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Abstract: Recently, a Bilinear Proportional plus Integral (BPI) controller was proposed for the
control of directional drilling tools commonly used in the oil industry. However, there are delays
in the measurement signals which reduces the system performance. Here, the BPI controller is
extended by addition of a modified Smith predictor. The effectiveness, robustness and stability of
the proposed modified Smith Predictor (SP)-BPI controller are analysed. Transient simulations
are presented and compared with that of the earlier BPI controller. From the results, it can be
surmised that the proposed modified SP-BPI controller significantly reduces the adverse effects
of disturbances and time delay on the feedback measurements with respect to stability and
performance of the directional drilling tool.
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1. INTRODUCTION

Rotary steerable drilling and directional drilling tools
are now commonly used for exploiting smaller, difficult-
to-commercialize reservoirs and for extending the life of
existing oilwells (Pedersen et al., 2009). Steerable tools
facilitate the orientation of the wellbore propagation to
be directed as desired either by steering the borehole
downhole via the application of a Rotary Steerable System
(RSS) drilling tool or by passive steering control from
the surface via the application of fixed-bend positive
displacement motors (Yonezawa et al., 2002; Kuwana
et al., 1994). By either perspective, directional drilling
is primarily attitude control, that is, the control of the
inclination and azimuth (Genevois et al., 2003).

A typical RSS directional drilling system with its primary
elements are shown in Fig. 1. The bottomhole assembly
(BHA) in combination with the drilling string can be
regarded as a long flexible prop-shaft that conveys torque
to the bit. During drilling operations, mud which acts as a
means to transport cuttings and for lubrication (amongst
other functions), is pumped from the earth’s surface to the
borehole through the center of the BHA and drillstring,
and then returns to the earth’s surface through the annular
space between the wellbore and the BHA and drillstring.
The drillstring and BHA are suspended from the block at
the surface. These place weight on the bit actuator of the
drill rig. The top drive rotational actuator is also located
at the surface.

The development of a generic tool-independent attitude
control algorithm for application to directional drilling
tools is described in this paper. The significance of atti-
tude control of directional drilling tools is highlighted in
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Fig. 1. Schematic of the RSS directional drilling system
components

Genevois et al. (2003) and Yonezawa et al. (2002), where
control techniques are proposed for the orientation of the
borehole propagation based on holding the toolface angle.
Genevois et al. (2003) highlighted the desire for closed-loop
“shoot and forget systems” and illustrated the azimuth
control to be the major challenge. Most of the attitude
control techniques described in literature are elucidated
based on specific tool structures. Typical examples are
by Yinghui and Yinao (2000), Genevois et al. (2003) and
Yonezawa et al. (2002). Another interesting example pre-
sented by Kuwana et al. (1994) is an attitude controlling
system which uses two-way telemetry communication links
with the surface. The steering correction, calculated from
the telemetry, is determined and then manually down-
linked to the tool. Other control strategies recently de-
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veloped include a hybrid approach consisting of two levels
of automation for trajectory control of the tool (Matheus
et al., 2014), a dynamic state-feedback controller design
for 3D directional drilling systems (van de Wouw et al.,
2016), a robust Proportional plus Integral (PI) feedback
controller (Panchal et al., 2010), an optimal H∞ controller
(Bayliss and Whidborne, 2015) and a linear quadratic
Gaussian controller (Bayliss et al., 2015).

When modelling physical systems, the dynamics are often
approximated as being linear models obtained by a first-
order Taylor series approximation of the nonlinear model
at a particular point of operation. It is clear that such
linear models might be inaccurate over a wider range
of operation; hence, bilinear models have been proposed
to more accurately describe the nonlinear systems (see
Bruni et al. (1974) and Schwarz and Dorissen (1989)).
Bilinear models can characterize nonlinear properties more
correctly than linear models; hence, broaden the range of
adequate performance. This paper presents the develop-
ment of a bilinear model of the directional drilling tool
through the application of Carleman bilinearization tech-
nique, described in Ghasemi et al. (2014). The generalized
state space representation of a Multiple-Input Multiple-
Output (MIMO) bilinear system is expressed as (Kim and
Lim, 2003):

ẋ = Ax+

(
B +

N∑

i=1

xiMi

)
u (1)

where N is the number of expansion terms and augmented
states, u ∈ R

m×1 denotes the control vector, A,B,C and
Mi are constant matrices of suitable dimensions and x ∈
R

n×1 represents the vector of state variables.

