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Abstract
By combining several interesting applications of random sampling in geometric algorithms like point
location, linear programming, segment intersections, binary space partitioning, Clarkson and Shor
[4] developed a general framework of randomized incremental construction (RIC ). The basic idea is
to add objects in a random order and show that this approach yields efficient/optimal bounds on
expected running time. Even quicksort can be viewed as a special case of this paradigm. However,
unlike quicksort, for most of these problems, sharper tail estimates on their running times are not
known. Barring some promising attempts in [15, 3, 20], the general question remains unresolved.

In this paper we present a general technique to obtain tail estimates for RIC and and provide
applications to some fundamental problems like Delaunay triangulations and construction of Visibility
maps of intersecting line segments. The main result of the paper is derived from a new and careful
application of Freedman’s [9] inequality for Martingale concentration that overcomes the bottleneck
of the better known Azuma-Hoeffding inequality. Further, we explore instances, where an RIC based
algorithm may not have inverse polynomial tail estimates. In particular, we show that the RIC time
bounds for trapezoidal map can encounter a running time of Ω(n logn log logn) with probability
exceeding 1√

n
. This rules out inverse polynomial concentration bounds within a constant factor of

the O(n logn) expected running time.
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1 Introduction

One of the most natural and elegant paradigm for designing geometric algorithms is ran-
domized incremental construction or RIC for short. It can be viewed as generalization of
Quicksort and evolved over a sequence of papers [18, 2] eventually culminating in a very
general framework of configuration space by Clarkson and Shor [4]. The basic procedure is
described in Figure 1. Quicksort itself can be viewed through this paradigm as refinement of
the current partially ordered set (partitions) by inserting the next splitter and updating the
partitions.

An abstract configuration space, that we will refer to as Π(S) is defined by the given
set S of n elements. A configuration σ is a subset of the Euclidean space that is defined
by O(1) objects of S denoted by d(σ). The conflict list of a configuration σ is denoted by
`(σ) = σ ∩ {S − d(σ)}, i.e. the elements of S that intersect σ, not including d(σ). We define
Πi(S) = {σ : |`(σ)| = i} and Π(S) =

⋃n
i=0 Πi(S). For analyzing RIC , the properties of

Π0(R) for a randomly chosen subset R ⊂ S turns out to be very crucial. In particular, they
characterize how the uninserted elements of S interact with the current partially constructed
structure, denoted by H(R). For notational simplicity, the conflict list of any σ ∈ Π0(R),
`(σ) = σ ∩ S (instead of σ ∩R) which will be an important parameter in the analysis.

We illustrate the framework and the notations in the context of quicksort. A configuration
σ is an interval defined by {xi, xj} ∈ S , i.e., |d(σ)| = 2 and `([xi, xj ]) = S ∩ [xi, xj ], i.e., the
points of S that lie in this interval. The configurations space Π(S) is the set of intervals

© Sandeep Sen;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/188358685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ssen@cse.iitd.ac.in
https://doi.org/10.4230/LIPIcs.STACS.2019.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


58:2 A Unified Approach to Tail Estimates for Randomized Incremental Construction

Procedure RIC(S).
1 N = [x1, x2 . . . xn] : a random permutation of S. ;
2 T ← φ ,H is some data structure appropriately initialized;
3 for i = 1 to n do
4 T ← T ∪ {xi};
5 Update H(T )
6 Return H(T ) ;

Figure 1 Randomized Incremental Construction.

defined by all pairs xi, xj ∈ S. Note that Π0(S) consists of intervals defined by the sorted
set of points in S. The associated data structure H(R) for a sample R ⊂ S may be thought
of as an incidence relation between intervals σ ∈ Π0(R) and `(σ) ∈ S −R. This is precisely
the ordered intervals induced by the points in R and the uninserted points S −R partially
ordered by these intervals.
When the next randomly chosen element x ∈ S − R is added to R, H(R) is updated to
H(R ∪ {x}) and this cost contributes to the running time of RIC . In [4] , the data-structure
is maintained as a conflict graph that maintains relation between σ ∈ Π0(R) and S −R as
a bipartite graph. Although configurations are created and destroyed, the total cost can
be shown to be twice the cost of new configurations created and the ones destroyed can be
charged to the cost of its creation. In the case of quicksort, H(S) yields the information
about the sorted set since it contains all the ordered intervals. The reader is referred to
[4, 17] for further details regarding this framework. We include a brief description in the
Appendix.

Although the initial analysis in [4] was somewhat intricate and complex, subsequent
papers [1, 19] simplified the analysis using a clever technique called backward analysis. In
this paper, we will appeal to the simpler analysis. Often the full conflict graph information
can be replaced by simpler relations (see [10, 19]. However, the conflict graph approach is
very general and works for diverse problems.

A related, but a somewhat distinct approach was developed in the work of Seidel [19, 20, 1]
that maintains a solution inductively, that is recomputed from scratch if the next insertion
modifies it. For example, the closest pair can be computed in this similar manner ([12]).
Although our techniques can be applied to the latter work also, we will focus primarily on
the Clarkson-Shor incremental paradigm of a configuration space.

While the primary focus was on deriving bounds on the expected running time of RIC, it
was clear that obtaining concentration bounds on the expected running time would make
the RIC more practical and attractive. The conjecture was that the running times are
concentrated around their expected values but to the best of our knowledge, there has
been little progress in this direction barring some papers related to computing line segment
intersections using RIC [3, 15] and on fixed dimensional linear programming [20]. For
problems like planar hulls, high probability bounds can be proved based on linear ordering
that do not extend to higher dimensions. Although, by resampling Ω(logn) times, we can
obtain inverse polynomial concentration bounds, it comes at the expense of the increasing
the running time by an O(logn) factor.

