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Abstract In this paper, two types of optimization strategies are applied to solve
the Space Manoeuvre Vehicle (SMV) trajectory optimization problem. The SMV
dynamic model is constructed and discretized applying direct multiple shooting
method. To solve the resulting Nonlinear Programming (NLP) problem, gradient-
based and derivative free optimization techniques are used to calculate the optimal
time history with respect to the states and controls. Simulation results indicate that
the proposed strategies are effective and can provide feasible solutions for solving
the constrained SMV trajectory design problem.

1 Introduction

Trajectory optimization problems in terms of space vehicles [2, 4, 6, 9] have attract-
ed significant attentions. One of the current objectives is the development of Space
Manoeuvre Vehicles (SMV) for a dynamic mission profile. The Mach number and
the flight altitude of the space vehicle vary largely during the whole flight phase, the
aerodynamic feature of the vehicle has large uncertainties and nonlinearities. Due to
these reasons, it is difficult to calculate analytical solutions of this type of problems.
Therefore, numerical methods are commonly used to approximate the optimal solu-
tion. Numerical methods for solving optimal control problems are divided into two
major classes: indirect methods and direct methods [1, 7, 11]. However, it is difficult
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to solve the trajectory design problem using indirect methods based on maximum
principle. Hence, direct optimization method has been widely used for trajectory
optimization.

All the direct methods aim to transcribe the continuous-time optimal control
problems to a Nonlinear Programming problem (NLP). The resulting NLP can be
solved numerically by well-developed algorithms such as gradient-based methods
or derivative free algorithms. Sequential Quadratic Programming (SQP) and Interi-
or point (IP) methods are used successfully for the solution of large scale nonlinear
programming problems. The search direction in the SQP method is determined by
solving the Quadratic Program (QP) problem whereas IP transcribes the inequality
constraints to equality constraints by introducing slack variables. In recent years,
derivative free methods has become more popular in the application of optimal con-
trol problems. However, the actual advantage of using a global method such as Ge-
netic Algorithm (GA) and Differential Evolution (DE) is difficult to appreciate, in
particular when stochastic procedures are applied. In this paper, a number of global
search methods are tested for solving the SMV trajectory optimization problem.

Hereafter, the paper is organised as follows. Section 2 introduces the equations of
motion, constraints of the SMV and the method used to discretize the optimal con-
trol problem. In Section 3, the general procedures of typical gradient-based methods
and derivative free methods are detailed. Following that, Section 4 presents compar-
ative results between the solution calculated using different strategies.

2 Problem formulation

The mission scenario investigated in this paper focuses on the atmospheric skip en-
try, targeting the entry into the atmosphere down to a predetermined position and the
required controls involved in returning back to low earth orbit. The overall mission
can be found in Fig.1. General skip reentry can be divided into five phases: initial

Fig. 1 Mission profile
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roll, down control, up control, Kepler and final entry. Considering the mission of
the SMV is to overfly the ground target with specific altitude, the most challenging
phase 2 and 3 will be considered in this paper.

2.1 Equations of motion

To formulate a Space Manoeuvre Vehicle’s skip entry flight, the equations of three-
dimensional motion for a point mass about a static Earth are integrated. The equa-
tions of motion can be summarised as:

ṙ =V sinγ

θ̇ = V cosγ sinψ

r cosφ

φ̇ = V cosγ cosψ

r
V̇ = T cosα−D

m −gsinγ

γ̇ = Lcosσ+T sinα

mV +(V 2−gr
rV )cosγ

ψ̇ = Lsinσ

mV cosγ
+ V

r cosγ sinψ tanφ

ṁ =− T
Ispg

(1)

where r is the radial distance from the Earth center to the vehicle, θ and φ are
the longitude and latitude, respectively. V is the Earth-relative velocity. The relative
flight-path angle can be denoted as γ . ψ is the relative velocity heading angle mea-
sured clockwise from the north. m is the mass of vehicle and t is time. Angle of
attack and bank angle are α and σ , separately. The thrust is defined as T . The states
and controls are described as X = [r,θ ,φ ,V,γ,ψ,m]T and U = [α,σ ,T ]T . In the
model given by Eq.(1), three autopilot equations are introduced using the technique
of first order lag to describe the rate constraint of the controls.

