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 

       Abstract— Identifying defect patterns on wafers is crucial for 

understanding the root causes and for attributing such patterns 

to specific steps in the fabrication process. We propose in this 

paper a system called DDPfinder that clusters the patterns of 

defective chips on wafers based on their spatial dependence 

across wafer maps. Such clustering enables the identification of 

the dominant defect patterns. DDPfinder clusters chip defects 

based on how dominant are their spatial patterns across all wafer 

maps. A chip defect is considered dominant, if: (1) it has a 

systematic defect pattern arising from a specific assignable cause, 

and (2) it displays spatial dependence across a larger number of 

wafer maps when compared with other defects. The spatial 

dependence of a chip defect is determined based on the contiguity 

ratio of the defect pattern across wafer maps. DDPfinder uses the 

dominant chip defects to serve as seeds for clustering the patterns 

of defective chips. This clustering procedure allows process 

engineers to prioritize their investigation of chip defects based on 

the dominance status of their clusters. It allows them to pay more 

attention to the ongoing manufacturing processes that caused the 

dominant defects. We evaluated the quality and performance of 

DDPfinder by comparing it experimentally with eight existing 

clustering models. Results showed marked improvement. 
 

Index Terms— Clustering of defective chips, wafer defect 

patterns, spatial autocorrelation, spatial dependence, wafer map. 

I. INTRODUCTION 

Thousands of ICs are typically fabricated on a single 

semiconductor wafer. Each wafer undergoes various 

processing steps before it is transformed from a plain silicon 

wafer to one populated with thousands of ICs. During wafer 

fabrication, thin layers of metals are deposited on the wafer 

with intervening steps that insert anneal, dopants, and etch 

patterns. The deposition of these alternating thin layers of 

metals produce interconnecting vias (i.e., passages) patterned 

in the deposited layers. IC chips are highly vulnerable to 

defects in each of the fabrication processing steps. These 

defects may cause IC chips to completely malfunction. Defect 

patterns on semiconductor wafers can be classified into two 

categories [23]: the first is particle related (random clutter) and 

the second is process related (systematic cluster). Usually, 

random defects are caused by cleanliness of the clean room 

(i.e., clean room environment problems). Systematic defects 

are typically caused by defective equipment, processes, and/or 

human mistakes. Random defects can be mitigated by 

expensive equipment overhaul.  

         To increase product yield, semiconductor manufacturing 

companies need to understand the root causes of defective 
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chips and to associate them with specific steps in the 

fabrication process. Thus, it is crucial for semiconductor 

industry to effectively translate defective clusters on wafer bin 

map (WBM) into knowledge for the sake of process 

improvements and yield enhancements. The most important 

objective of defect identification is the early determination of 

process problems in order to reduce the number of scrapped 

chips [7]. Defective chips tend to have specific spatial 

patterns. Usually, these defects display spatial dependence 

across wafer maps, which can be traced back to the root 

causes of the defects. This property has been exploited by 

dividing defect patterns into groups called clusters. This is 

because defective chips usually take place in clusters and 

exhibit systematic patterns [1, 23]. Defects within a cluster are 

closely similar internally, while sparsely similar with the 

defects in other clusters. 

          Many algorithms have been proposed for clustering 

defects. These algorithms can be categorized into hierarchical-

based, neural network-based, partitioning-based, kernel-based 

clustering, and mixture model-based clustering [14, 30]. 

However, most of these algorithms: (1) do not consider the 

relative extent of a defect pattern compared to other defect 

patterns on wafer maps (i.e., the relative extent of a defect 

pattern di is the degree to which di is stretched-out to subsume 

neighboring chips compared to other defects), (2) discount the 

role of the spatial dependence of defect patterns across wafer 

maps. As a result, these algorithms do not handle well 

overlapped and spherical defective patterns.  

          We propose in this paper a system called DDPfinder 

(Dominant Defective Patterns Finder) that clusters defect 

patterns and overcomes the limitations of most current 

algorithms outlined above. It overcomes these limitations by 

clustering patterns of defective chips on wafer map based on 

their spatial dependence across all wafers. Such clustering 

enables the identification of the dominant (i.e., important) 

defect patterns. More specifically, DDPfinder clusters chip 

defects based on how dominant are their spatial patterns across 

wafer maps. A chip defect is considered dominant, if: (1) it 

has a systematic defect pattern arising from a specific 

assignable cause, and (2) it displays spatial dependence across 

a larger number of wafer maps when compared with other 

defects. In the framework of DDPfinder, a chip defect’s spatial 

dependence is determined based on its contiguity ratio (CR) 

[1] across all wafers. A dominant defective cluster represents 

key characteristics of a specific type of defect pattern that 

exhibits spatial dependence across a large number of maps. 

