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Abstract

The population density of wildlife reservoirs contributes to disease transmission risk for

domestic animals. The objective of this study was to model the African buffalo distribution

of the Kruger National Park. A secondary objective was to collect field data to evaluate

models and determine environmental predictors of buffalo detection. Spatial distribution

models were created using buffalo census information and archived data from previous

research. Field data were collected during the dry (August 2012) and wet (January 2013)

seasons using a random walk design. The fit of the prediction models were assessed

descriptively and formally by calculating the root mean square error (rMSE) of deviations

from field observations. Logistic regression was used to estimate the effects of environ-

mental variables on the detection of buffalo herds and linear regression was used to iden-

tify predictors of larger herd sizes. A zero-inflated Poisson model produced distributions

that were most consistent with expected buffalo behavior. Field data confirmed that envi-

ronmental factors including season (P = 0.008), vegetation type (P = 0.002), and vegeta-

tion density (P = 0.010) were significant predictors of buffalo detection. Bachelor herds

were more likely to be detected in dense vegetation (P = 0.005) and during the wet

season (P = 0.022) compared to the larger mixed-sex herds. Static distribution models

for African buffalo can produce biologically reasonable results but environmental factors

have significant effects and therefore could be used to improve model performance.

Accurate distribution models are critical for the evaluation of disease risk and to model

disease transmission.

Introduction

The population density of wildlife species that are reservoirs for disease has an important and

complex relationship with the risk of disease in domestic hosts [1]. The rate of adequate

PLOS ONE | https://doi.org/10.1371/journal.pone.0182903 September 13, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hughes K, Fosgate GT, Budke CM, Ward

MP, Kerry R, Ingram B (2017) Modeling the spatial

distribution of African buffalo (Syncerus caffer) in

the Kruger National Park, South Africa. PLoS ONE

12(9): e0182903. https://doi.org/10.1371/journal.

pone.0182903

Editor: Arda Yildirim, Gaziosmanpasa Universitesi,

TURKEY

Received: April 24, 2017

Accepted: July 26, 2017

Published: September 13, 2017

Copyright: © 2017 Hughes et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data

collected by the authors are within the paper and

its Supporting Information files; however, spatial

data should be obtained through the SANParks

repository (http://dataknp.sanparks.org/sanparks/)

by submitting a request to Chenay Simms, GIS/

Remote Sensing Analyst, Kruger National Park,

Email: chenay.simms@sanparks.org, Tel: +27 (0)

13 735 4378.

Funding: This work was funded by the Research

Development Programme (Project No. A0T384) at

https://doi.org/10.1371/journal.pone.0182903
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182903&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182903&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182903&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182903&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182903&domain=pdf&date_stamp=2017-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182903&domain=pdf&date_stamp=2017-09-13
https://doi.org/10.1371/journal.pone.0182903
https://doi.org/10.1371/journal.pone.0182903
http://creativecommons.org/licenses/by/4.0/
http://dataknp.sanparks.org/sanparks/
mailto:chenay.simms@sanparks.org


contacts, the duration of infectiousness, herd immunity, and level of disease in the population

are all important drivers of infectious disease transmission. Spatio-temporal distributions are

frequently employed as approximations of animal contacts and therefore describing these dis-

tributions is an important first step in the development of disease transmission models. The

hypothesis of the present study was that spatial heterogeneity in African buffalo numbers

could be explained by herd-level and environmental predictors.

Herd behavior, critical population threshold, and disease transmission parameters are

important considerations for modeling etiologies that have wildlife reservoirs [1]. Disease

transmission occurs through the direct or indirect contact of an infected host with a suscepti-

ble animal [2]. Many modeling approaches assume that contacts occur via a homogenous mix-

ing population, but more complex contact patterns are better approximations to reality [3].

Infectious disease models should therefore account for herd-level factors to be more accurate

representations of disease transmission.

The African buffalo (Syncerus caffer) is a large, non-domestic bovid found throughout

much of southern Africa. Distribution patterns are influenced by season, topography, and

herd size [4]. The animals must drink at least once per day and this requirement controls daily

movements, especially during the dry season [5]. Buffalo herds vary tremendously in size [6,

7]. Herds range from one individual to over 1000 and the herd sizes in a population tend to fol-

low an exponential distribution or power curves with negative exponents [6]. Herds consist

mainly of related females and their offspring, with males joining during the breeding season.

Older males are often solitary or form small bachelor herds.

