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Abstract
We prove that the compressed word problem and the compressed simultaneous conjugacy problem
are solvable in polynomial time in hyperbolic groups. In such problems, group elements are input
as words defined by straight-line programs defined over a finite generating set for the group. We
prove also that, for any infinite hyperbolic group G, the compressed knapsack problem in G is
NP-complete.
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1 Introduction

Compression techniques in group theory have attracted attention in recent years [9, 10, 30,
36, 37]. Often, algorithms for classical group theoretic problems, such as the word problem
or the conjugacy problem, face the problem that huge intermediate words arise during the
computation. In some situations, these words are highly compressible; one can then attempt
to compute on succinct representatives instead of on the words themselves.

Straight-line programs (SLPs) are a widely-used compression technique for words. An
SLP can be seen as a context-free grammar G that produces a single word denoted val(G); see
Section 4 for a precise definition. The size of G can be defined as the sum of the lengths of the
right-hand sides of the productions of G. In fact, the length of val(G) can be exponential in
the size of G, showing that non-trivial compression is possible for SLPs. There are numerous
papers in computer science that study the complexity of decision problems for words that are
succinctly represented by SLPs; see [29] for a survey. Applications of SLPs in group theory
can be traced back to Babai and Szemeredi’s reachability theorem for finite groups [2].

In this paper we deal with the so-called compressed word problem for a finitely generated
group G, which we define as follows. Suppose that Σ is a finite generating set for G. We
assume that Σ is symmetric: if a lies in Σ then so does a−1. The word problem for G
asks whether a given word w ∈ Σ∗ represents the group identity of G. This is one of the
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fundamental decision problems in group theory as set out by Dehn [8] in 1911. The compressed
word problem for G is the same problem except that the input word w is represented by an
SLP. We also call such inputs compressed words.

Clearly, the compressed word problem for a group G is decidable if and only if the word
problem for G is decidable. It also seems obvious that the computational complexity of the
compressed word problem for G should be more difficult than the word problem itself. This
is indeed the case if P 6= NP; see the discussion on the next page. It is also interesting to note
that the compressed word problem for a group G is exactly the circuit evaluation problem for
G: here the input is a circuit (a directed acyclic graph whose nodes are called gates) where
input gates are labelled by generators of G and where internal gates compute the product of
their inputs. We then ask if a distinguished output gate evaluates to the identity of G. For
finite groups, the complexity of the circuit evaluation problem (and hence, the compressed
word problem) was clarified in [4]: if G is a finite solvable group, then the compressed
word problem for G belongs to the parallel complexity class DET ⊆ NC2. Futher, if G is
a finite non-solvable group, then the compressed word problem for G is P-complete. This
dichotomy naturally motivates the investigation of compressed word problems for general
finitely generated groups.

The compressed word problem also has applications for the ordinary (uncompressed)
word problem. From techniques very similar to those used in the proof of [40, Theorem 5.2]
we may deduce the following: the word problem for a finitely generated subgroup of the
automorphism group Aut(G) is polynomial time reducible to the compressed word problem
for G. Similar reductions exist for certain group extensions; see [40, Theorem 4.1] and [30,
Theorem 4.8 and 4.9]. This makes groups for which the compressed word problem can be
solved in polynomial time interesting. Indeed the class of these groups is quite rich. Let Fn
be the free group on n generators. The first result for infinite groups was obtained in [28],
where the second author showed that the compressed word problem for Fn is P-complete.
This result was used by the third author to show that the word problem for Aut(Fn) can
be solved in polynomial time [40, Theorem 5.2]. This solved an open problem posed by
Baumslag [3, Problem (C1)]. Two other important classes of groups in which the compressed
word problem can be solved in polynomial time have been found, as follows.

Virtually special groups; that is, finite extensions of finitely generated subgroups of
right-angled Artin groups. Right-angled Artin groups are also known as graph groups
or partially commutative groups. Recent work related to three-dimensional topology
has shown that the class of virtually special groups is very rich. It contains all Coxeter
groups [19], one-relator groups with torsion [43], fully residually free groups [43] (for fully
residually free groups, Macdonald [33] independently obtained a polynomial time solution
for the compressed word problem), and fundamental groups of hyperbolic 3-manifolds [1].
Finitely generated nilpotent groups [30]. Here, the compressed word problem even belongs
to the parallel complexity class DET [26].

