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A common probabilistic approach to uncertainty allocation is to assign acceptable 

variability in the sources of uncertainty, such that pre-specified probabilities of meeting 

performance constraints are satisfied. However, the computational cost of obtaining the 

associated trade-offs increases significantly when more sources of uncertainty and more 

outputs are considered. Consequently, visualizing and exploring the trade-off space becomes 

increasingly difficult, which, in turn, makes the decision-making process cumbersome for 

practicing designers. To tackle this problem, proposed is a parameterization of the input 

probability distribution functions, to account for several statistical moments. This, combined 

with efficient uncertainty propagation and inverse computation techniques, results in a 

computational system which performs order(s) of magnitude faster, compared with a 

combination of Monte Carlo Simulation and optimization techniques. Also, to aid decision-

making regarding the potential combinations of uncertainty allocation, enablers for 

visualizing the trade space are proposed. The combined approach is demonstrated by means 

of a representative aircraft thermal system integration example. 

Nomenclature 

Y = Vector of outputs of interest 

𝑿 = Vector of inputs of interest 

𝒉  = Computational workflow, or model 

𝑓𝑥  = Marginal probability density function 

𝑔𝑗 = Constrain function of 𝑗𝑡ℎ output of interest 

𝑃𝑔𝑗
 = Pre-defined probabilities of satisfying 𝑗𝑡ℎ constraint 

𝜇𝑥 = Mean, first statistical moment 

𝜎𝑥 = Standard deviation, second statistical moment 

𝛾𝑥 = Skewness, third statistical moment 

Γ𝑥 = Kurtosis, fourth statistical moment 

𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙  = Total mean temperature, over all equipment surfaces 

𝑇𝑒𝑚𝑝𝑃𝐶  = Maximum surface temperature of the power center 

𝑇𝑒𝑚𝑝𝐵𝐴𝑇  = Maximum surface temperature of the battery 

�̇�𝑃𝐶 = Air mass flow extracted from power center 

𝑇𝑒𝑚𝑝𝐹𝑢𝑠 = Fuselage reference temperature 

𝑇𝑒𝑚𝑝𝑁𝐿𝐺  = Noise landing gear (NLG) reference temperature 

𝐻𝑇𝐶 = Factor of fuselage, NLG, cargo wall, floor heat transfer coefficient 

𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 = Avionics equipment heat dissipation 
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I. Introduction 

HERE is currently a significant increase in efforts to incorporate Uncertainty Quantification and Management 

(UQ&M) techniques at the early design stages of complex engineering systems. In order to make well-informed 

decisions early in the design stage, when the maturity of design models is low and there is scant information on 

requirements, it is desirable to not only assess the impact of uncertainty, but also to reduce the uncertainty due to a 

lack of knowledge
1,2

. As the iterative design loop progresses, more knowledge becomes available and uncertainty is 

reduced. This is done by, for example, directing resources to conduct preliminary analyses, with the objective of 

establishing the feasibility of a design
3,4

. The decision of where to direct efforts to reduce uncertainty will be made 

based on the available information at hand and ‘engineering judgment’. A formal approach is to quantify and assign 

acceptable variability in the sources of uncertainty, such that a specified probability to meet a performance 

constraint is satisfied. In this paper, this approach is referred to as ‘uncertainty allocation’. 

Allocating uncertainty is necessary to allow systems architects or designers to avoid situations where unknown 

variations in parameters or behaviors could lead to undesirable deviations in performance. In this way, risk is 

reduced. Uncertainty allocation is also useful for identifying different potential means of ensuring a desired 

probability of constraint satisfaction. Our research, as part of recent and current industry led projects, including 

TOICA
5,6

 and APROCONE
7
, indicates that uncertainty allocation is indeed considered as part of the decision-

making process. However, it is based predominantly on experience, rather than on a systematic and formal 

framework. The result is that the decision-maker often may not be aware of the full set of options available and 

therefore which source(s) of uncertainty to trade. 

Current UQ&M practices, such as robust design, optimization, and reliability analysis, involve minimizing or 

maximizing the outputs of interest (e.g., performance of the system), by systematically searching for design 

solutions that are robust against aleatory uncertainty and some classes of epistemic uncertainty (e.g., model 

uncertainty). While, these approaches are effective at finding robust solutions, they are not suited to address the 

uncertainty allocation problem. Chen et al.
8
 reported that inverse uncertainty propagation methods are essential 

enablers to solve the uncertainty allocation problem. Although methods have been developed for inverse uncertainty 

propagation using the Bayesian approach
9
, these may lead to relatively high computational cost and are not well 

suited in guiding the designer to make informed decisions when solving the uncertainty allocation problem. 

Recently, methodologies to allocate uncertainty have been proposed by Opgenoord and Willcox
10

, which build 

on Curran and Wilcox
11

. They presented a methodology, comprised of a sensitivity-based method, surrogate 

modelling and a weighted-sum optimization approach, to identify and select candidate uncertainty sources on which 

the reduction of uncertainty should be focused. However, in their method, the uncertainty on the input variables are 

applied only in the form of uniform probability distribution functions (PDFs). 

 In this paper, we address these limitations by proposing a method for interactive uncertainty allocation, to 

enable the investigation of input-variability trade-off strategies. The approach builds on the ‘inverse uncertainty 

propagation’ method, introduced by Chen et al.
8
. This method operates by inversely propagating uncertainty 

(represented as standard deviations) from the output variables to the input variables. It cannot, however, deal with 

many-to-many reversals (i.e. multiple outputs with multiple inputs). The specific objective of the work was to tackle 

this limitation by considering: a) more types of probability distribution functions (not just uniform PDFs), and b) not 

relying solely on the standard deviations of the PDFs of the inputs and outputs of interest. This, combined with 

enablers for visualizing the trade space, is intended to make the trade-off process more interactive and support more 

informed decision-making regarding the potential combinations of uncertainty allocation. 

The paper is organized as follows. The problem and background information are presented in Section II. The 

proposed method is introduced in Section III. A demonstrative application of the method, using a representative 

aircraft thermal system integration example is presented in Section IV. Finally, conclusions are drawn and future 

work is outlined in Section V. 

