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Abstract 

Carbon capture and storage (CCS) from natural gas fired systems is an emerging field and many of 

the concepts and underlying scientific principles are still being developed. Preliminary studies suggest 

this approach can boost the CO2 content in the feed gas up to 3 times compared to the ‘no recycle’ 

case (CO2 concentration increased to 18% vs. 6%), with a consequent reduction in flow to the post-

combustion capture unit by a factor of three compared to conventional, non S-EGR. For this project, 

Cranfield developed a pilot-scale 100 kW CO2 membrane rig facility in order to investigate 

simultaneously EGR and S-EGR technologies, the latter being achieved by using a CO2 sweep air 

polymeric membrane. A bench-scale membrane rig has also been developed to investigate the 

permeability and selectivity of different polymeric membranes to CO2. Currently a small-scale 

polydimethylsiloxane (PDMS) membrane module is also being investigated to study its 

selectivity/permeability. The tests include exploring the performance improvement of the PDMS 

membrane using different operating conditions with a view to developing scale-up procedures for the 

membrane unit for the actual 100 kW pilot-scale rig. 

Process simulations were performed using Aspen Plus software to predict behaviour of the pilot-scale 

rig using a model developed based on empirical parameters (i.e., mass transfer coefficient of CO2 

through the membrane and permeance), measured in the bench-scale membrane test unit. The results 

show that CO2 concentrations of up to 14.9% (comparable to CO2 level in coal combustion) can be 

achieved with 60% EGR, with a 90% CO2 removal efficiency of the membrane units. However, the 

results generated with the membrane model in which specific permeance values to PDMS were 

applied, predicted concentrations of CO2 in flue gases up to 9.8% (v/v) for a selective recycle of 60%. 

The study shows that the S-EGR technique is an effective method that can provide similar conditions 

to that of a coal-fired power plant for the post-combustion capture system operating on natural gas-

fired units, but also highlights the fact that more research is required to find more suitable materials 

for membranes that optimise the CO2 removal efficiencies from the flue gas.  

Keywords: Carbon dioxide capture; Gas-CCS; Exhaust gas recirculation (EGR); CO2 selective 

membrane, Selective EGR (S-EGR) 
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1-	Introduction	

Recent EU regulations, such as the Large Combustion Plant Directive (Council of the European 

Union, 2001) and the Industrial Emissions Directive (Council of the European Union, 2010) have 

reduced the number of thermal power plants in operation in the EU (Bonjean Stanton et al., 2016). 

However, pressure from the EU regulation to promote a greater share of renewable energy in the 

energy mix (Council of the European Union, 2009) has led to demand for secure and flexible supplies 

of electricity that can complement renewable energy’s intermittency. The uptake of renewable energy 

has changed the way conventional plants operate (Eser et al., 2016).  Though projections for natural 

gas usage in the EU vary ((Böhringer et al., 2017; Hills and Michalena, 2017; Smith, 2013)), it 

remains a vital contributor to the EU energy mix.  Challenges facing the natural industry include the 

renewable energy targets, the highly variable cost of natural gas, and increasingly stringent emissions 

targets. As part of the drive towards a more sustainable energy portfolio there remains a pressing need 

to capture the CO2 emitted by gas-fired plants to meet EU emission targets (Hills and Michalena, 

2017).  

To date, carbon capture research has been largely focused on coal-fired power plants and only a few 

studies are available that describe carbon capture from gas turbines (Belaissaoui et al., 2014, 2013). In 

addition, the research has been dominated by solvent technologies, like amine-based solvents (Arshad 

et al., 2016; Chavez and Guadarrama, 2016; Liang et al., 2015; Xiao et al., 2017).  