In this paper, we revisit the problem and present a general methodology to obtain tail
bounds for specific problems like Delaunay triangulation, 3-D convex hulls, and line segment
intersections that are based on RIC - these are summarized in Table 1. For the case of
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Table 1 Summary of results for some representative problems using our technique.
w.p. : “with probability” α(n) : inverse Ackerman function, γ > 0 some constant
The third result alludes to a version that doesn’t use conflict lists explicitly.

Problem Expected Running time Tail estimates
Quicksort O(n logn) O(cγn logn) w.p. ≥ 1− n−c

Delaunay Triangulation O(n logn) O(cγn logn) w.p. ≥ 1− 2−c

Segment intersections/ O(n logn+m) O(n logn+m) w.p.
Trapezoidal maps n: segments, m: intersections 1− exp−(m+n logn

nα(n) )

finding intersection of line segments, our bounds are not only better than [15] but also
distinctly less involved in terms of calculations. Moreover, we develop a unified approach
based on a well-known Martingale inequality, unlike the previous approaches that were
arguably more ad-hoc.

We also provide some evidence of the non-existence of such generalized tail estimates
by constructing an instance of the trapezoidal maps (based on maintaining conflict lists)
for which inverse polynomial tail estimates is possible only for running times exceeding
Ω(n logn log logn) and rules out concentration bounds within constant factor of expectation.

I Remark. In RIC based algorithms, the term running time is often interchangeably used
with structural changes caused by each insertion, particularly when the underlying data
structure is a conflict-graph.

1.1 Main techniques and organization

We begin by introducing a useful probabilistic inequality, viz., Freedman’s inequality [9] for
Martingales that will be used to model the running time of the generic RIC algorithms. In
the following section, we illustrate the use of this technique for analyzing quicksort that
can also be viewed within the framework of RIC . The application to quicksort doesn’t
yield any better result than what was previously known, but it provides a stepping stone
to the more complex and general framework. In particular, even the more commonly used
Azuma-Hoeffding bound is not known to be effective for quicksort concentration bounds
because its dependence on the worst-case bound (sum of bounded differences).

It is unlikely that the previously known techniques for concentration bound of quicksort
can be extended to generic RIC analysis as the intermediate structures in RIC are more
complex and can be bound only in an expected sense. Starting with quicksort in section 3
which has a predictable intermediate structure consisting of i + 1 intervals in stage i, we
tackle increasingly complex scenarios. In the case of Delaunay triangulation (in section 4),
although the number of triangles in the i-th step is O(i), the number of additional triangles
created in the i-th step can be bound only in expectation. In section 5 we consider the case
of line segment intersections where the size of the intermediate structure can be bound only
in an expected sense and may have a large variance.

In the last section, we construct a family of inputs for the RIC for trapezoidal maps to
show that inverse polynomial concentration bound is not attainable if we rely on conflict-list
based update mechanism.

STACS 2019



58:4 A Unified Approach to Tail Estimates for Randomized Incremental Construction

2 Basic framework and tools

Let S = {x1, x2 . . . xn} be a set of n objects. A permutation π of S is a 1-1 function
π(i) = j where i, j ∈ {1, 2, . . . n} that produces a permutation xπ(1), xπ(2) . . . xπ(n). A
random permutation of S is one of the n! permutation function chosen uniformly at random.
A k-prefix of a permutation π is the sequence of the first k objects and denoted by π(k)

consisting of xπ−1(1), xπ−1(2) . . . xπ−1(k). Note that the permutation x3, x1, x2 is defined as
π(1) = 2;π(2) = 3;π(3) = 1, so the permutation is xπ−1(1), xπ−1(2), xπ−1(3).

Let X1, X2 . . . Xn where Xi = xπ−1(i) corresponding to a random permutation π. Further,
let X̄(k) denote a sequence of k random variables that will also be used it to refer to a fixed
choice of the k variables, i.e., X̄k = π(k).

Let (Ω,U) denote the space of all possible permutations of n objects and U is the uniform
probability distribution. For 0 ≤ i ≤ n, let Bi consist of blocks of permutations, partitioned
into some equivalent classes according to the i-prefixes where B0 is a single block consisting
of all permutations. In this context, let us define Zi = E[Z|X̄(i)] for any well-defined random
variable Z over the probability space (Ω,U) where the conditioning is over the blocks of Bi.
The sequence Zi defines a martingale sequence that is widely known as a Doob Martingale
[5, 7, 8]. The reader may recognize that these blocks form the basis of a nested filter sequence
that formally defines a martingale sequence.

It is more intuitive to visualize the above process as a tree τ , where the level i nodes
correspond to blocks of Bi with arity n− i and each sub-block is connected to its parent block
by an edge directed from the parent. Any node in the j-th level of this tree can be labelled
by the (unique) sequence X(j) leading to it. An edge is labelled by the (random) choice
made at that level and also has an associated weight w(τ(X̄(i−1)), τ(X̄(i))) that corresponds
to the cost of the i-th incremental step. Here τ(X̄(i)) represents the node of the tree τ after
adding/deleting a sequence of random variable X̄(i), we have We will use w̄ to denote an upper
bound of w() in the context of specific algorithms. Let Y =

∑j=n
j=0 w(τ(X̄(j−1)), τ(X̄(j)))

be a random variable that corresponds to the sum of the cost of the edges on a path that
corresponds to the cost of the RIC. Let Yi = E[Y |Fi] = E[Y |X̄(i)].