           DDPfinder uses the dominant chip defects to serve as 

seeds for clustering the patterns of defective chips. This 

clustering procedure allows process engineers to prioritize 

their investigation of chip defects based on the dominance 
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status of their clusters. It allows them to pay more attention to 

the ongoing manufacturing processes that caused the dominant 

defects. Non-dominant defective clusters may not signify 

ongoing manufacturing processes issues (e.g., handling 

issues). Therefore, considering such defects can waste the time 

of process engineers and distract them from investigating the 

important (i.e., dominant) defects. DDPfinder refines the set of 

defect patterns by keeping only the dominant ones. The main 

contributions of this paper can be summarized as follows: 

• We propose a novel approach that identifies the 

dominant defect patterns based on their spatial 

dependence across wafer maps. 

• We propose a novel approach that uses the dominant 

defect patterns to serve as seeds for clustering the 

patterns of defective chips.  

• We perform experimental evaluation and demonstrate 

the superiority of DDPfinder when compared with 

other popular existing schemes. 

II. RELATED WORK 

Most current proposed approaches for detecting spatial defect 

patterns on semiconductor wafers fall under four broad 

categories and several subcategories as shown in Fig. 1.  
 

 
Fig. 1: The four broad categories and their subcategories for detecting spatial 
defect patterns on semiconductor wafers 
  

          As shown in Fig. 1, the first category includes MLP, 

RBF, and LVQ approaches. A feed-forwarded neural network 

(NN) is the most frequently used technique for extracting 

knowledge from data in problems involve classification and 

regression [29]. Al Shawish [9] introduced an algorithm that 

combines a neural regression-network consensus learning 

model with a randomization technique to classify wafer defect 

patterns. Adly et al. [10] proposed a framework for identifying 

defect patterns using simplified subspaced and randomized 

general regressions as well as Voronoi-based data partitioning 

for clustering. The main limitation of the supervised neural 

network approach is its expensive computation time.  

           As shown in Fig. 1, the second category includes ART 

and SOM approaches. Lee et al. [16, 17] designed an 

unsupervised self-organizing map (SOM) algorithm using data 

sampling methodology. The algorithm clusters the spatial chip 

locations that have similar defect features. Liu et al. [18] and 

Chen et al. [5] employed adaptive resonance theory (ART) 

techniques to detect special types of defect patterns on WBM. 

Hsu et al. [12] introduced a hybrid method to detect defective 

patterns by integrating ART network and spatial statistics. 

Palma et al.  [25] adopted SOM and ART as wafer classifiers 

using extensive simulated and real data sets. 

          As shown in Fig. 1, the third category includes model-

based clustering [6, 31] and hybrid clustering [16] approaches. 

Chien et al. [6] used Multi-way principal component analysis 

and data mining techniques to diagnose and monitor the 

semiconductor fabrication process. Yuan et al. [31] proposed 

Bayesian model-based clustering algorithms for clustering 

spatial defective pattern on semiconductor wafers.   

          As shown in Fig. 1, the fourth category are approaches 

based on SVM and ANN models. SVM and ANN are the most 

used models for classifying defect patterns due to their strong 

versatility and performance [3, 4, 13, 19, 20, 26, 28, 29]. The 

ANN approaches are: (1) simple, (2) able to handle multi-

dimensional problems, and (3) relatively fast [19, 24, 29].  

III. OUTLINE OF THE APPROACH 

In this section, we present an overview of our approach in 

terms of the sequential processing steps taken by DDPfinder to 

cluster patterns of defective chips on wafer map. These 

sequential steps are summarized as follows: 

1) Grouping chips in wafer maps into Voronoi regions 

a) Selecting Sample Chips in Wafer Maps to Represent all 

Chips in the Wafers: Let n be the number of chips in a 

wafer. DDPfinder selects k sample chips randomly to 

represent the n chips. This process is described in more 

details in section IV-1. 

b) Partitioning the Wafer Maps into Voronoi Regions: 

The k sample chips serve as seeds for constructing k 

Voronoi regions [10]. The n chips will be clustered into 

the k Voronoi regions. This process is described in 

more details in section IV-2.  

2) Identifying the defective centroid points of Voronoi 

regions and computing their contiguity ratios:  
a) Fetching the Centroid Point of Each Voronoi Region: In 

the framework of DDPfinder, each centroid point 

serves as a representative of its Voronoi region [10]. 

This will significantly reduce the size of processed data 

and improves the computation time. This process is 

described in more details in section V-1. 

b) Identifying the Defective Centroid Points: To identify 

the defective centroid points, DDPfinder first applies a 

spatial filter to remove outliers and random defects. 

