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Abstract: Microfluidics is a multidisciplinary area founding applications in several fields such
as the aerospace industry. Microelectromechanical systems (MEMS) are mainly adopted for flow
control, micropower generation and for life support and environmental control for space applications.
Microflows are modeled relying on both a continuum and molecular approach. In this paper,
the compressible Navier–Stokes (CNS) equations have been adopted to solve a two-dimensional
unsteady flow for a viscous micro shock-channel problem. In microflows context, as for the most
gas dynamics applications, the CNS equations are usually discretized in space using finite volume
method (FVM). In the present paper, the PDEs are discretized with the nodal discontinuous Galerkin
finite element method (DG–FEM) in order to understand how the method performs at microscale level
for compressible flows. Validation is performed through a benchmark test problem for microscale
applications. The error norms, order of accuracy and computational cost are investigated in a grid
refinement study, showing a good agreement and increasing accuracy with reference data as the
mesh is refined. The effects of different explicit Runge–Kutta schemes and of different time step sizes
have also been studied. We found that the choice of the temporal scheme does not really affect the
accuracy of the numerical results.

Keywords: computational fluid dynamics (CFD); microfluidics; numerical methods; gasdynamics;
shock-channel; microelectromechanical systems (MEMS); discontinuous Galerkin finite element
method (DG–FEM); fluid mechanics

1. Introduction

It was 1959 when Richard Feynman gave his famous lecture at the meeting of the American
Physical Society at Caltech called “There’s Plenty of Room at the Bottom”, where he proposed two
challenges with a prize of $10,000 each: the first one was to design and build a tiny motor, while the
second one was to write the entire Encyclopædia Britannica on the head of a pin.

Nowadays, his speech is considered as the foundation of modern nanotechnology, since he
highlighted the possibility to encode a number of pieces of information in very small spaces, hence
producing small and compact devices [1]. All those extremely small devices having characteristic length
of less than 1 mm but more than 1 micron are called microelectromechanical systems (MEMS) and,
as the name suggests, they combine both electrical and mechanical components [2]. MEMS are small
devices made of miniaturized structures, sensors, actuators and microeletronics and their components
are between 1 and 100 micrometers in size. In recent years, several MEMS have been designed and
developed, from small sensors to measure pressure, velocity and temperature, to micro-heat engines
and micro-heat pumps and their numerical investigations are indispensable.
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From a historical point-of-view, a pioneer experimental work on shock wave propagation
in a low-pressure small-scale shock-tube was carried out by Duff (1959) [3], where a non-linear
attenuation of the shock wave propagation for a certain diaphragm pressure ratio was observed.
Other experimental works were performed by Roshko (1960) [4] and Mirels (1963, 1966) [5,6] confirming
the strong attenuation of the shock wave and the acceleration of the contact surface, which propagates
behind the shock wave in the classic shock-tube test case. The time interval between the shock wave
and the contact surface measured at a certain point—which is also known as flow duration—rarefaction
effects and thermal creeping were explained in depth. It is important to note that experimental and
numerical studies on shock waves in different fields of engineering sciences attracted researchers
over the past seventy years [3–14]. However, researchers paid particular attention to microscale shock
waves and rarefied gas dynamics recently, especially for aerospace applications. This is due to the
fact that microengines are used in the development of aerospace propulsion systems, because of their
reduced size and achievable high power density. One of the greatest difficulty in the design process
of microengines is that the fast heat loss results in low efficiency of these microdevices. Therefore,
researchers devoted attention to carrying out experimental and numerical works on shock wave
propagation and formation in micro shock-tubes and channels for MEMS applications [15–18].

In the aerospace industry, microfluidics is becoming more and more popular having applications
mainly in aerodynamics, micropropulsion, micropower generation and in life support and
environmental control for space applications. For instance, MEMS can be adopted for flow control
problems for both free and wall bounded shear layers flows. In 1998, Smith et al. [15] studied
experimentally the control of separated flow on unconventional airfoils using synthetic jet actuators
to create a “virtual aerodynamic shaping” of the airfoil in order to modify the airfoil characteristics.
Microfluidics is also used through fluidic oscillators in order to produce high-frequency perturbations
for example to decrease jet-cavity interaction tones [16]. MEMS-based devices are adopted in the
aerospace industry for the sake of turbulent boundary layer control. In fact, the small sizes of those
systems (high density devices) allow to study near-wall flow structures [17]. In space applications,
micropropulsive devices are designed and developed for miniaturized satellites, mainly used for
global positioning systems or to serve generic platforms [18]. A detailed review on the application of
microfluidics related devices in the aerospace industrial sector can be found in [18].

The flow behavior at those microscales is in general characterized by a granular nature for liquids
and a rarefied behavior for gases; the walls “move”, hence the classical no slip boundary conditions
adopted in the macro regime fails. In agreement with [19], it is possible to classify the main differences
among macrofluidics and microfluidics in the following list: noncontinuum effects, surface-dominated
effects, low Reynolds number effects and multiscale and multiphysics effects. Furthermore, it is also
observed that the diffusivity effects play an important role at this scales (see, e.g., [20]), especially
when compared with the transport effects of the flow. Dealing with gases in micro devices, it is
common practice to classify different flow regimes through the dimensionless Knudsen number Kn.
Let λ be the mean-free path , which is the average distance traveled by a molecule between two
consecutive collisions; denoting with ` the characteristic length of the generic problem considered
(e.g., the hydraulic diameter for a channel flow problem), the Knudsen number is defined as Kn = λ

` .
Microfluidics can be modeled with two different approaches. The first one is the continuum

model, and the flow is considered as a continuous and indivisible matter, while in the molecular
model, the fluid is seen as a set of discrete particles. These models are valid in specific flow regimes
determined by the Knudsen number and, when Kn increases, the validity of the continuum approach
becomes questionable and the molecular approach should be adopted, as briefly sketched in Figure 1.

