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Nowadays control of the growth of Saccharomyces to obtain biomass or cellular

wall components is crucial for specific industrial applications. The general aim of this

contribution is to deal with experimental data obtained from yeast cells and from

yeast cultures to attempt the integration of the two levels of information, individual and

population, to progress in the control of yeast biotechnological processes by means of

the overall analysis of this set of experimental data, and to assist in the improvement

of an individual-based model, namely, INDISIM-Saccha. Populations of S. cerevisiae

growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied.

A set of digital images was taken during the population growth, and a protocol for the

treatment and analyses of the images obtained was established. The piecewise linear

model of Buchanan was adjusted to the temporal evolutions of the yeast populations

to determine the kinetic parameters and changes of growth phases. In parallel, for

all the yeast cells analyzed, values of direct morphological parameters, such as area,

perimeter, major diameter, minor diameter, and derived ones, such as circularity and

elongation, were obtained. Graphical and numerical methods from descriptive statistics

were applied to these data to characterize the growth phases and the budding state

of the yeast cells in both experimental conditions, and inferential statistical methods

were used to compare the diverse groups of data achieved. Oxidative metabolism of

yeast in a medium with oxygen available and low initial sugar concentration can be taken

into account in order to obtain a greater number of cells or larger cells. Morphological

parameters were analyzed statistically to identify which were the most useful for the

discrimination of the different states, according to budding and/or growth phase, in

aerobic and microaerophilic conditions. The use of the experimental data for subsequent

modeling work was then discussed and compared to simulation results generated with

INDISIM-Saccha, which allowed us to advance in the development of this yeast model,

and illustrated the utility of data at different levels of observation and the needs and logic

behind the development of a microbial individual-based model.
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INTRODUCTION

Saccharomyces cerevisiae, known as brewer’s yeast or bread yeast,
is one of the yeasts with the greatest economic and social impact.
Saccharomyces cerevisiae is a facultative anaerobic yeast and
a Crabtree-positive yeast. In the presence of oxygen and low
glucose concentration (e.g., below 10 g/L) it usually uses oxidative
metabolism, but ferments in higher glucose concentrations (e.g.,
above 10 g/L) regardless of oxygen concentration. Alcoholic
fermentation is the most widely used in several industrial
processes. When the conditions of the environment vary
S. cerevisiae must adapt to the environmental changes being
forced to pass in a short period of time from aerobic conditions
to microaerophilic and anaerobic conditions at the end, changing
the type of metabolism depending on the concentration of
oxygen present in its neighborhood.

There is an increasing interest in yeasts because of
the potentiality of whole cells. For some biotechnological
applications, it is very important to obtain large amounts of
yeast biomass (rather than ethanol, as happens in other types of
applications). In order to obtain greater numbers of cells or larger
cells with more cellular components usable in diverse industries,
Saccharomyces must grow in a medium with oxygen available
and low initial sugar concentration, to avoid the Crabtree effect.
The yeast obtained is utilized as starter in fermented beverage
industries, or as probiotic yeast with health benefit, and it
is also used to obtain cellular components such as proteins
and polysaccharides (e.g., glucans), which are of great value as
functional ingredients in the food industry (Arevalo-Villena et al.,
2017).

Like all microorganisms, S. cerevisiae has defined growth
phases that characterize the temporal evolution of population
size in a batch culture: adaptation or latency phase (lag phase),
exponential or logarithmic phase (log phase), stationary phase,
and death phase. The determination of the different growth
phases of a culture can assist in the understanding of the changes
experienced by microbial population and single microorganisms.
Studies about yeast life-history traits involved in the adaptation
to different environments are indispensable. Carrying capacity
(maximum size of the population that can be supported upon the
available resources), reproduction rate or intrinsic growth rate,
and cell size are three life-history traits affected by the medium.
For instance, understanding the causes of the variability and
correlations of life-history traits in a yeast batch culture requires
the analysis of the rate of resource uptake, which depends both on
the amount of resources in the environment and on the activity of
enzymes involved in the uptake (Spor et al., 2008); in that work,
these three life-history traits were strongly affected by the glucose
content in the culture medium, with obvious trade-offs between
carrying capacity and growth rate, and between growth rate and
cell size.

Morphometry, a branch of morphology that refers to
quantitative analysis of form (size and shape), can be applied
to unicellular microorganisms. In the case of S. cerevisiae,
spheroidal cells, ellipsoidal cells, and sometimes cylindrical cells
can be observed. The components of size and shape are obtained
from a set of quantitative variables such as length, width,

height, angles, etc. that can be analyzed statistically in order
to summarize the changes undergone in the object of study,
that is, the microbial cell (Bookstein, 1997). The morphometric
analysis consists of three fundamental stages: image processing,
acquisition of variables, and statistical analysis (Toro et al.,
2010). It should be noted that the growth rate, mutation, and
environmental conditions affect the size and shape of the yeast.
For instance, when S. cerevisae grows in anaerobic conditions,
cells are generally smaller than cells grown under aerobic
conditions (Liesche et al., 2015). In addition, the morphology of
the cells is closely related to their physiological state and their
status in the cell cycle (Coelho et al., 2004). The relevance of cell
size measurements to study the response of yeast cells submitted
to various stresses has also been shown (Tibayrenc et al., 2010;
Portell et al., 2011).

Modeling, from its broadest definition, is a very necessary
tool to represent, analyze and discuss issues related to
biological systems. The classical mathematical modeling
based on continuous functions, derivable functions, differential
equations, optimization methods, function adjustments,
together with statistical modeling are by far the most
widely used methodologies. Computational models are an
interesting alternative to these methodologies and they are a
modeling approach that is gaining pace to investigate microbial
systems. Among them, the agent-based models or individual-
based models (IBMs) are becoming more frequently used
(Gorochowski, 2016; Hellweger et al., 2016; Jayathilake et al.,
2017). In order to investigate a microbial system the above
mentioned tools or methodologies are necessary, and can
complement one another, providing additional information
that benefits the overall modeling task. The diverse sets of
experimental data, from macroscopy or population-level and
from microscopic or individual-level, proceeding from the
system itself, enhance the different modeling methodologies,
since they provide the opportunity to deal with different types of
observations of the same system.

Microbial IBMs are computational models that explicitly
simulate autonomous living entities. Traditionally, they have not
been deemed necessary to deal with microbial liquid cultures,
usually assumed to be performed by axenic populations under
perfectly homogeneous media; however, even clonal populations
show biological heterogeneity in the individual behavior
(González-Cabaleiro et al., 2017). Microbes (individuals) are
treated as unique and discrete entities which have at least
two independent properties plus their position in the medium.
Rules are applied to define the individuals and the behavior
of the medium; hence, the descriptor rule-based approach
fits the methodology. The behavior of the population, of
all existing individuals at any given time, emerges from the
cumulative behavior of biotic interactions (among individuals)
and abiotic interactions (between individuals and surrounding
medium), which are interactions at individual-level. At the same
time, the system-level dynamics constrain the behavior of the
individuals. IBMs facilitate the understanding and formulation
of the connection between individual microbes and properties
at population level (e.g. heterogeneity, diversity, structure), as
well as the interactions of microbes within the population
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and with their changing environment. INDISIM-YEAST is a
microbial IBM that simulates a generic budding yeast, and it
was used to assess the methodology for the investigation of
this microbial population (Ginovart et al., 2007, 2011a,b). After
that, a quantitative IBM which was focused on the fermentative
(anaerobic) growth of the yeast S. cerevisiae was designed and
termed INDISIM-Saccha (Portell et al., 2014). However, the
fact that this model incorporated a fermentative (anaerobic)
yeast metabolism limited its applicability for the study of some
interesting biotechnological processes. Thus INDISIM-Saccha
was extended and adapted to take into account the aerobic
growth of S. cerevisiae, obtaining only some preliminary results
at a population level, but not those results corresponding to an
individual level of observation (Portell, 2014).

Microbial IBMs in general (Hellweger et al., 2016), and
in particular INDISIM-Saccha (Portell et al., 2014) construct
a virtual representation of a real system, which allows the
characterization of the cells by means of their size, shape, and
biomass. Thus, this type of model is capable of dealing with ideas
that configure certain purposes of biotechnological applications
using these individuals (their biomass and/or cellular wall
components), facilitating the investigation of the system by
modeling individual actions or behaviors directly linked with
metabolic pathways, reproduction and viability, limited or
stimulated by the local environmental conditions where the
microbe is located. This representation of a microbial system
allows the inclusion of diverse life-history traits involved in the
adaptation of yeast to its environment, for instance, at population
level, the reproduction rate estimated by the intrinsic growth rate
or the carrying capacity (maximum size of population supported
by the available resources), and, at the same time, at individual
level, the cell size related to lifespan. Aging in the mother cell by
means of an asymmetry and replicative lifespan and aging in the
population by means of nutrient availability and chronological
lifespan of the individual yeast cells (Cipollina et al., 2007;
Carmona-Gutierrez and Büttner, 2014) are taken into account in
the INDISIM-Sacchamodel. These different forms of yeast aging
enable the control of population dynamics.

