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Abstract

In the paper, the problem of minimum-fuel aeroassisted spacecraft regional re-

connaissance (orbital hopping) is considered. A new nonlinear constrained op-

timal control formulation is designed and constructed so as to describe this

mission scenario. This formulation contains multiple exo-atmospheric and at-

mospheric flight phases and correspondingly, two sets of flight dynamics. The

constructed continuous-time optimal control system is then discretized via a

multi-phase global collocation technique. The resulting discrete-time system is

optimized using a newly proposed gradient-based optimization algorithm. Sev-

eral comparative simulations are carried out and the obtained optimal results

indicate that it is effective and feasible to use the proposed multi-phase opti-

mal control design for achieving the aeroassisted vehicle orbital hopping mission.

Keywords: Aeroassisted spacecraft, orbital hopping, optimal control,

trajectory optimization.

1. Introduction

In the past few decades, aeroassisted orbital transfer vehicles have received

considerable attention due to their extensive applications in space exploration

[1–3]. One important advantage of using this type of flight vehicle is that it has
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the capability to apply the aerodynamic forces and its engine model effectively5

[1, 4]. Early works on developing the aeroassisted spacecraft mainly focus on the

propulsion and online guidance systems [5–7]. For example, in [8], the authors

proposed an online minimum energy-loss guidance strategy for the aeroassisted

vehicle. Naidu et al. [9] designed a neighbouring optimal guidance scheme

for the nonlinear aeroassisted vehicle dynamics. Meanwhile, many important10

research works focusing on the aeroassisted vehicle orbital transfer have been

extensively investigated [4, 10]. Specifically, Darby and Rao [11] considered a

small-scale spacecraft orbital transfer problem using impulsive thrust. In their

work, the entire mission was completed during the space flight. Begum et al.

[12] designed the aeroassisted orbital transfer trajectory based on the optimal15

control theory. Different with the work carried out in [11], both the space flight

and atmospheric pass were used to complete the mission in [12].

Although the aforementioned research works show the potential feasibility

and benefits of using the aeroassisted vehicle for the orbital transfer, less atten-

tion has been paid to apply the aeroassisted vehicle for an orbital hopping or20

regional reconnaissance mission profile. Therefore, in this paper, a new aeroas-

sisted spacecraft orbital hopping problem formulation is proposed and studied.

The main objective of this work is to generate the minimum-fuel trajectory for

the orbital hopping mission. Then based on the obtained optimal solutions, a

better understanding in terms of the performance requirements and the struc-25

ture of the problem can be gained.

The overall optimal fuel consumption aeroassisted vehicle orbital hopping

problem is formulated as a multiple-phase nonlinear optimal control problem.

This type of problem is becoming an active topic since the obtained optimal ref-

erence trajectory can be implemented in various industrial applications [13–16].30

To calculate the optimal solution, a typical direct transcription algorithm (e.g.

Gauss pseudospectral method [17, 18]) is applied to discretize the vehicle dy-

namics. In recent years, global collocation techniques have attracted extensive

attentions and a large amount of work is being carried out in this field [3]. For

example, Fahroo and Ross [19] developed a Chebyshev pseudospectral approach35

for solving the general Bolza trajectory optimization problems with control and

state constraints. In their follow-up work [20], a pseudospectral knotting algo-

rithm was designed so as to solve nonsmooth optimal control problems. The

main advantage with pseudospectral methods is that a high approximation ac-
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curacy can be achieved with much less temporal nodes [18, 21]. After generating40

the optimal solutions, the results are analyzed to show the key features of the

constructed problem in the simulation section.

The rest of this paper is organized as follow: In Section 2, a new minimum-

fuel aeroassisted spacecraft orbital hopping mission is proposed and formulated.

In order to guide the vehicle overflying different ground target positions, a series45

of event sequences are constructed and embedded in the problem formulation.

Section 3 gives a brief description in terms of the direct algorithm used to

calculate the optimal solution. The main results are provided in Section 4, where

comparative simulations verify the effectiveness and feasibility of the proposed

design philosophy. The concluding remark is given in Section 5.50

2. Aeroassisted spacecraft reconnaissance optimal control problem

The mission scenario investigated in this research focuses on the atmospher-

ic skip hopping, targeting the entry into the atmosphere down to different prede-

termined positions for observation and gathering of information of inaccessible

areas. Once these positions are reached, the spacecraft starts the ascent phase,55

exiting the atmosphere and returning back to Low Earth Orbit (LEO). During

the mission, the aeroassisted spacecraft can fly in either the unpowered exo-

atmospheric flight, powered exo-atmospheric flight, or unpowered atmospheric

flight. The overall mission profile is illustrated in Fig.1.

It is worth noting that as shown in Fig.1, the dashed line phases may repeat60

several times (e.g. 𝑛 − 1 times). This is because in this paper, it is expected

for the aeroassisted vehicle to have a multiple-hop trajectory in order to overfly

different target regions and complete the reconnaissance mission. An example

of a single-hop mission can be found in our previous work [22].

2.1. Vehicle equations of motion65

The dynamics of the aeroassisted vehicle is modeled as a point mass over

a spherical rotating Earth. For the exo-atmospheric flight, the effect caused by

aerodynamic forces can be ignored and the differential equations of motion are
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Figure 1: Aeroassisted vehicle orbital hopping mission profile

defined as [23, 24]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

�̇� = 𝑉 cos 𝛾 cos𝜓
𝑟

�̇� = 𝑇 cos𝛼
𝑚 − 𝑔 sin 𝛾 + 𝜔𝑉

�̇� = 𝑇 sin𝛼
𝑚𝑉 + (𝑉

2−𝑔𝑟
𝑟𝑉 ) cos 𝛾 + 𝜔𝛾

�̇� = 𝑉
𝑟 cos 𝛾 sin𝜓 tan𝜑+ 𝜔𝜓

�̇� = − 𝑇
𝐼𝑠𝑝𝑔

(1)

where 𝑟, 𝜃, 𝜑, 𝑉 , 𝛾, 𝜓, 𝑚 represent the radial distance, longitude, latitude,70

velocity, flight-path angle, heading angle and vehicle’s mass, respectively. 𝛼 is

the angle of attack and 𝑇 is the thrust force. During unpowered flight phases,

𝑇 is set to zero. The gravity 𝑔 = 𝜇
𝑟2 , in which 𝜇 is the gravitational parameter.