When the continuum approach is adopted, the fully-compressible Navier–Stokes (CNS) equations
must be numerically solved. In the literature, this is usually performed adopting finite volume solvers.
In the present work, the authors investigate how the discontinuous Galerkin finite element method
(DG–FEM) performs applied to compressible flows at microscale levels in the slip flow regime (low
Knudsen number). This method is selected because it takes advantages from the classical finite element
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method (FEM) and the finite volume method (FVM) since discontinuous polynomial functions are
used and a numerical flux is defined among cells to reconstruct the solution. To verify the DG–FEM
code, due to a lack of experimental data in microfluidics, the Zeitoun’s test case [21] is adopted, which
consists of a mini viscous shock channel problem numerically solved. In particular, they adopted the
following models: the CNS equations in a FVM context, DSMC (Direct Simulation Monte Carlo) for the
Boltzmann equation and the kinetic model BGKS (Bhatnagar–Gross–Krook with Shakhov equilibrium
distribution function) model. In our work, the open source MATLAB code—developed by Hesthaven
and Warburton [22]—has been adopted, modified and further improved.

Kn =
λ

`

10
−3

10
−1 10

Continuum flow Slip flow Transitional flow Free molecular flow

{ compressible NS

{ no slip BCs

{ compressible NS

{ slip BCs

{ temperature jump at

walls

{ compressible NS fail

{ intermolecular collisions

should be taken into account

Negligible intermolecular

collisions

microflows

Figure 1. Different flow regimes in function of the Knudsen number Kn.

2. Mathematical Formulation and Solution Methodology

2.1. Compressible Navier–Stokes Equations

Consider a generic domain Ω ⊂ IRd being d = 1, 2, 3 the dimension, provided with a
sufficiently regular boundary ∂Ω ⊂ IRd−1 oriented by outward pointing normal unit vector n̂. On a
two-dimensional (d = 2) cartesian reference system characterized by unit vectors i and j, the position
vector is x = xi + yj. Consider a gas with vector velocity field u = ui + vj, density ρ, pressure p and
total energy E. All the properties considered are both space and time dependent, e.g., u = u(x, y, t).
The fully-compressible set of governing equations made of the continuity equation, Navier–Stokes
momentum equations and energy conservation form a set of m partial differential equations which can
be written in a vectorial form as

∂w
∂t

+
∂fc

∂x
+

∂gc

∂y
=

∂fv

∂x
+

∂gv

∂y
. (1)

In the equation above, w(x, t) = (ρ, ρu, ρv, E)T is the vector of conserved variables;
fc(w) = (ρu, ρu2 + p, ρuv, (E + p)u)T and gc(w) = (ρv, ρuv, ρv2 + p, (E + p)v)T are the convective
fluxes in the x and y directions, respectively; and fv(w,∇ ⊗ w) = (0, τxx, τxy, τxxu + τxyv)T and
gv(w,∇⊗w) = (0, τxy, τyy, τxyu + τyyv)T are the viscous fluxes in the x and y directions, respectively.
The terms τij are the entries of the second-order viscous stress tensor τττ. The latter is related to
the velocity field according to the Navier–Stokes hypothesis for Newtonian, isotropic, viscous
fluid through the following formulation: τττ = 2µS− 2

3 µ(∇ · u)I, being µ the dynamic viscosity,
S = 1

2 [(∇ ⊗ u) + (∇ ⊗ u)T ] the strain rate tensor and I the identity matrix. The viscous stress
tensor entries are

τxx = 2µ
∂u
∂x
− 2

3
µ
(∂u

∂x
+

∂v
∂y

)
, (2)

τxy = τyx = µ
(∂u

∂y
+

∂v
∂x

)
, (3)

τyy = 2µ
∂v
∂y
− 2

3
µ
(∂u

∂x
+

∂v
∂y

)
. (4)

The total energy is linked to the other fluid properties through the following equation of state
(EOS) for a calorically ideal gas: E = p

γ−1 + 1
2 ρ|u|2, where γ is the specific heat capacity ratio and
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|u| =
√

u2 + v2. Consider the compressible Navier–Stokes equations written in compact form (1)
where the viscous fluxes are taken on the on the left hand side by

∂w
∂t

+
∂

∂x
(fc − fv) +

∂

∂y
(gc − gv) = 0, (5)

if one defines F(w) as a m× d matrix having as columns the differences among the convective and
viscous flux vectors, respectively, in the x and y direction

F = [fc − fv|gc − gv] =


ρu ρv

ρu2 + p− τxx ρuv− τxy

ρuv− τxy ρv2 + p− τyy

(E + p)u− (τxxu + τxyv) (E + p)v− (τxyu + τyyv)

 , (6)

Equation (5) can be expressed as
∂w
∂t

+∇ · F = 0. (7)

In particular, w(x, t) : IRd × [0, T]→ IRm and F(w,∇⊗w) : IRm × [0, T]→ IRm × IRd.

2.2. Discontinuous Galerkin Finite Element Method (DG–FEM) Formulation

The physical domain is approximated by the computational domain Ωh which consists of an
unstructured grid made of K geometry conforming non-overlapping elements Dk, with k = 1, . . . , K.
A non-negative integer N is introduced for each element k and let IPN be the space of polynomials of
global degree less than or equal to N. The following discontinuous finite element approximation space
is introduced [23]:

Vh = {v ∈ (L2(Ωh))
m : w|k ∈ (IPN(k))m, ∀k ∈ Ωh }, (8)

being L2(Ωh) the Hilbert space of square integrable functions on Ωh. Using DG–FEM, the vector of
conserved variables w(x, t) is approximated by a function wh(x, t), which is the direct sum of K local
polynomial solution wk

h(x, t) by

w(x, t) ' wh(x, t) =
K⊕

k=1

wk
h(x, t). (9)

Analogously, one has

fc ' fch = fc(wh), gc ' gch = gc(wh), fv ' fvh = fv(wh,∇⊗wh), gv ' gvh = gv(wh,∇⊗wh), (10)

which means that F ' Fh = F(wh,∇⊗wh). The local solution is expressed as a polynomial of order
N through a nodal representation as

wk
h(x, t) =

Np

∑
i=1

wk
h(xi, t)`k

i (x), (11)

being `k
i the multidimensional interpolating Lagrange polynomial defined by grid points xi on the

element Dk and Np the number of terms within the expansion which is related to the order of

polynomial N through the relation Np = (N+1)(N+2)
2 . From this perspective, recalling Equation (7),

the residual is formed as
Rh(x, t) =

∂wh
∂t

+∇ · Fh. (12)
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The residual can vanish requiring that it is orthogonal to all test functions φh(x) ∈ Vh on all the K
grid elements ∫

