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Abstract—This paper focuses on the application of model
predictive control (MPC) for the spacecraft trajectory tracking
problems. The motivation of the use of MPC, also known as
receding horizon control, relies on its ability in dealing with
control, state and path constraints that naturally arise in practical
trajectory planning problems. Two different MPC schemes are
constructed to solve the reconnaissance trajectory tracking prob-
lem. Since the MPC solves the online optimal control problems
at each sampling instant, the computational cost associated with
it can be high. In order to decrease the computational demand
due to the optimization process, a newly proposed two-nested
gradient method is used and embedded in the two MPC schemes.
Simulation results are provided to illustrate the effectiveness and
feasibility of the two MPC tracking algorithms combined with
the improved optimization technique.

Index Terms—Model predictive control, spacecraft trajectory
tracking, receding horizon control, optimal control, two-nested
gradient method

I. INTRODUCTION

OVER the past couple of decades, aeroassisted spacecrafts
have received considerable attention due to their exten-

sive applications in space exploration [1], [2]. One important
feature of using this type of vehicle is that it has the capability
to apply the aerodynamic forces effectively [3]–[5]. Early
works on developing the aeroassisted spacecraft mainly focus
on the propulsion system and orbital transfer trajectory design
[6]–[10]. For example, Rao et al. [11] formulated a multiple-
pass aeroassisted orbital transfer problem and generated the
optimal trajectory via numerical optimization techniques. In
[12], the authors studied a small-scale aeroassisted orbital
transfer problem using impulsive thrust. Meanwhile, many
important research works focusing on the aeroassisted vehicle
guidance system have been extensively investigated. For in-
stance, Hull et al. [13] proposed an energy-optimal guidance
strategy for the aeroassisted orbital plane change problem.
Naidu et al. [14] designed a neighbouring optimal guidance
scheme for the nonlinear aeroassisted vehicle dynamics.

While a large amount work has been carried out in the
aeroassisted vehicle guidance system, due to the uncertainties
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in the flight environment and multiple constraints, it is still
hard to design a robust online guidance algorithm such that
the vehicle can fly along an optimum path and fulfill different
mission requirements. In general, guidance methods for space
vehicles can be divided into two categories: predictor-corrector
based methods [15], and reference tracking based methods
[16]. In a predictor-corrector based method, the control com-
mands are obtained by a predesigned guidance law and a
control reversal logic. However, the implementation of these
techniques has some challenges. At each time instant, the
algorithm needs to predict the flight path and adjust the design
parameters to steer the final condition errors to zero. This
process is usually time-consuming and cannot be computed
in near real-time.

Alternatively, reference tracking methods are based on the
reference trajectory, which can be carried out offline via well-
developed trajectory optimization techniques [17], [18]. The
aim of these methods is to seek the control command such
that the actual trajectory can follow the references. Recent
studies have shown the effectiveness of developing a reference
tracking guidance method in real time. For example, Dai and
Xia [19] applied a terminal sliding mode control to derive
the guidance law and an extended state observer to handle
the model errors. In [16], the authors designed a lateral path
tracking control method to general the control command for
the autonomous land vehicle.

The problem addressed in this research is a real-time
MPC design for constrained spacecraft trajectory tracking
problems, where the objective function is a combination of
control efforts and tracking errors. These kind of problems
are becoming popular in spacecraft navigation system. The
motivation for the use of receding horizon control (RHC) or
MPC relies on its ability in dealing with control, state and
path constraints. The current control command is obtained by
solving online, at each time instant, a finite horizon open-loop
optimal control problem. Then an optimal control sequence
can be calculated and the first control action in the sequence
is implemented to the vehicle dynamics. Contributions made
to apply MPC can be found in the literature. Specifically, in
[20] the authors developed a specific numerical algorithm for
nonlinear receding horizon control problems. Peng et al. [21]
calculated the optimal guidance law for a spacecraft forma-
tion reconfiguration problem by applying a nonlinear model
predictive control (NMPC). In addition, an indirect legendre
pseudospectral method was proposed in [22] to calculate the

li2106
Text Box
IEEE Transactions on Aerospace and Electronic Systems, available online 25 January 2018DOI: 10.1109/TAES.2018.2798219

li2106
Text Box
©2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



2

optimal control command for reentry vehicles. Similarly, in
[23] authors applied a modified linear model predictive control
(LMPC) to compute the optimal guidance for a low-thrust
orbital transfer problem. Motivated by relative works, in this
paper, two different tracking MPC schemes are constructed to
generate the optimal guidance command for the aeroassisted
vehicle and this will be discussed in more detail in Section III
of this paper.

One of the key components of the MPC is the optimiza-
tion process [24], [25]. Since the online tracking MPC algo-
rithm attempts to solve an open-loop optimal control problem
recursively, the effectiveness and efficiency are largely affected
by its optimization procedure. In order to enhance the online
performance of the MPC schemes constructed in Section III,
a newly proposed optimization technique is applied and em-
bedded in the MPC framework. This algorithm contains a two
nested structure, where the inner loop uses an interior point
method and the outer loop is a standard sequential quadrat-
ic programming. A detailed description of this improved
gradient-based method can be found in [26]. Applying this
technique, the complicated quadratic programming solution-
finding can be avoided by solving the subproblem inexactly.
This indicates that the online optimization performance of the
MPC can be improved.

The remainder of this paper is organized as follow:
The overall guidance strategy and the aeroassisted spacecraft
guidance problem are constructed in Section II. Two receding
horizon control schemes for the online tracking problem are
formulated in Section III. Following that, Section IV presents
the two nested gradient optimization algorithm used in the
MPC optimization process. Numerical simulations are provid-
ed in Section V to illustrate the effectiveness of the tracking
guidance strategies investigated in this paper.

II. GUIDANCE STRATEGY

For the reconnaissance trajectory tracking problem, the
kinematics of the aeroassisted spacecraft used in this paper
are given by:

�̇� = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

�̇� = 𝑉 cos 𝛾 cos𝜓
𝑟

(1)

where 𝑟 represents the radial distance. 𝜃 and 𝜑 are the
longitude and latitude, respectively.

Consider the angle of attack 𝛼 and bank angle 𝜎 of the
vehicle as control inputs, the dynamics of the spacecraft can
then be formulated as:

�̇� = 𝑇 cos𝛼−𝐷
𝑚 − 𝑔 sin 𝛾

�̇� = 𝐿 cos𝜎+𝑇 sin𝛼
𝑚𝑉 + (𝑉

2−𝑔𝑟
𝑟𝑉 ) cos 𝛾

�̇� = 𝐿 sin𝜎
𝑚𝑉 cos 𝛾 + 𝑉

𝑟 cos 𝛾 sin𝜓 tan𝜑

(2)

where 𝑉 is the relative velocity, 𝛾 is the flight path angle. 𝜓
stands for the heading angle. 𝑚 is the vehicle’s mass. It is
assumed that the state variables 𝑟, 𝜃, 𝜑, 𝑉 , 𝛾 and 𝜓 can be
measured or obtained (Assumption.1 [24], [27]). The control
objective is to design a guidance system so as to steer the
spacecraft from its initial conditions 𝑟 = 𝑟0, 𝜃 = 𝜃0, 𝜑 =
𝜑0, 𝑉 = 𝑉0, 𝛾 = 𝛾0 and 𝜓 = 𝜓0 to the mission-dependent

final boundary conditions 𝑟 = 𝑟𝑓 , 𝜃 = 𝜃𝑓 , 𝜑 = 𝜑𝑓 , 𝑉 =
𝑉𝑓 and 𝛾 = 𝛾𝑓 . Moreover, the time duration is minimized
(for a time-optimal reconnaissance mission) in the presence
of disturbances and initial entry perturbations, that naturally
raises in most control application problems [28].

