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Degradation Control for Electric Vehicle Machines
using Nonlinear Model Predictive Control

L. Samaranayake Senior Member IEEE, S. Longo Senior Member IEEE

Abstract—Electric machines (motors and generators) are over
actuated systems. In this paper we show how to exploit this actu-
ation redundancy in order to mitigate machine degradation while
simultaneously ensuring that the desired closed loop performance
is maintained. We formulate a multi-objective optimization prob-
lem with a cost function having terms representing closed loop
performance and component degradation for an inverter-fed per-
manent magnet synchronous motor. Such machines are important
as they are widely used as the prime mover of commercial electric
vehicles. The resulting optimal control problem is implemented
online via a Nonlinear Model Predictive Control (NMPC) scheme.
The control framework is validated for standard vehicle drive
cycles. Results show that the NMPC scheme allows for better
closed loop performance and lower degradation than standard
industrial controllers such as the field oriented control method.
Hence, this work demonstrates how the remaining useful life
of a machine can be increased by appropriate controller design
without compromising performance.

Index Terms—Degradation, Permanent Magnet Synchronous
Motor, Nonlinear Model Predictive Control, Optimal Control.

I. INTRODUCTION

A. Motivation

CONVENTIONALLY, the electric machine operating as
the prime mover in electric and hybrid electric vehicles

has been considered as one of the most reliable and most
rugged components in the entire electric powertrain. It is
expected to operate over 20, 000 hours or 15 years, whichever
comes first, without degrading in terms of its power delivering
capability and efficiency. This happens because of the use
of high quality raw materials (e.g. rare earth materials in
permanent magnets, high purity copper in windings, etc.) and
conservative designs, as shown in [1], [2], [3], [4] and [5]. Due
to the same reasons, however, it is one of the most expensive
components in an electric vehicle powertrain, which negatively
affects their popularity. Therefore, in electric machine design
for electric vehicles, there exists a compromise between their
rate of degradation and their costs [6], [7].

Degradation associated with winding insulations [8] [9],
magnets [10] [11] [12], and bearings [13] [14] have been
addressed in isolation. However, in electric vehicles appli-
cations, the machine is a main subsystem in the powertrain
and therefore such individual considerations are not sufficient.
In addition, unlike the industrial motors which are usually
subjected to known static load demands, these machines have
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to cater for dynamic torque and speed demands. It is there-
fore of high importance to have a degradation-aware control
technique that will allow for satisfactory demand tracking
performance similar to or better than conventional controllers.
One approach to compensate for such design trade-offs is to
introduce optimal methods to machine control. So far this
approach has been ignored in the literature, possibly due to
the practicalities of implementing computational expensive
algorithms for the power electronics. Techniques such as re-
ceding horizon control are becoming increasingly popular due
to the improvements in computational power and algorithm
performance [15], and we can now assume that, with careful
design, such techniques can be implemented in real-time [16]-
[18]. For example Direct MPC [19] or Finite Control Set MPC
[20], [21], [22] combine control and modulation blocks inside
a single MPC controller, which enables very fast dynamics and
better steady state control in power electronic applications.

B. State of the art degradation control of electric machines

We define degradation as the accumulated time integral of
losses of the machine over its operational life time (more
details are provided in the sequel). Simple degradation-aware
control algorithms, based on loss minimization, exist and these
have been implemented within the conventional dq-current
controller frameworks [23] [25]. Irrespective of whether such
techniques are implemented by analytically solving the loss
minimizing equations [26], by using polynomials to approx-
imate it [27], or by using fuzzy logic [28], their generic
structure can be captured by the one depicted in Fig. 1.
In all such approaches, the inner current controller in the
conventional Field Oriented Control (FOC) [24] receives the
d-axis and q-axis current references (irefd , irefq ) from the loss
minimizing algorithm, to which the torque reference (τ ref ),
or the speed reference (ωref ), will be the input. However, no
significant degradation minimization improvement has been
reported in the latter against conventional control techniques
such as id = 0 or Maximum Torque Per Ampere (MTPA)
control [29].

One fundamental reason for the insignificant gain is due
to the fact that loss minimization algorithms are only used
to determine irefd and irefq . Beyond that point it is often a
simple Proportional Integral (PI) current controller for the dq-
current loops that generates the dq-voltage references vrefd and
vrefq . The main drawback of this approach is that, if the PI
controllers are tuned to respond faster, then the overshoots will
be high. On the other hand, if they are tuned to reduce the
overshoot, then the response will be sluggish [30], [31], [32].
Unfortunately, both high overshoots and sluggish responses
increase losses [33]. Hence, to minimize losses effectively and
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Fig. 1: Generic field oriented control structure of a Permanent Magnet Synchronous Motors (PMSM) accommodating loss
minimization.

consequently the degradation, the control technique should
ideally give a fast response without a large overshoot [33],
[34].

Nonlinear Model Predictive Control (NMPC) [15], at the
cost of a more complex algorithm, offers the flexibility to
define cost functions with opposing requirements simultane-
ously. A model of the plant is necessary in order to derive
the optimal control law that may be subjected to constraints.
Only the first control move of the prediction horizon is usually
applied at each sample. This process is repeated in a receding
horizon fashion, taking reference input changes and output
disturbances into account, as per the standard Model Predictive
Control (MPC) scheme [35].