α̇ = Kα(αc−α)
σ̇ = Kσ (σc−σ)
Ṫ = KT (Tc−T )

(2)

in which αc, σc and Tc are the demand angle of attack, bank angle and thrust, re-
spectively. The atmosphere model, lift L and drag D can be defined as:

g = µ

r2 ρ = ρ0 exp r−r0
hs

L = 1
2 ρV 2CLS D = 1

2 ρV 2CDS
CD =CD0 +CD1α +CD2α2 CL =CL0 +CL1α

(3)

where S = 2690 f t2 is the reference area, ρ is the density of the atmosphere
and ρ0 = 0.002378slug/ f t3 is the density of the atmosphere at sea-level. µ =
1.4076539× 1016 f t3/s2 is gravitational parameter of the earth. r0 = 20902900 f t
is earth radius, L and D are the lift and drag whereas CL and CD are lift and drag
coefficient determined by angle of attack α and Ma, respectively.



4 Runqi Chai, Al Savvaris and Antonios Tsourdos

2.2 Boundary and path constraints

In this paper, two types of constraint are considered in the skip entry process. To
complete the mission, the boundary conditions for the states and controls are:

[r,φ ,θ ,V,γ,ψ,m,α,σ ,T ]
= [r0,φ0,θ0,V0,γ0,ψ0,m0,α0,σ0,T0]
.[r(tb),r(t f )] = [rb,r f ]

(4)

where tb, t f are time points for the SMV reaching the bottom point and going back
to the final boundary conditions. More precisely, as shown in Fig.1, tb and t f are the
time points of the end of phase 2 and phase 3, respectively. Correspondingly, rb and
r f are the altitude values at tb and t f , respectively. Based on the boundary conditions
illustrated by Eq.(4), the whole process can be divided into two phases, the descent
phase and exit phase.

To protect the structure integrity for the SMV, three path constraints including
heating rate, dynamic pressure and load factor must be satisfied during the entire
flight phase:

Q̇d = KQρ0.5V 3.07(c0 + c1α + c2α2 + c3α3)< ˙Qdmax
Pd = 1

2 ρV 2 < Pdmax

nL =

√
L2+D2

mg < nLmax

(5)

where c0 = 1.067,c1 = −1.101,c2 = 0.6988,c3 = −0.1903 and KQ = 9.289×
10−9BTU ·s2.07/ f t3.57/slug0.5, respectively. Mission-dependent parameters are Qdmax =
200BTU/ f t2/s, Pdmax = 13406.4583Pa and nLmax = 2.5 representing the allowable
maximum heating rate, dynamic pressure and acceleration, respectively.

2.3 Cost function

According to the mission requirement given by the industrial sponsor of this project,
to complete the mission in the shortest time, minimizing the mission duration (e.g.
t f ) is chosen as the objective function. Let J represent objective function:

J = min t f (6)

By setting the cost function given by Eq.(6), the SMV trajectory problem can be
considered as an optimal control problem which has minimum cost function value
and satisfies the initial and terminal variables constraints, three path constraints and
dynamic equations.
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2.4 Discrete method

The SMV optimal control problem is discretized using a direct multiple shooting
method. The basic idea of the direct multiple shooting method is to transform the
original optimal control problem into NLP by parameterizing only the control vari-
ables. The controls can be approximated by interpolation at the discretized time
nodes [τ1,τ2, ...,τN ]. Then the equation of motion are integrated with a fourth order
Runge-Kutta method. The approximation of controls are:

u(τ)≈U(τ) =
N

∑
i=0

UiLi(τ) (7)

where Li(τ) is a basis of Lagrange polynomials. After using direct multiple shooting
method, the resulting NLP problem is solved by applying different optimization
strategies illustrated in Section 3.

3 Optimization strategies

A key ingredient to solve optimal control problems is the ability of solving NLP
problems. Numerical methods for solving NLP fall into categories: gradient-based
methods and derivative free algorithms.

