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Abstract

We consider the standard ILP Feasibility problem: given an integer linear program of the form
{Ax = b, x > 0}, where A is an integer matrix with k rows and ` columns, x is a vector of `

variables, and b is a vector of k integers, we ask whether there exists x ∈ N` that satisfies Ax = b.
Each row of A specifies one linear constraint on x; our goal is to study the complexity of ILP
Feasibility when both k, the number of constraints, and ‖A‖∞, the largest absolute value of an
entry in A, are small.

Papadimitriou [29] was the first to give a fixed-parameter algorithm for ILP Feasibility under
parameterization by the number of constraints that runs in time ((‖A‖∞ + ‖b‖∞) · k)O(k2). This
was very recently improved by Eisenbrand and Weismantel [9], who used the Steinitz lemma to
design an algorithm with running time (k‖A‖∞)O(k) · ‖b‖2

∞, which was subsequently improved by
Jansen and Rohwedder [17] to O(k‖A‖∞)k · log ‖b‖∞. We prove that for {0, 1}-matrices A, the
running time of the algorithm of Eisenbrand and Weismantel is probably optimal: an algorithm with
running time 2o(k log k) · (` + ‖b‖∞)o(k) would contradict the Exponential Time Hypothesis (ETH).
This improves previous non-tight lower bounds of Fomin et al. [10].

We then consider integer linear programs that may have many constraints, but they need to be
structured in a “shallow” way. Precisely, we consider the parameter dual treedepth of the matrix A,
denoted tdD(A), which is the treedepth of the graph over the rows of A, where two rows are adjacent
if in some column they simultaneously contain a non-zero entry. It was recently shown by Koutecký
et al. [24] that ILP Feasibility can be solved in time ‖A‖2O(tdD(A))

∞ · (k + ` + log ‖b‖∞)O(1). We
present a streamlined proof of this fact and prove that, again, this running time is probably optimal:
even assuming that all entries of A and b are in {−1, 0, 1}, the existence of an algorithm with
running time 22o(tdD(A))

· (k + `)O(1) would contradict the ETH.
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1 Introduction

Integer linear programming (ILP) is a powerful technique used in countless algorithmic
results of theoretical importance, as well as applied routinely in thousands of instances of
practical computational problems every day. Despite the problem being NP-hard in general,
practical ILP solvers excel in solving real-life instances with thousands of variables and
constraints. This can be partly explained by applying a variety of subroutines, often based
on heuristic approaches, that identify and exploit structure in the input in order to apply
the best suited algorithmic strategies. A theoretical explanation of this phenomenon would
of course be hard to formulate, but one approach is to use the paradigm of parameterized
complexity. Namely, the idea is to design algorithms that perform efficiently when certain
relevant structural parameters of the input have moderate values.

In this direction, probably the most significant is the classic result of Lenstra [25], who
proved that ILP Optimization is fixed-parameter tractable when parameterized by the
number of variables `. That is, it can be solved in time f(`) · |I|O(1), where f is some function
and |I| is the total bitsize of the input; we shall use the previous notation throughout the
whole manuscript. Subsequent work in this direction [11, 18] improved the dependence of
the running time on ` to f(`) 6 2O(` log `).

In this work we turn to a different structural aspect and study ILPs that have few
constraints, as opposed to few variables as in the setting considered by Lenstra. Formally,
we consider the parameterization by k, the number of constraints (rows of the input matrix
A), and ‖A‖∞, the maximum absolute value over all entries in A. The situation when the
number of constraints is significantly smaller than the number of variables appears naturally
in many relevant settings. For instance, to encode Subset Sum as an instance of ILP
Feasibility it suffices to introduce a {0, 1}-variable xi for every input number si, and then
set only one constraint:

∑n
i=1 sixi = t, where t is the target value. Note that the fact that

Subset Sum is NP-hard for the binary encoding of the input and polynomial-time solvable
for the unary encoding, explains why ‖A‖∞ is also a relevant parameter for the complexity
of the problem. Integer linear programs with few constraints and many variables arise most
often in the study of knapsack-like and scheduling problems via the concept of so-called
configuration ILPs, in the context of approximation and parameterized algorithms.

Parameterization by the number of constraints. Probably the first to study the complexity
of integer linear programming with few constraints was Papadimitriou [29], who already in
1981 observed the following. Consider an ILP of the standard form {Ax = b, x > 0}, where A
is an integer matrix with k rows (constraints) and ` columns (variables), x is a vector of integer
variables, and b is a vector of integers. Papadimitriou proved that assuming such an ILP is
feasible, it admits a solution with all variables bounded by B = ` · ((‖A‖∞ + ‖b‖∞) · k)2k+1,
which in turn can be found in time O((`B)k+1 · |I|) using simple dynamic programming.
Noting that by removing duplicate columns one can assume that ` 6 (2‖A‖∞ + 1)k, this
yields an algorithm with running time ((‖A‖∞+ ‖b‖∞) · k)O(k2). The approach can be lifted
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to give an algorithm with a similar running time bound also for the ILP Optimization
problem, where instead of finding any feasible solution x, we look for one that maximizes
the value wᵀx for a given optimization goal vector w.

