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Abstract

The notions of bounded expansion [56] and nowhere denseness [58], introduced by Nešetřil and
Ossona de Mendez as structural measures for undirected graphs, have been applied very successfully
in algorithmic graph theory. We study the corresponding notions of directed bounded expansion
and nowhere crownfulness on directed graphs, introduced by Kreutzer and Tazari [48]. The classes
of directed graphs having those properties are very general classes of sparse directed graphs, as
they include, on one hand, all classes of directed graphs whose underlying undirected class has
bounded expansion, such as planar, bounded-genus, and H-minor-free graphs, and on the other
hand, they also contain classes whose underlying undirected class is not even nowhere dense. We
show that many of the algorithmic tools that were developed for undirected bounded expansion
classes can, with some care, also be applied in their directed counterparts, and thereby we highlight
a rich algorithmic structure theory of directed bounded expansion and nowhere crownful classes.
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46:2 Algorithmic Properties of Sparse Digraphs

1 Introduction

Structural graph theory has made a deep impact on the design of graph algorithms for hard
problems. It provides a wealth of different tools for dealing with the intrinsic complexity of NP-
hard problems on graphs and these methods have been applied very successfully in algorithmic
graph theory, in approximation theory, optimisation and the design of exact and parameterised
algorithms for problems on undirected graphs, see e.g. [11, 14, 16, 15, 17, 18, 28, 29, 66].

Concepts such as tree width or excluded (topological) minors as well as density based graph
parameters such as bounded expansion or nowhere denseness capture important properties of
graphs and make them applicable for algorithmic applications.

The notions of bounded expansion and nowhere denseness were introduced in [56] and [58]
to capture structural sparseness of undirected graphs. Classes of bounded expansion are very
general and properly generalise, for instance, planar graphs or more generally classes with
excluded (topological) minors. But the concept goes far beyond excluded minor classes.

Starting with [56, 58], many algorithmic results for problems on classes of graphs excluding
a fixed minor have been extended to the more general case of bounded expansion and nowhere
dense classes of graphs, see e.g. [9, 13, 20, 21, 23, 24, 25, 33, 38, 43, 45, 49, 55, 61, 69, 71].
Furthermore, Demaine et al. [19] and Nadara et al. [53] analysed a range of real-world
networks and showed that many of them indeed fall within the framework of bounded
expansion. This shows that this concept captures many types of real world instances.

An important aspect of classes of bounded expansion and classes which are nowhere dense
is that they can equivalently be defined in many different and seemingly unrelated ways:
by the density of bounded-depth minors, by low tree-depth colourings [56], by generalised
colouring numbers [73], by wideness properties such as uniformly quasi-wideness [57], by
sparse neighbourhood covers [37, 38], vc-density [62], and many more. Each of these different
aspects of the theory comes with its own set of algorithmic tools and many of the more
advanced algorithmic results on bounded expansion classes mentioned above crucially rely
on a combination of several of these techniques.

Developing a structural theory for directed graphs that yields classes of digraphs with
a similarly broad algorithmic impact has so far not seen a comparable success as for the
undirected case. The general goal is to identify structural parameters which define interesting
and general classes of digraphs for which there is a comparably rich set of algorithmic tools.
However, essentially all approaches, e.g. in [6, 7, 34, 40, 59, 67], of generalising even the
well-understood and fairly basic concept of tree width to digraphs have failed to produce
digraph parameters that come even near the wide spectrum of algorithmic applications that
tree width has found. This even has led to claims that this programme cannot be successful
and that such measures for digraphs cannot exist [35].

In this paper we exhibit examples of digraph parameters which we believe challenge this
negative outlook on the potential of digraph parameters. Our main conceptual contribution
is to give a positive example of a digraph parameter that satisfies the conditions of the
programme outlined above: we identify a very general type of digraph classes which have a
similar set of algorithmic tools available as their undirected counterparts. We believe that
these classes give a positive answer to the question whether interesting graph parameters can
successfully be generalised to the directed setting and we support this claim by algorithmic
applications described below.

The classes of digraphs we study are classes of directed bounded expansion and nowhere
crownful classes of digraphs which are modeled after the concepts of bounded expansion
and nowhere denseness for undirected graphs, respectively. They were originally defined
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in [48], where basic properties of these classes were developed. In particular, it was shown
that nowhere crownful classes can equivalently be defined in terms of directed uniformly
quasi-wideness, analogous to its undirected counterpart, which easily implies fixed-parameter
tractability of the directed dominating set problem on these classes. See Section 2 for details.
The first improvement of these initial results appeared in [47], where structural properties of
classes of digraphs of bounded expansion were studied. The main contribution of [47] was to
establish their relation to a certain form of generalised colouring numbers, a concept which
in the undirected setting has had huge algorithmic impact on the development of algorithms
for nowhere dense and bounded expansion classes.

Our contributions.

These initial results are the starting point for our investigation in this paper. In addition
to directed bounded expansion and nowhere crownful classes, we also define a new type of
digraph classes which we call bounded crownless expansion.

Our main contributions are both structural and algorithmic. We show that classes
of digraphs of directed bounded expansion, and especially classes of bounded crownless
expansion, have structural properties very similar to their undirected counterpart. As a
consequence, we are able to show that many of the algorithmic tools that were developed
for undirected bounded expansion have their directed counterpart, resulting in a rich and
diverse set of algorithmic techniques that can be applied in the design of algorithms for
these classes. To the best of our knowledge, this is the first time that the generalisation
of one of the widely studied and very general undirected graph parameter to the digraph
setting has indeed led to a digraph concept with a similarly broad set of algorithmic tools
as its undirected counterpart. We are therefore optimistic that classes of directed bounded
expansion or crownless expansion will find a broad range of applications. We support this
belief by providing several algorithmic results we describe next.

As a test case for these algorithmic techniques we use the directed variant of the
(Distance-r) Dominating Set problem defined as follows. For a positive integer r,
a distance-r dominating set in a digraph G is set D ⊆ V (G) such that every v ∈ V (G) is
reachable by a directed path of length at most r from a vertex d ∈ D, i.e. N+

r (D) = V (G).
(Distance-r) Dominating Set is a common benchmark problem for the design of

(parameterised or approximation) algorithms on graph classes with structural restrictions.
It is NP-complete in general [42], and (under standard complexity theoretical assumptions)
cannot be approximated better than up to a factor O(logn) [64]. Better results can be
achieved, e.g., on sparse graph classes, see e.g. [3, 4, 10, 12, 21, 22, 36, 39], but these classes
do not contain classes of digraphs of bounded (crownless) expansion.