3.1 Gradient based methods

3.1.1 Sequential quadratic programming

The most commonly used gradient-based methods are SQP and IP or barrier meth-
ods. The aim for SQP algorithm is to transform the original problem to a series
of QP subproblems by approximating the augmented Lagrangian quadratically and
linearizing the constraints using Taylor expansion. The resulting augmented La-
grangian is:

L(x,λ ,u) = f (x)+λ
T h(x)+uT g(x) (8)

Using quadratic model to approximate Eq.(8), the QP subproblem is:

min 1
2 dT H(xk,λk,uk)d +∇ f (xk)

T d
h(xk)+∇h(xk)d = 0
g(xk)+∇g(xk)d ≤ 0

d ∈ℜn

(9)
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where a (xk,λk,uk) presents the current iterate point whereas H(xk,λk,uk) is the
Hessian matrix. Commonly, the Hessian is calculated using H(xk,λk,uk)=∇xxL(xk,λk,uk)
or a suitable approximation defined by the user. ∇h(xk) and ∇g(xk) are the Jacobian
matrix of the vector of equality constraints and inequality constraints, respectively.
The index k stands for the number of iteration for the optimization algorithm and
k = 0,1,2, ....

If the active set is defined as Λ , a sequence of linear equations are constructed
as Karush-Kuhm-Tucker (KKT) system. Then by using Newton method, the KKT
condition of Eq.(9) can then be calculated.

3.1.2 Interior point method

Another well-known and effective algorithm is the IP method. Numerous updates
and modifications have been done on this approach during the last several decades.
The ability for IP converging to a stationary point can be guaranteed theoretically.
Before applying the IP to the general form of problems, Eq.(8) should be trans-
formed by introducing s ∈ℜm,τ > 0 and:

fτ(x) = f (x)+ τΣ
l
i=1hi(x) (10)

The IP strategy consists of reducing the inequality constraints in Eq.(8) using slack
variables s = (s1,s2, ...,sm), where all the elements in the vector should be positive.
Then, the modified problem can be summarised as:

min fτ(x)−µΣ m
j=1log(s j)

g(x)+ s = 0
x ∈ℜn,s ∈ℜm

(11)

And the augmented Lagrangian for Eq.(11) is:

L(x,s,λ ,u) = fλ (x)−µΣ
m
j=1log(s j)+uT (g(x)+ s) (12)

In Eq.(11), the term µ stands for a barrier variable and the smaller it is, the closer
are the solutions. Both SQP and IP are using Newton iteration to get KKT system
and the converge solution.

3.2 Derivative free algorithms

In this paper, four derivative free global search algorithms are investigated: Genetic
Algorithm (GA) and Differential Evolution(DE) that belong to the generic class of
Evolutionary Algorithms (EA), Particle Swarm Optimization (PSO) that belongs
to the class of agent-based algorithms, and Artificial Bee Colony (ABC) that is
classified to the colony-based algorithms.
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3.2.1 Genetic Algorithm

GA [3] is one kind of evolution algorithms, which generates solutions to optimiza-
tion problems taking inspiration from the natural selection and survival of the fittest
in the biological world. Each iteration of a GA involves a competitive selection that
eliminates poor solutions. It is regarded as one of the most robust and reliable opti-
mization algorithms which has no requirement for gradient information and initial
guess. Recombination and mutation are applied to generate new solutions so that
the population can have more diversity. As for the control parameters of GA, the
population size is given as 500 individuals. Single values are used for the crossover
and mutation probability, CR = 0.7 and pi = 0.5, respectively.

3.2.2 Differential Evolution

The main attempt of DE [10] is to calculate the variation vector vi,G+1 of a solution
vector xi,G+1 by taking the weighted difference between two additional solutions.
This can be described as:

vi,G+1 = e[(xi3,G− xi,G)+F(xi2,G− xi1,G)] (13)

where F = 0.7, i is integer number randomly chosen within the interval [1,NP]. The
equation of e can be written as:

e(x) =
{

1, rand ≤CR;
0. rand >CR. (14)

where rand is a random number within [0,1]. The selection process is largely de-
pended on the fitness function defined by the user. If the new candidate can have a
better fitness value then it can be selected to the next generation.

