
A Characterization of Subshifts with Computable
Language
Emmanuel Jeandel
LORIA, Campus Scientifique - BP 239, 54506 Vandoeuvre-les-Nancy, France
emmanuel.jeandel@loria.fr

Pascal Vanier
Laboratoire d’Algorithmique, Complexité et Logique, Université de Paris-Est, LACL, UPEC, France
pascal.vanier@lacl.fr

Abstract
Subshifts are sets of colorings of Zd by a finite alphabet that avoid some family of forbidden patterns.
We investigate here some analogies with group theory that were first noticed by the first author.
In particular we prove several theorems on subshifts inspired by Higman’s embedding theorems of
group theory, among which, the fact that subshifts with a computable language can be obtained as
restrictions of minimal subshifts of finite type.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases subshifts, computability, Enumeration degree, Turing degree, minimal
subshifts

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.40

Funding Pascal Vanier : Sponsored by grant TARMAC ANR 12 BS02 007 01.

Acknowledgements The authors wish to thanks the anonymous referees for many helpful remarks
and improvements.

1 Introduction

Subshifts are colorings of Zd by some finite alphabet Σ avoiding some family of forbidden
patterns. They are closed shift invariant subsets of ΣZd . The most commonly studied family
of subshifts are the subshifts of finite type (SFTs), those that can be defined via a finite
family of forbidden patterns, which correspond to the sets of colorings by Wang tilesets.

It is well known since the work of Berger [5] that many problems or invariants in tiling
theory, and therefore for subshifts of finite type, are not computable. A recent trend in
multidimensional symbolic dynamics initiated by Hochman [16, 17] shows that computability
is not a fluke but an integral part of the study of subshifts. Indeed, many recent results show
precise correspondences between computability notions and invariants for subshifts [25, 19].
This has led to the study of another class of subshift, effective (or effectively closed) subshifts:
subshifts which are defined by a recursively enumerable family of forbidden patterns.

Of particular interest is the embedding (simulation) theorem by Hochman [16], extended
by Aubrun-Sablik and Durand-Romashchenko-Shen [2, 10], that characterizes effectively
closed subshifts, as projections of higher dimensional subshifts of finite type,

This theorem is strikingly similar to theorems in combinatorial group theory and first
order logic. The Higman embedding theorem [14] characterizes recursively presented groups,
i.e. groups given by a computable set of relators, as subgroups of finitely presented groups, i.e.
groups given by a finite set of relators. The Kleene-Craig-Vaught [21, 8] theorem characterizes
recursively axiomatisable theories, i.e. theories given by a computable set of axioms, as
syntactic restrictions of finitely axiomatisable theories, i.e. theories given by a finite set of
axioms.

© Emmanuel Jeandel and Pascal Vanier;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 40; pp. 40:1–40:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/188358667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-7236-2906
mailto:emmanuel.jeandel@loria.fr
https://orcid.org/0000-0001-9207-9112
mailto:pascal.vanier@lacl.fr
https://doi.org/10.4230/LIPIcs.STACS.2019.40
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 A Characterization of Subshifts with Computable Language

Based on this analogy, the first author described a general theory [18] in which many
theorems of these three fields can be formulated using an unified framework, and a dictionary
between similar notions can be established. The framework is quite abstract and it cannot
be used to prove the embedding theorems above for all these theories at once: they rely after
all in each case on properties of an encoding of Turing machines, and this encoding heavily
depends on the theory under consideration. It suggests nonetheless that there is more than a
similarity between these theorems, and that something deeper is to be found.

In this article, we study this by providing analogues in symbolic dynamics of the other
embedding theorems of Higman:

The relative Higman theorem [15] which, as its name indicates, is a relativized version of
the classic Higman theorem
The Boone-Higman-Thompson [6, 26] theorem that characterizes groups with computable
word problem as subgroups of simple recursively presented groups.

The first theorem is presented in section 3.2. It is very similar to a theorem in a previous
article by Aubrun and Sablik [1]. As we will explain, their article suffers however from
unfortunate mistakes and the theorem they proved is regrettably wrong.

The second theorem is presented in section 3.3. The Boone-Higman-Theorem in our
context, becomes: “A subshift has a computable language iff it is the restriction of a minimal
subshift, itself a restriction of a subshift of finite type”. Using recent results from Durand
and Romashchenko [11], this can be simplified to “A subshift has a computable language iff
it is the restriction of a minimal subshift of finite type”. Whether such a simplification is
possible for groups (i.e. whether any group with a computable word problem is a subgroup
of a finitely presented simple group) is a long standing open question.

The article is organized as follows. We first start with defining the relevant notions
from symbolic dynamics, computability theory, and group theory. We will then explain how
concepts from group theory translate into notions of symbolic dynamics. The remaining
part is devoted to the proof of the three Higman theorems for subshifts: the classic Higman
theorem (a slight reformulation of the Hochman-Aubrun-Sablik-Durand-Romashchenko-Shen
theorem), the relative Higman theorem and the Boone-Higman-Thompson theorem.

2 Preliminary definitions

2.1 Subshifts
The d-dimensional full shift is the set ΣZd where Σ is a finite alphabet whose elements
are called letters or symbols. Each element of the full shift may be seen as a coloring of
Zd with the letters of Σ. For v ∈ Zd, the shift function σv : ΣZd → ΣZd is defined by
σv(xz) = xz+v. The full shift equipped with the distance d(x, y) = 2−min{‖v‖ | v∈Zd,xv 6=yv}
forms a compact metric space on which the shift functions act as homeomorphisms. A closed
shift invariant subset X of ΣZd is called a subshift or shift. An element of a subshift X is
called a configuration or point.

Subshifts are exactly the subsets of ΣZd that avoid some family of forbidden patterns.
A pattern of shape P , where P is a 4-connected1 finite subset of Zd, is an element of ΣP

or alternatively a function p : P → Σ. A configuration x avoids a pattern p of shape P if
∀z ∈ Zd, p 6= σz (x)|P .

1 The exact notion of connectedness we use is irrelevant. However it is crucial in what follows to look
only at connected patterns.

E. Jeandel and P. Vanier 40:3

Subshifts can thus be defined by some family of patterns they avoid. When a subshift can
be defined this way by a finite family, it is called a subshift of finite type. When a subshift can
be defined by a recursively enumerable family of forbidden patterns, it is called an effectively
closed subshift.