The need to connect experimentalists and modelers in
general, and in particular, the combination of microbial IBMs
and experimentation has recently been advocated as microbial
individual-based ecology (Kreft et al., 2013; Hellweger et al.,
2016). Microbial IBMs use data provided by individual-
based observations but the integration of these data into the
formulation and implementation of these models is not a direct
task. A gap between modelers and experimentalists does really
exist and efforts to bring together and encourage cooperation
between both communities is indispensable (Hellweger, 2017;
Succurro et al., 2017). Providing clear evidence of the utility of the
experimental data for, and the needs and logic behind the IBMs
can be a valuable and straightforward way of filling the stated gap.

The aims of this work are: (i) to obtain and analyze the
results of the different morphometric parameters from the digital
image analysis of yeast cells growing in two initial oxygen
conditions (aerobic and microaerophilic cultures); (ii) to analyze
the kinetic parameters of the population growth in order to
detect the transition among lag, log, and stationary phases; (iii)

to identify and connect the individual yeast states and population
growth phases using individual-based and population-based
experimental observations; (iv) to detect in both concentrations
of oxygen the population growth phases with either larger cells or
greater number of cells; (v) to explore and critically assess the data
analysis developed in the improvement of the parameterization
and calibration of INDISIM-Saccha, carrying out the testing of
somemodel predictions, both at a population level and single-cell
level.

MATERIALS AND METHODS

Experimental Data
The experimental study was carried out using the Saccharomyces
cerevisiae (LALVIN DV10, LALLEMAND Australia), a yeast
strain with remarkable biotechnological characteristics. The
medium used in the aerobic growth tests was composed of
10 g/L glucose, 3 g/L yeast extract, and 3 g/L of casein peptone.
In microaerophilic conditions, the medium was supplemented
with 0.5 g/L sodium thioglycolate and 0.001 g/L resazurin which
acted by lowering the redox potential of the medium and redox
indicator respectively. The media pH was adjusted to 3.5 with
ortophosphoric acid. In aerobic conditions the inocula were
cultured in 250mL cotton-plugged flasks with 100mL of the
samemedia used in the experimental cultures. Inmicroaerophilic
conditions the inocula were cultured in 50mL tubes completely
filled with the described media. The inocula were incubated at
27◦C and stirred magnetically for 72 h. The cultures for the
experimental data were cultivated in a 1,000mL flask, with
600mL of the same fresh medium, inoculated with 0.1mL of the
preculture and also incubated at 27◦C using a magnetic stirrer
(300 r.p.m.) for approximately 30 h.

The experiments were performed with five replicates. Every
90min a sample was extracted from four flasks to be analyzed,
reserving the fifth flask for measuring the dissolved oxygen.
Viable population, dissolved oxygen and glucose concentration
were determined regularly throughout the 30 h of the study.
Ethanol concentration was determined at 18 h and at the
end of the study. Colony forming units were determined
by using the pour plate method. Glucose concentration was
measured by high-performance liquid chromatography equipped
with RI detector (HPLC; Bekman). Ethanol concentration was
determined with a Hewlett Packard 5890 Series II GC equipped
with flame ionization detection using nitrogen as carrier gas.
Initial dissolved oxygen concentration was determined with an
oxygen electrode (OxyGuard, Handy Polaris).

Acquisition of Digital Images
Images were taken using a Nikon Eclipse LV100 microscope
equipped with a digital camera Nikon Infinity 1 Tv lens C-
0.45x mounting an objective Nikon Lu Plan Fuer 50x/0.08◦

(numerical aperture). After calibration, the software Perfect
Image v7.7 was used to obtain the images. The pixel size found
was 0.0975µm. Cell preparations were obtained every 90min for
the four replicates of the aerobic and microaerophilic conditions,
producing three images per preparation. Samples were not
sonicated before being processed (see also Supplementary
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Material). When necessary, the cell suspension was diluted in
sterile saline solution and homogenized using a Vortex mixer.
Figure 1 shows an example of the images obtained.

Digital Image Analysis
ImageJ is an open source image processing program for
multidimensional image data with a focus on scientific imaging
in the public domain (http://rsb.info.nih.gov/ij/index.html). Fiji
is a distribution of ImageJ that focuses on biological-image
analysis (http://fiji.sc/Fiji). To analyze all digital images obtained
a protocol was designed and performed using the open source
image processing package Fiji (Schindelin et al., 2012). The 32
B color images were transformed to binary files following the
steps summarized in Figure 2. A blurred copy of the image was
subtracted from the original image in order to decrease the noise
coming from the background and the resulting 32 B color image
was saved as an 8 B greyscale image. The image contrast was
enhanced using the options “Saturated pixels” and “Normalize”
from the “Enhance Contrast” tool. After segmentation using the
option “Auto Threshold” from the “Adjust” menu of Fiji, the
image was saved as a 1B black and white image. Four more steps
were then applied to the binary image to obtain separated yeast
cells: automatic object closing, hole filling, object separation, and
manual object closing (Pertusa, 2010).

Each of the cells studied was analyzed individually to
verify that the ImageJ program had complied with the criteria
previously established in the protocol of the digital image analysis
to separate the objects correctly. In order to identify the budded
cells in the image analysis, in the case of pairs of cells, it was
considered that the buds were those cells which were smaller than

the one to which they were adhered. However, when a couple of
cells were of similar sizes they were digitally processed as separate
cells. Thus, from direct visual inspection of the images collected,
the budding state (yes or not) of each one of the cells was

FIGURE 2 | The first steps performed for the digital image analysis.

FIGURE 1 | An image showing yeast cells available for analysis. The labels “B” and “U” exemplify cells classified as budded cells (B) or unbudded cells (U) after the

analysis of the image (see text).
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manually recorded (as would have been done with the help of a
microscope). Figure 1 shows some examples of the classification
applied to the yeast cells as budded cells and unbudded cells.

Imaged objects (yeast cells) were characterized by
measuring direct and derived morphological parameters.
Direct morphological parameters studied were: the area (A),
the perimeter (P), the major diameter (DMAX), and the minor
diameter (DMIN). The derived morphological parameters
computed and studied were circularity and elongation (or aspect
ratio). The circularity (C) is a measure of the agreement of the
shape of the object to a perfect circle (C = 1) that takes into
account the area and perimeter of a cell, and can be computed as
follows:

C = 4 π
A

P2
(1)

The aspect ratio (AR) is the quotient between the major diameter
and minor diameter of the ellipse fitting inside the object surface:

AR =
DMAX

DMIN
(2)

and it can also be regarded as a common measure of elongation
(E) because values moving away from 1 indicate an increasingly
elongated shape.

A macro was implemented in the ImageJ program to carry out
the analysis of all the images in the most automatic way possible
(fix the scale, introduce fixed values of some parameters, improve
image contrast, etc.), obtaining better defined cells with no
dirty spots or background noise around them. After performing
several tests to adjust the threshold, three macros were created
with three different methods for the “Auto Threshold” option
included in Fiji. The most frequently used method was “Default,”
although depending on the image, the options “Intermodes”
or “Yen” were applied since they better defined the cells, with
clearly delimited borders and less noise. However, once a macro
was executed, to evaluate whether a manual intervention was
necessary in this process, it was verified that: (i) all the analyzed
objects were considered as cells of interest, since the program did
not distinguish a yeast cell from other objects (such as air bubbles
or suspended particles); (ii) the budded cells remained attached;
and (iii) the correct execution of the closures of the edges of the
cells was made.

Analysis of Data at Both the Microbial
Population Level and the Individual Level
of Yeast Cells
In a microbial system there are macroscopic observations
that inform about the temporal evolution of the population,
and microscopic observations that provide information on the
specific characteristics of the cells making up this population.
In this study both type of observations were accomplished and
the investigation of the system was carried out by combining
and comparing results on kinetic parameters of adjusted
continuous dynamicmodels at the population level (macroscopic
observations), and on models related to the distributions
of individual properties of the elements that configure this

population (microscopic observations). Thus, for the analysis
of the data two different methodologies were applied according
to the typology of the observations. In the first stage of the
process, the modeling of the growth of the microbial population
with the estimated kinetic parameters that characterized the
temporal evolution was used. In the second stage of the modeling
process, the individual variables (area, perimeter, minor diameter,
major diameter, circularity and elongation) of the cells forming
these populations were studied by means of the evolutions of
their distributions. At this stage, the information obtained in the
first stage of the population analysis was taken into account.

Both numerical summaries (descriptive statistics) and
graphical summaries (boxplots, histograms, and scatterplots)
were performed to synthesize and provide information for the
two growth conditions (aerobic and microaerophilic). Possible
association between pairs of variables were tested using the
Chi-square test of independence.