Even if we interpret the sequence as deletion sequence starting from {x1, x2, x3}, the
reader can easily verify that this preserves the nesting property of blocks, and hence a
valid filter. For example, B1 would contain the blocks (x1x2x3, x1, x3, x2) corresponding to
deletion of x1 and B2 would contain the block (x1, x2, x3) when x2 is the next element deleted
and so on. Since every insertion sequence has a unique backward deletion sequence, this
interpretation amounts to running the RIC in the reverse direction with each step associated
with the same cost as the forward direction. This perspective is is very similar to the idea of
backward analysis [21].

In the Doob’s martingale sequence, Y0 denotes the expected running time of the RIC. We
would like to bound the deviation |Yn−Y0| for any run of the algorithm with high probability,
which in the context of this paper will be inverse polynomial, unless otherwise mentioned.
Likewise the random deletion sequence also defines a Doob’s martingale on the subsets which
will be referred to as the backward-sequence martingale (BSM henceforth).

The following martingale tail bound is the basis of many later results in this paper which
is distinct from Azuma’s inequality and referred to as the Method of bounded variance.

I Theorem 1 (Freedman [9]). Let X1, X2 . . . Xn be a sequence of random variables and let
Yk, a function of X1 . . . Xk be a martingale sequence, i.e., E[Yk|X1 . . . Xk] = Yk−1 such that
max1≤k≤n{|Yk − Yk−1|} ≤Mn. Let

Wk =
k∑
j=1

E[(Yj − Yj−1)2|X1 . . . Xj−1] =
k∑
j=1

V ar(Yj |X1 . . . Xj−1)
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where V ar is the variance using E[Yj ] = Yj−1. Then for all λ and Wn ≤ ∆2, ∆2 > 0 ,

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 +Mn · λ/3)

)

Note that the term ∆2 can be bound by
∑n
j=1 maxX1,X2...Xj V ar(Yj |X1 . . . Xj−1) i.e.,

the worst case bounds over all choices of length j prefix X(j). If the inner term can be bound
by some function of j, say, ω(j), then we may obtain an upper bound on the probability of
deviation for any sequence X̄(n) as

∑n
j=1 ω(j) which can be viewed as a function of n.

Further, we will actually use a minor variation of this result (see [6, 13]). Suppose
Pr[Mn ≥ g(n)] ≤ 1

f(n) for some non-decreasing functions g, f . If we let B denote the event
Mn ≥ g(n), then the overall bound becomes

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 + g(n)λ/3)

)
+ Pr(B) (1)

Similarly it can also be extended to the case where Wn ≤ ∆2 holds with probability
1 − 1

f(n) . Henceforth, in the remaining paper, we will appeal to the following version of
Freedman’s inequality where the bounds on Mn and Wn hold with high probability. Often
the term 1

f(n) will be the dominant term, so the final tail bound will effectively be O( 1
f(n) ).

I Corollary 2. Let Pr[max1≤k≤n{|Yk − Yk−1|} ≥Mn,Wn ≥ ∆2] ≤ 1
f(n) , then,

Pr[|Yn − Y0| ≥ λ] ≤ 2 exp
(
− λ2

2(∆2 +Mn · λ/3)

)
+O(1/f(n))

3 Application to Quicksort and related problems

Let us consider quicksort in the RIC framework and without loss of generality, let the input
elements be {1, 2 . . . n}. The j-th pivot, 1 ≤ j ≤ n, partitions the input into j + 1 ordered
sets, by splitting some existing partition P . Any element x ∈ P is charged the cost of
comparison with the pivot - any element x′ 6∈ P is not charged. The running time of the
algorithm can be bound by the cumulative charges accrued by each element. In this analysis
we will bound the charge of each element with high probability (w.h.p. henceforth) to denote
probability exceeding 1− 1/nα for some appropriate constant α > 0, and the overall running
time bound follows from multiplying by n.

The associated weight with each edge is either 1 or 0 depending on whether the latest
random choice is one of the boundary elements of the interval containing x. We define
a random variable Ixj = {1 if interval containing x changes in step j 0 otherwise}. From
backward analysis, the probability of this is at most 2

j for a uniformly chosen child node1. For
completeness, we have included a detailed description of backward analysis in the appendix.
We will also omit the superscript x and just use Ij since we will obtain a worst case bound
over all choices of x. The reader may note that the bound on E[Ij ] is only a function of j
and not X̄(j) over all random choices of any prefix of j elements.

1 Using a simple trick of circular ordering (see [21]), this probability can be made exactly equal to 2
j .

Subsequently, Chernoff bounds can be applied easily by arguing about te independence of Ijs.

STACS 2019
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It will also help to focus on the BSM for quicksort. A random deletion sequence creates
a nested sequence of random subsets starting from the all the elements and ending in the
empty sequence. An edge of this tree (K,K − {y}) is given a value 1 for a subset K and an
element y ∈ K if in the (forward) quicksort algorithm, selecting y as a pivot and leading to
K (all the pivots selected) forces a comparison between y and x. Clearly two edges from
any subset will be given a value 1, so that the expected cost for a random deletion is 2

n−j in
the j-th level, n ≥ j ≥ 0. Figure 2 gives a depiction of this random variable in the quicksort
process.