If X is a subshift, we denote by L (X) its language, i.e. the set of patterns that appear
somewhere in one of its points.

I Example 1. The set X1 of all biinfinite words over the alphabet {a, b} that do not contain
the word aa is, by definition, a subshift. It is defined by the set of forbidden patterns
F = {aa}. Another possible defining set of forbidden patterns is F = {aab, aaa}

I Example 2. The set X2 of all biinfinite words over the alphabet {a, b} where the letter
a appears at most once is a subshift. It is defined e.g. by the set of forbidden patterns
F = {abna, n ∈ N}. It can be proven that it is not a subshift of finite type, although it is
certainly an effectively closed subshift.

We denote by Σd? the set of d-dimensional patterns over the alphabet Σ. For d = 1,
we write this Σ?. As an abuse of notation, we consider a d-dimensional pattern to be also
a k-dimensional pattern for k > d along the d first dimensions: as an example if X is a
d-dimensional subshift, L (X) ∩ A? is the set of one dimensional patterns (i.e. horizontal
words) over the alphabet A that appear in X.

I Example 3. Let X3 be the two-dimensional subshift over the alphabet {0, 1} defined with
the set of forbidden patterns F = {(1

1), (1 1)}. X3 is therefore the set of colorings of the
plane with 0 and 1 s.t. no two symbols 1 can be put next to each other. It is easy to see
that (0 1

1 0) ∈ L (X3) but (1 0
1 0) 6∈ L (X3).

Notice that any subshift X can always be defined by its set L (X)c. In particular X is an
effectively closed subshift iff L (X)c is recursively enumerable.

2.2 Combinatorial Group Theory
We assume the reader has a passing familiarity with group theory, and will focus this brief
description to the specifics of combinatorial group theory.

A good introduction to this particular aspect may be found in [22, 24]. The book by
Higman and Scott [15] contains invaluable information about the interplay between group
theory and computability.

A set of generators for a group G is a set S s.t. for any g ∈ G, there exist s±1
1 , . . . , s±1

n ∈ S
such that g = s1 · · · sn. A group is finitely generated if there exists a finite such S.

Let a1 . . . ak be a set of generators for some finitely generated group G. The word problem
for G, denoted WP (G, {a1 . . . ak}) is the language of all formal words over the alphabet
{a±1

1 . . . a±1
k } that evaluates to 1 (the identity element) in G. The computability properties

of WP (G, {a1 . . . ak}) do not depend on the set of generators (as long as it is finite), so that
we will usually speak of the word problem as WP (G) without specifying the generators.

There is (up to isomorphism) a unique largest group generated by n elements, which is
called the free group Fn on n generators. If the generators are written a1 . . . an, Fn can be
thought of as the set of all irreducible words over the alphabet {a±1

1 . . . a±1
n }, i.e. all words

that do not contain aia
−1
i or a−1

i ai as factors, with the obvious product operation.
Fn is the largest group with n generators a1 . . . an in the sense that if G is a group with

n generators s1 . . . sn, then there is a unique onto morphism φ s.t. φ(ai) = si.

STACS 2019

40:4 A Characterization of Subshifts with Computable Language

In particular any group with n generators can be seen as a quotient of a free group. This
gives rise to the notion of groups given by generators and relations.

If R is a set of formal words over {a±1
1 . . . a±1

n }, we denote by 〈a1, a2, . . . an | R〉 the
largest group G generated by n elements a1 . . . an s.t. all relations in R evaluate to 1 in the
group G. Formally, G is the quotient of the free group Fn by the smallest normal subgroup
N of Fn that contains all relations R.

A finitely generated group G is finitely presented if G = 〈S | R〉 for some finite S and R,
or more generally if G is isomorphic to such a group. G is recursively presented if G = 〈S | R〉
for some finite2 S and recursively enumerable set R.

I Example 4. The group G = Z× Z/3Z is finitely presented. A possible finite presentation
is G =

〈
a1, a2

∣∣ a1a2a
−1
1 a−1

2 , a3
2
〉
. There are of course other presentations with the same

generators, for example G =
〈
a1, a2

∣∣ a2a1a2a
−1
1 a2, a

3
2
〉
.

For this group G, we have a1a2a1a2 6∈ WP (G, {a1, a2}) and
a2

1a2a
−1
1 a2a

−1
1 a2 ∈ WP (G, {a1, a2}).

Notice that for all groups G with generators S, we have that G = 〈S | WP (G,S)〉 and
that G is recursively presented iff WP (G) is recursively enumerable.

2.3 Subshifts as analogs of subgroups
There is a natural analogy between subshifts and subgroups, which is obtained in the following
way: the alphabet plays the role of the generators and the forbidden patterns play the role
of the relations.

If X is a d-dimensional subshift over the alphabet Σ given by the forbidden patterns F ,
we will write X = 〈Σ | F〉d to further stress the analogy between groups and subshifts.

Continuing the analogy, the word problem WP (G) of G correspond naturally to the
complement of the language of X, L (X)c. In particular, if S is a set of generators, G =
〈S | WP (G,S)〉. If X is a subshift over alphabet Σ, then X = 〈Σ | L (X)c〉d.

To further the correspondence, we need an analogy in subshifts of the operations of
adding/removing generators and relations. In terms of groups, H is obtained from G by
adding relations iff H is a quotient of G. In terms of subshifts, Y is obtained from X

by adding forbidden patterns iff X ⊆ Y . So taking a quotient corresponds to subshift
containment.

If H is obtained from G by removing generators, it means that H is a subgroup of G
(of course not all subgroups can be obtained this way). What the operations of removing
symbols means for subshifts is discussed in the following section.

2.3.1 Removing symbols and dimensions
Removing symbols, or removing dimensions, is intuitively easy:

I Definition 5. Let X ′ be a subshift over an alphabet Σ′ of dimension d′ and let Σ ⊆ Σ′ and
d < d′, the (Σk, d) restriction X of X ′ is the set of d-dimensional configurations of width k
over the alphabet Σ that appear in X ′. We write X ≺ X ′ if X is some restriction of X ′.

By compactness X is exactly the subshift of dimension d over the alphabet Σk that forbids
all patterns in L (X ′)c ∩

(
Σk

)?d.