Moreover, for finitely generated linear groups the compressed word problem belongs to the
complexity class coRP [30, Theorem 4.15], which implies that there is an efficient randomized
polynomial time algorithm that may err with a small probability on negative input instances.
On the negative side, it is known that the compressed word problem for every restricted
wreath product G o Z with G finitely generated non-abelian is coNP-hard [30, Theorem 4.21].
If G is also finite, then the word problem for G o Z can be easily solved in polynomial time,
see also [42]. Assuming P 6= NP this gives examples of groups in which the compressed
word problem is harder than the word problem. Another interesting result that relates
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the compressed word problem to the area of algebraic complexity theory was shown in [30,
Theorem 4.16]: The compressed word problem for the linear group SL3(Z) is equivalent (up
to polynomial time reductions) to polynomial identity testing (that is, the problem whether
a circuit over a polynomial ring Z[x1, . . . , xn] evaluates to the zero polyomial).

In this paper, we prove that the compressed word problem can be solved in polynomial
time in every hyperbolic group.1 Hyperbolic groups have a Cayley graph that satisfies a
certain hyperbolicity condition, see Section 3 for a precise definition. Hyperbolic groups are
of fundamental importance in geometric group theory. In a certain probabilistic sense, almost
all finitely presented groups are hyperbolic [16, 38]. Also from a computational viewpoint,
hyperbolic groups have nice properties: it is known that the word problem and the conjugacy
problem can be solved in linear time [12, 21]. They also have a nice shortlex automatic
structure [11]. We show in Theorem 15 that, from a given SLP G over the generators of a
hyperbolic group G, one can compute in polynomial time an SLP for the shortlex normal
form of the word val(G) (this is the length lexicographically smallest word that represents the
same group element as val(G)). Since the shortlex normal form for a word w is the empty
word if and only if w =G 1 (here, and in the rest of the paper, we write u =G v if the words
u and v represent the same element of the group G), we obtain the following corollary:

I Corollary 1. The compressed word problem for a hyperbolic group can be solved in polyno-
mial time.

A relatively easy consequence of Corollary 1 is that for every hyperbolic group one can
compute in polynomial time the order of the group element that is represented by a given
SLP (Corollary 16). In Section 6.2 we consider the compressed conjugacy problem: the input
consists of SLP-compressed words u, v and it is asked whether there exists a word x with
x−1ux =G v. We prove that the compressed conjugacy problem for a hyperbolic group can be
solved in polynomial time. For this, we show that the algorithm from [12], which solves the
conjugacy problem for a hyperbolic group in linear time, can be implemented in polynomial
time for SLP-compressed input words. Based on this algorithm, we then generalise our result
on compressed conjugacy to the compressed simultaneous conjugacy problem, where the
input consists of two finite lists u1, . . . , un and v1, . . . , vn of SLP-compressed words over the
generators of the group G, and it is asked whether there exists a word x with x−1uix =G vi
for 1 ≤ i ≤ n. This problem was shown to be solvable in polynomial time for finitely
generated nilpotent groups in [34]. In the uncompressed setting, the simultaneous conjugacy
problem was shown to be solvable in linear time for hyperbolic groups in [5]. Again, we show
that the algorithm in [5] can be implemented in polynomial time for SLP-compressed input
words, which yields the following.

I Theorem 2. Let G be a hyperbolic group. Then the compressed simultaneous conjugacy
problem for G can be solved in polynomial time. Moreover, if the two input lists are conjugate,
then we can compute an SLP for a conjugating element in polynomial time.

The (ordinary) simultaneous conjugacy problem has also been studied for classes of groups
other than hyperbolic groups; see for example [25] and the references therein. The SLP-
compressed version is important because the word problem for finitely generated subgroups of
the outer automorphism group Out(G) of G can be reduced to the compressed simultaneous
conjugacy problem for G [20, Proposition 10]. Note that in [7] it is shown that for a
hyperbolic group G, Aut(G) and hence Out(G) are finitely generated. Hence, we get the
following corollary from our main results.

