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Abstract: The present work investigates the bifurcation properties of the Navier–Stokes equations
using characteristics-based schemes and Riemann solvers to test their suitability to predict
non-linear flow phenomena encountered in aerospace applications. We make use of a single- and
multi-directional characteristics-based scheme and Rusanov’s Riemann solver to treat the convective
term through a Godunov-type method. We use the Artificial Compressibility (AC) method and a
unified Fractional-Step, Artificial Compressibility with Pressure-Projection (FSAC-PP) method for all
considered schemes in a channel with a sudden expansion which provides highly non-linear flow
features at low Reynolds numbers that produces a non-symmetrical flow field. Using the AC method,
our results show that the multi-directional characteristics-based scheme is capable of predicting
these phenomena while the single-directional counterpart does not predict the correct flow field.
Both schemes and also Riemann solver approaches produce accurate results when the FSAC-PP
method is used, showing that the incompressible method plays a dominant role in determining the
behaviour of the flow. This also means that it is not just the numerical interpolation scheme which is
responsible for the overall accuracy. Furthermore, we show that the FSAC-PP method provides faster
convergence and higher level of accuracy, making it a prime candidate for aerospace applications.

Keywords: characteristics-based scheme; multi-directional; Riemann solver; Godunov method;
bifurcation

1. Introduction

Despite the advances made in the field of computational fluid dynamics over the past decades,
predicting flow patterns around aerodynamic shapes remains a challenge for aerospace applications.
The flow around a wing can have a transonic behaviour which, at high angles of attack, may be
supplemented by flow separation, strong crossflow gradients as well as a hysteresis in the lift slope [1,2].
Traub [3] highlighted further that at low Reynolds number flows, laminar separation bubbles exist
which have an inherently unsteady behaviour. These separation bubbles may reattach to the wing or
transition into a fully turbulent flow, depending on the pressure gradient. Panaras [4] reviewed recent
published studies on Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation (LES)
results and pointed out that the turbulent kinetic energy in regions of reversed flow is low and can be
considered to be almost laminar. Thus, it is important to capture the transition between laminar and
turbulent flows as flow separation and reattachment ultimately have a strong influence on predicting
the lift slope, stall angle and hysteresis. Furthermore, since RANS models are commonly based on the
linear Boussinesq assumption, results may provide only a moderate accuracy while models based on
non-linear theories may be more efficient in predicting non-isotropic flow behaviour.

From the considerations given above, it is important to realize that the non-linear term in the
Navier–Stokes equations is the most sensitive part and an accurate numerical description is mandatory
to capture those flow features. The literature on numerical schemes is vast and this article does not
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intend to give a comprehensive overview—interested readers are referred to reference [5,6]—however
a brief overview is given. Initially the second-order central scheme was used and later augmented by
artificial dissipation. This was necessary to account for the lost dissipation on the small scales due to an
under-resolved computational grid, essentially mimicking the same approach RANS turbulence model
take in order to provide turbulent, or physical, dissipation. The central scheme lacks transportiveness
and so is not suitable to predict flows containing discontinuities. A range of high-resolution schemes
were developed to address this issue, of which the monotonic upwind scheme for conservation laws
(MUSCL), total variation diminishing (TVD), essential non-oscillatory (ENO) and weighted essential
non-oscillatory (WENO) schemes are the most widely used schemes nowadays. These schemes all
have the same goal; to capture the correct behaviour of the non-linear term. However, their closure is
based on numerical considerations. In order to enhance these scheme and to provide highly-accurate
physical values for the time integration procedure, two possible routes are available. The first one
is commonly employed in the compressible community where an approximate Riemann solver
(RS) is used. In-fact, by including the local Riemann problem, the values obtained through the
numerical scheme are modified based on the local eigenstructure of the system of equations, thus
presenting a hybrid approach to couple numerical and physical fluxes. The second approach is to
take a characteristics-based (CB) scheme which shares many similarities of the local Riemann problem,
although being rather different in the details. Here, the characteristics of the flow are found at each
computational node where the primitive variables are updated along the compatibility equations,
which are unique to each node. The CB scheme found widespread use in the 1960s and onwards for
the calculation of compressible flows [7].

With the introduction of the Artificial Compressibility (AC) method of Chorin [8], which was the
first hyperbolic method available in the framework on incompressible flows, it became possible to apply
both the local Riemann problem as well as CB schemes to incompressible flows. Drikakis et al. [9] were
among the first to introduce the CB scheme in conjunction with the AC method in the finite volume
method, which was followed by a development in the finite element framework by Zienkiewicz
and Codina [10] and Zienkiewicz et al. [11]. The CB scheme of Drikakis [9] was developed for
one-dimensional flows but can be extended to higher dimensions by applying the same equations to any
coordinate direction in space. Thus, the approach is termed the single-directional characteristics-based,
or SCB, scheme. The scheme was later revised by Neofytou [12] and tested by Su et al. [13], concluding
that, although the revised scheme being more mathematical rigorous, there was little difference in the
results using the original and revised SCB scheme.

A vastly different approach was taken by Razavi et al. [14] who proposed to use a multi-directional
characteristics-based, or MCB, scheme. It was extended to handle curve-linear coordinate systems [15]
as well as unstructured grids [16]. Improved boundary conditions in combination with the MCB
scheme was proposed by Hashemi and Zamzamian [17] for the far-field and Zamzamian and
Hashemi [18] for solid boundary conditions. Fathollahi and Zamzamian [19] investigated the influence
of the number of compatibility equations used at each node. They showed that increasing the number
of compatibility equation did not affect the accuracy of the solution while increasing the convergence
rate. The scheme has been tested for heat transfer and turbulent flows by Razavi and Adibi [20]
and Razavi and Hanifi [21], respectively. In the MCB scheme, instead of tracking characteristic lines
through each computational node as done in the SCB scheme, characteristic surfaces are multiplied
into the governing equations and their solution is found by means of the system’s eigenvalues and
geometrical considerations. This creates a characteristic cone along which the compatibility equations
are emanating. This allows the scheme to capture any anisotropic properties of the flow and therefore
lends itself to capture non-linear flow features.