From the temporal evolutions of number of yeast cells, the
fitting of the three phase linear model known as Buchanan model
(Buchanan et al., 1997) was carried out. It is a simple but good
enough model for the purposes of this work, since it allowed
us to estimate the kinetic parameters involved in the definition
of the three main phases that characterize a typical curve of
microbial growth in a closed liquid culture: lag phase, log phase,
and stationary phase. In the Buchanan model, the three phases
are described as follows:

P (t) =























P0 for t ≤ tlag

P0 + u
(

t − tlag
)

for tlag ≤ t ≤ tmax

Pmax for t ≥ tmax

(3)

where: P(t)is the base 10 logarithm of population density at time t
(Log cfu/mL); P0 is the base 10 logarithm of the initial population
density (Log cfu/mL); Pmax is the base 10 logarithm of the
maximum population density maintained by the environment
or the carrying capacity of the system (Log cfu/mL); t is the
elapsed time (h); tlag is the time at which the adaptation phase
ends (h); tmax is the time in which the maximum population
density is reached (h); and µ is the specific growth rate of the
culture (Log cfu/mL h−1). The model describes the evolution
of the population providing a mathematical method for the
adjustment of growth curves with a good approximation to
the way in which microbiologists have traditionally estimated
the kinetic parameters of growth. The piecewise linear model
of Buchanan was fitted to the experimental data with the
nlsMicrobio package (Baty and Delignette-Muller, 2014) of the
statistical program R (R Core Team, 2013). Point estimations
of all the kinetic parameters involved in the definition of this
model were obtained, identifying and characterizing the three
growth phases, lag, log, and stationary, for each of the eight
temporal evolutions available (four replicates for the two growth
conditions).

To assess the influence of the medium conditions on the
growth kinetic parameters obtained, the Student’s t-test was used
to compare the two means (independent samples for aerobic
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vs. microaerophilic), assuming or not equal standard deviations
depending on the result of the Bonett test (for the comparison of
variances).

In order to analyze the morphologic data acquired from
the individual yeast cells, graphical and numerical summaries
of the direct morphologic variables (area, perimeter, minor
diameter and major diameter) were obtained, as well as of the
variables derived from them (circularity and elongation). Data
were grouped first by sampling times and growth conditions
(aerobic or microaerophilic). Furthermore, the fact that each
yeast cell belonged to one of the three different phases identified
with the Buchanan model (for each replicate) contributed to the
interpretation and comparative analysis of the results.

Contingency tables were used to study the independence
between cell classification variables by considering the growth
medium, the growth phase and the state of the cellular
cycle (budded cell or unbudded cell). Scatterplots and linear
correlation coefficients aided in the examination of linear and
nonlinear relationships between the different variables. The
analysis of variance (ANOVA) was applied to compare the means
of the variables studied for the different groups determined by
growth conditions, growth phase and bud state, followed by the
corresponding separation of means. Nevertheless, because these
data had unequal variances between groups the Welch’s ANOVA
test was run and subsequently Games-Howell method was used
to compare all pairs of groups.

Discriminant analysis, a multivariate technique to classify
observations into two or more groups from a data set with
known groups (the training set), was applied to the data set of
the four replicates taken together. It also helped to investigate
how variables (predictors) contributed to group separation and
to place individuals into defined groups (response). This can
be used to develop rules for classifying other data sets for
which group membership is not known. Linear discriminant
analysis, one of the most commonly used techniques, assumes
multivariate normality of the variables measured within each
group and equal variances and covariances within each group.
Using this model, linear discriminant analysis creates variables
(discriminant functions) that are combinations of the original
variables, which discriminate maximally between groups, and a
quadratic analysis is used instead when the assumption of equal
variances and covariances for all groups is not adequate (Sparks
et al., 1999).

The program Minitab R© 17 (2010) and the significance level
5% were used in the statistical analyses.

INDISIM-Saccha: An Individual-Based
Model of the Yeast Saccharomyces

cerevisiae
The original INDISIM-Sacchamodel focused on the fermentative
growth of S. cerevisiae and was introduced to the scientific
community by the work of Portell et al. (2014), which was
accompanied with Supplementary Material online, with a
detailed description of INDISIM-Saccha and some significant
aspects of the process used for the parameterization of this
model. Here an overview of the modeling methodology used

in the present work is shown. INDISIM-Saccha was developed
to analyze the dynamics of S. cerevisiae in anaerobic batch
cultures evolving in a non-stirred liquid medium with glucose
as a main carbon source and organic and inorganic nitrogen
sources. Global simulation scheduling consisted of initialization
of the simulated system with the entrance of the input data,
establishment of the initial configuration of the population,
initial setting of the space, and the time step loop (which is
repeated until the end of the defined time steps) including the
random order of the individuals’ acting order, the individual
actions loop, the actions over the medium, and the output of
variables. At each time step and at the individual actions loop,
the existing yeast cells carry out, sequentially, the following set of
actions: (i) random motion, (ii) uptake of the three substrates,
namely, glucose, organic nitrogen and ammonium (controlled
by the internal carbon to nitrogen ratio of the yeast cell) using
size-based uptake submodel, (iii) metabolism with maintenance
requirements, creation of carbon reserves, new mass synthesis,
and release of substances, (iv) reproduction of mother cells and
daughter cells, with a budding phase and an unbudded phase,
and (v) lifespan (both chronological and replicative lifespan are
considered).

INDISIM-Saccha assumes that the cellular cycle involves two
differentiated phases. Phase 1, or unbudded phase, covers most
of Gap1 phase (G1) and a very small fraction of synthesis phase
(S) in the traditional division of the cell cycle; while Phase 2, or
budding phase, covers a small fraction of G1, most of S and all
of Gap2 phase (G2) and mitosis phase (M) (see Prats et al., 2010;
Ginovart et al., 2011a,b, and references therein). Conceptually,
the model assumes that in the unbudded phase the yeast cell is
getting ready for budding and that change to the budding phase
takes place only when the cell: (i) has attained aminimum cellular
mass, defined by the parameter mC, the critical or minimum
mass; and (ii) has achieved a minimum growth of its mass, which
is related to the model parameter 1mB1. Within the model, two
conditions must be satisfied for the releasing of the bud, and
the subsequent change to the unbudded phase. These are: (i)
a minimum growth of mass, which is related to the parameter
1mB2; and (ii) a minimum time interval, which is related to the
parameter 1t2.

For further comprehension of the model the reader is referred
to the published work Portell et al. (2014).

Adaptation of INDISIM-Saccha to Tackle Aerobic

Conditions

The model was extended to deal with the analysis of dynamics of
S. cerevisiae batch cultures evolving into a stirred aerobic liquid
medium with glucose as a main C source, organic and inorganic
N sources. This adaptation required the implementation of the
following new features: (i) introduction of oxygen as a metabolic
substrate for the yeast; (ii) utilization of aerobic or anaerobic
catabolic pathways according to the local level of oxygen; and
(iii) control of an individual lag time for the adaptation of
the inoculum to new environmental conditions. When possible,
model parameter values were taken following the work of Portell
et al. (2014), but the new parameters had to be parameterized
anew to guarantee a reasonably good reproduction of some
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experimental macroscopic results of the culture such as glucose,
ethanol and cell density at the first stage of the iterative modeling
process (Portell, 2014).

In INDISIM-Saccha a yeast cell is defined by a set of variables:
the three Cartesians coordinates identifying its position in
the domain; M(t), its structural mass (CNMIC-pmol); B(t), its
genealogical age (bud scars); Ph(t), the reproduction phase in
the cellular cycle in which the cell is currently (unbudded or
budding phase); MStart(t), its “Start mass” (CNMIC-pmol), the
mass required to change from the unbudded to the budding
phase; Minc(t), the increased mass (CNMIC-pmol) since the cell
entered to the budding phase; Tinc(t), time spent into the current
reproduction phase (time steps); RGLU(t), the amount of C
stored in the cell as reserve carbohydrates or in the model as a
glucose polymers (glucose-pmol); RCN(t), the amount of organic
N stored in the cell as a reserve (CN-pmol); Cin

GLU(t), amount
of non-metabolized glucose inside the cell (glucose-pmol); and,
D(t) the mortality index to evaluate cell viability. The values
of these variables of all individual cells are stored internally
and if required, can be used to generate individual based and
global-based simulated observations. The environment simulates
a liquid medium enclosed in a cube whose faces do not allow
neither the ingress nor the egress of either organic or inorganic
elements, with the exception of molecular oxygen that can be, or
not, inflow to the system to maintain aerobic conditions. Four
substrates can be taken up by the yeast cells: glucose (GLU),
organic N (CN), ammonium (NH4), and molecular oxygen
(O2), and ethanol and CO2 can be produced. The reproduction
submodel of INDISIM-Saccha assumes that for a budded cell, the
mass of the bud (MInc) and the mass of the mother cell (M-MInc)
to be spherical. Therefore, it is possible to compute the radius of
the mother (Rm) and the bud mass (Rb).

The metabolism submodel of this extended INDISIM-Saccha
version considers the respiratory catabolic pathway (glycolysis
and Krebs cycle) as the first option in achieving metabolic
energy. Nevertheless, it is assumed that the cell can also use
the fermentative catabolic pathway (glycolysis and alcoholic
fermentation) once the uptaken O2 is depleted (or locally found
at a very low level). This enables to control the level of O2 to
fix growth conditions. Such an assumption allows the model
to be used in aerobic growth conditions with low glucose
contentmedia, i.e., growth conditions not promoting a noticeable
Crabtree effect.