C. Proposed control framework

Application of MPC in electric machine control has less
than a decade of history. In general, the current and rotor po-
sition information is used as output feedback. Control signals
(vrefd , vrefq in Fig. 2) are derived, subjected to the constraints.
Unlike previous approaches where the cost function consists
of only the current errors (irefd −id, irefq −iq) or the speed error
(ωref−ω), here we use a blend of degradation and torque error
to form a multi-objective cost, which enables the controller to
simultaneously deliver good transient performance, while min-
imizing degradation of the machine. The non-convex multi-
objective cost function, together with the nonlinear constraints
and the machine model are needed to set up the NMPC
problem. The basic block diagram of the NMPC scheme,
where a Permanent Magnet Synchronous Motor (PMSM) is
used as the electric machine, is shown in the Fig. 2.

The main insight that justifies the need for optimal control
for electric machines is the fact that the degradation rate
can be improved without affecting the closed loop reference-
tracking performance. This is possible thanks to the inherent
redundancies in the control system, that will be explained next.
The electromagnetic torque τe of the PMSM is a function of
both id and iq , where the unconstrained torque contours in the
id-iq plane typically exist as shown in Fig. 3.

Accordingly, there exists more than one combination of
{id, iq} to generate the required τe, which makes the PMSM
an over actuated system. One of the contributions of this
work is that we show how to exploit this redundancy to

mitigate degradation, while simultaneously providing the de-
sired torque-tracking performance. This is achieved by the
following:

1) The energy-loss-based electric machine degradation cost
function (which was introduced by the authors in [33])
is combined with the machine performance cost function
to form a multi-objective cost, which is then used in the
NMPC set up.

2) A conventional second-order PMSM model is used for
the dynamic constraints of the NMPC. A novel higher-
order PMSM model is derived and used as a plant, in
order to achieve simulation results closer to reality.

3) Results are validated via a case study. Here, two stan-
dard drive cycles for urban and urban-motorway mixed
driving have been used to investigate improvements in
the form of remaining useful life of the PMSM in an
electric vehicle.

D. Related work
NMPC has already been proposed for hybrid and electric

vehicles applications. For example, it is used to find the
optimal power split between the internal combustion engine
and the electric machine of a hybrid electric vehicle in [36] to
minimize fuel costs. Real-time NMPC is used in [16] for the
control of a laboratory tower crane to minimize the tracking
error. The implementation uses a fast NMPC, which will not
necessarily return the optimal solution. However, NMPC is
shown to be implemented in real-time. In [17], NMPC with
a quadratic cost function is also implemented in real-time
using state of the art hardware on an autonomous tractor-trailer
reversing problem. Very high degree of steering accuracy is re-
ported in this study. Furthermore, a constrained optimal control
problem is solved in real-time to minimize the torque error
using linearized PMSM models, with experimental results,
in [18]. Linear MPC has been used experimentally for fault
tolerant speed control of induction machines in [37]. Other
theoretical derivations related to on-board power management
in electric vehicles using MPC can be found in [38], [39].

E. Organization of the paper
The paper is organized as follows: Section II presents

the machine model, degradation model and the degradation
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Fig. 2: Structure of the NMPC for PMSMs.
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Fig. 3: Typical torque (in Nm) contours of the PMSM
without voltage and current constraints.

metrics used to setup the optimal control problem. The NMPC
design is presented in Section III. Simulation experiments
followed by analysis and discussion of the results are presented
in Section IV. A case study of applying the control scheme on
a commercial electric vehicle machine degradation problem is
presented in Section V. The paper is concluded with proposed
future work in Section VI.

II. MODELING OF MACHINE DYNAMICS AND
DEGRADATION

In this section, we present the conventional nonlinear model
of the PMSM. We also derive the degradation model using
machine losses and obtain the metrics to quantify the degra-
dation experimentally. In this section, the time argument (t) is
omitted from time-dependent variables deliberately to improve
readability. In addition, a novel higher-order model of the
PMSM is also derived and presented in the Appendix. This
higher-order model will be used in the experiments.

A. Conventional machine model
A PMSM, which is popular in the automotive industry for

electric vehicle applications due to its high torque density and

oqqe iLω
dLR

cRdv

di odi

cdi

pmeλω

odde iLωqLR

cRqv

qi oqi

cqi

���

���

Fig. 4: Equivalent circuit of the conventional machine model.

minimum rotor losses, is modeled here. In order to avoid
modeling the inverter and as a matter of supporting direct
implementation, the dq-reference frame is used in deriving
the model. The PMSM represented in the dq-reference frame
consists of two circuits, one for the d-axis and another for the
q-axis respectively, as opposed to the three circuits in the abc-
reference frame. The d-axis and q-axis equivalent circuits of
the conventional PMSM model are shown in Fig. 4. Applying
Kirchhoff’s voltage and current laws in the d-axis circuit
shown in Fig. 4 (a) and (b) results in

vd = Ld
diod
dt

+Rid − ωeLqioq (1)

id = iod + icd (2)

icd =
1

Rc

(
Ld

diod
dt

− ωeLqioq

)
. (3)