The result of Papadimitriou was recently improved by Eisenbrand and Weismantel [9],
who used the Steinitz Lemma to give an amazingly elegant algorithm solving the ILP
Optimization problem (and thus also the ILP Feasibility problem) for a given instance
{max wᵀx : Ax = b, x > 0} with k constraints in time (k‖A‖∞)O(k) · ‖b‖2

∞. This running
time has been subsequently refined by Jansen and Rohwedder [17] to O(k‖A‖∞)2k · log ‖b‖∞
in the case of ILP Optimization, and to O(k‖A‖∞)k · log ‖b‖∞ in the case of ILP
Feasibility.

From the point of view of fine-grained parameterized complexity, this raises the question
of whether the parametric factor O(k‖A‖∞)k is the best possible. Jansen and Rohwedder [17]
studied this question under the assumption that k is a fixed constant and ‖A‖∞ is the relevant
parameter. They proved that assuming the Strong Exponential Time Hypothesis (SETH),
for every fixed k there is no algorithm with running time (k · (‖A‖∞ + ‖b‖∞))k−δ · |I|O(1),
for any δ > 0. Note that as k is considered a fixed constant, this essentially shows that the
degree of ‖A‖∞ needs to be at least k, but does not exclude algorithms with running time
of the form ‖A‖O(k)

∞ · |I|O(1), or 2O(k) · |I|O(1) when all entries in the input matrix A are
in {−1, 0, 1}. On the other hand, the algorithms of [9, 17] provide only an upper bound of
2O(k log k) · |I|O(1) in the latter setting. As observed by Fomin et al. [10], a trivial encoding of
3SAT as an ILP shows a lower bound of 2o(k) · |I|O(1) for instances with A having entries
only in {0, 1}, b having entries only in {0, 1, 2, 3}, and ` = O(k). This still leaves a significant
gap between the 2o(k) · |I|O(1) lower bound and the 2O(k log k) · |I|O(1) upper bound.

Parameterization by the dual treedepth. A related, recent line of research concerns ILPs
that may have many constraints, but these constraints need to be somehow organized in
a structured, “shallow” way. It started with a result of Hemmecke et al. [13], who gave a
fixed-parameter tractable algorithm for solving the so-called n-fold ILPs. An n-fold ILP is
an ILP where the constraint matrix is of the form

A =


B B . . . B

C 0 · · · 0
0 C · · · 0
...

...
. . .

...
0 0 · · · C

 ,

and the considered parameters are the dimensions of matrices B and C, as well as ‖A‖∞.
The running time obtained by Hemmecke et al. is ‖A‖O(k3)

∞ · |I|O(1) when all these dimensions
are bounded by k. See [13] and the recent improvements of Eisenbrand et al. [8] for more
refined running time bounds expressed in terms of particular dimensions.

The result of Hemmecke et al. [13] quickly led to multiple improvements in the best known
upper bounds for several parameterized problems, where the technique of configuration ILPs
is applicable [20, 21, 22]. Recently, the technique was also applied to improve the running
times of several approximation schemes for scheduling problems [16]. Chen and Marx [6]
introduced a more general concept of tree-fold ILPs, where the “star-like” structure of an
n-fold ILP is generalized to any bounded-depth rooted tree, and they showed that it retains
relevant fixed-parameter tractability results. This idea was followed on by Eisenbrand et al. [8]
and by Koutecký et al. [24], whose further generalizations essentially boil down to considering
a structural parameter called the dual treedepth of the input matrix A. This parameter,
denoted tdD(A), is the smallest number h such that the rows of A can be organized into
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44:4 Tight Lower Bounds for ILP with Few Constraints

a rooted forest of height h with the following property: whenever two rows have non-zero
entries in the same column, one is the ancestor of the other in the forest. As shown explicitly
by Koutecký et al. [24] and somewhat implicitly by Eisenbrand et al. [8], ILP Optimization
can be solved in fixed-parameter time when parameterized by ‖A‖∞ and tdD(A).

Our results. For the parameterization by the number of constraints k, we close the above
mentioned complexity gap by proving the following optimality result.

I Theorem 1. Assuming ETH, there is no algorithm that would solve any ILP feasibility
instance {Ax = b,x > 0} with A ∈ {0, 1}k×`, b ∈ Nk, and `, ‖b‖∞ = O(k log k) in
time 2o(k log k).

This shows that the algorithms of [9, 17] have the essentially optimal running time of
2O(k log k) · |I|O(1) also in the regime where ‖A‖∞ is a constant and the number of constraints
k is the relevant parameter.

The main ingredient of the proof of Theorem 1 is a certain quaint combinatorial con-
struction – detecting matrices introduced by Lindström [26] – that provides a general way
for compressing a system Ax = b with k equalities and bounded targets ‖b‖∞ 6 d into
O(k/ logd k) equalities (with unbounded targets). Each new equality is a linear combination
of the original ones; in fact, just taking O(k/ logd k) sums of random subsets of the original
equalities suffices, but we also provide a deterministic construction taking O(dk/ logd k)
such subsets. By composing such a compression procedure for d = 4 with a standard
reduction from (3,4)SAT – a variant of 3SAT where every variable occurs at most 4
times – to ILP Feasibility, we obtain a reduction that given an instance of (3,4)SAT
with n variables and m clauses, produces an equivalent instance of ILP Feasibility with
k = O((n + m)/ log(n + m)) constraints. Since 2o(k log k) = 2o(n+m), we would obtain a
2o(n+m)-time algorithm for (3,4)SAT, which is known to contradict ETH. We note that
detecting matrices were recently used by two of the authors in the context of different lower
bounds based on ETH [3].