Then, it identifies each centroid point as either non-

defective or defective. DDPfinder considers a centroid 

point defective, if it resides in a defective Voronoi 

region. Section V-2 describes this process in details. 

c) Computing the Contiguity Ratios of the Defective 

Centroid Points: DDPfinder determines the spatial 

autocorrelation of each defective centroid point cp by 

computing the Contiguity Ratio (CR) [1] of cp with 

respect to its neighboring defective centroid points. 

This process is described in details in section V-3. 

3) Identifying the dominant defective centroid points: To 

identify the dominant defective centroid points, DDPfinder 

assigns a score to each candidate defective centroid point 

cpi. The score reflects the dominance status of cpi relative 

to the other defective centroid points. The score is 

determined based on the contiguity ratio of cpi. This 

process is described in more details in section VI. 

4) Clustering patterns of chip defects based on their spatial 

dependence on the dominant defective centroid points: 
DDPfinder clusters defective Voronoi regions based on 
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how dependent are the spatial patterns of their centroid 

points on the dominant defective centroid points across 

wafer maps. That is, DDPfinder uses the dominant 

centroid points to serve as seeds for clustering the patterns 

of defective chips. Thus, each cluster will reflect the 

spatial dependence of its Voronoi regions on a dominant 

defective centroid point across all wafers. This allows 

process engineers to prioritize their investigation of chip 

defects based on the dominance status of their clusters. It 

allows them to pay more attention to the ongoing 

manufacturing processes that caused the dominant defects. 

This process is described in more details in section VII. 

IV. GROUPING CHIPS IN WAFER MAPS INTO VORONOI 

REGIONS 

DDPfinder employs an efficient data partitioning scheme for 

grouping chips into spatial regions, which leads to data 

reduction. The partitioning scheme is based on Voronoi 

diagram [10]. Voronoi diagrams are used in many practical 

applications related to science and technology. A Voronoi 

region consists of all points closer to a fixed site than any 

other site. The Voronoi diagram clusters the entire vector 

space into smaller and manageable Voronoi regions. We 

present in this section the techniques adopted by DDPfinder 

for constructing the Voronoi regions, fetching the centroid 

points of the regions, and identifying the defective ones. 

1) Selecting Sample Chips in Wafer Maps to Represent all 

Chips in the Wafers 

Let n be the number of chips in a wafer. For the sake of 

efficient processing, DDPfinder selects k sample chips 

randomly to represent the n chips. The k sample chips serve as 

seeds for constructing k Voronoi regions. That is, each of the k 

sample chips serves as a base of a Voronoi region. Eventually, 

the n chips will be clustered into the k Voronoi regions. Then, 

the centroid point of each Voronoi region is fetched using the 

K-means algorithm [21]. Each centroid point will serve as a 

representative of its Voronoi region. That is, the centroid point 

of a Voronoi region Vx will serve as a representative of all the 

chips that reside inside Vx. By representing Voronoi regions by 

their centroid points, the size of processed data will be 

significantly reduced. This will lead to improving the 

computation time complexity. 

          DDPfinder selects the k sample chips in such a way that: 

(1) the intensity of the selected chips at the wafer’s edges is 

greater than that in the wafer’s middle, and (2) the intensity of 

the selected chips at the wafer’s middle is greater than that in 

the wafer’s center. That is, if E, M, and C are the percentages 

of selected chips at a wafer’s edges, middle, and center 

respectively, then %>%>% CME . This is because: (1) the 

yield in the near-edge region is usually as much as 50% less 

than the yield in the center region [2], and (2) the high yield 

loss in the near-edge region can have a significant impact on 

the overall wafer yield and fab profit. Since a large wafer’s 

edges and center account for about 23% and 20%, 

respectively, of the wafer’s area [2], we consider the outer 

25% area as edges, the inner 25% area as center, and the 

remaining area as middle. 

We present a running example in this section using a 

rectangular image shapes depicting a small-size wafer map. 
      

       Example 1: Fig. 2 shows the defective chips and the 

selected k sample chips in the small-size wafer map of our 

running example. The figure shows how the k sample chips 

are selected in such a way that their intensity at the wafer’s 

edges is greater than that at the middle, and their intensity at 

the middle is greater than that at the center. 

              

     Defective chips                            Randomly selected sample chips                         

 
Fig. 2: The defective chips and the selected k sample chips in the small-size 

wafer of our running example, which represents a reference wafer map. 