In the present work, our aim is to show the applicability of the MCB scheme to predict non-linear
flow behaviours at low reynolds numbers. As a comparison, we also employ the SCB scheme and
apply Rusanov’s RS which provides a hybrid multi-directional, Godunov-type treatment for the
non-linear term of the Navier–Stokes equations. We apply the scheme to a channel with a sudden
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expansion. This geometry was found to be particularly suitable to predict the onset of bifurcation
and subsequently the reattachment point of the flow. Both phenomena are underlying features that
are important to calculate turbulent flows and thus highly relevant to the discussion in the context of
aerospace applications.

We use the AC method in order to apply the CB scheme and RS, which require a
hyperbolic system of equations. Furthermore, we also employ a recent method developed by
Könözsy [22], later introduced by Könözsy and Drikakis [23], which unifies Chorin’s AC method
with Chorin’s and Temam’s Fractional-Step, Pressure projection (FS-PP) method [24,25] which is
termed the Fractional-Step, Artificial Compressibility with Pressure-Projection, or FSAC-PP method
(see Section 2.2). It has been tested for classical benchmark cases for incompressible flows [22],
multi-species and variable density flows in micro-channels [26], trapping and positioning of cryogenic
propellants [27], forced separated flows over a backward facing step [28] and the vortex pairing
problem [29]. The FSAC-PP method was originally introduced using the SCB scheme and extended by
Teschner et al. [30] to the MCB scheme. Smith et al. [31] removed the CB approach and used different
Riemann solvers instead to obtain the inviscid fluxes. The FSAC-PP has shown to have superior
convergence properties over the AC and FS-PP method, especially in low Reynolds number flows,
while showing a similar level of accuracy.

The remaining structure of this article is as follows. In Section 2, we give numerical details on the
AC and FSAC-PP method. Section 3 summarises the SCB and MCB scheme used in this study while
the computational setup is presented in Section 4. We present the results for the sudden expansion
geometry in Section 5 and highlight final remarks in Section 6.

2. Methodology

In this section, we briefly review the concepts of the AC and FSAC-PP method, which are
employed throughout this study. Details can be found in [8] about the AC method and in [22,23] about
the FSAC-PP approach.

2.1. The Artificial Compressibility Method

The absence of a thermodynamic functional relationship between the pressure and density
has led to the notion of an Artificial Compressibility approach. Here, the density is replaced by
the pressure in the time derivative of the continuity equation. Since it could be difficult to give a
clear relationship between the two state variables, a numerical constant is introduced, β, which is a
user-defined convergence parameter [8]. Thus, the continuity equation loses any physical meaning,
however, it provides a mechanism to predict the pressure in the momentum equation. Once a steady
state is obtained, the time derivative vanishes to zero and so a divergence-free velocity field is obtained.
The governing equations with the extensions of the AC method thus become

1
β

∂p
∂τ

+∇ ·U = 0, (1)

∂U
∂τ

+ (U · ∇)U = −1
ρ
∇p + ν∇2U, (2)

where ρ and ν are the density and viscosity, respectively. The equations are iterated in pseudo-time due
to the non-physical time derivative of pressure. In order to advance the system of Equations (1) and (2)
in real time, a dual-time stepping procedure needs to be employed for which a real time derivative is
added to the momentum equation. The time-step has to satisfy the following condition as

∆τ = min

[
CFL ∆x

|U|+
√

U2 + β
,

CFL ∆x2

4ν

]
. (3)
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2.2. The Unified Fractional-Step, Artificial Compressibility and Pressure Projection Method

The FSAC-PP method unifies both the AC and FS-PP method into a single framework. In the
first Fractional-Step, the continuity equation of the AC method is used along with the momentum
equation of the FS-PP method, in which the pressure gradient is dropped. The governing equations of
the numerical method can be written in a semi-discretised form by

1
β

∂p
∂τ

+∇ ·U = 0, (4)

U∗ −U(n)

∆τ
+ (U · ∇)U = ν∇2U. (5)

From Equations (4) and (5), we obtain an intermediate velocity field denoted by U∗ which is used
in the second Fractional-Step of the numerical procedure to recover the pressure field as

U(n+1) −U∗

∆t
= −1

ρ
∇p(n+1). (6)

The Helmholtz-Hodge decomposition requires the velocity field at time level (n + 1) to become
divergence-free. Thus, by taking the divergence of Equation (6), the following Poisson equation for the
pressure is obtained by

∇2 p(n+1) =
ρ

∆t
∇ ·U∗. (7)

With an updated pressure value, we can recover the velocity at the next time level from
Equation (6) as

Un+1 = U∗ − ∆t
ρ
∇p(n+1). (8)

Equations (5)–(8) are consistent with the FS-PP method of Chorin [24] and Temam [25] while
Equation (4) provides an initial pressure field for the Poisson equation through the perturbed continuity
equation of the AC method. Thus, the hyperbolic and elliptic features of the AC and FS-PP method are
coupled through the Fractional-Step procedure which allows for a characteristics-based treatment of
the convective fluxes while the pressure is stabilised through the elliptic Poisson equation.

3. Characteristic-Based Schemes for Incompressible Flows

While the FSAC-PP method was originally introduced using the SCB scheme [9],
Teschner et al. [30] showed the extension to a multi-directional characteristics-based (MCB) scheme,
which is based on the derivation given by Razavi et al. [14] for the AC method.

3.1. A Single-Directional Closure

The SCB scheme splits the governing equations into one-dimensional equations and assumes that
the SCB scheme is equally applicable for any direction. The primitive variables are recovered in the
context of the hyperbolic-type AC method as

ũn
i+ 1

2
= x̃R + ỹ(u0ỹ− v0 x̃), (9)

ṽn
i+ 1

2
= ỹR + x̃(u0ỹ− v0 x̃), (10)

p̃n
i+ 1

2
=

1

2
√

λ2
0 + β

(λ1k2 − λ2k1), (11)

where
R =

1

2
√

λ2
0 + β

[(p1 − p2) + x̃(λ1u1 − λ2u2) + ỹ(λ1v1 − λ2v2)], (12)
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k1 = p1 + λ1(u1 x̃ + v1ỹ), (13)

k2 = p2 + λ2(u2 x̃ + v2ỹ). (14)

The values of x̃ and ỹ are set to x̃ = 1, ỹ = 0 when considering the x-direction and x̃ = 0, ỹ = 1
for the y-direction, respectively. The eigenvalues are found as

λ0 = ux̃ + vỹ, (15)

λ1 = λ0 +
√

λ2
0 + β, (16)

λ2 = λ0 −
√

λ2
0 + β. (17)

The primitive variables with indices j = 0, 1, 2 are found through Godunov’s RS

Uj,i+ 1
2
=

1
2
[(1 + signλj)UL

i+ 1
2
+ (1− signλj)UR

i+ 1
2
], (18)

where the intercell flux values UL
i+1/2 and UR

i+1/2 are found through a third-order interpolation
procedure, see Section 4. In the FSAC-PP method, the characteristic pressure is set to zero as it is
dropped in the momentum equation. From Equations (9) and (10) it can be seen, however, that the
pressure provided by the continuity equation enters the characteristic velocity field which enforces
a stronger coupling between velocity and pressure. More details on the SCB scheme can be found
in [9,22,23].