𝐼𝑠𝑝 is the specific impulse. 𝜔𝑉 , 𝜔𝛾 and 𝜔𝜓 stand for the contribution of Coriolis
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acceleration and convected acceleration. Their analytical expressions can be75

given by⎧⎪⎪⎨⎪⎪⎩
𝜔𝑉 = Ω2𝑟 cos𝜑(sin 𝛾 cos𝜑− cos 𝛾 sin𝜓 cos𝜓)

𝜔𝛾 = 2Ω cos𝜑 sin𝜓 + Ω2𝑟 cos𝜑(cos 𝛾 cos𝜑+ sin 𝛾 cos𝜓 sin𝜑)

𝜔𝜓 = Ω2𝑟 cos𝜑 sin𝜑
cos 𝛾 − 2Ω(tan 𝛾 cos𝜓 cos𝜑− sin𝜑)

(2)

where Ω = 7.2921151𝑒−5rad/s is the self-rotation rate of the Earth.

During the unpowered atmospheric flight phase, the aerodynamic forces

(e.g. aerodynamic lift and drag) should be taken into account. Therefore, the

corresponding equations of motion for the aeroassisted spacecraft are formulated80

as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇� = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

�̇� = 𝑉 cos 𝛾 cos𝜓
𝑟

�̇� = −𝜌𝑉 2𝑆𝐶𝐷

2𝑚 − 𝑔 sin 𝛾 + 𝜔𝑉

�̇� = 𝜌𝑉 2𝑆𝐶𝐿 cos𝜎
2𝑚𝑉 + (𝑉

2−𝑔𝑟
𝑟𝑉 ) cos 𝛾 + 𝜔𝛾

�̇� = 𝜌𝑉 2𝑆𝐶𝐿 sin𝜎
2𝑚𝑉 cos 𝛾 + 𝑉

𝑟 cos 𝛾 sin𝜓 tan𝜑+ 𝜔𝜓

(3)

where 𝑆 is the reference area of the vehicle. 𝜌 = 𝜌0 exp 𝑟−𝑅𝑒

ℎ𝑠
is the density of

the atmosphere, 𝜌0 is the density of the atmosphere at sea-level and 𝑅𝑒 is the

radius of the Earth. 𝐶𝐿 = 𝐶𝐿0 +𝐶𝐿1𝛼 and 𝐶𝐷 = 𝐶𝐷0 +𝐶𝐷1𝛼+𝐶𝐷2𝛼
2 are lift

and drag coefficients, where 𝐶𝐿0, 𝐶𝐿1, 𝐶𝐷0, 𝐶𝐷1 and 𝐶𝐷2 are set as constants.85

2.2. Trajectory event sequence

For the multiple-phase orbital hopping mission, the trajectory event se-

quence (multiple hops) can be summarised as follows:

1. The aeroassisted vehicle starts with a powered exo-atmospheric flight phase

that starts on the initial position and terminates at a specified altitude90

ℎ𝑎𝑡 = 80km where is the assumed edge of the atmosphere;

2. An unpowered atmospheric skip hop phase that starts at the altitude ℎ𝑎𝑡,

overflights the first ground target position and terminates at the altitude

ℎ𝑎𝑡;

3. An unpowered exo-atmospheric flight that starts at ℎ𝑎𝑡 (assumed edge of95

the atmosphere);

4. A powered exo-atmospheric flight that terminates at the altitude ℎ𝑎𝑡.
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The above last three event sequences are repeated 𝑛 − 1 times, where 𝑛

stands for the number of reconnaissance regions and is a mission-dependent

variable. Finally, the following two event sequences are performed to complete100

the entire mission.

5. An unpowered atmospheric skip entry phase that starts and terminates at

the specified altitude point ℎ𝑎𝑡.

6. A powered exo-atmospheric flight phase that begins at ℎ𝑎𝑡 and flies back

to the predesigned terminal conditions.105

As suggested in [12], the last two events (5 and 6) are embedded in the

multiple-phase orbital hopping event sequences. That is, the spacecraft can

have an additional skip entry flight to adjust the attitude and velocity of the

vehicle so that the vehicle can have more flexibility to complete the entire mis-

sion. Moreover, this will also have positive influences in terms of the solution-110

finding process discussed in the simulation section. An overall description of

the trajectory event sequence can also be found in Fig.1.

2.3. Vehicle and mission constraints

2.3.1. Boundary conditions

At the start point of the mission, the initial boundary conditions are given115

by:

𝑟(𝑡0) = 𝑅𝑒 +𝐻 𝜃(𝑡0) = 𝜃0 𝜑(𝑡0) = 𝜑0 𝑉 (𝑡0) = 𝑉0

𝛾(𝑡0) = 𝛾0 𝜓(𝑡0) = 𝜓0 𝑚(𝑡0) = 𝑚0

(4)

where 𝑡0 = 0 is the initial time. 𝐻 = 120km is the initial altitude value.

The boundary conditions corresponding to the 𝑖th target position are given as

follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑟(𝑡𝑖) = 𝑅𝑒 +𝐻𝑖

𝜃(𝑡𝑖) = 𝜃𝑖

𝜑(𝑡𝑖) = 𝜑𝑖

𝛾(𝑡𝑖) = 𝛾𝑖

𝑟(𝑡𝑓 ) = 𝑟𝑓

(5)

where 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 is the time instant when the aeroassisted spacecraft reaches120

the 𝑖th target position. 𝑡𝑓 stands for the terminal time instant and 𝑟𝑓 = 𝑅𝑒+𝐻

is the final altitude value.
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2.3.2. Box constraints

During the skip hopping, all the design variables should satisfy the box

constraints:125

𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 𝜑𝑚𝑖𝑛 ≤ 𝜑 ≤ 𝜑𝑚𝑎𝑥

𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥 𝛾𝑚𝑖𝑛 ≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥 𝜓𝑚𝑖𝑛 ≤ 𝜓 ≤ 𝜓𝑚𝑎𝑥

𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 𝜎𝑚𝑖𝑛 ≤ 𝜎 ≤ 𝜎𝑚𝑎𝑥 𝑚𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥

(6)

where the subscript 𝑚𝑖𝑛 and 𝑚𝑎𝑥 represent the lower and upper bounds of the

decision variable.