II. Problem Statement and Background 

The uncertainty allocation problem can be approached as a reduction of uncertainty due to ‘lack of knowledge’, 

using the probability approach. A formal definition of the problem is as follows: consider changing (re-shaping) the 

probability distribution, by means of manipulating the parameters, 𝒅𝑥, of the input probability density function, 𝑓𝑥, 

such that the required probabilities of constraint satisfactions are met. Mathematically, this can be formulated as: 

 

 

T 
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 For a computational workflow, or model, 𝒀 = 𝒉(𝑿), 

Find 𝑓𝑥𝑖
(𝑥𝑖 , 𝒅𝑥𝑖,𝑝𝑖

) ,  𝑖 = 1, … , 𝐼, 

such that 𝑃(𝑦𝑗 = 𝑔𝑗(𝑿) ≤ 0) ≥ 𝑃𝑔𝑗
, 𝑗 = 1, … , 𝐽, 

(1) 

where, 

𝒀 = (𝑦1, … , 𝑦𝐽) ∈ ℝ𝐽 is the vector of random output variables, or outputs of interest. 

𝑿 = (𝑥1, … , 𝑥𝐼) ∈ ℝ𝐼 is the vector of random input variables. 

𝑓𝑥𝑖
(𝑥𝑖 , 𝒅𝑥𝑖,𝑝𝑖

) is the probability density function (PDF) of the 𝑖𝑡ℎ input random variable. 

𝒅𝑥𝑖,𝑝𝑖 = (𝑑𝑥𝑖,1, … , 𝑑𝑥𝑖,𝑝𝑖
) ∈ ℝ𝑝𝑖  is the vector of shape parameters that describe the shape of the probability density 

function, 𝑓(𝑥𝑖 , 𝒅𝑥𝑖,𝑝𝑖
). 

𝑃𝑔𝑗
 are the pre-defined probabilities of satisfying the 𝑗𝑡ℎ constraint, 𝑔𝑗(𝑿) = 𝑦𝑗(𝑿) − 𝑦𝑗

′; and 

𝑦𝑗
′ is the quantile representing the constraint value of the 𝑗𝑡ℎ  output of interest. 

The problem, in an engineering context, is illustrated in Figure 1. Suppose, after propagating uncertainty forward 

through a computational workflow or model, ℎ(𝑿), the designer realizes that the probability of meeting a constraint, 

𝑃(𝑔𝑖(𝑿) ≤ 0), of the output variable affected by uncertainty, 𝑦𝑔𝑖
, is not satisfactory. One course of action is then to 

investigate whether uncertainty in the input could be reduced. To do this, it needs to be known where to inversely 

allocate uncertainty affecting the input variables, 𝑿, for a pre-defined probability of constraint satisfaction, 𝑃𝑔𝑗
. In 

such cases, the designer will need to investigate the trade space to determine on which input variables the 

uncertainty should be allocated and to explore acceptable combinations of reduction from different sources, while 

guaranteeing that the performance will meet the probability of constraint satisfaction. 

In general, Eq. (1) does not have analytical solutions. Therefore, it is necessary to simplify these equations, by 

making assumptions about the probability density functions (PDFs) and by breaking down the problem into steps to 

obtain numerical solutions. The next subsection introduces concepts of UQ&M techniques and design exploration 

methods that will be used to specify the enablers of the uncertainty allocation method proposed in this paper. 

 

 
Figure 1. The process of allocating uncertainty. 
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A. UQ&M Techniques 

The top part of the scenario illustrated in Figure 1 can be treated by existing UQ&M techniques. The purpose 

here would be to conduct a robustness analysis study to determine which outputs of interest do not meet the 

probability of constraint satisfaction. The existing methods comprise classical techniques to quantify and propagate 

sources of uncertainty through a computational model/workflow and also include robustness analyses. 

There are different types of uncertainty and it has become common practice in engineering design and other 

fields to distinguish between two major classes – aleatory and epistemic uncertainty
12,13

. Aleatory uncertainty is 

known as stochastic variability, or irreducible uncertainty, and exists because of the physical variability present in 

the system being analyzed, or in its environment (for example, atmospheric conditions). Epistemic uncertainty is 

known as reducible or subjective uncertainty and results from a lack of knowledge about the system. Both types of 

uncertainty will be present at the early stages of design, since there is usually a lack of data and the environmental 

conditions may not have been specified yet. In this paper, we consider only epistemic uncertainty and therefore 

assume that it can be reduced. Quantifying the sources of uncertainty in probabilistic terms requires  elicitation at the 

outset , as discussed in  O'Hagan and Oakley
14

. However, this is out of the scope of this paper and it will be assumed 

as given. 

The next step is modelling of the elicited uncertainties as probability distributions. In turn, this requires that, the 

design problem has to be formulated as a computational process where the input and output variables of interest, 

workflow, objectives, and constraints must be specified. 

The forward propagation, or ‘uncertainty propagation’, involves calculating the output distribution, or the 

statistical moments of the output. A fast propagation method, called Univariate Reduced Quadrature (URQ)
15

 can be 

used for this purpose, which requires the first four statistical moments of the uncertainty sources as input. This 

method is a generalization of the sigma-point method, which provides an estimate of the output mean and variance, 

and is able to handle asymmetric distributions. URQ requires significantly fewer evaluations than that needed for 

performing a Monte Carlo simulation, at comparable accuracy.  

Robustness analysis takes place after the forward propagation of uncertainty is carried out. It is used to assess 

whether the design under uncertainty meets the requirements measured by the probability of constraint satisfaction 

on the outputs of interest.  

B. Design Exploration Enablers 

In order to visualize the trade space to identify potential solutions and make decisions regarding the allocation of 

uncertainty, an isocontour-based constraint analysis method and workflow reversal enablers are employed and 

described below. 
 

1. Constraint analysis   

This is a generalized isocontour-based constraint analysis method, developed by Riaz
16

. The method rapidly 

estimates the feasible region of the design space, using a DoE to compute discrete values of the constraint and then 

interpolating to find the curves corresponding to the constraints. For a design space with higher dimensions, slides of 

the design space can be plotted and exploration of the feasible region can be done by changing the ‘slice’ using the 

DoE levels points. This allows the decision-maker to gain insight into the topology of the feasible region(s) within 

the design space. This facilitates ‘what-if’ studies, where one is able to visualize the active constraints of a study and 

identify the potential design solutions, or explore the option of relaxing the constraints. 
 