Membrane separation has shown promise as a means of selectively removing CO2 from post-

combustion gas streams due to its lower energy demand, technological maturity, and relatively 

straightforward installation compared to equilibrium systems (Pires et al., 2011). In the context of 

power generation, membranes are used to separate CO2 from flue gas to create high-concentration 

CO2 streams that can be sent to secondary capture units or recirculated (Carapellucci et al., 2015). The 

ability of a gas to transfer across a membrane is limited by membrane selectivity (for CO2) and its 

permeability. Considerable research into the development of new membrane materials continues (Fu 

et al., 2016; Karimi et al., 2017; Kim and Lee, 2015, 2013; Yan et al., 2015). However, pilot-scale 

membrane studies are often restricted to commercially available membrane products that have fixed 

selectively and permeability. Future developments for gas separation at larger scale will rely upon 

improvements to operational parameters, specifically control of the difference in partial pressure 

across the membrane. This can be adjusted by increasing the feed-side pressure via compression, 

increasing the feed-side concentration via exhaust gas recirculation (EGR), decreasing the permeate-

side pressure via vacuum, or a combination thereof.  

Much of the knowledge being generated is via simulation, such as the study by Carapellucci et al., 

2015. Numerous studies have been conducted showing that carbon separation using membrane 
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systems in natural gas-fired turbines is feasible (in terms of cost and energy penalties) when compared 

to amine-based systems (Ramírez-Santos et al., 2017; Zhai and Rubin, 2013). In general, there are few 

studies that can provide empirical evidence to support and validate these simulations (Yuan et al., 

2016). Moreover, there is a lack of fundamental knowledge about the practicalities of operating 

membrane systems at scale (Adewole et al., 2013; Dalane et al., 2017; Kang et al., 2017). For 

example, experimentation is needed to study the effects of dynamic gas mixtures and moisture content 

on membrane aging and performance. 

The concentration of CO2 in flue gases has direct effects on energy consumption in post-combustion 

capture (PCC) and CO2 compression systems (Ali et al., 2016; Li and Ditaranto, 2012; Tola and 

Finkenrath, 2015). From the chemical absorption point of view, it has been proven that the reboiler 

heat requirement in solvent regeneration is sensitive to the CO2 levels in the flue gas  (Li and 

Ditaranto, 2012). As reboiler duty is the most energy-consuming part of the chemical absorption 

capture system, application of EGR and S-EGR (selective EGR using a CO2 selective membrane in 

the recirculation loop) could noticeably cut the reboiler duty (Canepa et al., 2012; Carapellucci et al., 

2015; Li and Ditaranto, 2012). With EGR/S-EGR, the exhaust gas is partially substituting for air in 

the combustion chamber and consequently, CO2 concentration in the flue gas increases as the EGR 

ratio increases. However,  stable operation on a DLN F-class turbine has been reported with a 35% 

EGR ratio (17% O2 inlet concentration) producing flue gas with 10% CO2 (ElKady et al., 2009). 

However, simulations run at 40% and 30% EGR ratio, respectively, reported oxygen concentration in 

the combustion air to be 16% O2, and 6-8% CO2 in exhaust (Canepa et al., 2012; Johnshagen, Klas; 

Sipocz, 2010; Li and Ditaranto, 2012).  

2- Experimental Facility 
A 100 kW rig was designed, constructed and commissioned to study the effects of exhaust gas 

recirculation and selective recirculation (using membranes) on the performance of natural gas-fired 

combustion with carbon capture capability. A process flow diagram for the systems is shown in Fig. 

1. This system is based on the concept that by recirculating a CO2-rich permeate stream into the feed 

gas of the burner, the CO2 concentration in the exhaust stream would increase compared to non-

recirculated systems (Canepa et al., 2012; Johnshagen, Klas; Sipocz, 2010; Li et al., 2011) and that 

the addition of a membrane separation unit could increase the CO2 concentrations even further. 