For the parameterization by the dual treedepth, we first streamline the presentation of the
approach of Koutecký et al. [24] and clarify that the parametric factor in the running time is
doubly-exponential in the treedepth. The key ingredient here is the upper bound on `1-norms
of the elements of the Graver basis of the input matrix A, expressed in terms of ‖A‖∞ and
tdD(A). Using standard textbook bounds for Graver bases and the recursive definition of
treedepth, we prove that these `1-norms can be bounded by (2‖A‖∞ + 1)2tdD(A)−1. This,
combined with the machinery developed by Koutecký et al. [24], implies the following.

I Theorem 2. There is an algorithm that solves any given ILP Optimization instance
I = {max wᵀx : Ax = b, l 6 x 6 u} in time ‖A‖2O(tdD(A))

∞ · |I|O(1).

We remark that the running time as outlined above also follows from a fine analysis of the
reasoning presented in [24], but the intermediate step of using tree-fold ILPs in [24] makes
tracking parametric dependencies harder to follow.

We next show that the running time provided by Theorem 2 is probably optimal. Namely,
we have the following lower bound.

I Theorem 3. Assuming ETH, there is no algorithm that would solve any ILP Feasib-
ility instance I = {Ax = b,x > 0}, where all entries of A and b are in {−1, 0, 1}, in
time 22o(tdD(A)) · |I|O(1).

To prove Theorem 3 we reduce from the Subset Sum problem. The key idea is that we
are able to “encode” any positive integer s using an ILP with dual treedepth O(log log s).
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2 Parameterization by the number of constraints

2.1 Detecting matrices
Our main tool is the usage of so-called detecting matrices, first studied by Lindström [26].
They can be explained via the following coin-weighing puzzle: given m coins with weights
in {0, 1, . . . , d − 1}, we want the deduce the weight of each coin with as few weighings as
possible. We have a spring scale, so in one weighing we can exactly determine the sum of
weights of any subset of the coins. While the naive strategy – weigh coins one by one – yields
m weighings, it is actually possible to find a solution using O(m/ logdm) weighings. This
number is asymptotically optimal, as each weighing provides Θ(logm) bits of information,
so fewer weighings would not be enough to distinguish all dm possible weight functions.

Probably the easiest way to construct such a strategy is using the probabilistic method. It
turns out that querying O(m/ logdm) random subsets of coins with high probability provides
enough information to determine the weight of each coin. This is because a random subset
distinguishes any of the O(dm · dm) non-equal pairs of weight functions with probability at
least 1

2 , but pairs of weight functions that are close to each other are few, while pairs of
weight functions that are far from each other have a significantly better probability than 1

2
of being distinguished. Note that thus we construct a non-adaptive strategy: the subsets
of coins to be weighed can be determined and fixed at the very start. We refer the reader
to e.g. [12, Corollary 2] for full details, and we remark that the last two authors recently
used detecting matrices in the context of algorithmic lower bounds for the Multicoloring
problem [3].

Viewing each tuple of coin weights as a vector v ∈ {0, . . . , d− 1}m, each weighing returns
the value aᵀv for the characteristic vector a ∈ {0, 1}m of some subset of coins. Thus k
weighings give the vectors of valuesMv for some {0, 1}-matrixM with k rows and m columns.
An equivalent formulation is then to ask for a {0, 1}-matrix M with m columns, such that
knowing the vector Mv uniquely determines any v ∈ {0, . . . , d− 1}m. Such an M is called
a d-detecting matrix and we seek to minimize the number of rows/weighings k it can have.
Lindström gave a deterministic construction and proved the bound on k to be tight. See also
Bshouty [4] for a more direct and general construction using Fourier analysis.

I Theorem 4 ([26]). For all d,m ∈ N, there is a {0, 1}-matrix M with m columns and
k 6 2m log d

logm (1+o(1)) rows such that for any u,v ∈ {0, . . . , d−1}m, if Mu = Mv then u = v.
Moreover, such matrix M can be constructed in time polynomial in dm.

In other words, this allows us to check m equalities between values in {0, . . . , d − 1}
(i.e., corresponding coordinates of vectors u and v) using only O(m/ logdm) comparisons
of sums of certain subsets of these values (i.e., coordinates of vectors Mu and Mv). For
an ILP instance Ax = b with ‖b‖∞ 6 d and m constraints, we may use this idea to
check the equality on each of the m coordinates of Ax using only O(m/ logdm) constraints.
Indeed, the intuition is that if M is a d-detecting matrix, then we can rewrite Ax = b as
MAx = Mb and check the latter – which involves O(m/ logdm) {0, 1}-combinations of the
original constraints.

This is the core of our approach. However, there is one subtle caveat: in order to claim
that the assertions Ax = b and MAx = Mb are equivalent, we would need to ensure that
‖Ax‖∞ 6 d for an arbitrary vector x ∈ Nn. One solution is to use the fact that a uniformly
random {0, 1}-matrix has a stronger “detecting” property: it will, with high probability,
distinguish all vectors of low `1-norm, as shown by Grebinski and Kucherov [12].

STACS 2019
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I Lemma 5 ([12]). For all d,m ∈ N, there exists a {0, 1}-matrix M with m columns and
k 6 4m log(d+1)

logm (1 + o(1)) rows such that for any u,v ∈ Nm satisfying ‖u‖1, ‖v‖1 6 dm, if
Mu = Mv then u = v. Moreover, such matrix M can be computed in randomized polynomial
time (in dm).