Kruger National Park (KNP), situated within the northeastern region of South Africa, is

one of Africa’s largest wildlife reserves. Foot-and-mouth disease (FMD) is endemic in KNP

and African buffalo are the reservoir host for the three Southern African Territories sero-

types (SAT 1–3) of the FMD virus [8, 9]. African buffalo are believed to be the major source

of FMD virus transmission to domestic livestock in the areas surrounding KNP [10]. Stray

buffaloes pose a risk [11] and gaps in game-proof fences can be used by wildlife to escape,

or livestock to enter [12, 13]. Transmission events frequently occur due to close contact

between acutely infected and susceptible animals [14]. The spatial distribution of buffalo in

KNP is therefore expected to affect the risk of FMD virus transmission to livestock in sur-

rounding areas.

There are few published models related to the spatial distribution of African buffalo.

Regression techniques including spatial autocorrelation have been used to predict African buf-

falo occupancy in KNP [15], but distribution maps were not presented in the published report.

African buffalo movement patterns have also been modeled [16], but individual movement

patterns were not generalized to population-level distributions. Forage quality and water avail-

ability are known to influence habitat usage [17–21] but occupancy or distribution maps have

not be published based on these data.

Animal distribution models are important for disease transmission modeling and risk

assessment. Disaggregation is a common technique used to create distribution maps from

aggregated livestock data [22]. Regression techniques incorporating spatial autocorrelation

[15] and Poisson kriging have both been used previously to describe the distribution of wildlife

in KNP [23]. No previous studies could be identified that compared modeling strategies nor

formally assessed the impact of including spatial autocorrelation on the validity of produced

animal distributions. The aim of this study was to model the African buffalo (Syncerus caffer)
distribution of KNP using four different modeling approaches. We hypothesized that there

would be spatial heterogeneity in the buffalo distribution that could be partially explained by

environmental factors.
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Materials and methods

Study site

The study site was the Kruger National Park (KNP), approximately 20,000 km2 in the north-

eastern region of South Africa (Fig 1). It has a subtropical climate with a wet season (October

to March) and a dry season (April to September). Rainfall only typically occurs during the wet

season and the amount of rain also varies spatially. The park has an annual average of 750 mm

of rain in the south compared to 440 mm in the north. The vegetation also differs greatly

within the park with a large amount of thick mopane shrubland in the north and open grass-

land savanna in the south [24].

Data collection

The study included environmental data produced for the study area, buffalo census data from

the study area, tracking data collected from collared buffalo within smaller regions of the study

area, and field data collected for model evaluation. All data used for the development of the

animal distribution models were obtained from the South African National Parks (SANParks)

repository. Ground cover variables (herbaceous cover, tree cover, bare ground) were originally

derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data [25]. Environ-

mental data included river locations, soil composition, mean annual rainfall, and landscape

types. Buffalo census data, which are collected by helicopter-based surveys during the dry sea-

son, were obtained for the 11 years preceding the study (2001–2011). During the census, heli-

copters fly along the major rivers driving the buffalo into smaller areas to facilitate counting.

Tracking data from collared buffalo were collected during previous research projects [26, 27].

Fig 1. Kruger National Park’s location within South Africa and other southern African countries.

https://doi.org/10.1371/journal.pone.0182903.g001
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The current study was approved by the Animal Ethics Committee of the Faculty of Veterinary

Science, University of Pretoria (Project No. V083-11).

The KNP road network was chosen as the method to collect field data due to feasibility and

costs associated with other sampling approaches. The public road network of KNP is irregular

and therefore a random walk [28] design was used to collect field data rather than the more

common quadrant or transect sampling approaches. Random route approaches are more com-

monly used in sociological studies despite the potential for selection bias [29]. One data set

was collected during the dry season (August 2012) and another during the wet season (January

2013). The KNP was divided into three areas (northern, central, and southern) for field data

collection. Four locations were purposely selected within each KNP area that allowed for the

most divergent starting locations (Fig 2). The starting area for each sampling trip (August and

January) was randomly selected and then the order of daily starting locations was also deter-

mined randomly. It was necessary to stratify KNP into three areas for sampling to reduce the

required distance to get to the next starting location after the completion of the daily sampling.

A route was created from each starting location: a random number generator was used to

determine turning direction (0-back, 1-forward, 2-left, 3-right) based on a map of the KNP

public road network. Each starting location was assigned a numerical value and a random

number generator was again used to determine the sequence of starting locations. Each start-

ing location was used twice, thus producing a total of 24 routes. Each observation day con-

sisted of a five-hour drive along the random route, which was determined prior to the

sampling day using GIS maps. Data were collected when buffalo were observed within 250 m

of the observation vehicle. Distance to the spotting vehicle was determined using a golf spot-

ting scope (Binolux Golf Scope, Compass Industries, Inc., NY, USA) and buffalo numbers

were manually counted. Additional data that were collected included the GPS location of the

buffalo, herd composition (bachelor or mixed), time of day, temperature, humidity, baromet-

ric pressure, visible water source, savanna type, and a subjective measure of vegetation density.