2 One could take more generally S to be recursively enumerable

E. Jeandel and P. Vanier 40:5

I Example 6. Let X ′ = 〈a, b | (a a), (b b), (a
b), (b

a)〉2, it is easy to see that X ′ contains only
two configurations: a and b alternate on every row, and columns are uniform. That is every
configuration locally look like figure 1.

. .

. . . a b a b a b . . .

. . . a b a b a b . . .

. . . a b a b a b . . .

. . . a b a b a b . . .

. . . a b a b a b . . .

. .

Figure 1 Configurations of X ′.

The ({a, b}, 1) restriction of X ′ is therefore the one-dimensional subshift that contains
all two configurations, that alternate a and b. The ({a}, 1) restriction of X ′ is the empty
subshift, and the ({a, b}2, 1) restriction contains exactly the two configurations that alternate
(a

a) and
(

b
b

)
.

In terms of computability, the restriction is significant : If X ≺ X ′ then X can be more
complicated than X ′:

I Proposition 7. If X ≺ X ′ then L (X) is corecursively enumerable in L (X ′).

Indeed P ∈ L (X) iff for all n there exists a d′ dimensional pattern of size n in L (X ′) with
P at its center. (More precisely, L (X)c is enumeration-reducible to L (X ′)c, see below for
the definition.)

I Proposition 8. There exist two subshifts X ≺ X ′ s.t. L (X ′) is computable and L (X) is
not computable.

Proof. Let X be any one-dimensional effectively closed subshift over the alphabet {a, b}
with a noncomputable language. It is well known that X can be given by a computable
family of forbidden patterns F (see e.g. [3]).

Now let X ′ be the subshift over the alphabet {a, b,#} given by the same family of
forbidden patterns. It is clear that L (X ′) is computable. Indeed, let w ∈ {a, b,#}? and write
w = #u1#u2 . . .#uk# with ui ∈ {a, b}?, with the # symbols at the ends possibly missing.
Then w ∈ L (X ′) iff each ui does not contain any element of F . For the nontrivial direction,
observe that in this case the biinfinite word ω#w#ω does not contain any forbidden word
of F . As F is computable, we can test whether each ui contains any element of F , and
therefore L (X ′) is computable.

On the other hand, the restriction of X ′ to the alphabet {a, b} is our initial subshift X,
which has an uncomputable language. J

This is in contrast with combinatorial group theory, where a (f.g.) subgroup of a group
with a computable word problem has immediately a computable word problem. This is due
to the fact that looking at subshifts makes us look at infinite objects given by finite words.
To obtain theorems similar to Higman’s, we will have to force an additional restriction:

I Definition 9. Let X ′ be a subshift over an alphabet Σ′ of dimension d′ and X be a subshift
over an alphabet Σ ⊆ Σ′ of dimension d < d′. We say that X is a full restriction of X ′, in
symbols X v X ′ if L (X) = L (X ′) ∩ Σ?d

STACS 2019

40:6 A Characterization of Subshifts with Computable Language

In other words, if X the (Σ, d) restriction of X ′, then every d-dimensional infinite word
over Σ that can be found in X ′ is in X. Here we also ask that every finite word over Σ that
can be found in X ′ is already in X. In this case:

I Proposition 10. If X ≺ X ′ then L (X) is many-one reducible to L (X ′). In particular if
L (X ′) is computable, then L (X) is computable.

Proof. Obvious by definition: L (X) = L (X ′) ∩ Σ?d. J

In this paper we will not be using restrictions of width more than 1.

2.3.2 Adding symbols and dimensions

The operation of adding a dimension is quite obvious.

I Definition 11. Let X be a subshift of dimension d over the alphabet Σ. The extension X ′
of X to dimension d′ is the subshift of dimension d′ that avoids all patterns of L (X)c.

A point of X ′ therefore looks like elements of X stacked in the additional dimensions3. Notice
that by definition X v X ′.

Adding symbols is also easy to define:

I Definition 12. Let X be a subshift of dimension d over the alphabet Σ. The extension X ′
of X to alphabet Γ ⊃ Σ is the subshift over the alphabet Γ that avoid all patterns of L (X)c.

Notice that X ′ is defined using all patterns of L (X)c, not only a defining set of forbidden
patterns. Notice also that X v X ′.

To understand what the points of X ′ look like, we will first look at an example where
Γ = Σ ∪ {#} and X is one-dimensional. In this case, a typical element of X ′ is of the form
. . .#u−1#u0#u1#u2 . . . where each ui is a finite word in L (X). Notice in particular that
there is no relation between the word ui and the word ui+1.

If we look at a similar construction in dimension 2, we would see patterns of L (X) that
are separated by # symbols, see Figure 2. The # symbol in the example is what is typically
called a safe symbol [7, 20] in symbolic dynamics, and is one of the typical conditions needed
to obtain good mixing properties on subshifts.

More generally, we could define in the same way the free product of two subshifts:

I Definition 13. Let X and Y be two subshifts of the same dimension on disjoint alphabets
A and B respectively. The free product X ∗ Y is the subshift Z on A ∪ B with forbidden
patterns L (X)c ∪ L (Y)c

A typical example of a point in Z is depicted in Figure 3. The discrete plane is divided
into 4-connected zones that each correspond to a valid pattern of X or a valid pattern of Y .

We note that, for this construction to work, we need the language of a subshift to be
defined in terms of connected patterns. If we took as the language of a subshift to be all
patterns, connected or not, then the extension of X to alphabet Σ ∪ {#} would merely
consist in points of X with some symbols changed to #, which is a different beast altogether.

E. Jeandel and P. Vanier 40:7

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

u1

u2

u3

u4

Figure 2 A configuration of X ′, the exten-
sion of X ⊆ ΣZ2

to alphabet Γ = Σ∪ {#}: any
(connected) pattern of X can appear anywhere,
as long as there are some # separating it from
other patterns of X. The (unconnected) pat-
tern consisting of u1, u2, u3 and u4 may not
appear in a valid configuration of X.

a
b

a
b

a
b

b

a
b

a
b

a
b

a
b

a
b

b

a
b

a
b

a
b

a
b

a
bc c

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

c
d

d

d

d

d

d

d

d

d

d

d

d

d

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
b

a
b

c

c

c

a
b

a

c

c

c
b

a
b

c

c

c

a
b

a

a
b

a
b

a
b

a

Figure 3 A portion of a valid
configuration of the free product of
X = 〈a, b | (a a), (b b), (a

a), (b
b)〉2 and

Y = 〈c, d | (c d), (d,c), (c
d)〉2 , the 4-connected

components of X and Y are gray and blue
respectively.