Simulations have shown that the CO2 concentration could be increased from 6% to 18% using the 

membrane system, which would reduce the flow of gas to the post-combustion capture unit by a factor 

of three compared to the non-S-EGR system.  The system was designed to operate in various modes 

(e.g., recirculation, recirculation + membrane, no recirculation), and to accommodate the direct 

injection of gases (e.g., CO2, O2, steam) to simulate different carbon capture conditions (e.g., oxyfuel, 

recirculation). It was also designed to accommodate the use of different membrane separation 
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materials and, potentially, other carbon capture techniques. To our knowledge, this is the only 

example of a 100 kW gas burner equipped with a membrane separation unit.  

 
Fig. 1. Flow diagram of EGR and S-EGR (EGR with membrane) in the Gas-FACTS project 

The CO2 membrane combustion system operates at atmospheric pressure and uses a 100 kW MP4 Nu-

Way burner, which can achieve a high degree of stability over a wide turndown range for relatively low 

service inlet pressures, allowing the rig to operate over a range of power outputs (e.g. 20-100 kW). City 

natural gas was fed to the system using mains pressure and controlled by a mass flow meter, and 

combusted with ambient air supplied by a centrifugal fan at a feed rate of up to 360 m3/h at a gauge 

pressure of 3.4 kPa. Combustion gas mixture was controlled via an electronic gas valve that maintained 

stoichiometric ratios.  This design configuration enables flexibility in the turndown range of the gas 

burner, and the composition of the combustion gas mixture, enables tests to be performed under 

different recirculation conditions (i.e., variable CO2 levels). The diagram of the process is presented in 

Fig. 2.  

 
Fig. 2. Process diagram of 100 kW CO2 selective membrane natural gas-fired combustion rig (HEX: heat exchanger) 
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Combustion parameters for standard operating conditions of the natural gas-fired burner are provided in 

Table 1.  

Table 1: Combustion parameters of a 100 kW natural gas-fired burner  

Combustion Parameter Value Units 

Natural Gas Flow rate 9.30 m3/h  

Caloric Value (CV) 39.40 MJ/m3 

Air/Fuel Ratio 9.70 by volume 

Air flow rate 90.21 m3/h  

Inlet Temperature 15 ⁰C 

Combustor Efficiency 99 % 

Heating Power 360.92 MJ/h (100.26 kW) 

Fuel Density 0.712 kg/m3 @ 15⁰C 

Air Density 1.205 kg/m3 @ 15⁰C 

Combusted flue gases flow through a refractory cylinder of 2.2 m length and an inner diameter of 0.6 m. 

The combustion chamber has three viewing ports that provide optical access to the flame. Flame 

stability and temperature can be measured by processing images of the flame captured via a high-speed 

camera.  

The air/fuel ratio conventionally varies from 60:1 to 120:1 for simple cycle gas turbines in aircraft 

(Saravanamuttoo et al., 2001). To control NOx emissions, combustion in a gas turbine system normally 

occurs under ultra-lean premixed conditions with air-fuel ratios up to 200:1 (IIT Kanpur, n.d.). With 

recirculation of the flue gas only, the concentration of CO2 in the natural gas combined cycle (NGCC) 

flue gases would be expected to increase from 3−4% (Wei et al., 2011) to an upper level of 

approximately 6-7% (Merkel et al., 2013). The stoichiometric air-fuel ratio for natural gas combustion 

is 17.3:1 by mass (9.59:1 by volume) (Porpatham et al., 2008). Operation in S-EGR mode is expected 

to increase CO2 levels in the gas burner feed even higher (up to 18.6%), which should limit the 

dilution of O2 in the combustion air by reduction of N2 in the recirculation stream (Wei et al., 2011). 

Gas feed ports were installed on the recirculation loop and these can be used to permit the injection of 

supplementary gases (e.g., CO2, O2) should it be required to simulate different S-EGR conditions or to 

accommodate future partial oxy-firing mode.  