A dense landscape was defined as an area that contained trees or shrubs covering 50% or more

of the area adjacent to the road and in which the buffalo were situated. An open landscape was

one in which 5% or less of the area of interest contained trees or shrubs. Data were also

recorded at the start of daily sampling and at the end of each hour during sampling. Data col-

lection during the January sampling was not completed due to flooding of KNP and the subse-

quent closing of public roads.

Spatial distribution modeling

Disaggregation based on environmental variables. The disaggregation model was based

on an environmental dataset that consisted of mean annual rainfall, ground water distribution,

soil type, savanna type, rivers, percent herbaceous cover [30], percent tree cover, and percent

bare ground. All data were imported into commercial software (ArcGIS Desktop 10.3 ESRI

Corp. Redlands, CA, USA) for spatial analysis and the base spatial unit was a 1 km2 grid cell.

Buffers were applied to the rivers shapefile at an arbitrarily chosen 5-km interval (5, 10. . .30)

using the Buffer function within the Analysis Tools of the ArcToolbox. This was done to deter-

mine the distance of buffalo to the nearest water source. A previously developed landscape

classification system was used to create two predictor variables for savanna and soil types [31].

One kilometer square grids were created using the Fishnet function within the Feature Class

component of the Data Management Tools of the ArcToolbox. Each fishnet grid cell was

assigned a savanna type and a soil type based on the category that covered the majority of the

area and was performed using the Zonal Statistics function within the Zonal component of the

Spatial Analyst Tools of the ArcToolbox. Layers were joined into a single data set for each 1
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km2 cell. The resulting dataset was a matrix of 19,575 grid cells classified by nine environmen-

tal characteristics: annual rainfall, ground water distribution, percent herbaceous cover, per-

cent woody cover, percent bare ground, proximity to a water source, major versus minor

water source, soil type, and savannah type.

Fig 2. Kruger National Park public gates, camps available for overnight stays, and tarred public

roads.

https://doi.org/10.1371/journal.pone.0182903.g002
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Buffalo census data were assigned to the same fishnet grid cell system used to summarize

the environmental data and averaged for the eleven-year study period (2001–2011). The excep-

tion was the data corresponding to the proximity to water source variable. Tracking data were

used to calculate the suitability index for this variable because census data are biased; during

the census buffalo are counted along the major rivers. The suitability analysis was performed

independently for each of the nine environmental predictor variables. The total number of

buffalo observed in each cell type was divided by the total number of grid cells of that same

type. An overall suitability index for each grid square was calculated as the sum of the

indexes for all predictor variables. The approach yields an equivalent result as calculating an

unweighted mean of the indexes. The equal weighting of predictors has been used previously

for a different wildlife species [32] and a valid system of weighting for African buffalo was not

available from the literature. The 2011 population total (42,163 buffalo) was distributed across

the KNP proportional to calculated suitability values to produce estimated locations for the

2011 population.

Poisson kriging. A previously described method of Poisson kriging used for transect lines

[23] was modified to account for irregularly spaced census information. Thiessen polygons,

the area around a point that is closest to that point than any other point in the dataset, were

created around the locations of observed buffalo in the census data. These polygons were

formed by the perpendicular bisectors of the line segments between each pair of points. Spatial

densities were calculated as the count of buffalo in each polygon divided by its corresponding

area. SpaceSTAT (BioMedware, Ann Arbor, MI, USA) was used to compute Poisson vario-

grams and to Poisson krige from the census data to the August 2012 and January 2013 field

data validation points. Census data were then Poisson kriged to the 1 km2 grids to create a con-

tinuous surface. The detection probability of smaller groups of buffalo is assumed to be less

than a larger herd occupying the same spatial area. For this reason, counts associated with low

spatial densities (ie lower numbers of buffalo in larger areas) are less likely to be accurate and

were therefore down-weighted during the kriging process. The kriging function was weighted

to give more importance to more reliable data pairs based on small observational areas [33,

34]. One divided by the observational area was used as the denominator for each observation

as the weighting factor for this reason. A complete description of the Poisson kriging approach

can be found in the previous publications [33, 34].

Zero-inflated Poisson (ZIP) model. A zero-inflated Poisson (ZIP) model is the combina-

tion of logistic and Poisson regression likelihood functions [35]. The log likelihood is the mul-

tiplication of the binary component and a Poisson model truncated at zero. Zero-inflated

Poisson models were built using the 1 km2 grid environmental data described previously.