2.3.3. Interior-point constraints

Defining 𝑡−𝑓 and 𝑡+0 as the ultimate time instant of a flight phase and the

initial time instant of the continuing flight phase, in order to enforce continuity130

in the design variables at the phase boundaries, the multiple-phase interior-point

constraints are then introduced. That is,

𝑟(𝑡−𝑓 ) = 𝑡+0 𝜃(𝑡−𝑓 ) = 𝜃+0

𝜑(𝑡−𝑓 ) = 𝜑+0 𝑉 (𝑡−𝑓 ) = 𝑉 +
0

𝛾(𝑡−𝑓 ) = 𝛾+0 𝜓(𝑡−𝑓 ) = 𝜓+
0

𝑚(𝑡−𝑓 ) = 𝑚+
0 𝑡−𝑓 = 𝑡+𝑓

(7)

In Eq.(7), since 𝑡 is considered as a free design variable, an interior-point con-

straint with respect to the boundary time is introduced (e.g. 𝑡−𝑓 = 𝑡+𝑓 ) to connect

the neighbouring two phases.135

2.3.4. Flight path constraints

The spacecraft reconnaissance mission should satisfy strict path constraints

to protect the structure of the vehicle. In both the exo-atmospheric and atmo-

spheric flight phases, the aerodynamic heating �̇� constraint is introduced to the

mathematical model and it can be written as [25]:140

�̇� = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < 𝑄𝑚𝑎𝑥 (8)

where 𝑄𝑚𝑎𝑥 represents the acceptable maximum heating rate. 𝑐0, 𝑐1 and 𝑐3

are constants. During the entire flight, two additional path constraints, dy-

namic pressure 𝑃𝑑 and normal acceleration 𝑛𝐿, are taken into account. These

constraints are formulated as:

𝑃𝑑 = 1
2𝜌𝑉

2 < 𝑃𝑑𝑚𝑎𝑥

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 𝑛𝐿𝑚𝑎𝑥
(9)
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where 𝑃𝑑𝑚𝑎𝑥 and 𝑛𝐿𝑚𝑎𝑥 represent acceptable maximum dynamic pressure and145

load factor, respectively.

It should be noted that during the exo-atmospheric flight, the effects caused

by heating rate, dynamic pressure and normal acceleration constraints are small

and can be ignored (the dynamic pressure and normal acceleration are largely

affected by the aerodynamic forces, whereas the heating rate constraint is largely150

affected by the density of the atmosphere). Therefore, these three constraints

are removed from the mathematical model in the exo-atmospheric flight phases.

2.4. Objective function

In this mission scenario to ensure the aeroassisted vehicle has enough fuel

to carry-out several skip hops, the objective is set to minimize the fuel consump-155

tion, i.e., maximize the final mass value, during the whole manoeuvre. More

precisely, the objective function selected for the analysis is

min 𝐽 = −𝑚(𝑡𝑓 ) (10)

2.5. Optimal control problem formulation

Based on the dynamic model, mission constraints and objective function

stated in this section, an aeroassisted spacecraft orbital hopping optimal control160

problem can be constructed. The dynamic models given by Eq.(1) and Eq.(3)

are abbreviated as �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), where 𝑥 = [𝑟, 𝜃, 𝜑, 𝑉, 𝛾, 𝜓,𝑚]𝑇 ∈ ℜ7 and

𝑢 = [𝛼, 𝜎]𝑇 ∈ ℜ2 denote the state and control variables, respectively. The gen-

eral form of the orbital hopping optimal control formulation is then summarised

as:165

Find 𝑥 = 𝑥(𝑡), 𝑢 = 𝑢(𝑡)

minimize 𝐽 = −𝑚(𝑡𝑓 )

subject to ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ]

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝐶(𝑥(𝑡), 𝑢(𝑡)) ≤ 0

Φ(𝑡0, 𝑡𝑖, 𝑡𝑓 , 𝑥0, 𝑥𝑖, 𝑥𝑓 ) = 0

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥

(11)

where 𝐶(·) represents the flight path constrains given by Eq.(8) and Eq.(9). Φ

is the boundary constraints (e.g. Eq.(4) and Eq.(5)).
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3. Pseudospectral method for solving optimal control problems

In this paper, the optimal control problem given by Eq.(11) is solved via the

Gauss Pseudospectral Method (GPM) [17]. The motivation of using pseudospec-170

tral method relies on its ability in achieving high approximation accuracy which

is usually an important factor to measure the effectiveness of the algorithm

[4]. Compared with other typical direct transcription algorithms, pseudospec-

tral methods apply global polynomials and can achieve a higher accuracy with

much less temporal nodes. A detailed analysis in terms of the approximation175

error order of pseudospectral methods can be found in [21]. For completeness,

a brief description of the GPM is stated in this section.

To apply the GPM, the time domain should be transformed from [𝑡0, 𝑡𝑓 ]

to [−1, 1] via 𝜏 = 2𝑡
𝑡𝑓−𝑡0 − 𝑡𝑓+𝑡0

𝑡𝑓−𝑡0 . Then the state and control are approximated

using the Lagrange interpolation polynomials 𝐿𝑗(𝜏)180

𝑥(𝜏) ≈
∑︀𝑁𝑘

𝑗=0 𝑥(𝜏𝑗)𝐿𝑗(𝜏)

𝑢(𝜏) ≈
∑︀𝑁𝑘

𝑗=1 𝑢(𝜏𝑗)𝐿𝑗(𝜏)
(12)

where 𝑗 ≤ 𝑁𝑘, 𝑁𝑘 is the number of temporal nodes. Take the derivative of

Eq.(12) results in the following form:

𝑑𝑥(𝜏)

𝑑𝜏
≈

𝑁𝑘∑︁
𝑗=0

𝑑𝐿𝑗(𝜏)

𝑑𝜏
𝑥(𝜏𝑗) =

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑥(𝜏𝑗) (13)

where 𝑘 = 1, .., 𝑁𝑘 and 𝐷𝑘𝑗 denotes the elements of the 𝑁𝑘 × (𝑁𝑘 + 1) differen-

tiation matrix [21] and it can be computed by:

𝐷𝑘𝑗 =
𝑑𝐿𝑗(𝜏𝑘)

𝑑𝜏
=

𝑁𝑘∑︁
𝑚=0

∏︀
𝑙=0,𝑙 ̸=𝑗,𝑚(𝜏𝑘 − 𝜏𝑙)∏︀
𝑙=0,𝑙 ̸=𝑗(𝜏𝑗 − 𝜏𝑙)

(14)

Based on Eq.(12)-(14), the dynamic equations in Eq.(11) is transcribed into185

algebraic equations:

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑥(𝜏𝑗) −
𝑡𝑓 − 𝑡0

2
𝑓(𝑥𝑘, 𝑢𝑘) = 0 (15)

where 𝑥𝑘 ≡ 𝑥(𝜏𝑘) and 𝑢𝑘 ≡ 𝑢(𝜏𝑘). Specifically, take the exo-atmospheric flight

dynamics as an example (given by Eq.(1)), the equations of motion can be
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approximated by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇� ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑟𝑘

𝜃 ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝜃𝑘

�̇� ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝜑𝑘

�̇� ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑉𝑘

�̇� ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝛾𝑘

�̇� ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝜓𝑘

�̇� ≈
𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑚𝑘

(16)

The transformed algebraic equations can then be obtained via Eq.(13)-(15).190

That is, for any 𝑘 = 1, ..., 𝑁𝑘,

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑟𝑘 −
𝑡𝑓 − 𝑡0

2
𝑉𝑘 sin 𝛾𝑘 = 0

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝜃𝑘 −
𝑡𝑓 − 𝑡0

2

𝑉𝑘 cos 𝛾𝑘 sin𝜓𝑘
𝑟𝑘 cos𝜑𝑘

= 0

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝜑𝑘 −
𝑡𝑓 − 𝑡0

2

𝑉𝑘 cos 𝛾𝑘 cos𝜓𝑘
𝑟𝑘

= 0

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑉𝑘 −
𝑡𝑓 − 𝑡0

2
(
𝑇 cos𝛼𝑘

𝑚
− 𝑔 sin 𝛾𝑘 + 𝜔𝑉𝑘

) = 0

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝛾𝑘 −
𝑡𝑓 − 𝑡0

2
(
𝑇 sin𝛼

𝑚𝑘𝑉
+ (

𝑉 2
𝑘 − 𝑔𝑟𝑘
𝑟𝑘𝑉𝑘

) cos 𝛾𝑘 + 𝜔𝛾𝑘) = 0

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝜓𝑘 −
𝑡𝑓 − 𝑡0

2
(
𝑉𝑘
𝑟𝑘

cos 𝛾𝑘 sin𝜓𝑘 tan𝜑𝑘 + 𝜔𝜓𝑘
) = 0

𝑁𝑘∑︁
𝑗=0

𝐷𝑘𝑗𝑚𝑘 +
𝑡𝑓 − 𝑡0

2

𝑇

𝐼𝑠𝑝𝑔
= 0

(17)

Eq.(17) will be entailed in the optimization model as equality constraints.

Similarly, the path constraints are parameterized at these temporal nodes.

After the pseudospectral discretization, the aeroassisted vehicle orbital hopping

10
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Figure 2: Overall structure of the algorithm

optimal control problem is transformed to a static Nonlinear Programming prob-195

lem (NLP) [18, 26, 27]. The resulting NLP formulation can be solved by using

optimization techniques [28]. There are many feasible and effective optimization

algorithms that can be applied to solve the transcribed problem. For example,

the evolutionary-based techniques [28], dynamic programming-based algorithms

[25], and the gradient-based optimization approaches [4]. A detailed compara-200

tive study regarding the performance of different optimization techniques can be

found in [24], wherein a new two-nested gradient-based algorithm was also re-

ported to calculate the optimal solution. This nonlinear optimization algorithm

combines the advantages of interior point method (IP) and sequential quadratic

programming (SQP). More precisely, this techniques contains two steps that205

11



solves a quadratic programming problem in the inner IP loop at a fixed index

of the outer SQP loop.

A flowchart which illustrates the overall process to generate the optimal

trajectories is plotted in Fig.2, whereas the general steps of the optimization

process are summarised and tabulated in Table.1.210

Table 1: Steps of the optimization process (gradient-based methods)

Step No.

Step 1 Initialize all the parameters for the optimization algorithm.

Step 2
Check stopping conditions for the optimization loop; if not satisfy, go

to Step 3.

Step 3 Construct the static NLP and solve it via Newton iteration.

Step 4
Check the stopping condition for the inner optimization loop; if satisfy,

go to Step 5.

Step 5 Calculate the step length and update the solution.

Step 6 Set the iteration number 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1 and go back to Step 2.

Remark 1. Currently, there are many effective direct transcription and optimiza-

tion techniques that can be applied to solve the general trajectory optimization

problems. In this paper, we only discuss and verify the formulation design of

the aeroassisted spacecraft orbital hopping problem. A detailed comparison

and analysis between different type of solution-finding techniques is beyond the215

scope of this paper. We refer to [24, 29] for such a comparison.

4. Simulation results

To investigate the feasibility and effectiveness of the proposed problem for-

mulation (see Section.2), a number of simulation experiments were carried out.

The aeroassisted spacecraft orbital hopping problem was solved for four mission220

scenarios. For each mission scenario, it contains 𝑛 = (1, 2, 3, 4) atmospheric hop-

s. The four target position information (target boundary conditions) is tabu-

lated in Table.2. The initial state boundary conditions of the aeroassisted orbital

transfer vehicle [30] are set as 𝑥0 = [𝑟0, 𝜃0, 𝜑0, 𝑉0, 𝛾0, 𝜓0,𝑚0]=[120𝑘𝑚, 0𝑑𝑒𝑔, 0𝑑𝑒𝑔,

7802.9𝑚/𝑠, −1𝑑𝑒𝑔, 90𝑑𝑒𝑔, 818𝑘𝑔]. In the unpowered atmospheric phase, the de-225

cision variable 𝑚 is treated as a constant.

12



Table 2: Target position information

Parameter 𝑛1 𝑛2 𝑛3 𝑛4

𝑟𝑖 (km) 60 60 60 60

𝜃𝑖 (deg) 4.69 38.80 125.92 159.02

𝜑𝑖 (deg) 12.60 59.70 65.65 44.28

𝛾𝑖 (deg) 0 0 0 0

It is worth mentioning that in this study, a point mass model is used to

represent the vehicle, which means only the translational motion is considered

in the design of trajectory. This assumption may result in some limitations

or negative effects. For example, when vibrations and other oscillatory effects230

are taken into account, the obtained control histories may have high-frequency

fluctuations, which is undesired in the practical trajectory control system [31].

According to the authors’ previous investigation [29], this issue can be alleviated

using time lags and the result shows that it is generally robust to apply the point

mass model for generating the flight trajectory. However, if it is desired to not235

only design the trajectory but also achieve the attitude control, this assumption

does not hold and a rigid body model should be used to calculate the control

profiles.