We study the complexity of the Directed (Distance-r) Dominating Set problem
from the point of view of approximation, exact parameterised algorithms and kernelisation.

Approximation on directed bounded expansion. In [21], Dvořák proves a linear duality
between distance-r dominating sets and r-scattered sets in classes of undirected bounded
expansion. From this he derives an elegant polynomial-time constant-factor approximation
algorithm on these classes of undirected graphs. Unfortunately, as we show in Section 3,
no such duality holds in digraph classes of bounded directed expansion. In Theorem 7, we
therefore use a different approach, inspired by recent results in [22], which is based on a
combination of an LP-based approach and the characterisation of directed bounded expansion
in terms of weak colouring numbers to obtain a constant-factor approximation algorithm for
Directed-r Dominating Set on classes of directed bounded expansion.

STACS 2019
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Approximation on bounded crownless expansion. We then study classes of bounded crown-
less expansion. We first re-establish a polynomial duality between distance-r dominating sets
and r-scattered sets on these classes. Towards this aim, we employ methods from stability
theory, a branch of infinite model theory, developed in [50] in the digraph setting. The
application of stability theory in this context is not straightforward. It is known that a class
of (di)graphs which is closed under taking subgraphs is stable, if and only if, its underlying
class of undirected graphs is nowhere dense [1]. However, classes of bounded crownless
expansion in general are not nowhere dense and thus the stability theoretic techniques cannot
be applied as such. Therefore, we have to carefully establish a situation in which stability is
applicable, which then allows us to derive the polynomial duality theorem. As a consequence
of this duality we also obtain a polynomial-time approximation algorithm for distance-r
dominating sets (Corollary 11).

Parameterised complexity. We then study the parameterised complexity of the Distance-
r Dominating Set problem. It is known that the problem is fixed-parameter tractable on
nowhere crownful digraph classes [48] but the parameterised complexity of the problem on
directed bounded expansion classes was still open. We first establish that classes of directed
bounded expansion have bounded directed neighbourhood depth, a notion introduced in [26].
We then show that the methods developed in [26] can also be applied in the directed setting
and establish that the Distance-r Dominating Set problem on classes of directed bounded
expansion is fixed-parameter tractable (Theorem 14).

Kernelisation. Once fixed-parameter tractability is established, we turn our attention to
the kernelisation problem for Distance-r Dominating Set. Recall that a kernelisation
algorithm is a polynomial-time preprocessing algorithm that transforms a given instance into
an equivalent one whose size is bounded by a function of the parameter only, independently
of the overall input size. Fixed-parameter tractability implies the existence of a kernelisation
algorithm, however, its output may be exponential or even larger in the parameter.

Starting with the groundbreaking work of Alber et al. [2], kernelisation for the Domin-
ating Set and Distance-r Dominating Set problem on undirected graphs has received
significant attention in the literature, see e.g. [8, 30, 31, 32]. In particular, Dominating
Set admits polynomial kernels on graphs of bounded degeneracy [60]. The Distance-r
Dominating Set problem admits a linear kernel on classes of bounded expansion [20], and
an almost linear kernel on nowhere dense classes of graphs [45]. It is easy to observe that
the result of [60] extends to digraphs of bounded degeneracy.

We show that the Distance-r Dominating Set problem admits a polynomial kernel
on classes of bounded crownless expansion (Theorem 21). At a high level, our kernelisation
algorithm follows the overall approach of [20] for undirected bounded expansion classes. Using
our result above establishing the duality between distance-r dominating sets and r-scattered
sets on bounded crownless expansion classes, the key property that remains to be established
to apply the techniques from [20] are bounds on their distance-r neighbourhood complexity
(the number of different intersections of r-balls with a given set). To establish these properties,
we study the VC-dimension of set systems corresponding to r-neighbourhoods in digraphs
of bounded directed expansion. In Section 4.2, we show that it is bounded on all classes
of bounded crownless expansion which enables us to capture local separation properties in
classes of bounded expansion. With this in place we can complete our kernelisation algorithm.

Steiner trees. As a further indication that digraphs of bounded expansion constitute a very
useful notion, in Section 5 we consider the parameterised Directed Steiner Tree (Dst)
problem, which is defined as follows. As input we are given a digraph G, a root r ∈ V (G), a
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set T ⊆ V (G) \ {r} of terminals and an integer k. The problem is to decide if there is a set
S ⊆ V (G) \ ({r} ∪ T ) of size at most k such that in G[{r} ∪ S ∪ T ] there is a directed path
from r to every terminal T . The Steiner Tree problem is an intensively studied graph
problem in computer science with many important applications. We refer to the textbook of
Prömel and Steger [63] for background information. It is known for this parameterisation
that both the directed and the undirected versions are W[2]-hard on general graphs [52],
and even on graphs of degeneracy two [41]. On the positive side, Jones et al. [41] proved
that the problem is fixed-parameter tractable on graphs excluding a topological minor when
parameterised by the number of non-terminals. Their result is based on a preprocessing rule
which allows to contract strongly connected subsets of terminal vertices to individual vertices.
The authors furthermore show that if the subgraph induced by the terminals is required
to be acyclic, then the problem becomes fixed-parameter tractable on graphs of bounded
degeneracy. In this case, the strongly connected subsets of terminals have diameter 0. This
suggests to consider the problem parameterised by the number k of non-terminals plus the
maximal diameter s of a strongly connected component in the subgraph induced by the
terminals. In fact, bounded expansion classes of digraphs are exactly those classes whose
graphs have bounded degeneracy after bounded radius contractions. Therefore, the Steiner
tree problem is fixed-parameter tractable on classes of bounded directed expansion under
this parameterisation. On the other hand, it is straightforward to modify the example in [41]
to show that the parameterisation k + s cannot be replaced by taking only k as parameter:
there exist classes of directed bounded expansion on which the directed Steiner tree problem
parameterised by solution size k is W[2]-hard. Hence, we show that the results of Jones
et al. [41] exactly identify classes of directed bounded expansion as those on which the
Directed Steiner Tree problem parameterised by the number of non-terminal vertices
and the maximal diameter of strongly connected components in the subgraph induced by
the terminals is fixed parameter tractable (Theorem 23). At the time of writing, Jones et al.
simply did not have the notions of bounded expansion available.