The PI and BPI controllers proposed by Panchal et al.
(2010) and Inyang et al. (2016), respectively, show good
performances for the attitude control of the directional
drilling tool but are not sufficiently robust to cope with
the disturbances and long time delay on the feedback mea-
surements. These disturbances are as a result of varying
rock formations, a proclivity for the tool to drift hori-
zontally, and to drop towards a vertical orientation due
to gravity. While the long time delay arises because the
sensor that measures the attitude change is, by necessity,
located some distance (occasionally, several tens of feet)
behind the bit. To handle these disturbances and lengthy
time delay on the feedback measurements with respect
to stability and performance, this paper proposes a more
robust controller for the attitude control of directional
drilling tool by applying the modified Smith Predictor
(SP)-Bilinear Proportional plus Integral (BPI) controller,
which is a combination of the modified SP, proposed by
Normey-Rico et al. (1997), and the BPI controller.

Extending the previous work of Inyang et al. (2016), this
paper presents a strategy for the design of a modified
SP-BPI controller which has the control objective, once
employed, of automatically holding the attitude of the di-
rectional drilling tool at nominally constant values during
oilwell propagation. Here, the modified SP-BPI controller
is considered to provide improved performance over a
broader range of directional drilling tool operations.

The remaining part of this paper begins with highlighting
the system model, succeeded by system bilinearization,
control design and then simulation results. The design and
analysis of the modified SP-BPI controller are performed
using MATLAB and its associated Control System Tool-
box commands, while Simulink is subsequently used to
perform the transient simulations.

2. SUMMARY OF EARLIER WORK

2.1 Tool Kinematics

The system model is derived from kinematic considera-
tions as illustrated in Fig. 2 and detailed in Panchal et al.
(2010). The resulting governing equations can be stated as
follows (Panchal et al., 2010):

θ̇inc = Vrop (Udls cosUtf − Vdr) (2)

θ̇azi =
Vrop

sin θinc
(Udls sinUtf − Vtr) (3)

where Vrop denotes the rate of penetration, a time-varying
parameter, Vtr denotes the turn rate bias disturbance, Vdr

denotes the drop rate disturbance (Vdr = α sin θinc), α is a
constant, Udls denotes the curvature (Kdls × duty cycle),
also known as “dogleg severity”, Kdls denotes the open-
loop curvature capability of the tool, Utf denotes the
toolface angle control input, θazi denotes the azimuth angle
and θinc denotes the inclination angle.

Fig. 2. Typical steering and attitude parameters of direc-
tional drilling tool

As detailed in Panchal et al. (2010), engineering con-
straints include the control inputs Udls and Utf being
discretized into duty cycles known as “drilling cycles”
and that the tool-face input Utf is subject to first order
lag dynamics. Additionally, the on-tool feedback measure-
ments of θinc and θazi are subject to pure delays dependent
on Vrop as a consequence of the relevant sensors being
spatially offset from the drill bit (the inertial datum).
These controller and sensor dynamics are ignored for the
controller design.

2.2 Partially Linearized and Decoupled System

The MIMO open-loop system can be partially linearized
and decoupled using the following transformation:

Utf = ATAN2 (Uazi, Uinc) (4)

Udls = Kdls

√
(Uazi)

2
+ (Uinc)

2
(5)



where Uazi and Uinc are virtual control of azimuth and
inclination, respectively. Substituting (4) and (5) into (2)
and (3) with the turn rate bias and drop rate disturbances
removed, yields the open-loop dynamics:

θ̇inc = VropKdlsUinc (6)

θ̇azi =
Vrop

sin θinc
KdlsUazi (7)

Therefore, the control transformations, (4) and (5), par-
tially linearize and decouple the governing equations.