2) Partitioning the Wafer Maps into Voronoi Regions 

A wafer map is partitioned into Voronoi regions. Let Vci 

denote the Voronoi region that contains the sample chip ci. Vci 

contains all chips closer to ci than any other sample chip. That 

is, for each of the selected k sample chips there is a 

corresponding Voronoi region containing all chips closer to 

this sample chip than to any other sample chip. Thus, the 

wafer is partitioned into k Voronoi regions. DDPfinder uses 

the Forgy method [8] for constructing the k Voronoi regions. 

The method assigns each chip in the wafer to one of the k 

Voronoi regions. The method employs the K-means algorithm 

[21] for constructing the k Voronoi regions, whose initial 

means are the k sample chips. The method constructs a 

Voronoi region Vci from a set of chips, whose distances to ci 

mean produces the least within-Vci sum of squares.  

         Example 2: Fig. 3 exhibits the partitioning of the wafer 

map of our running example into Voronoi regions based on 

the selected k sample chips shown in Fig. 2. 

               Voronoi regions                          Defective chips 

 
Fig. 3: The partitioning of the wafer map of our running example into Voronoi 

regions based on the selected k sample chips shown in Fig. 2. 
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V. IDENTIFYING THE DEFECTIVE CENTROID POINTS OF 

VORONOI REGIONS AND COMPUTING THEIR CONTIGUITY 

RATIOS 

1) Fetching the Centroid Point of Each Voronoi Region 

The centroid point of each Voronoi region is fetched using the 

K-means algorithm. This centroid point becomes the new 

mean of the Voronoi region. By using this technique, the 

overall time complexity for classifying defects will be reduced 

significantly, because the centroid point of each Voronoi 

region will be used as a representative of all chips within the 

region [15, 21, 22]. This will cause the size of the processed 

data to be significantly reduced. 

          Example 3: Fig. 4 shows the centroid points of the 

voronoi regions in the wafer map of our running example. 

      Centroid points                                    Voronoi regions 

 
Fig. 4: The centroid points of the voronoi regions in the wafer map of our 
running example. 

2) Identifying the Defective Centroid Points 

Each centroid point is identified as either non-defective or 

defective. A centroid point is considered defective, if its 

Voronoi region is defective. A Voronoi region is considered 

defective, if the percentage of defective chips within its region 

exceeds a specific threshold  , and vice versa. Since each 

Voronoi region V is represented by its centroid point cp, cp is 

considered defective if V is defective and vice versa. In the 

framework of DDPfinder, each defective centroid point is 

assigned the value 1 and each non-defective one is assigned 

the value 0. The value of the threshold  is heuristically 

determined. In our experimental results, we considered  to 

be the average percentage of defective chips in the selected k 

sample chips in all reference wafers, as shown in Equation 1: 

                                     
 



m

j

k

i

iC
mk

1 1

1
                              (1)                               

•  k : Number of sample chips on a wafer. 

•  m : Number of defective wafers captured by in-line 

inspection tools during a fabrication processing step. 

•    






chipsample defective for a non-

chipsample ctivefor a defe
Ci

0

1  

         Example 4: Fig. 5 shows the defective centroid points of 

the voronoi regions in the wafer map of our running example. 

 
      Non-defective centroid points                Defective centroid points 

 
Fig. 5: The defective centroid points of the voronoi regions in the wafer map 
of our running example. 

3) Computing the Contiguity Ratios of the Defective Centroid 

Points 

The severity of a defective centroid point can be assessed by 

how its defect pattern is stretched-out. That is, it can be 

assessed by the extent of its defect pattern’s contiguity to 

subsume neighboring defective centroid points. Therefore, 

DDPfinder determines the spatial autocorrelation of each 

defective centroid point by computing its Contiguity Ratio 

(CR) [1] with regard to its neighboring defective centroid 

points. CR is also known as a measure of spatial 

autocorrelation. Two centroid points are considered neighbors, 

if the distance separating them is less than a heuristically 

determined value. This value is influenced by the size of 

wafer. A defective centroid point is considered to have high 

positive spatial autocorrelation, if the value of its CR is greater 

than a predefined threshold  . We compute CR using the 

formula in Equation 2, which was proposed by Moran [1]: 
 

        
  

 









2
2 xxc

xxxxwn
CR

i

ji
jiij                  (2) 

 

With mathematical manipulations, CR can be rewritten as: 

             1/1100  cpqqcpcCR                  (3) 
 

00c : Number of functional centroid points with 

values 0 that are neighboring to an active centroid 

point under consideration,  

11c : Number of defective centroid points with values 

1 that are neighboring to an active centroid point. 