Consider a path P = v0v1 . . . vn from root to a leaf-node in this tree. The cost of this
path is given by w(P) =

∑n
i=1 w(vi, vi+1). A random path corresponds to one where vi+1 is

a child of vi chosen uniformly at random among the n− i children. The expected cost of
such a random path is given by

Erandom P [w(P)] = E[
n∑
i=1

w(Vi, Vi+1)] where Vi+1 is a random child of node Vi

We will follow the convention that small letters will denote fixed choices, i.e., vi where the
capital letters will correspond to random variables, i.e., Vi. Let Ej [Z] denote EXj [Z|X̄(j−1)]
for some random variable Z. Note that X̄(j−1) represents a fixed path from the root of the
tree τ corresponding to the deletion sequence X1X2 . . . Xj−1, to a level j − 1 node, say Vj−1.
Then,

Ej [Y ] = Yj =
j−1∑
k=0

w(vk, vk+1) + Ej

n−1∑
k=j

w(Vk, Vk+1)

 =
j−1∑
k=0

w(vk, vk+1) +
n∑

k=j+1
E[Ik]

It follows that Y0 = 2Hn and we want to obtain a tail estimate for Yn − Y0.
So,

Yj − Yj−1 = w(vj−1, vj) +

 n∑
k=j+1

E[I ′k]

−
 n∑
k=j

E[Ik]

 (2)

= Ij − E[Ij ] assuming Ij , I ′j ’s have the same distribution (3)

To see this, the reader may recall that the probability that a fixed element x is affected by
the pivot is a function only of the number of elements deleted (in the backward sequence)
and not on the elements themselves or how they are distributed. So Ej [(Yj − Yj−1)2] =
Ej [(Ij − E[Ij ])2] which shows that the value of Yj differs from Yj−1 because of the specific
choice of the random variable Xj .

For quicksort, we can complete the analysis as follows.

Ej [(Ij − E[Ij ])2] = Ej [I2
j ]− E2

j [Ij ] ≤ Ej [I2
j ]− 4

(n− j)2

≤ 2
n− j

since I2
j is also a 0-1 indicator rv

So
∑n
j=1 Ej−1[(Yj − Yj−1)2] ≤

∑n
j=1

2
n−j ≤ 2Hnwhere Hn ≤ logn. Plugging in λ = 2c logn

for some constant c and using Freedman’s theorem, we obtain

Pr[|Yn − Y0| ≥ c logn] ≤ exp
(
− 4c2 log2 n

2(logn+ c logn/3)

)
≤ 1
nc
.

Note that Mn = Yi − Yi−1 ≤ 1.
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Figure 2 Tree corresponding to the Backward Sequence Martingale corresponding to the compar-
isons for a fixed element x. The root corresponds to Y0 which denotes the expected running time.
Every edge has cost 0 or 1 depending on whether x and Xi belong to the same interval and a path
in this tree reveals the indicator variables Ij .

This shows that a single element incurs at most O(logn) cost with high probability and
therefore quicksort runs in O(n logn) time with high probability.
I Remark. A straightforward application of the classic Azuma-Hoeffding bound [16]

Pr[|Yn − Y0| ≥ t] ≤ exp
(

−t2∑n

i=1
c2
i

)
would not have been effective since the the bound

ci = Mn = 1 makes the denominator too large for an O(logn) deviation bound. In [21], the
author obtained a similar bound by using Chernoff bounds for binomial distribution that
require independence of Ijs across different levels. Also note that, there exists a superior
bound of O(n−Ω(log logn)) for Quicksort obtained in [14].

The above argument can be directly extended to obtain a concentration bound on the
dart throwing game that has many applications (Mulmuley [18]). Consider throwing n darts
randomly in n ordered locations, say numbered {1, 2 . . . n}. Let S(i) be a random variable
that denotes the smallest numbered location among the first i randomly thrown darts. Let
Z(i) = 1 if S(i) 6= S(i − 1) and Z(1) = 1. So Z(i) is the number of times S(i) changes
among the first i darts thrown. We are interested in E[Z(n)] which can be shown to be∑n
i=1

1
i = Hn, the n-th harmonic. This follows from backward analysis by observing that

among a set of i randomly chosen numbers, the probability of picking the smallest number
as the last number is 1

i . This is related to many visibility problems in geometry as well as
the analysis of Trieps. Using the Freedman’s inequality, we can easily show the following
from the previous argument and looking at the changes in the leftmost interval induced by
the darts.

I Corollary 3.

Pr[|Z(n)−Hn| ≥ 0.9 logn] ≤ exp(−0.7 logn) ≤ 1
n0.7

This implies that Pr[0.1 logn ≤ Z(n) ≤ 1.9 logn] ≥ 1 − n−0.7. The above result has been
stated in a slightly weaker manner so that we can claim a lower bound on Z(n) that will be
invoked later to show the limitations of RIC .

STACS 2019
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The analysis in this section also extends to problems like constructing trapezoidal maps
that can be used for point location (Seidel [19]). Since a trapezoid can be defined by at most
4 segments, the expected work for point location is

∑n
i=1

4
j ≤ 4 logn. Using a straightforward

extension of the previous arguments, the following result can be obtained.

I Lemma 4. Given a set of n non-intersecting line segments, a trapezoidal map can be
constructed using RIC such that for any query point q, the number times the trapezoid
containing q changes can be bound by O(logn) with inverse polynomial probability.

This result will turn out to be very useful for some later results.