Connected dominating sets. Finally, we show that the restriction to classes of bounded
crownless expansion is not sufficient to find efficient algorithms for the Strongly Connected
Dominating Set problem and Strongly Connected Steiner Subgraph (Scss) problem,
which is defined as the Steiner tree problem but here we need to find a set S ⊆ V (G) of
size at most k such that G[S ∪ T ] is strongly connected. We prove that there exist classes
of bounded crownless expansion on which the Strongly Connected Dominating Set
problem and the Strongly Connected Steiner Subgraph problem remain W[1]-hard
(Theorems 30 and 31).

Summary. The results reported above demonstrate that classes of bounded (crownless)
expansion indeed exhibit a very rich set of algorithmic tools, broad enough so that even recent
sophisticated algorithms for undirected bounded expansion can be extended to the digraph
setting. We therefore believe that these concepts are new and interesting digraph parameters
which hold the promise for further algorithmic applications. The hardness results for strongly
connected dominating sets, on the other hand, indicate that for problems which in addition
require control over strong connectivity, one may have to consider further restrictions, e.g. by
combining directed expansion with directed treewidth. We leave this for future research.

2 Directed Minors and Directed Bounded Expansion

We refer to [5] for standard notation and background on digraph theory. Let G be a
digraph, let v ∈ V (G) and let r ≥ 1 be an integer. The r-out-neighbourhood of v, denoted

STACS 2019
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δ(v)

in(δ(v))

out(δ(v))

H

G

v

Figure 1 The graph H (left) is a directed minor of the graph G (right).

by N+
G,r(v), or just N+

r (v) if G is understood, is defined as the set of vertices u in G such
that G contains a directed path of length at most r from v to u. We write N+(v) for
N+

1 (v) \ {v}. The r-in-neighbourhood N−G,r(v) and N−(v) are defined analogously. The
out-degree of a vertex v ∈ V (G) is d+(v) := |N+(v)|, its in-degree is d−(v) := |N−(v)|
and its degree is d(v) := |N+(v)| + |N−(v)|. The minimum out-degree of G is defined as
δ+(G) := min{d+(v) : v ∈ V (G)}, minimum in-degree and minimum degree are defined
analogously. A set U ⊆ V (G) is r-scattered if there is no v ∈ V (G) and u1, u2 ∈ U

with u1 6= u2 and u1, u2 ∈ N+
r (v). If the arc relation of a digraph G is symmetric, i.e.

if (u, v) ∈ E(G) implies (v, u) ∈ E(G), then we speak of an undirected graph. If G is a
digraph, we write Ḡ for the underlying undirected graph of G, which has the same vertices
as G and for each arc (u, v) ∈ E(G) we have (u, v) ∈ E(Ḡ) and (v, u) ∈ E(Ḡ). Note that
|E(G)| ≤

∣∣E(Ḡ)
∣∣ ≤ 2 |E(G)|.

Directed minors. We are going to work with directed minors and directed topological
minors. The following definition of directed minors is from [48]. A digraph H has a directed
model in a digraph G if there is a function δ mapping vertices v ∈ V (H) of H to sub-graphs
δ(v) ⊆ G and arcs e ∈ E(H) to arcs δ(e) ∈ E(G) such that

1. if v 6= u, then δ(v) ∩ δ(u) = ∅;
2. if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v). For v ∈ V (H) let in(δ(v)) :=

V (δ(v)) ∩
⋃

e=(u,v)∈E(H) V (δ(e)) and out(δ(v)) := V (δ(v)) ∩
⋃

e=(v,w)∈E(H) V (δ(e));
3. we require that for every v ∈ V (H) (a) there is a directed path in δ(v) from every

u ∈ in(δ(v)) to every u′ ∈ out(δ(v)); (b) there is at least one source vertex sv ∈ δ(v) that
reaches (by a directed path in δ(v)) every element of out(δ(v)); (c) there is at least one
sink vertex tv ∈ δ(v) that can be reached (by a directed path in δ(v)) from every element
of in(δ(v)).

A digraph H has a directed model in a digraph G if there is a function δ mapping vertices
v ∈ V (H) of H to sub-graphs δ(v) ⊆ G and arcs e ∈ E(H) to arcs δ(e) ∈ E(G) such that

1. if v 6= u, then δ(v) ∩ δ(u) = ∅;
2. if e = (u, v) and δ(e) = (u′, v′) then u′ ∈ δ(u) and v′ ∈ δ(v).
3. Furthermore, we require that for each v ∈ V (H) there are non-empty sets in(δ(v)) and

out(δ(v)) such that in(δ(v)) contains the head of every arc δ((u, v)) and out(δ(v)) contains
the tail of every arc δ((v, u)) and for every s ∈ in(δ(v)) and t ∈ out(δ(v)) there is a path
in δ(v) from s to t.
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We write H 4 G if H has a directed model in G and call H a directed minor of G. We call
the sets δ(v) for v ∈ V (H) the branch-sets of the model.

For r ≥ 0, a digraph H is a depth-r minor of a digraph G, denoted as H 4r G, if there
exists a directed model δ of H in G in which for all v ∈ V (H) and all s ∈ in(δ(v)) and
t ∈ out(δ(v)) there is a path from s to t in δ(v) of length ≤ r.

We write H 4 G if H has a directed model in G and call H a directed minor of G. We
call the sets δ(v) for v ∈ V (H) the branch-sets of the model.

For r ≥ 0, a digraph H is a depth-r minor of a digraph G, denoted as H 4r G, if there
exists a directed model of H in G in which the length of all the paths in the branch sets of
the model described in 3a)-c) above are bounded by r. Note that every subgraph of G is a
depth-0 minor of G.

Directed topological minors. A digraph H is a topological minor of a digraph G if there is
an injective function δ mapping vertices v ∈ V (H) to vertices of V (G) and arcs e ∈ E(H) to
directed paths in G such that if e = (u, v) ∈ E(H), then δ(e) is a path from δ(u) to δ(v) in G
which is internally vertex disjoint from all vertices δ(w) (for w ∈ V (H)) and all paths δ(e′)
(for e′ ∈ E(H), e′ 6= e). For r ≥ 0, H is a topological depth-r minor of G, written H 4top

r G,
if it is a topological minor and all paths δ(e) have length at most 2r.

Grads, bounded expansion and crowns. Let G be a digraph and let r ≥ 0. The greatest
reduced average density of rank r (short grad) of G is

∇r(G) := max
{
|E(H)|
|V (H)| : H 4r G

}
and its topological greatest average density of rank r (short top-grad) is

∇̃r(G) := max
{
|E(H)|
|V (H)| : H 4top

r G

}
.