2. Workflow reversal  

Reversal refers to the capability of ‘swapping’ the input and output variables of a computational workflow. In 

Chen et al.
8
, it was demonstrated that the standard deviation of an input variable of a default workflow (original 

sequencing) can be swapped with one of the standard deviations of the original output variables. This technique is 

based on a computational workflow management (CWM) method, developed by Balachandran et al.
17

 and Guenov 

et al.
18

, where the user is able to specify the variables he or she wants to swap, after which the reversed workflow is 

created. The CWM method enables the automatic formulation of the reversed workflow into an optimization 

problem and it is solved using a Gauss-Newton algorithm. This capability allows the investigation of ‘what-if’ 

scenarios and conducting flexible computational studies. 
 

3. Interactive design exploration and visualization  

It is argued here that the application of UQ&M techniques alone is not sufficient to handle the inherent 

uncertainty associated with early-stage design. An interactive and iterative learning process is necessary to address 

recognized design deficiencies and to refine the obtained solutions, as further design knowledge is acquired, for 

example, through the revision of design requirements and uncertainty allocation. To facilitate this interactivity, the 
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proposed methods have been implemented in a prototype software tool, called AirCADia
18

, which permits the 

designer to be actively involved in the decision-making process. 

III. Proposed Method for Allocating Uncertainty and Trade-off Strategy 

This section describes the method for allocating uncertainty and for setting up a trade-off strategy. The problem 

described in Eq. (1) is solved by considering multiple possible reductions of uncertainty, by means of exploring the 

shapes of the parametrized distributions functions. It is intended that the method enables swift assessment of the 

allocation of uncertainty, interactive trading-off of uncertainty from different contributing sources, and handling 

predefined uncertainty associated with performance and constraints. The method consists of five enablers: 

A. Identification of Major Contributors  

The aim of this step is to identify the major contributing sources of input uncertainty that impact the output 

variables of interest. Applying a global sensitivity analysis (using, for example, Sobol Indices and the Fourier 

Amplitude Sensitivity Test (FAST))
19

 can aid the designer to decide on which input variables efforts for reducing 

uncertainty should be focused. Once the major contributing sources of input uncertainty have been identified, their 

probability distribution functions can be parameterized, as described next. 

B. Parametrization of the Input Probability Density Functions 

One approach to find a suitable set of solutions that solve the problem described in Eq.(1), is to manipulate the 

statistical moments of the input PDFs, 𝑓𝑥𝑖
(𝑥𝑖 , 𝑑𝑥𝑖,𝑝𝑖

), until all the probability of constraints satisfaction are met. In 

other words, the standard deviation could be reduced and/or the mean could be shifted and the same for the other 

moments, such as the skewness and kurtosis. Formulating the problem of finding multiple possible reductions of 

uncertainty, by directly manipulating the statistical moments of all input PDFs, poses the problem of guaranteeing 

that the input PDFs are realizable (not all combinations of moments can represent a PDF). To address this, we 

propose parametrizing the function that defines the shape of the PDFs, by linking the first fourth moments of a 

particular PDF with a single parameter, 𝑑𝑥,𝑝. The parametrization must consider the fundamental properties of a 

PDF. The first property is that the density function be nonnegative (  0 < 𝑓𝑥𝑖
(𝑥𝑖 , 𝑑𝑥𝑖,𝑝𝑖

)) for all 𝑥, whereas the second 

property is that a PDF has to have an area of unity (i.e. ∫ 𝑓𝑥𝑖
(𝑥𝑖 , 𝑑𝑥𝑖,𝑝𝑖

) 𝑑𝑥 = 1). 

However, when standard PDFs (e.g. Gaussian, Rayleigh, etc.) are parametrized, the parameters might not be 

suitable for uncertainty reduction or be definable in terms of ‘engineering’ quantities. Here, the parametrization aims 

at manipulating the shape of the PDF with variables that design practitioners are familiar with, such as the lower and 

upper bounds that define the range of variation (𝑥𝑙𝑏𝑖
 and 𝑥𝑢𝑏𝑖

). Also, the variations are often described as a 

percentage of the nominal value, 𝑥𝑛𝑖
. Here, we specifically introduce a parametrization for two types of PDF, 

namely triangular and Gaussian mixture. However, this parameterization is not limited to these two. The shape 

parametrization is described below. 

 

1. Parametrization for triangular distributions 

The triangular PDF 𝑓𝑡(𝑥) is defined with the bounds 𝑥𝑙𝑏 and 𝑥𝑢𝑏, on the 𝑥 axis and the mode at 𝑥𝑛, as shown in 

Figure 2a. The parametrization is defined using the width (𝑑𝑥 = 𝑥𝑢𝑏-𝑥𝑙𝑏) of the distribution. The PDF can then be 

re-shaped by scaling the width with respect to the nominal value, 𝑥𝑛. For a new width, 𝑑𝑥
′ , the new parameters of the 

PDF are calculated with geometrical proportions. Since the original and re-shaped triangular PDFs are proportional 

to each other (i.e., the lengths of the corresponding sides are proportional due to the unity area property of the 

triangle), the corresponding widths and the distance between 𝑥𝑛 and the new bounds have lengths of the same ratio, 

as follows: 

 

𝑑𝑥
′

𝑑𝑥
=  

(𝑥𝑛−𝑥𝑙𝑏
′ )

(𝑥𝑛−𝑥𝑙𝑏)
;

𝑑𝑥
′

𝑑𝑥
=  

(𝑥𝑛−𝑥𝑢𝑏
′ )

(𝑥𝑛−𝑥𝑢𝑏)
.
              (2) 

 

The new bounds 𝑥𝑙𝑏
′  and 𝑥𝑢𝑏

′  can therefore be obtained from Eq. (2). After the new shape of the PDFs is defined, 

its first four moments are calculated and used for uncertainty propagation, (using for example URQ). For instance, 

the new mean and new variance of a triangular distribution are given by 
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𝜇𝑥
′ =

(𝑥𝑛+𝑥𝑢𝑏
′ +𝑥𝑙𝑏

′ )

3
;

𝑣𝑎𝑟𝑥
′ =

(𝑥𝑢𝑏
′ −𝑥𝑙𝑏

′ )2

18
(1 −

(𝑥𝑛−𝑥𝑙𝑏
′ )(𝑥𝑢𝑏

′ −𝑥𝑛)

(𝑥𝑢𝑏
′ −𝑥𝑙𝑏

′ )2 ) ;

𝛾𝑥
′ =

√2(𝑥𝑙𝑏
′ +𝑥𝑢𝑏

′ −2𝑥𝑛)(2𝑥𝑙𝑏
′ −𝑥𝑢𝑏

′ −𝑥𝑛)(𝑥𝑙𝑏
′ −2𝑥𝑢𝑏

′ +𝑥𝑛)

5((𝑥𝑙𝑏
′ )2+(𝑥𝑢𝑏

′ )2+𝑥𝑛
2−𝑥𝑙𝑏

′ 𝑥𝑢𝑏
′ −𝑥𝑙𝑏

′ 𝑥𝑛−𝑥𝑢𝑏
′ 𝑥𝑛)

3/2 .