An extra effort needs to be done in order to improve
the parameterization of this new version INDISIM-Saccha able
to tackle yeast growth with oxygen in the medium. The
parameterization and calibration of the model will benefit from
the individual-level data obtained with the digital image analysis
protocol developed in the present work. A new output module
was created so that the INDISIM-Saccha model could mimic the
experimental output obtained in the present contribution. The
stated module stored the reproduction phase (budded cell or
unbudded cell), that is, the values of Rm, and Rb of all the existing
yeast cells at the requested sampling times. It is worth noticing
that displaying the outputs in this way it is possible to simulate
most of the morphologic measures obtained experimentally in
this contribution.

RESULTS

Image Analysis of the Yeast Cells
Table 1 displays the number of cells analyzed in each
experimental replicate for each sampling time for the two
growth conditions, aerobic and microaerophilic.

Before performing the statistical analysis of the obtained
results it was necessary to debug the data set and eliminate some
very extreme outliers.

Examples of data achieved with the digital image analyses are
shown in Figure 3. The sets of boxplots presented are useful for
assessing and comparing sample distributions. They display the
temporal evolutions of 50% of central data with the location of
means and medians of the samples for each time corresponding
to direct (area, perimeter, major and minor diameter) and
derived (circularity and elongation) morphologic parameters
studied for two of the eight replicates, one performed in aerobic
conditions and the other in microaerophilic conditions. From
the boxplots it is clear that the majority of the distributions are
far from Gaussian distributions. These variables change their
values, tendencies and variabilities along the temporal evolutions
studied, and the values for the two growth conditions differ
depending on the ranges used for those representations. These
comments can be generalized to the rest of the experimental
replicates with all variables (data not shown).

TABLE 1 | Number of cells analyzed for the different sampling times and for the

four replicates (R1, R2, R3, and R4) under aerobic (A) and microaerophilic (M)

conditions.

Time

(h)

AR1 AR2 AR3 AR4 ATotal Time

(h)

MR1 MR2 MR3 MR4 MTotal

4.50 40 26 32 35 133 1.50 18 13 10 15 56

6.00 32 31 36 24 123 3.00 11 9 16 0 36

7.50 47 80 45 107 279 4.50 16 11 15 12 54

9.00 67 82 56 59 264 6.00 15 15 13 21 64

12.00 39 34 31 51 155 7.50 22 13 21 16 72

13.50 43 49 35 40 167 9.00 17 17 23 21 78

15.00 35 77 69 12 193 10.50 15 17 24 18 74

16.50 58 41 38 77 214 11.75 19 23 18 25 85

18.00 62 142 138 80 422 12.25 9 9 7 14 39

19.50 207 121 150 202 680 13.50 16 15 16 14 61

21.00 152 127 106 185 570 15.00 17 25 40 24 106

22.50 269 197 154 163 783 16.00 17 30 28 33 108

24.00 254 156 69 171 650 16.50 43 32 26 26 127

25.50 162 172 132 204 670 19.50 29 48 42 35 154

27.00 128 276 245 127 776 21.00 60 31 35 36 162

35.00 104 73 96 215 488 22.50 27 33 38 35 133

36.50 102 78 181 97 458 24.25 52 48 24 33 157

47.75 183 161 183 142 669 25.75 64 80 23 20 187

1,984 1,923 1,796 1,991 7,694 27.25 22 64 36 44 166

28.75 7 17 43 68 135

30.25 71 77 56 59 263

567 627 554 569 2,317
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FIGURE 3 | Temporal evolutions of boxplots for the data of the set of variables studied corresponding to replicate 1 with aerobic conditions (A) and replicate 4 with

microaerophilic conditions (B). On the boxplots, a line is drawn across the box at the median. Asterisks denote outliers (data that were more than 1.5 times the

interquartile range above or below the box), and the “x” symbol represents the mean.
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Population Kinetic Parameters
Before fitting the Buchanan model the data were transformed
using the base-10 (common) logarithm. The visual inspection
of the adjusted piecewise linear model, together with the
information generated by the nlsMicrobio package of
the statistical program R, confirmed that for the eight replicates
the quality of the fitting was very good. Figure 4 shows two
examples of this type of adjusted model, one with aerobic
conditions and the other with microaerophilic conditions,
in which the estimates of the parameters involved are also
displayed.

Once the parameters of the Buchanan model for each of the
experimental replicates were estimated (Table 2), the transition
time between the end of the log phase and the beginning of
the stationary phase (tExp−Stat) could be calculated by replacing
the corresponding values of the estimates in the mathematical
expression of the piecewise linear model. Furthermore, from this
information the duration of the log phase for each replicate was
estimated as the difference between the time of the entrance
in the stationary phase and the duration of the adaptation or
output of the lag phase. Taking into account the information
in Table 2 each of the objects identified as a yeast cell with
the digital analysis performed was labeled to indicate to which
population growth phase they belonged. From the estimates of
the kinetic parameters obtained by the fitting of the Buchanan
model (Table 2), the temporal evolutions of the eight replicates
were characterized.

In order to compare the kinetic parameters in the two growth
conditions the Student’s t-test for independent samples was
applied. It can be concluded that the maximum growth rates
for both conditions were significantly different (p = 0.016),
with a greater growth rate in aerobic conditions. The means
of the times in which the change from log phase to stationary
phase took place were also significantly different (p < 0.001),
with a greater time for microaerophilic conditions. Regarding
the duration of the log phase, significant differences were also
observed between the two growth conditions (p < 0.001), and,
in particular, this duration was greater for the microaerophilic
case. For the rest of parameters studied (initial population, final
population and duration of the lag phase) it was concluded that
the differences were non-significant at 5% (p-values were equal to
0.259, 0.747, and 0.086, respectively). Therefore, the evenness of
mean values for these parameters in the two growth conditions
was maintained.

Descriptive Analysis of the Distributions of
the Morphologic Parameters of Yeast Cells
Throughout the Different Phases of
Population Growth
Considering that sampling of images was carried out during
the population growth, and using the estimations of the kinetic
parameters obtained previously with the Buchanan model, it was
possible to locate each of the sampling times for each of the
eight replicates (4 aerobic and 4 microaerophilic) to one specific
population growth phase (lag, log, or stationary). Once the data

sets debugged, the graphical representation and characterization
of the distributions for the different morphologic variables
according to the sampling times were conducted for each of the
replicates of the two growth conditions tested, were conducted
(data not shown). Since no noteworthy differences were detected
between the behaviors observed for the four replicates in each
of the two growth conditions, the data of the four replicates
for each time sampling for both conditions were combined and
analyzed for both conditions. Hence, changes in the central
trends of distributions according to the growth phase, changes in
variability or range of distributions, as well as changes in the form
of distributions, were much better appreciated and more evident.
Figure 5 and Figures S2.1–S2.4 of the Supplementary Material
illustrate this type of information obtained from the individual
analysis of the cells.

Figure 5 shows the variable area of cells. In aerobic conditions
the areas range from 20 to 70 µm2 and that the distribution
of the percentages vary according to the phase of growth in
which the population is. Mainly in the lag phase (sampling
times at 4.5, 6, and 7.5 h), but also in the stationary phase
(sample times greater than 20 h), there is a higher percentage
of cells of areas smaller than 45 µm2. However, during the
log phase there is an increase in the percentage of cells with a
larger area (greater than 45 µm2), some of them even reaching
up to 75 µm2. In general, the areas followed approximately
normal (Gaussian) distributions, with the exception of the
end of log phase and beginning of the stationary phase that
presented bimodal distributions. In these distributions, the
smaller areas showed the highest frequencies. In microaerophilic
conditions most of the areas range of values from 20 to
80 µm2 and even, in some cases, reach values of 95 µm2

in the first samples, which correspond to the lag phase, yet
with lower percentages. Shape and central tendency of the
distributions of the areas change slightly according to the growth
phase. During the lag phase (sampling times less than 9 h)
and stationary phase (samples corresponding to times beyond
27 h), the highest percentages correspond to values of low and
medium areas (<55 µm2). In the log phase, the distribution
of the cell areas shifts toward intermediate and high values
(60–80 µm2). The distributions of areas in the lag and log
phases are, for the most part, rectangular distributions, but
at the end of the log phase and in the stationary phase the
distribution tends to be about normal. The values of the areas
may be associated with the growth phase, and the differences
are better appreciated in aerobic rather than in microaerophilic
conditions. In general, it is also observed that the cells in the
lag phase and stationary phase are smaller than those in the
log phase. The temporal distributions of the cell perimeters
(Figure S2.1 in Supplementary Material) display in general
similar behaviors to those observed with the cell areas (Figure 5).
Figure S2.2 in SupplementaryMaterial presents histograms of the
major diameter and minor diameter of the cells. The temporal
evolutions of the variables estimating shape, namely, elongation
(or aspect ratio) and circularity, are displayed, respectively, in
Figures S2.3, S2.4, which can be found in the Supplementary
Material.
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FIGURE 4 | Examples of population growth, with the data of one replicate under aerobic conditions (top) and the other under microaerophilic conditions (bottom),

fitted to the Buchanan’s piecewise linear model and the sets of corresponding kinetic parameter estimations provided by the nlsMicrobio package of R, from the

formula: LOG10N ∼ LOG10N0 + (t ≥ lag) * (t ≤ (lag + (LOG10Nmax − LOG10N0) * log(10)/mumax)) * mumax * (t − lag)/log(10) + (t ≥ lag) * (t > (lag + (LOG10Nmax

− LOG10N0) * log(10)/mumax)) * (LOG10Nmax − LOG10N0), where lag corresponds to time at which the change from lag phase to log phase occurs, the duration of

the lag phase (h); mumax is the maximum rate of growth (Log cfu/mL h-1); Log10N0 is the logarithm of the initial population (Log cfu/mL); and Log10Nmax is the

logarithm of the maximum population (Log cfu/mL).
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TABLE 2 | Summary of the kinetic parameters for the replicates of the aerobic conditions and the microaerophilic conditions with: tLag−Exp, duration time of the lag

phase or time at which the change from lag phase to log phase occurs (h); µ max, maximum growth rate (log cfu/mL h−1); Log10 (N0), logarithm of the initial population

(log cfu/mL); Log10 (Nmax), logarithm of the maximum population (log cfu/mL), and tExp−Stat, time in which the change from log phase to stationary phase occurs.