Assumption 1. Consider Eq.(1) and Eq.(2), the state variables
𝑟, 𝜃, 𝜑, 𝑉 , 𝛾 and 𝜓 can be measured or obtained [27].

Let us consider the state variable vector 𝑥 =
[𝑟, 𝜃, 𝜑, 𝑉, 𝛾, 𝜓]𝑇 , control variable vector 𝑢 = [𝛼, 𝜎]𝑇 and
rewrite Eq.(1) and Eq.(2) in the state space as follows:

�̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (3)

where 𝑓 ∈ ℜ6 is the right-hand-side (RHS) of the equations
of motion. A figure describing the vehicle reference frames
is plotted in Fig.1, whereas aerodynamic forces acting on the
spacecraft are shown in Fig.2.
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Fig. 1: Reference frame

Several path constraints are implemented to ensure a safe
trajectory for the vehicle. During the mission, the state and
control variables should vary in its tolerant regions and it can
be written as follows:

𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥 (4)

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 (5)

where 𝑥(𝑡) ∈ X and 𝑢(𝑡) ∈ U. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the lower
and upper bounds of the state, whereas 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are
the lower and upper bounds of the input.

In order to protect the vehicle’s structure, the two path
constraints taken into account in the guidance loop are the
heating rate and normal acceleration, which can be formulated
as:

�̇�𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07𝑞𝑎 < �̇�𝑑𝑚𝑎𝑥

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 𝑛𝐿𝑚𝑎𝑥
(6)
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Fig. 2: Aerodynamic forces acting on the spacecraft

where 𝑞𝑎 = (𝑐0 + 𝑐1𝛼+ 𝑐2𝛼
2 + 𝑐3𝛼

3). 𝑄𝑑𝑚𝑎𝑥 represents the
acceptable maximum heating rate.

A. Overall guidance framework

The overall architecture of the tracking guidance algo-
rithm is shown in Fig.3.
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Fig. 3: Overall structure of the guidance system

As can be seen from Fig.3, the optimal state and control
reference sequences (e.g. 𝑥*𝑟𝑒𝑓 and 𝑢*𝑟𝑒𝑓 ) are calculated first.
The close-loop guidance law is then achieved based on the
inner MPC controller. It is worth noting that by applying the
MPC, feedback can be achieved through real-time computation
of the open-loop optimal control problem. The real control
input 𝑢(𝑡) is calculated by combining the reference control
𝑢*𝑟𝑒𝑓 and the feedback control variable 𝛿𝑢(𝑡). The real state
output 𝑥(𝑡) is then obtained by entering the real control
input into the vehicle dynamics. This process will be further
discussed in the next section of this paper.

III. TWO RECEDING HORIZON CONTROL SCHEMES

A. Nonlinear Model Predictive Control

MPC [29] can be described as an iterative optimization
process that generates control actions by applying a moving
horizon trajectory optimization. The control is periodically re-
computed with the current state as an initial condition, thereby

providing a feedback action that can improve robustness to
uncertainties and disturbances. In this section, a nonlinear
formulation of the tracking MPC optimization problem is
constructed. As illustrated in Fig.3, the open-loop solution
is assumed to be known and used as reference trajectories
(denoted as 𝑥*𝑟𝑒𝑓 and 𝑢*𝑟𝑒𝑓 ). Then the trajectory tracking
problem can be reduced to find a control law such that

𝑥(𝑡)− 𝑥*𝑟𝑒𝑓 (𝑡) ≈ 0 (7)

Since the MPC prediction model is used and the feedback
control law is obtained in discrete-time, a discrete-time formu-
lation of the equations of motion is needed [25]. Considering
a sampling time step Δ𝑡 and a sampling instant 𝑘, by applying
the Euler’s approximation to the vehicle kinematics and dy-
namics, the following discrete-time model can be constructed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟(𝑘 + 1) = 𝑟(𝑘) + Δ𝑡(𝑉 (𝑘) sin 𝛾(𝑘))

𝜃(𝑘 + 1) = 𝜃(𝑘) + Δ𝑡(𝑉 (𝑘) cos 𝛾(𝑘) sin𝜓(𝑘)
𝑟(𝑘) cos𝜑(𝑘) )

𝜑(𝑘 + 1) = 𝜑(𝑘) + Δ𝑡(𝑉 (𝑘) cos 𝛾(𝑘) cos𝜓(𝑘)
𝑟(𝑘) )

𝑉 (𝑘 + 1) = 𝑉 (𝑘) + Δ𝑡(𝑇 (𝑘) cos𝛼(𝑘)−𝐷(𝑘)
𝑚 − 𝑔 sin 𝛾(𝑘))

𝛾(𝑘 + 1) = 𝛾(𝑘) + Δ𝑡(𝐿(𝑘) cos𝜎(𝑘)+𝑇 (𝑘) sin𝛼(𝑘)
𝑚𝑉 (𝑘)

+(𝑉 (𝑘)2−𝑔𝑟(𝑘)
𝑟(𝑘)𝑉 (𝑘) ) cos 𝛾(𝑘))

𝜓(𝑘 + 1) = 𝜓(𝑘) + Δ𝑡( 𝐿(𝑘) sin𝜎(𝑘)
𝑚𝑉 (𝑘) cos 𝛾(𝑘)

+𝑉 (𝑘)
𝑟(𝑘) cos 𝛾(𝑘) sin𝜓(𝑘) tan𝜑(𝑘))

(8)
Eq.(8) can then be rewritten in a more compact form

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) ∈ ℜ6 (9)

where 𝑥(𝑘) ∈ X, 𝑢(𝑘) ∈ U, and 𝑘 = 1, 2, ..., 𝑁 , with the
prediction horizon 𝑁 . 𝑁 is satisfying 1 ≤ 𝑁 . It is worth noting
that since the reference trajectory can satisfy the equations of
motion, it can also be written in a discrete-time formulation:

𝑥*𝑟𝑒𝑓 (𝑘 + 1) = 𝑓(𝑥*𝑟𝑒𝑓 (𝑘), 𝑢
*
𝑟𝑒𝑓 (𝑘)) ∈ ℜ6 (10)

Based on Eq.(8), the prediction of the dynamic equations
at 𝑘th time instant is calculated as follows:

𝑥(𝑘 + 𝑗 + 1|𝑘) = 𝑓(𝑥(𝑘 + 𝑗|𝑘), 𝑢(𝑘 + 𝑗|𝑘)) (11)

where 𝑗 ∈ [0, 𝑁 − 1]. By introducing the error vectors 𝛿𝑥 =
𝑥− 𝑥*𝑟𝑒𝑓 and 𝛿𝑢 = 𝑢− 𝑢*𝑟𝑒𝑓 , the control objective for Eq.(9)
in MPC can be set to drive the state error vector to the origin.
More precisely, the objective function of the trajectory tracking
MPC can be defined as follows:

𝐽𝑁𝑀𝑃𝐶(𝛿𝑥, 𝛿𝑢) =
∑︀𝑁
𝑗=1 𝛿𝑥

𝑇 (𝑘 + 𝑗|𝑘)𝑄𝛿𝑥(𝑘 + 𝑗|𝑘)
+
∑︀𝑁−1
𝑗=0 𝛿𝑢𝑇 (𝑘 + 𝑗|𝑘)𝑅𝛿𝑢(𝑘 + 𝑗|𝑘)

(12)
where 𝑄 ∈ ℜ6×6 is a semi-definite matrix. 𝑅 ∈ ℜ2×2 is a
symmetric positive definite matrix. The discrete time horizon
under which the stage costs is minimized is 𝑘 = 1, ..., 𝑁 . In
Eq.(12), the first term on the RHS is to minimize the deviation
between the nominal state and the reference state, whereas the
second term is to minimize the control efforts.

Based on the discretized dynamic equations, path con-
straints and objective function, the NMPC optimization model
can then be constructed. The aim of the NMPC trajectory
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tracking algorithm is to minimize the objective function sub-
ject to the dynamic constraints and path constraints repeatedly
over the prediction horizon 𝑘 = 1, 2, ..., 𝑁 . The optimization
formulation can be summarized as:

minimize 𝐽𝑁𝑀𝑃𝐶(𝛿𝑥, 𝛿𝑢) =
∑︀𝑁
𝑗=1 𝛿𝑥

𝑇 (𝑘 + 𝑗|𝑘)𝑄𝛿𝑥(𝑘 + 𝑗|𝑘)
+
∑︀𝑁−1
𝑗=0 𝛿𝑢𝑇 (𝑘 + 𝑗|𝑘)𝑅𝛿𝑢(𝑘 + 𝑗|𝑘)

subject to ∀𝑗 ∈ [1, 2, ..., 𝑁 ]
𝑥(𝑘 + 𝑗 + 1|𝑘) = 𝑓(𝑥(𝑘 + 𝑗|𝑘), 𝑢(𝑘 + 𝑗|𝑘))
𝑥(𝑘|𝑘) = 𝑥𝑘
𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑘 + 𝑗 + 1|𝑘) ≤ 𝑥𝑚𝑎𝑥
𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑗 + 1|𝑘) ≤ 𝑢𝑚𝑎𝑥
𝛿𝑢𝑚𝑖𝑛 ≤ 𝛿𝑢(𝑘 + 𝑗 + 1|𝑘) ≤ 𝛿𝑢𝑚𝑎𝑥

(13)
where 𝑥𝑘 is the initial condition corresponding to the values of
the states measured at the current sampling time point. 𝛿𝑢𝑚𝑖𝑛
and 𝛿𝑢𝑚𝑎𝑥 stand for the lower and upper bounds of the input
vectors.

In most real-world applications, the state variables will
have a constraint at the final time (e.g. terminal condi-
tions). In this case, the terminal penalty term might be
added in the objective so as to ensure that the algorithm
will seek to reduce the terminal state error in the pro-
cess of optimizing the cost function 𝐽 . The optimization
problem given by Eq.(13) should be solved at each time
instant 𝑘, thereby generating a sequence of optimal states
(𝛿𝑥*(𝑘 + 1|𝑘), 𝛿𝑥*(𝑘 + 2|𝑘), ..., 𝛿𝑥*(𝑘 +𝑁 |𝑘)) and controls
(𝛿𝑢*(𝑘|𝑘), 𝛿𝑢*(𝑘 + 1|𝑘), ..., 𝛿𝑢*(𝑘 +𝑁 − 1|𝑘)). Subsequent-
ly, the first control action in this sequence is applied to the
plant and the remaining portion of this sequence is discarded.
Specifically, the overall NMPC algorithm is constructed in
Algorithm 1.

Algorithm 1 The main framework of the NMPC

1: Offline: Perform trajectory optimization algorithm in or-
der to generate the reference state and control sequences
𝑥*𝑟𝑒𝑓 and 𝑢*𝑟𝑒𝑓 ;

2: Initialize 𝑄, 𝑅, and the prediction horizon 𝑁 ;
3: /*Main Loop*/
4: Online: At each time instant 𝑘 := 0, 1, ...;
5: (a). Calculate the current state variable 𝑥(𝑘) of the

plant;
6: (b). Discretize the continuous problem so as to obtain

the static NLP model shown in Eq.(13);
7: (c). Solve the optimization problem (13):
8: 𝛿𝑢* = arg min 𝐽𝑁𝑀𝑃𝐶(𝛿𝑥, 𝛿𝑢)
9: subject to constraints given by Eq.(13).

10: (d). Calculate 𝑢𝑘 = 𝑢*𝑟𝑒𝑓 + 𝛿𝑢* and implement the
control law to the plant until the next sampling instant;

11: (e). Set 𝑘 = 𝑘 + 1;
12: (f). Repeat the procedure a)-e) for the next sampling

time point;

B. Linear Model Predictive Control

Although many well-developed NMPC schemes have
been proposed and applied in the literature [30], it should be

noted that usually, the computational complexity for NMPC
schemes is much higher than the linear schemes. Moreover,
the NMPC method tends to generate a large scale nonconvex
nonlinear programming (NLP) problem. Consequently, the
global convergence property for the optimization algorithm can
hardly be achieved. This indicates that the NLP solver may fail
to converge or spend a large amount of root-finding iterations.
Therefore, in order to reduce the computational burden, a
LMPC scheme is constructed as an alternative to the nonlinear
version. A linear model is obtained by constructing an error
model with respect to the reference state and control se-
quences. Based on Eq.(3), the reference trajectory (𝑥*𝑟𝑒𝑓 , 𝑢

*
𝑟𝑒𝑓 )

should satisfy �̇�*𝑟𝑒𝑓 = 𝑓(𝑥*𝑟𝑒𝑓 , 𝑢
*
𝑟𝑒𝑓 ). By expanding the RHS of

the dynamics around the reference (𝑥*𝑟𝑒𝑓 , 𝑢
*
𝑟𝑒𝑓 ) and discarding

the high order terms, the following equation can be obtained:

�̇� = 𝑓(𝑥*𝑟𝑒𝑓 , 𝑢
*
𝑟𝑒𝑓 ) + 𝑓𝐴(𝑥− 𝑥*𝑟𝑒𝑓 ) + 𝑓𝐵(𝑢− 𝑢*𝑟𝑒𝑓 ) (14)

where 𝑓𝐴 and 𝑓𝐵 are partial derivatives of 𝑓(𝑥, 𝑢) with respect
to 𝑥 and 𝑢 at the reference points, respectively. By replacing
𝑥− 𝑥*𝑟𝑒𝑓 and 𝑢− 𝑢*𝑟𝑒𝑓 as 𝛿𝑥 and 𝛿𝑢, Eq.(14) is rewritten as:

𝛿�̇� = 𝑓𝐴𝛿𝑥+ 𝑓𝐵𝛿𝑢 (15)

subject to the initial conditions 𝛿𝑥(𝑡0) = 𝛿𝑥0. The approxi-
mation of 𝛿�̇� by applying discretization gives the following
discrete-time system model:

𝛿𝑥(𝑘 + 1) = 𝐴(𝑘)𝛿𝑥(𝑘) +𝐵(𝑘)𝛿𝑢(𝑘) (16)

The two matrices 𝐴(𝑘) and 𝐵(𝑘) are obtained analytically.
The values of 𝐴(𝑘) and 𝐵(𝑘) can be calculated based on the
state and control histories of the reference trajectories and their
analytical form can be found in the Appendix.
Remark 1. It is worth noting that the approximation of
system (3) will result in approximation errors. Therefore, the
discretized dynamics should be formulated as a linear time-
variant stochastic system (e.g. 𝛿𝑥(𝑘 + 1) = 𝐴(𝑘)𝛿𝑥(𝑘) +
𝐵(𝑘)𝛿𝑢(𝑘) + 𝑤𝑘, where 𝑤𝑘 can be treated as a random
variable). Since the aim of this paper is to construct a new op-
timization method under the MPC framework, this stochastic
term is omitted in the current design. Future work will extend
the LMPC-based guidance design to handle stochastic errors
by applying, for example, constraint-tightening techniques in
stochastic model predictive control [31].

The main advantage of using LMPC is that it can trans-
form the control problem (Eq.(13)) to a standard quadratic
optimization problem, and the optimal solution can be found
via well-developed gradient-based methods.

Define the following vectors:

�̄�(𝑘 + 1) = [𝛿𝑥(𝑘 + 1|𝑘), ..., 𝛿𝑥(𝑘 +𝑁 |𝑘)]𝑇 ∈ ℜ6𝑁 (17)

�̄�(𝑘) = [𝛿𝑢(𝑘|𝑘), 𝛿𝑢(𝑘 + 1|𝑘), ..., 𝛿𝑢(𝑘 +𝑁 − 1|𝑘)]𝑇 ∈ ℜ2𝑁

(18)
Thus, by introducing �̄� = 𝑑𝑖𝑎𝑔(𝑄, ..., 𝑄) ∈ ℜ6𝑁×6𝑁 and
�̄� = 𝑑𝑖𝑎𝑔(𝑅, ..., 𝑅) ∈ ℜ2𝑁×2𝑁 , the cost function (Eq.(12))
can be rewritten as:

𝐽𝐿𝑀𝑃𝐶(𝑘) = �̄�𝑇 (𝑘 + 1)�̄��̄�(𝑘 + 1) + �̄�𝑇 (𝑘)�̄��̄�(𝑘) (19)

Based on Eq.(16)-(18), the predicted system can then be
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transcribed to a more compact form,

�̄�(𝑘 + 1) = 𝐴(𝑘)�̄�(𝑘|𝑘) + �̄�(𝑘)�̄�(𝑘) (20)

where 𝐴(𝑘) and �̄�(𝑘) can be calculated by using Eq.(21) and
Eq.(20), respectively.

𝐴(𝑘) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴(𝑘|𝑘)
𝐴(𝑘 + 1|𝑘)𝐴(𝑘|𝑘)

...
0∏︀

𝑖=𝑁−2

𝐴(𝑘 + 𝑖|𝑘)
0∏︀

𝑖=𝑁−1

𝐴(𝑘 + 𝑖|𝑘)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

Let us define the following terms:

𝐻(𝑘) = 2(�̄�𝑇 (𝑘)�̄��̄�(𝑘) + �̄�) (21)

𝐹 (𝑘) = 2�̄�𝑇 (𝑘)�̄�𝐴(𝑘)𝛿𝑥(𝑘|𝑘) (22)

𝑐(𝑘) = 𝛿𝑥𝑇 (𝑘|𝑘)𝐴𝑇 (𝑘)�̄�𝐴(𝑘)𝛿𝑥(𝑘|𝑘) (23)

Therefore, according to the definition of 𝐻(𝑘), 𝐹 (𝑘)
and 𝑐(𝑘), the optimization objective can be transcribed to a
standard quadratic form:

𝐽𝐿𝑀𝑃𝐶(𝑘) =
1

2
�̄�𝑇 (𝑘)𝐻(𝑘)�̄�(𝑘) + 𝐹𝑇 (𝑘)�̄�(𝑘) + 𝑐(𝑘) (24)

The matrix 𝐻(𝑘) can be simply treated as the Hessian
matrix, and it is positive definite. 𝐻(𝑘) describes the quadratic
part in the objective function (Eq.(12)), whereas the term 𝐹 (𝑘)
describes the linear part. Based on all the definitions stated
above, the LMPC optimization model can be given by the
following formulation:

minimize 𝐽𝐿𝑀𝑃𝐶(𝑘) =
1
2 �̄�

𝑇 (𝑘)𝐻(𝑘)�̄�(𝑘) + 𝐹𝑇 (𝑘)�̄�(𝑘) + 𝑐(𝑘)

subject to ∀𝑗 ∈ [1, 2, ..., 𝑁 ]
𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑗 + 1|𝑘) ≤ 𝑢𝑚𝑎𝑥
𝛿𝑢𝑚𝑖𝑛 ≤ 𝛿𝑢(𝑘 + 𝑗 + 1|𝑘) ≤ 𝛿𝑢𝑚𝑎𝑥

(25)
It is worth noting that the dynamic constraints (e.g. equations
of motion) are no longer necessary. This is because the
linearized equations of motion are implicitly embedded in the
cost function. To better show the structure of the constructed
LMPC algorithm, the overall procedure is illustrated in the
Pseudocode (see Algorithm 2).