         (3) 

 
The excess kurtosis, Γ𝑥 = −3

5
 , remains invariant for a triangular PDF. Parametrization of uncertainty reduction 

can also be achieved by simply modifying either 𝑥𝑢𝑏 or/and 𝑥𝑙𝑏  with respect to 𝑥𝑛, thereby reducing the width. 
 

2. Parametrization for Gaussian mixture distributions 

In Figure 2b, the Gaussian mixture probability distribution
20

, 𝑓𝑔𝑚, is defined by two component functions with 

variances 𝜎1
2 and 𝜎2

2 and means 𝜇1 and 𝜇2, with proportions 𝛼1 and 𝛼2 = 1 − 𝛼1, so that 

 

 𝑓𝑔𝑚(𝑥) = 𝛼1∅(𝑥; 𝜇1, 𝜎1
2) + 𝛼2∅(𝑥; 𝜇2, 𝜎2

2),          (4) 

 

where ∅(𝑥;  𝜇, 𝜎2) denotes the univariate Gaussian PDF. The range of variability can be fitted by truncating ∅ at 3𝜎. 

The means can then be defined as: 𝜇1 = 𝑥𝑙𝑏 + 3𝜎1 and 𝜇2 = 𝑥𝑢𝑏 − 3𝜎2 (assmuming 𝜇1 < 𝜇2); the standard 

deviations by 𝜎1 = 𝜎2 =
𝑥𝑢𝑏−𝑥𝑙𝑏

8
; the proportions by 𝛼1 =

|𝜇𝑥𝑙
−𝜇2|

𝜇2−𝜇1
; whereas the nominal value, 𝑥𝑛, coincides with the 

mean 𝜇𝑥𝑙
 of the Gaussian mixture PDF. Other Gaussian mixture parametric models can be found in McLachlan and 

Peel
20

. 

It is suggested that the Gaussian mixture PDF be parametrized in such a way that the skewness of the PDF can 

be manipulated by changing the position of the mean, 𝜇𝑥𝑙
. For example, it might be desirable to change the shape 

of 𝑓𝑔𝑚 from left-skewed (with mean 𝜇𝑥𝑙
) to right-skewed (with mean 𝜇𝑥𝑟

), as shown in Figure 2b. This can be 

achived by switching the proportions of 𝑓𝑔𝑚 the skewness changes from being left-skewed to right-skewed, where 

the respective means are given by 

 
𝜇𝑥𝑙

= 𝛼1𝜇1 + 𝛼2𝜇2;

𝜇𝑥𝑟
= 𝛼2𝜇1 + 𝛼1𝜇2.            (5) 

 

 
Figure 2. Parametrization of the input probability density function, a) triangular distribution and b) Gaussian mixture 

distribution. 

For the shapes, in between the left- and right-skewed distributions (for example, a symmetric distribution),  𝑓𝑔𝑚 

can be re-shaped by changing the nominal value, 𝑥𝑛 (which is defined as 𝑥𝑛 = 𝜇𝑥
′ ∈ [𝜇𝑥𝑟

, 𝜇𝑥𝑙
]). The parametrization 

involves the linear transformation of component functions of Eq. (4) (i.e. new means, 𝜇1
′ , 𝜇2

′ , and new standard 

deviations, 𝜎1
′, 𝜎2

′) by making changes to the position, 𝑑𝑥
′  =𝜇𝑥

′ , as follows: 
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𝜇1
′ = 𝜇1 + Δ𝜇; 𝜇2

′ = 𝜇2 − Δ𝜇;

𝜎1
′ =

(𝜇1
′ −𝑥𝑙𝑏)

3
; 𝜎2

′ =
(𝑥𝑢𝑏−𝜇2

′ )

3
,
            (6) 

 

where Δμ is given by: 

 

∆𝜇 = {
(𝜇2 − 𝜇1) (

𝜇𝑥𝑙
−𝜇𝑥

′

𝜇𝑥𝑙
−𝜇𝑥𝑟

);  𝛼1 =
|𝜇𝑥𝑙

−𝜇2|

𝜇2−𝜇1
;  𝛼2 = 1 − 𝛼1;   if 𝜇𝑥

′ > 𝜇𝑥𝑟
+

(𝜇𝑥𝑙
−𝜇𝑥𝑟)

2

(𝜇2 − 𝜇1) (
𝜇𝑥

′ −𝜇𝑥𝑟
𝜇𝑥𝑙

−𝜇𝑥𝑟
) ;  𝛼2 =

|𝜇𝑥𝑙
−𝜇2|

𝜇2−𝜇1
;  𝛼1 = 1 − 𝛼2; otherwise.

𝜇𝑥𝑙
 and 𝜇𝑥𝑟

are given in Eq. (5)

     (7) 

 

As mentioned before in the parametrization of the triangular PDF, after the new shape of the PDFs is defined, its 

first four moments are calculated and used for uncertainty propagation methods, such as URQ. Calculating the first 

four moments of a Gaussian mixture is well understood and can be found in McLachlan and Peel
20

. 

C. Composition of the Workflow for Uncertainty Allocation 

The outer workflow is created in the following sequence: 

1) An outer workflow is created to associate the first four moments (mean, 𝜇𝑥, standard deviation, 𝜎𝑥, 

skewness, 𝛾𝑥, and kurtosis, Γ𝑥) of the input and the two moments of the output variables (mean, 𝜇𝑦, and 

standard deviation, 𝜎𝑦) as parameters (refer to the centre of Figure 3). This facilitates the application of 

rapid uncertainty propagation methods, such as URQ. 

2) The parametrization of the PDFs (see the left of Figure 3) and the probability of constraint satisfactions 

(Figure 3, right) are linked to the outer workflow. 

The result is a global workflow which links parameters 𝒅𝑥𝑖,𝑝𝑖  of the parametrized PDFs to the probability of 

constraint satisfactions of the outputs of interest and can be used for workflow reversal, which is indicated by the 

dotted arrows in Figure 3. 

 

 
Figure 3. Outer workflow creation. 