1 This result was announced in [30, Theorem 4.12] without proof.
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37:4 Compressed Decision Problems in Hyperbolic Groups

I Corollary 3. For every hyperbolic group G, the word problems for Aut(G) and Out(G) can
be solved in polynomial time.

As a byproduct of our algorithm for the compressed simultaneous conjugacy problem we
also show that for every hyperbolic group one can compute in polynomial time from a given
finite set S of SLP-compressed group elements a finite generating set for the centraliser of S,
where every element of this generating set is represented by an SLP. We call this computation
problem the compressed centraliser problem.

I Theorem 4. Let G be a hyperbolic group. Then the compressed centraliser problem for G
can be solved in polynomial time.

Finally, we consider the compressed knapsack problem for a hyperbolic group. In the
(ordinary) knapsack problem for a finitely generated group G the input is a list of words
u1, . . . , un, v over the generators of G, and it is asked whether there exist natural numbers
n1, . . . , nk such that v =G un1

1 · · ·u
nk

k . This problem has been studied in [13, 14, 27, 32, 35]
for various classes of groups. In [35] it was shown that the knapsack problem for a hyperbolic
group can be solved in polynomial time. Recently, this complexity bound was improved to
LogCFL (the closure of the class of context-free languages under logspace-reductions) [31].
Moreover, for every non-elementary hyperbolic group (meaning that the group contains a
free non-abelian subgroup), knapsack is LogCFL-complete, whereas for elementary hyperbolic
groups knapsack belongs to NL (nondeterministic logspace) [31]. In the compressed knapsack
problem, the words u1, . . . , un, v are represented by SLPs. For the special case G = Z this
problem is a variant of the classical knapsack problem for binary encoded integers, which is
known to be NP-complete. This makes it interesting to look for groups where the compressed
knapsack problem belongs to NP. In [32] it was shown that compressed knapsack for every
virtually special group belongs to NP. Here, we prove:

I Theorem 5. If G is an infinite hyperbolic group then the compressed knapsack problem
for G is NP-complete.

Full proofs can be found in the arXiv version [22].

2 General notations

Zero is included in the set of natural numbers: that is, N = {0, 1, 2, . . .}. Let Σ be a finite
alphabet of symbols. The set of all finite words over Σ is denoted with Σ∗. We use ε ∈ Σ∗
to denote the empty word. Suppose that w = a0a1 · · · an−1 ∈ Σ∗ with ai ∈ Σ. The length
of w is |w| = n. For 0 ≤ i ≤ n − 1 we define w[i] = ai. For 0 ≤ i ≤ j ≤ n we define
w[i : j] = ai · · · aj−1. We use w[: j] to mean w[0 : j], the prefix of length j, and we also use
w[i :] to mean w[i : n], the suffix of length n− i. Note that w[i : i] = ε and w = w[: i]w[i :]
for all 0 ≤ i ≤ n. We say that u ∈ Σ∗ is a factor of w ∈ Σ∗ if there exist x, y ∈ Σ∗ with
w = xuy.

Fix a strict linear order < on the alphabet Σ. We extend < to the length-lexicographic
order <llex on Σ∗: for words u, v ∈ Σ∗ we have u <llex v if and only if (i) |u| < |v| or (ii)
|u| = |v| and there exist words x, y, z ∈ Σ∗ and symbols a, b ∈ Σ such that a < b, u = xay,
and v = xbz. Note that <llex is a well-order on Σ∗. Hence, every non-empty subset L ⊆ Σ∗
contains a unique smallest element with respect to <llex.
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Pp,r Pq,r

Figure 1 The shape of a geodesic triangle in a hyperbolic group.

3 Hyperbolic groups

Let G be a finitely generated group equipped with a finite, symmetric, generating set Σ. The
Cayley graph of G with respect to Σ is the directed edge-labelled graph Γ = Γ(G) with node
set G and all edges of the form (g, ga) for g ∈ G and a ∈ Σ. The edge (g, ga) is labelled with
the generator a. Note that for every a-labelled edge (g, h), the reversed edge (h, g) is labelled
with a−1. We view Γ as a geodesic metric space (the precise definition of a geodesic metric
space is not needed in this paper), where every edge (g, ga) is identified with a unit-length
interval. The distance between two nodes p, q ∈ Γ is denoted by dΓ(p, q). For g ∈ G let
|g| := dΓ(1, g); so |g| is the length of a shortest word in Σ∗ that represents g. For r ≥ 0, let
Br(1) = {g ∈ G : dΓ(1, g) ≤ r}.