However, quantitative variables were first standardized so that each distribution had a mean

value of zero and a standard deviation of one. The number of buffalo from the tracking data

were summed using the Zonal Statistics function within the Zonal component of the Spatial

Analyst Tools of the ArcToolbox. Calculations were performed based on the same fishnet used

to summarize environmental predictors. Environmental data were linked to the tracking data

counts and exported for analysis within commercial statistical software (STATA version 11.0,

StatCorp, College Station, TX, USA). The statistical outcome for the analysis was the buffalo

counts and the environmental variables were evaluated as predictors. Environmental variables

were first assessed for collinearity using Spearman’s rho and only a single variable was retained

if the correlation coefficient was > 0.9. A high criterion was chosen due to the large data set

and the expectation that environmental predictor variables would be highly correlated. A

backwards step-wise approach was used to build a reduced main effects model. Environmental

predictors were removed one-by-one based on the largest Wald P value in either the logistic or

Poisson component of the likelihood function. Each removed variable was subsequently added
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back into the reduced model one-by-one and retained if inclusion improved the McFadden’s

adjusted pseudo-r2 value. Regression coefficients from the final main effects only model were

inserted into program code (WinBugs version 1.4, MRC Biostatistics Unit) to fit a ZIP model

using standardized environmental predictor data for the entirety of the KNP. Predicted buffalo

counts per 1 km2 grid cell were adjusted to a total population of 42,163 individual buffalos

(2011 census).

Conditional autoregressive (CAR). A zero-inflated Poisson (ZIP) model incorporating

spatial dependence terms was developed through the modification of a previously published

technique [36]. The general model form follows that of the previous (ZIP) section but also

includes a bivariate conditional autoregressive (CAR) random effect to account for spatial

autocorrelation [37].

Markov chain Monte Carlo (MCMC) techniques using available statistical software (Win-

Bugs version 1.4, MRC Biostatistics Unit, Cambridge, UK) were used to evaluate multiple

CAR models. A spatial matrix for the entire park was created using available software (GeoDa

Center for Geospatial Analysis and Computation, The University of Chicago, Chicago, Illinois,

USA). The matrix was developed using rook weighting and converted to WinBugs code using

the web-based exploratory spatial data analysis tool available at GeoDa (http://spatial.

uchicago.edu/geoda-web). The CAR models were implemented with a 100,000 iteration burn-

in that only retained every fifth iteration to reduce autocorrelation. Predicted values were

obtained from an additional 20,000 iterations after burn-in. Convergence was assessed by eval-

uating plots of parameter iterates and by calculating the Gelman-Rubin statistic. Predicted buf-

falo counts per 1 km2 grid cell were then adjusted to the total population of the 2011 buffalo

census.

A base CAR model was developed that only included spatial autocorrelation; no environ-

mental predictors were included in either the logistic or Poisson component of the ZIP model

(S1 Code). Subsequent CAR models contained the spatial autocorrelation terms in addition to

environmental variables. Standardized environmental data and buffalo counts from the track-

ing data were used in the CAR models. Multiple models were evaluated, including limiting

continuous variables to the Poisson equation and categorical predictors to the logistic compo-

nent. A backwards stepwise model building approach was performed in effort to identify an

adequate prediction model. Convergence was evaluated as described previously.

Data analysis

Field data from the road-based survey were spatially projected using commercial software

(ArcGIS Desktop 10.3 ESRI Corp. Redlands, CA, USA). The 1 km2 fishnet developed for the

spatial prediction models was used to extract data from the field observations using the Join

function within the GIS software. Predictions from all four modeling methods were linked

in this manner. The KNP road network was used to make field observations and therefore

only the 1 km2 grid cells adjacent to the travelled roads were used for evaluation of spatial

models. The shapefile of the travelled roads (3,216 1 km2) was spatially joined to the fishnet

including the model predictions and observed buffalo counts. The resulting attribute table

was exported for analysis in a commercial spreadsheet program (Microsoft Office Excel

2010, Microsoft Corporation, Redmond, WA). A subset of the linked data corresponding to

the central portion of the park (from the line marking the Tropic of Capricorn south to the

level of the Talamati camp; latitude: -23.5 to -24.6; 1,355 1 km2 grid cells) was selected using

the select by polygon tool in the GIS software and exported. This restriction was performed

due to flooding in KNP during January 2013, which prevented complete data collection for

the wet season.
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The model evaluation data were analyzed by entering formulas into the spreadsheet pro-

gram. The sum of squared errors (SSE) was calculated as the sum of the squared deviations

between the observed and predicted buffalo counts for each 1 km2 grid cell after transforma-

tion using the natural logarithm. This sum was divided by the total number of observations

and the square root was taken to calculate the root mean square error (rMSE), which was used

to descriptively compare the fit of the four models. Lower values of the rMSE indicate better

predictive ability of the model. Spearman’s rho was also used to compare model predictions to

collected road-based observations.