IV. OPTIMIZATION ALGORITHM

The performance of MPC guidance algorithms mainly
depends on the ability for solving NLP problems. Therefore,
a highly efficient online optimization algorithm is needed to be
developed. In this paper, a globally convergent gradient-based
algorithm is applied to solve the resulting NLP [26]. Note that
the global convergence does not mean global optimality [32].
This method combines the advantages of the interior point
method (IP) [33] and the sequential quadratic programming
method (SQP). Also, it can reduce the computational effort
by using its two nested structure. For completeness, a brief

Algorithm 2 The main framework of the LMPC

1: Offline: Perform trajectory planning algorithm to generate
the reference state and control sequences 𝑥*𝑟𝑒𝑓 and 𝑢*𝑟𝑒𝑓 ;

2: Initialize 𝑄, 𝑅, and the prediction horizon 𝑁 ;
3: /*Main Loop*/
4: Online: At each time instant 𝑘 := 0, 1, ...;
5: (a). Calculate the current state variable 𝑥(𝑘) of the

plant;
6: (b). Linearize the nonlinear dynamics given by Eq.(1)

and Eq.(2);
7: (c). Calculate 𝐴(𝑘) and 𝐵(𝑘) with respect to the

reference trajectory;
8: (d). Construct the quadratic optimization problem

(25) based on Eq.(17)-(24);
9: (e). Solve the quadratic optimization problem (25):

10: 𝛿𝑢* = arg min 𝐽𝐿𝑀𝑃𝐶(𝛿𝑥, 𝛿𝑢)
11: subject to constraints shown in Eq.(25).
12: (f). Set 𝑢𝑘 = 𝑢*𝑟𝑒𝑓 + 𝛿𝑢* and implement the control

law to the plant until the next sampling instant;
13: (g). Set 𝑘 = 𝑘 + 1;
14: (h). Repeat the procedure a)-g) for the next sampling

time point;

description of this gradient-based method is introduced in this
Section.

In terms of the optimization problem given in Eq.(13),
one can define a new decision vector as 𝑒 = [𝛿𝑥, 𝛿𝑢]𝑇 . For
simplicity reasons, the optimization formulation (e.g. Eq.(13)
and Eq.(25)) can then be rewritten in a general form

minimize 𝐽(𝑒)
subject to ℎ(𝑒) = 0 (equality constraints)

𝑔(𝑒) ≤ 0 (inequality constraints)
(26)

where ℎ(𝑒) = (ℎ1(𝑒), ℎ2(𝑒), ..., ℎ𝑙(𝑒))
𝑇 and 𝑔(𝑒)=

(𝑔1(𝑒), 𝑔2(𝑒), ..., 𝑔𝑚(𝑒))𝑇 , respectively. The basic idea
of the improved gradient-based algorithm is to divide
the optimization process into two loops. The outer loop
is a normal SQP iteration. For example, it constructs
a sequence of quadratic programming subproblems
by approximating the augmented Lagrangian function
𝐿(𝑒, 𝜆, 𝑢) = 𝐽(𝑒) + 𝜆𝑇ℎ(𝑒) + 𝑢𝑇 𝑔(𝑒) quadratically, where
𝜆 and 𝑢 are the Lagrange multipliers associated with the
equality and inequality constraints, respectively.

Using quadratic model to approximate the augmented
Lagrangian function, the QP subproblem is:

min 1
2𝑑𝑒

𝑇𝐻(𝑒𝑘, 𝜆𝑘, 𝑢𝑘)𝑑𝑒+∇𝐽(𝑒𝑘)𝑇 𝑑𝑒
ℎ(𝑒𝑘) +∇ℎ(𝑒𝑘)𝑑𝑒 = 0
𝑔(𝑒𝑘) +∇𝑔(𝑒𝑘)𝑑𝑒 ≤ 0

(27)

where 𝑑𝑒 represents the directional derivative whereas
𝐻(𝑒𝑘, 𝜆𝑘, 𝑢𝑘) stands for the Hessian matrix. Commonly, the
Hessian is calculated using a suitable approximation defined
by the user (e.g. BFGS approximation).

Following that, in the inner loop, the resulting quadratic
programming subproblem is solved by applying the IP method.
In order to distinguish the inner and outer loops, the internal
iteration index is defined as 𝑙 while the external iteration
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�̄�(𝑘) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐵(𝑘|𝑘) 0 · · · 0
𝐴(𝑘 + 1|𝑘)𝐵(𝑘|𝑘) 𝐵(𝑘 + 1|𝑘) · · · 0

...
...

. . .
...

1∏︀
𝑖=𝑁−2

𝐴(𝑘 + 𝑖|𝑘)𝐵(𝑘|𝑘)
2∏︀

𝑖=𝑁−2

𝐴(𝑘 + 𝑖|𝑘)𝐵(𝑘 + 1|𝑘) · · · 0

1∏︀
𝑖=𝑁−1

𝐴(𝑘 + 𝑖|𝑘)𝐵(𝑘|𝑘)
2∏︀

𝑖=𝑁−1

𝐴(𝑘 + 𝑖|𝑘)𝐵(𝑘 + 1|𝑘) · · · 𝐵(𝑘 +𝑁 − 1|𝑘)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)

number is defined as 𝑘. The outer iterates of the primal, slack
and dual variables are denoted as 𝑒𝑘, 𝑠𝑘, 𝜆𝑘, 𝑢𝑘, respectively.
Correspondingly, 𝑑𝑒𝑘,𝑙, 𝑑𝑠𝑘,𝑙, 𝑑𝜆𝑘,𝑙 and 𝑑𝑢𝑘,𝑙 are the inner
iterates. After continuing the internal loop until termination
or reaching the maximum number of 𝑙𝑚𝑎𝑥 given by the user,
a SQP solution at the next searching point (𝑘 + 1) can be
achieved.

The main advantage of this two nested gradient-based
approach is that the user can control the inner loop by setting
the termination conditions or 𝑙𝑚𝑎𝑥 at any time. Specifically,
since the 𝐻𝑘 is fixed at the internal circle, it is not required
to solve the QP subproblem exactly, which means the time-
consuming QP solution finding can be avoided.

Similar to traditional IP and SQP methods, the Karush-
Kuhn-Tucker (KKT) system of the improved gradient-based
algorithm is given by Eq.(28).

In Eq.(28), Δ𝑑 = [Δ𝑑𝑒𝑘,𝑙,Δ𝑑𝑠𝑘,𝑙,Δ𝑑𝜆𝑘,𝑙,Δ𝑑𝑢𝑘,𝑙]
𝑇 .

𝐷𝑠𝑘,𝑙 and 𝐷𝑢𝑘,𝑙 are positive diagonal matrices corresponding
to the slack variables and multipliers while 𝜆 and 𝜇 are
Lagrangian multipliers and penalty factors related to equality
constraints and inequality constraints, respectively.

Solving the KKT system described in Eq.(28), the new
iteration can be calculated by:

𝑑𝑥𝑘,𝑙+1 = 𝑑𝑒𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝑒𝑘,𝑙
𝑑𝑢𝑘,𝑙+1 = 𝑑𝑢𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝑢𝑘,𝑙
𝑑𝑠𝑘,𝑙+1 = 𝑑𝑠𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝑠𝑘,𝑙
𝑑𝜆𝑘,𝑙+1 = 𝑑𝜆𝑘,𝑙 + 𝛼𝑘,𝑙Δ𝑑𝜆𝑘,𝑙

(29)

where the step length parameter 𝛼𝑘,𝑙 ∈ (0, 1] should be chosen
to ensure that the merit function achieves sufficient decrease
but is not too short. In order to measure the progress of each
iterate 𝑘, the merit function 𝑀 should be designed. The merit
function used in this paper is the same with [26].