Table 1 Dictionary between groups and subshifts.

Group G Subshift X

Group with n generators Subshift on n symbols
Free group with n generators Full shift on n symbols
Word problem WP (G) co-language L (X)c

Finitely presented group SFT
Recursively presented group Effectively closed subshift
Simple group Minimal subshift
G1 is a quotient of G2 X1 ⊆ X2

G1 ⊆ G2 X1 v X2 (Definition 9)

3 The three embedding theorems

In this section we prove the equivalent versions of the Higman embedding and Higman
relative embedding theorems. To make the article easier to read, we will take some liberties
when stating the theorems of Higman. To obtain more exact statements, “G is a subgroup
of H” should be replaced by “G is isomorphic to a subgroup of H”.

Table 1 gives the correspondence we will use between the vocabulary of groups and the
vocabulary of subshifts. It is based on the previous discussion and on the article [18]. The
correspondence is not exact, but serves as an intuition for the theorems.

3 Note that this definition readily generalizes with X over an alphabet Σk and X ′ with alphabet Σ: every
row of with k must avoid all patterns of L (X)c.

STACS 2019

40:8 A Characterization of Subshifts with Computable Language

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

0 1 2 3 4 5 6 7 8 9

0 0 0

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
1 1 1

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
2 2 2

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
3 3 3

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
4 4 4

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
5 5 5

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0
6 6 6

x9
x8

x7
x6

x5
x4

x3
x2

x1
x0

Figure 4 In [16, 2, 9] some layer contains a vertically repeated sequence (xi)i∈Z that is checked
by some other layers which are superimposed as on the left. It is quite straigtforward to tranform a
construction which has layers to an interleaving of the layers as seen on the right.

3.1 The Higman embedding theorem
We start with the first Higman embedding theorem:

I Theorem 14 (Higman embedding theorem [14]). A f.g. group G is recursively presented iff
there exists a finitely presented group H s.t. G ⊆ H.

I Theorem 15 (Higman embedding theorem for subshifts). A d-dimensional subshift X over
an alphabet Σ is effectively closed iff there exists a d+1 dimensional SFT X ′ over an alphabet
Γ ⊇ Σ s.t. X v X ′

As stated in the introduction, this theorem corresponds very closely to a result on
subactions of subshifts first discovered by Hochman [16] and then improved by Aubrun-
Sablik-Durand-Romashchenko-Shen. We first restate the theorem in a suitable form:

I Theorem 16 ([2, 9]). A d-dimensional subshift X over an alphabet Σ is effectively closed
iff there exists a (d+ 1)-dimensional SFT X ′ ⊆ (Σ× Γ)Zd+1 such that

X =
{
x

∣∣ (x↑, y) ∈ X ′
}

where x↑ is the configuration where for any z ∈ Zd and j ∈ Z, x↑z,j = xz.

Proof of Theorem 15. All these constructions have one or several computation layers that
check a layer on which the effectively closed subshift is written. In our case instead of
superimposing the computation layer and the verified layer, we interleave them : if c =
(x, y) ∈ X × Y in the original construction, the new configuration c′ would be formed by
c′(i,2j) = x(i,j) and c′(i,2j+1) = y(i,j). This remains an SFT.

We may further assume that the alphabet for the computation is disjoint from the
alphabet of the checked subshift. Thus, by restricting the language to the words belonging
to the alphabet of the checked layer, only this layer remains. J

Note that Higman’s original theorem is valid non only for finitely generated groups but
for general groups. To obtain a similar statement for subshifts, one would need to deal with
subshifts over an infinite alphabet. We think that Hochman’s original result [16] on effective
dynamical systems provides such a generalization.

3.2 Higman’s relative embedding theorem
The relative Higman theorem is, as its name indicates, the relativized version of the Higman
embedding theorem, and states conditions on when a group G can be obtained as a subgroup
of an extension of a group H. We first need a definition:

E. Jeandel and P. Vanier 40:9

I Definition 17 ([15]). A group K is finitely presented over G if K can be obtained from G

by adding finitely many generators and finitely many relations

See [15, Definition 6.1] for the exact definition. The Higman relative embedding theorem then
characterizes when a group G can be obtained as a subgroup of a group finitely presented in
H. The classical relative embedding theorem correspond to the case where H is trivial. It
turns out that the necessary computability criterion has to do with enumeration-reducibility,
that we now define:

I Definition 18 ([13]). If L and M are two sets we say that L is enumeration-reducible
to M , in symbols L ≤e M if there exists a partial computable function f : N× N→ Pf (N)
where Pf (N) is (a computable representation of) the set of all finite subsets of N s.t.

x ∈ L ⇐⇒ ∃n, f(n, x) ⊆M

The definition might seem quite obtuse at first. Intuitively, L ≤e M if there is a computable
procedure that can enumerate L from any enumeration of M .

The relative embedding theorem is then as follows:

I Theorem 19 (The relative Higman embedding theorem [15]). K is a subgroup of a group
that is finitely presented over G iff WP (K) ≤e WP (G).

We will now prove our version of the theorem. We first need an analog of “finitely
presented over” in terms of subshift:

I Definition 20. Let Y be a subshift over an alphabet Σ. U is of finite type over Y if U is
obtained from Y by adding finitely many new symbols, dimensions, and finitely many new
forbidden patterns.

That is, U = Y1 ∩ Y2, where Y1 is an extension to a larger alphabet and higher dimension
(in the sense of Definitions 11 and 12) of Y , and Y2 is a subshift of finite type. To be
consistent with the exact definition for groups, we also need that Y v U , that is for none of
the new forbidden patterns to contain only symbols of Σ.

This definition is straightforwardly extendable to effective subshifts:

I Definition 21. Let Y be a subshift over an alphabet Σ. U is effectively closed over Y if
U is obtained from Y by adding finitely many new symbols, dimensions and a recursively
enumerable set of new forbidden patterns. As before, it is required that Y v U .