Aerobic conditions Microaerophilic conditions

Parameters R1 R2 R3 R4 Mean ± StDev R1 R2 R3 R4 Mean ± StDev

tLag−Exp 6.31 8.63 7.51 7.37 7.46 ± 0.95 6.79 7.95 7.22 7.14 7.28 ± 0.49

µ max 0.80 0.95 1.01 0.74 0.88 ± 0.13 0.54 0.60 0.52 0.55 0.55 ± 0.03

log10 (N0) 4.62 4.90 4.45 4.70 4.67 ± 0.19 4.48 4.60 4.53 4.59 4.55 ± 0.06

log10 (Nmax) 8.97 9.14 9.03 8.86 9.00 ± 0.12 9.16 9.19 9.09 9.57 9.25 ± 0.22

tExp−Stat 18.83 18.89 18.00 20.34 19.02 ± 0.97 26.58 25.61 27.25 28.03 26.48 ± 0.82

FIGURE 5 | Histograms of the area variable for the pooled data of the four replicates under aerobic conditions (A) and of the four replicates under microaerophilic

conditions (M) corresponding to different sampling times.

Relationships between Morphologic
Variables of Yeast Cells and Phases of
Population Growth According to the State
in the Reproduction Cycle
It is evident that the studied variables of shape and size are
considerably affected by the state of the cellular reproduction
cycle. Taking into account the direct visual inspection of the
images collected and the manual data recorded on the budding
state of each of the cells, the dichotomous variable budding
(Yes/No) was incorporated to the analysis.

Chi-square test for independence was used to assess the
relationship between the two categorical variables (budding,
growth phase) from the contingency table or cross tabulation of
the pooled data (the two growth conditions together). As was
expected, there was a strong evidence of association between
the two variables (p < 0.001). For the 582 cells belonging to
the lag phase only 184 were budded cells (31.6 %) and for the
5881 cells belonging to the stationary phase only 2719 were
in the budding phase (46.2%), while in the log phase from
the 3144 cells controlled, 2221 cells were in the budding phase
(70.6%).
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In order to analyze the association of these two variables,
and to characterize their distributions, the raw data were split
according to the budding phase, and the subsequent distributions
were studied again. This separation of the data affected the
shape, location and variability of the morphologic distributions
in a very remarkable way. After having introduced the variable
budding in the analysis, the distributions became much more
regular and symmetric, approaching Gaussian distributions. The
analysis of variance (ANOVA) was used to compare the means
between the different subgroups obtained from the combination
of these three factors (growth conditions, growth phase and
budding reproduction). As the assumption of equal variances
between groups was violated, Welch’s one-way ANOVA test
was performed. Once it was concluded that the means of
subgroups were significantly different for all the variables (all
p-values < 0.001), then the Games-Howell test was used to
compare differences between all pairs of groups. Table 3 provides
a numerical summary of the variables according to these three
factors studied.

For instance, regarding the area variable, Figure 6 displays
a set of histograms corresponding to different sampling times,
presenting the budded and unbudded cells separately for each of
the two growth conditions.

Table 3 shows that for each phase, the mean of the areas of
the unbudded cells in microaerophilic conditions were greater
than those in aerobic conditions, and the same applies for the
budded cells. In general, the means of the areas of budded
cells were higher than those of unbudded cells, although not
always significantly different. In relation to the means of the
areas according to the growth phase, the budded cells in
microaerophilic growth did not present significant differences
between lag and log phases, nor when comparing the unbudded
cells. Nevertheless, in aerobic conditions there were significant
differences between the means of areas for lag and log phases
in both cases (budded and unbudded cells). In the stationary

phase for budded and unbudded cells and in both growth
conditions, the means of the areas were reduced, although
not always with significant differences. The highest values
for the mean of the area were achieved by budded yeast
growing in microaerophilic conditions during the lag and log
phases with values of 65.6 and 60.7 µm2 (not significantly
different). The means of the perimeters behaved similarly to
the means of the areas. About the variability of the area
distributions, the biggest coefficient of variation (35.5%) was for
the unbudded cells grown in microaerophilic conditions that
were in the lag phase (followed by those cells that were in
the stationary phase, with a value of 29.5%), while the smallest
coefficient of variation of the area distributions (21.1%) was
for the budded cells grown in aerobic conditions that were
in the stationary phase. The group of budded cells grown
in microaerophilic conditions in the log phase had a small
coefficient of variation (23%).

Regarding the three growth phases, the means of the minor
diameters in aerobic conditions behaved differently from those
in microaerophilic conditions (Table 3). The mean of the minor
diameters of the unbudded cells under aerobic conditions in the
lag phase was higher than those in the log and stationary phases.
The latter two means showed no significant differences between
them. The means of the lag and log phases behaved similarly
in both growth conditions. Regarding the major diameters, the
means followed the same pattern in the three growth phases. The
means of unbudded cells in aerobic conditions showed the lowest
values, while the highest values corresponded to the budded cells
in microaerophilic conditions in lag and log phases. Unbudded
cells in microaerophilic conditions, and budded cells in aerobic
conditions showed significant differences according to growth
phases. The means of the major diameters of the lag phase
were higher than the means of the log and stationary phases,
except in the case of budded cells under aerobic conditions. In
microaerophilic conditions the means of budded cells in the

TABLE 3 | Number of yeast cells (N), means (± standard deviations) of the groups formed with the combinations of the three factors (growth condition, population growth

phase, individual state in the reproductive cycle) with the grouping mean information using the Games-Howell Method (95% confidence).

Conditions-

Phase-Budding

N Area (µm) Perimeter (µm) Minor diameter (µm) Major diameter (µm) Elongation Circularity

A-lag-N 303 29.65 ± 7.98 g 21.46 ± 3.21 f g 5.70 ± 0.84 e 6.50 ± 0.91 g 1.15 ± 0.09 d 0.80 ± 0.07 d

A-lag-Y 61 39.24 ± 9.05 d 26.04 ± 3.61 d 5.79 ± 0.77 d e 8.58 ± 1.40 d 1.50 ± 0.27 c 0.72 ± 0.06 e

A-log-N 760 26.44 ± 7.71 h 19.62 ± 3.06 h 5.40 ± 0.77 f 6.12 ± 1.00 h 1.14 ± 0.10 d 0.85 ± 0.04 a b

A-log-Y 953 46.34 ± 11.82 c 29.58 ± 4.01 c 5.59 ± 0.73 e 10.45 ± 1.71 c 1.88 ± 0.29 b 0.66 ± 0.07 f

A-stat-N 3,027 26.25 ± 6.54 h 19.48 ± 2.61 h 5.39 ± 0.67 f 6.12 ± 0.85 h 1.14 ± 0.10 a 0.86 ± 0.04 a

A-stat-Y 2,276 43.20 ± 9.12 d 29.25 ± 3.63 c 5.32 ± 0.59 f 10.28 ± 1.49 c 1.95 ± 0.28 d 0.63 ± 0.06 h

M-lag-N 95 38.93 ± 13.82 d e 24.20 ± 4.86 d e 6.35 ± 1.04 a b c 7.66 ± 1.78 e 1.21 ± 0.25 d 0.82 ± 0.07 c d

M-lag-Y 123 65.58 ± 19.10 a 35.27 ± 5.47 a 6.72 ± 0.97 a 12.24 ± 2.19 a 1.83 ± 0.28 b 0.65 ± 0.06 f g

M-log-N 163 33.93 ± 8.29 e f 22.41 ± 3.00 e f 6.12 ± 0.80 c d 6.96 ± 0.93 f 1.14 ± 0.10 d 0.84 ± 0.04 b c

M-log-Y 1,268 60.67 ± 13.93 a 34.05 ± 4.34 a 6.35 ± 0.76 a b 12.05 ± 0.74 a 1.91 ± 0.25 b 0.65 ± 0.06 f g

M-stat-N 135 30.69 ± 9.06 f g 21.16 ± 3.40 g 5.75 ± 0.88 e 6.66 ± 1.05 f g 1.16 ± 0.11 d 0.85 ± 0.04 a b c

M-stat-Y 443 48.90 ± 13.05 b 30.95 ± 4.60 b 5.59 ± 0.80 e 10.99 ± 1.81 b 1.98 ± 0.29 a 0.63 ± 0.06 g h

Where: M, microaerophilic condition; A, aerobic condition; lag, adaptation phase; log, exponential phase; stat, stationary phase; Y, budded cells; N, unbudded cells.