To operate under S-EGR conditions, the temperature of the flue gases must be controlled and this is 

achieved using two heat exchangers. The first heat exchanger has an overall size of 1282 mm x φ168 

mm and is used to reduce the temperature of the flue gas from 700⁰C (max) to 300⁰C. After the heat 

exchanger, flue gases are directed to either recirculation, the membrane (S-EGR), or to exhaust via a 

splitter. Gases that are directed to the S-EGR need to be cooled further, to between 60 and 80⁰C, before 

entering the membrane unit to avoid degradation of the membrane (exceeding the maximum allowable 

temperature for the silicon fibres). The second heat exchanger is 1192 mm x φ114 mm. Both heat 
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exchangers use coolant water, operate in a counter-current flow, and have a maximum working water 

pressure of 4 bar, and a maximum working temperature of 110⁰C. The maximum working exhaust gas 

pressure is 0.5 bar with a maximum working exhaust gas temperature of 700⁰C.  

Flue gases can be recycled via two different routes. The first route is a simple recirculation, whereby a 

fraction of the flue gas is returned to the air feed of the gas turbine. The second route is recirculation via 

the CO2 selective membrane whereby a fraction of the permeate stream from the membrane, which has a 

high CO2 content, can be recycled back to the air feed of the gas turbine. To recycle the flue gases 

through the membrane units and push the sweep air through the membrane, two small brushless fans 

have been installed with a maximum flow rate of 147.9 m3/h and sealed pressure of 421 mbar. 

The S-EGR system uses a commercially available, polydimethylsiloxane (PDMS) organic polymer 

membrane that was purchased from PermSelect Ltd (USA). PDMS is also referred to as silicone, which 

is among the most gas permeable dense polymeric membrane materials available (PermSelect 2016). 

Expected permeability coefficients for common gas species are given in Table 2. To size the 

membrane an Aspen Plus simulation was performed (see Section 3.0) that used empirical data from a 

small-scale experimental setup to estimate a global mass transfer coefficient for CO2. Based on this 

analysis, two 35 m2 membrane units were manufactured to provide a total of 70 m2 of PDMS 

membrane surface area. The wall thickness of the silicon fibres was 20 µm and this was chosen to 

provide the greatest permeability. Pressure drop across the membrane was estimated to be near 0.1 

MPa at a flow rate of 100 dm3/min.  

Table 2: PDMS permeability coefficient for different gases [PermSelect 2016 and Robb, 2006] 

Gas Species Permeability Coefficient (Barrer)* 
for PDMS 

Nitrogen 280 

Carbon monoxide 340 

Oxygen 600 

Nitric oxide 600 

Methane 950 

Carbon dioxide 3250 

Nitrous oxide 4350 

Nitrogen dioxide 7500 

Sulphur dioxide 15000 

Water 36000 

*1 Barrer = 10-10 cm3 (STP)· cm /cm2 ·  s · cm-Hg 
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Fresh air was used as the sweep gas and was provided via recirculating fan. The two membrane units 

could be configured to operate in co-current or counter-current feed/sweep gas modes. A vacuum 

pump was attached to the shell side of the membrane to enhance the partial pressure gradient across 

the membrane. The two membrane units also enable operation under various arrangements, e.g., in 

series or parallel, and additional membrane units can be added to increase surface area. The process 

and instrumentation (P&I) diagram for the system is presented in Fig. 3.  

 
Fig. 3. P&I diagram of 100 kW CO2 selective membrane natural gas-fired combustion rig facility 

 

 

3. Modelling procedure  
Process simulation, using ASPEN Plus, was used to calculate the mass and energy balances of the 

system for equipment selection and design. A visual description of the simulation is shown in Fig. 4. 