I Definition 1. A class C of digraphs has bounded expansion if there is a function f : N→ N
such that for all r ≥ 0 we have ∇r(G) ≤ f(r) (or equivalently, ∇̃r(G) ≤ f(r)) for all G ∈ C.

A crown of order q is a 1-subdivision of a clique of order q with all arcs oriented away
from the subdivision vertices, that is, the digraph Sq with vertex set {v1, . . . , vq} ∪ {vij : 1 ≤
i < j ≤ q} and arc set {(vij , vi), (vij , vj) : 1 ≤ i < j ≤ q}.

I Definition 2. A class C of digraphs has bounded crownless expansion if there is a function
f : N→ N such that for all r ≥ 0 we have ∇r(G) ≤ f(r) and Sf(r) 64r G for all G ∈ C.

Generalised colouring numbers. We next review the definition of generalised colouring
numbers in the directed setting. Let G be a digraph. By Π(G) we denote the set of all
linear orders of V (G). For r ≥ 0, we say that u is weakly r-reachable from v with respect
to an order L ∈ Π(G) if there is a path P of length at most r, connecting u and v, in
either direction, such that u is minimum among the vertices of P with respect to L. By
WReachr [G,L, v] we denote the set of vertices that are weakly r-reachable from v with
respect to L. We define the weak r-colouring number wcolr (G) of G as

wcolr (G) := min
L∈Π(G)

max
v∈V (G)

∣∣WReachr [G,L, v]
∣∣ .

I Theorem 3 ([47]). A class C of digraphs has bounded expansion if, and only if, there is
f : N→ N such that wcolr (G) ≤ f(r) for all G ∈ C and all r ≥ 1.

STACS 2019
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The next lemma shows that the weak r-colouring numbers are very useful to describe
local separation properties in graphs of bounded expansion. The lemma is immediate by the
definition of WReachr .

I Lemma 4. Let G be a digraph and let r ≥ 1. Let P be a path of length at most r with
endpoints u and v in either direction. Let L be an order of V (G) and let z be the minimal
vertex of P with respect to L. Then z ∈WReachr [G,L, u] ∩WReachr [G,L, v].

We will also need an efficient algorithm to compute good weak reachability orders. We
show in the full version that this is possible. All statements marked with (?) are proved in
the full version [44].

I Theorem 5 (?). Let C be a class of digraphs of bounded expansion. There exists a function
f : N → N and a polynomial-time algorithm which for an input graph G ∈ C and r ∈ N
computes an order L with |WReachr [G,L, v]| ≤ f(r) for all v ∈ V (G).

3 Approximation of distance-r dominating sets and duality between
distance-r dominating sets and r-scattered sets

In this section we study the duality between distance-r dominating sets and r-scattered sets
and prove that for every fixed value r ∈ N the Distance-r Dominating Set problem admits
a constant-factor approximation on every class of digraphs of bounded expansion. Given a
digraph G, a set U ⊆ V (G) is r-scattered if there is no v ∈ V (G) and u1, u2 ∈ U with u1 6= u2
and u1, u2 ∈ N+

r (v). We write γr(G) for the size of a minimum distance-r dominating set in
a digraph G and α2r(G) for the size of a maximum r-scattered set in G. Observe that in
undirected graphs an r-scattered set corresponds to a distance-2r independent set, which
explains the index in the notation α2r(G).

Clearly, every vertex v ∈ V (G) can dominate at distance r at most one vertex of an
r-scattered set. Hence we have α2r(G) ≤ γr(G) for every digraph G. In general, γr(G)
is not bounded in terms of α2r(G). Dvořák proved in [21] that on classes of undirected
graphs of bounded expansion γr(G) is linearly bounded by α2r(G), where the linear factor is
the undirected weak colouring number wcol2r(G)2, i.e., on undirected graphs the inequality
γr(G) ≤ wcol2r(G)2 · α2r(G) holds. Furthermore, he derived an elegant linear time constant-
factor approximation algorithm for the Distance-r Dominating Set problem.

As a first negative result we prove that no such duality theorem holds on digraphs of
bounded expansion.

I Theorem 6. There is a class of directed bounded expansion such that for every constant c
we have γ1(G) ≥ c for infinitely many G ∈ C and α2(G) = 2 for all G ∈ C.

Hence, we cannot follow the duality based approach to compute approximations for the
Distance-r Dominating Set problem on classes of directed bounded expansion. Instead,
we follow a very recent approach of Dvořák [22], which combines rounding of a linear program
and a greedy choice based on the generalised colouring numbers. We consider the following
linear programs. For each vertex v ∈ V (G) we have one variable xv.

Distance-r Dominating Set LP

Objective: minimise γ?
r =

∑
v∈V (G) xv

Subject to:
∑

u∈N−r [v] xu ≥ 1 for all v ∈ V (G)
Constraints: xv ≥ 0 for all v ∈ V (G).
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The dual linear program is the following program for r-Scattered Set.

r-Scattered Set LP

Objective: maximise α?
2r =

∑
v∈V (G) xv

Subject to:
∑

u∈N−r [v] xu ≤ 1 for all v ∈ V (G)
Constraints: xv ≥ 0 for all v ∈ V (G).

Integer solutions for the Distance-r Dominating Set LP correspond to minimum size
distance-r dominating sets in G, and analogously, integer solutions for the r-Scattered
Set LP correspond to maximum size r-scattered sets in G. Observe that since the linear
programs are dual to each other, for every graph G and every positive integer r we have

α2r(G) ≤ α?
2r(G) = γ?

r (G) ≤ γr(G),

while in general γr(G) is not functionally bounded by α2r(G). Also note that α?
2r(G) and

γ?
r (G) can be determined exactly in polynomial time by solving the linear programs that

define them.
Dvořák in [22] proved that γr(G) is bounded linearly by γ?

r (G) on classes of undirected
graphs of bounded expansion. We are able to prove an analogous statement in digraphs of
bounded expansion. Furthermore, the theorem is constructive and yields a polynomial-time
approximation algorithm.

I Theorem 7 (?). Let C be a class of directed bounded expansion and let r ∈ N. Then there
exists a function f : N→ N and a polynomial-time algorithm which on input G ∈ C computes
a distance-r dominating set of G of size at most f(r) · γ?

r (G).