D. Visualization of the Trade-off Space 

Often, the contributions from two (or more) sources of uncertainty in the input variables are comparable. In this 

case, the solution will have multiple combinations of reduced distributions. In other words, the solution of the 

uncertainty allocation problem is non-unique. In such a case, a Pareto front is sought. 

The objective of this enabler is to visualize the multiple combinations as a trade-off space. This is done by 

computing the iso-contours corresponding to a particular value of the probability of constraint satisfaction. In this 

paper, the generalized isocontour-based constraint analysis method, described in Section IIB, is employed to do this. 

The curves are approximated by interpolating between the design of experiments (DoE) results. The set of the 

options of combinations to allocate the input uncertainty can be found along the “Pareto contour” (as represented by 

the black dots in Figure 4). This contour can be used to trade off these combinations of variabilities with each other. 

In practice, this may require the cost of reducing uncertainty to be considered. For example, in industrial scenarios, 

allocating resources to reduce uncertainty may imply the need for tighter manufacturing tolerances, which will 

increase the cost. Consideration of cost is important, but currently lies outside the scope of the current work. Rather 

the objective here is to change the value of the parameters or reduce the variability until the probability of constraint 

satisfaction is met. The possible combinations for uncertainty allocation along the resulting curve are analogous to 
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the Pareto solutions of a multi-objective optimization problem. The designer cannot minimize the reduction of the 

variability in one of the PDF parameters without further reducing the variability in the other PDF parameter. In the 

next section, the computation of the solutions is performed. 

 

 
Figure 4. Trade-off space for allocating input distributions. 

 

E. Uncertainty Allocation (Workflow Reversal) 

The objective of this step is to generate a particular solution along the probability of constraint-satisfaction curve 

(black dots, in Figure 4, positioned along the 𝑃𝑔𝑗
 iso-contour). In other words, the workflow reversal is used to 

compute the pre-defined probability of constraint satisfaction as illustrated in Figure 1. This implies that this pre-

defined probability must be considered (given) as an input, while in the default (forward) computational it is an 

output. 

To do this, the CWM method (introduced in Section IIB2) for workflow reversal is employed. The workflow 

reversal allows one parameter from the input parameter vector,  𝒅𝑥𝑖,𝑝𝑖 , to be swapped with one output from the set 

of probability constraints satisfaction, 𝑃𝑔𝑗
. 

When setting up the reversed workflow, the following procedure is proposed: in the case when reversing a single 

output with many inputs is required, the formulation of the reversal procedure will involve either constraining some 

of the inputs, to ensure that the number of unknown inputs and outputs are the same, or trading-off among the 

variability of the input variables. 

The interactive visualization of 2D slices of the design space has been prototyped in the ‘AirCADia Explorer’ 

software
18

. This tool offers a powerful means for exploring the design space. Figure 5 shows the interface of 

AirCADia Explorer, where the user can interactively establish trade-off strategies to allocate uncertainty. 
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Figure 5. AirCADia Explorer prototype of the interactive margin and uncertainty allocation approach. 

IV. An Industrial Example: Aircraft Thermal Integration Design 

To demonstrate the methods, they were applied to a representative industrial problem concerning the thermal 

integration of the avionics of a single-aisle aircraft
5
 (see Figure 6). It is assumed that the design variables are 

affected by epistemic uncertainty and that the impact of this uncertainty on the thermal performance of the 

equipment needs to be assessed.  It was also assumed that the equipment and the architecture of the avionics 

ventilation system had already been selected. 

 

 

Figure 6. Illustration of the avionics equipment thermal integration design problem. 

A. Problem Specification  

The thermal performance of the avionics equipment was computed with a surrogate model of the Zonal Thermal 

Model (ZTM)
21

 which has five input variables and 69 output variables. For illustration purposes, we considered 

three outputs of interest, with the following respective thermal constraint (requirements): 
 

 Total mean temperature, over all equipment surfaces: 𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙   ≤  325.15 K (52°C) 

 Maximum surface temperature of the power center: 𝑇𝑒𝑚𝑝
𝑃𝐶

  ≤  319.15 K (46°C) 

 Maximum surface temperature of the battery: 𝑇𝑒𝑚𝑝𝐵𝐴𝑇   ≤  324.15 K (51°C) 

Uncertainty quantification was applied, under the following assumptions: 
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 It was assumed that each uncertainty input could be modelled in the form of an independent probability 

distribution function (e.g. a triangular or Gaussian mixture distribution, as was shown in Figure 2). The 

detailed specification for the problem is shown in Table 1. 

 Variability in the inputs was considered to be the main source of uncertainty, whereas model uncertainty 

(simulation errors) was assumed to be negligible (in comparison with the sources of uncertainty listed in 

Table 1). 

 
Table 1. Sources of uncertainty for the ZTM use case (data provided by Cappittelli and Mangeant21). 

No. Input variable 
Nominal value and range 

of variability 

Description of  

uncertainty 

Probability 

distribution function 

1 Air mass flow 

extracted from power 

center (�̇�𝑃𝐶) 

0.0274 kg/s 

[0.0232, 0.0348]  
Range of fluctuations Rayleigh, 𝑓�̇�𝑃𝐶

 

2 Fuselage reference 

temperature 

(𝑇𝑒𝑚𝑝𝐹𝑢𝑠) 

-8°C ± 5°C 
Lack of definition (i.e. 

epistemic) 
Gaussian, 𝑓𝑇𝑒𝑚𝑝𝐹𝑢𝑠

 

3 Factor of fuselage, 

NLG, cargo wall, 

floor heat transfer 

coefficient (𝐻𝑇𝐶) 

[W/m
2
/K] 

1 

-50%,+100%  

Lack of definition (e.g. 

the material hasn’t been 

selected yet) 

Triangular, 𝑓𝐻𝑇𝐶 

4 Avionics equipment 

heat dissipation 

(𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠) 

105 W/m
2
 

[85, 120]  

Range of fluctuations of 

dissipated power 

Normal Mixture, 

𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠
 

5 NLG reference 

temperature 

(𝑇𝑒𝑚𝑝𝑁𝐿𝐺) 

10 °C ± 5°C 
Lack of definition (i.e. 

epistemic) 
Gaussian, 𝑓𝑇𝑒𝑚𝑝𝑁𝐿𝐺

 

 

The forward propagation was conducted by means of applying the URQ method (refer to the output section of 

Figure 7), which returns the mean and standard deviation of all output variables of interest. The numerical results are 

reported in Table 2. The designer can subsequently make assumptions regarding the shape of the distributions of the 

output variables, using the bounds on the probability of constraint satisfaction, or by comparing the results of 

uncertainty propagation with Monte Carlo Simulations (MCS). As can be seen in Figure 7, five thousand MCS 

points are enough to reach a confidence level of 95% on the estimate of the probability of constraint satisfaction. 