Means that do not share a letter are significantly different.

Frontiers in Microbiology | www.frontiersin.org 12 January 2018 | Volume 8 | Article 2628

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ginovart et al. Yeast Cells, Individual-Based Modeling

FIGURE 6 | Histograms of the corresponding area variable in different sampling times where the data were split according to the two growth conditions and state in

the reproduction process. A, aerobic conditions; M, microaerophilic conditions; S, budded cells and; N, unbudded cells.
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lag and log phases were significantly different from that in the
stationary phase.

From direct visual inspection, a set of 5124 budded cells was
gathered, with a mean elongation value of 1.92 and a coefficient
of variation of 14.6%. Considering the data of the two growth
conditions together, the 95% confidence interval of the mean
elongation was (1.91, 1.93). The median of this data set was 1.95,
and the 50% of the central values for elongation of budded cells
ranged between 1.76 and 2.12. However, the means of elongation
corresponding to the different phases of growth were 1.72, 1.90,
and 1.95 for the lag, log and stationary phases respectively, with
their corresponding 95% confidence intervals (1.68, 1.77), (1.89,
1.91), and (1.94, 1.96) respectively. No significant differences
were observed for unbudded cells, regardless of the growth phase
or the growth conditions, obtaining the smallest values. Under
microaerophilic conditions the elongation had always higher
values than under aerobic conditions. Taking into account the
budded cells, for the log and stationary phases no significant
differences were detected between both growth conditions,
while for the lag phase the elongation means were significantly
different. The mean elongation of the lag phase and budded cells
in aerobic growth was much lower than the rest of budded cells
with a value of 1.5 (Table 3).

In both growth conditions, the means of the circularity values
of the unbudded cells were higher than those of the budded
cells, and significantly different, with values clearly far from
1 (Table 3). Considering the unbudded cells, the highest value
observed was 0.86 and the smallest was 0.80 corresponding to
cells in the stationary phase and in the lag phase for aerobic
growth conditions. In microaerophilic growth and unbudded
cells there were no significant differences of the means of
circularity according to the growth phases. The means of the
circularity of the budded cells were different depending on the
growth phase in aerobic conditions. The differences for this
variable in function of the phases were smaller in microaerophilic
growth than in aerobic growth.

Discriminant Analysis in Aerobic and
Microaerophilic Conditions
All the variables can be considered to be approximately normally
distributed within each group, except circularity and elongation.
Therefore, these two variables were excluded from the analysis.
Since equal variances could not be assumed, a quadratic
discriminant function was used, and there was no need to
jackknife or cross-validate the results because the data set was
sufficiently large (Sparks et al., 1999).

First, the data set of the cells was used in an attempt
to discriminate between the two growth conditions (aerobic,
microaerophilic) on the basis of their morphometry (area,
perimeter, major diameter, minor diameter). The overall
percentages of the cells that could be correctly allocated to
aerobic and microaerophilic conditions were: area (78.5%),
perimeter (70.2%), major diameter (69.0%), and minor diameter
(73.8%), with partial percentages of correct classification in
each group ranging from 60.9 to 82.1%. If allocations to
growth conditions were completely at random one would expect

50% correct allocation. When two predictors were combined,
the percentages were slightly improved. In particular, it was
worth considering the combinations: area-perimeter (80.4%)
and major–minor diameters (76.5%), because the former is
connected with circularity, and the latter with elongation. The
four-predictor combination was disregarded due to collinearity.
Since the morphometric predictors showed a strong potential to
discriminate between growth conditions, discriminant analysis
to classify cells according to phase (lag, log, stationary) and to
budding (Yes–No) is discussed below for each growth condition
separately. The results are displayed in Table 4. It should be
remembered that if allocation to groups budding and phase
were completely at random, one would expect a 50% and a
33.3% correct allocation, respectively. From Table 4 it is clear
that in both growth conditions, all the predictors, except minor
diameter, showed a high potential to classify cells into groups
according to their budding condition. The main differences in
the discriminant power were detected when allocating cells to
their growth phase. In microaerophilic conditions all predictors
presented overall percentages much larger than 33.3%. However,
the partial percentage of cells in lag phase correctly classified
fell far below 33.3%, except for predictors minor diameter, and
the combination major–minor diameters, with all the partial
percentages in each phase above 33.3%. On the contrary, in
aerobic conditions the overall percentages did not achieve 33.3%,
except for the minor diameter. Nevertheless, even in this case not
all groups were well classified. A more detailed analysis revealed
that cells in stationary phase were not correctly classified, in
general. To achieve a better discrimination in aerobic conditions,
phase and budding were merged into a new group phase-
budding, with six categories. Hence, if cells were allocated at
random, one would expect a 16.67% correct allocation. The
overall percentages improved in general: area (46.3%), perimeter
(48.7%), major diameter (48.0%), minor diameter (24.9%), area-
perimeter (53.4%), major-minor diameters (54.9%). It is worth

TABLE 4 | Quadratic discriminant analysis of morphometric predictors, showing

allocation of cells to groups (phase, budding), in aerobic and microaerophilic

conditions.

Group

Percentages

correct (overall)

Predictors Phase Budding

Aerobic Area 18.4 85.0

Perimeter 18.2 92.0

Major diameter 18.2 94.7

Minor diameter 57.9 50.4

Area–Perimeter 33.1 95.3

Major diameter–Minor diameter 28.0 97.0

Microaerophilic Area 56.0 79.6

Perimeter 59.5 89.1

Major diameter 57.2 91.3

Minor diameter 52.4 62.8

Area–perimeter 52.8 94.1

Major diameter–Minor diameter 57.0 94.4
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pointing out that only for major diameter and area-perimeter all
the groups showed partial percentages above 16.67%.

Simulations with the Individual-Based
Model INDISIM-Saccha
The IBM INDISIM-Saccha was extended by the incorporation of
an oxygen-using metabolic alternative (see section Adaptation
of INDISIM-Saccha to Tackle Aerobic Conditions). The
preliminary simulation results aimed to test whether the adapted
model was also capable of tackling experimental cultures
with oxygen available, combining outputs at population level
and at individual level in order to take full advantage of the
experimental data recently achieved and previously analyzed.

Experimental results were compared with simulation results
at population level by means of the number of cells in the
population growing in aerobic conditions and in microaerophilic
conditions as Figures 7A, 8A respectively show. Nevertheless,
with the study performed on the experimental distributions of
the individual characteristics of yeast cells offered new options
and challenges to be explored. A preliminary exploration of
the outputs at individual level related with the mass of the
yeast cells was carried out. Distributions of areas and volumes
for budded and unbudded cells were recorded (see section
INDISIM-Saccha: An Individual-Based Model of the Yeast
Saccharomyces cerevisiae). A direct comparison can be drawn
between simulation and experimental data. The simulated size
distributions corresponding to the 7.0 and 16.5 h for aerobic
conditions are shown in Figure 7B. Similarly, formicroaerophilic
conditions the simulated size distributions obtained at the
sampling times 9.0 and 25.5 h are shown in Figure 8B. As can
be seen, the area distributions from the simulated population
followed unimodal distributions that change during time.
Comparing the simulated distributions to their experimental
equivalents a number of remarks can be made. First, simulated
distributions during the lag phase (results not shown) did
not change while changes were evident in the distributions of
areas, perimeters, minor and major diameters, as well as in the
derived morphologic variables (elongation and circularity) as
Figure 5 and Figures S2.1–S2.2 display. Second, simulated both
budded and unbudded cells were smaller than those observed
experimentally, and the amplitude of the distributions found
experimentally was greater; and, in addition, the simulated
distributions were well formed (Figures 7B, 8B).

Several sets of simulations were carried out modifying the
values of the parameters of the reproduction submodel. When
these values increased, both mean cell sizes and amplitude of the
simulated distributions of budded and unbudded cells increased
and became closer to the experimental values. However, there
was a fundamental difference between the experimental and
the simulation sampling procedures that partially explained the
discrepancies observed. The fact that a small allicot of the
experimental procedure was being measured against the whole
simulated population suggested that the sampling effect had
to be accounted for also in the simulations. Consequently,
samples of the virtual system were also generated in order to
represent the simulated size distributions. Figures 7C, 8C show
these improved simulation results. Nevertheless, focusing on
the glucose, ethanol and cell number temporal evolutions, the

agreement between experimental and simulated values became
poorer (results not shown).