The overall structure of this two nested gradient op-
timization algorithm is illustrated in the Pseudocode (see
Algorithm.1).

Since the algorithm can be controlled by the maximum
iteration number of the inner loop, the user can have more flex-
ibility with respect to the optimization process. This algorithm
is then combined with the two MPC control algorithms inves-
tigated in this paper to solve the online tracking optimization
problem.

V. SIMULATION STUDIES

A. Reference trajectory generation

In this section, the numerical simulation for the aeroas-
sisted spacecraft optimal guidance problem is presented. The

Algorithm 3 Pseudocode for the improved gradient method

1: procedure (Two nested structure)
2: Choose starting values 𝑧0 = (𝑒0, 𝑢0, 𝜆0, 𝑠0)
3: for 𝑘 := 0, 1, 2, ... do
4: (a). Check stopping criteria for the outer loop
5: (b). Choose 𝑑𝑒𝑘,0, 𝑑𝑢𝑘,0, 𝑑𝜆𝑘,0 and 𝑑𝑠𝑘,0
6: for 𝑙 := 0, 1, 2, ..., 𝑙𝑚𝑎𝑥 do
7: i. Determine 𝐷𝑢𝑘,𝑙, 𝐷𝑠𝑘,𝑙 and 𝜇𝑘,𝑙.
8: ii. Solve the KKT system described in Eq.(28).
9: iii. Apply the line search algorithm shown in

10: Eq.(29).
11: iv. If the inner loop solution can satisfy the
12: stopping condition of QP, break for-loop;
13: end for
14: (c). Find step length for the outer loop such that
15: the merit function can have a proper
16: improvement.
17: (d). Update the current searching point and go back
18: to line 3.
19: end for
20: Output the optimal solution
21: end procedure

mission scenario investigated in this study is different from
the classic reentry problem [33]. The aeroassisted spacecraft
re-enters the atmosphere to a predetermined position for ob-
servation and gathering of information of inaccessible areas.
Therefore, some of the state variables at the final time should
be specified to achieve the mission requirements. According
to Fig.3, the offline trajectory and real-time optimal feedback
guidance are designed based on the translational equations in
Eq.(1) and Eq.(2). The offline solution provides the reference
trajectory and it should be pre-designed. Then the inner loop
facilitates tracking of the reference trajectory in real time.

The offline spacecraft trajectory optimization
problem is formulated as a multi-objective problem
[17] and can be stated as follows: given the initial state
𝑥0 = [6450451.9𝑚, 0𝑑𝑒𝑔, 0𝑑𝑒𝑔, 7802.9𝑚/𝑠,−1𝑑𝑒𝑔, 90𝑑𝑒𝑔]𝑇

and final state [𝑟(𝑡𝑓 ), 𝜃(𝑡𝑓 ), 𝜑(𝑡𝑓 ), 𝑉 (𝑡𝑓 ), 𝛾(𝑡𝑓 )]
𝑇 =

[6421201.2𝑚, 38.57𝑑𝑒𝑔, 10.41𝑑𝑒𝑔, 4767.2𝑚/𝑠, 0𝑑𝑒𝑔]𝑇 , find
the optimal control sequences 𝑢* = [𝛼*, 𝜎*], which optimizes
the cost function without violating the path constraints.
Two objective functions are selected in the offline trajectory
design. The first objective is to minimize the final time so as
to complete the observation mission in the shortest possible
time interval (e.g. 𝐽1 = 𝑡𝑓 ). In addition, minimizing the total
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⎛⎜⎜⎝
𝐻𝑘 0 ∇ℎ(𝑒𝑘)𝑇 ∇𝑔(𝑒𝑘)𝑇
0 𝐷𝑢𝑘,𝑙 0 𝐷𝑠𝑘,𝑙

∇ℎ(𝑒𝑘) 0 0 0
∇𝑔(𝑒𝑘) 𝐼 0 0

⎞⎟⎟⎠Δ𝑑 = −

⎛⎜⎜⎝
𝐻𝑘𝑑𝑒𝑘,𝑙 +∇𝐽(𝑒𝑘) +∇ℎ(𝑒𝑘)𝑇 𝑑𝜆𝑘,𝑙 +∇𝑔(𝑒𝑘)𝑇 𝑑𝑢𝑘,𝑙

𝐷𝑠𝑘,𝑙𝑑𝑢𝑘,𝑙 − 𝜇𝑘,𝑙
ℎ(𝑒𝑘) +∇ℎ(𝑒𝑘)𝑑𝑒𝑘,𝑙

𝑔(𝑒𝑘) +∇𝑔(𝑒𝑘)𝑑𝑒𝑘,𝑙 + 𝑠𝑘 + 𝑒𝑇 𝑑𝑠𝑘,𝑙

⎞⎟⎟⎠ (28)

aerodynamic heating is also chosen as the second objective
since the vehicle structure integrity is largely affected by the
aerodynamic heating (e.g. 𝐽2 =

∫︀ 𝑡𝑓
𝑡0
�̇�(𝑡)𝑑𝑡). The algorithms

used in this stage are the Radau pseudospectral method
(RPM) and fuzzy physical programming method (FPP).
A detailed description in terms of these two algorithms
can be found in [17]. It is worth noting that in [17], the
authors generated an optimal multi-objective trajectory for
the aeroassisted spacecraft. In this research, apart from all the
mission requirements stated in [17], an additional observation
requirement is taken into account. That means one of the
aims of the guidance algorithm is to guide the vehicle to the
target region.

All the simulation results were carried out using Matlab
under Windows 7 and Intel (R) i7-3520M CPU, 2.90GHZ,
with 4.00 GB RAM. It should be noted that both the offline
and online optimization processes are carried out by using
the proposed two nested gradient method. After generating
the nominal time history with respect to the state and control
variables, the solutions are used as the references and provided
to the constructed MPC tracking algorithms.

B. Optimal tracking solutions

The effectiveness of the constructed guidance method is
analyzed in this section. The simulation results were carried
out under the following initial condition uncertainty:

|𝛿𝑟(𝑡0)| ≤ 1000(𝑚) |𝛿𝜃(𝑡0)| ≤ 0.1(𝑑𝑒𝑔)
|𝛿𝜑(𝑡0)| ≤ 0.1(𝑑𝑒𝑔) |𝛿𝑉 (𝑡0)| ≤ 50(𝑚/𝑠)
|𝛿𝛾(𝑡0)| ≤ 0.05(𝑑𝑒𝑔) |𝛿𝜓(𝑡0)| ≤ 0.05(𝑑𝑒𝑔)

(30)

The predictive horizon is set as: 𝑁 = 20𝑠. In the LMPC
case, the values of 𝑄 and 𝑅 used to generate the optimal
guidance law are obtained according to the Bryson’s rule [22].
A 1000-run Monto-Carlo study was performed to evaluate the
effectiveness and robustness of the two MPC schemes in the
presence of the dispersions in entry states and model errors.
The aerodynamic coefficients and atmospheric density were
perturbed normally up to 10%. The vehicle mass was perturbed
uniformly up to 5% with the nominal mass of 6309.43slug,
this gives a range of value of 5993.96slug to 6624.90slug. The
drag and lift coefficients were modeled as random Gaussian
distributions.