Combustion of the natural gas is performed with air using an RStoic, which is based on known 

fractional conversions or extent of reactions. The generated flue gas stream passes through a heat 

exchanger that cools the gas temperature down to 300°C. Exiting gas enters the splitter and the 

fraction of flue gas that goes to the membrane treatment is set. The remainder of the gas is diverted to 

secondary capture. Gas exiting the splitter enters a second heat exchanger where the gas temperature 

is reduced to 60°C to meet the requirement of the membrane material. This temperature reduction also 

enables the condensation of the water vapour contained in the flue gas, which can impact membrane 

performance. The permeate stream exiting the membrane is CO2-rich and is recycled and re-supplied 

to the combustor. The CO2-depleted stream is then discarded by venting to the atmosphere. 
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Fig. 4. Schematic of the pilot-scale simulation model 

For the CO2 capture unit, during the first stage of the model development, the membrane was assigned 

an Aspen Separator block. For the second phase of the model, the Separator block was replaced with a 

User Model block. This User Model block communicated with an Excel file, where a sub-model to 

simulate the mass transfer occurred inside the membrane was run, was used to account for differences 

in membrane performance given changes in CO2 permeability and selectivity. Fig. 5 shows the 

interface of the simulation model developed using Aspen Plus and Excel. 

 
Fig. 5. Aspen Plus interface for membrane model 

The User Model calculated the flux of CO2 transferred across the membrane from the flue gas to the 

sweep air stream. This relationship is described by Fick’s laws of diffusion at steady state conditions. 

Developing Fick’s first law and taking into consideration the suggestions given by Tremblay et al., 

2006 (Tremblay et al., 2006), of introducing boundary conditions for a planar sheet, and replacing 

concentrations with gas partial vapour pressures (for a gas system), we obtain equation 1: 

� = � �����
	          (2) 

where P is the permeability coefficient, p0 and p1 are the gas partial vapour pressures on either side of 

the membrane wall, and l is the membrane thickness. Specifying this expression to the diffusion of 

CO2 through the membrane, we can write equation 2. 


���� = ���∗
� ∙ ���� − ������       (2) 
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To complete the User Model the global mass transfer coefficient (KL) for the membrane, as well as the 

permeance (P*
CO2/l) of the membrane, needed to be determined. The permeance is defined as the 

permeability divided by the membrane wall thickness (P/l) (Baker, n.d.; Baker et al., 2010). Equations 

3 and 4 show the parameters responsible for calculating the mass transfer of CO2 through the wall of 

the membrane (Heile et al., 2014).  

 

������� � = !"#���	�%�
&' ∙ ("#���	�%�,��]�% ���("#���	�%�,��]+ %,%��∆(�./	���    (3) 

∆0	12	3456 = ∆789:];�∆789:]<
	6=∆>89:];∆>89:]<?

       (4) 

 

A series of experiments using a small-scale PDMS membrane system were conducted to empirically 

estimate the global mass transfer coefficient for CO2 across the membrane, as well as the permeance 

of the PDMS membrane. Tests were conducted using a 1 m2 PDMS membrane (PermSelect, USA) in 

a continuous cross-flow setup. The separation capability of the membrane was determined by feeding 

a binary gas mixture of CO2/N2 into the lumen and by varying yCO2 (5% to 40%). A sweep gas 

comprised of pure N2 was supplied to the shell side of the membrane. Gas flow rates into the lumen 

and shell side were maintained at 10 dm3/min and were measured using a rotameter. A Fourier 

Transform Infrared Spectrometer (FTIR) was used to analyse gas compositions at all membrane inlets 

and outlets once the system reached steady state. All experiments were carried out at room 

temperature (21°C) and atmospheric pressure. Average values for the mass transfer coefficient and 

permeance of CO2 through the membrane were calculated to be 2.851·10-2lCO2/s·m2 and 2.862·10-8 

m3/(s·(N/m2)·m2), respectively. 

4. Results and discussion 
4.1. Preliminary experimental results: 100 kW CO2 membrane rig  

The experimental conditions explored in this work are shown in Table 3. 