3.1 Extension to more general cost function

The bound obtained in Equation 3 can be extended to a more general situations of RIC
where a single change can affect multiple "intervals" (more precisely, configurations). More
specifically, when w̄ not bounded by a constant we have the following generalization as long
as E[w(Vj−1, Vj)] are same across all nodes in level j − 1 for a random choice of the next
node. Let Wj = w(Vj−1, Vj), then by generalizing the calculations in Equation 3, we obtain

Ej [(Yj − Yj−1)2] ≤ Ej [W2
j ]− E2

j [Wj ] ≤ Ej [W2
j ] (4)

Although the generalized analysis of RIC is not described here is details, we appeal to the
intuitions of the reader that the expected cost of the j-th step depends on j and not the
actual choice of the elements - see Equation 5. Note that in the general analysis of RIC , we
obtain an upper bound on the E[Wj ] as a function of j. The upper bounds can be considered
as the (identical) expected cost of the i-th step and the martingale bounds can be applied on
these costs, so the final bounds would still hold as deviation from this (uniform) expected
upper-bounds.

3.2 Comparison with an earlier bound

We briefly recall the framework of Mehlhorn, Sharir and Welzl [15] to model the general RIC
algorithm. A rooted (n, r) tree T is either a single node for r = 0 or (for r > 0) the tree has
n children which are recursively defined (n− 1, r − 1) subtrees. Each of the n edges has an
associated weight di corresponding to the i-th child and maxni=1 di ≤ d(n) and

∑
i di ≤M(n).

The expected cost of a path in this recursively defined tree is A =
∑n−1
i=1

M(n−i)
(n−i) . One of the

main results in the paper is the following tail bound (Theorem 1 in [15]).

Pr(X ≥ B) ≤
(

e

1 +B/A

)B/d(n)
for all B ≥ 0

Although this bound looks somewhat simpler to use, this is not directly comparable to
Freedman’s bound except for some special cases like Lemma 4 and quicksort where the
concentration results are similar. It may be noted that the authors [15] analyze the backward
execution of the algorithm for these results. This bound becomes weaker if d(n) is not a
constant - for some of the later applications d(n) may be larger than A in the worst case.
The authors improve the bound for the specific problem of building visibility maps of line
segments by using the expected value of M(n). However, there is no generalization given for
other problems.
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4 Incremental Delaunay Triangulation

We will now consider somewhat more complex scenarios like construction of Delaunay
Triangulation and three dimensional convex hull (see Guibas Knuth and Sharir [10]). Broadly
speaking these algorithms have two distinct components -

(i) Updating the (partial) structure of the points inserted thus far.
(ii) Updating the point-location data structure of the uninserted points.

For concreteness, we will address the problem of Delaunay Triangulation. The analysis
corresponding to updating the point location structure is similar to the analysis of quicksort
given above. For the update of structural complexity, it was shown in [10] that the expected
cumulative structural change can be bound by O(n), whereas for the latter, the expected
work over all the n (random) insertions sequence O(n logn). We will do a combined analysis
since we are interested in obtaining tail estimates on the work including all data structural
updates.

In the remaining part of the paper, we will be alluding to the BSM framework and
make use of Equation 4 for deriving the tail estimates. To avoid any confusion, we will
use stage/level k to refer to the forward algorithm when k objects have been added and do
all calculations in this order. Although the martingale has been defined for the backward
execution, substituting n− k by k, consistently will not not affect anything except the order
of the summations. This will also help us use the random sampling bounds without having
to restate them in the flipped order.

We will make extensive use of the following result of [4, 11].

I Theorem 5. At any stage i of the RIC of Delaunay triangulation, the i randomly chosen
points is a uniform random subset of the n points. So the number of unsampled points within
each triangle is bounded by O(ni logn) with probability 1 − 1/nc for any constant c > 1.
Moreover, all the triangles that emerges in the course of edge flips also satisfy the above
bounds.

I Remark.
(i) A random sample of size r + 1 is constructed by adding a random element to a sample

of size r. So the properties of random sampling applies to the intermediate steps as
well with high probability. In general, we will use a similar bound on maxσ∈Π0(R) |`(σ)|.
This is crucial for the application of the generalized version of Freedman’s inequality
given in Equation 1 where the event B contains all insertion sequences where the bound
in Theorem 5 fails during one of more stages. In other words, the complement of B
consists of all insertion sequences where the bound holds during all stages.

(ii) All the triangles that show up in the course of edge flips belong to Π0(R). Although
some of them are not Delaunay triangles and therefore, only temporary, they can
contribute to the running time, depending on the data structure one maintains for the
intermediate partitions.

To apply Freedman’s bound, we will bound the variance. Unlike the analysis of quicksort,
we will consider the work done for all the n points (actually n− i uninserted points in stage i)
together. Each edge flip involves four triangles - two old and two new and redistributes the
points in the two new triangles. Since each triangle contains O(ni logn) points w.h.p, each
edge flip can be be done in O(ni logn) w.h.p. Since the maximum degree of a Delaunay graph
of i points is i, the total number of edge flips in the i-th stage is bounded by i. Therefore we
can claim the following.

STACS 2019



58:10 A Unified Approach to Tail Estimates for Randomized Incremental Construction

I Lemma 6. The work in stage i of the algorithm, i ≤ n can be bound by O(n logn) w.h.p.