Note that in Lemma 5, we do not actually have to assume bounds on one of the two
vectors: it suffices to assume u ∈ Nm and ‖v‖1 6 dm, because simply adding a single row full
of ones to M guarantees ‖u‖1 = ‖v‖1. Therefore as long as A is non-negative and ‖b‖∞ 6 d,
it suffices to checkMAx = Mb. Unfortunately, to the best of our knowledge, no deterministic
construction is known for Lemma 5. We remark that Bshouty gave a deterministic, but
adaptive detecting strategy [4]; that is, in terms of coin weighing, consecutive queries on
coins may depend on results of previous weighings.

Instead, we show that a different, recursive construction by Cantor and Mills [5] for
2-detecting matrices can be adapted so that no bounds (other than non-negativity) are
assumed for one of the vectors, while the other must have all coefficients in {0, 1, . . . , d− 1}.
The proof is deferred to the full version [23], which we mark with (♠).

I Lemma 6 (♠). For all d,m ∈ N, there exists a {0, 1}-matrix M with m columns and
k 6 md log d

logm (1 + o(1)) rows such that for any u ∈ Nm and v ∈ {0, 1, . . . , d−1}m, ifMu = Mv
then u = v. Moreover, such matrix M can be computed in time polynomial in dm.

We remark that the bounds in Theorem 4 and Lemma 5 were also shown to be tight.
Lemma 6 gives matrices that are also d-detecting, in particular, hence the bound is tight for
d = 2 (and tight up to an O(d) factor in general).

Note also that we can relax the non-negativity constraint to requiring that u ∈ Zm is any
integer with all entries lower bounded by −bd2c and v ∈ {−bd2c, . . . , b

d
2c}

m. This is because
Mu = Mv is equivalent to M(u + c) = M(v + c) where c is the constant bd2c vector. This
allows to use the same detecting matrix for such pairs of vectors as well. However, note that
some lower bound on the coefficients of u is necessary, since even if we fix v = 0, the matrix
M has a non-trivial kernel, giving many non-zero vectors u ∈ Zm satisfying Mu = Mv.

2.2 Coefficient reduction
In further constructions, we will need a way to reduce coefficients in a given ILP Feasibility
instance with a nonnegative constraint matrix A to {0, 1}. We now prove that this can be
done in a standard way by replacing each constraint with O(log ‖A‖∞) constraints that check
the original equality bit by bit. Here and throughout this paper we use the convention that
for a vector x, by xi we denote the i-th entry of x.

I Lemma 7 (Coefficient Reduction). Consider an instance {Ax = b,x > 0} of ILP
Feasibility, where b ∈ Nk and A is a nonnegative integer matrix with k rows and
` columns. In polynomial time, this instance can be reduced to an equivalent instance
{A′x = b′,x > 0} of ILP Feasibility where A′ is a {0, 1}-matrix with k′ = O(k log ‖A‖∞)
rows and `′ = `+O(k log ‖A‖∞) columns, and b′ ∈ Nk′ is a vector with ‖b′‖∞ = O(‖b‖∞).

Proof. Denote δ = dlog(1 + ‖A‖∞)e = O(log ‖A‖∞). Consider a single constraint aᵀx = b,
where a ∈ N` is a row of A and b ∈ N is an entry of b. Let ai[j] be the j-th bit of ai, the
i-th entry of vector a; similarly for b. By choice of δ, ‖a‖∞ 6 2δ − 1, so each entry of a has
up to δ binary digits. Now, for x ∈ Zn, the constraint aᵀx = b is equivalent to

δ−1∑
j=0

2j
(

n∑
i=1

ai[j]xi

)
= b .
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We rewrite this equation into δ equations, each responsible for verifying one bit. For this,
we introduce δ − 1 carry variables y0, y1, . . . , yδ−2 and emulate the standard algorithm for
adding binary numbers by writing equations

yj−1 +
n∑
i=1

ai[j]xi = b[j] + 2yj for j = 0, . . . , δ − 1,

where y−1 and yδ−1 are replaced with 0 and b[δ−1] is replaced with the number whose binary
digits are (from the least significant): b[δ−1], b[δ], b[δ+1], . . . (we do this because b may have
more than δ digits). To get rid of the variable yj on the right-hand side, we let B = 2dlog be

and introduce two new variables y′j , y′′j for each carry variable yj , with constraints

yj + y′j = B and yj + y′′j = B for j = 0, . . . , δ − 2,

which is equivalent to y′j = y′′j = B − yj . Hence the previous equations can be replaced by

yj−1 +
n∑
i=1

ai[j]xi + y′j + y′′j = b[j] + 2B for j = 0, . . . , δ − 1.

We thus replace each row of A with 2(δ − 1) + δ rows and 3(δ − 1) auxiliary variables. J

2.3 Proof of Theorem 1
The Exponential Time Hypothesis states that for some 0 < c < 1, 3SAT with n variables
cannot be solved in time O?(2cn) (the O? notation hides polynomial factors). It was intro-
duced by Impagliazzio, Paturi, and Zane [15] and developed by Impagliazzo and Paturi [14]
to become a central conjecture for proving tight lower bounds for the complexity of various
problems. While the original statement considers the parameterization by the number of
variables, the Sparsification Lemma [14] allows us to assume that the number of clauses is
linear in the number of variables, and hence we have the following.

I Theorem 8 (see e.g. Theorem 14.4 in [7]). Unless ETH fails, there is no algorithm for
3SAT that runs in time 2o(n+m), where n and m denote the numbers of variables and clauses,
respectively.