Given a word w ∈ Σ∗, one obtains a unique path P [w] that starts at 1 and is labelled by
the word w. This path ends in the group element represented by w. More generally, for g ∈ G
we denote by g · P [w] the path that starts at g and is labelled by w. We will mostly consider
paths of the form g · P[w]. One views P := g · P[w] as a continuous mapping P : [0, n]→ Γ
from the real interval [0, n] to Γ, where n = |w|. We say that a path P : [0, n] → Γ is
path from P (0) to P (n). A path P : [0, n] → Γ is geodesic if dΓ(P (0), P (n)) = n. A word
w ∈ Σ∗ is geodesic if the path P[w] is geodesic, which means that there is no shorter word
representing the same group element from G. A word w ∈ Σ∗ is shortlex reduced if it is
the length-lexicographically least word that represents the same group element as w. For
this, we have to fix an arbitrary linear order on Σ. Note that if u = xy is shortlex reduced
then x and y are shortlex reduced too. For a word u ∈ Σ∗ we denote by shlex(u) the unique
shortlex reduced word that represents the same group element as u. Whenever appropriate,
we identify elements of Br(1) with geodesic words over Σ of length at most r.

A geodesic triangle consists of three points p, q, r ∈ Γ and geodesic paths Pp,q, Pp,r, Pq,r
(the three sides of the triangle), where Px,y is a path from x to y. We call a geodesic triangle
δ-slim for δ ≥ 0, if every point p on one of the three sides has distance at most δ from a point
p′ belonging to one of the two sides that are opposite to p. The group G is called δ-hyperbolic
if every geodesic triangle is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic for some
δ ≥ 0. Figure 1 shows the shape of a geodesic triangle in a hyperbolic group. The property
of being hyperbolic is independent of the chosen finite generating set Σ, but the constant δ
depends in general on the chosen finite generating set. Finitely generated free groups are
for instance 0-hyperbolic, if the generating set is a free basis. The word problem for every
hyperbolic group can be decided in real time [21]. Moreover, one can compute shlex(w) from
a given word w in linear time; see [12] where the result is attributed to Shapiro.

STACS 2019
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Figure 2 A δ-thin triangle in a hyperbolic group. Dotted lines represent geodesic paths of length
at most δ.

v1 v2
va b
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u1 u2

c

Figure 3 Splitting a geodesic rectangle according to Lemma 7.

We will need an equivalent definition of hyperbolicity in terms of so-called thin triangles.
Again, consider three points p, q, r ∈ Γ and let Px,y for x, y ∈ {p, q, r} be a geodesic path
from x to y, where Py,x is the path Px,y traversed in the reversed direction. Moreover, let
dx,y = dΓ(x, y) be the length of Px,y. The three lengths dp,q, dp,r and dq,r fulfil the triangle
inequality. From this one can deduce real numbers sp, sq, sr ≥ 0 such that sx + sy = dx,y for
all x, y ∈ {p, q, r} with x 6= y. The geodesic triangle determined by the three sides Pp,q, Pp,r,
Pq,r is called δ-thin for δ ≥ 0, if for all x, y, z with x ∈ {p, q, r} and {y, z} = {p, q, r} \ {x}
we have dΓ(Px,y(t), Px,z(t)) ≤ δ for all t ∈ [0, sx]; see Figure 2. It is well known (see for
example [23, Theorem 6.1.3]) that in a δ-hyperbolic group every geodesic triangle is δ′-thin
for some constant δ′ ≥ δ.

Let us fix a δ-hyperbolic group G with the finite symmetric generating set Σ for the rest
of the section, and let Γ be the corresponding geodesic metric space. By choosing δ large
enough, we can assume that all geodesic triangles in Γ are δ-thin. We need a few well-known
results about hyperbolic groups.