Also, it can be seen in Figure 7 that the MCS results can be approximated by Gaussian distributions. This is 

confirmed by plotting a Gaussian PDF in Figure 7 (output distributions), using the mean and standard deviation 

from the URQ forward propagation. 

The result of this assessment confirmed that the probability of constraint satisfaction was not sufficient and it 

was required to be increased (to 95%). This problem could subsequently be formulated as an uncertainty allocation 

problem. The objective was therefore to find the parameters, 𝒅𝑥, of the marginal probability distributions (see Table 

1) that reduce the input uncertainty such that the probability to meet the thermal constraints of the avionics 

equipment is equal or greater to the requested probability of 95%. This can be stated mathematically as follows: 

 

𝑓𝑖𝑛𝑑
𝒅∈𝓐

(𝑓�̇�𝑃𝐶

′ (𝒅1), 𝑓𝑇𝑒𝑚𝑝𝐹𝑢𝑠
′ (𝒅2), 𝑓𝐻𝑇𝐶

′ (𝒅3) , 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠

′ (𝒅4), 𝑓𝑇𝑒𝑚𝑝𝑁𝐿𝐺
′ (𝒅5) ) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑃(𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙   ≤   325.15 𝐾 ) ≥ 95%

𝑃(𝑇𝑒𝑚𝑝𝑃𝐶   ≤   319.15 𝐾 ) ≥ 95%

𝑃(𝑇𝑒𝑚𝑝𝐵𝐴𝑇   ≤   324.15 𝐾 ) ≥ 95%

         (8) 

 

To this end, we have the scenario depicted Figure 1 and the proposed method can be applied, as described next. 
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Figure 7. Forward propagation of uncertainty in the ZTM use case. 

Table 2. Uncertainty propagation and robustness analysis results. 

Output Mean 
Standard 

deviation 
Constraint 

Probability of 

constraint 

satisfaction 

Total mean temperature over 

all equipment surfaces 
324.0600 K 1.6379 K 

𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙   ≤  

325.15 K (52°C) 
𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙

=74.78% 

Maximum surface 

temperature of the power 

centre 

318.3656 K 1.7358 K 
𝑇𝑒𝑚𝑝𝑃𝐶   ≤   

319.15 K (46°C) 
𝑃𝑇𝑒𝑚𝑝𝑃𝐶

=67.99% 

Maximum surface 

temperature of the battery 
323.7787 K 1.4691 K 

𝑇𝑒𝑚𝑝𝐵𝐴𝑇   ≤  

324.15 K (51°C) 
𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇

=60.15% 

B. Identification of Major Uncertainty Contributors for the ZTM Use Case 

The aim of this enabler is to determine which sources of uncertainty have contributed the most to the variation in 

the output. A sensitivity analysis method, known as Fourier Amplitude Sensitivity Test (FAST)
19

 was employed. 

The results in Figure 8 show that, among all the inputs with uncertainty, two (𝐻𝑇𝐶 and 𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠) were the main 

contributors to the output uncertainty. In other words, the fluctuations (variability) of the heat dissipation of 

equipment, 𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠, and the lack of maturity of the data (variability) related to the heat transfer coefficient,  𝐻𝑇𝐶, 

of the materials contributed to the majority of uncertainty in the total-mean temperature over all equipment 

surfaces, 𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙 , the temperature of the power center, 𝑇𝑒𝑚𝑝𝑃𝐶 , and temperature of the battery, 𝑇𝑒𝑚𝑝𝐵𝐴𝑇 . 

Therefore, it was decided that, to meet the probability of constraint satisfaction of the three outputs of interest, the 

variability on 𝐻𝑇𝐶 and the variability on 𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 had to be reduced. In addition, it was clear that the remaining 

input contributors were not influential enough on the outputs of interest and it was therefore deemed not necessary 

to conduct studies for the reduction of uncertainty in these. Subsequently, they remained fixed for the study.  
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Figure 8. Sensitivity analysis results to identify contributions from different sources of uncertainty of the ZTM use case. 

C. Uncertainty Parametrization of PDFs of the ZTM Use Case 

The parametrization of the triangular distribution, 𝑓𝐻𝑇𝐶, and the Gaussian mixture PDFs, 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠
, was then 

performed, in the manner described in step two of section III. The shape of 𝑓𝐻𝑇𝐶 was parametrized with respect to 

the base, or width, of the triangular distribution. Because high values of thermal material properties defined by 𝐻𝑇𝐶 

are desirable, only the variability on the left-hand side of the nominal value was reduced. The parameter used for 

uncertainty reduction was 𝑑𝐻𝑇𝐶 . The shape of 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠
 was parameterized in two ways: first, the skewness was 

parametrized as illustrated in Figure 2b, where the parameter used for uncertainty reduction was 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 of the 

Gaussian mixture PDF. The second way to reduce uncertainty was using the width, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤, of the PDF, where 

the parametrization employed was the same as the triangular PDF illustrated in Figure 2a. A summary of the PDF 

parameter vector 𝒅 = ( 𝑑𝐻𝑇𝐶 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 , 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤) and its relation to the trade-off space is shown in Table 3. 

 
Table 3. Specification of parameters of 𝒇𝑯𝑻𝑪 and 𝒇𝑯𝒆𝒂𝒕𝒅𝒊𝒔𝒔

. 

PDF & parameters relation Parameter vector, 𝒅 ∈ 𝑨  

𝑥𝑙𝑏
′ = 𝑥𝑢𝑏 −  𝑑𝐻𝑇𝐶  𝑑𝐻𝑇𝐶 ∈ {1, 1.125, 1.25, 1.375, 1.5} 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 = 𝜇𝑥
′  𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝜇 ∈{100, 101.25,102.5,103.75,105}; [W/m

2
] 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤 = 𝑥𝑢𝑏-𝑥𝑙𝑏  𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤 ∈ {5, 12.5, 20, 27.5, 35}; [W/m
2
] 

D. Creating the Workflow for the Thermal Integration Problem 

An ‘outer workflow’ of the ZTM was created (as described in Section IIIC and depicted in Figure 3) to associate 

the statistical moments with the input and output variables of the model. These moments were further reformulated 

with parametrization of the 𝑓𝐻𝑇𝐶 and 𝑓𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠
 PDFs. The parametrization models, the outer workflow and the 

probability of constraint satisfaction model of the outputs of interest (𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙
, 𝑃𝑇𝑒𝑚𝑝𝑃𝐶

, and 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇
) constituted 

the entire workflow. Therefore, the user could specify the parametric variables 𝑑𝐻𝑇𝐶, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,1 , and 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,2 and 

then obtain the probability of output constraint satisfaction (indicated by the black arrows in Figure 3). Because 

there would subsequently be several combinations of the parametric variables that could potentially lead to 95% of 

probability, the next step was applied to visualize all these combinations. 