Dk

Rh(x, t)φh(x)dΩ = 0 =⇒
∫
Dk

(
φh

∂wh
∂t

+ φh(∇ · Fh)
)

dΩ = 0. (13)

Using the Gauss’ theorem, it can be easily shown that the latter reduces to∫
Dk

(
φh

∂wh
∂t
−∇φh · Fh

)
dΩ = −

∮
∂Dk

φhFh · n̂dΓ. (14)

From the RHS of the last equation, one can observe that the solution at the element interfaces is
multiply defined, thus, it is possible to refer to a solution F∗h to be determined. Reconsidering the flux
vectors of the matrix F, and considering that the normal vector is defined as n̂ = n̂xi + n̂yj, one has

∇φh · Fh = (fch − fvh)
∂φh
∂x

+ (gch − gvh)
∂φh
∂y

, (15)

F∗h · n̂ = (n̂x(fch − fvh) + n̂y(gch − gvh))
∗, (16)

which gives the following weak form:

find wh ∈ Vh:
∫
Dk

(
φh

∂wh
∂t
− (fch − fvh)

∂φh
∂x
− (gch − gvh)

∂φh
∂y

)
dΩ =

= −
∮

∂Dk

(n̂x(fch − fvh) + n̂y(gch − gvh))
∗φhdΓ, ∀φh ∈ Vh.

(17)

The numerical flux indicated with the superscript ‘∗’ is computed through the local Lax–Friedrich
flux as

(n̂x(fch − fvh) + n̂y(gch − gvh))
∗ = n̂x{{fch − fvh}}+ n̂y{{gch − gvh}}+

λ̂

2
[[wh]], (18)

where λ̂ in general represents the local maximum of the directional flux Jacobian and an approximate
local maximum linearized acoustic wave speed can be given [22] by

λ̂ = max
s∈[u−h ,u+

h ]

(
|u(s)|+

√
γp(s)
ρ(s)

)
. (19)

Note that, even if this flux has a dissipative nature, hence strong shock wave in supersonic regime
can have a smeared trend, it gives accurate results for subsonic and weakly supersonic flows. For a
generic quantity, the superscripts “−” and “+” here indicate, respectively, an interior and exterior
information, i.e., if the quantity is taken at the internal or external side of the face of the element
considered. The symbols {{·}} and [[·]] are the average and the jump along a normal n̂, which are
defined, for a generic vector v, as {{v}} = v−+v+

2 and [[v]] = n̂− · v− + n̂+ · v+.
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2.3. Temporal Integration Schemes

Considering the semi-discrete problem, written in the form of a system of ordinary differential
equations (ODEs), the corresponding initial-value problem when initial conditions are given at time
t = t0 is 

dwh
dt

= Lh(wh, t),

wh(t0) = w0
h.

(20)

L(·) is the elliptic operator. Since the flow is strongly characterized by flow discontinuities,
the strong stability-preserving Runge–Kutta (SSP–RK) schemes are adopted because they do not
introduce spurious oscillations. Referring to Gottlieb et al. [24], the optimal second-order, two-stage
and third-order three-stage SSP–RK schemes are expressed as

2nd-order, two-stage SSP–RK :


v(1) = wn

h + ∆tLh(wn
h , tn),

wn+1
h = v(2) =

1
2

(
wn

h + v(1) + ∆tLh(v(1), tn + ∆t)
)

.
(21)

3rd-order, three-stage SSP–RK :


v(1) = wn

h + ∆tLh(wn
h , tn),

v(2) =
1
4

(
3wn

h + v(1) + ∆tLh(v(1), tn + ∆t)
)

,

wn+1
h = v(3) =

1
3

(
wn

h + 2v(2) + 2∆tLh(v(2), tn +
1
2

∆t)
)

.

(22)

Gottlieb et al. [24] showed that it is not possible to design a fourth-order, four-stage SSP–RK
where all the coefficients are positive. The classical fourth-order four-stage explicit RK method (ERK4)
might be adopted, however the main disadvantage of this approach is its high computational effort
since for each time step, four arrays must be stored in the memory. A valid alternative to this method,
is given by the low storage explicit Runge–Kutta (LSERK) scheme, firstly introduced in 1994 in [25].

The fourth-order LSERK is defined by

4th-order LSERK :


p(0) = wn

h ,

for i ∈ [1, . . . , 5] :

{
ki = aik(i−1) + ∆tLh(p(i−1), tn + ci∆t),

p(i) = p(i−1) + biki,

wn+1
h = p(5).

(23)

The coefficients ai, bi and ci are listed in Table 1. As the formula above shows, different from the
classical ERK4, in this case, only one additional storage level is required. However, the LSERK requires
five stages instead of four.

Table 1. Coefficients ai, bi and ci used for the low storage five-stage fourth-order explicit
Runge–Kutta method.

i ai bi ci

1 0
1, 432, 997, 174, 477
9, 575, 080, 441, 755

0

2 − 567, 301, 805, 773
1, 357, 537, 059, 087

5, 161, 836, 677, 717
13, 612, 068, 292, 357

1, 432, 997, 174, 477
9, 575, 080, 441, 755

3 −2, 404, 267, 990, 393
2, 016, 746, 695, 238

1, 720, 146, 321, 549
2, 090, 206, 949, 498

2, 526, 269, 341, 429
6, 820, 363, 962, 896

4 −3, 550, 918, 686, 646
2, 091, 501, 179, 385

3, 134, 564, 353, 537
4, 481, 467, 310, 338

2, 006, 345, 519, 317
3, 224, 310, 063, 776

5 −1, 275, 806, 237, 668
842, 570, 457, 699

2, 277, 821, 191, 437
14, 882, 151, 754, 819

2, 802, 321, 613, 138
2, 924, 317, 926, 251
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The time step size ∆t that ensures a stable solution is computed [22] as

∆t =
1
2

min

(
1

(N + 1)2 |u|+ |a|
ϑ

+ (N + 1)4 µ

ϑ2

)
, (24)

where a is the local speed of sound, which, using the ideal gas law, reads a =
√

γRT =
√

γ
p
ρ , while the

geometrical factor ϑ is computed as ϑ = 2
Fscale(i,k)

, where Fscale is a matrix having dimension N f aces × K

and its entries are the ratio of surface to volume Jacobian of face i on element k. From Equation (24),
one can observe that, with very high order polynomials (N >> 1), this time step restriction becomes
impracticable; furthermore, the time step decreases as the dynamic viscosity µ increases, hence for
highly viscous fluids, this expression for the time step might be unfeasible.