nnp /1 , 
nnq /0  , and 

0n , 
1n : Numbers of functional and defective chips, 

respectively, on wafer. 
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VI. IDENTIFYING THE DOMINANT DEFECTIVE CENTROID 

POINTS 

Most current algorithms that cluster defects do not consider 

the relative extent of each defect pattern compared to other 

defect patterns on a wafer map. The relative extent of a defect 

pattern di is the degree to which di is stretched-out to subsume 

neighboring chips compared to other defects. In other words, 

they do not distinguish between dominant and non-dominant 

defect patterns across all wafers. Non-dominant defect 

patterns are uninformative and may not signify existing 

manufacturing processes issues. Therefore, considering such 

defects can waste the time of process engineers. To overcome 

this problem, DDPfinder refines the set of defective centroid 

points by keeping only the dominant ones. It clusters defective 

centroid points based on how dominant are their spatial 

patterns across all wafer maps. A defective centroid point is 

deemed dominant, if: (1) it has a systematic defect pattern 

arising from a specific assignable cause, and (2) it displays 

spatial dependence across a larger number of wafer maps 

when compared with other defects. In the framework of 

DDPfinder, a chip defect’s spatial dependence is determined 

based on its contiguity ratio (CR) [1] across all wafers. 

          To identify the dominant defective centroid points, 

DDPfinder assigns a score to each candidate defective 

centroid point cpi. The score reflects the dominance status of 

cpi relative to all other defective centroid points. The score is 

determined based on the contiguity ratio of cpi, which is 

computed using Equation 3 (recall section V-3). Towards this, 

DDPfinder determines the pairwise beats and looses for each 

candidate defective centroid point based on its contiguity ratio.  

         Let CRi be the contiguity ratio of the defective centroid 

point cpi. Let CRj be the contiguity ratio of the defective 

centroid point cpj. Let n be the number of wafer maps where 

CRi is greater than CRj. Let m be the number of wafer maps 

where CRj is greater than CRi. Candidate defective centroid 

point cpi beats candidate defective centroid point cpj, if n is 

greater than m. Each candidate defective centroid point cpx is 

assigned a score
xcpS , which is the difference between the 

number of times that cpx beats the other candidate defective 

centroid points and the number of times it loses. 

Definition 1 – The score of a candidate defective 

centroid point: Let CRi and CRj be the contiguity ratios 

of the defective centroid points cpi and cpj respectively. 

Let n be the number of wafer maps where CRi is greater 

than CRj. Let m be the number of wafer maps where CRj 

is greater than CRi. Let cpi  > cpj denote the case when n 

is greater than m. Given the dominance relation > on the 

set cpV of candidate centroid points, the score 
icpS  of cpi 

equals:    ijcpjjicpj cpcpVcpcpcpVcp  :: . 

The following are two properties of this scoring method: 

(1) the sum of all scores is always zero, and (2) the 

lowest possible score is –(| cpV |-1) and the highest 

possible score is +(| cpV |-1).  

Let Ŝ  be the absolute value of the largest negative score. We 

normalize the scores of candidate centroid points by adding Ŝ  

to each score and then normalizing the results. The candidate 

centroid points are ranked based on their dominance scores. 

           Example 5: Table I shows the contiguity ratios of ten 

candidate defective centroid points on three dummy wafer 

maps. Table II shows how the score 
icpS and normalized score  

icpS of each candidate defective centroid point cpi from the ten 

candidate defective centroid points are computed based on the 

contiguity ratios of cpi on the three dummy wafer maps. 

Consider for example the centroid point cp1 in Table II. The 

score 
1cpS of cp1 as shown in the table is -6. This score is 

computed as follows. As shown in Table I, the number of 

wafer maps where cp1is greater than cp2 is 1, while the number 

of wafer maps where cp2 is greater than cp1 is 2. Therefore, cp1 

is beaten by cp2 and this is denoted by the sign “-” in the entry 

(cp2, cp1) in Table II. As the column cp1 in Table II shows, cp1 

beat others only one time, it lost to others 7 times, and has 

equal number of beats and looses 2 times. Therefore, the score 

1cpS of cp1 is -6 (i.e., 1-7 = -6). As Table II shows, the ranks of 

the ten-candidate defective centroid points based on their 

normalized scores are as follows: {cp2, (cp3, cp9), (cp6, cp8), 

cp7, cp10, cp4, cp1, cp5)}.  

TABLE I 

THE CONTIGUITY RATIOS OF TEN CANDIDATE DEFECTIVE CENTROID POINTS 

ON THREE DUMMY WAFER MAPS. EACH ENTRY (cpi, Wj) IS THE CONTIGUITY 

RATIO OF A CENTROID POINT cpi ON A WAFER MAP Wj. 