A straightforward corollary of Theorem 15 is the following:

I Corollary 22. If Y is effectively closed over X, then there exists a subshift Z of finite type
over Y such that X v Y v Z.

We can now formulate our theorem.

I Theorem 23 (The relative Higman embedding theorem for subshifts). Let X be a subshift
over an alphabet A and Y be a subshift over an alphabet B disjoint from A.

Then L (X)c ≤e L (Y)c iff there exists a subshift U of finite type over Y such that X v U .

Let Y = ∅ be the empty subshift over the alphabet {0}. Then a subshift of finite type over
Y is exactly the same as a subshift of finite type. Furthermore L (X)c ≤e L (Y)c means
that L (X)c is enumeration reducible over the full set, which is equivalent to saying that
L (X)c is recursively enumerable. In the case Y = ∅ this theorem is therefore equivalent to
Theorem 15. Before going into the proof, we will give a few remarks.

STACS 2019

40:10 A Characterization of Subshifts with Computable Language

First we want to state that this result is very similar, but incompatible with a result
of Aubrun and Sablik[1]. The result of Aubrun and Sablik states that X can be obtained
from Y using some operations (very similar to ours) iff L (X)c ≤s L (Y)c where ≤s is strong
enumeration reducibility [13]. It turns out that there are many mistakes in the proofs so
that the result as stated in their paper is actually provably wrong (the authors have been
contacted and a corrigendum is being worked on). Problems arise in both directions in the
proof. First, if X can be obtained from Y , then it is not true that L (X)c ≤s L (Y)c. The
authors use in their proof a lot of dovetailing arguments, but dovetailing arguments cannot
be used for their reduction ≤s. As an example, A ≤s B does not imply A × A ≤s B or
A? ≤s B [23]. In fact, the smallest reducibility relation that contains ≤s and that satisfy
these statements is the reduction ≤e we used [23]. There are also some mistakes in the
reverse direction that have been patched in Aubrun’s PhD thesis, but only for the case of
mixing subshifts. In fact, the set of operations the authors were taking is not sufficient to do
the operations for general subshifts.

Proof. For simplicity, we focus on the case where the two subshifts are one-dimensional. Let
X ⊆ AZ and Y ⊆ BZ be subshifts.
⇐: It is clear that if there exists U of finite type over Y with alphabet C ⊆ A ∪B such

that L (X) = L (U) ∩ A? then L (X)c ≤e L (Y)c: it is clear that L (X)c ≤e L (U)c, so we
only need to prove that L (U)c ≤e L (Y)c. Take an enumeration of L (Y)c since U is of finite
type over Y , any pattern not in L (Y) is not in L (U) and furthermore, to determine that
a pattern p is in L (U)c, by compactness, one only needs to find some size at which it is
impossible to form a valid pattern with p in its center. The procedure is the following: for
every k, enumerate the k first patterns of L (Y)c and check for all radiuses smaller than k
whether each extension of p to this radius contains either some forbidden pattern enumerated
this far or one of the patterns defining U from Y (which are in finite number). If there
exists such a radius, it will be found at some step, p is then added to the enumeration. Thus
L (X)c ≤e L (Y)c.
⇒: Assume L (X)c ≤e L (Y)c, we will construct a 2D subshift U effectively closed over

Y such that L (X) = L (U) ∩A?, the result then follows by applying Corollary 22. In order
to achieve this, from Y we will construct two intermediary subshifts:

First we will construct YL: a 2D subshift in which the language of Y will be arranged in
a dyadic like fashion. This subshift will be effective in Y . This subshift will serve as an
“oracle” allowing to know whether a pattern is or is not in Y in a bounded manner: one
configuration at least will contain all the patterns appearing in Y in bounded windows
with computable sizes.
From YL we can then construct U , in which one row out of two will be identical and
belong to X and one row out of two will be in YL. This subshift is obtained by adding
a recursively enumerable set of forbidden patterns and is thus effective over Y . By
restricting the alphabet of this subshift we obtain X.

Let us now describe more precisely the different intermediate subshifts and how they are
constructed, starting with YL:

While Y is one dimensional, YL consists of two dimensions, its alphabet is ΣYL
= B∪{#},

with # a special symbol not belonging to B.
YL will consist of rows, each of which will have a type: an integer n ∈ N∪ {∞}. A row of
type i 6=∞ has to be periodic. One row out of two will be of type 1, one row out of two
in the remaining ones will be of type 2 and so on.

E. Jeandel and P. Vanier 40:11

Let us define inductively a row of type i: a row of type i consists of a sequence of |B|2
i−1

words of length 2i − 1 each, separated by # and repeated periodically. All rows of some
type in a configuration must be identical and a word appearing in a row of type i must
be a subword of some word of a row of type (i+ 1), see Figure 5. Thus, a word of some
type i must appear as a subword of some word in a line of type k for any k > i which
does not contain a forbidden pattern of Y and thus appears in some configuration of Y .

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w4
0 # w4

1 # w4
2 # w4

3 # w4
4 # w4

5 # w4
6 # w4

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7 # w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w5
0 # w5

1 # w5
2 # w5

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7 # w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w4
0 # w4

1 # w4
2 # w4

3 # w4
4 # w4

5 # w4
6 # w4

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7 # w3
0 # w3

1 # w3
2 # w3

3 # w3
4 # w3

5 # w3
6 # w3

7

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w6
0 # w6

1

w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1 # w1
0 # w1

1

w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3 # w2
0 # w2

1 # w2
2 # w2

3

Figure 5 A typical point of YL : each line of type i is periodic of period |B|2
i−1
· 2i and each

word wi
k in included in some word wj

k′ for all j > i.

