How eye tracking data can enhance human performance in tomorrow's cockpit.

Results from a flight simulation study in FUTURE SKY SAFETY.

Marcus Biella ¹, Matthias Wies ¹, Rebecca Charles ², Nicolas Maille ³, Bruno Berberian ³ & Jim Nixon ²

¹ DLR (German Aerospace Center), Institute of Flight Guidance, Braunschweig, Germany

² Cranfield University, Centre for Safety & Accident Investigation, Cranfield, UK

³ ONERA Systems Control and Flight Dynamics Department, Salon de Provence, France

Decline in performance: it happens gracefully, not abrupt

How to automate now? Human Centered! ... enabled by Human Performance Envelope

Operational Environment

Performance

b. Develop automation which is capable to adapt to the state of the operator

Performance

Reaching HIGHER Levels of Maturity

 $\textbf{According to "E} uropean \ \textbf{O} perational \ \textbf{C} oncept \ \textbf{V} alidation \ \textbf{M} ethodology"$

Project: Human Performance Envelope

January 2015 - March 2018

Funded by the European Commission

Moving toward the edges of the envelope

By events

High WL scenario

High stress scenario

Highly decreased SA

Low visibility whole scenario

Localiser interference during final approach

Wind shift during final approach

WL St

- SA

Medium workload, medium stress, medium reduced SA scenario

Eye Tracking Data

- Point of Gaze
- Blink Rate
- Areas of Interest
- Pupil Diameter

Physiological Data

- Heart Rate (HR)
- HR Variability (HRV)
 - RR Intervals
 - Breath Rate
 - Perfusion Index

Performance Data

- Speed
- Heading
- Altitude
- Vertical speed
- Localiser glideslope deviations
- Point of touchdown

Subjective Data

- Self assessed performance
 - ISA
 - NASA-TLX
 - SACL
 - SART
 - Samn-Perelli

Instanta		Jus 3	en-A	55655	ment	(15A	,	
(Scenario 1	L)							
Pilot ID:								
Run No.:								
Time (start):				(stop):				
t 2	m	4 m	6 m	8 m	10 m	12 m	14 m	16 m
1								
2								
3								
4								
5								
1 = Under-U	tilised	1						
2 = Relaxed								
3 = Comforta	able I	Busy						

Simulator

Operational Environment

Participants

N=10 first officers

- major European airline
- A320 type rated
- Age
 - M = 31
 - SD = 3.28
- Experience (total flight hours)
 - M = 4045
 - SD = 1569
- Captain
 - from same airline
 - complemented crew

Operational Environment

Results Workload

With WL increase,

Pupil diameter significantly increases

Results Stress

With Stress increase,

Pupil diameter significantly increases

Baseline St High St

Results Situation Awareness

Pupil diameter significantly increases not significantly

Baseline SA impaired SA

Results Situation Awareness

Baseline SA

impaired SA

deviation of localiser and glide-slope significantly increases

and is higher
compared to
workload and
stress
scenarios

Results: combined factors

Combined factors have a stronger effect on the HPE than single factors, even if each individual combined factor is only at medium level compared to a single factor at high level

WL
SA

Low fuel whole scenario

Delay vectors during initial approach

Loud noise during final approach

WL

SA St

High turbulence

HPE more severely reduced by combined factors:

Performance significantly lower at combined factors compared to single factors

Results: combined factors

Pupil diameter

LF of HRV

Localiser / Glideslope deviation

Stay tuned

- Paper in the Aeronautical Journal
 - under preparation

http://www.futuresky-safety.eu

- D6.3
 - Results for a second set of scenarios
- D6.4

Outlook

Operational Environment

#4 How will eye tracking improve tomorrow's pilots' training and performance?

Endsley's model of SA. This is a synthesis of versions she has given in several sources, notably Endsley (1995a) and Endsley et al (2000). Drawn by Dr. Peter Lankton, May 2007.

https://en.wikipedia.org/wiki/Situation_awareness

How eye tracking data can enhance human performance in tomorrow's cockpit. Results from a flight simulation study in FUTURE SKY SAFETY.

Marcus Biella ¹, Matthias Wies ¹, Rebecca Charles ², Nicolas Maille ³, Bruno Berberian ³ & Jim Nixon ²

- ¹ DLR (German Aerospace Center), Institute of Flight Guidance, Braunschweig, Germany
- ² Cranfield University, Centre for Safety & Accident Investigation, Cranfield, UK
- ³ ONERA Systems Control and Flight Dynamics Department, Salon de Provence, France