In terms of the flight path constraints, the maximum allowable heating,

dynamic pressure and load factor are set as: 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2·𝑠(227𝑊/𝑐𝑚2);240

𝑃𝑑𝑚𝑎𝑥 = 13406.4583𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.5, respectively. 𝑇 = 2500N, 𝑁𝑘 is set to 40

for each phase. Other less important vehicle-dependent and mission-dependent

parameters can be found in [22, 23]. All the numerical simulations were executed

under Windows 7 and Intel(R) i7-4790 CPU, 2.90GHZ, with 4.00 GB RAM.

4.1. Multiple regional reconnaissance results245

The overall optimal solutions are provided for different orbital hopping

scenarios. Fig.3 to Fig.6 illustrate the optimal state and path constraint time

histories for 𝑛 = 1, 2, 3, 4 scenarios.

Since maximizing the final mass value is chosen as the objective function,

the optimization solver will minimize the time duration of using the engine mod-250

el. As a result, it can be expected that the optimal solution tends to contain

fewer exo-atmospheric phases (shown in Figs.3-6). It is worth noting that in

Figs.3-5, the additional skip-entry is used to adjust the attitude of the aeroas-
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Figure 3: State and constraint time history: n=1; 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2);

𝑃𝑑𝑚𝑎𝑥 = 13406.4583𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.5

sisted vehicle so that it can have a higher value of flight path angle at the exit

point. In this way, the vehicle can achieve the final boundary condition within255

short time in the final powered exo-atmospheric phase, thereby maximizing the

final mass value indirectly.

The fuel consumption is shown by introducing a mass fraction indicator

𝑚𝑓/𝑚0, where 𝑚𝑓 stands for the mass value at 𝑡𝑓 . Fig.7 illustrates the rela-

tionship between the final mass fraction and the number of 𝑛 (skip hops). As260

can be seen from Fig.7, the difference between the final mass fraction for 𝑛 = 1

and 𝑛 = 2 cases are small. However, more fuel is consumed for the 𝑛 = 3 and

𝑛 = 4 cases. This can be explained that for 𝑛 < 3 cases, to overfly the target

positions and save more fuel, the vehicle mainly uses the aerodynamic forces

(e.g. aerodynamic drag and lift) to maneuver. When 𝑛 becomes larger (e.g.265

𝑛 = 3, 4), it tends to be more difficult for the flight vehicle to satisfy the mission

requirements due to the loss of kinetic energy (see Fig.6). This indicates the

vehicle needs to use the powered exo-atmospheric flight phase to compensate

the loss of speed. Therefore, it can be concluded that the fuel fraction becomes

higher with the increasing of 𝑛.270

Based on the results shown in Figs.3-7, it can be observed that the design
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Figure 4: State and constraint time history: n=2; 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2);

𝑃𝑑𝑚𝑎𝑥 = 13406.4583𝑃𝑎; 𝑛𝑙𝑚𝑎𝑥 = 2.5

and formulation of the aeroassisted spacecraft orbital hopping problem stated in

Section.2 can generate physically meaningful solutions and achieve the mission

requirements successfully.

Remark 2. In order to use the engine model efficiently, the engine is off during275

the atmospheric flight. An advantage of this design is that the negative effects

caused by aerodynamic forces in the acceleration phase can be eliminated. More

precisely, in the �̇� equation, only the term 𝑇 cos𝛼
𝑚 is included in the acceleration

phase (exo-atmospheric phases) instead of 𝑇 cos𝛼−0.5𝜌𝑉 2𝑆𝐶𝐷

𝑚 [22, 23].

4.2. Analysis of different skip hopping scenarios280

Solutions obtained for different orbital hopping mission scenarios are now

investigated. Fig.8 shows the altitude versus velocity histories during the atmo-

spheric flight phase for 𝑛 = 1, 2, 3, 4, while Fig.9 illustrates the corresponding

time histories of the altitude and flight path angle.

Interestingly, it is shown in Fig.8 that the velocity of the vehicle at the285

start of any intermediate atmospheric phase is larger than the velocity at the
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Figure 5: State and constraint time history: n=3; 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2);
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Figure 6: State and constraint time history: n=4; 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2);
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Figure 8: Altitude versus speed for n=1,2,3,4: 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2)
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Figure 9: Altitude versus flight angle for n=1,2,3,4: 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2)

terminus of the previous atmospheric pass for 𝑛 ≥ 3 cases. In other words, there

are some mismatch points between the end and ensuring atmospheric hop phases

for 𝑛 = 3 and 𝑛 = 4 cases. This result implies that an intermediate powered

exo-atmospheric phase is added between the two orbital hopping phases in order290

to compensate the energy loss. This can also be found in Fig.9, where the flight

path angle value at the end of an atmospheric flight does not go back to 0.

For 𝑛 = 1 and 𝑛 = 2, the speed value at the start of an atmospheric entry

keeps the same as the speed at the termination of the previous atmospheric entry,

which means in these cases, the vehicle is able to only use the aerodynamic forces295

to complete the entire mission.

4.3. Sensitivity with respect to path constraint

It is well known that for spacecraft trajectory optimization, the optimal

solution are largely affected by the flight path constrains. To analyze the sensi-

tivity in terms of path constraints for the optimal solution, several comparative300

simulations were carried out.
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Firstly, attention is given to analyze the effects of the maximum allow-

able heating rate on the objective function (i.e. minimizing the fuel consump-

tion). By setting 𝑄𝑚𝑎𝑥 = 200𝐵𝑡𝑢/𝑓𝑡2 · 𝑠(227𝑊/𝑐𝑚2), 𝑄𝑚𝑎𝑥 = 250𝐵𝑡𝑢/𝑓𝑡2 ·
𝑠(284𝑊/𝑐𝑚2), 𝑄𝑚𝑎𝑥 = 300𝐵𝑡𝑢/𝑓𝑡2·𝑠(340𝑊/𝑐𝑚2) and𝑄𝑚𝑎𝑥 = ∞ for 𝑛 = 1, 2, 3305

and 4 cases, the results are calculated and plotted in Fig.10. From Fig.10,
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Figure 10: Final mass fraction for different 𝑄𝑚𝑎𝑥: n=4

it can be observed that a strict heating constraint will result in a large final

mass fraction. The mass fraction indicator tends to overlap for each scenario

(𝑛 = 1, 2, 3, 4) when the heating constraint becomes easy to satisfy.