 
              W and cp denote wafer map and centroid point, respectively. 

TABLE II 

BEATS/LOOSES SCORES OF THE TEN CANDIDATE DEFECTIVE CENTROID 

POINTS SHOWN IN TABLE I. THE SCORES ARE COMPUTED BASED ON THE 

CONTIGUITY RATIOS OF THE CENTROID POINTS SHOWN IN TABLE I 

 
“+” denotes centroid point cpi beat centroid point cpj. “-” denotes centroid 
point cpi lost to centroid point cpj. “0” denotes cpi and cpj have equal number 

of beats and looses. 
icpS and 

icpS are the score and normalized score, 

respectively, for cpi. 
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VII. CLUSTERING PATTERNS OF CHIP DEFECTS BASED ON 

THEIR SPATIAL DEPENDENCE ON THE DOMINANT DEFECTIVE 

CENTROID POINTS 

Defective Voronoi regions are clustered based on how 

dependent are the spatial patterns of their centroid points on 

the dominant defective centroid points across wafer maps. In 

particular, DDPfinder uses the dominant centroid points to 

serve as seeds for clustering the patterns of defective centroid 

points. Recall that dominant defective centroid points are 

identified based on their contiguity ratios across all wafer 

maps, which reflect their spatial patterns’ dominance across all 

the maps. Thus, each cluster will reflect the spatial 

dependence of its defective Voronoi regions’ centroid points 

on a dominant defective centroid point across all wafer maps. 

This clustering procedure allows process engineers to 

prioritize their investigation of chip defects based on the 

dominance status of their clusters. It allows them to pay more 

attention to the ongoing manufacturing processes that caused 

the dominant defects. Non-dominant defective clusters may 

not signify ongoing manufacturing processes issues (e.g., 

handling issues). Therefore, considering such defects can 

waste the time of process engineers and distract them from 

investigating the important (i.e., dominant) defects.   

         First, defective centroid points are ranked based on their 

dominance scores, which are computed as described in section 

VI. The most dominant defective centroid points are given 

priority to serve as seeds for constructing clusters. Each 

cluster consists of:  

1) A defective Voronoi region Vx, whose defective 

centroid point is dominant. 

2) Defective Voronoi regions that are neighboring to Vx in 

the wafer map.  

       Let L be the list of defective centroid points ranked based 

on their dominance scores described in section VI. Each 

cluster R is constructed following these steps: 

i. Select the most dominant defective centroid point cpx 

in the list L. Include the Voronoi region, whose 

centroid point is cpx to cluster R. 

ii. Remove cpx from the list L. 

iii. Select the set Sx of Voronoi regions, whose defective 

centroid points are in the list L and are neighboring to 

the Voronoi region, whose centroid point is cpx in the 

wafer map. Include the set Sx to cluster R. 

iv. Remove the centroid points of the set Sx from the list L. 

v. Repeat steps i-iv until the list L is exhausted. 

For example, consider the following: (1) the defective Voronoi 

region Vx, whose centroid point is cpx is neighboring to the 

Voronoi regions Vy and Vz, whose centroid points are cpy and 

cpz respectively, (2) Vy and Vz are not neighbors, and (3) the 

dominance ranks of cpx, cpy, and cpz are as follows:  cpy > cpz > 

cpx. Vx will be assigned to the cluster containing Vy and not to 

the cluster containing Vz. Example 6 illustrates this point. 

         Example 6: Fig. 6 shows how the clustering of Voronoi 

regions can vary based on the dominance ranks of their 

centroid points.  In the figure, cpi:x denotes that x is the 

dominance rank of the Voronoi region, whose centroid point is 

i. The ranks of the centroid points in Fig. 6(a) and Fig.6(b) are 

the same except for cp7 and cp9. As can be seen, the clustering 

changes by swapping the dominance ranks of cp7 and cp9.  

  
                             (a)                                                           (b) 

Fig. 6: An illustration of how the clustering of Voronoi regions can vary based 
on the dominance ranks of their centroid points. The clustering changed by 

swapping the ranks of centroid points cp7 and cp9. Each square represents a 

Voronoi region and the background colors represent clusters. 

VIII. EXPERIMENTAL RESULTS 

We implemented DDPfinder in Java, run on Intel(R) 

Core(TM) i7 processor, with a CPU of 2.70 GHz and 16 GB 

of RAM, under Windows 10. We evaluated the quality of 

DDPfinder by comparing it with the following models:  

1) The following models, which we previously proposed:  

➢ Simplified subspaced regression network (SSRN) [10]  

➢ Randomized general regression neural network 

(RGRN) [9]. 