3. SYSTEM BILINEARIZATION

In this section, the Carleman bilinearization technique
(Ghasemi et al., 2014) is applied to the partially linearized
and decoupled system, (6) and (7), to obtain a bilinear
model of the directional drilling tool. Equations (6) and
(7) are re-written as follows:

θ̇inc = aUinc (8)

θ̇azi =
a

sin θinc
Uazi

where a = VropKdls. Defining an augmented state vector
for the Carleman bilinearization as:

x⊗ = [x1, x
(2)
1 , x

(3)
1 , x

(4)
1 , ..., x

(N)
1 , x2]

T

where x1 = θinc, x2 = θazi and x
(i)
1 = d

dt

[
(x1)

i
]

=

iẋ1x
(i−1)
1 leads to an extended bilinear state space system:

ẋ1 = aUinc (9)

ẋ2 = aUazi csc(x1) = aUazi sec(π/2− x1) = aUazi

∞∑

i=1

bix
(i)
1

where bi are the coefficients of the Taylor series expan-
sion of sec (π/2− x1). The Taylor series expansion of
sec (π/2− x) is given as:

sec (π/2− x) = 1 +
1

2
(π/2− x)2 +

5

24
(π/2− x)4

+
61

720
(π/2− x)6 + · · ·+

(−1)nE2n(π/2− x)2n

(2n)!
(10)

where E2n is the Euler number (Rade and Westergren,
1999, pp 81-99).

Expanding (9), yields the following bilinear system:

ẋ1 = aUinc (11)

ẋ
(2)
1 = 2x1ẋ1 = 2ax1Uinc

ẋ
(3)
1 = 3x

(2)
1 ẋ1 = 3ax

(2)
1 Uinc

...
...

ẋ
(N)
1 = Nx

(N−1)
1 ẋ1 = Nax

(N−1)
1 Uinc

ẋ2 = aUazi

N∑

i=1

bix
(i)
1

which is in the form of (1), where A = [ ], u = [Uinc, Uazi]
T

and x = x⊗.

4. CONTROL DESIGN

With the extension of the work of Inyang et al. (2016),
the proposed modified SP-BPI controller design, shown
in Fig. 3, is a combination of a BPI controller and a

modified SP presented in Normey-Rico et al. (1997). The
BPI controller is a combination of a bilinear compensator
and a standard linear PI controller. The modified SP is
incorporated to account for disturbances and long time
delay on the feedback measurements.

Modified SP

BPI System Delay

System
Model

Delay
Model

F (s)

Ref + Output

+

−

+

+

−

Fig. 3. Modified SP-BPI control scheme

4.1 PI Controller

The PI control for the inclination and azimuth control
channels are as follows, respectively:

Uinc = kpieinc + kii

∫ t

0

eincdt (12)

Ũazi = kpaeazi + kia

∫ t

0

eazidt (13)

where Ũazi is the control input to the bilinear compensator;
einc = rinc − θinc and eazi = razi − θazi; razi and rinc are
the nominal operating points for azimuth and inclination,
respectively.

The gains for the PI controllers in the azimuth and
inclination feedback loops can be expressed as follows
(Panchal et al., 2010):

kii =
ω2
i

a
, kpi =

√
2ωi

a
(14)

kia =
ω2
a

a csc θinc
, kpa =

√
2ωa

a csc θinc
(15)

which are dependent on a = VropKdls and the chosen nat-
ural frequencies of the azimuth and inclination feedback
loops dynamics, ωa and ωi, respectively.