We show next that for classes of bounded crownless expansion the values γr and α2r

are polynomially related. Thus, for such classes we can re-establish the duality between
d-domination and r-scattered sets which we proved to fail in the general directed setting.
Our proof is algorithmic in the sense that we apply the directed analogue of the algorithm of
Dvořák [21] to the digraph G and prove that it finds both a distance-r dominating set and a
polynomially smaller r-scattered set. Without requiring the duality to be polynomial we could
have used standard Ramsey-type arguments. To establish a polynomial relation between the
two parameters, we facilitate tools from stability theory, related to those developed in [50]
and [46]. We first explain the stability theoretic tools used in the sequel.

Let T be a (rooted) binary tree, where each vertex (except the root) is marked as a left or
right successor of its predecessor. We call w a left (right) descendant of v if the first successor
on the unique v-w path in T is a left (right) successor.

Fix an enumeration a1, . . . , a` of a set A⊆ V (G). The r-independence tree of (a1, . . . , a`)
is a binary tree which is constructed recursively as follows. We make a1 the root of the tree.
Assume that a1, . . . , ai have already been inserted into the tree. In order to insert the next
element ai+1, we follow a root-leaf path to find a position for it. Starting from the root a1,
at each point we are at some node aj and we have to decide whether we continue along the
left or to the right branch at aj . If there is an element u such that aj , ai+1 ∈ N+

r (u), we
continue along the right branch at aj , otherwise we follow the left branch. If there is no right
successor (or left successor, respectively), we insert ai+1 as a right (or left) child of aj .

I Lemma 8 (?). Let T be a rooted binary tree and let t ≥ 1 be an integer. Assume that no
root-leaf path in T contains a sub-sequence a1, . . . , at (of pairwise distinct elements) such
that aj is a right descendant of ai for all 1 ≤ i < j ≤ t. If T has height at most h, then T
has at most ht+1 vertices.
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The following lemma is proved using the Finite Canonical Ramsey Theorem.

I Lemma 9 (?). For all integers r, c,K there exists an integer N such that the following
property holds. Let G be a digraph with maximum out-degree at most c and let S, T be subsets
of vertices of G, such that |T | ≥ N and for each t, t′ ∈ T there exist a vertex s = s(t, t′) ∈ S,
a directed path Ps,t of length at most r from s to t and a directed path Ps,t′ of length at
most r from s to t′. Then G contains a crown of order K as a depth-r minor.

We can now prove the polynomial duality theorem.

I Theorem 10. Let G be a digraph with wcolr(G) ≤ c and Sq 64r G. Then there exists
N = N(c, q, r) such that γr(G) ∈ O(αr(G)N ).

Proof. The following algorithmic construction corresponds to the algorithm of Dvořák for
undirected graphs [21]. Fix an order L witnessing that wcolr(G) ≤ c. We compute a
distance-r dominating set D as follows. Initialise D := ∅, A := ∅ and M := V (G). While
there is a vertex v ∈M , the set of non-dominated vertices, pick the smallest such vertex v
with respect to L. Add v to A and WReach2r[G,L, v] to D. Mark all newly dominated
vertices, that is, remove N+

r [WReach2r[G,L, v]] from M . If M = ∅, return D. Clearly, D is
a distance-r dominating set of G.

We now prove that we find a large r-scattered subset of A. Construct the undirected
graph H with vertex set A such that two vertices a, b ∈ A are connected in H if there is
u ∈ V (G) such that a, b ∈ N+

r (u). An independent set in H corresponds to an r-scattered
subset of A in G.

We claim that every vertex u ∈ V (G) satisfies |N+
r (u) ∩A| ≤ c. Fix u ∈ V (G). Assume

towards a contradiction that |N+
r (u) ∩ A| > c. For each a ∈ N+

r (u) ∩ A fix a path Pua

of length at most r from u to a. For each path Pua, denote by mua its minimal element
with respect to L. Since wcolr(G) ≤ c, we have |{mua : N+

r (u) ∩ A}| ≤ c. Since we have
more than c paths Pua, there must be two paths Pua1 , Pua2 , a1 6= a2, which have the same
element m as their minimal element. Without loss of generality assume that a1 < a2. Since m
is the smallest vertex on the path Pua1 , the subpath of Pua1 between m and a1 certifies
that m is weakly r-reachable from a1. Hence, when a1 was added to A, the element m was
added to the set D. Now, the subpath of Pua2 between m and a2 shows that a2 is at distance
at most r from m, and hence a2 is marked as dominated at this point. This again proves
a2 6∈ A, a contradiction.

We now build the r-independence tree T of a1, . . . , a` (the enumeration of A with respect
to L). Using Lemma 9, we conclude that there is N ′(c, r, q) such that T does not contain a
path with s = N ′ right descendants. Let N := N ′ + 1.

Hence, by Lemma 8, if we have |A| > (m+N)N , then we find a sequence of length m
with all left descendants. This set is r-scattered, which proves the theorem. J

Clearly, the r-independence tree of a sequence of vertices can be computed in polynomial
time, which gives us the following corollary.

I Corollary 11. Let C be a class of digraphs which has bounded crownless expansion. Then
for every r ∈ N, there is a polynomial-time algorithm which computes a distance-r dominating
set D with |D| ≤ p(γr(G)) for some polynomial p.

4 Parameterised complexity of Distance-r Dominating Set

In this section we study the parameterised complexity of the Distance-r Dominating
Set problem on classes of directed bounded expansion. We follow the approach of [26]
and establish that digraphs of bounded expansion have bounded neighbourhood depth
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(which corresponds to having bounded semi-ladder index in that paper). We then show
that a straight forward modification of the Semi-ladder-algorithm of [26] for the Distance-r
Dominating Set problem on undirected graphs of bounded neighbourhood depth is an
fpt-algorithm on digraphs of bounded expansion.

Let F be a family of subsets of some universe U . A chain in F is a family H ⊆ F such
that for all X,Y ∈ H, we have either X ⊆ Y or Y ⊆ X. The depth of F is the cardinality
of the longest chain in F . The intersection closure of F is the family of all sets of the
form X1 ∩ X2 ∩ . . . ∩ Xn for some n ∈ N and X1, X2, . . . , Xn ∈ F . For n = 0 we assume
by convention that the intersection of an empty sequence of sets is equal to U , thus the
intersection closure always contains the universe U .