The q-axis circuit results in

vq = Lq
dioq
dt

+Riq + ωeLdiod + ωeλpm (4)

iq = ioq + icq (5)
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icq =
1

Rc

(
Lq

dioq
dt

+ ωeLdiod + ωeλpm

)
. (6)

The PMSM considered in the work is an interior permanent
magnet type with inverted saliency, i.e. Ld < Lq , which
enables higher torque in the field weakening region [2]. The
mechanical dynamics of the PMSM is governed by

dωm

dt
=

1

Jm
(τe −Bmωm − τm) , (7)

where τm is the total load torque on the shaft, τe is the
electromagnetic torque of the machine and ωm = 1

nP
ωe is the

rotor shaft speed, where nP is the number of pole pairs of the
PMSM. Jm and Bm are the equivalent inertia and the viscous
friction of the rotor, respectively. However, the main focus here
is on electrical losses contributing to the degradation. Hence,
the slow mechanical dynamics have not been considered and
the two voltages vd and vq become the inputs, which are
equivalent to vrefd and vrefq in the dq-reference frame as shown
in Fig. 2. The two currents id and iq become the two outputs,
which are equivalent to the dq-transformations of ia, ib and ic
in the three phase abc-reference frame (Fig. 2). By defining
the input uc, state xc and output yc vectors as

uc = [vd, vq]
T
= [u1, u2]

T

xc = [iod, ioq]
T
= [xc1, xc2]

T
= yc

the system can be expressed in state space format as

ẋc = fc(xc, uc) (8)

fc = [fc1, fc2]
T
, (9)

where

fc1 =
−R

Ld

(
1 + R

Rc

)xc1 + ωe
Lq

Ld
xc2

+
1

Ld

(
1 + R

Rc

)u1 (10)

and

fc2 = −ωe
Ld

Lq
x1 +

−R

Lq

(
1 + R

Rc

)x2

+
1

Lq

(
1 + R

Rc

)u2 −
ωeλpm

Lq
. (11)

B. Degradation models

Our assumption here is that degradation is entirely related to
losses [40]. The assumption holds in the sense that, if energy
is not employed to do useful work, it will contribute to losses,
degrading the components of the machine. The PMSM has
several sources of power losses. Mainly they are: (a) stator
copper losses, (b) stator iron core losses, (c) friction and wind-
age losses and (d) mechanical losses. Magnet losses also exist,
but, since their magnitude is comparatively small, they can
be safely neglected. The relationship between the friction and
windage losses and the mechanical losses are usually identified
experimentally. Such studies reveal that the magnitudes of
those losses contribute to only about 1-2% of the total losses
[3]. Therefore they have not been taken into account in this

study either.
The copper losses take place in all three windings and the

total is their algebraic sum, which can be modeled using the
well-known peak value currents in dq-reference frame as

PCu =
3R

2

(
i2d + i2q

)
. (12)

The iron losses occur in the stator iron laminations and they
are modeled using the core loss resistance per phase Rc.
Accordingly, the stator iron losses can be expressed by

PFe =
3Rc

2

(
i2cd + i2cq

)
. (13)

C. Degradation metric

The electric machines are designed for some rated speed,
torque and power (Prated). In addition, depending on the
design, manufacturing procedure, quality of the raw materials
used and the manufacturing technology, the manufacturer
recommends a useful lifetime (tlife). For an electric machine
with rated efficiency η, the total energy losses during its entire
life time, if operated continuously, is

Wlosses =

∫ tlife

0

(
1

η
− 1

)
Prateddt. (14)

In reality, it will be operated intermittently. Let 0 ≤ i ≤ N be
the index for operation cycles, where N is the last operation
completed. The energy losses during the ith continuous op-
eration, which takes place from time tinitiali to tfinali , is given
by

Wlossesi =

∫ tfinali

tinitiali

Pinputi − Poutputidt. (15)

The instantaneous output power is given in terms of the instan-
taneous shaft torque τoutputi (t) and the shaft speed ωoutputi (t)
as

Poutputi = τoutputiωoutputi . (16)

Similarly, the corresponding instantaneous input power is
given in terms of the instantaneous voltage of the inverter
Vinverteri and the current Iinverteri as

Pinputi = VinverteriIinverteri . (17)

Depending on how the machine is operated, maintained and
also depending on the environmental conditions and the age,
the losses will vary. Therefore the cumulative machine losses
will have to be taken into account in deriving the degradation
metric. The Cumulative Loss Ratio (CLR) has been formulated
by authors in [33]. In the CLR, the accumulated energy losses
at the completion of N cycles is compared with Wlosses.
Accordingly, the CLR is defined as

CLR =
ΣN

i=1Wlossesi

Wlosses
. (18)

It is interesting to note here that the CLR represents the
fraction of the energy losses that the machine has been
designed to tolerate, meaning that if this value is exceeded
there will be a performance penalty. Therefore,

RUL = 1− CLR (19)
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represents the Remaining Useful Life (RUL) of the machine.
Consequently, the lower the CLR, the higher the RUL. As
seen in (18), the CLR can be lowered by maintaining its
numerator at a minimum. This suggests that the degradation
can be minimized by minimizing the losses in the machine.