DISCUSSION

A collection of digital images of S. cerevisiae cells growing in
two different initial concentrations of oxygen was processed
to perform subsequently the statistical analysis of a set of
morphologic parameters. A working protocol was established
for the treatment of digital images of yeast cells using the free
program ImageJ-Fiji, adjusting the parameters when necessary
and designing different macros to automate the procedure. It
turned out that the automation of the image analysis was not
always the most suitable method, nor did it guarantee the
thorough analysis of all the cells. Therefore, an individualized and
manual review of all the analyzed cells was carried out, including
the supervision of the corresponding morphologic parameters
and the budding state with the visual inspection.

Concerning the type of model selected for the population
growth, the Buchanan model proved to be very appropriate
to fit the data analyzed, since in all the microbial cultures
the different growth phases could be clearly identified
(adaptation-lag, exponential-log, and stationary). The temporal
experimental evolutions of yeast populations for the aerobic
and microaerophilic conditions were well characterized from
the estimations of the parameters provided by the fitting to the
Buchanan model and from derived calculations. All the kinetic
population parameters obtained from the model (durations of
the lag and log phases, maximum growth rate, final population
or carrying capacity, times of change from the log to the
stationary phase) are of great microbiological interest for specific
applications in biotechnology. However, it is necessary to point
out that the values for the kinetic parameters also depend on
the adjusted model (Buchanan et al., 1997; López et al., 2004;
Griffiths et al., 2016). This fact should be taken into account
when comparing experimental results with simulated results, as
well as when referring to published results.

The production of starter cultures, a remarkable
biotechnological application, using a batch process with a
respiratory metabolism in microaerophilic conditions, according
to the results obtained, allows the log phase to be extended,
thus obtaining fully active and ready cells to be used as starters
for a longer period of time. Therefore, the achievement of a
long-term log phase of a population is positive for the industry.
Starter populations that are in stationary phase suffer from a
delay in their metabolic activity in the adaptation phase and in
longer fermentative processes (Ekberg et al., 2013). In addition,
in the stationary phase there is an aging of the population
and a reduction of viable cells as a consequence of lack of
nutrients. When the situation persists it causes the damage cell
accumulating and cell death (Carmona-Gutierrez and Büttner,
2014).

Likewise, the population level parameters assisted to the
interpretation of the morphologic parameter distributions of
the yeast cells collected from the analysis of the digital images
during the successive population growth phases. According to the
purpose of the yeast cultivation, the study of growth conditions
advantageous for the attainment of either a high number of yeast
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FIGURE 7 | Outputs obtained in aerobic conditions. (A) Temporal evolution of the experimental data of the four replicates of the population growth (different symbols)

with a simulation performed with INDISIM-Saccha (continuous line). (B) Distributions of the areas of the yeast cells that make up the virtual system (in silico population)

at different sampling times with the data split according to the state in the reproduction process: S, budded cells and N, unbudded cells. Notice that the

representation of the corresponding experimental results by means of small plots have been included in the same area of the simulated plots to facilitate the

comparison. (C) Size distributions that were obtained by changing the value of the standard variability of the minimum reproduction mass (σmC, from 0.15 to 0.25),

the minimum growth required for the cell to start the budding process (1mB1, from 0.5 to 2.0), and the minimum growth required for the bud to detach itself from the

mother cell (1mB2, from 1.0 to 9.0) and its standard deviation (σmB2, from 0.25 to 0.02), while keeping the rest of the parameter values used in the simulation

displayed in (A,B). In addition, the size distributions in (C) were produced by randomly sampling 500 individuals from the simulated yeast population to better mimic

the procedure used to produce the experimental distributions.
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FIGURE 8 | Outputs obtained in microaerophilic conditions. (A) Temporal evolution of the experimental data of the four replicates of the population growth (different

symbols) with a simulation performed with INDISIM-Saccha (continuous line). (B) Distributions of the areas of the yeast cells that make up the virtual system (in silico

population) at different sampling times with the data split according to the state in the reproduction process: S, budded cells and N, unbudded cells. Notice that the

representation of the corresponding experimental results by means of small plots have been included in the same area of the simulated plots to facilitate the

comparison. (C) Size distributions that were obtained by changing the value of the minimum reproduction mass (mC, from 5 to 15), of its standard variability (σmC,

from 0.15 to 0.5), the minimum growth required for the bud to detach itself from the mother cell (1mB2, from 1.0 to 25.0) and of its standard deviation (σmB2, from

0.25 to 0.75) while keeping the rest of the parameter values used in the simulation displayed in (A,B). In addition, the size distributions in (C) were produced by

randomly sampling 500 individuals from the simulated yeast population to better mimic the procedure used to produce the experimental distributions.
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cells or larger cells is noteworthy. For both the kinetic parameters
of the population growth and the distributions of the individual
variables of size and shape of the cells, it was shown that there
were important differences between the two growth conditions
tested. This reinforces the idea that a microbial system should
be analyzed from different perspectives (population - individual)
in order to make the most of the available information in any
modeling process. This two-fold analysis is indispensable and
much more relevant in any iterative process of parameterization
and calibration of IBMs. It has also been established that
the individual information obtained experimentally should be
coupled with that obtained at the population level for the same
system since, for slightly different levels of oxygen significant
differences in population parameters were detected, as well as
in the distributions of individual variables of the yeast cells that
made up those populations.

In both aerobic and microaerophilic growth conditions,
the numerical summaries of central tendency and variability
obtained for the area, perimeter, major and minor diameters,
elongation and circularity of the yeast cells were studied
together with their respective distributions, which were not
always normally distributed. Analysis and comparison of the
distributions of these morphometric variables allowed to connect
them with the three main microbial growth phases (log, lag, and
stationary). These distributions reflected the changes between
population growth phases in both growth conditions, and in a
more relevant way for the aerobic growth, probably due to a faster
growth and greater differentiation between phases.

The distributions of the size variables such as area and
perimeter presented similar evolutions. The results obtained
showed that cells growing in microaerophilic conditions
presented larger areas than those growing under aerobic
conditions. There were wider ranges for the distributions of
the budded cells than for those corresponding to the unbudded
cells. In general, the greatest cellular sizes occurred in the log
phase, in both oxygen conditions, in keeping with other studies
(Powell et al., 2003; Dungrawala et al., 2012), although in certain
conditions their values get closer to those achieved in the lag
phase.

The values of the major diameters, and to a lesser extent, those
of the minor diameters, reproduce again the evolution of the cell
size in the different growth phases, as observed in the variables
area and perimeter. As the log phase progressed, the percentage
of cells with a larger diameter increased, although percentages
of smaller cells (new cells) were also maintained. The bimodal
distributions in the log phase of all size parameters (except for
the minor diameter) indicated the presence of two groups of
cells differentiated by sizes that could be related to mother cells
and daughter cells, the latter not having yet reached critical size
to bud. The increasing percentage of small cells detected in the
stationary phase has been described in several studies (Aragon
et al., 2008; Svenkrtova et al., 2016) and may be related to glucose
depletion. But it may also be connected with the presence of
cells that in the stationary phase could give rise to quiescent
cells (Li et al., 2013; Carbó et al., 2015). Cells in microaerophilic
growth did not present the two size-differentiated subpopulations
at the end of the log phase and at the onset of the stationary

phase, although a wide range of cell sizes could be observed,
probably due to the slower and asynchronous growth. In general,
they were larger than in aerobic growth at all phases. The
small reduction of the initial oxygen concentration in the
medium, such as the one proposed in this study, led to larger
Saccharomyces cells. This could mean an improvement in the
industrial production of cells for dietary supplements or cellular
derivatives, such as glucans used in the bakery industry, or
for their bioactive properties in the pharmaceutical products
(Freimund et al., 2003). Under microaerophilic conditions larger
cells were obtained and foreseeably with greater concentration of
some cell components (although for some type of components
this should be checked, in general it is true for cellular wall
components such as glucans as they, β1-6 and β1-3 glucans,
which constitute about 55–65% of the wall dry weight of the cell
wall, Klis et al., 2002) It is worth bearing this result in mind
if the purpose is to produce cells to extract cell metabolites.
Besides, the populations grown in microaerophilic conditions
weremore homogeneous than those grown in aerobic conditions.
On the other hand, a similar cellular concentration (biomass) was
obtained in both growth conditions, but in aerobic conditions
this concentration was achieved from 8 to 10 h before that in
microaerophilic conditions, which indicates a higher yield in
the aerobic case. Nevertheless, the consumption of glucose was
superior in aerobic conditions, which makes it more expensive
to obtain biomass in industry [the glucose in aerobic growth
was exhausted at 18 h, just at the beginning of the stationary
phase, whereas at the beginning of the stationary phase of the
microaerophilic growth, there were still 6.68 g/L of glucose (data
not shown)].