Thus YL is a 2D arrangement of words of L (Y) in a uniformly recurrent way, and there
exists at least one configuration containing all of L (Y). Furthermore, YL is effective over
Y .
We describe how to construct U from YL: we know that L (X)c ≤e L (Y)c. Thus, there
exists a computable f : N× N→ Pfinite(N) such that:

x ∈ L (X)c iff ∃n ∈ N, f(x, n) ⊆ L (Y)c

In other words, some word w is in L (X) iff for any n ∈ N, there is some word of f(x, n)
in L (Y). That is to say, supposing L (Y) is given as an oracle, we have an enumerable
way to check that a word w belongs to L (X): enumerate the n ∈ N and compute f(w, n)
and check that at least one element belongs to L (Y), if not halt. The computations that
do not halt are the ones where w belongs to L (X).
Given YL, this can be implemented in an effective way: take x ∈ AZ and y ∈ YL. We
interleave x in y by using the same technique as in figure 4: we insert a copy of x between
each pair of lines of y.
We now need to ensure that all words on the lines with alphabet A belong to L (X).
This may also be done by adding a recursively enumerable set of forbidden patterns: in
order to check that some subword w of x is in L (X), one needs to check that for each n,

STACS 2019

40:12 A Characterization of Subshifts with Computable Language

f(w, n) appears in some line of type i > |w|: for every pattern w we forbid all patterns
that contain w but no pattern of f(w, n), since rows of type i appear every 2i+2 rows, for
each w this constitutes a finite number of forbidden patterns for each n. Thus we may
recursively enumerate the forbidden patterns for each w ∈ A?. J

3.3 The Boone-Higman-Thompson theorem
The Boone-Higman-Thompson theorem is a theorem that characterizes groups with a
computable word problem. It turns out that the characterization is obtained with the notions
of a simple group:

I Theorem 24 (The Boone-Higman-Thompson theorem [6, 26]). A group G has a computable
word problem iff it is a subgroup of a simple recursively presented group.

Recall that a simple group is a group with no proper (nontrivial) quotient. By Dictionary 1,
the equivalent should be a subshift with no proper (nontrivial) subshift, i.e. what is called in
the literature a minimal subshift. This seems to be indeed, the good analogy, as argued for
in [18], and we will prove:

I Theorem 25. Let X be a 1 dimensional subshift over an alphabet Σ. Then X has a
computable language iff there exists a two dimensional minimal effective subshift Y over an
alphabet Γ ⊃ Σ such that X v Y .

Recently, Durand and Romashchenko [11] have proved that given a d-dimensional minimal
effectively closed subshift, it can be realized as a subaction of a (d+ 1)-dimensional minimal
SFT:

I Theorem 26 ([11]). Let X be a minimal effectively closed subshift. There exists a minimal
SFT Y such that X is a subaction of Y : X is the projection by a letter to letter map of the
lines of Y .

This together with Theorem 25 gives us the subshift counterpart to the Boone-Higman-
Thompson theorem:

I Corollary 27 (The Boone-Higman-Thompson theorem for subshifts). Let X be a 1 dimensional
subshift over an alphabet Σ. Then X has a computable language iff there exists a three
dimensional minimal subshift of finite type Y over an alphabet Γ ⊃ Σ s.t. X v Y .

Both Theorem 25 and Corollary 27 translate to higher dimensions, the details of the
proofs are left to the reader.

Before proving the Theorem 25, one needs a good intuition on what a minimal subshift
looks like. Minimal subshifts are defined as subshifts that do not contain any nontrivial
subshifts, but an equivalent, more palatable definition, is that minimal subshifts are uniformly
recurrent subshifts, that is subshifts X where, for every pattern u ∈ L (X), there exists a size
n s.t. the pattern u occurs in every pattern of X of size n. In particular, all configurations x
of X have the same patterns, and every pattern that appear should appears everywhere, i.e.
in any sufficiently large part of x.

We now proceed to the proof of the theorem. One direction is well known: A minimal
effectively closed subshift has a computable language, see [4] for example. Therefore L (Y) is
computable and therefore L (Y) ∩ Σ? is computable.

The other direction essentially amounts to the following: Given a set of patterns L
on an alphabet A, find a minimal subshift X that contains all patterns of L (and other
patterns). Before reading the proof, the reader should try by itself as an exercise to find a two-
dimensional minimal subshift X over an alphabet {a, b, c} that contains all one-dimensional
words over the alphabet {a, b}.

E. Jeandel and P. Vanier 40:13

Our proof is quite similar to a construction by Elek and Monod [12] of a subshift with a
non-amenable topological full group. Our construction is done however with more care to
ensure that everything we are doing remains computable and that our subshift is already
minimal, but the idea is essentially the same.

Let us now start with a 1 dimensional subshift X over an alphabet Σ with a computable
language.

We define recursively a set (wi)i∈N of biinfinite rows. Each row will be periodic. We will
denote by pi the period of the row and by vi the word that repeats, so that vi is of length pi

and for all k ∈ Z, (wi)k = vk mod pi
.

The row w0 is the row of period p1 = 1 corresponding to the word v0 = #. Suppose the
row wn is given, of period pn.

Let {u1, u2 . . . ukn+1} be the (computable) list of all words of length 2pn − 1 that appear
in X. We define vn+1 to be the word consisting of all possible pairs of words of size 2pn − 1,
separated by the # symbol

#u1#u1#u1#u2#u1#u3 . . . ukn+1#ukn+1−1#ukn+1#ukn+1

and wn+1 is the biinfinite word where vn+1 repeats periodically. Notice that vn+1 is of size
pn+1 = 2k2

n+1pn so that pn+1 is strictly greater than pn and pn divides pn+1 .
We repeat some properties of our set of rows:
The row wn is periodic of period pn. Furthermore the symbol # appears in wn only in
positions multiple of 2pn−1.
pi divides pj if i < j.
pn > n.

I Lemma 28. Let u be a word of length k that appears in wn for n ≥ k in position i. Then
u appears in position i+ tpk−1 in wk for some integer t.

Proof. The result is clear for n = k. Now suppose that n > k. There are two cases for u:
either u = s1#s2 for two words s1, s2 ∈ Σ? or u = s for some word s ∈ Σ?.

We start with the first case, u = s1#s2. The words s1 and s2 are words of size < k that
are factors of some word of size 2p(n−1) − 1 that appears in X. Therefore there are also
respectively suffix and prefix of some words t1, t2 that appear in X, each of size 2p(k−1) − 1.
By definition t1#t2 appears in wk therefore u appears in wk. As every symbol # inside wk

appears at positions that are multiples of 2pk−1 and that it is also the case inside wn (as pk

divides pn−1), the position where u appears in wk must be of the form i+ tpk−1 for some t.
Now the second case. Suppose that u = s for some word s that appears in X of size k.

u appears from position i to position i + k − 1 in wn. Let 0 ≤ j < pk−1 so that j = i − 1
mod pk−1. u is a word of size k that appears in X and therefore can be completed as a word v
of size 2pk−1−1 that appears in X by adding j letters at the beginning and 2pk−1−1−(j+k)
letters at the end. This word v appears at position tpk−1 + 1 in wk for some t and therefore
u appears in position tpk−1 + 1 + j = t′pk−1 + i in wk. J

I Definition 29. If i is an integer, the level of i, denoted by lvl(i) is the greatest power of 2
that divides i, i.e. i = k × 2lvl(i) with k odd. The level of 0 is +∞ by convention.