III. NMPC DESIGN AND IMPLEMENTATION

The NMPC algorithm computes a sequence of optimal
control voltage inputs for the electric machine, which result in
an optimal closed loop current profile in the sense that desired
performance and minimum degradation is achieved over a
finite horizon. After applying the first control voltage input
of the sequence to the PMSM, the calculations are repeated at
the next time step with the new current measurements, taking
the reference torque trajectory (τ ref ) also into account [35].

A. Multi-objective cost function

The cost function consists of two components: the degra-
dation cost function JDEG and the closed loop performance
cost function JCL.

1) Degradation cost function: In order to minimize the
degradation, as shown using the CLR, the energy losses must
be minimized. Hence, the degradation cost function JDEG is
defined as

JDEG =

∫ tf

ti

(PCu + PFe) dt. (20)

2) Closed loop performance cost function: The desired
output of the PMSM is the electromagnetic torque given by

τe =
3nP

2
(λpm + iod (Lmd − Lmq)) ioq. (21)

Hence, for a τ ref reference torque profile, the closed loop
performance cost function can be defined as

JCL =

∫ tf

ti

(
τ ref − τe

)2
dt. (22)

Accordingly, when JCL is minimized, the absolute torque
error τ ref − τe will be minimized. This will ensure that
the torque output of the machine follows the desired torque
trajectory.

3) Combined cost functions: The multi-objective cost func-
tion J can be formulated as

J = αJCL + (1− α) JDEG, (23)

where 0 ≤ α ≤ 1 is a tuning parameter to weight the
contribution of each cost function. The advantage of this
approach is that it gives the flexibility for the user to choose
the desired operating point on a Pareto optimal frontier, as
shown in Fig. 5, by selecting an arbitrary α between 0 and 1.
As α approaches 0, more emphasis is given to the degradation
minimization and less to the closed loop performance and vice
versa. Hence, a given α will determine the best achievable
degradation performance for a given closed loop performance
or the best achievable closed loop performance for a given
degradations performance, as depicted in Fig. 5. The parameter
α can be treated as a tuning parameter that can chosen via trial
and error, as it is often done in practice for multi-objective
optimization. The user could start with α = 1, so that only
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Fig. 5: Pareto optimal frontier for the multi-objective
optimization problem together with an example of user

defined maximum values for JDEG and JCL.

performance is optimized and then decrease it and stop just
before the performance reaches a level that is not acceptable
any more. This process could be automated in a real setup with
a simple search method which is not very time consuming.

B. Nonlinear constraints

Physical constraints arise from both the machine and the
inverter, which powers the machine from some electrochemical
energy storage. Usually, the power electronics from the system
design is undersized, to protect the machine in case of an
undetected fault. Further, safety factors are used to limit the
maximum current for the protection of the inverter. Hence, the
inverter current and the inverter voltage limitations need to be
considered in the control design. The currents are such that the
maximum of either id or iq is Imax. Similarly, the maximum
voltage is vd or vq is Vmax. In addition, id will only be used
for the purpose of field weakening. Therefore, the constraints
can mathematically be formulated as

0 ≤
√
i2d + i2q ≤ Imax

0 ≤
√
v2d + v2q ≤ Vmax

−Imax ≤ id ≤ 0.

The existence of such physical nonlinear constraints further
justifies the use of a nonlinear constrained control approach.

C. Optimal controller problem

The optimal control problem is defined as

min
uc(·)

J(xc(·), uc(·), ti, tf ),

subject to
ẋc(t) = fc(xc(t), uc(t))

and

xcL ≤ xc(t) ≤ xcU , uL ≤ uc(t) ≤ uU ,∀t ∈ [ti, tf ],
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for given ti, tf and initial state xc(ti). The predicted states
can be calculated by

x(t) = x(ti) +

∫ tf

ti

fc(xc(t), uc(t))dt,∀t ∈ [ti, tf ],

where tf − ti is the prediction horizon, J(xc(·), uc(·), ti, tf )
is the multi-objective cost function given in (23) and
fc(xc(t), uc(t)) is the lower-order PMSM model derived in
Section II B. In addition, xc(t) = [iod, ioq]

T and uc(t) =

[vd, vq]
T are the states and the outputs of the controller,

respectively. The constraints xcL ≤ xc(t) ≤ xcU and uL ≤
uc(t) ≤ uU are as given in Section III B.

The inputs to the controller are the torque demand τ ref

and current feedback id, iq . Since the speed control loop is
avoided in the model, ωe is also an input to the model, which
is equivalent to np

dθ
dt , where θ is the rotor position as shown

in Fig. 2. The controller outputs are the respective voltages in
the d-axis and the q-axis, i.e. vd and vq , which correspond to
vrefd and vrefq as was shown in Fig. 2. It is assumed that vd
and vq reach vrefd and vrefq with no delay. This is a practically
valid assumption used in many power electronic applications
[45].