Differences in shape were also detected (see Figures S2.3, S2.4
of the Supplementary Material). Cells in microaerophilic growth
presented mainly cylindrical or more elongated shape, whereas
those in the aerobic conditions were mostly oval or elliptic.
The elongation and circularity variables provided information on
the deformation of the cells. Coelho et al. (2004) proposed an
elongation value of 1.5 for S. cerevisiae. Although this reference
value must be calculated for each microorganism growing under
specific conditions, it held for the yeast cells in this study, in both
growth conditions, hence allowing the discrimination between
budded and unbudded cells. Differences in elongation values
depending on the growth phase could be in agreement with
the changes of the cell size for the different growth phases.
Regarding the circularity, it was more difficult to establish a value
that allowed to discriminate so clearly the budded cells from
the unbudded cells, since apparently it depended on the growth
phase. The discriminant analysis supported that, in both growth
conditions, size assisted in classifying cells according to their
budding state. However, while in microaerophilic conditions size
could accurately allocate cells to their growth phase, in aerobic
conditions only the combination of growth phase with budding
state granted an adequate discrimination.

Both oxygen concentrations studied affected the growth rate,
cell size and to a lesser degree, the number of viable cells of
Saccharomyces obtained at the end of the study. There is a trade-
off between the growth rate and the cellular size similar to that
shown by Spor et al. (2008) when studying the influence of
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different concentrations of glucose. It was observed that with
a higher concentration of oxygen dissolved in the medium, a
higher growth rate was detected, while cell sizes were smaller;
but, conversely, with lower initial oxygen concentration, a lower
growth rate appeared while cell sizes were greater. There was no
trade-off between the growth rate and the final viable population
achieved unlike the results shown in the work of Spor et al.
(2008); a higher initial oxygen concentration resulted in a greater
growth rate and a greater number of cells achieved in less time
(while more time was required to achieve the same final number
of cells with a little less initial oxygen). Probably this behavior
is due to the fact that the two initial oxygen concentrations
considered in this study did not constitute a stress factor.

Key aspects that should be further developed to move
microbial community modeling toward greater predictive power
have recently been revised (e.g., Song et al., 2014). In many cases,
in a microbial context, it is not yet understood how individual
cells should be programmed, manipulated or cultivated to ensure
the emergence of the required collective behavior. IBMs, together
with a suitable experimental work, makes it easier to tackle these
issues, offering a framework in which to simulate such systems.

The number of studies on IBMs addressing bacterial
populations greatly exceeds those dealing with yeast populations
(Hellweger and Bucci, 2009). However, there are, to our
knowledge, a few microbial IMBs that have been used to tackle
diverse questions related to yeast such as the work of Hellweger
et al. (2014) who investigated the hypothesis of a fitness benefit
of age-correlated stress resistance of yeast, or the work of
Momeni et al. (2013) who examined how through partner
fidelity feedback heterotypic cooperation between yeasts may be
protected against cheaters. Studies performed with INDISIM-
YEAST and INDISIM-Saccha focused on the qualitative behavior
and on the patterns and tendencies of variables connected with
the yeast system and their effect on the growth phases of the
population, specifically on the duration of the lag phase (Ginovart
et al., 2007, 2011a,b) and on the fermentative (anaerobic) growth
(Portell et al., 2014) respectively. Based on individual actions
and parameters for individual yeast cells rather than fitting the
model to data, these IBMs could predict themeasured compounts
profiles as well as biomass and genealogical age distributions.
With the current experimental information gathered and from
the examination of the distributions of sizes and shapes of
individual yeast throughout the different phases of population
growth, a quantitative study was carried out in order to improve
the parameterization and calibration of the new aerobic version
of INDISIM-Saccha. The individual-level observation of size is
an important parameter involved in the uptake submodel, which
takes into account the available nutrient at a microscale patch and
the probability of it encountering and entering the yeast through
the cellular membrane. Likewise, the review of the budding
reproduction submodel could be performed since it allowed not
only to distinguish mother yeast cells from daughter yeast cells,
but also to control the budding process, that is, the times and
masses for the separations of the buds from the cells. Besides,
the consideration of the cellular membrane of the individual
yeast (which is related with its size and geometry) in the uptake
submodel has effect on the amount of nutrients that the cell uses.

The uptake submodel, which assumes that a yeast cell translocates
low molecular weight compounds dissolved in water through
its cell membrane, could be revisited in light of these findings
about sizes and shapes of yeast cells. Such a revision would not
be possible without the availability of hands-on experimentation
as the one presented in this contribution.

There are several models that allow for mathematical
descriptions of distributed cell properties within microbial
populations, and cell size is usually chosen as a model variable
to study yeast populations due to its tight coupling to cell
growth and division, which in the case of this microorganism is
asymmetric (e.g., Hatzis and Porro, 2006; Lencastre Fernandes
et al., 2013). Nevertheless, an IBM grants the representation of
biological actions for a microorganism and its integration into
the structure of the model, and thereby cell size is indirectly
involved in the individual behavior rules. In consequence,
the available resources achieved by the virtual cell are shared
between maintenance, creation of new biomass (size growth)
and reproduction (increasing the size of the bud during the
budding phase), which mostly determines the distribution of
sizes that the model provides. Moreover, the distinction between
timers and sizes, two classical concepts for G1 control, was
investigated in yeast cells, and it turned out that size-independent
noise (presumably molecular noise) is the leading source of
variability in the duration of G1 (Di Talia et al., 2007). Thus,
a deterministic size control model would seem insufficient,
being then appropriate to incorporate certain stochasticity at
individual cell level to achieve virtual representations of yeast
populations when mass distributions and dynamics are explored.
This reinforces the idea that stochastic IBMs, such as INDISIM-
Saccha, are necessary tools to integrate both biological and
environmental heterogeneity to improve the process design and
scale up of microbial processes (González-Cabaleiro et al., 2017).

In the INDISIM-Saccha model, yeast cells experienced an
individual lag time, that is, a period in which they were internally
adapting in order to be able to undergo cellular growth. In the
simulation, the size of the cells undergoing the lag phase did not
change since the model assumed they were suffering the internal
changes required to start growing. Such behavior was chosen for
the sake of simplicity but there exist other conceptualizations
that can be regarded as plausible in the literature (Prats et al.,
2008, 2010). The behavior observed in the simulations does
not seem to agree completely with the experimental findings.
Although at the population level and during the adaptation
phase no movement of the total number of cells was perceived,
at individual level, as Figure 5 and Figures S2.1–S2.4 showed,
changes were evident in the distributions of areas, perimeters,
minor andmajor diameters, as well as in the derivedmorphologic
variables (elongation and circularity). This seems to suggest
that the submodel describing the lag time of the individual
cells should be reviewed in such a way that would allow for
more variability and changes in the temporal evolution of the
distribution of the individual areas, and, eventually, validated
against the tendencies observed in the present contribution.

The development of a calibration procedure incorporating
cell size distribution at strategic time points during the different
growth phases will help reach a better agreement between both
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kinds of data (experimental and simulated). It should be pointed
out that the digital analysis procedure that we have developed
lets sorting the size of budded and unbudded yeast. To our
knowledge this approach has not been used so far, yet it offers
some interesting characteristics that render it suitable for a
calibration step. In particular, it allows to isolate more efficiently
the effect of changes on themodel parameters of the reproduction
submodel so they can be detected more easily. For instance, in
relation to the second simulation result (Figure 7C) from the
first simulation result (Figure 7B) of the size distributions, fine
tuning a model parameter, mainly controlling the size of the
bud before detaching it from the mother cell (i.e., 1mB2), will
affect exclusively the distribution of the budded cells, but not the
distribution of the unbudded yeasts. Other parameters, such as
the critical mass before starting the budding phase (1mB1), will
have an impact on the distribution of both budded and unbudded
yeast cells.

The comparison between the individual-level information,
obtained from the digital analysis procedure, and the simulation
outputs of a calibrated IBM of the yeast S. cerevisiae is a valuable
approach to test the accuracy of the process undergone. Although
this does not invalidate the usefulness of the calibrated model
for particular goals, the model obviously is not able to capture a
number of important aspects of the real system. From now on,
and with the current experimental information accomplished,
a quantitative study can be carried out in order to improve
the calibration of the new INDISIM-Saccha from the particular
examination of distributions of sizes and shapes of individual
yeast throughout the different phases of population growth.

This type of study on microorganisms is essential to
ponder and develop methodologies for calibration processes
of models to tackle different levels of observation of the
system under consideration. Making IBMs simultaneously
reproduce patterns observed at both the individual and
population level will make these IBMs structurally realistic
so that they can deliver independent, testable predictions
(Kreft et al., 2013; Hellweger et al., 2016). The tasks to

complete this experimental-modeling-experimental iterative
process require a close relationship and extra effort to connect
both experimentalists and modelers, this approach being
exemplified by the model INDISIM-Saccha. Neither of the two
levels of observation (population and individual) in the process
of parameterization and calibration can be neglected, although
this requires an extra effort for modelers and an increment in the
complexity of the models (Hellweger, 2017).

The combination of individual-level knowledge, gathered
from the digital images processed, with population-level
information, drawn from primary growth models and the
estimation of kinetic parameters, proves to be crucial in
understanding the biological processes connecting different
experimental observations. The design, parameterization,
calibration and validation of a microbial IBMs can certainly
benefit from this 2-fold approach. At the same time, the
exploration of different strategies to study a specific microbial
population enhances the research process, providing in turn the
opportunity to address new objectives in the in vitro and in silico
representations of microbial systems and a more profound
understanding of community dynamics.
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