The two following lemmas are clear.

I Lemma 30. Let n > k, then lvl(i+ 2n) = lvl(i).

I Lemma 31. Let i 6= j s.t. lvl(i) ≥ k and lvl(j) ≥ k. Then |i− j| ≥ 2k > k.

STACS 2019

40:14 A Characterization of Subshifts with Computable Language

We now define a configuration y in the following way: the i-th row of y is the row wj

where j is the level of i.
For i = 0, we take any word w that is a limit point of {wj , j ∈ N}.
Notice that y is likely not computable, as the row 0 might be arbitrarily complex. However

all other rows are computable.
To simplify notations, we will denote the rows of y in exponent, so that the symbol in

the i-th row and j-th column of y is yi
j and the ith row of y is yi. By definition, we therefore

have yi
j = w

lvl(i)
j for i 6= 0.

I Lemma 32. Let u be a pattern defined over [1, k]× [1, k] that appears in y.
Then u also appears inside y at position (i+ 1, j + 1) with i ∈ [0, 2k − 1] and therefore u

appears inside the first 2k+1 − 1 rows of y (in the rows labeled 1 to 2k+1 − 1).

Proof. Let u be a pattern defined on the square [1, k]× [1, k].
Suppose that u appears inside y at position (i + 1, j + 1). That is: for all (l,m) ∈

[1, k]2, um
l = yi+m

j+l .
There are two cases. First, suppose that all of the integers i + 1, i + 2, . . . i + k are of

level strictly less than k. Then for all l ∈ [i+ 1, i+ k] and all integers t, yl+2kt = yl. We can
therefore suppose wlog that i ∈ [0, 2k−1] and the result is proven.

Otherwise some of the integers i+ 1, . . . i+ k is of level at least k. By Lemma 31, this
happens only for one of the integers, say the integer i+ r = z × 2n for n ≥ k.

The word ur appears by definition in yi+r which is of level at least k. By Lemma 28, it
also appears in wk at position j + 1 + tpk−1 and therefore in y2k at position j + 1 + tpk−1.
(Lemma 28 also applies if i+ r = 0, as the row 0 of u is the limit of rows of arbitrary large
level). In other words for all l ∈ [1, k], ur

l = y2k

j+tpk−1+l.
We now claim that the word u appears in position [2k−r+1, j+1+tpk−1] inside y. That is,

for all l,m ∈ [1, k]2, um
l = y2k−r+m

j+tpk−1+l. The result is clear for m = r. Now let m ∈ [1, k],m 6= r.
As i+m is of level strictly less than k, yi+m+t2k = yi+m for all t by Lemma 30. In particular
as i+ r is dividible by 2k, we get that yi+m = yi+m+2k−(i+r) = y2k−r+m. Furthermore the
row yi+m is periodic of period ps for some s < k and in particular it is periodic of period
pk−1. Therefore

um
l = yi+m

j+l = yi+m
k+l+tpk−1

= y2k−r+m
k+l+tpk−1

J

I Corollary 33. Let u be a pattern of size k × k inside y. Then u appears in any window of
size 2k+2 × 2pk.

Proof. Indeed, by the previous lemma, u appears inside y in position (i, j) for some i ∈ [1, 2k]
However the rows from 1 to 2k+1 − 1 are all periodic of period pk, and repeat vertically with
period 2k+1 by Lemma 30. Therefore the pattern u itself repeats horizontally with period
pk and repeats vertically with period 2k+1 and consequently appears in any window of size
2k+2 × 2pk. J

I Corollary 34. Let Y be the subshift that forbids all patterns of size k×k that do not appear
in the square [1, 2k+2]× [1, 2pk] of y.

Then Y is minimal, effectively closed, and L (X) = L (Y) ∩ Σ?.

Proof. The first conclusions are immediate from the previous corollary. The second one
comes from the fact that y (apart from the row 0) is computable. The third one is by
definition of y. J

E. Jeandel and P. Vanier 40:15

4 Discussion

In this article, we have introduced the analogues of the three Higman theorems, originally
for groups, in terms of subshifts. This reinforces the convictions of the authors that symbolic
dynamics has a deep connection with objects from combinatorial algebra. To obtain these
theorems, we had to introduce the following concepts:

An equivalent of the notion of free product for groups (Definitions 12 and 13).
An equivalent of the notion of subgroup containement (Definition 9).

Compared to existing constructions, these two new ideas are rather combinatorial rather
than dynamic. In particular, they cannot be defined easily in terms of the infinite words in
the subshifts; they are defined in terms of the finite words that constitute the language of
the subshift. This could be seen as a drawback of the construction, so we will give some
arguments explaining why more “dynamical” constructions cannot work.

The concept of the free product of subshifts is used for the relativized Higman theorem.
This operation does not appear in the work of Aubrun and Sablik [1] (which was flawed as
we saw) and is probably mandatory; Suppose that a minimal subshift X is defined from a
subshift Y by various dynamical constructions (cartesian product, factor, subactions, etc) as
in [1]. Let Y ′ be the smallest subshift of Y that contains all uniformly recurrent points of
Y . Then it is easy to see that Y ′ also defines X using the same constructions. However Y ′
may have very different computability properties than Y . In particular it is possible to have
L (X)c ≤e L (Y)c but L (X)c 6≤e L (Y ′)c.

In fact, when looking at our whole construction (and the construction of [1]), we see that
it is important to start with a subshift X with the property that, for every finite collection
of words u ∈ L (X), there exists a uniformly recurrent point of X that contains all of them.
So we either have to assume that our subshift has this property (this is what Aubrun did
in her PhD thesis, by assuming some mixing properties), or use a free product: The free
product of X with any (nonempty) subshift always has this property.