IV. SIMULATION EXPERIMENTS AND ANALYSIS

For the simulation studies, a MatlabTM based tool, ICLOCS
[42], is used to solve the optimal control problem. ICLOCS
uses the freely available IPOPT solver [43].

The machine used in this study has a peak torque of 280
Nm and continuous torque of 140 Nm at 3000 rpm base speed
and at 1000 V dc link voltage. The other machine parameters
and the inverter parameters are given in TABLE I.

TABLE I: Machine and inverter electrical parameters

Parameter Value

Stator resistance R 0.26 Ω
Core resistance Rc 33.74 Ω

Number of pole pairs np 10
Permanent magnet flux linkage λpm 0.18 V s

d-axis leakage inductance Lld 1 mH
q-axis leakage inductance Llq 1 mH

d-axis magnetizing inductance Lmd 2 mH
q-axis leakage inductance Lmq 4.9 mH
d-axis lumped inductance Ld 3 mH
q-axis lumped inductance Lq 5.9 mH

Maximum inverter voltage Vmax 1000 V
Maximum inverter current Imax 120 A

The prediction horizon in the NMPC is 20 ms (40 samples),
which is sufficient for the machine to reach steady state
following a step input. The sampling time used in all the
controller implementations is ts = 0.5 ms. This has been
selected to be 10 times faster than the fastest time constant. On
a CPU (Intel(R) CoreTM i7-4600U at 2.1 GHz), the distribution
of time IPOPT takes to solve the NMPC shows that on
average it takes 15.4 ms, while it can reach 90 ms when
the torque reference undergoes large changes. Clearly, this
would prevent real-time implementation. However, we are only
interested here in providing a framework for an optimal solu-
tion to the degradation problem for benchmarking purposes.

We believe that a real-time solution could be achieved with
bespoke solvers, optimized code, approximated control laws or
careful hardware implementation (e.g. fixed-point arithmetics,
parallelization and/or custom hardware) which is outside the
scope of this work. There is an analogy of the work proposed
here with previous work where computational resources are
co-optimized within the MPC framework [47], [48]. There
exist platforms such as ’FORCESPro’ [49] to implement such
co-optimized designs.

For comparison, our proposed controller is benchmarked
against conventional controllers. These are: (a) id = 0 control,
which is the simplest method, and (b) Maximum Torque Per
Ampere (MTPA) control, which is the standard industrial con-
trol design used for minimizing losses. These two techniques
are briefly discussed in the next section.

A. Review of conventional control methods

In id = 0 control, the d-axis reference current is always
maintained at zero, while the q-axis reference current is
obtained from the machine electromagnetic torque as irefq =
( 2
3npλpm

)τ ref .
The phasor diagram of the currents and voltages of the

machine neglecting the resistances shown in Fig. 6, will be
used to outline the MTPA control. According to the phasor

d

q

pmλ

sλ
oqmqiL

odmdiL

si

odi

oqi

oqmqe iLjω
odmde iLjω

sv γ

Fig. 6: Phasor diagram of the inverse salient PMSM.

diagram

iod = iscos(γ) (24)
ioq = issin(γ). (25)

Hence, the electromagnetic torque per ampere can be obtained
by substituting for iod and ioq in the torque equation as

τe
is

=
3

2
P

[
λpm sin(γ) +

1

2
(Lmd − Lmq) is sin(2γ)

]
. (26)

By differentiating τe
is

with respect to γ, it can be found that
the current angle corresponding to the maximum torque per
ampere γmax can be given by

cos(γmax) =
−λpm ±

√
λ2
pm + 8i2s (Lmd − Lmq)

2

4is (Lmd − Lmq)
. (27)

The corresponding d-axis current can be found by
iscos(γmax). Substituting for cos(γmax) and taking i2s =
i2od + i2oq , the relationship between iod and ioq for MTPA can



8

TABLE II: PI controller parameters

Parameter Value

ωbd 1098.6 rad/s
ωbq 2197.2 rad/s
kpd ωbdLd

kid ωbdR
kpq ωbqLq

kiq ωbqR

be obtained as

i2oq = i2od +
λpm

(Lmd − Lmq)
iod. (28)

Solving for iod gives

iod =

−
(
λpm ∓

√
λ2
pm + 4i2oq (Lmd − Lmq)

2

)
2 (Lmd − Lmq)

. (29)

Substituting this in the electromagnetic torque equation with
a reference torque τ ref results in

(Lmd − Lmq)
2
i4oq +

4τλpm

3P
ioq −

16(τ ref )2

9P 2
= 0. (30)

Hence, for a given torque demand τ ref , the solution within
the machine constraints will be the reference q-axis current
while the corresponding d-axis current will be given by
(29). As shown in the derivation above, since MTPA tries
to maximize the electromagnetic torque per unit current, it
also tries to minimize the current-dependent losses and hence
the degradation, indirectly. The PI controllers in the MTPA
control are tuned using loop shaping methods. The controller
parameters kp and ki for the dq-current control loops can be
obtained in terms of the bandwidth ωb of the respective control
loop as listed in Table II. More details on the characteristics
of these two controllers can be found in [25] [45].