Let Πs(R) denote the configurations in Π0(R ∪ s) adjacent to s (or defined by s). The
following claims can be easily derived from some general random-sampling lemmas in [4]

I Lemma 7. (i) E[
∑
σ∈Πs(R) `(σ)] = O(nr )E[|Πs(R)|]

(ii) E[
∑
σ∈Πs(R) `

2(σ)] = O(n
2

r2 )E[|ΠsR)|]

Bounding Variance. We will need the following result

I Lemma 8. For real numbers xi 1 ≤ i ≤ r (
∑r
i=1 xi)

2 ≤ r
(∑r

i=1 x
2
i

)
Proof. Using the convexity of the square function, from Jensens inequality it follows that∑r

i=1
x2
i

r ≥
(∑r

i=1
xi

r

)2
. Multiplying both sides by r2 yields the required result. J

Let Rk denote the random subset of the first k sites2 and let DT (Rk) represent the
Delaunay triangulation of Rk which is a planar graph having 2k − hk − 2 triangles and
3k− hk − 3 edges where hk is the number of points on the convex hull of Rk. The work done
when a site v ∈ DT (Rk) is picked by the RIC , is proportional to the number of unsampled
points in the triangles adjoining v. If l(σ) is the number of points in a triangle σ, then
the work is proportional to Tk =

∑
σ∈∆(v) l(σ) where ∆(v) denotes triangles adjacent to v.

Squaring Tk and taking expectation

E[T 2
k ] = 1

k
E[
∑
v∈Rk

(
∑

σ∈∆(v)

l(σ))
2
] ≤ 1

k
E[
∑
v∈Rk

∑
σ∈∆(v)

|∆(v)|l2(σ)] from Lemma 8

= 1
k

∑
v∈Rk

|∆(v)|E[
∑

σ∈∆(v)

l2(σ)] ≤ 1
k

∑
v∈Rk

n2

k2 |∆(v)|2 from Lemma 7

= O(n
2

k
) as

∑
v

|∆(v)|2 = O(
∑
v

∆(v)
2
) = O(k2)

Following Equation 4, this yields Wn ≤
∑k=n
k=1 E[T 2

k ] ≤
∑k=n
k=1 O(n

2

k ) = O(n2 logn). Plugging
the bound ofMn = O(n logn) from Lemma 6 in Freedman’s theorem, we obtain the following
bound.

I Lemma 9. Let T (n) denote the running time of ric based construction of Delaunay
Triangulation and let λ = cn logn for a suitable constant c. Then

Pr[T (n) ≥ α(n)λ] ≤ exp
(
− (α(n)cn logn)2

2(n2 logn+ α(n)c · n2 log2 n/3)

)
≤ exp(−α(n))

I Remark. The above Lemma gives high probability bound for T (n) exceeding Ω(n log2 n)
for α = Ω(logn). However, this bound is superior to the straightforward Markov’s bound
applied on the expected work as well as preferable to restarting the original algorithm using
independent random bits each time.

2 We will use this term to distinguish between the input points defining the triangulation and the unadded
points
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This analysis can be extended to the three-dimensional convex hull algorithm presented
in Mulmuley [17]. In [3], the authors obtain similar tail estimates for the for the space
complexity (alternately referred to as conflict history) of the algorithm of [10]. For fixed
dimensional linear programming Seidel [20] proved a similar property and this can be extended
to RIC algorithms like closest pair [12]. These algorithms typically have the property, that
in stage i, with probability Ω( 1

i ), the algorithm re-builds the data structure. This makes
inverse polynomial bound challenging - say for i =

√
n, the RIC for Delaunay triangulation

could spend O(n log(
√
n) time to rebuild the associated point location data structure if the

i-th point has degree Ω(i).

5 More generalized RIC: segment intersections

We now consider a more general scenario in RIC (Randomized Incremental Construction).
Using a conflict graph update model of RIC (see Appendix), we obtain the following expression
for expected work.

E[ #edges created in the conflict graph] =
∑

σ∈Π0(R∪s)

l(σ) · Pr{σ ∈ Π0(R ∪ s)−Π0(R)}

From backward analysis this probability is the same as deleting a random element from R∪ s
which is d(σ)

r+1 where r = |R|. By substituting this we obtain

∑
σ∈Π0(R∪s)

l(σ) · d(σ)
r + 1 = d(σ)

r + 1
∑

σ∈Π0(R∪s)

l(σ) = O(d(σ)
r
· n
r
E[Π0(R ∪ s)]) (5)

Therefore the expected work over the sequence of random insertions is
∑n
r=1O(d(σ)

r ·
n
rE[Π0(R ∪ s)]).

For the case of line segment intersections, it can be shown that E[Π0(R∪s)] = O(r+ m·r2

n2 )
from which it follows that the expected work is

n∑
r=1

O(d(σ)
r
· n
r
·O(r + m · r2

n2 ) =
n∑
r=1

(
dn

r
+ dm

n

)
= O(n logn+m).

Here d(σ) ≤ 6 which the maximum number of segments that define a σ (trapezoid in this
case).

Tail bounds for this problem has been elusive despite some significant attempts (see [15]).
We will show that our previous methodology can be extended to obtain tail estimates on the
work done.

Consider an arrangement of n segments with m intersections (0 ≤ m ≤
(
n
2
)
). In the

trapezoidal map T of the n segments (also known as a vertical visibility diagram), let us
denote the set of trapezoids adjacent to segment si by Ti. Any trapezoid σ ∈ T is defined
by at most six segments. Since it is a planar map, and there are at most 2n+ 2m vertices,
it follows that

∑
i |Ti| = O(n + m). We would like to obtain a bound on

∑
i |Ti|

2. Let us
denote by ni and mi respectively, the number of segments end-points and intersection points
visible to segment si. It follows that |Ti| = O(ni +mi) and∑

i

|Ti|2 = O(
∑
i

(ni +mi)2) = O(
∑
i

n2
i +

∑
i

ni ·mi +
∑
i

m2
i )

where mi ≤ O(n) from the zone theorem bound. Moreover
∑
i ni = O(n) and

∑
imi = O(m)

as each point is visible from the closest segments above and below.
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The first expression can be bound by (
∑
i ni)

2 = O(n2) and the second expression by
2(
∑
i ni) · (

∑
imi) = O(n ·m) (Cauchy-Schwartz inequality). The third expression is less

than (m/n) · n2 = mn. So, the overall expression can be bound by O(m · n+ n2).
For a uniformly chosen sample Rk of size k, the expected number of intersections in the

sample is mk2

n2 , so the variance can be bound by

E[T 2
k |Rk] = 1

k
E[
∑
si∈Rk

(
∑
σ∈Ti

l(σ))
2
]

To simplify calculations, we recall (Theorem 5 ) that l(σ) ≤ O(n logn
k ) with high probability.