Table 3: The operational conditions in a full set of experimental work in the pilot scale membrane rig 

Power 
(kW) 

Fuel 
(m3/h) 

Fuel 
(kg/h) 

Air 
(m3/h) 

Air 
(kg/h) 

RFG 
% 

40 3.71 2.64 35.99 43.37 20, 40, 60,75 

50 4.64 3.30 44.99 54.21 20, 40, 60,75 

70 6.49 4.62 62.99 75.90 20, 40, 65 

100 9.28 6.60 89.98 108.42 20, 40, 65 

In the initial phases of this work the burner power output was set to 70 kW. The temperature profile 

results at the inlet and outlet ports of the heat exchangers are presented in Fig. 6. The set temperature 
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point for the inlet of the flue gases to the first heat exchanger (H.X.1) was 640⁰C. The commissioning 

results show that the burner could adjust itself to maintain a temperature of around 540⁰C and the 

second heat exchanger  drops the temperature down to 54⁰C  achieving a total temperature drop 

580⁰C. In another experiment with adjustment of the water coolant flow rate the flue gas temperature 

after the second heat exchanger dropped the final temperature down to 30⁰C. This removes much of 

the water content from the flue gases in a specially designed water trap system after the second heat 

exchanger. This set of heat exchangers are essential to ensure the temperature of flue gases is kept 

well below 80⁰C which is the upper limit of temperature for the silicon PDMS fibres. 

 
Fig. 6. Flue gas temperature profiles at the inlet and outlet ports of the heat exchangers in the pilot scale 100 kW 

membrane rig 

The major flue gas components in the membrane rig commissioning experiments are shown in Fig. 7. 

The original volume concentration of CO2 was about 5%, however, a maximum concentration of 

7.3% was achieved during initial tests. This is equivalent to the results for a simulation with 20% 

EGR when the efficiency of CO2 removal in the membrane units are as low as 11%. The average 

concentration of H2O is about 4% with minimum of 2.5% when a high level of water removal is in 

place The NOx level fluctuated with an acceptable average of 32 ppm. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 
 
 

 
Fig. 7. Major gas compositions in the flue gases in the stoichiometric combustion in the membrane rig during the 

commissioning experiment 

After the successful commissioning stage an experimental campaign to study the effect of selective 

EGR using one of the membrane units with 35 m2 of PDMS polymer surface was undertaken. 

Experimental trials explored the effect of varying flue gas to membrane flow rate and sweep air flow 

rate. Both of these variables were manipulated using the fans installed in the corresponding lines. All 

flow rate measurements taken from the rig, were obtained using orifice plates. In the cases that further 

sweep air is used for better membrane separation of the CO2, the concentration values were adjusted 

in such a way that the total air supply was constant; meaning that if the sweep air was increased, the 

main air supply fan of the burner (ID fan) was decreased accordingly, this way the sweep air does not 

add to the air flow rate, but replaces atmospheric air from the ID fan. This was done by multiplying 

the value of the CO2 concentration by the ratio of the new total flow to the initial flow. 

 

Effect of Sweep Air Flow Rate 

The CO2 concentration of the flue gas (raw data and corrected values) change as the sweep air flow 

rate was increases (see Fig. 8 and Fig. 9 for experiments 2 and 4, respectively). A constant flow rate 

sent to the membrane -this was approximately 66 dm3/min-, which means that around 6.6% of the 

flow only was sent to the membrane for separation. There are two noticeable trends in these graphs; 

the sweep air flow rate is directly proportional to the amount of CO2 in the permeate, and the increase 

in CO2 concentration is very low compared to the increase in flow rate through the membrane. To 

obtain the values available in the corrected graph, a control scheme needs to be introduced into this 

system, to allow a fixed total of air into the combustion chamber, or allow more gas in to keep 

constant the air to fuel ratio, and hence isolate the CO2 concentration and study them closer. 
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Fig. 8. Sweep Air Flow Rate vs. CO2 Concentration (Experiment 2) 

 
Fig. 9. Sweep Air Flow Rate vs. CO2 Concentration (Experiment 4) 

 

Effect of Flue Gas to Membrane Flow Rate 

During this trial the sweep air flow rate was kept constant and the flue gas to membrane was 

manipulated. A correction factor was also included to monitor the CO2 concentration if the air to fuel 

ratio was kept constant. The experiment was done on a constant sweep air flow rate of 140 dm3/min. 