We now proceed to the proof of Theorem 1. Our first step is to decrease the number of
occurrences of each variable. The (3,4)SAT is the variant of 3SAT where each clause uses
exactly 3 different variables and every variable occurs in at most 4 clauses. Tovey [30] gave a
linear reduction from 3SAT to (3,4)SAT, i.e., an algorithm that, given an instance of 3SAT
with n variables and m clauses, in linear time constructs an equivalent instance of (3,4)SAT
with O(n+m) variables and clauses. In combination with Theorem 8 this yields:

I Corollary 9. Unless ETH fails, there is no algorithm for (3,4)SAT that runs in time
2o(n+m), where n and m denote the numbers of variables and clauses, respectively.

We now reduce (3,4)SAT to ILP Feasibility. A (3, 4)SAT instance ϕ with n variables
and m clauses can be encoded in a standard way as an ILP Feasibility instance with
O(n+m) variables and constraints as follows. For each formula variable v we introduce two
ILP variables xv and x¬v with a constraint xv + x¬v = 1 (hence exactly one of them should
be 1, the other 0). For each clause c we introduce two auxiliary slack variables yc, zc and two
constraints: yc + zc = 2 and x`1 + x`2 + x`3 + yc = 3, where `1, `2, `3 are the three literals
in c. Since yc, zc will not appear in any other constraints, the first constraint is equivalent to
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ensuring that yc 6 2, so the second constraint is equivalent to x`1 + x`2 + x`3 > 1. This way,
one can reduce in polynomial time a (3, 4)SAT instance ϕ with n variables and m clauses
into an equivalent instance {x ∈ Z` | Ax = b,x > 0} of ILP feasibility where:

the constraint matrix A has k := n+ 2m rows and ` := 2n+ 2m columns;
each entry in A is zero or one;
each row and column of A contains at most 4 non-zero entries; and
the target vector b has all entries equal to 1, 2, or 3;

We now reduce the obtained instance to another ILP Feasibility instance containing
only O((n+m)/ log(n+m)) constraints. Let M be the detecting matrix given by Lemma 6
for d = 4 and the required number of columns (m in the notation of the statement of
Lemma 6) equal to the number or rows (constraints) in A, which is k. Then for any x ∈ N`,
we have Ax ∈ Nk (since A is non-negative) and b ∈ {0, . . . , d − 1}k, hence by Lemma 6
we have that Ax = b if and only if MAx = Mb. We conclude that the ILP Feasibility
instance {x ∈ Z` | A′x = b′,x > 0} with A′ = MA and b′ = Mb is equivalent to the
previous instance {x ∈ Z` | Ax = b,x > 0}.

The new instance has the same number `′ = ` = 2n + 2m of variables, but only
k′ = O(k/ log k) = O((n + m)/ log(n + m)) constraints. The entries of b′ = Mb are non-
negative and bounded by k · ‖b‖∞ = O(n + m). Similarly, the entries of A′ = MA are
non-negative, and since every column of A has at most 4 non-zero entries, we get ‖A′‖∞ 6 4.

To further reduce ‖A′‖∞, we apply Lemma 7, replacing each row of A′ by a constant
number of {0, 1}-rows and auxiliary variables. This way, we reduced in polynomial time a
(3, 4)SAT instance ϕ with n variables and m clauses into an equivalent ILP Feasibility
instance {x ∈ Z`′′ | A′′x = b′′,x > 0}, where A′′ is a {0, 1}-matrix with `′′ = `′ +O(k′) =
O(n+m) columns and k′′ = Θ(k′) = Θ((n+m)/ log(n+m)) rows, while ‖b′′‖∞ = O(n+m).
Hence `′′, ‖b′′‖∞ = O(k′′ log k′′).

We are now in position to finish the proof of Theorem 1. Suppose there is an algorithm
for ILP Feasibility that works in time 2o(k′′ log k′′) on instances with A ∈ {0, 1}k′′×`′′

and `′′, ‖b′′‖∞ = O(k′′ log k′′). Then applying the above reduction would solve (3,4)SAT
instances with N = n + m variables and clauses in time 2o((N/ logN)·log(N/ logN)) = 2o(N),
which contradicts ETH by Corollary 9. This concludes the proof of Theorem 1.

3 Parameterization by the dual treedepth

3.1 Preliminaries
Treedepth and dual treedepth. For a graph G, the treedepth of G, denoted td(G), can be
defined recursively as follows:

td(G) =



1 if G has one vertex;

max(td(G1), . . . , td(Gp)) if G is disconnected and G1, . . . , Gp

are its connected components;

1 + minu∈V (G) td(G− u) if G has more than one vertex
and is connected.

(1)

See e.g. [28]. Equivalently, treedepth is the smallest possible height of a rooted forest F on
the same vertex set as G such that whenever uv is an edge in G, then u is an ancestor of v
in F or vice versa.
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Since we focus on constraints, we consider, for a matrix A, the constraint graph or dual
graph GD(A), defined as the graph with rows of A as vertices where two rows are adjacent if
and only if in some column they simultaneously contain a non-zero entry. The dual treedepth
of A, denoted tdD(A), is the treedepth of GD(A).