3.2.3 Particle Swarm Optimization

PSO [8] is a population-based derivative free optimization algorithm developed in
1995. PSO was inspired by the social behaviour of bird flocking or fish schooling.
The general concept of PSO consists of changing the velocity of every candidate at
each iteration. The new individual in the next generation can be calculated by:

vi,G+1 = ωvi,G +ui,G (15)

where ω is a weighting function which is proportional to the number of iterations
G. The process has two stochastic components given by the two random number
r1 and r2. The corresponding terms are elastic component controlled by c1 = 2 and
convergence term controlled by c2 = 2. The first term tends to recall the individual
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back to the old position whereas the second term drives the entire population toward
convergence. The search is applied until a stopping condition is satisfied.

3.2.4 Artificial Bee Colony

The artificial bee colony (ABC) algorithm was originally presented by Dervis
Karaboga in 2007 [5] and was inspired by the collective behavior of honey bees.
The ABC algorithm has been tested to exhibit a good performance in the function
optimization problems. For each iteration of the ABC algorithm, both global search
and local search are conducted so that the probability of achieving the optimum is
increased dramatically. In each iteration of the algorithm, the searching principle is
defined as:

vi j = xi j +ϕi j(xi j− xk j) (16)

where v denotes the new position. Such a searching strategy adaptively reduces the
searching step when the candidate approaches the optimal solution. The control pa-
rameters for ABC algorithm are NP = 200, Iter = 100 and Limit = 10, respectively.

4 Simulation results

4.1 Parameters setting

The initial, terminal boundary conditions, box constraints and aerodynamic coeffi-
cients of the skip process can be found in [2]. Comparative simulations using clas-
sical gradient optimization techniques and derivative free optimization methods are
presented. It should be noticed that only the skip entry phase shown in Fig.1 is taken
into account in the paper. The initial altitude is around 80km, where is the assumed
edge of the atmosphere.

4.2 Time history of the state and control for different methods

The results of optimal trajectories are shown in Fig.2 to 9.

4.3 Analysis of the solutions

From Fig.2 to 9, the general trend of trajectories is split into two phases: descending
and climbing.
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Fig. 2 Altitude generated by using gradient methods and derivative free methods

Fig. 3 Speed generated by using gradient methods and derivative free methods

1). Descending phase: In order to achieve the target position (around 164000 f t
altitude) and minimize the mission time (since the overall objective is to minimize
the time duration, it is equivalent to minimize the time duration for each phase),
Fig.2 shows that the SMV goes down directly at the beginning of the mission. To
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Fig. 4 Angle of attack generated by using gradient methods and derivative free methods

Fig. 5 Bank angle generated by using gradient methods and derivative free methods

avoid path constraints becoming active, angle of attack should increase to slow down
the vehicle so that the heating and dynamic pressure do not increase significantly.

2). Climbing phase: After reaching the target point, the vehicle fires its engine so
that the SMV can have enough kinetic energy to go back to the final point. With the
decreasing of air density and mass, the aerodynamic heating, dynamic pressure and
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Fig. 6 Heating generated by using gradient methods and derivative free methods

Fig. 7 Dynamic pressure generated by using gradient methods and derivative free methods

load factor will decrease during the climbing phase. The trend of angle of attack can
be found in Fig.4 where the angle of attack is increased during the whole climbing
phase. This is because in the climbing phase, without violating path constraints, it
can have positive influences in terms of acceleration.
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Fig. 8 Load factor generated by using gradient methods and derivative free methods

Fig. 9 Flight path angle generated by using gradient methods and derivative free methods

With regard to the performance of different methods, all the global approaches
manage to generate skip entry trajectories between the predetermined initial position
and terminal position without violating the path constraints. This can be seen from
Fig.6 to 8. When the nonlinearity of the cost functions or path constraints become
higher, which means it is difficult to calculate the gradient information for gradient
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techniques, the global methods become the only way to solve the SMV trajectory
optimization problem. However, there are some limits for global strategies. As can
be seen from Fig.2 to 9, the results are significantly different between PSO-based
method and others. This can be explained that in this case, the initial guess generated
by the PSO-based method is not close enough to the optimal solution. Moreover, to
combine the optimization processes with discrete methods, global techniques cannot
be as flexible as gradient methods. Also, it is hard to verify the optimality for the
solutions from global techniques whereas the SQP and other gradient methods have
KKT conditions.