So, plugging this in the previous expression, and using the previous bound on
∑
i |Ti|

2, we
obtain (w.h.p.)

E[T 2
k |Rk] ≤ 1

k
·O(n

2 log2 n

k2 ) · E[k2 + k ·mk]

where mk is the number of intersections in Rk. Taking expectation over all choices of Rk, we
obtain the unconditional expectation as

E[T 2
k ] ≤ n2 log2 n

k3 · E[k2 + kmk] ≤ n2 log2 n

k3 · (k2 + mk3

n2 )) ≤ n2 log2 n

k
+m log2 n

This uses the bound E[mk] = O(k + m·k2

n2 ). This bound is relevant for the maintenance
of conflict graphs.

In contrast, for an algorithm like Mulmuley [18], where only the trapezoids are maintained,
the work done3 can be bound by using l(σ) = 1 in the expression for E[T 2

k ]. This yields
E[T 2

k ] = O(k +m k2

n2 ). We shall return to this case later.
So

Wn ≤
n∑
k=1

E[T 2
k ] ≤ O(n2 log3 n+mn log2 n)

To obtain high probability bounds using Freedman’s inequality, we want to bound this
expression by λ2

logn where λ = c(n logn+m). Mn andMn ·λ can be bound by O(n logn ·α(n))
and mnα(n) respectively with high probability. This follows from a bound of O(tα(t)) on
the zone of a segment that intersects t segments in an arrangement of n segments ([18]).

So λ2

Wn+Mn·λ can be bound by

Ω(m2 +mn logn+ n2 log2 n)
O(mn log2 n+ n2 log3 n+mnα(n) logn+ n2α(n) log2 n

= Ω(m2 +mn logn+ n2 log2 n)
O(mn log2 n+ n2 log3 n

.

So from Freedman’s inequality we obtain a tail bound of exp(− m2

mn log2 n
) for m ≥ n log2 n.

I Theorem 10. Let T (n) represent the work done in the conflict-graph based segment
intersection algorithm, then there exists constant β, such that for m ≥ βn log2 n, Pr[T (n) ≥
m] ≤ exp(− m

n log2 n
).

To the best of our knowledge, no prior concentration bound was known for the conflict-graph
based approach for segment intersection given by Clarkson and Shor [4]. The paper by [15]
noted that their methods could not be extended to this algorithm.

3 there is some additional cost for point location that can be bound using Lemma 4
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Figure 3 A bad input for segments intersections (trapezoidal maps). The thicker segments
correspond to the sampled set.

For the specific case of m = 0, the bound can be improved by observing that the zone
of a segment can be at most O(n) (instead of nα(n)) as there are no intersections. Setting
m = 0 in the previous bound for Wn, we obtain the following

I Corollary 11. For constructing the trapezoidal map of n non-intersecting line segments
using RIC , the work done T (n) satisfies Pr[T (n) ≥ cβn log2 n] ≤ n−β

2 for some constant
c > 1.

This shows that we can obtain inverse polynomial concentration bounds around a running
time that exceeds the expected running time by a factor of Ω(logn).

We now return to the algorithms of [18] and [4] that do not maintain conflict-graphs but
only involves segment end-points. As observed before, the quantity Wn can be bound by∑n
k=1O(k +m k2

n2 ) = O(n2 +mn). We summarize as follows.

I Lemma 12. In the segment intersection algorithms of [18, 4] that do not maintain conflict-
graphs explicitly, the probability that the work exceeds c(m+ n logn) can be bound by

exp−
(

Ω(m2 +mn logn+ n2 log2 n)
O(mnα(n) + n2α(n) logn)

)
≤ exp(− logn

α(n) ) since M = O(nα(n)).

For m ≥ n logn, the bound improves to exp(− m
nα(n) ).

I Remark. This bound is better than the results in [15] where the authors show that for
some constant δ > 0. Pr[T (n) ≥ Cm] ≤ exp

(
−δm
n logn

)
for m ≥ n logn log log logn.

6 Can we improve the tail bounds

Figure 3 shows an input of n horizontal segments divided into two sets U ,B each of which
has n/2 segments. In the top pile U of the n/2 horizontal segments, let T denote the lowest√
n · c(n) segments for some function c(n) that will determined in the analysis.
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We will consider the RIC after the first 3
√
n insertions. We want to consider the event that

at least
√
n segments are chosen from B and no segment is chosen from T . The probability

of the former is 1− 2−
√
n (from Chernoff bounds) whereas the probability of the latter can

be easily seen as (1− c(n)√
n

)
3
√
n

= Ω(4−3c(n)), using (1−x) ≥ exp−(x+x2) ≥ 1
4x x ∈ [0, 1/2].

Since the two events are independent, the probability of their intersection, which will be
denoted by the event E1 is nearly Ω(4−3c(n)) (since 1− 2−

√
n → 1).