3.2. A Multi-Directional Closure

In contrast to the SCB scheme, the multi-directional approach applies a characteristic surface to
the governing equations. For a two-dimensional flow, the governing equations of the AC method are

1
β

dp
d f

∂ f
∂τ

+
du
d f

∂ f
∂x

+
dv
d f

∂ f
∂y

= 0, (19)

du
d f

∂ f
∂τ

+ u
du
d f

∂ f
∂x

+ v
du
d f

∂ f
∂y

+
1
ρ

dp
d f

∂ f
∂x

= 0, (20)

dv
d f

∂ f
∂τ

+ u
dv
d f

∂ f
∂x

+ v
dv
d f

∂ f
∂y

+
1
ρ

dp
d f

∂ f
∂y

= 0. (21)

Multiplying Equations (19)–(21) by d f and introducing the shorthand notation Ψ = fτ + u fx + v fy,
the equations reduce to

fτ

β
dp + fxdu + fydv = 0, (22)

Ψdu +
fx

ρ
dp = 0, (23)

Ψdv +
fy

ρ
dp = 0. (24)

The determinant of the coefficient matrix corresponding to Equations (22)–(24) yields to solution
in the form of Ψ1 = 0 and Ψ2 = β/(ρnτ), where nτ = fτ is the component of the unit normal
vector and use has been made of the fact that the normal direction corresponds to the derivative of
the characteristic surface in the form of n = ∇ f . In-fact, it can be shown that Ψ1,2 corresponds to
two independent characteristic surfaces [7,32–34] which are called the stream- (Ψ1) and wave- (Ψ2)
surface in accordance with the literature on the compressible MCB scheme. Thus, inserting Ψ1,2

into Equations (23) and (24) yields two sets of compatibility equations along with Equation (22).
Rusanov [7] showed that a mix of compatibility equations on Ψ1 and Ψ2 are necessarily needed to
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obtain the characteristic values on the cell interfaces. For the incompressible version of the MCB
scheme, however, it is sufficient to only use the compatibility equations corresponding to Ψ2. This can
be verified by computing the rank of the coefficient matrix of Equations (22)–(24) for Ψ2 which will
result in a non-rank deficient matrix. Thus, three compatibility equations are found over four wave
directions as

ũ(n)
i+ 1

2
=

1
β( fτ,1 + fτ,2)

[(p1 − p2) fτ,1 fτ,2 + (u1 fτ,2 + u2 fτ,1)β] , (25)

ṽ(n)
i+ 1

2
=

1
β( fτ,1 + fτ,2)

[(p3 − p4) fτ,3 fτ,4 + (v3 fτ,4 + v4 fτ,3)β] , (26)

p̃(n)
i+ 1

2
=

1
4

4

∑
j=1

(−1)j+1 pj + (−1)j β

fτ,j
(Ũ−Uj)

‖. (27)

The characteristic pressure is an average over all four wave directions and (Ũ−Uj)
‖ indicates

that the velocity components, which are aligned with the wave directions, are to be used. The normal
vector is

nτ,j = fτ,j =
−(uj cos φj + vj sin φj)±

√
(uj cos φj + vj sin φj)2 + 4β/ρ

2
, (28)

where j = 1, 2, 3, 4 indices correspond to the intersection of the characteristic surfaces with the time level
(n), which is illustrated in Figure 1, and the primitive variables at those locations (wave directions) are
found through interpolation. Razavi et al. [14] introduced two versions of the MCB scheme, a first- and
second-order scheme, where primitive variables at j = 1, 2, 3, 4 are set to the reconstructed intercell
variables at i + 1

2 for the first-order scheme and are interpolated along the characteristic surfaces in the
second-order scheme. Since the SCB scheme classifies as a first-order CB scheme under this definition,
the first-order MCB scheme is used in the remaining investigation to compare both methods.

� �� 1

j12

3

4

Figure 1. Intersection of the characteristic surfaces with time level (n).

The SCB scheme was introduced using Godunov’s RS, Equation (18), which provided the
transportiveness property of the SCB scheme. The MCB scheme, as introduced by Razavi et al. [14],
did not feature any RS treatment. Thus, in order to ensure the transportiveness of the MCB scheme,
a numerical interpolation scheme needs to be selected which provides this property. Alternatively,
the MCB scheme can be supplemented with a RS to remove the necessity to provide transportiveness
through the numerical interpolation scheme and make it a property of the MCB scheme itself. Another
benefit of RS-based approaches is that different RS provide different level of numerical dissipation
which may become important at high Reynolds number flows. This combination allows to use a
relative cheap but high-order interpolation scheme for increased accuracy at reduced computational
cost, where we make the properties traditionally linked to the numerical scheme now a property of
the CB framework. Furthermore, the inclusion of the RS promotes a multi-directional Godunov-type
characteristic framework for incompressible flows which has so far only been tested and introduced by
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Teschner et al. [30] for a simple channel geometry. Therefore, we make use of Rusanov’s approximate
RS [35] in the form of

F(Ũ)i+1/2 =
1
2

[
F(Ũ)R + F(Ũ)L

]
− S+

2

(
ŨR − ŨL

)
, (29)

where F(Ũ)i+1/2 is the inviscid flux at the cell interface from which the primitive variables are found
directly through flux differentiation. We follow the approach of Davis [36] to obtain the signal velocity
S+ as

S+ = max
{
|A−L |, |A−R |, |A+

L |, |A+
R |
}

, (30)

with

A−L = UL −
√

U2
L + β/ρ, (31)

A−R = UR −
√

U2
R + β/ρ, (32)

A+
L = UL +

√
U2

L + β/ρ, (33)

A+
R = UR +

√
U2

R + β/ρ. (34)

Using this closure, we have extended the MCB scheme into the Godunov framework and will
demonstrate that even a simple approximate RS has favourable influence on the accuracy of the overall
procedure.