2) The following three widely known and used models:  

➢ Support vector machines (SVMs). 

➢ Sequential minimal optimization (SMO). 

➢ Artificial neural networks (ANNs) including general 

regression neural (GRN), radial basis function (RBF), 

probabilistic neural network (PNN), and multi-layer 

perceptron (MLP). 

1) Compiling a Dataset for the Evaluation 

The dataset used in the experiments is a mixture of real-world 

wafer maps provided by Samsung Electronics in Korea, and 

data generated by Jeong et al. [32] based on the approach 

proposed by DeNicolao et al. [11]. The dataset includes the 

most common wafer defect patterns. The following four 

different defect patterns were generated: spot, circle, 

repetitive, and cluster. For each defect pattern, a different 

probabilistic model was used to represent the position of a 

defective die on the wafer. We used the probabilistic 

expressions for representing the position of a defective die on 

the wafer proposed in [11]. 20 × 20 wafer maps were 

constructed for wafers containing 400 chips each. 80 wafer 

maps were generated for each defect pattern by adjusting the 

controlling parameters of its probabilistic model as described 

above. This allowed us to get variations of the same pattern, 

such as different sizes, locations, and thicknesses.  

2) Evaluating the Prediction Performance using 10-fold 

Cross Validation 

The most common and well-accepted statistical method to 

evaluate the performance of a classifier is cross-validation. 

Therefore, we use cross-validation to assess the predictive 

performance of DDPfinder using the following metrics:  
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• Variance (σ): σ provides a good idea about a model’s 

generalization ability and stability. As shown in Equation 4, 

σ measures the deviation of each data point in the dataset 

from the mean. 

• Coefficient of determination (R2): R2 is used as an indication 

of a model’s capability to correctly explain and predict 

future clustering outcomes. R2 is measured using Equation 5. 

• Clustering accuracy (γ): γ reveals a model’s ability to 

correctly cluster defect patterns. As shown in Equation 6, it 

is calculated by comparing the predicted clustering output 

with the actual output. 

• F-measure: It calculates the harmonic mean of the 

specificity (Sp) and sensitivity (Sn) of the result. It is 

computed as shown in Equation 7. 

• Time complexity (TBM). The time required to cluster results 
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and x̂  is the estimated one. 
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        To assess the predictive performance of the models, we 

performed 10-fold cross-validation. The dataset is partitioned 

(at random) into 10 disjoint subsets. The models are evaluated 

ten times, where at each time a different subset of the data is 

used for testing while the remaining nine subsets are used for 

training the models. DDPfinder uses the training dataset to 

identify the dominant defective centroid points. Then, it 

clusters the patterns of chip defects on test wafers based on the 

dominant defective centroid points identified from the training 

dataset. The 80 wafer maps generated for each defect pattern 

are used as ground truth data. Fig. 7 shows the overall average 

γ, σ, R2, and TBM, respectively, for each model.  

      Table III shows the clustering performance of the different 

models under folds 7-10. In theory, increasing the number of 

folds could reduce a model’s bias by reducing error rate in 

variance. However, the improvements come at the expense of 

computational time complexity, since the times of rerunning 

the model will increase by the number of added folds. 

 
Fig. 7: Overall average of: (a) γ, (b)  , (c) R2, and (d) TBM (in seconds). 

 

  

TABLE III 

CLUSTERING PERFORMANCE OF THE MODELS UNDER FOLDS 7-10 

Model Fold γ R2   TBM (seconds) 
 