E. Visualization of the Trade-off Space of the ZTM Use Case. 

To explore multiple combinations of different distributions (uncertainty sources) using the workflow created in 

the previous step, the generalized isocontour-based constraint analysis method, described in Section IIB, was 

employed. The method starts by computing a DoE (full factorial sampling) of the design space, which, in this case, 

is specified by discretizing the PDF parameters into five levels each, as shown in Table 3.  

The results can be presented as ‘slices’ of the 3D trade-off space, as depicted in Figure 9a-c. The three contours 

shown represent where the probability of constraint satisfaction surface intersects the slice. The ‘green dots’ are the 

samples of the DoE. The white area represents the feasible region, where the probability of satisfaction is higher 

than 95% for all the three outputs of interest, while the grey areas are infeasible. Note that the 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
 and 

𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇
 contours at 95% are active constraints and form a ‘Pareto front’. From Figure 9d, it can be seen that the 
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Pareto front resulting from this study is a surface of which slices (the cross section of the 3D design space through 

the point highlighted by the ‘black dot’) are shown in Figure 9a-c. The design space can be explored further by 

visualizing different combinations of slices, which can be obtained by ‘moving’ this intersection point. For example, 

the intersection point can be moved from the ‘black dot’ to the ‘black triangle’ (Figure 9) to create new slices. 

 
Figure 9. Slices of the trade-off space of the ZTM use case. 

 

The purpose of such an exploration would be to find a region of the design space in which the Pareto front 

contains a combination of the parameters, 𝒅, with a minimum reduction that meets the desired probability of 

constraint satisfaction. In the example shown, a satisfactory compromise regarding the reduction of all three 

parameters can be seen in Figure 10, where the slices are associated with an intersection point at 

 𝒅 = (1.25,101.5,12.5) (represented by the black triangle in Figure 9d).  
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Figure 10. Trade-off space for uncertainty allocation. 

Now, in the new slices of Figure 10, the user can explore possible options for allocating uncertainty to the two 

sources of uncertainty, by simply examining and choosing sample points from the DoE results. For example, Sample 

I in Figure 10 will not be chosen, since it is infeasible, i.e., only 𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙
 is satisfied, but not 𝑃𝑇𝑒𝑚𝑝𝑃𝐶

, or 

𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇
. Sample II is a candidate, since it satisfies all constraints. However, regarding the 95% probability of 

constraint satisfaction, it may be reduced more than necessary. Recall that each simple point represents a new shape 

of the input PDFs. To illustrate this, the effects of choosing Sample I or II on the shapes of the parametrized input 

distributions can been seen in Figure 11. The ideal reduction will be along the ‘Pareto front’, for example solution 

‘A’ (see Figure 10a-b), or ‘B’ (see Figure 10b). In the next section, it is described how the user can obtain such 

solutions by employing the workflow reversal method. 

 
 

 
 

 

 

 

 

 
 

Figure 11. Parametrized input distributions. 

 

 

𝑑𝐻𝑇𝐶 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,   𝜇
 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,   𝑤 
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F. Uncertainty Allocation (Workflow Reversal) for the ZTM Use Case 

Employing the workflow reversal method described in Section IIB, the probability of output constraint 

satisfaction can be specified as a target. The execution of a reversed workflow could then compute how much 

uncertainty should be accepted from the inputs (i.e. the parametrized input PDFs) to achieve the target probability 

(indicated by the black dotted arrows in Figure 12). Here, two possible workflow reversal cases could be set up: 
 

1) Reversal of the input variable related to the width, 𝑑𝐻𝑇𝐶, of the HTC PDF, with the output variable related 

to the probability of constraint satisfaction 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
, while selecting the value of the parameters, 𝑑𝐻𝑒𝑎𝑡

𝑑𝑖𝑠𝑠 
,𝜇 

and 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤, of the heat dissipation PDF (input). An example of the workflow reversal is depicted in 

Figure 12, while a sample solution in the trade-off space is marked as ‘Solution A’ in Figure 10. 

2) Reversal of the input variable related to the skewness 𝑑𝐻𝑒𝑎𝑡
𝑑𝑖𝑠𝑠 

,𝜇 of the heat dissipation PDF, with the 

output variable related to the probability of constraint satisfaction of 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇
, while selecting the value of 

the input parameters, 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤 and  𝑑𝐻𝑇𝐶 . This example in the trade-off space is marked as ‘Solution B’ 

in Figure 10b. 

 

 

 
Figure 12. Example of a workflow reversal applied to the ZTM use case. 

The designer needs to decide which trade-off strategy better suits the scenario. For this study, a trade-off 

scenario was assumed where it is known that the fluctuation of the heat dissipation of the equipment will not exceed 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝑤 =12.5 W/m
2
 and that the PDF could be skewed to the right with mean, 𝑑𝐻𝑒𝑎𝑡

𝑑𝑖𝑠𝑠 
,𝜇 = 101.2 W/m

2
. In 

such a case, it is desired to determine how much variability,  𝑑𝐻𝑇𝐶 , is acceptable in the value of the thermal property 

of the materials (heat transfer coefficient) in order to guarantee a 95% probability of satisfying the thermal 

constraint. To answer this, the designer may choose to set up the first workflow reversal case from the two possible 

cases discussed at the beginning of this subsection and depicted in Figure 12, in order to obtain the parameters of the 

PDFs for allocating uncertainty. This could be done with the interactive design environment, implemented in 

AirCADia Explorer (Figure 5), which formulates an optimization problem ‘on-the-fly’ and is solved using a Gauss-

Newton algorithm. In Figure 13, the detailed descriptions of solutions A and B of the Pareto front is computed. 

Table 4 contains a summary of the results. 
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Figure 13. Results of uncertainty allocation in the ZTM use case. 