Figs.4-6 show the results of the trajectory tracking via
the NMPC guidance algorithm. Fig.4 and Fig.5 indicate the
trajectory tracking results between the nominal state trajec-
tories and the reference state trajectories. It can be observed
from Fig.4 and Fig.5 that the deviation between the obtained
results and the reference is relatively small. Furthermore, it
can be seen from Fig.5 that all the flight trajectories can
satisfy the heating and normal acceleration path constraints.
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Fig. 4: NMPC state tracking results

Time (s)
0 100 200 300 400 500 600 700

F
lig

ht
 p

at
h 

an
gl

e 
(d

eg
)

-1.5

-1

-0.5

0

0.5
Flight path angle vs. time

γ

γ
ref

γ-γ
ref

Time (s)
0 100 200 300 400 500 600 700

H
ea

di
ng

 a
ng

le
 (

de
g)

0

20

40

60

80

100
Heading angle vs. time

χ

χ
ref

χ-χ
ref

Time (s)
0 100 200 300 400 500 600 700

H
ea

tin
g 

(B
T

U
)

40

60

80

100

120

140

160

180
Heating vs. time

Time (s)
0 100 200 300 400 500 600 700

Lo
ad

 fa
ct

or

0

0.5

1

1.5

2

2.5
Normal acceleration vs. time

Fig. 5: NMPC state tracking and path constraints results

Fig.6 shows the results of the final longitude and latitude
error for 1000 Monto-Carlo simulations. It is worth noting
that for the observation mission considered in this paper,
it is desirable to use the online guidance law to guide the
spacecraft to the acceptable region. From the results shown
in Fig.6, it can be calculated that around 72.7% of the runs
can guide the vehicle to the desirable region (e.g. the inner
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Fig. 6: NMPC final entry longitude and latitude

circular area), while almost all the runs (e.g. 99.4%) can guide
the vehicle to be within the acceptable region (e.g. the outer
circular area). All the results indicate that the NMPC is able to
track the desired reference trajectory in the presence of model
uncertainty without violating path constraints.
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Fig. 7: LMPC state tracking errors

As for the LMPC case, Figs.7-11 show the results of
the trajectory tracking under the LMPC control with entry
dispersions and model uncertainties. The deviations between
the nominal trajectory and the reference trajectory are illus-
trated in Fig.7 and Fig.8, where the error is again small and
the difference can be omitted. Fig.9 illustrates the dispersion
values with respect to the final longitude and latitude. In all
of the Monto-Carlo runs, the vehicle can reach its desirable
region without violating the path constraints (see Fig.8). These
results confirm that the constructed LMPC scheme is feasible
and effective in solving the online aeroassisted spacecraft
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guidance problems in the presence of entry state perturbations
and model uncertainties.

In order to better show the state errors of the monto-carlo
simulation, Fig.10 and Fig.11 present the altitude, velocity and
flight path angle error histories obtained using the NMPC and
LMPC. It can be seen from the numerical results that com-
pared with the NMPC, LMPC can have a better performance
in terms on achieving smaller final error values. Besides, by
applying the LMPC control method, the tracking errors with
respect to the state variables are ultimately bounded. It should
be noted that according to Fig.11, the flight path angle error
history has some oscillations. This can be explained that the
tracking performance might be affected at the time period
where the nonlinearity of the reference trajectory is high.

Remark 2. For the LMPC control scheme, by selecting 𝑁 , 𝑄
and 𝑅, it always exists a finite horizon length such that the
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trajectory tracking error can be ultimately bounded, which can
be found in [34].

From the tracking results shown in Fig.4 to Fig.11, it
can be concluded that both the LMPC and NMPC schemes
constructed in Section III of this paper are able to generate
the optimal guidance command for the spacecraft observation
mission. When the perturbations and uncertainties are modeled
into the problem, the guidance law calculated via the two
MPC schemes can lead the tracking errors to a small value.
Moreover, since the path constraints are embedded in the MPC
optimization formulation, the obtained flight trajectories will
not violate the path constraints during the entire flight mission.

C. Comparative analysis

To further compare the solutions obtained via LMPC and
NMPC schemes, attention is given to the optimization process
of these two MPC schemes. By applying the newly proposed
two nested gradient method and standard IP approach, the
convergence results (e.g. the number of maximum, minimum,
average solution finding iterations and the total CPU time),
for each control loop, are tabulated in Table I. In order to
preserve the online performance, for each control loop, the
maximum number of solution finding iteration for the two
optimization algorithms is set as 50. As can be seen from
Table I, the average computational time to solve one optimal
control problem over the finite prediction horizon is less than
0.5𝑠 for the LMPC and NMPC cases. This could potentially
allow the real-time application of these two schemes. The
two nested gradient method investigated in this paper has
generally better performance in terms of convergence ability
when compared with the IP method for both LMPC and
NMPC cases. Moreover, regarding the CPU time, the newly
proposed NLP solver can also have positive influences in
terms of reducing the processing time, which is important
especially in the online guidance law design. Therefore, it is
advantageous to use the investigated gradient NLP solver in
solving the online MPC-based spacecraft guidance problems.

From Table I, it can be observed that there is a significant
difference between the NMPC case and LMPC case in terms of
the performance of optimization process. For each MPC loop,
the NMPC case takes more solution-finding iterations than the
linear case. This is because, from the linear MPC optimization
formulation (Eq.(25)), the original problem can be convexified
to some extent, which means the problem becomes much
smoother. Therefore, it becomes easier for the optimization
methods to achieve the global convergence [32]. However, in
the nonlinear case, the resulting NLP problem to be solved
online is usually nonconvex and has a large number of opti-
mization parameters. This will affect the number of solution-
finding iterations significantly. Consequently, the optimization
problem at each time instant may not be solvable efficiently
or reliably.