The recursive definition (1) is elegantly reinterpreted in terms of row removals and
partitioning into blocks as follows. A matrix A is block-decomposable if after permuting its
rows and columns it can be presented in block-diagonal form, i.e., rows and columns can
be partitioned into intervals R1, . . . , Rp and C1, . . . , Cp, for some p > 2, such that non-zero
entries appear only in blocks B1, . . . , Bp, where Bi is the block of entries at intersections
of rows from Ri with columns from Ci. It is easy to see that A is block-decomposable if
and only if GD(A) is disconnected, and the finest block decomposition of A corresponds
to the partition of GD(A) into connected components. The blocks B1, . . . , Bp in this finest
partition are called the block components of A – they are not block-decomposable. Then the
recursive definition of treedepth provided in (1) translates to the following definition of the
dual treedepth of a matrix A:

tdD(A) =



1 if A has one row;

max(tdD(B1), . . . , tdD(Bp)) if A is block-decomposable and
B1, . . . , Bp are its block components;

1 + min
aᵀ : rows of A

tdD(A\aᵀ) if A has more than one row and
is not block decomposable.

(2)

Here A\aᵀ is the matrix obtained from A by removing the row aᵀ. Intuitively, dual treedepth
formalizes the idea that a block-decomposable matrix is as hard as the hardest of its block
components, and that adding a single row makes it a bit harder, but not uncontrollably so.

Graver bases. Two integer vectors a,b ∈ Zn are sign-compatible if ai · bi > 0 for all
i = 1, . . . , n. For a,b ∈ Zn we write a v b if a and b are sign-compatible and |ai| 6 |bi| for
all i = 1, . . . , n. Then v is a partial order on Zn; we call it the conformal order . Note that
v has a unique minimum element, which is the zero vector 0.

For a matrix A, the Graver basis of A, denoted G(A) is the set of conformally minimal
vectors in (kerA ∩ Zn) − {0}. It is easy to see by Dickson’s lemma that (Zn,v) is a well
quasi-ordering, hence there are no infinite antichains with respect to the conformal order. It
follows that the Graver basis of every matrix is finite, though it can be quite large. For a
matrix A and p ∈ [1,∞], we denote gp(A) = maxu∈G(A) ‖u‖p.

3.2 Upper bound
We start with the upper bound for the dual treedepth parameterization, that is, Theorem 2.
As explained in the introduction, this result easily follows from the work of Koutecký et
al. [24] and the following lemma bounding g1(A) in terms of tdD(A) and ‖A‖∞, for any
integer matrix A.

I Lemma 10. For any matrix A with integer entries, it holds that

g1(A) 6 (2‖A‖∞ + 1)2tdD(A)−1.

Before we prove Lemma 10, let us sketch how using the reasoning from Koutecký et
al. [24] one can derive Theorem 2. Using the bound on the `1-norm of vectors in the Graver
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basis of A, we can construct a Λ-Graver-best oracle for the considered ILP Optimization
instance. This is an oracle that given any feasible solution x, returns another feasible solution
x′ that differs from x only by an integer multiple not larger than Λ of a vector from the
Graver basis of A, and among such solution achieves the best goal value of wᵀx′. Such a
Λ-Graver-best oracle runs in time (‖A‖∞ · g1(A))O(twD(A)) · |I|O(1), where twD(A) is the
treewidth of the constraint graph GD(A), which is always upper bounded by tdD(A) + 1. See
the proof of Lemma 25 and the beginning of the proof of Theorem 3 in [24]; the reasoning
there is explained in the context of tree-fold ILPs, but it uses only boundedness of the dual
treedepth of A. Once a Λ-Graver-best oracle is implemented, we can use it to implement
a Graver-best oracle (Lemma 14 in [24]) within the same asymptotic running time, and
finally use the main theorem – Theorem 1 in [24] – to obtain the algorithm promised in
Theorem 2 above.

We now proceed to the proof of Lemma 10.

Proof of Lemma 10. We proceed by induction on the number of rows of A using the recursive
definition (2). For the base case – when A has one row – we may use the following well-known
bound.

B Claim 11 (Lemma 3.5.7 in [27]). If A is an integer matrix with one row, then

g1(A) 6 2‖A‖∞ + 1.

We note that the original bound of 2‖A‖∞ − 1, stated in [27], works only for non-zero A.
We now move to the induction step, so suppose the considered matrix A has more than

one row. We consider two cases: either A is block-decomposable, or it is not.
First suppose that A is block-decomposable. Let B1, . . . , Bp be the block components

of A, and let R1, . . . , Rp and C1, . . . , Cp be the corresponding partitions of rows and columns
of A into segments, respectively. Observe that integer vectors u from kerA are exactly
vectors of the form ( v(1) | v(2) | . . . | v(p) ), where each v(i) is an integer vector of length
|Ci| that belongs to kerBi. It follows that G(A) consists of vectors of the following form: for
some i ∈ {1, . . . , p} put a vector from G(Bi) on coordinates corresponding to the columns of
Ci, and fill all the other entries with zeroes. Consequently, we have

g1(A) 6 max
i=1,...,p

g1(Bi). (3)

On the other hand, by (2) we have

tdD(A) = max
i=1,...,p

tdD(Bi). (4)

Since each matrix Bi has fewer rows than A, we may apply the induction assumption to
matrices B1, . . . , Bp, thus inferring by (3) and (4) that

g1(A) 6 max
i=1,...,p

g1(Bi) 6 max
i=1,...,p

(2‖Bi‖∞ + 1)2tdD(Bi)−1 6 (2‖A‖∞ + 1)2tdD(A)−1.