Notice that, if the lowest sampled segment is s ∈ U then all the segments below s will
intersect the vertical lines through the end-points of the trapezoids defined by the sampled
segments in B. Namely, if there are m unsampled segments below s, then the size of the
conflict graph is at least

√
n ·m. Every time s changes, new edges are created in the conflict

graph by the sampled edges in B. Following the choice of the initial 3
√
n segments, let us

consider subsequent sampling by the RIC where segments from T will be sampled. Within
T , let us denote by T ′ the lowest αc(n)

√
n segments for some constant α < 1 and let T ′′

denote the remaining segments. Let E2 denote the event that among the first logn segments
sampled from T , none are from T ′. This can be calculated as (1− α)logn = Ω(4−α logn).

From our earlier analysis, the lowest sampled segment in T ′′ changes about θ(log logn)
times with probability 1

logn (Corollary 3) - note that this holds regardless of the event E2.
So, in the second phase of RIC , at least Ω(α

√
nc(n) ·

√
n log logn) edges are created with

probability Ω( 2−α logn

logn ).
So, by unconditioning the first phase event E1, we obtain

Pr[E1 ∩ E2] = Pr[E2|E1] · Pr[E1] = Ω( 1
lognn

−α · 2−6c(n)). This yields the following result

I Theorem 13. There exists inputs for which the conflict-graph based RIC algorithm for
constructing vertical visibility maps (segment intersections with no intersections) encounters
Ω(αc(n)

√
n log logn) structural changes with probability Ω(e−6c(n)−α) for c(n) = o(

√
n).

In particular, by choosing c(n) = logn
13 , and a small α, the conflict graph based RIC algorithm

may encounter Ω(n logn log logn) changes with probability Ω( 1√
n

) that rules out inverse
polynomial bounds for a total work of O(n logn). Note that 1√

n
can be easily increased to

1
nε for any ε > 0 by an appropriate choice of c(n).

The reader may compare this result with Corollary 11 to get a sense of the gap between
upper and lower bounds of the tail estimates. Coming up with similar examples for the
other problems discussed in this paper, like Delaunay Triangulation would be an interesting
exercise and shed more light on the behavior of RIC .
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A Appendix

We provide a brief description of the notations and definitions that capture the framework of
RIC and its analysis in very general setting.

Given a set S of n elements (like points, segments, lines etc.), a configuration σ is defined
by at most d objects where d is O(1). The set of objects is denoted by d(σ) and the number
of configurations is bounded by nd if there are no more than O(1) configurations associated
each subset of d elements (there can be more than one configuration associated with the
same d(σ) elements.

Let `(σ) = S ∩ σ − d(σ) be the elements that intersect with σ. With a slight overloading
of notation we will also use `(σ) to denote the set of the intersecting elements with σ also.
Let Πi(S) denote the set of configurations σ with `(σ) = i. We use Π(S) = ∪iΠi(S) to
denote all configurations. For any subset R ⊂ S, we use Π(R) to denote the configurations
defined by elements of R and the conflict list of any configuration d(σ) ⊂ R as σ ∩ S, i.e., all
the elements and not just the elements in R.

A conflict graph represents the relation between the configurations in Π0(R) and the
corresponding conflict list, which is a bipartite graph with configurations in Π0(R) on one
side and the uninserted elements on the other side. Randomized Incremental construction
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s10

s4

s5

s6

s7

s8

s9

s1

s2

s3 A

B

Figure 4 The red segments are sampled segments and blue segments are unsampled. The
trapezoids A,B are configurations that belong to Π0(R). Here d(A) = {s4, s5} `(A) = {s3, s6, s10}.

can be thought of as maintaining and update of the conflict graph starting with R = φ

and successively adding a random (uninserted) element e ∈ S −R into R. This introduces
σ ∈ Π0(R∪ e)−Π0(R) requiring appropriate changes in the conflict graph. To illustrate this
framework on qiucksort, we define the configurations as intervals defined by a pair of elements
[xi, xj ] where xi < xj . Initially there is the hypothetical configuration (−∞,+∞). As we
introduce more pivots, we maintain the ordered set of intervals induced by the elements
chosen as pivots. As we introduce a pivot, some interval is split. Eventually we have the
sorted set defined by consecutive intervals. When an interval [xi, xj ] splits because of a pivot
element y such that xi < y < xj , the elements in `([xi, xj ]) ∩ S is reassigned to `([xi, y]) and
`([y, xj ]) appropriately. The number of comparisons required is roughly |`([xi, xj ]) ∩ S| (the
cardinality).

The analysis of quicksort in this framework can be done using the technique of backward
analysis which is very elegant. Let us assign an indicator random variable Xk associated
with an element x, such that

Xk =
{

1 if x is compared for the k-th pivot
0 otherwise

The number of comparisons involving x is given by
∑n
k=1Xk. Therefore

E[
n∑
k=1

Xk] =
n∑
k=1

E[Xk] =
n∑
k=1

pk(x)

where pk(x) is the probability that element x is involved in the partitioning of the k-th pivot
insertion.

To compute the probability, we observe that Xk = 1 iff the k-th pivot y is one of the two
elements that bound the interval containing x after k pivots are chosen randomly. For a
fixed choice of k initial pivots, the probability that y is one of the two bounding elements is
at most 2(k−1)!

k! = 2
k . The numerator represents the number of permutations with one of the

bounding elements being the last pivot. Although this is the probability conditioned on the
choice of the first k pivots, clearly unconditioning would also give us the same probability.
Therefore the expected number of comparisons involving x is

∑n
k=1

1
k = O(logn). Further

the total expected number of comparisons is O(n logn) by summing over all elements.
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