B. Set up for torque transient and degradation analysis

For a more realistic simulation a more accurate model, the
higher-order model derived in the Appendix, is used as the
plant in the control loop. In order to bring the machine to
steady state, a torque reference step input of positive peak
amplitude is initially given. Halfway through the simulation,
another step input, that provides a negative maximum torque,
is applied. This approach allows us to simulate the worst case
scenario in the practical case, which represents the braking to
standstill, while delivering the maximum torque. The results
presented will be normalized to the peak torque.

The upper left and right entries of Fig. 7 show the torque-
speed demands of the vehicle used in this study, during two
well-known drive cycles: the New European Drive Cycle
(NEDC) to represent urban driving and the Assessment and
Reliability of Transport Emission Models and Inventory Sys-
tems (ARTEMIS) drive cycle to represent urban and motorway
driving. According to their torque histograms (lower left
and right figures respectively in Fig. 7), the torque demand
in NEDC remains below 140 Nm, which is the maximum
continuous torque output of the machine. However, in the
ARTEMIS drive cycle, it reaches 210 Nm frequently during

Fig. 7: Torque distribution during NEDC and ARTEMIS
drive cycles.

braking and also 280 Nm very rarely, which is the peak torque
of the machine. In order to incorporate these torque demand
conditions reasonably in the simulations, the procedure using
the step inputs described above is repeated for a 50% (140
Nm), a 75% (210 Nm) and a 100% (280 Nm) torque demand
values.

C. Torque transient results and analysis
Both id = 0 control and MTPA control have been used

to compare the results with NMPC. However, beyond a 50%
torque demand, id = 0 control is unable to provide stable
results and therefore it is not considered in the comparisons.
Further, for the sake of brevity, resulting current, voltage and
torque signals have been presented only for the 100% torque
case, which is sufficient to observe the effectiveness of the
NMPC during transients. Nevertheless, the degradation results
have been presented for all the controllers in each simulation
experiment. A value of α = 0.5 is used in the transient and
drive cycle simulation studies.

In the 100% torque case shown in Fig.8, it is observed that at
steady state, the torque producing current combinations (upper
left and lower left in the figure) for the two controllers are
different, hence showing the NMPC capabilities in exploiting
the redundancy of the PMSM to its advantage. In addition,
the iod has a negative going peak for MTPA control and
positive going peak for NMPC. Furthermore, for ioq , the peak
overshoot with MTPA control is 27.3% and for NMPC it is
only 7.7%. Due to the much lower overshoot in state transients,
the torque transient with NMPC has only 3.5% overshoot,
whereas it is 57.9% for MTPA control as shown in Fig. 9. In
addition, it is observed that the NMPC is 3.4 times faster to
settle. As expected, the optimal solution obtained by NMPC
results in faster operation with much lower overshoot against
the PI counterpart in the MTPA control. This will have a
positive effect on reducing degradation. The voltages shown
in the upper two figures of Fig. 10, vd has 36.4% overshoot
with MTPA control, whereas with NMPC, the overshoot is
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Fig. 8: Step response comparison of states at maximum to
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Fig. 9: Comparison of torque response during maximum to
minimum peak transient

only 2.2%. In addition, both vd and vq hit the voltage limit
with the MTPA control, whereas it stays within limits with the
NMPC. As an additional advantage, the lower voltage enables
a smaller DC link capacitor in the converter for NMPC. The
corresponding PMSM currents shown in the lower two figures
in Fig. 10 reveal that the maximum id is lower in NMPC (73.4
A). In addition, iq is 3.4 times faster in NMPC, which will
contribute to significantly lower degradation, while requiring
lower current capability from the energy storage system.

It is also noted that re-tuning of the linear PI controllers of
the MTPA control does not help. Rise time can be made faster
only at the expenses of increased overshoot. Furthermore, only
the NMPC scheme is able to satisfy the nonlinear constraints
a priori.

D. Degradation results and analysis

Degradation associated with each of the above cases is
presented in Fig. 11. For the 50% torque case, due to the
large overshoot and high q-current demand, the degradation
of id = 0 control is 356% higher than that of MTPA control
and NMPC. The degradations in NMPC and MTPA controllers
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Fig. 10: Machine voltage and current comparisons at
maximum to minimum peak torque transient.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7

8
x 10

6

J
D

E
G

time (s)

 

 

i
d
 = 0 control at 50% torque

MTPA control at 50% torque

NMPC at 50% torque

i
d
 = 0 control at 75% torque

MTPA control at 75% torque

NMPC at 75% torque

MTPA control at 100% torque

NMPC at 100% torque

Fig. 11: Degradation results comparison

are almost the same in this case. For the 75% torque case, due
to faster state and torque transients, but lower overshoots, the
degradation is 4.6% lower in NMPC as compared to MTPA
control. In the 100% torque case also, faster state and input
transients with lower overshoots contribute significantly to
keep the degradation to a minimum for NMPC, where it is
11.1% lower than the MTPA control.