Moreover, comparative studies were also performed to
compare the guidance performance achieved by applying the
proposed two MPC solvers and another promising strategy. For
example, a neural-network optimization based NMPC design
reported in [24]. This guidance strategy applies a specific
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TABLE I: Average optimization performance of the LMPC and NMPC

NMPC Average iteration Max iteration Min iteration Average CPU time (s) Max CPU time (s) Min CPU time
IP method 22 50 11 0.441 0.907 0.220

Two nested method 18 50 10 0.324 0.843 0.233
LMPC Average iteration Max iteration Min iteration Average CPU time (s) Max CPU time (s) Min CPU time

IP method 16 41 14 0.342 0.743 0.285
Two nested method 11 28 8 0.228 0.487 0.178

TABLE II: Statistics of terminal state dispersions

State Mean Standard deviation
LMPC NMPC Controller [24] LMPC NMPC Controller [24]

Altitude, m -0.0108 -35.7233 -15.7599 32.3619 128.8344 100.6163
Longitude, deg 5.03× 10−4 -0.0174 -0.0197 0.0223 0.0499 0.0591
Latitude, deg 3.96× 10−5 -0.0118 -0.0112 0.0176 0.0307 0.0303
Velocity, m/s −3.52× 10−4 -25.2434 -28.7414 0.0317 22.7690 28.9327
Path angle, deg 9.93× 10−5 5.89× 10−4 1.05× 10−4 0.0122 0.0167 0.0169
Heading angle, deg −4.83× 10−4 3.62× 10−3 −1.51× 10−3 0.0118 0.0244 0.0258

primal-dual neural-network optimization technique to calculate
the optimal control command. Table II presents the statistical
analysis of different guidance schemes in terms of the terminal
state dispersions. From Table II, it can be seen that the
guidance accuracy of the NMPC strategy developed in this
paper and the controller reported in [24] is comparable. By
applying the improved gradient-based optimization method,
the LMPC scheme investigated in this study can perform better
in terms of reducing the terminal state dispersions.

VI. CONCLUSION

In this paper, the linear and nonlinear MPC models were
constructed and applied to solve the online aeroassisted vehicle
optimal guidance problems. The two MPC schemes solve the
tracking optimal control problem in a receding manner and
allow flight path limitations that ensure safety of the flight
vehicle to be taken into account. The application of MPC
for the online guidance problems requires a high-efficiency
optimization solver that can satisfy the real-time requirement.
The optimization method applied in this paper is adjustable
in terms of computational complexity such that it can reduce
the computational time and match the real-time requirements.
Simulation studies indicate that both the linear and nonlinear
MPC schemes are able to track the pre-designed reference
trajectories for the aeroassisted space vehicle. In particular,
the Monto-Carlo simulations further confirm the effectiveness
of the MPC algorithm since it can guide the vehicle to the
acceptable region without violating path constraints. More-
over, according to the convergence analysis, the two nested
gradient optimization method is well suited to the two MPC
formulations. Therefore, it is effective and efficient to use the
developed guidance algorithm to solve the online spacecraft
trajectory tracking problems.

APPENDIX

The non-zero components of the discrete-time system
matrix 𝐴(𝑘) = [𝐴𝑖𝑗(𝑘)] ∈ ℜ6×6 are defined in Eq.(A.1) and
Eq.(A.2), where 𝑘 = 𝜌𝑆𝑟𝑒𝑓/2𝑚, 𝐶𝐿 and 𝐶𝐷 are lift and drag
coefficients, respectively.

Similarly, 𝐵(𝑘) = [𝐵𝑖𝑗(𝑘)] ∈ ℜ6×3 is given by:

𝐵41(𝑘) = −𝑘𝐶𝐷𝛼
𝑉 2
𝑟𝑒𝑓 (𝑘)Δ𝑡

𝐵51(𝑘) = 𝑘𝐶𝐿𝛼𝑉𝑟𝑒𝑓 (𝑘) cos𝜎𝑟𝑒𝑓 (𝑘)Δ𝑡
𝐵52(𝑘) = −𝑘𝐶𝐿𝑉𝑟𝑒𝑓 (𝑘) sin𝜎𝑟𝑒𝑓 (𝑘)Δ𝑡
𝐵61(𝑘) = 𝑘𝐶𝐿𝛼

𝑉𝑟𝑒𝑓 (𝑘) sin𝜎𝑟𝑒𝑓 (𝑘)Δ𝑡
𝐵62(𝑘) = 𝑘𝐶𝐿𝑉𝑟𝑒𝑓 (𝑘) cos𝜎𝑟𝑒𝑓 (𝑘)Δ𝑡
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𝐴14(𝑘) = sin 𝛾𝑟𝑒𝑓 (𝑘)Δ𝑡 𝐴15(𝑘) = 𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘)Δ𝑡

𝐴21(𝑘) = −𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘) sin𝜒𝑟𝑒𝑓 (𝑘)
𝑟𝑟𝑒𝑓 (𝑘)2 cos𝜑𝑟𝑒𝑓 (𝑘)

Δ𝑡 𝐴23(𝑘) =
𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘) sin𝜒𝑟𝑒𝑓 (𝑘) tan𝜑𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘) cos𝜑𝑟𝑒𝑓 (𝑘)
Δ𝑡

𝐴24(𝑘) =
cos 𝛾𝑟𝑒𝑓 (𝑘) sin𝜒𝑟𝑒𝑓 (𝑘)

𝑟 cos𝜑𝑟𝑒𝑓 (𝑘)
Δ𝑡 𝐴25(𝑘) = −𝑉 cos 𝛾𝑟𝑒𝑓 (𝑘) sin𝜒𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘) cos𝜑𝑟𝑒𝑓 (𝑘)
Δ𝑡

𝐴26(𝑘) =
𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘) cos𝜒𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘) cos𝜑𝑟𝑒𝑓 (𝑘)
Δ𝑡 𝐴31(𝑘) = −𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘) cos𝜒𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘)2
Δ𝑡

𝐴34(𝑘) =
cos 𝛾𝑟𝑒𝑓 (𝑘) cos𝜒𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘)
Δ𝑡 𝐴35(𝑘) = −𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘) cos𝜒𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘)
Δ𝑡

𝐴36(𝑘) = −𝑉𝑟𝑒𝑓 (𝑘) cos 𝛾𝑟𝑒𝑓 (𝑘) sin𝜒𝑟𝑒𝑓 (𝑘)
𝑟𝑟𝑒𝑓 (𝑘)

Δ𝑡 𝐴41(𝑘) = (
𝑘𝐶𝐷𝑉𝑟𝑒𝑓 (𝑘)

2

𝐻 +
2𝑔 sin 𝛾𝑟𝑒𝑓 (𝑘)

𝑟𝑟𝑒𝑓 (𝑘)
)Δ𝑡

𝐴44(𝑘) = 1− 2𝑘𝐶𝐷𝑉𝑟𝑒𝑓 (𝑘)Δ𝑡 𝐴45(𝑘) = −𝑔 cos 𝛾𝑟𝑒𝑓 (𝑘)Δ𝑡

(𝐴.1)

𝐴51(𝑘) = −𝑉𝑟𝑒𝑓 (𝑘)(𝑘𝐶𝐿 cos𝜎𝑟𝑒𝑓 (𝑘)
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cos 𝛾𝑟𝑒𝑓 (𝑘)
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2

𝑉𝑟𝑒𝑓 (𝑘)2𝑟𝑟𝑒𝑓 (𝑘)
cos 𝛾𝑟𝑒𝑓 (𝑘)Δ𝑡
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2

𝑉𝑟𝑒𝑓 (𝑘)𝑟𝑟𝑒𝑓 (𝑘)
Δ𝑡
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