It can be noticed that the higher flow rate of gas allowed through the membrane, the higher amount of 

CO2 that can be extracted and hence recirculated (see Fig. 10and Fig. 11).  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 
 
 

 
Fig. 10. Flue Gas to Membrane vs. CO2 concentration (Experiment 2) 

 
Fig. 11. Flue Gas to Membrane vs. CO2 concentration (Experiment 4) 

 

Effect of Increase in Both Flow Rates 

Since there is a noticeable increase in both cases, when the flow rate in both sides is increased 

independently, another experiment was conducted to find the maximum concentration that would be 

possible to reach within the limitation of this setup. This experiment was done by increasing both 

flows in equal percentage of the maximum flow simultaneously. The below graphs show the details of 

these experiments (see Fig. 12 and Fig. 13). 
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Fig. 12. Average Percentage of maximum Flows vs. CO2 concentration (Experiment 2) 

 
Fig. 13. Average Percentage of maximum Flows vs. CO2 concentration (Experiment 4) 

 

A similar pattern is observed where adding sweep air and EGR will increase the level of CO2 

concentration. However, through this experiment the maximum CO2 percentage achieved, was 12%). 

These represent a 15% increase in case the air to fuel ratio is not fixed, and using the correction the 

values could increase up to 50% higher. The values are presented in percentage since the initial 

composition was different during the experiments. Fig. 14clarifies the operational area of the 

experiments of the corrected figures. The CO2 percentages are the area between the two graphs. 
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Fig. 14. Operational Area of Corrected Data 

From the above graphs, it can be deduced that if the setup is adjusted to allow a constant air to fuel 

ratio, the percentage increase in CO2 concentration can vary between 40 to 50%, considering the flow 

rate limitations in which a maximum of 15% of the exhaust flow only can be sent to the membrane. 

 
Membrane Overall performance 

The membrane performance is affected by both the flue gas flow rate, and the sweep air flow rate (See 

Fig. 15). However, it is clear that the higher the ratio between sweep to flue, the better separation 

performance achieved.  

 
Fig. 15. Effect Sweep to Flue Ratio on composition 

A higher sweep air to flue gas to membrane flue ratio causes the membrane to achieve a better 

separation on the flue gas side. The highest separation achieved for CO2 was at ratios between 5 and 

9, allowing separation to reach values from 40 to 45%. 

4.2. Simulation results  

A sensitivity analysis was performed on the pilot-scale model, as shown in Error! Reference source 

not found., to understand the effect that CO2 removal efficiencies of the membrane, and the 
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percentage of recycled flue gas, might have on CO2 levels in the flue gas. Membrane efficiencies were 

set at 11, 20 and 90% under stoichiometric conditions and using an excess of air of 5% (molar) over 

the stoichiometric. The values set for the percentage of flue gas recycle (FGR or EGR) to the process 

were: 20, 30, 40, 50 and 60%. Table 4 shows the selected results extracted from this sensitivity 

analysis, for a thermal power generation of 100 kW. 

 

Table 4: Selected results for CO2 level in the flue gas from Aspen Plus simulation for the pilot-scale model 
varying CO2 removal efficiency and percentage of recycled flue gas 

CO
2
 Removal efficiency 20% EGR 30% EGR 40% EGR 50% EGR 60% EGR 

11%  7.6 7.7 7.8 7.9 8.0 

20% 7.8 7.9 8.1 8.2 8.4 

90%  9.0 10.0 11.2 12.8 14.9 

 

Another parameter that was varied for this study was the load of the combustor, to look at how the 

process would behave at partial loads. The values defined with this aim were: 40, 50, 60, 75 and 

100% of the total load (100 kW) of the combustor. 