The results of a specific mission scenario (𝑛 = 4) are shown in Fig.11 and310

Fig.12 to illustrate the influences of the heating rate in terms of the vehicles’s

flight path and velocity.

It is worth mentioning that one effective way to avoid the heating constraint

becoming active is to decrease the velocity significantly. When the heating con-

straint becomes hard to satisfy (e.g. 𝑄𝑚𝑎𝑥 = 200 case), the vehicle tends to315

lose more kinetic energy during the atmospheric phases. Therefore, a pow-

ered exo-atmospheric flight phase can be found in the optimal trajectories to

connect the two orbital hopping phases (see Fig.9 and Fig.12). On the other

hand, if there is no constraint with respect to the heating rate, the aeroassisted

vehicle can complete the entire mission without using additional powered exo-320
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Figure 11: Altitude versus speed for different 𝑄𝑚𝑎𝑥: n=4

atmospheric phases. This can also be reflected in Fig.11 and Fig.12, where there

is no mismatch point in the vehicle’s velocity and flight path angle profiles for

the 𝑄𝑚𝑎𝑥 = ∞ case.

In order to better show the effect of 𝑄𝑚𝑎𝑥 on the actual flight phases,

Table.3 is constructed to show the thrust durations during each powered exo-325

atmospheric segment alongside the total propulsive time ∆𝑡𝑝𝑟𝑜 in all cases (𝑛 =

1, 2, 3, 4) for different 𝑄𝑚𝑎𝑥 values. Correspondingly, Table.4 provides the data

in terms of the unpowered atmospheric flight durations ∆𝑡𝑎𝑡𝑚 for all cases.

According to the data provided in Table.3 and Table.4, it is obvious that the

frequency of using the powered exo-atmospheric flight phase increases as 𝑄𝑚𝑎𝑥330

decreases. Consequently, the time duration distribution shown in Table.4 is

influenced significantly.

A comprehensive experiment and analysis in terms of the highly correlated

or contradicting relationships between aerodynamic heat, vehicle’s speed and

fuel consumption can be found in [22, 23].335
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Figure 12: Altitude versus flight angle for different 𝑄𝑚𝑎𝑥: n=4

4.4. Finding solution for 𝑛 > 4 scenarios

Extensive experiments were made to analyze the mission scenarios when 𝑛 is

greater than 4. However, the current optimal control formulation stated in Sec-

tion 2 failed to produce high quality solutions that can meet the mission require-

ments and optimize the performance index without violating all the constraints.340

This is because the size of the problem and number of optimization parameters

tend to increase as 𝑛 increases. Moreover, the mission constraints, especially

for the interior-point constraints used to keep the continuity between differen-

t mission phases, become more difficult to satisfy. Following a large amount

of solution-finding iterations, the optimization solver still failed to catch the345

behaviour of the equations of motion and satisfy all the mission requirements.

Therefore, it is suggested that the original problem should be divided into small-

scale subproblems for 𝑛 > 4 cases. Then the terminal conditions obtained from

the previous subproblem solution are applied as the initial conditions for the

following subproblem, and the optimization program is restarted. For example,350

if it is desired to have an optimal trajectory for the 𝑛 = 7 case, this issue can
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Table 3: Thrust phase durations for all cases Δ𝑡𝑝𝑟𝑜, seconds (s)

Δ𝑡
(1)
𝑝𝑟𝑜 (s) Δ𝑡

(2)
𝑝𝑟𝑜 (s) Δ𝑡

(3)
𝑝𝑟𝑜 (s) Δ𝑡

(4)
𝑝𝑟𝑜 (s) Δ𝑡

(5)
𝑝𝑟𝑜 (s) Δ𝑡

(6)
𝑝𝑟𝑜 (s)

𝑄𝑚𝑎𝑥 𝑛 = 1

200 89.39 0 101.10 - - -

250 89.16 0 97.89 - - -

300 88.05 0 97.41 - - -

∞ 87.93 0 97.63 - - -

𝑄𝑚𝑎𝑥 𝑛 = 2

200 95.03 0 0 112.90 - -

250 93.34 0 0 108.64 - -

300 94.31 0 0 107.06 - -

∞ 95.99 0 0 110.29 - -

𝑄𝑚𝑎𝑥 𝑛 = 3

200 101.47 0 5.6 0 139.10 -

250 97.83 0 0 0 135.06 -

300 97.27 0 0 0 134.81 -

∞ 96.10 0 0 0 136.70 -

𝑄𝑚𝑎𝑥 𝑛 = 4

200 97.67 17.64 23.83 77.12 0 112.35

250 97.62 0 31.80 0 0 154.75

300 97.87 0 6.86 0 0 159.80

∞ 99.01 0 0.03 0 0 155.59

be solved effectively by constructing two subproblems 𝑛 = 4 and 𝑛 = 3.

5. Conclusions

In this work, a constrained minimum-fuel aeroassisted spacecraft orbital

hopping mission has been constructed and studied. The entire mission was355

transcribed into a nonlinear multi-phase optimal control problem and solved

applying a well-developed direct transcription algorithm. In order to guide the

aeroassisted vehicle overflying different target positions, a series of event se-

quences was constructed and embedded in the optimal control formulation. A

couple of interior-point constraints were also introduced so as to enhance the360

continuity of the trajectory between different flight phases. Comparative sim-

ulations indicated that the proposed formulation design can produce feasible
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Table 4: Atmospheric flight durations for all cases Δ𝑡𝑎𝑡𝑚, seconds (s)

Δ𝑡
(1)
𝑎𝑡𝑚 (s) Δ𝑡

(2)
𝑎𝑡𝑚 (s) Δ𝑡

(3)
𝑎𝑡𝑚 (s) Δ𝑡

(4)
𝑎𝑡𝑚 (s) Δ𝑡

(5)
𝑎𝑡𝑚 (s) Δ𝑡𝑎𝑡𝑚 (s)