2.4. Slope Limiting Procedure

Due to strong flow discontinuities, the solution might be affected by spurious unphysical
oscillations, hence, slope limiters are added to the existing code in order to properly model and
catch the large gradients in the flow field. In particular, van Albada type slope limiter suitable for
DG–FEM, throughly described by Tu and Aliabadi in [26], are adopted.

2.5. Benchmark Test Problem with Its Initial and Boundary Conditions

The viscous shock wave propagation is studied in a microchannel characterized by characteristic
length (hydraulic diameter) equal to H = 2.5 mm. The viscous shock channel problem of
Zeitoun et al. [21] is characterized by a driver and a driven chamber, quantities referred to these states
are denoted with subscripts 4 and 1 and summarized in Table 2. The driver chamber is characterized
by a higher pressure and density. The gas used in both chambers is Argon (Ar) and the main fluid
properties of this gas, considered in standard condition, are listed in Table 2c. A sketch of the
microchannel in the cartesian reference system (x, y) is given in Figure 2. Geometric information,
initial conditions and the main flow properties of the argon are given in Table 2.

Table 2. Zeitoun’s test case: geometric information and output time for the simulation (a); flow
properties in the driver and driven chambers (b); and Argon properties in standard condition (c).

(a)

characteristic length H (mm) 2.5
size of the domain (mm) 32H × 2H

diaphragm position xd (mm) 29.60
Output time Tf (µs) 80

(b)

Left Right
Driver Driven

state 4 1
Gas Ar Ar

ρ (kg/m3) 8.43 × 10−3 7.08 × 10−4

u (m/s) 0 0
v (m/s) 0 0
p (Pa) 525.98 44.2

(c)

specific gas constant R (J/(kg·K)) 208.0
specific heat ratio γ (–) 1.67

thermal conductivity κ (W/(m·K)) 0.0172
Sutherland’s reference viscosity µ0 (kg/(m·s)) 2.125 × 10−5

Sutherland’s reference temperature T0 (K) 273.15
Sutherland’s temperature C (K) 144.4
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xd x

y

Driver Drivendiaphragm

32H

2H

Figure 2. The sketch of the viscous shock-channel of Zeitoun et al. [21] for microfluidic applications.

Since the continuum approach is adopted, the rarefaction effects are usually taken into account
imposing at wall the following conditions:

• velocity slip boundary condition;
• temperature jump boundary condition.

The small area where thermodynamic disequilibria occur is called Knudsen layer, having thickness
of order of the mean free path λ. A generic form of the slip boundary condition is proposed by Maxwell.
Let uslip be the fictitious velocity required to predict the velocity profile out of the layer, the slip velocity
can be expressed as

uslip = u f − uwall =
2− σu

σu
λ

∂u f

∂n

∣∣∣∣
wall

+
3
4

λ

k2

√
R
T

∂T
∂s

∣∣∣∣
wall

, (25)

being u f the fluid velocity, n and s the normal and parallel directions to the wall, and σu the tangential
momentum accommodation coefficient which denotes the fractions of molecules absorbed by the walls
due to the wall roughness, condensation and evaporation processes [27]. For microchannels, accurate
values of σu are in the range 0.8–1.0 [28]. For the temperature jump [21], a condition is imposed by

Ts − Twall =
2− σT

σT

2γ

γ + 1
λ

Pr
∂T
∂n

∣∣∣∣
wall

, (26)

where Ts is the temperature that must be computed at wall that takes into account the gas rarefied
conditions, Twall is the reference wall temperature, Pr is the Prandtl number and σT is the thermal
accommodation coefficient. In the literature, different empirical and semi-analytical expressions are
available for λ and they are based on the way the force exerted among molecules is defined. In this
work, the inverse power law (IPL) model is used, firstly introduced in 1978 by Bird in [29]. The model
is based on a description of the mean free path based on the repulsive part of the force. It defines λ as

λ = k2
µ

ρ
√

RT
, (27)

where k2 is a coefficient which varies according to the model taken into account. According to the

Maxwell Molecules (MM) model, this constant is equal to k2 =
√

π
2 . Hence, if the temperature

variation at walls is neglected, the slip boundary conditions becomes

uslip = u f − uwall =
2− σu

σu

√
π

2
µ

ρ
√

RT

∂u f

∂n

∣∣∣∣
wall

, (28)

and the temperature jump

Ts − Twall =
2− σT

σT

2γ

γ + 1

√
π

2
µ

ρ
√

RT
1

Pr
∂T
∂n

∣∣∣∣
wall

. (29)

The slip boundary condition and temperature jump at wall are conditions desired for high
Knudsen number regimes, whereas rarefied condition of the gas becomes predominant. However,
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since the present work focuses on the investigation of low Knudsen number regimes, the no-slip
boundary condition case is used as initial approach.

The shock channel problem consists of two chambers at high (on the left, denoted with number 4)
and low (on the right, denoted with number 1) pressure separated by a diaphragm in a known position
xd. When the diaphragm is instantaneously removed, i.e., when t > 0, due to the initial pressure
difference, a combination of different wave patterns arises. The flow considered is originally at rest
(u = 0) and the initial conditions of the problem are given by

ρ(x, y, 0) =

{
ρ4 if x < xd,

ρ1 if x ≥ xd,
(30)

u(x, y, 0) = 0, (31)

v(x, y, 0) = 0, (32)

p(x, y, 0) =

{
p4 if x < xd,

p1 if x ≥ xd.
(33)

Numerical values of the quantities above are summarized in Table 2b.