DDPfinder 
7 99.786 99.250 1.114 8.204 

8 99.873 99.329 1.073 9.582 

9 99.835 99.428 1.213 11.410 

10 99.803 99.776 1.101 12.356 

 
SSRN 

7 98.671 97.290 1.282 7.583 

8 98.837 99.288 1.248 8.957 

9 99.742 99.789 1.260 9.364 

10 99.884 99.905 1.257 10.930 

 
RGRN 

7 99.702 99.048 1.127 10.755 

8 99.739 99.167 1.127 11.575 

9 99.537 99.213 1.128 14.692 

10 99.792 99.333 1.128 15.774 

 
GRN 

7 95.833 96.667 1.179 2.966 

8 85.000 76.000 1.261 1.908 

9 90.000 80.000 1.050 2.073 

10 93.750 95.000 1.209 2.178 

 
SMO 

7 91.563 82.883 3.579 0.180 

8 92.188 82.919 4.016 0.190 

9 91.250 82.974 3.993 0.180 

10 91.563 82.937 4.289 0.180 

 
PNN 

7 95.833 96.667 1.179 1.829 

8 85.000 76.000 1.261 1.890 

9 90.000 80.000 1.050 1.927 

10 93.750 95.000 1.209 1.987 

 
MLP 

7 79.063 75.169 5.604 30.910 

8 80.000 74.460 6.328 27.380 

9 77.813 78.730 5.571 31.020 

10 79.375 74.287 6.826 29.210 

 
SVM 

7 90.939 85.461 1.104 0.987 

8 91.250 85.250 1.113 1.434 

9 91.279 83.736 1.101 1.206 

10 90.938 83.500 1.106 1.256 

 
RBF 

7 91.667 93.939 0.833 84.311 

8 91.667 78.181 0.726 92.176 

9 96.667 92.727 0.834 85.214 

10 93.750 90.909 0.873 120.122 

The following are our observations regarding the results: 

•  Accuracy (γ): As Fig. 7-a and Table III show, DDPfinder 

outperformed the other eight models in terms of accuracy. 

However, the performance of DDPfinder over RGRN was 

slight, where the average γ of DDPfinder and RGRN were 

99.824 and 99.692, respectively. 
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•  Variance (σ): As Fig. 7-b and Table III show, DDPfinder 

outperformed SSRN, RGRN, GRN, SMO, PNN, and MLP. 

However, SVM and RBF outperformed DDPfinder. 

•  Capability to predict future outcomes correctly (R2): As 

Fig. 7-c and Table III show, DDPfinder outperformed the 

other eight models. However, its performance over RGRN 

was slight, where the average R2 of DDPfinder and RGRN 

were 99.446 and 99.190 respectively. 

•  Time complexity (TBM): As Fig. 7-d and Table III show, 

DDPfinder outperformed only RGRN, MLP, and RBF, 

while the remaining models outperformed DDPfinder. 

Therefore, we need to investigate approaches for 

improving DDPfinder’s time complexity in a future work. 

3) Evaluating the Prediction Performance using Cumulative-

Validation Dataset 

Wafer defect data in real-world accumulates over time and 

such data abundance should be utilized to enhance defect 

prediction accuracy. Therefore, every time defect data is 

collected from a set of recently fabricated wafers, DDPfinder 

updates and optimizes the current beats/looses scores of 

defective centroid points (recall Table II) based on this 

recently collected defect data. In this section, we aim at 

determining whether the prediction performance of DDPfinder 

improves constantly over time as the size of training dataset 

increases. That is, we aim at assessing the impact of the 

increasing size of training dataset on the prediction 

performance of DDPfinder. 

         We partitioned the dataset at random into training and 

testing disjoint subsets. We then performed 10 evaluation 

runs. The set of training dataset accumulates in each run 

successively. After each run, the current set of testing data will 

be added to the current set of training data, and the 

accumulating set will be used for training DDPfinder in the 

next run (i.e., the set of training data is the cumulative of the 

training and testing data of all previous runs). Fig. 8 shows the 

results using the metrics shown in Equation 4-7 in addition to 

TBM. Fig. 9 shows the F-measure in each of the 10 runs using 

the metric shown in Equation 4. 

 

  
                        (a)                                                           (b) 

  
                                 (c)                                                        (d) 
Fig. 8: The prediction performance of DDPfinder using cumulative-validation 
dataset. (a) Accuracy, (b) R2, (c) Variance, (d) TBM. 

 
Fig. 9: F-measure on the 10 cumulative rums 

          As exhibited in Fig. 8 that the prediction performance of 

DDPfinder improves constantly as the size of training data 

increases. This is because DDPfinder updates and optimizes 

the current beats/looses scores of defective centroid points 

after each run (recall Table II). It does so by considering the 

Contiguity Ratios of the defective centroid points in the 

current set of recently fabricated wafers (recall Table I). Thus, 

clustering accuracy keeps improving over time. As for the F-

values shown in Fig. 9, they indicate that DDPfinder performs 

well, since all these values are greater than 0.92. However, as 

the training dataset increases, DDPfinder’s time complexity 

increases (see Fig. 8-d). These increases are insignificant and 

justifiable. 
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IX. CONCLUSION 

We introduced a system called DDPfinder that clusters the 

patterns of defective chips on wafer maps and overcomes the 

limitations of exiting popular algorithms that cluster chip 

defect. It does so by clustering the patterns of defective chips 

based on their spatial dependence across all wafer maps. This 

clustering procedure enables the identification of the most 

dominant defect patterns on a wafer map. This allows process 

engineers to prioritize their investigation of chip defects and to 

pay more attention to the ongoing manufacturing processes 

that caused the dominant defects. We evaluated the quality 

and performance of DDPfinder by comparing it with eight 

models. Results showed marked improvement. 
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