The membrane model developed as part of this work, using empirically deduced operating parameters 

such as the global mass transfer coefficient and the permeance detected for the studied membrane 

(PDMS), helped to specify some key aspects in the design of the pilot-scale membrane rig. The 

information extracted from the bench-scale membrane plant together with the membrane model, 

allowed the calculation of the area of membrane needed for the flue gas stream generated in the 100 

kW combustor. This area was calculated to be 230 m2, considering flue gas: sweep gas ratio of 1, 

combustion at atmospheric pressure and an excess of air supplied to the combustion of around 5%. 

The other key factor was to define the efficiency of CO2 removal for the membrane, which here was 

12.6%. An example explaining the physical meaning for the efficiency of the membrane is provided 

by a case study where stoichiometric air is supplied for combustion and a value of 60% of the flue gas 

is treated through the membrane section; in this situation, calculations suggest the membrane would 

allow one to produce a CO2 concentration at the exit of the combustor of 9.8% (v/v). 
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5. Conclusions	

A flexible pilot-scale CO2 membrane combustion system (100 kW) with exhaust gas recirculation and 

selective exhaust gas recirculation, has been designed, installed and commissioned at Cranfield 

University. Selective recirculation of the flue gases was achieved using a CO2-selective membrane 

unit with PDMS polymeric tubes. 	

Two models were developed in Aspen Plus, one focused on the mass and energy balance of the pilot-

scale plant and the other focused on realistically simulating the membrane performance. The second 

model was an improved version of the first one where empirical mass transfer parameters were 

applied to predict the CO2 levels that can be reached at the exit of the combustor after selectively 

recycling part of the flue gas generated. A bench-scale membrane rig was designed and commissioned 

to study aspects related to the mass transfer of CO2 through the membrane and its removal efficiency. 

The empirical values obtained from the operation with the bench-scale rig: global mass transfer 

coefficient and permeance of the membrane were used to develop a model in Aspen Plus. The results 

are used for scale-up studies and process verification of commercial-scale simulations based on the 

results of pilot plant operation. The process simulation shows that the membrane unit can enhance the 

concentration of CO2 in flue gases up to 9.8% (v/v), given the removal efficiency of the PDMS 

membrane of 12.6%. Other values have been predicted for the CO2 concentration for cases when 

using membranes with higher removal efficiencies (20 and 90%). It can be concluded from these 

simulation results that more research is required to find more suitable materials for membranes that 

optimise the CO2 removal efficiency from the flue gas.  

Preliminary experimental results show a CO2 level of 7.3% in the flue gases which is equivalent to a 

recycle ratio of 20%. The research demonstrates that the concept of EGR and S-EGR can improve the 

efficiency of post-combustion capture in gas-fired power plant by a factor of four or more.  
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• A flexible pilot-scale CO2 membrane combustion system (100 kW) with exhaust gas 

recirculation and selective exhaust gas recirculation been built 

• Selective recirculation of the flue gases was achieved using a CO2-selective membrane unit 

with PDMS polymeric tubes.  

• Two models were developed in Aspen Plus, one focused on the mass and energy balance of 
the pilot-scale plant and the other focused on realistically simulating the membrane 
performance. 

 

• A bench-scale membrane rig was designed and commissioned to study aspects related to the 

mass transfer of CO2 through the membrane and its removal efficiency.  

• The process simulation shows that the membrane unit can enhance the concentration of CO2 

in flue gases up to 9.8% (v/v), given the removal efficiency of the PDMS membrane of 

12.6%.  

• The research demonstrates that the concept of EGR and S-EGR can improve the efficiency of 

post-combustion capture in gas-fired power plant by a factor of four or more.  

 