3. Results and Discussion

To verify the MATLAB code and to validate the numerical results achieved, the benchmark test
problem of Zeitoun et al. [21] on the investigation of viscous shock waves are considered, because
this is one of the most frequently used benchmark problem for microscale applications. In their work,
the viscous shock channel problem is solved at micro scales adopting three different approaches:
compressible Navier–Stokes (CNS) equations with slip and temperature jump BCs using the CARBUR
solver, the statistical Direct Simulation Monte Carlo (DSMC) method for the Boltzmann equation and
the kinetic model Bhatnagar–Gross–Krook with the Shakhov equilibrium distribution function (BGKS).

3.1. Grid Convergence Study

The validation of the numerical results achieved with DG–FEM is performed through a grid
convergence study using four grid levels. The grid levels are indicated with the index i, respectively,
equal to 4, 3, 2 and 1. Let ∆x and ∆y be the mesh widths, respectively, in the x and y directions and Nx

and Ny the number of grid points. The mesh widths in both directions have same length. A constant
refinement ratio R =

∆xi+1
∆xi

=
∆yi+1

∆yi
among all grid levels equal to 2 is considered. The required data

for the mesh refinement study are listed in Table 3, whereas the quantity h is the dimensionless grid
spacing which is the ratio among the grid spacing of the i-th grid level considered and the grid spacing
of the finer mesh, defined as hi =

∆xi
∆x1

= ∆yi
∆y1

, i = 1, . . . , 4.

Table 3. Grid levels adopted in the mesh refinement study.

Mesh Level i Nx Ny ∆x (mm) ∆y (mm) h (–) 1/h (–)

Coarse 4 97 7 8.33 × 10−1 8.33×10−1 8 0.125
Medium 3 193 13 4.17 × 10−1 4.17×10−1 4 0.25

Fine 2 385 25 2.08 × 10−1 2.08×10−1 2 0.5
Finer 1 769 49 1.04 × 10−1 1.04×10−1 1 1

The simulations are performed setting the Knudsen number equal to 0.05 and the order of
polynomials is kept equal to 1 for all the grid levels. The results are considered at the output time
Tf = 80 µs: before this time, the acoustic waves are propagating in the channel without considering
the reflection at lateral walls.
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Figure 3a,b shows, respectively, the dimensionless density ρ/ρ1 and temperature T/T1 extracted at
the centerline of the channel (y = H) plotted against the dimensionless x/H coordinate. Qualitatively
speaking, referring to the density profile in Figure 3a, one can see that the accuracy of the numerical
results achieved increases when the mesh used is finer; in particular, with the coarse and medium mesh,
the profile is very diffusive yielding to an incorrect and inaccurate representation of the discontinuities
in the flow field. In fact, the density in the rarefaction wave region is over predicted and, as a result,
the positions of the contact wave and of the shock wave are imprecise. The real flow physics is matched
when the fine and finer mesh are considered, since less numerical diffusion can be observed and,
as a result, the density jumps are properly caught. Analogous considerations can be done for the
dimensionless temperature profile shown in Figure 3b. Firstly, one can observe that the accuracy
quickly increases as the mesh is refined, in fact, for instance, the results achieved adopting the coarse
mesh do not match at all the jumps in the flow field observed by Zeitoun et al. [21]. Furthermore,
considering the finer grid level, it is observed that the position of the contact wave is properly achieved
using DG–FEM, however the whole jump in temperature is slightly bigger than the one observed in
the reference data (the relative error observed is approximately 10.6%). This produces a small under
prediction of the shock wave position (relative error equal to 3.8%).

The numerical results are validate also in terms of streamwise velocity u (Figure 3c) in x = 25H,
which represents the position immediately before the shock wave (pre-shock state). The velocity
is made dimensionless using the speed of sound in the driven chamber defined as a1 =

√
γRT1

and plotted against the dimensionless y/H coordinate (for the first half of the channel’s height).
The velocity profile obtained with the coarse and medium mesh under predicts the outcomes given
by Zeitoun et al. [21], while bigger values are achieved adopting the fine and finer mesh; however,
when y/H ≈ 0.3, the profiles obtained overcome the reference data. The numerical results obtained
for the stream wise velocity are quite accurate even if they are studied in the no slip fluid flow regime.
However, as the Knudsen number increases, the slip condition becomes mandatory [19].

(a) Density (–) (b) Temperature (–)

(c) Velocity component u (–)

Figure 3. Dimensionless density (a); temperature (b) profiles in the centerline of the microchannel; and
stream wise velocity u (c) in the cross section x = 25H using four grid levels at the final time Tf = 80
µs with Kn = 0.05 in comparison with reference data of Zeitoun et al. [21].
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To confirm that the numerical results achieved grid convergence, a simulation on an additional
grid level 5—which is the finest mesh—is performed to compare the results between the finer and
the finest mesh (see Figure 4). The refinement ratio is kept equal to 2, so the finest grid level is
characterized by Nx = 1536 and Ny = 96 grid points in the x and y directions, respectively, and mesh
widths ∆x = ∆y = 0.52× 10−1 mm. Figure 4 shows that the mesh further refinement does not improve
significantly the already obtained accuracy of the numerical simulation results, which means that the
further refinement of the mesh compared to the grid level 4 could increase the computational cost
without significant further improvement of the achieved accuracy.

(a) Density (–) (b) Temperature (–)

(c) Velocity component u (–)

Figure 4. Dimensionless density (a); temperature profiles (b) in the centerline of the microchannel; and
stream wise velocity u (c) in the cross section x = 25H on the finer and the finest grid levels at the final
time Tf = 80 µs with Kn = 0.05.