It is noted that until the torque demands are in the range of
50% of the peak torque, the NMPC and MTPA control give
similar degradation results. The gain in reducing degradation
is significant if the machine torque demand is above 50% of
the peak torque very often.

E. Analysis of the impact of α
One of the main advantages of having a multi-objective cost

function is the flexibility in choosing the weighting factor α.
Fig.12 shows how the degradation varies for the same transient
study in the 100% torque case, when α is varied from 0.1 to
0.9 in steps of 0.1. It is clearly seen that in all cases the
degradation with NMPC is lower than the MTPA control. The
main reason being that the NMPC models and penalizes the
degradation in the cost function, while the MTPA does not.
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TABLE III: Vehicle parameters [46]

Parameter Value

Mass M 1521 kg
Drag coefficient Cd 0.29
Area facing wind A 2.27 m2

Gravitational acceleration g 9.81 ms−2

Tire radius r 0.316 m
Gear ratio GR 7.94

V. DRIVE CYCLE PERFORMANCE ANALYSIS

In this section, the performance of the NMPC scheme
is compared with the MTPA control using the NEDC and
ARTEMIS drive cycles as torque demands. The vehicle con-
sidered in this case study has parameters equivalent to a
commercially available NissanTM Leaf electric car.

A. Torque demand calculation

The torque demand of the electric vehicle during the drive
cycle is calculated using vehicle dynamics. A simplified vehi-
cle model is used where it is assumed that the vehicle travels
on a flat road surface with uniform friction. The combination
of forces acting on the vehicle consist of the traction force
from the PMSM Ft, air resistance force on the body of the
car Fair and rolling resistance from the road surface Frr. The
mass of the vehicle is M and v is the instantaneous velocity.
Applying Newton’s second law of motion gives

Ft − Fair − Frr = M
dv

dt
. (31)

The air resistance force is given by Fair = 1
2ρCdAv2, and

the rolling resistance is given by Frr = Mgµ, where the
definitions of the symbols and the numerical values of each
of the parameters used in the above equations are given in
TABLE III. Assuming a loss free gear box, the torque demand,
which is the reference torque τ ref on the machine shaft can
be obtained as τ ref = Ftr

GR . The resulting torque demands
are shown (in red) in Fig. 13 together with the respective
speeds (in black) for NEDC (upper) and ARTEMIS drive cycle
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Fig. 13: Torque demand for the drive cycles.

Fig. 14: Degradation comparison for NEDC. Blue: MTPA
control, Green: NMPC

(lower) respectively. (The NEDC speed has been divided by
5 to improved visibility.)

B. Degradation comparison

By applying the torque demands calculated above on the
PMSM, the performance of the NMPC and MTPA control is
compared.

1) NEDC: The torque output of the two controllers for
the full NEDC is shown in the upper plot of Fig. 14. Both
the controllers let the machine deliver the torque according to
the requirements of the NEDC. There are differences, which
lie in particular during the transients. The section from time
= 1192 s to time = 1202 s is zoomed in and shown in the
middle plot of Fig. 14. There, it is observed that both MTPA
control and NMPC follow the reference torque (red) when the
torque demand is lower. However, when it is higher (reaching
±50 Nm), the torque magnitude produced by MTPA control
is lower. The reason for this can be observed in Fig.15, where
id (upper), iq (middle) and i =

√
i2d + i2q (lower) are shown.

It is very clear that the lower torque is due to the lower torque
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producing current iq with MTPA control, when the torque
demand is higher between time = 1190 s and time = 1200
s. The current i, which is the cause of losses, is higher with
MTPA control than with NMPC. The current iq rise time is
larger with MTPA control during the transients shown in Fig.
15 (middle) at time = 1200 s. This also explains why the
degradation with NMPC is lower. Hence, NPMC exploits the
over actuated nature of the PMSM to mitigate the degradation,
while tracking the torque demand as standards controllers do.

Fig. 15: PMSM currents during NEDC, Blue: MTPA control,
Green: NMPC

2) ARTEMIS: The same procedure as in NEDC is repeated
here. The upper plot of Fig. 16 shows the torque responses of
the two controllers for the full ARTEMIS drive cycle. Both
controllers are able to track the desired torque profile but both
fail to reach the peak torque demands (red). The middle plot
of the Fig. 16 shows the zoomed in version from time = 1100 s
to time = 1105 s, where it is very clearly seen that the NMPC
is faster with same or lower overshoot than the MTPA control,
which is the main reason for lower degradation as observed
in the lower plot of Fig. 16.

Unlike in the NEDC, the steady state performance of iq
from both the controllers is similar as shown in Fig. 17
(middle). Consequently, the torque-tracking performance is
also similar. However, similar to the NEDC case, i as shown
in Fig.17 (lower) remains lower, hence the losses are lower,
explaining why the degradation is also lower with NMPC in
this case.

