (d) 

10 µ. 

Figure 3. Dynamic membrane resistance profiles along with effluent turbidity values (a) 200 µm, 

(b) 85 µm, (c) 52 µm and (d) 10 µm 

Figure 4. Results of short-term gravity driven filtration tests: flux (a,d) resistance (b, e) and 

turbidity (c, f) profiles for initial inoculum and for bulk sludge, respectively. Arrows indicate 

when the peristaltic pump was switched on (bulk sludge only) to increase membrane flux; 

square, triangle and circle below the arrows are for mesh of 200, 85 and 10 µm, respectively. 

TMP profile for bulk sludge experiment is inserted in graph (d). 

Figure 5. Influent and effluent TOC profiles and TOC removal performance. 

Figure 6. (a) influent (INF) and effluent (EFF) ammonia and effluent nitrite and nitrate 

concentration; (b) ammonia oxidation and nitrogen removal performance  

Figure 7. Free ammonia (a) and free nitrous acid (b) concentration and values of toxicity for 

nitrifying microorganism according to Anthonisen et al. (1976). 
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Figure 1. Schematic diagrams (a) experimental setup and (b) short-term filtration test set-up  

(a) (b) 
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Figure 2. Observed filtration flux and TMP profiles for (a) 200 µm, (b) 85 µm, (c) 52 µm and (d) 

10 µ.  
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Figure 3. Dynamic membrane resistance profiles along with effluent turbidity values (a) 200 µm, 

(b) 85 µm, (c) 52 µm and (d) 10 µm  
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Figure 4. Results of short-term gravity driven filtration tests: flux (a,d) resistance (b, e) and 

turbidity (c, f) profiles for initial inoculum and for bulk sludge, respectively. Arrows indicate 

when the peristaltic pump was switched on (bulk sludge only) to increase membrane flux; 

square, triangle and circle below the arrows are for mesh of 200, 85 and 10 µm, respectively. 

TMP profile for bulk sludge experiment is inserted in graph (d). 
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Figure 5. Influent and effluent TOC profiles and TOC removal performance.  
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Figure 6. (a) influent (INF) and effluent (EFF) ammonia and effluent nitrite and nitrate 

concentration; (b) ammonia oxidation and nitrogen removal performance   
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Figure 7. Free ammonia (a) and free nitrous acid (b) concentration and values of toxicity for 

nitrifying microorganism according to Anthonisen et al. (1976).  
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Supplementary material 

 

Figure S1. Observed pH profile inside the aerobic and anoxic tank. 
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