4.2 Bilinear Compensator

The azimuth feedback loop can be expressed based on (9)
as follows:

θ̇azi = a

∞∑

i=1

bix
(i)
1 (kpaeazi + kia

∫ t

0

eazidt) (16)

Based on (10) and (11), (16) can further be expressed as:

θ̇azi = a(1+
1

2
β2+

5

24
β4+. . . )(kpaeazi+kia

∫ t

0

eazidt) (17)

where β = π/2 − θinc. To account for the nonlinearity in
(17), a bilinear compensator is proposed for the azimuth
feedback loop and is given as:

Uazi

Ũazi

=
1

1 + 1
2β

2 + 5
24β

4
(18)

The bilinear compensator, in combination with PI, facil-
itates the ensuing controller (BPI) to sustain a required



degree of control throughout a broader scope of operation
about the tuning point compared with that obtained by
the PI controller.

4.3 Modified Smith Predictor

The modified SP is designed based on the work of Normey-
Rico et al. (1997) as shown in Fig. 3, where the system
model, delay model and F (s) are implemented. F (s)
denotes a stable low-pass filter with unitary static gain
(F (0) = 1). In the work of Normey-Rico et al. (1997), the
major drawback of SP proposed by Smith (1959) is the
poor performance as a result of dead-time uncertainties.
These dead-time uncertainties are often prevalent in the
process industry (including oil and gas industry), hence,
the improvement of the robustness of the SP scheme is
carried out by incorporating F (s), such that it acts on
the difference between the output of the tool and its
prediction, and

F (s) =
1

Tfs+ 1
(19)

where Tf is a tuning parameter of F (s). Tf is tuned
with the consideration of the trade-off between disturbance
rejection and robustness. As the value of Tf increases,
good robustness characteristics are obtained. Conversely,
a poorer disturbance rejection characteristics is obtained
as the value of Tf increases (Normey-Rico et al., 1997;
Albertos et al., 2015). However, in the absence of dis-
turbances, the closed-loop system nominal performance
remains unmodified by the incorporation of F (s). Also,
F (s) has no effect on the closed-loop when the system and
the system model are equal (Normey-Rico et al., 1997).

The robustness and stability of the modified SP with a
linear controller (PI controller) is presented in Normey-
Rico et al. (1997). Interestingly, the modified SP works
effectively with a bilinear controller (BPI controller), and
its effectiveness, robustness, and stability are shown in the
simulation results in the subsequent section.

5. SIMULATION RESULTS

To demonstrate the effectiveness, robustness and stability
of the proposed controller, simulations of the proposed
modified SP-BPI controller with the dynamics of (2) and
(3) and feedback delay are performed based on the modi-
fied SP-BPI control scheme shown in Fig. 3. For compar-
ison purposes, the simulation responses of the BPI con-
troller are also provided based on the work of Inyang et al.
(2016) with delay implemented. The design parameters
and operating point values used for the simulations are
summarized in Table 1.

Referring to Fig. 3, the system and system model are
implemented based on (2) and (3), while delay and delay
model are implemented as e−τds and e−τms, respectively;
where τd and τm are denoted as time delay and modeled
time delay, respectively.

The τd is dependent on Vrop and the distance of the on
tool attitude sensing unit from the tool, dt and it is given
by

τd =
dt
Vrop

(20)

Furthermore, to show the robustness and disturbance
rejection of the proposed modified SP-BPI controller, τm
is chosen such that it is not equal to τd (see Table 1); while
Vdr and Vtr are ignored for the system model.

Table 1. Design Parameters and Operating
Point Values

Parameter Value

θinc, θazi π/6 rad (30◦), π/2 rad (90◦)
Kdls 8◦/100 ft (4.5809× 10−3 rad/m)
Vrop 200 ft/hr (1.0158 m/min)
rinc, razi π/6 + 0.015 rad, π/2 + 0.015 rad
ωi 0.0121 rad/min
ωa 0.0151 rad/min
Tf 7.5 min
dt 9.998 ft (3.0474 m)
τd 3 min
τm 0.1 min
Vdr 0.0154◦/100 ft (8.8094× 10−6 rad/m)
Vtr 0.0077◦/100 ft (4.4048× 10−4 rad/m)

The inclination and azimuth responses to step changes,
from π/6 rad to π/6+0.015 rad and π/2 rad to π/2+0.015
rad, respectively, of the BPI controller are shown in Fig. 4.
The attitude response of the BPI exhibits oscillatory char-
acteristics. Hence, the inclination and azimuth responses
of the directional drilling tool does not converge to the
desired angles of π/6 + 0.015 rad and π/2 + 0.015 rad,
respectively, because the BPI controller is unable to handle
the adverse effects of disturbances and time delay on the
feedback measurements.