We are left with the case when A is not block-decomposable. For this, we use the following
claim, which is essentially Lemma 3.7.6 and Corollary 3.7.7 in [27]. The statement there is
slightly different, but the same proof in fact proves the following bound; for convenience, we
repeat the argument in the full version.

B Claim 12 (♠). Let A be an integer matrix and let aᵀ be a row of A. Then

g1(A) 6 (2‖aᵀ‖∞ + 1) · g1(A\aᵀ) · g∞(A\aᵀ).
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Suppose then that A is not block-decomposable. By (2), there exists a row aᵀ of A such
that tdD(A\aᵀ) = tdD(A)− 1. Then, by Claim 12 and the inductive assumption, we have

g1(A) 6 (2‖aᵀ‖∞ + 1) · g1(A\aᵀ) · g∞(A\aᵀ) 6 (2‖A‖∞ + 1) · (g1(A\aᵀ))2

6 (2‖A‖∞ + 1)1+2·(2tdD(A)−1−1) = (2‖A‖∞ + 1)2tdD(A)−1.

This concludes the proof. J

3.3 Lower bound

We now move to the proof of the lower bound, Theorem 3. We will reduce from the Subset
Sum problem: given non-negative integers s1, . . . , sk, t, encoded in binary, decide whether
there is a subset of numbers s1, . . . , sk that sums up to t. The standard NP-hardness reduction
from 3SAT to Subset Sum takes an instance of 3SAT with n variables and m clauses, and
produces an instance (s1, . . . , sk, t) of Subset Sum with a linear number of numbers and
each of them of linear bit-length, that is, k 6 O(n+m) and 0 6 s1, . . . , sk, t < 2δ, for some
δ 6 O(n+m). See e.g. [1] for an even finer reduction, yielding lower bounds for Subset Sum
under Strong ETH. By Theorem 8, this immediately implies an ETH-based lower bound for
Subset Sum.

I Lemma 13. Unless ETH fails, there is no algorithm for Subset Sum that would solve
any input instance (s1, . . . , sk, t) in time 2o(k+δ), where δ is the smallest integer such that
s1, . . . , sk, t < 2δ.

The idea for our reduction from Subset Sum to ILP Feasibility is as follows. Given
an instance (s1, . . . , sk, t), we first construct numbers s1, . . . , sk using ILPs P1, . . . , Pk, where
each Pi uses only constant-size coefficients and has dual treedepth O(log δ). The ILP Pi will
have a designated variable zi and two feasible solutions: one that sets zi to 0 and one that
sets it to si. Similarly we can construct an ILP Q that forces a designated variable w to be set
to t. Having that, the whole input instance can be encoded using one additional constraint:
z1 + . . .+ zk − w = 0. To construct each Pi, we first create δ variables y0, y1, . . . , yδ−1 that
are either all evaluated to 0 or all evaluated to 20, 21, . . . , 2δ−1, respectively; this involves
constraints of the form yj+1 = 2yj . Then the number si (or 0) can be obtained on a new
variable zi using a single constraint that assembles the binary encoding of si. The crucial
observations is that the constraint graph GD(Pi) consists of a path on δ vertices and one
additional vertex, and thus has treedepth O(log δ).

We start implementing this plan formally by giving the construction for a single number s.

I Lemma 14. For all positive integers δ and s satisfying 0 6 s < 2δ, there exists an instance
P = {Ax = b, x > 0} of ILP Feasibility with the following properties:

A has all entries in {−1, 0, 1, 2} and tdD(A) 6 O(log δ);
b is a vector with all entries in {0, 1}; and
P has exactly two solutions x(1) and x(2), where x(1)

1 = 0 and x(2)
1 = s.

Moreover, the instance P can be constructed in time polynomial in δ + log s.

Proof. We shall use n+ 2 variables, denoted for convenience by y0, y1, . . . , yδ−1, z, u; these
are arranged into the variable vector x of length δ+ 2 so that x1 = z. Letting b0, b1, . . . , bδ−1
be the consecutive digits of the number s in the binary encoding, the instance P then looks
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as follows:

u + y0 = 1
2y0 − y1 = 0

2y1 − y2 = 0
. . . . . .

...
2yδ−2 − yδ−1 = 0

b0y0 + b1y1 + . . . + bδ−2yδ−2 + bδ−1yδ−1 − z = 0

Since 0 6 u 6 1, it is easy to see that P has exactly two solutions in nonnegative integers:
If one sets u = 1, then all the other variables need to be set to 0.
If one sets u = 0, then yi needs to be set to 2i for all i = 0, 1, . . . , δ − 1, and then z needs
to be set to s by the last equation.

It remains to analyze the dual treedepth of A. Observe that the constraint graph GD(A)
consists of a path of length δ, plus one vertex corresponding to the last equation that may
have an arbitrary neighborhood within the path. Since the path on δ vertices has treedepth
dlog(δ + 1)e, it follows that GD(A) has treedepth at most 1 + dlog(δ + 1)e 6 O(log δ). J

We note that in the above construction one may remove the variable u and replace the
constraint u+ y0 = 1 with y0 = 1, thus forcing only one solution: the one that sets the first
variable to s. This will be used later.

We are ready to show the core part of the reduction.

I Lemma 15. An instance (s1, . . . , sk, t) of Subset Sum with 0 6 si, t < 2δ for i = 1, . . . , k,
can be reduced in polynomial time to an equivalent instance {Ax = b, x > 0} of ILP
Feasibility where the entries of A are in {−1, 0, 1, 2}, entries of b are in {0, 1}, and
tdD(A) 6 O(log δ).