4. Computational Setup and Numerical Schemes

The intercell values of the inviscid fluxes are obtained through a third-order interpolation
polynomial as

UL
i+1/2 =

1
6
(5Un

i −Un
i−1 + 2Un

i+1), (35)

UR
i+1/2 =

1
6
(5Un

i+1 −Un
i+2 + 2Un

i ). (36)

The viscous fluxes, on the other hand, use a second-order reconstruction scheme which,
for Cartesian coordinates, defaults to a finite difference discretization in the form of

∂2φ

∂x2 =

[
φi−1 + 2φi − φi+1

(∆x)2

]
(37)

The time integration is carried out by a third-order Runge–Kutta TVD scheme in which each stage
is updated by the preceding one as

U∗ = U(n) + ∆τRHS(U(n)),

U∗∗ =
3
4

U(n) +
1
4

U∗ +
1
4

∆τRHS(U∗),

U(n+1) =
1
3

U(n) +
2
3

U∗∗ +
2
3

∆τRHS(U∗∗), (38)

where
RHS(U) = − (U · ∇)U− α

ρ
∇p + ν∇2U. (39)

Here, we set α = 1 for the AC method and α = 0 for the FSAC-PP method. The numerical
convergence parameter is set to β = 1.0, the CFL number for the explicit Runge–Kutta integration
scheme is kept at CFL = 0.8 while the SOR algorithm applied to the Poisson solver, Equation (7), uses an
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under-relaxation factor of ω = 0.7 with a total of ten Poisson iteration per time-step. Könözsy [22]
found that the Poisson equation can be over-relaxed to gain further computational speed-up and
suggested to use ω = 1.7 instead. Unlike the FS-PP method, in which the Poisson solver is the most
computational expensive part to obtain a correct pressure field, the FSAC-PP method benefits from
an initial prediction of the pressure field through the continuity equation of the AC method which
substantially reduces the number of iteration needed for the Poisson equation. It was found that of the
order of ten iterations is sufficient to speed up the convergence rate while keeping the same order of
accuracy as obtained with the FS-PP method. The residuals are calculated based on

RU = max
(
|∇ ·U(n+1) −∇ ·U(n)|

)
, (40)

where RU is normalised based on the residual at the first iteration and compared against the
convergence criterion of ε = 10−12 to ensure that the residuals have reduced by 12 orders of magnitude
based on the divergence free constrain.

5. Results and Discussion

To investigate the performance of the MCB scheme using the Rusanov RS against the classical,
SCB scheme, we simulate the flow inside a suddenly expanding channel with an expansion ratio of
3:1, see Figure 2. We have performed a grid convergence study and calculated the grid convergence
index (GCI) based on the reattachment length according to Roache [37]. Due to the Cartesian nature
of the solver, the mesh cannot be locally refined, especially near walls where a good resolution is
required. This, however, creates a challenging test case for both the AC and FSAC-PP method as
strong velocity gradients are present close to the wall which also amplifies any differences between the
two methods. Table 1 shows the results obtained for the grid dependency study where we give the
reattachment length at the upper and lower wall, as well as its corresponding GCI value and the time
and iteration it took to compute the results. The Cartesian mesh elements were divided by a factor of
two for subsequent mesh levels, ensuring a refinement ratio of four in all cases. We also provide the
expected value based on the Richardson extrapolation which can also be found in [37]. At a Reynolds
number of Re = 30, for which the GCI study has been carried out, the expected reattachment length as
given by Oliveira [38] is Xr1, Xr2 = 3.080. Looking at the results, we can see that the FSAC-PP method
converges towards that results for the finest level, while the AC method fails to predict the results
correctly. The FSAC-PP method also shows a lower level of GCI which is of the order of 10% while the
AC method produces GCI values which are close to double of that result. In terms of relative change,
the reattachment length changes less than 5% from the medium to the finest mesh level for both AC
and FSAC-PP method. Although the AC method overpredicts the reattachment, in this case using no
CB scheme and no RS, we will see later that the results are slightly better with other schemes. Hence,
focusing on the FSAC-PP method, it would be desired to use the finest mesh level for all subsequent
simulations. The computational time, however, becomes prohibitive in the case of the AC method if the
finest mesh level was to be used, where a single simulation would last for more than 32 h which would
cause excessive simulation times as several simulations at different Reynolds numbers are required.
Furthermore, for very low Reynolds numbers, the AC method requires even more computational
time [23,27]. Thus, we chose the medium mesh with 22,400 elements as the next closest mesh for which
results in a reasonable amount of time can be obtained.

To ensure that the convergence criterion of 10−12 is sufficient, we furthermore carried out a
convergence study where we have checked the influence of the convergence parameter from 10−6

to 10−12 for Equation (40). To judge convergence, we check by how much the reattachment length
changes on the upper and lower wall. The results are summarised in Table 2. We can see that the
chosen convergence threshold at 10−12 is a sufficient indicator for convergence. The results for the
FSAC-PP method do not change from 10−11 while the results for the AC method do only differ
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for the fourth significant figure. Thus, we haven chosen 10−12 as a convergence threshold for all
subsequent simulations.

∂p
∂n = 0

u = 1

v = 0

u = v = 0 ∂p
∂n = 0

u = v = 0 ∂p
∂n = 0

∂u
∂n = 0
∂v
∂n = 0

p = 0

S

S

S

20 · S10 · S

Figure 2. Geometry of the channel with a sudden expansion. Boundary conditions are given for the
inflow, outflow and solid (wall) boundary condition.

Table 1. Grid dependency study for the AC and FSAC-PP method at a Reynolds number of Re = 30.
The expected value of the reattachment length is Xr1, Xr2 = 3.080 as given by Oliveira [38].