Herd size data collected during the road-based survey were assessed for normality by plot-

ting histograms, calculating descriptive statistics, and performing the Shapiro-Wilk test.

Data violated the normality assumption and were transformed using the natural logarithm

to improve the distributional form prior to statistical analysis. Correlations between quanti-

tative data were estimated using Spearman’s rho. The associations between detection of a

buffalo herd and environmental predictors were estimated using logistic regression. Loca-

tions where buffalo were observed were compared to the hourly environmental data collec-

tion sites (no buffalo). Logistic regression was also used to identify environmental predictors

of bachelor buffalo versus mixed-sex herds. Linear regression was used to identify significant

predictors of increasing herd size. In all situations, univariate screening models were fit and

all variables where P < 0.20 were included for building multivariable models. Multivariable

models were built using a backwards stepwise procedure and each variable was removed

one-by-one based on the largest Wald (logistic regression) or F test (linear regression) P

value. Three-level categorical variables were reclassified as dichotomous when one of the lev-

els had a significant Wald statistic in absence of overall variable significance. The stepwise

procedure continued until all remaining main effect terms were P < 0.05. Each variable

removed during the stepwise procedure was individually entered back into the reduced

model and retained if the factor was significantly associated with the outcome. Models were

constructed to investigate the primary effects of variables and therefore interaction terms

were not assessed. The fit of the final multivariable models were assessed based on Hosmer-

Lemeshow goodness-of-fit tests (logistic regression) or r2 calculations (linear regression).

Statistical analyses were performed in commercially available software (IBM SPSS Statistics

23, International Business Machines Corp, Armonk, NY, USA) and results were interpreted

at the 5% level of significance.

Results

The disaggregation model produced predicted values for herd sizes ranging from zero to five

(interquartile range (IQR) 2–2), with the majority of cells containing two buffalo. Predictions

from the Poisson kriging model suggested that herds typically contained less than ten animals

(IQR 0–3). There were scattered locations that contained large herd predictions (approxi-

mately 1% of the total area); however, most areas contained predictions of less than 10 buffalo

(the majority of cells were predicted to have zero buffalo). The ZIP model produced the most

biologically reasonable distribution map based on herd sizes ranging from 1 individual to over

500 and the spatial distribution was less uniform than the other modeling approaches. The

majority of cells contained no buffalo, but almost half of the area was predicted to contain

herds that ranged from less than ten animals to over 200 animals (IQR 0–1). A CAR model

including only spatial correlation (no environmental data) produced predictions with

reasonable values (range 0–222, IQR 0–1) but an unrealistic distribution clustered around

the location of the data used for development of the model (tracking data). The four model

prediction maps are presented as supplemental material (S1 Fig). CAR models that included
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environmental predictor variables (ZIP model including the spatial autocorrelation) would

not converge and, therefore, no distribution maps could be produced.

All models had similar rMSE values with limited variability between the two sampling sea-

sons (Table 1). The CAR model, which did not contain any of the environmental variables,

performed the best out of the four models when evaluated for the entire KNP despite the unre-

alistic spatial distribution that was produced. The ZIP model performed the best based on the

central-only subset of KNP. This model was the second best (based on relative rMSE) when

evaluated for the entire KNP. This model also predicted populations that were dispersed

throughout the park rather than the clustered values predicted by the CAR model. However,

the ZIP model did not produce predictions that were significantly correlated with the collected

field data.

The results from the ZIP model were the most consistent with buffalo behavior and despite

the lack of a significant correlation, the observations were relatively consistent with the pre-

dicted high density areas (Fig 3). The subjective consistency of the observations appeared

stronger for the sampling that was performed during the dry season. However, there was an

apparent lack of consistency in the southern region of KNP where very few herds were

observed despite areas of large predicted herd sizes.

The roads travelled for field data collection were the same during the dry and wet seasons

(Fig 4), but only 57% of the sampling (16/28 days) was completed during the wet season (Janu-

ary 2013) because of heavy rains and flooding of the road network. The median observed herd

size during the dry season was 45 animals (range 1–1,200; IQR 3–100; n = 37) and 4.5 animals

(range 1–250; IQR 2–46; n = 34) during the wet season. More buffalo groups were observed

during the wet season (P = 0.008), in bush-type vegetation (P = 0.002), in lower vegetation

density areas (P = 0.010), and in northern regions of KNP (P< 0.001; Table 2; S1 & S2 Tables).