𝑄𝑚𝑎𝑥 𝑛 = 1

200 438.21 413.12 - - - 851.33

250 434.44 413.19 - - - 847.63

300 428.42 481.19 - - - 909.61

∞ 436.52 412.54 - - - 849.06

𝑄𝑚𝑎𝑥 𝑛 = 2

200 472.79 658.43 0 112.90 - 1573.74

250 476.94 661.88 0 108.64 - 1494.09

300 481.66 686.12 0 107.06 - 1558.46

∞ 487.10 657.78 0 110.29 - 1750.32

𝑄𝑚𝑎𝑥 𝑛 = 3

200 454.80 659.31 491.97 320.14 139.10 1926.22

250 475.57 647.40 516.70 317.71 135.06 1957.38

300 479.36 646.49 501.98 317.87 134.81 1945.70

∞ 480.94 647.10 501.38 317.65 136.70 1947.07

𝑄𝑚𝑎𝑥 𝑛 = 4

200 494.79 593.67 378.11 290.03 0 1756.66

250 468.31 633.33 446.91 355.99 0 1904.54

300 472.12 644.37 465.94 328.20 0 1910.63

∞ 487.32 630.70 484.66 319.18 0 1912.86

flight trajectories that can achieve different mission requirements and minimize

the overall fuel consumption. Also, other key features of the obtained opti-

mal solution, including the relationship between the mass fraction and number365

of hops, and the sensitivity with respect to path constraints, have also been

analyzed.

There exist several topics left to be further investigated. For instance, since

the point mass model used in this paper can be treated as an approximation of

the rigid body model, the accuracy should be analyzed. Moreover, in practical370

trajectory control system, the vehicle dynamics may contain some uncertain

variables and disturbances. In this case, this mission needs to be formulated as

a stochastic trajectory optimization problem and stochastic optimization tech-

niques should be designed to solve it. These will be the subjects of our follow-up

research.375

23



Acknowledgments

The authors would like to thank the editors and all the reviewers for their

valuable comments and suggestions.

References

[1] A. V. Rao, S. Tang, W. P. Hallman, Numerical optimization study of380

multiple-pass aeroassisted orbital transfer, Optimal Control Applications

and Methods 23 (4) (2002) 215–238. doi:10.1002/oca.711.

[2] T. R. Jorris, R. G. Cobb, Multiple method 2-D trajectory optimization sat-

isfying waypoints and no-fly zone constraints, Journal of Guidance, Control,

and Dynamics 31 (3) (2008) 543–553. doi:10.2514/1.32354.385

[3] T. R. Jorris, R. G. Cobb, Three-dimensional trajectory optimization satis-

fying waypoint and no-fly zone constraints, Journal of Guidance, Control,

and Dynamics 32 (2) (2009) 551–572. doi:10.2514/1.37030.

[4] C. L. Darby, W. W. Hager, A. V. Rao, Direct trajectory optimization using

a variable low-order adaptive pseudospectral method, Journal of Spacecraft390

and Rockets 48 (3) (2011) 433–445. doi:10.2514/1.52136.

[5] C. Chawla, P. Sarmah, R. Padhi, Suboptimal reentry guidance of a reusable

launch vehicle using pitch plane maneuver, Aerospace Science and Tech-

nology 14 (6) (2010) 377–386. doi:http://dx.doi.org/10.1016/j.ast.

2010.04.001.395

[6] J. Dai, Y. Xia, Mars atmospheric entry guidance for reference trajectory

tracking, Aerospace Science and Technology 45 (2015) 335–345. doi:http:

//dx.doi.org/10.1016/j.ast.2015.06.006.

[7] B. Tian, Q. Zong, J. Wang, F. Wang, Quasi-continuous high-order slid-

ing mode controller design for reusable launch vehicles in reentry phase,400

Aerospace Science and Technology 28 (1) (2013) 198–207. doi:http:

//dx.doi.org/10.1016/j.ast.2012.10.015.

[8] D. G. Hull, J. M. Giltner, J. L. Speyer, J. Mapar, Minimum energy-loss

guidance for aeroassisted orbital plane change, Journal of Guidance, Con-

trol, and Dynamics 8 (4) (1985) 487–493. doi:10.2514/3.20009.405

24

http://dx.doi.org/10.1002/oca.711
http://dx.doi.org/10.2514/1.32354
http://dx.doi.org/10.2514/1.37030
http://dx.doi.org/10.2514/1.52136
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2010.04.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2010.04.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2010.04.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2015.06.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2015.06.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2015.06.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2012.10.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2012.10.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2012.10.015
http://dx.doi.org/10.2514/3.20009


[9] D. S. Naidu, J. L. Hibey, C. D. Charalambous, Neighboring optimal guid-

ance for aeroassisted orbital transfer, IEEE Transactions on Aerospace and

Electronic Systems 29 (3) (1993) 656–665. doi:10.1109/7.220918.

[10] C. Gogu, T. Matsumura, R. T. Haftka, A. V. Rao, Aeroassisted orbital

transfer trajectory optimization considering thermal protection system410

mass, Journal of Guidance, Control, and Dynamics 32 (3) (2009) 927–938.

doi:10.2514/1.37684.

[11] C. L. Darby, A. V. Rao, Minimum-fuel low-earth orbit aeroassisted orbital

transfer of small spacecraft, Journal of Spacecraft and Rockets 48 (4) (2011)

618–628. doi:10.2514/1.A32011.415

[12] B. Senses, A. V. Rao, Optimal finite-thrust small spacecraft aeroassisted

orbital transfer, Journal of Guidance, Control, and Dynamics 36 (6) (2013)

1802–1810. doi:10.2514/1.58977.

[13] H. Wang, P. Shi, H. Li, Q. Zhou, Adaptive neural tracking control for a class

of nonlinear systems with dynamic uncertainties, IEEE Transactions on420

Cybernetics 47 (10) (2017) 3075–3087. doi:10.1109/TCYB.2016.2607166.

[14] J. Xu, P. Shi, C. C. Lim, C. Cai, Y. Zou, Integrated structural parameter

and robust controller design for attitude tracking maneuvers, IEEE/ASME

Transactions on Mechatronics 21 (5) (2016) 2490–2498. doi:10.1109/

TMECH.2016.2570820.425

[15] X. Zhao, P. Shi, X. Zheng, J. Zhang, Intelligent tracking control for a class

of uncertain high-order nonlinear systems, IEEE Transactions on Neural

Networks and Learning Systems 27 (9) (2016) 1976–1982. doi:10.1109/

TNNLS.2015.2460236.

[16] Q. Zhou, C. Wu, P. Shi, Observer-based adaptive fuzzy tracking control of430

nonlinear systems with time delay and input saturation, Fuzzy Sets and

Systems 316 (Supplement C) (2017) 49–68. doi:https://doi.org/10.

1016/j.fss.2016.11.002.