For the sake of a quantitative analysis, the L0, L1 and L2 norms of the absolute error between the
numerical results and the reference data given by Zeitoun et al. [21] are computed. Figure 5 shows
the logarithmic plots of the L0 (Figure 5a), L1 (Figure 5b) and L2 (Figure 5c) norms of the absolute
error between the results achieved with DG–FEM and reference data given by [21] against the inverse
of the dimensionless grid spacing h. Regarding the density and the temperature, the three plots
clearly show that as the mesh is refined, the error drops in terms of all the norms considered. The
same trend can be observed for the velocity profile, however, going from the fine to the finer grid
level, the error increases after log(1/h) = 0.5. The reason is that the present investigation focuses
on the low Knudsen number flow regime, where rarefaction effects start to become important but
still not dominant. Rarefaction effects are taken into account in a continuum approach—i.e., using
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compressible Navier–Stokes equations—imposing wall slip boundary conditions producing hence a
different velocity profile [19]. The slip boundary condition becomes a mandatory requirement as the
Knudsen number increases, which would yield to more physical and accurate results as confirmed
by other authors in [19,21] when other continuum based numerical approaches were employed as
well. This behavior is also met in the qualitative discussion above, since it is seen that the velocity
profile achieved through the finer mesh overcomes the reference data when y/H ≈ 0.3. Furthermore,
the lowest error norms are observed for the stream wise velocity profile extracted in x = 25H. For the
sake of a complete analysis, the error norms are also summarized in Table 4.

Table 4. L0, L1 and L2 norms of the absolute error between the results achieved with DG–FEM and
reference data in [21]. Results presented for density (a), temperature (b) in the centerline of the
microchannel, and stream wise velocity (c) in the cross section x = 25H. Results obtained at the final
time Tf = 80 µs with Kn = 0.05.

(a) Density

ρ(x, H)

Coarse Medium Fine Finer

||eabs||0 (–) 3.15963 2.72327 1.70752 0.81022
||eabs||1 (–) 0.94709 0.56817 0.26207 0.17318
||eabs||2 (–) 0.21601 0.15045 0.08903 0.04143

(b) Temperature

T(x, H)

Coarse Medium Fine Finer

||eabs||0 (–) 1.19697 1.08770 0.66427 0.44463
||eabs||1 (–) 0.34085 0.29573 0.21112 0.13444
||eabs||2 (–) 0.07237 0.06797 0.04617 0.02911

(c) Velocity Component u

u(25H, y)

Coarse Medium Fine Finer

||eabs||0 0.37619 0.10962 0.08258 0.10261
||eabs||1 0.28596 0.07559 0.04886 0.06401
||eabs||2 0.03477 0.00921 0.00615 0.00804

A convergence test is performed in order to understand if the formal order of accuracy matches
(or not) the observed order of accuracy. Hence, within this approach, one can understand if the
discretization error is reduced at the expected rate [30]. The formal order of accuracy can be achieved
from a truncation error analysis, and, in the FEM approach, it is equal to N. In particular, in this case,
N = 1 since first-order polynomials are considered. The observed order of accuracy P is computed
from the numerical outputs on systematically refined grids [30]. The observed order of accuracy is
based on the trend of the error. Consider two generic grid levels i and i + 1, being the i-th level the
finer among them, and let e(i)abs and e(i+1)

abs be the absolute errors for these grid levels. The observed
order of accuracy, based on the Lp norms of the errors is defined by

P =

ln
( ||e(i+1)

abs ||p
||e(i)abs||p

)
ln(R)

, with p = 0, 1, 2. (34)

In this work, different grid levels are taken into account along with different observed orders of
accuracy for each flow property and for each norms. Figure 6 shows three logarithmic plots of the
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observed order of accuracy adopting the L0, L1 and L2 norms of the absolute error between the results
achieved with DG–FEM and reference data given by [21] against the dimensionless grid spacing h.

(a) L0 norm (b) L1 norm

(c) L2 norm

Figure 5. L0, L1 and L2 norms of the absolute error between the results achieved with DG–FEM and
reference data in [21] against the inverse of the dimensionless grid spacing h. Results presented for
density and temperature in the centerline of the microchannel and stream wise velocity in the cross
section x = 25H. Results obtained at the final time Tf = 80 µs with Kn = 0.05.

The simulations are performed using the first-order polynomial representation N = 1 and, for a
sake of clarity, the observed order of accuracy for each quantity, for each norm, is also listed in Table 5.
Figure 6a shows that, regarding the density at the centerline of the microchannel, for the L0 and L2

norms, the observed order of accuracy increases as the mesh is refined, reaching the values 1.076 and
1.104, respectively, which are higher than the theoretical order N = 1. The same trend is not shared
by the L1 norm, which exhibits a maximum between the medium and fine grid level. Concerning the
temperature profile (Figure 6b), all the values are below the theoretical order N = 1 and the observed
order increases as the mesh is refined for the L1 and L2 norms, while the L0 norm shows a maximum
between the medium and fine mesh. The stream wise dimensionless velocity profile in Figure 6c shows
a different trend, which means that the observed order of accuracy P decreases as the mesh is refined,
as also confirmed by the previous discussions about Figures 3c and 5.
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(a) Density (b) Temperature

(c) Velocity component u

Figure 6. Logarithmic plots of the observed order of accuracy P using the L0, L1 and L2 norms of
the absolute error between the results achieved with DG–FEM and reference data in [21] against the
dimensionless grid spacing h. Results presented for: density (a); temperature (b) in the centerline of
the microchannel; and streamwise velocity (c) in the cross section x = 25H. Results obtained at the
final time Tf = 80 µs with Kn = 0.05.

Table 5. Observed order of accuracy P for density, temperature and u velocity based on L0, L1 and L2

norms of the absolute error between numerical solution obtained with DG–FEM and numerical data
in [21].

ρ(x, H) T(x, H) u(25H, y)

Grid Level (from → to) 1 → 2 2 → 3 3 → 4 1 → 2 2 → 3 3 → 4 1 → 2 2 → 3 3 → 4

P0 (–) 1.076 0.673 0.214 0.579 0.711 0.138 0.313 0.409 1.779

P1 (–) 0.598 1.116 0.737 0.651 0.486 0.205 0.390 0.629 1.920

P2 (–) 1.104 0.757 0.522 0.666 0.558 0.091 0.387 0.582 1.917

3.2. Effect of Different Time Integration Schemes

The effect of different time integration schemes is investigated. The following explicit
Runge–Kutta schemes are taken into account: second-order, two-stage SSP–RK, third-order, three-stage
SSP–RK and fourth-order LSERK. The limiting procedure is applied for each stage of the methods.
The investigation is performed adopting both the medium and fine mesh and Figure 7 shows the
results obtained for density and streamwise velocity. Referring to Figure 7a,b, where the density profile
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is plotted, respectively, adopting the medium and fine mesh with the three RK schemes presented, no
big differences are observed. On the right of the figures, some zooms are shown: a unique trend is
not observed, with the medium mesh the accuracy of the second-order, two-stage SSP–RK is always
between the other two schemes. When the fine mesh is used, the differences among the schemes
become even smaller and the third-order, three-stage SSP–RK seems to hold an average trend among
the other methods. Broadly speaking, the same trend can be observed for the stream wise velocity
profiles in Figure 7c,d , where the medium and fine grids are used, respectively. When the medium
mesh is used, the third-order, three-stage SSP–RK scheme gives the most accurate profile, while using
the fine mesh the results achieved are very similar. In particular, the second-order, two-stage SSP–RK
is more accurate in the first part of the profile and the fourth-order LSERK in the second.