Bachelor buffalo herds were more frequently observed during the wet season (P = 0.022) and

in denser vegetation (P = 0.005) compared to the mixed-sex herds (Table 3; S3 Table). Bachelor

herd sizes were smaller than the mixed-sex herds (P < 0.001; Table 4; S4 Table). When adjust-

ing for bachelor herds, dry season herds (P = 0.029), herds observed in bush-type vegetation

Table 1. Root mean square error (rMSE) and Spearman’s rho correlation between predicted and observed buffalo counts for observations in Kru-

ger National Park (KNP), South Africa during 2012. Data presented for the entire KNP road network and a subset of the central portion of the park corre-

sponding to the region with complete sampling during both seasons.

Region Model Date rMSE Spearman’s rho (P value)

Entire KNP Zero-inflated Poisson August 2012 2.17 0.027 (0.121)

January 2013 2.10 -0.017 (0.347)

Poisson kriging August 2012 2.44 -0.033 (0.064)

January 2013 2.35 0.052 (0.003)

Conditional autoregressive August 2012 1.79 0.077 (<0.001)

January 2013 1.71 0.027 (0.132)

Disaggregation August 2012 2.61 -0.014 (0.440)

January 2013 2.56 -0.022 (0.214)

Central area Zero-inflated Poisson August 2012 2.18 0.051 (0.061)

January 2013 2.02 -0.053 (0.053)

Poisson kriging August 2012 2.50 0.009 (0.751)

January 2013 2.39 0.058 (0.034)

Conditional autoregressive August 2012 2.37 -0.021 (0.435)

January 2013 2.24 -0.020 (0.467)

Disaggregation August 2012 2.59 -0.006 (0.831)

January 2013 2.50 0.015 (0.591)

https://doi.org/10.1371/journal.pone.0182903.t001
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(P = 0.019), and herds observed in less dense vegetation (P< 0.001) were significantly larger.

Collected field data are available as Supporting Information (S1 File).

Discussion

The study reported here estimated the spatial distribution of the African buffalo (Syncerus caf-
fer) of KNP using four different modeling approaches to assess the suitability of approaches for

developing disease transmission models. African buffalo herds vary greatly in size, from 1 indi-

vidual to more than 1000, and the probability distribution of herd sizes in a population tends

to follow exponential distributions or negative power curves [6]. A biologically reasonable

herd size distribution is one in which both very small and very large herds are present with

Fig 3. Zero-inflated Poisson regression model predictions of buffalo herd sizes within Kruger National Park overlaid with

observed herds during the dry season (August 2012, left pane) and the wet season (January 2013, right pane).

https://doi.org/10.1371/journal.pone.0182903.g003
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an average of approximately 250 individuals [7]. The hypothesis of the present study was that

spatial heterogeneity in African buffalo numbers could be explained by herd-level and envi-

ronmental predictors. We also evaluated whether or not spatial autocorrelation would be

important because regression approaches that exclude spatial autocorrelation over-estimate

the effects of landscape variables [38]. The results of the present study suggest that the presence

of African buffalo depends upon the herd structure and environmental factors but the effects

of spatial autocorrelation were inconclusive.

There was no apparent seasonal effect on prediction error or correlation when the four

modeling approaches were evaluated. The disaggregation method provided results that distrib-

uted the population too evenly over the entire park causing low population values in every cell.

These are unrealistic predictions based on the known herd dynamics of the African buffalo.

Fig 4. Field sampling starting locations and routes travelled during the dry season field observations (August 2012, left pane) and

the wet season (January 2013, right pane).

https://doi.org/10.1371/journal.pone.0182903.g004
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Table 2. Multivariable logistic regression to identify predictors of observing buffalo herds based on field data collected for 105 detected herds of

buffalo in Kruger National Park during August 2012 and January 2013 compared to 234 hourly time points without buffalo observations.

Variable level Buffalo observations (n) Total locations (n) Odds ratio (95% CI) Wald P value

Season Dry (August) 56 200 0.50 (0.30, 0.83) 0.008

Wet (January) 49 139 Referent

Vegetation type Bush 78 203 2.39 (1.37, 4.15) 0.002

Mixed or tree 27 136 Referent

Vegetation density More open 26 54 2.36 (1.22, 4.54) 0.010

Other 79 285 Referent

Latitude Northern region 54 115 3.83 (2.26, 6.47) <0.001

Other 51 224 Referent

CI = confidence interval.

Hosmer and Lemeshow chi-square = 2.89, df = 6, P = 0.823.

https://doi.org/10.1371/journal.pone.0182903.t002

Table 3. Multivariable logistic regression to identify predictors of observing bachelor herds in 104 herds* of buffalo in Kruger National Park identi-

fied during August 2012 and January 2013.