Method Cells Xr1 Xr2 GCI (r1) GCI (r2) Time (h) Iterations

AC

1400 3.65448 3.65448 - - 0.006 40,051
5600 3.92843 3.92843 0.3269 0.3269 0.13 222,404

22,400 4.2131 4.2131 0.3167 0.3167 2.73 1,221,133
89,600 4.40196 4.40196 0.2011 0.2011 32.2 2,768,606

Richardson
Extrapolation 4.4146 4.4146 - - - -

FSAC-PP

1400 2.78324 2.83458 - - 0.003 11,534
5600 2.85779 2.87495 0.1223 0.0658 0.019 22,408

22,400 2.9544 2.96133 0.1533 0.1367 0.22 58,896
89,600 3.03597 3.03854 0.1259 0.1191 3.19 177,801

Richardson
Extrapolation 3.0414 3.0437 - - - -

Table 2. Convergence study for different level of convergence at a Reynolds number of Re = 30 based
on the reattachment length Xr1 and Xr2 at the upper and lower wall.

Method 10−6 10−7 10−8 10−9 10−10 10−11 10−12

AC Xr1 3.28289 3.89382 4.00063 4.16895 4.20950 4.21217 4.21310
Xr2 3.28289 3.89382 4.00063 4.16895 4.20950 4.21217 4.21310

FSAC-PP Xr1 3.05442 2.97130 2.96041 2.96123 2.96134 2.96133 2.96133
Xr2 3.04702 2.96438 2.95348 2.95430 2.95441 2.95440 2.95440

Figure 3 shows contours of the u-velocity component while Figure 4 presents the velocity profile
at x/S = 5, where S indicates the step height, see Figure 2. We show results here obtained with the AC
and FSAC-PP method for two Reynolds number. The first Reynolds number is Re = 34.6, based on the
average inlet velocity and a characteristic lengthscale of unity, which is below the critical Reynolds
number of Recrit ≈ 54 [38,39] and where a symmetrical flow pattern prevails. The second Reynolds
number of Re = 80 is above the critical one and exhibits a breaking in the symmetry. All velocity
profiles are compared against experimental data of Fearn et al. [39].

Figure 4a shows the AC method at a sub-critical Reynolds number. Not using any characteristics
or RS overpredicts the flow slightly which is similar to the MCB scheme by itself. Both the standard
non-linear treatment in conjunction with the Rusanov RS, as well as the hybrid Rusanov MCB scheme
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show an under-prediction of the peak velocity. A similar observation can be made for the SCB scheme.
Since the SCB scheme has been proposed together with Godunov’s RS, we can see that all RS-based
approaches are more dissipative than a non RS-based approach. Figure 4b shows the AC method with
the same schemes above the critical Reynolds number. Here, only the non-CB and MCB approach were
capable of predicting the bifurcation to a non-symmetric flow behaviour. All RS-based approaches
do not predict accurately the onset of bifurcation which may be explained by the inherent numerical
dissipation to the Riemann solvers themselves.

(a) AC Method, Re = 34.6

(b) FSAC-PP Method, Re = 34.6

(c) AC Method, Re = 80

(d) FSAC-PP Method, Re = 80

Figure 3. Contour plots of the axial velocity component using a non-CB treatment.
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(d) FSAC-PP Method, Re = 80

Figure 4. Velocity profiles at x/S = 5 for the AC (top) and FSAC-PP (bottom) method using different
combinations of CB schemes and the Rusanov Riemann solver at Re = 34.6 (left) and Re = 80 (right).

The picture is fundamentally different for the FSAC-PP method. At Re = 34.6, Figure 4c, the results
are independent of the method, except for the SCB scheme, which under-predicts the peak velocity
slightly more than the other schemes. In Figure 4d we see the bifurcated state and all schemes,
including the RS-based approaches, do predict the velocity profile correctly. We see here that not just
the numerical scheme, but also the incompressible method used to perform the calculations makes a
difference. This highlights that not just the numerical scheme that is used makes a difference, but also
the incompressible closure assumption of a given method can have a significant influence. It should
be kept in mind that the AC method is purely hyperbolic while the FSAC-PP method has a mixed
hyperbolic-elliptic behaviour and it is not surprising that both method perform differently. However,
it is surprising that the FSAC-PP method does predict the bifurcation correctly, regardless of the
numerical scheme, while the AC method is highly depending on the numerical scheme. This is against
the common believe that only the numerical scheme influences the accuracy of the solution while the
numerical methods may only differ in the number of iterations. We make a case here and show that
different mathematical behaviours (hyperbolic and elliptic) do have a significant effect on the final
result. Since the current study is investigating the non-linear term of the Navier–Stokes equations,
this is an important finding and it shows that for studies where the non-linear term is of importance,
such as stall prediction around wings, it is worth considering not just a suitable scheme for the
convective term but also a suitable incompressible method. The mixed hyperbolic-elliptic behaviour of
the FSAC-PP method means that any pressure disturbances in the flow will instantaneously propagate
through the domain using the elliptic Poisson solver. The purely hyperbolic nature of the AC method,
on the other hand, means that pressure disturbances travel at a fixed signal velocity, determined by
the local eigenstructure of the system. The onset of bifurcation does critically depend on the pressure
boundary value at the convex corners which, in turn, are influenced by the recirculation area upstream.
The FSAC-PP method allows that any change in the recirculation area will influence the upstream
convex corner points and vice versa. The AC method, on the other hand, lags behind due to the finite
information propagation speed and thus faces difficulties in predicting the onset of bifurcation. In-fact,
the same argumentation was used by Teschner et al. [40] where a novel incompressible method was
devised based on a parabolic pressure transport equation. It was argued that the pressure treatment
plays a crucial role for incompressible flows and that a parabolic behaviour of the pressure matches the
physical expected behaviour more closely. Thus, the elliptic part of the FSAC-PP method plays a crucial
part in the current discussion as the pressure disturbances are handled in a different way as in the AC
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method. The outcome has a rather drastic impact, as can be seen from the results, where the bifurcation
is predicted by the FSAC-PP method but not by the AC method. At the same time, however, we need
to point out that the bifurcation phenomena can be predicted using the AC method, see for example
Drikakis [41]. We do not claim that it is not capable of predicting the non-linear behaviour correctly,
however, the AC method may be more prone to different modelling approaches, for example, it may
become necessary to use stretched grids near the wall to capture the correct flow physics. The FSAC-PP
method does not show the same modelling issues which can be attributed, in parts, to the Poisson
solver. Not only does it provide an elliptic behaviour which advantages have been discussed above,
but also it provides a stabilisation and smoothing procedure for the pressure. A stabilised pressure field,
in turn, will provide a more realistic velocity field. Alternative approaches, using a fully hyperbolic
compressible (Euler/Navier–Stokes) or incompressible (AC) solver are, for example, to use artificial
dissipation, to stabilise the velocity field. The FSAC-PP method contains the stabilising feature by
default which is another indicator as to why the result show not such a drastic difference as the AC
method and furthermore predict the correct results regardless of the numerical scheme employed.
In essence this is what we aim to demonstrate in this study, that we can take classical properties of
numerical scheme, such as transportiveness and stability, and make them properties of the CB scheme
as well as the numerical method. In this way, we provide a robust framework which is capable of
treating non-linear and anisotropic flow behaviours correctly while modelling errors due to different
reconstruction schemes are removed.