I Definition 12. Let G be a digraph and r ∈ N. The r-neighbourhood depth of G, denoted
depthr(G), is the depth of the intersection closure of the family {N+

r (v) : v ∈ V (G)}. We say
that a graph class C has bounded neighbourhood depth if there is a function f : N→ N such
that for all G ∈ C we have depthr(G) ≤ f(r).

We show that classes of directed bounded expansion have bounded neighbourhood depth.

I Lemma 13 (?). Let C be a class of directed bounded expansion. Then C has bounded
neighbourhood depth.

4.1 Fixed-parameter tractability on bounded expansion classes
In this section we show that a straightforward modification of the so-called Semi-ladder-
algorithm of [26] is an fpt-algorithm on digraphs of bounded neighbourhood depth.

We say that a set of vertices A r-dominates another set of vertices B if B ⊆ N+
r (A).

The Semi-ladder-algorithm maintains two sets: D,S ⊂ V (G). Initially, both are empty, and
at each moment, D will have at most k elements. The algorithm proceeds in rounds, each
consisting of two steps: first the S-step and then the D-step.

S-step: Check whether D r-dominates V (G). If so, terminate and output D as an r-
dominating set of size at most k. Otherwise, pick any vertex u which is not r-dominated
by D and add it to S.

D-step: Check whether some set of at most k vertices r-dominates S. If so, set D to be any
such set and proceed to the next round. Otherwise, terminate and conclude that there is
no r-dominating set of size at most k.

As in the undirected case one can easily implement each D-step using standard dynamic
programming on subsets of S in time O(2|S| · |S| ·n). Since at each round the size of S grows
by exactly 1, it is not hard to see that the `th round of the algorithm can be implemented in
time O(2` · `n+ km), and hence the time needed to execute it for L rounds is bounded by
O(2L · Ln+ kLm).

Clearly, the algorithm correctly decides whether a graph contains a distance-r dominating
set of size at most k. It remains to show that it is in fact a fixed-parameter algorithm on
classes of directed bounded expansion. We prove this by showing that the neighbourhood
depth gives an upper bound on the number L of rounds executed by the algorithm.

I Theorem 14 (?). Let C be a class with bounded neighbourhood depth and let r ∈ N. Then
for every k ∈ N there is a constant L ∈ N, depending only on k, r, C and computable from k

for fixed r and C, such that the Semi-ladder-algorithm terminates after at most L rounds
when applied to any G ∈ C and k. In particular, if G has n vertices and m edges, then the
running time is bounded by f(k) ·m for some computable function f .
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4.2 VC-dimension and neighbourhood complexity
Towards the goal of developing a kernelisation algorithm for the Distance-r Dominating
Set problem on classes of bounded crownful expansion, we first study the VC-dimension
and neighbourhood complexity of radius-r balls in classes of directed bounded expansion.

Let F ⊆ 2A be a family of subsets of a set A. For a set X ⊆ A, we denote X ∩ F =
{X ∩ F : F ∈ F}. The set X is shattered by F if X ∩ F = 2X . The Vapnik-Chervonenkis
dimension, short VC-dimension, of F is the maximum size of a set X that is shattered by F .

Note that if F has VC-dimension d, then also B ∩ F for every subset B ⊆ A of the
ground set has VC-dimension at most d. The following theorem was first proved by Vapnik
and Chervonenkis [72], and rediscovered by Sauer [68] and Shelah [70]. It is often called the
Sauer-Shelah lemma in the literature.

I Theorem 15. If |A| ≤ n and F ⊆ 2A has VC-dimension d, then |F| ≤
∑d

i=0
(

n
i

)
∈ O(nd).

The study of the distance-r dominating set problem in context of bounded VC-dimension
motivates the following definition. Let G be a digraph and r ≥ 1. The distance-r VC-
dimension of G is the VC-dimension of the set family {N−r (v) : v ∈ V (G)} over the set V (G).
If X ⊆ V (G), the distance-r neighbourhood complexity of X in G, denoted ν−(G), is defined
by

ν−(G,X) :=
∣∣{N−r (v) ∩X : v ∈ V (G)}

∣∣ .
Analogously, one can define the distance-r out-neighbourhood complexity when using

N+
r (v) and the distance-r mixed neighbourhood complexity when using (N+

r (v) ∪N−r (v)) in
the above definition and our proofs can be analogously carried out for these measures.

It was proved in [65] that a class C of undirected graphs has bounded expansion, if and
only if, for every r ≥ 1 there is a constant cr such that for all G ∈ C and all X ⊆ V (G) we
have ν(G,X) ≤ cr · |X| (where ν denotes the undirected neighbourhood complexity). The
analogous statement for classes of directed graphs does not hold, not even for r = 1, as
pointed out in [47]. However, we prove that the distance-r neighbourhood complexity of a
digraph can be bounded in terms of its weak r-colouring numbers.

Using Lemma 4 we can well control the interaction of distance-r neighbourhoods with a
set X. Let G be a digraph and let L be a linear order on V (G) and let r ≥ 1. Let A ⊆ V (G)
be enumerated as a1, . . . , a|A|, consistently with the order. For v ∈ V (G) let D−r (v,A) denote
the distance-r vector of v and A, that is, the vector (d1, . . . , d|A|), where di = dist(ai, v) if
0 ≤ dist(ai, v) ≤ r, and ∞ otherwise. Here dist(ai, v) is the length of a shortest path from ai

to v.

I Lemma 16 (?). Let G be a digraph, let X ⊆ V (G) and let r ≥ 1. Let c := wcolr (G). Then
the number of distinct distance-r vectors D−r (v,X) is bounded by ((r + 2) · c · |X|)c, and in
particular, ν−r (G,X) ≤ ((r + 2) · c · |X|)c.

I Corollary 17. Let G be a digraph and r ≥ 1. Then the distance-r VC-dimension of G is
bounded by (r + 2) · (2wcolr (G))2.

4.3 Kernelisation on classes of bounded crownful expansion
Recall that a kernelisation algorithm is a polynomial-time preprocessing algorithm that
transforms a given instance into an equivalent one whose size is bounded by a function of
the parameter only, independently of the overall input size. We are mostly interested in
kernelisation algorithms whose output guarantees are polynomial in the parameter. In this
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section we prove that for every fixed value of r ≥ 1, the distance-r dominating set problem
admits a polynomial kernel on every class of bounded crownless expansion.

Our strategy follows on a high level that of Drange et al. [20] for kernelisation on classes
of undirected bounded expansion. The first step is to compute a small domination core.