Of course, one can see that, due to the small differences among the outputs obtained, a qualitative
analysis cannot determine correctly which scheme yields to the most accurate results. Hence, as
previously done, the L0, L1 and L2 norms of the absolute error are computed and listed in Table 6 for
the medium and fine mesh. On the one hand, regarding the medium mesh, it is possible to observe
that the third-order, three-stage SSP–RK scheme is the least accurate, since the lowest error norms are
gotten. This behavior is met for all norms, for all the physical quantities considered. On the other hand,
when the fine mesh is adopted, a unique trend is not observed: the fourth-order LSERK scheme is
more accurate for temperature and density (except for the L0 norm), while the second-order, two-stage
SSP–RK is the most accurate for the stream wise velocity.

(a) Density (–), medium mesh

(b) Density (–), fine mesh

Figure 7. Cont.
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(c) Velocity component u (–), medium mesh

(d) Velocity component u (–), fine mesh

Figure 7. Dimensionless density profile in the centerline of the microchannel (a,b); and streamwise
velocity u in the cross section x = 25H (c,d) using the: medium (a,c); and fine (b,d) mesh at the final
time Tf = 80 µs with Kn = 0.05 and N = 1. Comparison between different explicit Runge–Kutta
schemes: second-order, two-stage SSP–RK, third-order, three-stage SSP–RK, and fourth-order LSERK.
Validation with reference data of Zeitoun et al. [21].

To understand exactly how those time integration schemes perform, the relative difference among
the previous error norms is compared. In particular, the relative difference among different temporal
schemes using the Lp norms are defined by

ε3/2 = 100 ·
∣∣∣∣ ||eabs||I I I

p − ||eabs||I I
p

||eabs||I I
p

∣∣∣∣, for p = 0, 1, 2, (35)

ε4/3 = 100 ·
∣∣∣∣ ||eabs||IV

p − ||eabs||I I I
p

||eabs||I I I
p

∣∣∣∣, for p = 0, 1, 2, (36)

where the superscripts ′ I I′, ′ I I I′ and ′ IV′, respectively, indicate the error norms computed using the
second-order, two-stage SSP–RK, third-order, three-stage SSP–RK and fourth-order LSERK. These
quantities are collected, in percentage, in Table 7. From the table, one can see that the relative difference
is bigger when the medium mesh is adopted and this trend is emphasized when the stream wise
velocity is taken into account. However, generally speaking, when the fine mesh is considered, the
relative differences has as order of magnitude 1%, which can be considered a negligible outcome. For
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this reason, it is possible to conclude that when a fine (or even a finer) mesh is considered, the choice
of the temporal scheme do not really affect the accuracy of the numerical results.

Table 6. L0, L1 and L2 norms of the absolute error between the results achieved with DG–FEM and
reference data in [21]. Comparison between different explicit RK schemes using the medium and fine
mesh. Results presented for density (a); temperature (b) in the centerline of the microchannel; and
stream wise velocity (c) in the cross section x = 25H. Results obtained at the final time Tf = 80 µs with
Kn = 0.05 and N = 1.

(a) Density (–)

Medium Fine

||eabs||0 ||eabs||1 ||eabs||2 ||eabs||0 ||eabs||1 ||eabs||2
2nd–order, 2 stage SSP–RK 2.7233 0.5682 0.1505 1.7075 0.2621 0.0890
3rd–order, 3 stage SSP–RK 2.6024 0.5333 0.1442 1.6846 0.2566 0.0874

4th–order LSERK 2.6870 0.5563 0.1484 1.6689 0.2530 0.0862

(b) Temperature (–)

Medium Fine

||eabs||0 ||eabs||1 ||eabs||2 ||eabs||0 ||eabs||1 ||eabs||2
2nd–order, 2 stage SSP–RK 1.0877 0.2957 0.0680 0.6643 0.2111 0.0462
3rd–order, 3 stage SSP–RK 1.0480 0.2817 0.0658 0.6465 0.2086 0.0454

4th–order LSERK 1.0756 0.2912 0.0673 0.6348 0.2070 0.0448

(c) Velocity Component u (–)

Medium Fine

||eabs||0 ||eabs||1 ||eabs||2 ||eabs||0 ||eabs||1 ||eabs||2
2nd–order, 2 stage SSP–RK 0.1096 0.0756 0.0092 0.0826 0.0489 0.00615
3rd–order, 3 stage SSP–RK 0.0903 0.0585 0.0072 0.0833 0.0494 0.00622

4th–order LSERK 0.1019 0.0692 0.0084 0.0834 0.0496 0.00625

Table 7. Relative difference among L0, L1 and L2 norms of the absolute error achieved using
second-order, two-stage SSP–RK, third-order, three-stage SSP–RK and fourth-order LSERK scheme.
Results obtained using the medium and fine mesh density and temperature in the microchannel’s
centerline and stream wise velocity in the cross section x = 25H. Results obtained at the final time
Tf = 80 µs with Kn = 0.05 and N = 1.