The discussion above is also given quantitatively in Tables 3 and 4. Focusing on the L1 norm,
we can see the order of magnitude is similar for both methods and Reynolds numbers, where the correct
flow was predicted and is between 2% and 4%. The inability of the AC method under the current set
up to predict the bifurcation results in rather large errors while the FSAC-PP method shows similar
errors for the bifurcated and non-bifurcated state. We can also see that the application of the Rusanov
RS produces larger errors for the FSAC-PP methods and also fails to predict the bifurcation for the AC
method, while the non Rusanov RS-based approached predicted the bifurcation. This can be explained
by the numerical dissipation inherent to the Rusanov RS. It may seem as a disadvantage for the present
results, however, its advantages become only apparent at high Reynolds numbers, where the added
dissipation acts as physical dissipation where a non-dissipative interpolation scheme is used. For the
present study, where laminar flows are concerned, it is not expected to see a large difference in the
result. Rather, it is worth mentioning that the added dissipation does not contaminated the results
significantly for low Reynolds numbers in the case of the FSAC-PP method, while the effect is felt rather
strongly in the case of the AC method, where the bifurcation is no predicted. Thus, compared to the AC
method, we show that our hybrid Rusanov scheme in conjunction with the MCB scheme does predict
the bifurcation correctly and that the gains are significant. The numerical results could be improved by
using a less dissipative RS like the Harten, Lax, van Leer (HLL) or HLL-Contact (HLLC) RS, however,
Smith et al. [31] highlighted that the signal speed prediction becomes problematic. Thus, we accept the
numerical dissipation by the Rusanov RS but gain conservativeness through the RS which allows to use
a relative simple numerical interpolation scheme. At the same time, once real aerospace applications
are of interest, the numerical dissipation provided by the Rusanov RS is sufficient to produce stable
results. This, by itself, could be regarded as an alternative Implicit Large Eddy Simulation (ILES)
approach where we do not take the numerical dissipation from the interpolation scheme but rather
from the Riemann solver directly.

Figure 5 shows the bifurcation diagram for the AC (Figure 5a) and FSAC-PP (Figure 5b) method.
Here, we have defined DX as the difference between the upper and lower reattachment length and show
results obtained in the range of 10 ≤ Re ≤ 100. We further show numerical results by Oliveira et al. [38]
who used the SIMPLEC scheme to solve the incompressible Navier–Stokes equations and provided
tabulated data on the reattachment length. As has been already observed, the bifurcation was only
predicted by the non-CB and MCB scheme for the AC method while all schemes bifurcated for the
FSAC-PP method. Figure 5a shows that the AC method predicted the onset of bifurcation prematurely.
The FSAC-PP method in Figure 5b, on the other hand, shows that the bifurcation was predicted slightly
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after the critical Reynolds number. The FSAC-PP method, however, does follow the experimental and
numerical data more closely, especially for higher Reynolds numbers. The reattachment length in
the AC method becomes weakly invariant to the Reynolds numbers at Re = 80 while the numerical
data suggest that the difference between the upper and lower reattachment point should continue
to grow. The behaviour is the same for the MCB and non-CB scheme. The hyperbolic nature and
thus finite information propagation speed in the AC method could explain this phenomena where the
distance between the reattachment point and the upstream convex corner points becomes too large so
that disturbances are not propagated fast enough for them to have an effect. In the FSAC-PP method,
on the other hand, the disturbances are propagated instantaneously and so even at larger distances,
or higher values of DX, the disturbances are still felt upstream. It is interesting to note here that all
RS-based approaches in the FSAC-PP method do initially predict the onset of bifurcation later than the
non-CB or MCB scheme. It could be argued that the inherent numerical dissipation to the RS delays
bifurcation. At higher Reynolds number and sufficiently far away from the critical one, all schemes
eventually converge towards the same solution.

Table 3. L0 and L1 error norm of the velocity profiles for the AC method using different combinations
of CB schemes and the Rusanov Riemann solver at Re = 34.6 and Re = 80.

Re
No Rusanov RS Rusanov RS

No CB SCB MCB No CB MCB

34.6 L0(u) [%] 5.05 4.38 4.94 4.65 4.65
L1(u) [%] 2.97 2.18 2.89 2.36 2.36

80 L0(u) [%] 6.43 41.31 7.14 41.19 41.19
L1(u) [%] 3.75 25.10 4.19 24.87 24.87

Table 4. L0 and L1 error norm of the velocity profiles for the FSAC-PP method using different
combinations of CB schemes and the Rusanov Riemann solver at Re = 34.6 and Re = 80.

Re
No Rusanov RS Rusanov RS

No CB SCB MCB No CB MCB

34.6 L0(u) [%] 4.10 4.98 4.19 4.05 4.03
L1(u) [%] 1.96 2.57 2.03 1.93 1.91

80 L0(u) [%] 4.25 5.62 4.74 5.18 5.13
L1(u) [%] 1.99 3.15 2.33 2.51 2.47
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(a) AC Method
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(b) FSAC-PP Method

Figure 5. Bifurcation diagram for the AC (a) and FSAC-PP (b) method using different combinations of
CB schemes and the Rusanov Riemann solver.
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The results in Figure 5 is summarised in Tables 5 and 6 for the AC and FSAC-PP method,
respectively. Here we give both the upper and lower reattachment point and compare against the
tabulated data of Oliveira [38]. We further give the number of iterations it took to get converged
results up to our convergence criterion of ε. We can confirm from the data given that the non-CB and
MCB scheme may indeed match the reference data more closely, especially at high Reynolds numbers.
The difference are, however, minute in the case of the FSAC-PP method.