I Definition 18 (r-domination core). Let G be a digraph. A set Z ⊆ V (G) is an r-domination
core in G if every minimum-size set which r-dominates Z also r-dominates G.

Clearly, the set V (G) is an r-domination core. We will show how to iteratively remove
vertices from this trivial core, to arrive at smaller and smaller domination cores, until finally,
we arrive at a core of polynomial size in k. Observe that we do not require that every
r-dominating set for Z is also an r-dominating set for G; there can exist dominating sets
for Z which are not of minimum size and which do not dominate the whole graph.

I Lemma 19 (?). There exists a polynomial p and a polynomial-time algorithm that, given
an r-domination core Z ⊆ V (G) with |Z| > p(k), either correctly decides that G cannot be
dominated by k vertices, or finds a vertex z ∈ Z such that Z \ {z} is still an r-domination
core.

Hence, by gradually reducing |Z|, we arrive at the following theorem.

I Theorem 20. There exists a polynomial p and a polynomial-time algorithm that, given
an instance (G, k) where G ∈ C, either correctly decides that G cannot be dominated by k
vertices, or finds an r-domination core Z ⊆ V (G) with |Z| ≤ p(k).

Now that it remains to dominate a subset Z, we may keep one representative from each
equivalence class in the equivalence relation: u ∼=Z,r v ⇔ N+

r (u)∩Z = N+
r (v)∩Z. As before,

there are only polynomially many equivalence classes, hence from a polynomial domination
core we can construct a polynomial kernel.

I Theorem 21. Let C be a class of bounded expansion. There is a polynomial time algorithm
which on input G, k and r computes a subgraph G′ ⊆ G and a set Z ⊆ V (G′) such that G
can be r-dominated by k vertices if, and only if, Z can be r-dominated by k vertices in G′
and |Z| ≤ p(k).

5 Steiner trees

I Definition 22. The Directed Steiner Tree (DST) problem is defined as follows. The input is
a tuple (G, r, T, k) where G is a digraph, r ∈ V (G) is a vertex (a root), T ⊆ V (G)\{r} is a set
of terminals and k is an integer. The problem is to decide if there is a set S ⊆ V (G)\({r}∪T )
of size at most k such that in G[{r}∪S∪T ] there is a directed path from r to every terminal T .

The Dst problem has been widely studied in the area of approximation algorithms as it
generalises several routing and domination problems. We are interested in the parameterised
complexity of this problem. It follows from an algorithm by Nederlof [54] and Misra et
al. [51], that the problem can be solved in time 2|T | · p(n), for some polynomial p(n). In
this paper, we are interested in the standard parameterisation in parameterised complexity,
where as parameter we take the solution size, i.e. we take the number k of non-terminals as
parameter. This models the case where we need to pay for any node we add to the solution
and we want to keep the bound k on these nodes as small as possible without any restriction
on the number of terminals to connect.
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In [41], Jones et al. show that Dst with this parameterisation is fixed-parameter tractable
on any class of digraphs such that the class of underlying undirected graphs excludes a fixed
graph H as an undirected topological minor, as well as on any class of degenerate graphs
if the set T of terminal vertices induces an acyclic graph. We immediately conclude the
following.

I Theorem 23 (?). Let C be a class of digraphs of bounded expansion. Dst is fixed-parameter
tractable on C parameterised by the number k of non-terminals in the solution plus the maximal
diameter s of the strongly connected components in the subgraph induced by the terminals.

The proof of the theorem has the following immediate consequences.

I Corollary 24. Let C be a class of digraphs closed under taking directed minors for which
∇0(G) ≤ c for a constant c for all G ∈ C. Then Dst(G, r, T, k) can be solved for all G ∈ C,
r ∈ V (G), T ⊆ V (G) \ {r} and k in time 2O(k) · p(n), for some fixed polynomial p(n).

Note that this strictly generalises classes of undirected graphs excluding a fixed minor.
Another consequence of this is the following result, which immediately follows from the

well-known observation in parameterised complexity (see e.g. [41, Lemma 7]), that for all
functions g(n) = o(logn) there is a function f(k) such that f(k) ≤ 2g(n)·k, for all k and all n.

I Corollary 25. Let C be a class of digraphs such that ∇|G|(G) · log∇|G|(G) ≤ o(logn) for
all G ∈ C. Then Dst is fixed-parameter tractable on C with parameter k.

Finally, the result also implies an fpt factor-2-approximation algorithm for the Strongly
Connected Steiner Subgraph problem, Scss, on classes of bounded directed expansion.
In the Scss we are given a digraph G, a number k, and a set T of terminals and we are asked
to compute a set S of at most k non-terminals such that G[T ∪ S] is strongly connected.

I Theorem 26 (?). Let C be a class of digraphs of bounded expansion. There is an fpt factor-
2-approximation algorithm for Scss on C parameterised by the number k of non-terminals in
the solution plus the maximal diameter s of a strongly connected component in the subgraph
of G induced by the terminal nodes.

We close the section by showing that for bounded expansion classes, the parameterisation
k + s in Theorem 23 cannot be replaced by taking only k as parameter. This follows
immediately from a result of [41] where it is shown that Set Cover can be reduced to Dst
on 2-degenerate graphs. It is straightforward to modify this example so that the resulting
class of graphs has bounded directed expansion.

I Theorem 27. The Dst-problem restricted to classes of digraphs of bounded expansion
parameterised by the solution size k is W [2]-hard.

6 Hardness Results

In this section, we investigate the problems of Dominating Set and Steiner Subgraph
in classes of digraphs of bounded crownless expansion when we require strong connectivity
for the graph induced by the output sets. We will show that both Strongly Connected
Dominating Set and Strongly Connected Steiner Subgraph are W[1]-hard.

The parameterised Strongly Connected Dominating Set problem (Scds) is the
problem to decide whether a given digraph G contains a dominating set D ⊆ V (G) of size
at most k such that the digraph induced by D is strongly connected, where k is an input
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parameter. We prove that Scds parameterised by solution size is W[1]-hard even in graphs of
bounded crownless expansion. The proof is a reduction from the Multicoloured Clique
problem, which is known to be W[1]-hard [27]. Given an integer k and a graph G whose
vertex set is partitioned into k independent sets V1, V2, . . . , Vk called colour classes, the
Multicoloured Clique problem asks whether there exists a k-vertex clique in G with
exactly one vertex from every colour class.