Proof. For each i ∈ {1, . . . , k}, apply Lemma 14 to construct a suitable instance Pi =
{Aix = bi, x > 0} of ILP Feasibility for s = si. Also, apply Lemma 14 to construct a
suitable instance Q = {Cx = d, x > 0} of ILP Feasibility for s = t, and modify it as
explained after the lemma’s proof so that there is only one solution, setting the first variable
to t. Let

A =



cᵀ

A1
A2

. . .
Ak

C


where

cᵀ = ( 1 0 . . . 0 | 1 0 . . . 0 | . . . | 1 0 . . . 0 | (−1) 0 . . . 0 )

with consecutive blocks of lengths equal to the numbers of columns of A1, . . . , Ak, and C,
respectively. Observe that

tdD(A) 6 1 + max(tdD(A1), . . . , tdD(Ak), tdD(C)) = O(log δ).

Further, let

bᵀ = ( 0 | bᵀ
1 | . . . | bᵀ

k | dᵀ ).



D. Knop, Mi. Pilipczuk, and M. Wrochna 44:13

We now claim that the ILP {Ax = b, x > 0} is feasible if and only if the input instance of
Subset Sum has a solution. Indeed, if we denote by z1, . . . , zk, w the variables corresponding
to the first columns of blocks A1, . . . , Ak, C, respectively, then by Lemma 14 within each
block Ai there are two ways of evaluating variables corresponding to columns of Ai: one
setting zi = 0 and second setting zi = si. However, there is only one way of evaluating
the variables corresponding to columns of C, which sets w = t. The first row of A then
constitutes the constraint z1 + . . .+ zk −w = 0, which can be satisfied by setting zi-s and w
as above if and only if some subset of the numbers s1, . . . , sk sums up to t. J

It remains to reduce the entries in A equal to 2, simply by duplicating variables.

I Lemma 16 (♠). An instance {Ax = b, x > 0} of ILP Feasibility where the entries of
A are in {−1, 0, 1, 2} and the entries of b are in {0, 1} can be reduced in polynomial time to
an equivalent instance {A′x = b′, x > 0} of ILP Feasibility with all entries in {−1, 0, 1}
and tdD(A′) 6 tdD(A) + 1.

Theorem 3 now follows by observing that combining the reductions of Lemma 15 and
Lemma 16 with a hypothetical algorithm for ILP Feasibility on {−1, 0, 1}-input with
running time 22o(tdD(A)) · |I|O(1) would yield an algorithm for Subset Sum with running time
2o(k+δ), contradicting ETH by Lemma 13.

4 Conclusions

We conclude this work by stating two concrete open problems in the topic.
First, apart from considering the standard form {Ax = b, x > 0}, Eisenbrand and

Weismantel [9] also studied the more general setting of ILPs of the form {Ax = b, l 6 x 6 u},
where l and u are integer vectors. That is, instead of only requiring that every variable is
nonnegative, we put an arbitrary lower and upper bound on the values it can take. Note that
such lower and upper bounds can be easily emulated in the standard formulation using slack
variables, but this would require adding more constraints to the matrix A; the key here is
that we do not count these lower and upper bounds in the total number of constraints k. For
this more general setting, Eisenbrand and Weismantel [9] gave an algorithm with running
time kO(k2) · ‖A‖O(k2)

∞ · |I|O(1), which boils down to 2O(k2 log k) · |I|O(1) when ‖A‖∞ = O(1).
(A typo leading to a 2O(k2) · |I|O(1) bound has been fixed in later versions of the paper). Is
this running time optimal or could the 2O(k2 log k) factor be improved?

Second, in this work we studied the parameter dual treedepth of the constraint matrix A,
but of course one can also consider the primal treedepth. It can be defined as the treedepth
of the graph over the columns (variables) of A, where two columns are adjacent if they
have a non-zero entry in same row (the variables appear simultaneously in some constraint).
It is known that ILP Feasibility and ILP Optimization are fixed-parameter tractable
when parameterized by ‖A‖∞ and tdP (A), that this, there is an algorithm with running
time f(‖A‖∞, tdP (A)) · |I|O(1), for some function f [24]. Again, the key ingredient here
is an inequality on `∞-norms of the elements of the Graver basis of any integer matrix A:
g∞(A) 6 h(‖A‖∞, tdP (A)) for some function h. Unfortunately, the known proofs of this fact1,
see [2]2, use the theory of well quasi-orderings (in a highly non-trivial way) and consequently

1 Very recently, Klein [19] provided an alternative constructive proof for 2-stage and multistage IPs.
2 The work of Aschenbrenner and Hemmecke [2] considers the setting ofmulti-stage stochastic programming,
which is related to primal treedepth in the same way as tree-fold ILPs are related to dual treedepth.
The translation between MSSP and primal treedepth was formulated by Koutecký et al. [24].
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give no direct bounds on the function h. A good upper bound on h would directly lead to a
correspondingly efficient FPT algorithm for ILP Optimization parameterized by ‖A‖∞
and tdP (A). However, we conjecture that the function h has to be non-elementary in tdP (A).
If this was the case, an example could likely be used to prove a non-elementary lower bound
under ETH for ILP Feasibility under that tdP (A) parameterization (with ‖A‖ = O(1)).
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