The full restriction operator v, the analogue of subgroup containment, is mostly used
in the equivalent of the Boone-Higman-Thompson theorem. In fact, it can be replaced in
the other theorems by more traditional dynamical operators, like factor maps (the original
Hochman theorem was indeed stated in terms of factor maps). It is not clear if we could
obtain a analogue of Boone-Higman-Thompson theorem in terms of factor map. It is certainly
true that factors of minimal subshifts of finite type have a computable language; However,
they also have the additional property that the set of their uniformly recurrent points is
dense, and therefore not all subshifts with computable language can be obtained this way.

References
1 Nathalie Aubrun and Mathieu Sablik. An Order on Sets of Tilings Corresponding to an Order

on Languages. In 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, pages 99–110, 2009.

2 Nathalie Aubrun and Mathieu Sablik. Simulation of Effective Subshifts by Two-dimensional
Subshifts of Finite Type. Acta Applicandae Mathematicae, 126(1):35–63, 2013. doi:10.1007/
s10440-013-9808-5.

3 Alexis Ballier. Propriétés structurelles, combinatoires et logiques des pavages. PhD thesis,
Aix-Marseille Université, 2009.

4 Alexis Ballier and Emmanuel Jeandel. Computing (or not) Quasi-periodicity Functions of
Tilings. In Jarkko Kari, editor, Second Symposium on Cellular Automata "Journées Automates
Cellulaires", JAC 2010, Turku, Finland, December 15-17, 2010. Proceedings, pages 54–64.
Turku Center for Computer Science, 2010.

5 Robert Berger. The Undecidability of the Domino Problem. Number 66 in Memoirs of the
American Mathematical Society. The American Mathematical Society, 1966.

STACS 2019

http://dx.doi.org/10.1007/s10440-013-9808-5
http://dx.doi.org/10.1007/s10440-013-9808-5

40:16 A Characterization of Subshifts with Computable Language

6 William W. Boone and Graham Higman. An algebraic characterization of groups with soluble
word problem. Journal of the Australian Mathematical Society, 18(1):41–53, August 1974.
doi:10.1017/S1446788700019108.

7 Mike Boyle, Ronnie Pavlov, and Michael Schraudner. Multidimensional sofic shifts without
separation and their factors. Transactions of the AMS, 362(9):4617–4653, September 2010.
doi:10.1090/S0002-9947-10-05003-8.

8 W. Craig and R. L. Vaught. Finite Axiomatizability Using Additional Predicates. The Journal
of Symbolic Logic, 23(3):289–308, September 1958.

9 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Effective Closed Subshifts in 1D
Can Be Implemented in 2D. In Fields of Logic and Computation, number 6300 in Lecture Notes
in Computer Science, pages 208–226. Springer, 2010. doi:10.1007/978-3-642-15025-8_12.

10 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, May 2012. doi:
10.1016/j.jcss.2011.11.001.

11 Bruno Durand and Andrei E. Romashchenko. On the expressive power of quasiperiodic SFT.
In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 1–14, 2017.

12 Gábor Elek and Nicolas Monod. On the Topological Full Group of a Minimal Cantor Z2-System.
Proceedings of the American Mathematical Society, 141(10):3549–3552, October 2013.

13 Richard M. Friedberg and Hartley Rogers. Reducibility and Completeness for Sets of Integers.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 5:117–125, 1959.

14 Graham Higman. Subgroups of Finitely Presented Groups. Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, 262(1311):455–475, August 1961.

15 Graham Higman and Elizabeth Scott. Existentially Closed Groups. Oxford University Press,
1988.

16 Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic
systems. Inventiones Mathematicae, 176(1):2009, April 2009.

17 Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multi-
dimensional shifts of finite type. Annals of Mathematics, 171(3):2011–2038, May 2010.
doi:10.4007/annals.2010.171.2011.

18 Emmanuel Jeandel. Enumeration Reducibility in Closure Spaces with Applications to Logic
and Algebra. In ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–11,
2017.

19 Emmanuel Jeandel and Pascal Vanier. Characterizations of periods of multidimensional shifts.
Ergodic Theory and Dynamical Systems, 35(2):431–460, April 2015. doi:10.1017/etds.2013.
60.

20 Aimee Johnson and Kathleen Madden. Factoring higher-dimensional shifts of finite type onto
the full shift. Ergodic Theory and Dynamical Systems, 25:811–822, 2005.

21 S.C. Kleene. Two Papers on the Predicate Calculus, chapter Finite Axiomatizability of Theories
in the Predicate Calculus Using Additional Predicate Symbols, pages 31–71. Number 10 in
Memoirs of the American Mathematical Society. American Mathematical Society, 1952.

22 R.C. Lyndon and P.E. Schupp. Combinatorial Group Theory. Classics in Mathematics. Springer
Berlin Heidelberg, 2001.

23 Daniele Marsibilio and Andrea Sorbi. Bounded Enumeration Reducibility and its degree
structure. Archive for Mathematical Logic, 51:163–186, 2012.

24 Mark Sapir. Combinatorial Algebra: Syntax and Semantics. Springer Monographs in Mathe-
matics. Springer, 2014.

25 Stephen G. Simpson. Mass problems associated with effectively closed sets. Tohoku Mathe-
matical Journal, 63(4):489–517, 2011.

26 Richard J. Thompson. Embeddings into Finitely Generated Simple Groups which Preserve
the Word Problem. In Sergei I. Adian, William W. Boone, and Graham Higman, editors,
Word Problems II, volume 95 of Studies in Logic and the Foundations of Mathematics, pages
401–441. North Holland, 1980.

http://dx.doi.org/10.1017/S1446788700019108
http://dx.doi.org/10.1090/S0002-9947-10-05003-8
http://dx.doi.org/10.1007/978-3-642-15025-8_12
http://dx.doi.org/10.1016/j.jcss.2011.11.001
http://dx.doi.org/10.1016/j.jcss.2011.11.001
http://dx.doi.org/10.4007/annals.2010.171.2011
http://dx.doi.org/10.1017/etds.2013.60
http://dx.doi.org/10.1017/etds.2013.60

	
	Preliminary definitions
	Subshifts
	Combinatorial Group Theory
	Subshifts as analogs of subgroups
	Removing symbols and dimensions
	Adding symbols and dimensions

	The three embedding theorems
	The Higman embedding theorem
	Higman's relative embedding theorem
	The Boone-Higman-Thompson theorem

	Discussion