Variable level Buffalo observations (n) Total locations (n) Odds ratio (95% CI) Wald P value

Season Dry (August) 21 55 0.38 (0.16, 0.87) 0.022

Wet (January) 29 49 Referent

Vegetation density Dense 18 25 4.24 (1.53, 11.7) 0.005

Other 32 79 Referent

*The herd type could not be determined for one herd.

CI = confidence interval.

Hosmer and Lemeshow chi-square = 1.019, df = 2, P = 0.601.

https://doi.org/10.1371/journal.pone.0182903.t003

Table 4. Multivariable linear regression for the estimation of effects of predictor variables on observed buffalo herd size* in 104 herds† of buffalo

in Kruger National Park identified during August 2012 and January 2013.

Variable level Total herds (n) Slope estimate (95% CI) Student’s t P value

Bachelor herd

No 50 3.10 (2.73, 3.46) <0.001

Yes 54 Referent

Season

Dry (August) 56 0.40 (0.04, 0.76) 0.029

Wet (January) 49 Referent

Vegetation type

Bush 78 0.49 (0.08, 0.90) 0.019

Mixed or tree 27 Referent

Vegetation density <0.001

More open 26 0.86 (0.34, 1.38) 0.001

Middle density 54 0.44 (0.01, 0.88) 0.047

More dense 25 Referent

*Analysis performed on the natural logarithm transformed herd size.
†Herd type could not be determined for one herd.

CI = confidence interval.

r2 = 0.805, adjusted r2 = 0.795.

https://doi.org/10.1371/journal.pone.0182903.t004
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This method was developed for the modeling of white-tailed deer populations in Texas [32],

which have different behaviors and herd dynamics. White-tailed deer are often found in much

smaller groups; therefore, this broad spatial dispersal would be a more realistic expectation. In

the present study involving African buffalo, the main challenge was to account for the large

variation in herd sizes. Further work on developing suitability values may produce a more real-

istic outcome from the disaggregation method. The calculation method utilized in the current

study also did not allow for any environmental factor to have a negative effect and therefore

each cell was required to have a positive value.

The CAR model that contained only the spatial autocorrelation term produced a distribu-

tion with realistic herd sizes but only within small sections of KNP. This was likely due to the

data that were used to develop the model: GPS tracking data from previous studies in only the

central and northern regions of KNP. A CAR model containing both the spatial autocorrela-

tion term and environmental variables might produce more accurate maps. However, this

model requires additional work. The inclusion of the environmental variables created a

model that was presumably too complex and results were unstable as indicated by the lack of

convergence.

The Poisson kriging model produced a biologically reasonable distribution despite not

including environmental variables. The inclusion of such terms in a Poisson kriging model

may further improve predictions. The theory underlying spatial autoregressive models, includ-

ing kriging, is that cells closer to each other will be more similar than cells further apart (the

First Law of Geography). This idea conflicts (at this 1 km2 cell size) with what is known of buf-

falo populations. An area containing a large herd is actually unlikely to be neighbored by

another large herd even if the cells have similar suitability values. Therefore, this method may

be a better representation of buffalo land preference rather than a true distribution. The rMSE

values for the Poisson kriging model were slightly less than that of the disaggregation model.

The ZIP model created in this study produced a biologically reasonable distribution with

the lowest rMSE for the area of KNP with complete sampling. This suggests that environmen-

tal variables are likely better predictors of buffalo presence rather than spatial autocorrelation.

Field data collection confirmed the importance of environmental factors for the detection of

buffalo herds. Vegetation type, vegetation density, and region within KNP were all strong pre-

dictors of buffalo herd detection. Predictors also varied by herd type (bachelor versus mixed-

sex herds) suggesting that more accurate models could be produced by independently model-

ing the distribution of these two herd types. Herd size also varied by season and this effect

was independent of the concurrent effect of bachelor herds. Field observations were reasonably

consistent with ZIP model predictions, but the accuracy of the model would likely be

improved by accounting for season and type of herd in the modeling procedure. The creation

of multiple maps based on time of year and herd type would be expected to improve model

predictions.

The collected field data (road-based buffalo counts) in the central and northern parts of

KNP were reasonably consistent with ZIP model predictions. However, the southern area of

KNP was also predicted to have areas that would be suitable for large buffalo herds, but field

observations were inconsistent with these predictions. The southern part of KNP has a more

extensive road network and it is unclear why relatively few buffalo were observed in this area.