The computational cost is shown in Figure 6, which shows an interesting trend. The AC method
is know to have slow convergence properties at low Reynolds numbers, see for example [22,23].
We see the same trend in Figure 6a, where the computational time required grows exponentially as the
Reynolds number approaches zero. The non-CB and MCB scheme require substantially more CPU
time than the SCB and RS-based approaches, however, the latter did not predict the bifurcation at all.
The reason here is that the flow will always develop as a symmetrical flow, even for Reynolds number
above Recrit. After the residuals have dropped to about ε = 10−10, the numerical fluctuations become
small enough so that the physical fluctuations can promote a different and more stable equilibrium
position. At this stage, the reattachment point at the upper and lower wall start to interact with the
upstream pressure at the convex corner points and slight physical fluctuations—which obtain their
energy through the non-linear term—promote the change to a non-symmetrical flow pattern, which is
also discussed by Oliveira [38]. Therefore, results obtained for the bifurcated state may in general
require more computational time. At the critical Reynolds number, both the AC and FSAC-PP method
peak in terms of the CPU time. It is here that the physical fluctuations become just important enough
for the flow to register the change to a non-symmetrical state. At higher reynolds numbers, their effects
may be felt stronger and earlier during the calculation which may force the bifurcation to occur earlier
and thus with increasing Reynolds numbers, the computational time decreases again. When only
considering the non-CB and MCB scheme of the AC method, which eventually bifurcate, it can be seen
that the same simulation using the FSAC-PP method requires 2–3 times less CPU time sufficiently far
away from the critical Reynolds number. This is consistent with findings of previous works in which
it was highlighted that the FSAC-PP method generally performs faster than the AC method while
retaining a high level of accuracy [22,23,28,30]. At Reynolds number close to zero, the computational
savings are even more significant. This was one of the reasons the FSAC-PP method was developed in
the first place, to overcome the stiff nature of the AC and Pressure Projection method for low Reynolds
number flows, for example in microfluidic applications, see [23] for a detailed discussion. At the onset
of bifurcation, however, the AC method seems to be slightly more cost efficient than the FSAC-PP
method. This can be explained by the elliptic behaviour of the Poisson solver, where any pressure
change is propagated through the domain instantaneously. These pressure waves require longer to be
damped while the hyperbolic behaviour of the AC method induces less pressure waves and hence a
converged solution is found quicker.
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Table 5. Prediction of the reattachment length Xr1 and Xr2 and number of iterations required for
convergence for different Reynolds numbers using the AC method for various combinations of CB
schemes and the Rusanov Riemann solver.

Re
No Rusanov RS Rusanov RS

Oliveira [38]
No CB SCB MCB No CB MCB

10
iteration 3,631,653 690,039 4,532,716 696,382 696,476 -

Xr1 2.655 1.130 2.634 1.117 1.117 1.211
Xr2 2.655 1.130 2.634 1.117 1.117 1.211

20
iteration 2,113,766 163,702 1,547,448 166,414 166,411 -

Xr1 3.387 1.968 3.364 1.936 1.936 2.111
Xr2 3.387 1.968 3.364 1.936 1.936 2.111

30
iteration 1,221,133 107,248 785,612 106,580 106,591 -

Xr1 4.213 2.879 4.194 2.828 2.828 3.080
Xr2 4.213 2.879 4.194 2.828 2.828 3.080

40
iteration 791,709 100,955 478,125 100,464 100,460 -

Xr1 5.085 3.824 5.070 3.753 3.753 4.075
Xr2 5.085 3.824 5.070 3.753 3.753 4.075

50
iteration 568,705 91,784 330,816 91,432 91,429 -

Xr1 5.990 4.785 5.985 4.697 4.697 5.080
Xr2 5.990 4.785 5.985 4.697 4.697 5.081

52
iteration 858,132 91,683 318,747 90,572 90,572 -

Xr1 4.330 4.978 6.169 4.886 4.886 5.279
Xr2 7.089 4.978 6.169 4.886 4.886 5.285

54
iteration 630,303 91,897 476,622 90,803 90,803 -

Xr1 4.088 5.172 3.838 5.076 5.076 5.445
Xr2 7.369 5.172 7.452 5.076 5.076 5.523

56
iteration 553,873 92,342 430,348 91,269 91,273 -

Xr1 3.939 5.366 3.749 5.266 5.266 4.440
Xr2 7.604 5.366 7.663 5.266 5.266 6.678

58
iteration 533,040 97,869 403,268 96,932 96,928 -

Xr1 3.839 5.561 3.683 5.457 5.457 4.107
Xr2 7.814 5.561 7.857 5.457 5.457 7.208

60
iteration 515,231 99,678 383,592 98,563 98,556 -

Xr1 3.770 5.755 3.635 5.648 5.648 3.935
Xr2 8.008 5.755 8.040 5.648 5.648 7.609

70
iteration 455,579 101,927 328,784 100,829 100,832 -

Xr1 3.629 6.732 3.550 6.605 6.605 3.669
Xr2 8.843 6.732 8.844 6.605 6.605 9.019

80
iteration 411,266 104,035 304,704 104,958 104,951 -

Xr1 3.626 7.713 3.562 7.566 7.566 3.658
Xr2 9.553 7.713 9.538 7.566 7.566 10.060

90
iteration 388,146 110,098 292,355 109,346 109,341 -

Xr1 3.668 8.697 3.610 8.529 8.529 3.708
Xr2 10.039 8.697 9.876 8.529 8.529 10.930

100
iteration 365,681 110,430 295,891 109,700 109,701 -

Xr1 3.730 9.683 3.676 9.493 9.493 3.781
Xr2 9.771 9.683 9.681 9.493 9.493 11.660
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Table 6. Prediction of the reattachment length Xr1 and Xr2 and number of iterations required for
convergence for different Reynolds numbers using the FSAC-PP method for various combinations of
CB schemes and the Rusanov Riemann solver.