[17] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, A. V. Rao, Direct

trajectory optimization and costate estimation via an orthogonal colloca-435

tion method, Journal of Guidance, Control, and Dynamics 29 (6) (2006)

1435–1440. doi:10.2514/1.20478.

25

http://dx.doi.org/10.1109/7.220918
http://dx.doi.org/10.2514/1.37684
http://dx.doi.org/10.2514/1.A32011
http://dx.doi.org/10.2514/1.58977
http://dx.doi.org/10.1109/TCYB.2016.2607166
http://dx.doi.org/10.1109/TMECH.2016.2570820
http://dx.doi.org/10.1109/TMECH.2016.2570820
http://dx.doi.org/10.1109/TMECH.2016.2570820
http://dx.doi.org/10.1109/TNNLS.2015.2460236
http://dx.doi.org/10.1109/TNNLS.2015.2460236
http://dx.doi.org/10.1109/TNNLS.2015.2460236
http://dx.doi.org/https://doi.org/10.1016/j.fss.2016.11.002
http://dx.doi.org/https://doi.org/10.1016/j.fss.2016.11.002
http://dx.doi.org/https://doi.org/10.1016/j.fss.2016.11.002
http://dx.doi.org/10.2514/1.20478


[18] D. Garg, M. Patterson, W. W. Hager, A. V. Rao, D. A. Benson, G. T.

Huntington, A unified framework for the numerical solution of optimal

control problems using pseudospectral methods, Automatica 46 (11) (2010)440

1843–1851. doi:http://dx.doi.org/10.1016/j.automatica.2010.06.

048.

[19] F. Fahroo, I. M. Ross, Direct trajectory optimization by a Chebyshev pseu-

dospectral method, Journal of Guidance, Control, and Dynamics 25 (1)

(2002) 160–166. doi:10.2514/2.4862.445

[20] I. M. Ross, F. Fahroo, Pseudospectral knotting methods for solving nons-

mooth optimal control problems, Journal of Guidance, Control, and Dy-

namics 27 (3) (2004) 397–405. doi:10.2514/1.3426.

[21] W. W. Hager, H. Hou, A. V. Rao, Convergence rate for a Gauss collocation

method applied to unconstrained optimal control, Journal of Optimization450

Theory and Applications (2016) 1–24doi:10.1007/s10957-016-0929-7.

[22] R. Chai, A. Savvaris, A. Tsourdos, Fuzzy physical programming for space

manoeuvre vehicles trajectory optimization based on hp-adaptive pseu-

dospectral method, Acta Astronautica 123 (2016) 62–70. doi:http:

//dx.doi.org/10.1016/j.actaastro.2016.02.020.455

[23] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Multi-objective trajectory op-

timization of space manoeuvre vehicle using adaptive differential evolu-

tion and modified game theory, Acta Astronautica 136 (2017) 273–280.

doi:http://dx.doi.org/10.1016/j.actaastro.2017.02.023.

[24] R. Chai, A. Savvaris, A. Tsourdos, S. Chai, Y. Xia, Improved gradient-based460

algorithm for solving aeroassisted vehicle trajectory optimization problems,

Journal of Guidance, Control, and Dynamics (2017) 1–9doi:10.2514/1.

G002183.

[25] J. T. Betts, Practical Methods for Optimal Control and Estimation Using

Nonlinear Programming, Cambridge University Press, 2009.465

[26] P. Williams, Jacobi pseudospectral method for solving optimal control

problems, Journal of Guidance, Control, and Dynamics 27 (2) (2004) 293–

297. doi:10.2514/1.4063.

26

http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2010.06.048
http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2010.06.048
http://dx.doi.org/http://dx.doi.org/10.1016/j.automatica.2010.06.048
http://dx.doi.org/10.2514/2.4862
http://dx.doi.org/10.2514/1.3426
http://dx.doi.org/10.1007/s10957-016-0929-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.actaastro.2016.02.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.actaastro.2016.02.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.actaastro.2016.02.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.actaastro.2017.02.023
http://dx.doi.org/10.2514/1.G002183
http://dx.doi.org/10.2514/1.G002183
http://dx.doi.org/10.2514/1.G002183
http://dx.doi.org/10.2514/1.4063


[27] P. Shi, Limit Hamilton-Jacobi-Isaacs equations for singularly perturbed

zero-sum dynamic (discrete time) games, SIAM Journal on Control and470

Optimization 41 (3) (2002) 826–850. doi:10.1137/s036301290037908x.

[28] B. A. Conway, A survey of methods available for the numerical optimiza-

tion of continuous dynamic systems, Journal of Optimization Theory and

Applications 152 (2) (2012) 271–306. doi:10.1007/s10957-011-9918-z.

[29] R. Chai, A. Savvaris, A. Tsourdos, Violation learning differential evolution-475

based hp-adaptive pseudospectral method for trajectory optimization of

space maneuver vehicle, IEEE Transactions on Aerospace and Electronic

Systems 53 (4) (2017) 2031–2044. doi:10.1109/TAES.2017.2680698.

[30] N. Berend, S. Bertrand, C. Jolly, Optimization method for mission analysis

of aeroassisted orbital transfer vehicles, Aerospace Science and Technology480

11 (5) (2007) 432–441. doi:http://dx.doi.org/10.1016/j.ast.2007.

01.007.

[31] F. Imado, Y. Heike, T. Kinoshita, Research on a new aircraft point-mass

model, Journal of Aircraft 48 (4) (2011) 1121–1130. doi:10.2514/1.

C000200.485

27

http://dx.doi.org/10.1137/s036301290037908x
http://dx.doi.org/10.1007/s10957-011-9918-z
http://dx.doi.org/10.1109/TAES.2017.2680698
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2007.01.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2007.01.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.ast.2007.01.007
http://dx.doi.org/10.2514/1.C000200
http://dx.doi.org/10.2514/1.C000200
http://dx.doi.org/10.2514/1.C000200

	Introduction
	Aeroassisted spacecraft reconnaissance optimal control problem
	Vehicle equations of motion
	Trajectory event sequence
	Vehicle and mission constraints
	Boundary conditions
	Box constraints
	Interior-point constraints
	Flight path constraints

	Objective function
	Optimal control problem formulation

	Pseudospectral method for solving optimal control problems
	Simulation results
	Multiple regional reconnaissance results
	Analysis of different skip hopping scenarios
	Sensitivity with respect to path constraint
	Finding solution for n>4 scenarios

	Conclusions