It is possible that the buffalo numbers are lower than expected or simply that the detection

probability is different in this region of KNP for an unknown reason. The current study is not

able to provide an explanation for an actual lower number of buffalo, but this could be due to

possible environmental changes that occurred subsequent to the creation of the data sets

employed in the study. It is further possible that a real reduction in buffalo numbers could

occur due to disease or human-related factors. Bovine tuberculosis could be a possible cause of
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a population reduction as it was first recognized in the southern region of KNP before spread-

ing northward [39].

There was little difference in the statistical fit of prediction models between seasons. Each

model performed only marginally better in the wet season compared to the dry season evalua-

tion data. The limited seasonal variability was unexpected. This observation was not consistent

with our expectation that there would be a greater variation between seasons due to changes in

buffalo behavior between the dry and wet seasons. Furthermore, it was expected that predic-

tions would be more consistent with the dry season observations since the dry season is when

the buffalo census is performed.

Two different buffalo data sets were used for the development of prediction models. The

suitability values in the disaggregation method were developed using data from previous buf-

falo census surveys. The Poisson kriging model was also based on these census data. However,

the ZIP and CAR models were based on tracking data collected from two previous studies.

Tracking data were considered a better representation of buffalo land use, but only covered

small portions of the park and, therefore, did not contain adequate data coverage for all envi-

ronmental variables. The different data sources were necessary to cover the entire KNP, but

this is a potential confounder for the comparison of models. Furthermore, different data sets

were collected during different time periods and this was another potential source of bias in

estimated distribution maps and the comparison of modeling approaches.

Observational bias might have occurred due to errors in detection that might have varied

over time or locations in KNP. It is possible that herds were more likely to be observed early in

the observation periods and fatigue decreased detection probability as sampling progressed.

The random starting points and routes were employed in effort to reduce the impact of this

time effect. However, the random walk approach using only the public road network might

have also introduced errors due to variable coverage of KNP. The total distance travelled in

each area of KNP was not recorded on a daily basis and this prevented a formal comparison of

the observation time spent in the different regions. The density of hourly environmental sam-

pling points suggested relatively good coverage of the entire public road network despite the

lack of a formal comparison. A systematic approach such as quadrant or transect sampling

would have ensured a more uniform sampling coverage. The potential effect of time varying

factors such as fatigue were subjectively considered more important during study design, but it

is unknown if this approach introduced more sampling error than it prevented. Using air-

planes to fly transects [40] and the use of 4x4 vehicles with game rangers to sample randomly

selected locations were not feasible data collection options within the context of this study.

The KNP is a common tourist destination and wildlife do not appear to shy away from roads

or people observing from cars. However, a formal evaluation of a potential road bias has not

been published and the current study merely assumed that such a bias does not exist.

It would be beneficial for future work to use Poisson kriging to account for observational

biases in a temporal analysis of counts from different census combined with tracking data.

Such analysis could produce probability maps of finding a herd of a given size in a particular 1

km2 grid cell by analyzing the proportion of times various cells had certain herd sizes and ana-

lyzing the spatial autocorrelation in these proportions. As noted in the methods, expecting

positive spatial autocorrelation in raw buffalo herd numbers is counter-intuitive. Large herds

of buffalo tend to be found surrounded by large areas of few if any buffalo. This is negative spa-

tial autocorrelation. The Local Moran’s I statistic could also be used to identify significant spa-

tial outliers exhibiting this negative spatial autocorrelation. It would also be possible to devise a

Poisson kriging approach that incorporated environmental data into the estimation process.

Visibility was impaired in some areas during road-based field data collection due to higher

vegetation density. Only cells adjacent to the road network were included for the calculation of
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rMSE to decrease the effect of this bias. A possible source of confounding might have been

changes in weather conditions because African buffalo prefer different habitats depending on

the predominant weather pattern. The prediction error was evaluated for each model in both

seasons to determine if this was a significant source of bias in the study design; however, little

difference was noted between seasons. A further limitation is that the use of different datasets

during the development of the models prevented the direct comparison of model validity

using random subsets of the data for model development and validation. The objective of this

study was to evaluate models using direct observations in the field but flooding during data

collection and limited observations of buffalo reduced the ability to detect significant differ-

ences. Full data sets for both dry and wet seasons might have demonstrated more variability in

model accuracy between seasons.

Conclusion

Collected field data were not strongly correlated with any of the evaluated models but the

zero-inflated Poisson model produced the most biologically plausible distribution map of

African buffalo in the KNP, followed by the Poisson kriging model. These static distribution

maps were reasonably consistent with observed animal densities. However, new approaches

are necessary if these models are to be used for FMD risk assessments and developing disease

transmission models. Future research should investigate the use of CAR models capable of

adjusting for seasonal variations in herd structures in addition to spatial dependencies.
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