C. Improvements in remaining useful life

Assuming a design life time of 15 years (i.e. tlife = 15
years) of operational time for the PMSM of rated power
Prated = 80 kW with a rated efficiency η = 90%, the CLRs
are calculated when the vehicle is running on the two drive
cycles. The durations of the drive cycles are 1220 s and 5218
s respectively. TABLE IV shows the RUL by using the NMPC
and the MTPA control assuming that the vehicle run on the
same drive cycle throughout tlife.

Fig. 16: Degradation comparison for ARTEMIS drive cycle.
Red: τ ref , Blue: MTPA control, Green: NMPC

Fig. 17: PMSM currents during ARTEMIS. Red: τ ref , Blue:
MTPA control, Green: NMPC

TABLE IV: Remaining Useful Life (RUL)

Parameter Value

NMPC on NEDC 0.9533
MTPA control on NEDC 0.9211

NMPC ARTEMIS 0.8870
MTPA control on ARTEMIS 0.8346

Accordingly, for NEDC, the RUL is higher by 7.6% (i.e.
almost one year of operational time) when using NMPC over
MTPA control. Furthermore, for the ARTEMIS drive cycle,
the RUL is higher by 15.7% (i.e. more than 1.5 years of
operational time) when using NMPC over MTPA control.

VI. CONCLUSIONS AND FUTURE WORK

By exploiting the inherent redundancy in actuation in
electric machines, we have shown how their degradation
can be minimized, while closed loop tracking performance
maintained, via constrained optimal feedback control. A multi-
objective optimal control problem has been formulated and
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Fig. 18: Equivalent circuit of the higher-order machine
model.

implemented via an NMPC scheme. A tuning parameter in the
cost function allows to trade off degradation and closed loop
performance. It was observed, in simulation experiments using
a higher-order model for the plant, that NMPC outperforms the
de-facto MTPA controller because of its ability of providing
an optimal solution rather than a heuristic one. Algorithm
optimization for real-word applications could be the subject
of future research.

APPENDIX: HIGHER-ORDER MACHINE MODEL

Here we present a novel higher-order electric machine
model that is used in the simulation experiments to have a
better representation of the plant. In this model we separate
the magnetizing inductance from the leakage inductance and
insert the core resistance in between. This relaxes the simpli-
fications made in combining those inductances in deriving the
conventional lumped parameter PMSM model [30] presented
before, resulting in a closer representation of the real machine.
In addition, the iron losses during transients are represented
more accurately.

The magnetizing inductance Lm and leakage inductance Ll

are separated and the core loss resistance Rc is included in
between them to form a ‘T’ network. Accordingly, the d-axis
inductance consists of two components, namely the leakage
inductance Lld and the magnetizing inductance Lmd where the
equivalent circuit is shown in Fig. 18 (a). Similarly, the q-axis
inductance also consists of the corresponding two components,
i.e. the leakage inductance Llq and the magnetizing inductance
Lmq , whose equivalent circuit is shown in Fig. 18 (b). The
stator electrical frequency is given by ωe and λpm is the
flux linkage of the permanent magnets of the machine. The
application of Kirchhoff’s voltage and current laws in the d-
axis circuit shown in Fig. 18 (a) results in

vd = Lld
did
dt

+Rid + Lmd
diod
dt

− ωeLqioq (32)

id = iod + icd (33)

icd =
Lmd

diod
dt − ωeLqioq

Rc
. (34)

Following the same procedure as in the d-axis circuit, by

applying the Kirchhoff’s voltage and current laws in the q-
axis circuit shown in Fig. 18 (b) results in

vq = Llq
diq
dt

+Riq + Lmq
dioq
dt

+ ωeLdiod

+ ωeλpm (35)
iq = ioq + icq (36)

icq =
Lmq

dioq
dt + ωeLdiod + ωeλpm

Rc
. (37)

By defining the input u, state x and output y vectors as

u = [vd, vq]
T (38)

x =
[
iod, i̇od, ioq, i̇oq

]T
y = [id, iq]

T

the system can be expressed in state space form as

ẋ = f(x, u) (39)
y = h(x, u),

where f = [f1, f2, f3, f4]
T is

f1 = x2 (40)

f2 = −
(

RRc

LldLmd

)
x1

− Rc

LldLmd

(
Lld +

(
1 +

R

Rc

)
Lmd

)
x2

+
Rc

LldLmd
ωeLq

(
1 +

R

Rc

)
x3

+ ωe
Lq

Lmd
x4 +

Rc

LldLmd
u1 (41)

f3 = x4 (42)

f4 = − Rc

LlqLmq
ωeLd

(
1 +

R

Rc

)
x1 − ωe

Ld

Lmq
x2

−
(

RRc

LlqLmq

)
x3

− Rc

LlqLmq

(
Llq +

(
1 +

R

Rc

)
Lmq

)
x4

+
Rc

LlqLmq
u2 −

Rc

LldLmd
ωeλpm

(
1 +

R

Rc

)
(43)

and h = [h1, h2]
T is

h1 = x1 +
Lmd

Rc
x2 − ωe

Lq

Rc
x3 (44)

h2 = ωe
Ld

Rc
x1 + x3 +

Lmq

Rc
x4 + ωe

λpm

Rc
. (45)
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