Re
No Rusanov RS Rusanov RS

Oliveira [38]
No CB SCB MCB No CB MCB

10
iteration 68,164 88,652 77,805 85,234 76,780 -

Xr1 1.218 1.160 1.199 1.211 1.212 1.211
Xr2 1.217 1.161 1.198 1.211 1.211 1.211

20
iteration 63,567 77,596 71,278 76,451 70,299 -

Xr1 2.052 1.960 2.030 2.049 2.050 2.111
Xr2 2.049 1.958 2.028 2.047 2.048 2.111

30
iteration 58,896 68,241 64,767 67,870 63,793 -

Xr1 2.961 2.839 2.936 2.958 2.960 3.080
Xr2 2.954 2.834 2.930 2.953 2.955 3.080

40
iteration 54,291 61,483 58,382 61,441 58,369 -

Xr1 3.902 3.747 3.874 3.897 3.901 4.075
Xr2 3.888 3.758 3.862 3.887 3.891 4.075

50
iteration 72,955 57,272 62,362 66,594 64,421 -

Xr1 4.866 4.705 4.836 4.856 4.861 5.080
Xr2 4.829 4.682 4.807 4.830 4.836 5.081

52
iteration 103,038 68,241 887,76 94,788 91,491 -

Xr1 5.068 4.866 4.994 5.054 5.060 5.279
Xr2 5.013 4.898 5.035 5.017 5.023 5.285

54
iteration 160,834 98,874 134,456 143,614 139,714 -

Xr1 5.190 5.094 5.239 5.200 5.207 5.445
Xr2 5.279 5.048 5.176 5.257 5.262 5.523

56
iteration 323,916 158,368 243,044 260,922 257,718 -

Xr1 5.333 5.221 5.342 5.368 5.374 4.440
Xr2 5.522 5.299 5.461 5.475 5.480 6.678

58
iteration 878,294 334,541 768,416 865,548 901,939 -

Xr1 5.084 5.362 5.377 5.415 5.405 4.107
Xr2 6.095 5.534 5.802 5.805 5.825 7.208

60
iteration 355,946 888,435 481,042 514,272 486,624 -

Xr1 4.427 5.051 4.641 4.655 4.628 3.935
Xr2 6.861 6.149 6.688 6.700 6.726 7.609

70
iteration 114,816 126,413 119,971 127,121 125,149 -

Xr1 3.734 3.782 3.779 3.785 3.782 3.669
Xr2 8.531 8.278 8.499 8.475 8.485 9.019

80
iteration 91,835 94,097 92,946 99,882 98,683 -

Xr1 3.653 3.650 3.679 3.681 3.679 3.658
Xr2 9.622 9.416 9.618 9.572 9.579 10.060

90
iteration 96,853 95,949 97,232 114,014 105,340 -

Xr1 3.676 3.656 3.696 3.703 3.702 3.708
Xr2 10.525 10.346 10.539 10.480 10.486 10.930

100
iteration 106,408 109,105 119,534 108,770 102,731 -

Xr1 3.749 3.705 3.762 3.754 3.753 3.781
Xr2 11.308 11.147 11.336 11.263 11.269 11.660
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Figure 6. Total number of iterations required for the AC (a) and FSAC-PP (b) method for different
Reynolnds numbers.

6. Conclusions

In this work, we presented results to predict the highly non-linear behaviour produced by
the Navier–Stokes equations at low Reynolds numbers inside a channel with a sudden expansion.
In particular, we investigated the sub- and super-critical range of Reynolds numbers where the
flow bifurcates from a symmetric to a non-symmetric state. We investigated the performance of
a non-characteristic-based (CB) scheme, single- and multi-directional characteristics-based scheme
(SCB/MCB), as well as the Rusanov Riemann solver (RS) and combinations of these schemes and tested
all approaches with the Artificial Compressibility (AC) and Fractional-Step, Artificial Compressibility
with Pressure-Projection (FSAC-PP) method.

We found that only the non-CB and the MCB scheme were capable of predicting the bifurcation
using the AC method where the RS-based approaches showed too much numerical dissipation to
correctly predict the flow patterns. A significant difference between the SCB and MCB scheme could
be observed in the AC method, where we showed that the multi-directional nature of the MCB scheme
is required to predict the bifurcation at all. The added Rusanov RS showed too much numerical
dissipation for the current approach to predict the bifurcation and similar results were obtained
using the hybrid Rusanov and MCB scheme. In the FSAC-PP method, however, all schemes correctly
predicted the symmetry breaking and overall showed better agreement with reference data in terms
of the reattachment length. The incompressible flow method itself could overcome the inherent
numerical dissipation of the Rusanov RS, as well as the SCB scheme which uses Godunov’s RS by
default, showing that the mathematical classification of the method’s partial differential equations
play a dominant role. The fully hyperbolic behaviour of the AC method was not always capable of
capturing the bifurcation phenomena correctly while the mixed hyperbolic-elliptic equations of the
FSAC-PP method ensured always a physically correct solution. This comes at a slightly increased
computational cost near the bifurcation, however, sufficiently far away from the critical Reynolds
number, the FSAC-PP method required 2–3 times less CPU resources compared to the AC method.

Aerospace applications are presented with flow features that are highly non-linear, as discussed
in Section 1. The bifurcation shares many similarities to the onset to turbulence and predicting
both phenomena correctly is mandatory to gain highly accurate computations in which stall, strong
crossflow gradients and lift slope hysteresis are of interest. We have demonstrated here that the success
of predicting non-linear flow features is not just scheme dependent, but the incompressible method
used for the computation also plays a dominant role. The MCB scheme by itself showed that its
multi-directional nature was capable of predicting non-linear phenomena correctly, regardless of the
incompressible flow method used, while the SCB scheme was only capable of predicting correctly the
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flow phenomena when the FSAC-PP method was used. Although only laminar flows were investigated
in this study, at higher Reynolds numbers, as is characteristic of aerospace applications, the flow
becomes turbulent. In these flow regimes, the numerical dissipation produced by different schemes
and RS becomes important. The Rusanov RS provides a sufficient amount of inherent numerical
dissipation to tackle high Reynolds number turbulent flows. In future work, we will investigate the
proposed framework for high Reynolds number flows, however, the framework present in the current
study is directly applicable to such flows for aerospace applications.
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The following abbreviations are used in this manuscript:

AC Artificial Compressibility
CB Characteristics-based
FSAC-PP Fractional-Step, Artificial Compressibility with Pressure-Projection
FS-PP Fractional-Step, Pressure-Projection
LES Large-Eddy Simulation
MCB multi-directional characteristics-based
RANS Reynolds-averaged Navier–Stokes
RS Riemann solver
SCB single-directional characteristics-based
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