Medium Mesh Fine Mesh

L0 L1 L2 L0 L1 L2

ρ(x, H)
ε3/2 (%) 4.43947 6.14220 4.18605 1.34233 2.07547 1.88136
ε4/3 (%) 3.25085 4.31277 2.91262 0.93030 1.39436 1.27821

T(x, H)
ε3/2 (%) 3.64473 4.73038 3.15965 2.67499 1.17253 1.76798
ε4/3 (%) 2.63372 3.35658 2.23801 1.81116 0.79209 1.17433

u(25H, y) ε3/2 (%) 17.66372 22.60352 21.77167 0.90700 1.09284 1.11081
ε4/3 (%) 12.92501 18.20015 17.17119 0.93030 1.39436 1.27821



Aerospace 2018, 5, 16 18 of 20

3.3. Effect of Different Time Step Sizes

The effect of different time step sizes ∆t on the accuracy of the numerical results is investigated.
The time step size is computed using Equation (24) to get a stable solution according to [22].
The following time step sizes are considered: 4∆t, 2∆t, ∆t, ∆t/2 and ∆t/4. The numerical simulations
are performed using the fine mesh with second-order, two-stage SSP–RK scheme. Changing the time
step size still gives stable and bounded solutions and relevant changes in terms of accuracy are not
observed. The L0, L1 and L2 norms of the absolute error among reference data and numerical solutions
are computed and it is observed that they share same precision up to the fourth digit. As for the
temporal integration schemes study, the relative difference among the error norms is computed as:

εj+1/j = 100 ·
∣∣∣∣ ||eabs||

(j+1)
p − ||eabs||

(j)
p

||eabs||
(j)
p

∣∣∣∣, for j = 1, . . . , 4 and p = 0, 1, 2. (37)

The index j indicates a time step size level, in particular j = 1 corresponds to 4∆t and j = 5 to
∆t/4. Table 8 shows these relative differences and it can be observed that the order of magnitude,
in percentage, is between 10−7 and 10−3. For this reason, it is possible to conclude that time step sizes
do not affect the accuracy of the numerical solution.

Table 8. Relative difference among L0, L1 and L2 norms of the absolute error achieved using different
time step sizes. Results obtained with fine mesh and second-order, two-stage SSP–RK scheme and
shown for density and temperature in the centerline of the microchannel and stream wise velocity in
the cross section x = 25H. Results obtained at the final time Tf = 80 µs with Kn = 0.05 and N = 1.

ε5/4 (%) ε4/3 (%) ε3/2 (%) ε2/1 (%)
∆t
4 → ∆t

2
∆t
2 → ∆t ∆t → 2∆t 2∆t → 4∆t

ρ(x, H)
L0 2.8756 × 10−4 1.6312 × 10−3 1.4415× 10−5 1.2184 × 10−4

L1 2.8834 × 10−5 1.6530 × 10−4 4.3485 × 10−7 6.1623 × 10−5

L2 1.4868 × 10−5 8.4653 × 10−5 6.8205 × 10−7 9.2102 × 10−6

T(x, H)
L0 3.0293 × 10−5 3.8387 × 10−4 1.9821 × 10−4 1.0443 × 10−5

L1 3.0859 × 10−6 3.9217× 10−5 6.3271 × 10−6 6.3682 × 10−6

L2 1.3106 × 10−6 1.6615 × 10−5 7.3049 × 10−6 1.0169 × 10−6

u(25H, y)
L0 1.2996×10−4 1.6198 × 10−3 1.2461 × 10−3 1.0256 × 10−4

L1 5.6303 × 10−5 7.0370 × 10−4 5.4373 × 10−4 4.4575 × 10−5

L2 7.6356 × 10−6 9.5516 × 10−5 7.3887 × 10−5 6.0460 ×10−6

4. Conclusions

The two-dimensional unsteady fully-compressible Navier–Stokes equations for microfluidic
problems are numerically solved adopting the nodal discontinuous Galerkin finite element method
(DG–FEM) in space and different explicit Runge–Kutta (RK) schemes for the temporal integrations.
The equations are solved at microscale level considering a miniaturized version of the shock-channel
problem as test case. Unstructured meshes are generated and a MATLAB code developed by Hesthaven
and Warburton [22] is adopted, modified and further improved. The numerical results are validated
with reference data provided by Zeitoun et al. [21] where CNS equations in a FVM context, DSMC
for the Boltzmann equation and the kinetic model BGKS (Bhatnagar–Gross–Krook with Shakhov
equilibrium distribution function) models are adopted. A mesh refinement study is performed using
four grid levels. The study showed that, as the mesh is refined, more accurate results are achieved.
This trend is always confirmed for the density and temperature profiles, while for the streamwise
velocity profile, the error slightly increases from the fine to the finer mesh. In fact, when the finer
grid is adopted, it is observed that the method overestimates the velocity profile. A slip boundary
condition implementation could improve this result. The observed order of accuracy based on
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different error norms for different flow properties is also computed and it is shown that, when the
first-order of polynomial N = 1 is adopted (theoretical order of one), the following results are achieved:
for the density and temperature, as the mesh is refined, the observed order of accuracy increases
reaching (and overcoming for the density) the theoretical order; a different trend is achieved for the
velocity profile, i.e., the order is higher as the mesh is coarser. The reason behind this behavior is the
same as the previous one for the error norms. An additional grid level is then considered, and it is
seen that the mesh further refinement does not improve significantly the already obtained accuracy.
In addition to this, the effect of different temporal schemes (explicit Runge–Kutta) is investigated
considering second-order, two-stage SSP–RK; third-order, three-stage SSP–RK; and fourth-order LSERK.
A qualitative and quantitative analysis is done computing error norms and their relative differences,
however no big differences among the schemes are observed as the mesh is refined and it is concluded
that the choice of the temporal scheme does not really affect the accuracy of the numerical results,
especially when fine meshes are used. Finally, different time step sizes have also been considered, and
the solution remains stable and the accuracy unaffected.
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The following abbreviations are used in this manuscript:

BC Boundary Condition
BGKS Bhatnagar–Gross–Krook with Shakhov equilibrium distribution function
CFD Computational Fluid Dynamics
CNS Compressible Navier–Stokes
DG–FEM Discontinuous Galerkin Finite Element Method
DSMC Direct Simulation Monte Carlo
ERK4 Fourth-Order Four-Stage Explicit Runge–Kutta
FEM Finite Element Method
FVM Finite Volume Method
LSERK Low Storage Explicit Runge–Kutta
MEMS Microelectromechanical Systems
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RK Runge–Kutta
SSP–RK Strong Stability–Preserving Runge–Kutta
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