The reduction. Let (G, k) be an instance of Multicoloured Clique and let V1, . . . , Vk

be the colour classes of G. We can assume that Vi is independent for each 1 ≤ i ≤ k. We
construct an instance (H, p) of Strongly Connected Dominating Set, for a parameter p
to be defined, starting from the graph G. For each class Vi we add two vertices s1

i , s
2
i and we

connect each vertex v ∈ Vi to both of these vertices with two edges vs1
i and vs2

i .
For each 1 ≤ i, j ≤ k with i 6= j, let Ei,j be the set of edges of G with one end in Vi and

the other in Vj . For each Ei,j we define Ci,j to be a set of |Ei,j | directed cycles of length
2k + 6 such that they intersect in a single vertex vi,j . Further, we index the set Ci,j by the
elements of Ei,j . For each cycle Ce of

⋃
1≤i,j≤k Ci,j we denote with xe the vertex of Ce such

that the length of the path starting in xe and ending in vi,j is k + 1. Similarly we define ye

to be the vertex such that the length of the path starting in vi,j and ending in ye is k + 1.
We further denote by ze the vertex of Ce in N−(xe).

For each i < j, with the exception of the pair (1, k), we replace each edge e = uv ∈ Ei,j

with u ∈ Vi and v ∈ Vj , with the two directed edges uxe and yev. The pair {V1, Vk} is
connected in the following way. For the pair (1, k) we replace each e′ = u′v′ ∈ E1,k with
u′ ∈ V1 and v′ ∈ Vk with the edges v′xe and yeu

′.
In addition, for each pair of classes {Vi, Vj} we add two vertices s1

i,j , s
2
i,j and draw

edges zes
1
i,j and zes

2
i,j for all Ce ∈ Ci,j . We call the vertices of the set {sl

i,j : l = 1, 2,
1 ≤ i, j ≤ k, i 6= j} ∪ {sl

i : 1 ≤ i ≤ k, l = 1, 2} the top vertices of H.
Lastly, we add one vertex q and we draw qv directed edges for each v in one of the colour

classes and an edge qv′ for each vertex v′ in one of the cycles C ∈
⋃
Ci,j . Since we want to

be able to maintain strong connectivity when q is in D, we must add some edges directed
towards q. In particular we add an edge vq for an arbitrary v in each cycle Ce with e ∈ E1,2.
This concludes the construction of (H, p).

k vertices

Vi Vj

vi,j

xe
ye

ze

s1ij s2ij

Figure 2 Each cycle Ce is connected to s1
ij and s2

ij with two edges incident to ze. All cycles
corresponding to edges of Eij intersect in the vertex vij .

Before we proceed with our proof of the hardness, we will prove that the graph obtained
is of bounded crownless expansion. We need the following easy lemma.
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I Lemma 28 (?). Let G be a graph of density |E(G)|
|V (G)| = D. Let G′ be a graph with

|V (G′)| = |V (G)|+ t and |E(G′)| = |E(G)|+d edges. The density D′ of G′ is greater than D
if and only if D < d/t.

I Lemma 29 (?). Let (G, k) be an instance of Multicoloured Clique and let (H, p) be
the correspondent instance of Strongly Connected Dominating Set constructed as
described above. We prove that ∇̃r(H) ≤ (r − 1)/2 and Sf(r) 64rH.

I Theorem 30. There exists a class C of digraphs of bounded crownless expansion such that
Strongly Connected Dominating Set parameterised by size of the solution is W[1]-hard
on C.

Proof. Let (G, k) be an instance of Multicoloured Clique and let (H, p) be the corres-
pondent instance of Strongly Connected Dominating Set with p = k+

(
k
2
)
(6 + 2k) + 1.

We claim that if a multicoloured clique Kk exists in G then there is strongly connected
dominating set D of size at most p in H. For each uv in Kk, let u′ and v′ be the corresponding
vertices in H and let Cuv be the cycle of Ci,j that they are connected to. Take S to be
the union of V (Cuv) and the vertices u′ and v′ over all uv ∈ E(Kk). Further, we take
D = S ∪ {q}. The size of D is equal to k +

(
k
2
)
(6 + 2k) + 1 which in turn is equal to the

parameter p of the instance (H, p). It is easy to see that D is a dominating set. The vertex q
dominates the vertices included in the colour classes. What is left to check are the top
vertices. By taking a vertex in each class Vi, we ensure that s1

i and s2
i are dominated. In

addition, for each edge uv of Kk, with u ∈ Vi and v ∈ Vj , we add the vertices of the cycle Cuv

which include the vertex zCuv
. Hence, the vertices s1

i,j , s
2
i,j are dominated. It is easy to see

that D is strongly connected. For every i < j, u ∈ Vi and v ∈ Vj , there is a directed path
starting in u and ending in v. The vertices on the cycles are connected through the cycles to
the same paths. The path starting in Vk and ending in Vi ensures the strong connectivity
for these vertices. Since we have added at least one cycle C ∈ C1,2, strong connectivity is
preserved for q ∈ D.

We will now prove that the existence of a strongly connected dominating set D of size at
most p in H implies the existence of a multicoloured clique Kk in G. We know that for each
pair i, j with 1 ≤ i, j ≤ k, D needs to dominate s1

i,j and s2
i,j . Hence D must contain at least

a vertex ze for some Ce ∈ Ci,j . Hence, since D is strongly connected G[D] must contain the
cycle Ce. In addition, for each pair of cycles Ce and Ce′ there must be a path connecting
them. It follows that D contains edges uxe and yeu for some u, v with u ∈ Vi and v ∈ Vj .
Let us assume that G does not contain a multicoloured clique Kk, we will prove that the
|D| > p. We know that for each pair i, j, D contains at least cycle Ce plus two vertices u, v.
Since there does not exist a multicoloured clique in G, there exists at least three vertices
u, v, w ∈ D in distinct colour classes, such that the corresponding vertices u′, v′, w′ of G are
such that u′v′ ∈ E(G) and u′w′ /∈ E(G). Hence, there exists at least one class Vi such that D
contains two vertices in that class. Further, D must dominate all the vertices contained in
cycles that are not in D and the vertex q. As a consequence, the vertex q must be in D and
|D| ≥ k +

(
k
2
)
(6 + 2k) + 2 which is larger than the parameter p. J

Similarly, we show that Strongly Connected Steiner Subgraph is hard.

I Theorem 31 (?). There exists a class C of digraphs of bounded crownless expansion such
that Strongly Connected Steiner Subgraph parameterised by size of the solution is
W[1]-hard on C.
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