Consequently, all the figures provided above confirm the feasibility of the gradi-
ent and derivative free algorithms. By using different optimization strategies, the S-
MV can reach the target position without violating three path constraints and bound-
ary conditions.

5 Conclusions

In this paper, the gradient-based and derivative free algorithms are applied to solve
SMV trajectory design problem. In order to transform the continuous optimal con-
trol problem to static NLP problem, direct multiple shooting method is implemented
to discrete the equations of motion and path constraints. Simulation results indicated
that the proposed two kind of strategies can generate feasible solution for the trajec-
tory design problem. By applying the gradient-based method, the number of itera-
tions, function evaluations, and computational time can be decreased compared with
derivative free methods. Therefore, although the solutions generated from derivative
free methods can be accepted, there are still a lot of room for improvement in terms
of using these techniques in trajectory optimization problems.

References

1. Betts, J.T.: Survey of numerical methods for trajectory optimization. Journal of Guidance,
Control, and Dynamics 21(2), 193–207 (1998). DOI 10.2514/2.4231

2. Chai, R., Savvaris, A., Tsourdos, A.: Fuzzy physical programming for space manoeuvre vehi-
cles trajectory optimization based on hp-adaptive pseudospectral method. Acta Astronautica
123, 62–70 (2016). DOI http://dx.doi.org/10.1016/j.actaastro.2016.02.020

3. Dingni, Z., Yi, L.: RLV Reentry Trajectory Optimization through Hybridization of an Im-
proved GA and a SQP Algorithm. Guidance, Navigation, and Control and Co-located Confer-
ences. American Institute of Aeronautics and Astronautics (2011). DOI doi:10.2514/6.2011-
6658 10.2514/6.2011-6658. Doi:10.2514/6.2011-6658

4. Gan, C., Zi-ming, W., Min, X., Si-lu, C.: Genetic Algorithm Optimization of RLV Reentry Tra-
jectory. International Space Planes and Hypersonic Systems and Technologies Conferences.
American Institute of Aeronautics and Astronautics (2005). DOI doi:10.2514/6.2005-3269
10.2514/6.2005-3269. Doi:10.2514/6.2005-3269



14 Runqi Chai, Al Savvaris and Antonios Tsourdos

5. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function opti-
mization: artificial bee colony (abc) algorithm. Journal of Global Optimization 39(3), 459–471
(2007). DOI 10.1007/s10898-007-9149-x

6. Kenan, Z., Wanchun, C.: Reentry Vehicle Constrained Trajectory Optimization. International
Space Planes and Hypersonic Systems and Technologies Conferences. American Institute of
Aeronautics and Astronautics (2011). DOI doi:10.2514/6.2011-2231 10.2514/6.2011-2231.
Doi:10.2514/6.2011-2231

7. Peter, G., Klaus, W.: Trajectory optimization using a combination of direct multiple shoot-
ing and collocation. Guidance, Navigation, and Control and Co-located Conferences.
American Institute of Aeronautics and Astronautics (2001). DOI doi:10.2514/6.2001-4047
10.2514/6.2001-4047. Doi:10.2514/6.2001-4047

8. Rahimi, A., Dev Kumar, K., Alighanbari, H.: Particle swarm optimization applied to space-
craft reentry trajectory. Journal of Guidance, Control, and Dynamics 36(1), 307–310 (2012).
DOI 10.2514/1.56387

9. Rajesh, A.: Reentry Trajectory Optimization: Evolutionary Approach. Multidisciplinary Anal-
ysis Optimization Conferences. American Institute of Aeronautics and Astronautics (2002).
DOI doi:10.2514/6.2002-5466 10.2514/6.2002-5466. Doi:10.2514/6.2002-5466

10. Rajesh, A.: Reentry Trajectory Optimization: Evolutionary Approach. Multidisciplinary Anal-
ysis Optimization Conferences. American Institute of Aeronautics and Astronautics (2002).
DOI doi:10.2514/6.2002-5466 10.2514/6.2002-5466. Doi:10.2514/6.2002-5466

11. Reddien, G.W.: Collocation at gauss points as a discretization in optimal control. SIAM Jour-
nal on Control and Optimization 17(2), 298–306 (1979). DOI doi:10.1137/0317023