 
Table 4. Comparison of input variability between before and after uncertainty allocation. 

 Input variable 

𝐻𝑇𝐶 [W/m
2
/K] 

Input variable 

𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 [W/m
2
] 

Probability of constraint 

satisfaction via URQ & MCS 

*Pre-defined 

Nominal 

value and 

range of 

variability 

 𝑑𝐻𝑇𝐶  

Nominal 

value and 

range of 

variability 

𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝑤 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇
 𝑃𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙

 𝑃𝑇𝑒𝑚𝑝𝑃𝐶
 𝑃𝑇𝑒𝑚𝑝𝐵𝐴𝑇

 

Datum 

1 

-50% 

/+100% 
 

1.5 
105 

[85,102] 
35 105 74.78% 67.99% 60.15% 

Solution 

A 

1 

-27.3% 

/+100% 
 

1.27 

101.25 

[95.44, 

107.94] 

12.5 101.25 98.309% 95%* 95.77% 

Solution 

B 

1 

-12.5% 

/+100% 

1.125 

101.25 

[92.812, 

110.983] 

18.169 101.25 99.065% 97.412% 95%* 

 

G. Computational Efficiency 

In this section, the efficiency of the proposed uncertainty allocation method is demonstrated by comparing it 

with an approach, deviced by the authors, that combines optimization and MCS, as well as the methodology 

proposed by Opgenoord and Willcox
10,22

. In the latter, the uncertainty allocation problem is formulated as a multi-

objective optimization problem. Therefore, the problem stated in Eq.(8) needs to be reformulated as follows: 

 

𝑚𝑖𝑛
𝒅∈𝓐

{

𝐶𝐻𝑇𝐶 = 1.5 −  𝑑𝐻𝑇𝐶  
𝐶𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇

= 105 − 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝜇

𝐶𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 ,𝑤
= 35 − 𝑑𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠,𝑤

 

 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝑃(𝑇𝑒𝑚𝑝𝑡𝑜𝑡𝑎𝑙   ≤   325.15 𝐾 ) ≥ 95%

𝑃(𝑇𝑒𝑚𝑝𝑃𝐶   ≤   319.15 𝐾 ) ≥ 95%

𝑃(𝑇𝑒𝑚𝑝𝐵𝐴𝑇   ≤   324.15 𝐾 ) ≥ 95%

         (9) 
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where A is the design space domain and 𝐶𝐻𝑇𝐶  , 𝐶𝐻𝑒𝑎𝑡
𝑑𝑖𝑠𝑠 

,𝜇 ,  and 𝐶𝐻𝑒𝑎𝑡
𝑑𝑖𝑠𝑠 

,𝑤 are the objective functions, defined as 

the ‘notional cost’ of reducing the uncertainty, as a function of the parameters of the 𝐻𝑇𝐶 and 𝐻𝑒𝑎𝑡𝑑𝑖𝑠𝑠 PDFs, 

respectively. 

Shown in Table 5 is the comparison of the proposed uncertainty allocation method with the optimization 

approaches. It can be seen that solving the problem via the genetic algorithm could take up to 185 days on a desktop 

PC with an Intel Core i7-2600 @ 3.4 GHz processor, which is impractical.  

In comparison, the CPU time used for the proposed uncertainty allocation method was approximately one hour 

and 33 minutes. Of course, alternative approaches can be taken to reduce computational time for the optimization 

approach, such as parallel computing, or employing alternative propagation methods. For example, the use of 

surrogates and Gauss-Legendre quadratures has been proposed by Opgenoord and Willcox
10

.  

Although the Opgenoord and Willcox
10

 method only handles uniform PDFs on the input uncertainties and Eq.(8) 

has to be re-casted as weighted-sum optimization problem, the computational effort at each optimization iteration is 

estimated to be approximately 18 hours and 30 min. However, an important advantage of their approach is that they 

do not need to make the assumption that the output distributions are Gaussians. 

 
Table 5. Computational cost comparison between the uncertainty allocation method and the optimisation approach. 

Approach 

Enablers/numerical treatments and required 

number of simulations 

(n = 5 input random variables) 

Estimated CPU time 

(a single simulation of 

the ZTM ≈ 4 sec) 

Proposed Uncertainty 

Allocation Method 

DoE  = 5*5*5=125 

URQ simulations (2*n+1) = 11 

Gauss-Newton algorithm iterations = 2 

(125+2)*11=1397 

simulations require 

93.13min of CPU time 

 

Resource Allocation 

Optimization 

Formulation
10

 

Gauss-Legendre Quadrature, (𝑁𝑞)
𝑛

 

𝑁𝑞= 7 quadrature points in each dimension 

using the settings from Ref. 10 

7
5
=16807 simulations 

requires ≈18.5 hours of 

CPU time for a single 

optimization iteration 

 

Uncertainty Allocation 

formulated as optimization 

problem in Eq.(5) 

Employing a Multi-objective Genetic Algorithm: 

Typical Population≈40 

Moderate number of Generations≈20 

MCS = 5000 

40*20*5000 = 

4000000 simulations 

require 185 days of 

CPU time 

V. Summary and Conclusions 

Presented in this paper is an efficient uncertainty allocation method which utilizes (shape) parametrization of the 

input probability distribution functions, allowing the manipulation of several statistical moments. The main 

advantages of the method include:  

 The ability to vary all the first four statistical moments of the PDF allows more freedom for exploration, 

and ultimately for allocating input uncertainty. Moreover, the shape parametrization enables the the 

magnitude and spread of the uncertainty to be treated as decision variables, thereby allowing the 

exploration of the design space using ‘engineering’ quantities, rather than having to think in terms of 

statistical parameters. 

 The ability to search for combinations of input uncertainties, or PDFs, that could reduce uncertainty on 

multiple outputs.  

 The shape parameterization, combined with efficient uncertainty propagation and inverse computation 

techniques, results in a computational system which performs order(s) of magnitude faster, compared 

with a combination of Monte Carlo Simulation and optimization techniques. 

 Finally, it is shown that, by visualizing the trade space of potential combinations of solutions to the 

uncertainty allocation problem, more informed decisions can be made when selecting an appropriate 

solution. 

Future work will focus on: 1) addressing the limitation imposed by the requirement that the input probability 

distributions be independent; 2) removing the assumption that the output distributions are Gaussians, by calculating 

the other statistical moments; and 3) further development of visualization and interactive techniques, to deal with 

multi-dimensional trade spaces of the parameterized probability distribution functions. 
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