The inclination and azimuth responses to step changes,
from π/6 rad to π/6+0.015 rad and π/2 rad to π/2+0.015
rad, respectively, of the modified SP-BPI controller are
shown in Fig. 5. The azimuth and inclination responses
of the directional drilling tool converges to the desired
angles of π/2+0.015 rad and π/6+0.015 rad, respectively.
Hence, the proposed modified SP-BPI controller reduces
the adverse effects of disturbances and time delay on
the feedback measurements with respect to stability and
performance, as compared with the BPI controller.

The inclination and azimuth errors for the modified SP-
BPI controller are shown in Fig. 6. The modified SP-BPI
controller is able to converge the azimuth and inclination
errors directly to zero within 1 min.

5.1 High-Fidelity Model Simulation

The high-fidelity model simulation of the drilling cycle,
shown in Fig. 7 was implemented by Inyang et al. (2016).
The magnetometers and accelerometers used to derive the
inclination and azimuth measurements are explicitly in-
cluded along with all the system delays and lags previously
discussed and detailed in Panchal et al. (2010). Based on
these results, a Simulink transient simulation was created
to test the directional drilling tool using the proposed
attitude control algorithm to hold azimuth and inclination
at the desired angles without interaction between the incli-
nation and azimuth. The high-fidelity model architecture
is shown in Fig. 8.

To engineer a variable curvature, Udls, the toolface actu-
ation, Utf (control input) is discretized into duty cycles
known as “drilling cycles” of period, tcycle. To approximate
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Fig. 8. Simulink diagram of high-fidelity model simulation
scheme
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Fig. 9. Modified SP-BPI attitude response with azimuth
response set at its initial angle of π/6 rad

the Udls control input, tcycle is proportioned into the bias,
tbias and neutral, tneutral phases as shown in Fig. 7. In
the tneutral phase, the Utf is cycled at a constant rate of
period, tnutate; while in the tbias phase, the Utf is a servo-
controlled constant which approximates the Udls control
input as Udls = (tbias/tcycle)Kdls.

Based on the simulation of the high-fidelity model, the
inclination response to step change from π/6 rad to π/6+
0.015 rad and the azimuth response set at its initial angle
of π/6 rad are shown in Fig. 9; while the azimuth response
to step change from π/6 rad to π/6 + 0.015 rad and the
inclination response set at its initial angle of π/6 rad are
shown in Fig. 10. The proposed attitude control algorithm
still holds the inclination and azimuth of the directional
drilling tool at the desired angles of π/6 + 0.015 rad and
π/6+0.015 rad, respectively, without interaction between
the inclination and azimuth.

The inclination and azimuth errors based on the simu-
lation of the high-fidelity model are shown in Fig. 11.
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The proposed attitude control algorithm still converges the
inclination and azimuth errors directly to zero within 4.5
min.

6. CONCLUSIONS

This paper presents a bilinear model of the directional
drilling tool. It proposes a modified SP-BPI controller for
directional drilling attitude control. The potential bene-
ficial aspects gained by implementing the proposed mod-
ified SP-BPI controller include the significant reduction
of the adverse effects of disturbances and time delay on
the feedback measurements with respect to stability and
performance of the directional drilling tool. In terms of
robustness and disturbance rejection, the proposed mod-
ified SP-BPI controller is able to handle time delay of
3 min, with up to 96.67% uncertainty of the predicted
time delay, and with drop-rate disturbance and turn-rate
bias disturbance, in the attitude control of the directional
drilling tool. Theoretical stability proof of the proposed
modified SP-BPI controller remains an open problem.
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