I Lemma 6 (c.f. [11, Theorem 3.4.5]). The set {shlex(u) : u ∈ Σ∗} is a regular language.

The proofs of the following two simple lemmas can be found in [22].

I Lemma 7. Let a, b, u, v ∈ Σ∗ be geodesic words such that v =G aub and consider a
factorisation v = v1v2 with |v1| ≥ |a|+2δ and |v2| ≥ |b|+2δ. Then there exists a factorisation
u = u1u2 and a geodesic word c with |c| ≤ 2δ such that v1 =G au1c and v2 =G c−1u2b.

The situation in Lemma 7 is shown in Figure 3.

I Lemma 8. For i ∈ {0, 1, 2} let Pi : [0, ni] → Γ be geodesic paths such that P0(0) =
P1(0), P0(n0) = P2(0) and P1(n1) = P2(n2) (so P0, P1, P2 form a geodesic triangle). Let
j ≤ min{n0, n1} be any integer such that dΓ(P0(j), P1(j)) > δ. Then there exist integers
i0, i1 ∈ [0, n2] with i0 ≤ i1, dΓ(P0(j), P2(i0)) ≤ δ, and dΓ(P1(j), P2(i1)) ≤ δ.
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P0 P1
> δ

≤
δ ≤

δ

P2

Figure 4 The situation from Lemma 8.

Lemma 8 follows easily from the fact that the geodesic triangle with sides P0, P0, and P1
is thin. The situation is shown in Figure 4.

4 Compressed words and the compressed word problem

A straight-line program (SLP for short) over the alphabet Σ is a triple G = (V, ρ, S), where V is
a finite set of variables such that V ∩Σ = ∅, S ∈ V is the start variable, and ρ : V → (V ∪Σ)∗
is a mapping such that the relation {(B,A) ∈ V × V : B occurs in ρ(A)} is acyclic. For the
reader familiar with context-free grammars, it might be helpful to view the SLP G = (V, ρ, S)
as the context-free grammar (V,Σ, P, S), where P contains all productions A → ρ(A) for
A ∈ V . The definition of an SLP implies that this context-free grammar derives exactly one
terminal word, which will be denoted by val(G). One can define this string inductively as
follows. First, for every A ∈ V we define valG(A). Assume that ρ(A) = w0A1w1 · · ·Akwk
with k ≥ 0, wi ∈ Σ∗ and Ai ∈ V . Then we define valG(A) = w0valG(A1)w1 · · · valG(Ak)wk.
Finally, we define val(G) = valG(S).

The word ρ(A) is also called the right-hand side of A. We define the size of the SLP
G = (V, ρ, S) as the total length of all right-hand sides: |G| =

∑
A∈V |ρ(A)|. SLPs offer a

succinct representation of words that contain many repeated substrings. For instance, the
word (ab)2n can be produced by the SLP G = ({A0, . . . , An}, ρ, An) with ρ(A0) = ab and
ρ(Ai+1) = AiAi for 0 ≤ i ≤ n− 1.

Quite often, it is convenient to assume that all right-hand sides are of the form a ∈ Σ
or BC with B,C ∈ V . This corresponds to the well-known Chomsky normal form for
context-free grammars. There is a simple linear time algorithm that transforms an SLP
G with val(G) 6= ε into an SLP G′ in Chomsky normal form with val(G) = val(G′), see for
example [30, Proposition 3.8]. We use the fact that the following algorithmic tasks for SLPs
can be solved in polynomial time; see also [30, Proposition 3.9].

Given an SLP G, compute the length |val(G)|.
Given an SLP G and an integer 0 ≤ i < |val(G)|, compute the symbol val(G)[i].
Given an SLP G and integers 0 ≤ i ≤ j ≤ |val(G)|, compute an SLP for val(G)[i : j].

Also the following two propositions are well-known:

I Proposition 9 (c.f. [6, Lemma 2]). For a given SLP G and n ∈ N, we can compute an SLP
Gn with val(Gn) = val(G)n in time O(|G|+ logn).

I Proposition 10 (c.f. [30, Theorem 3.11]). Given a deterministic finite state automaton
M over the alphabet Σ and an SLP G over the alphabet Σ, we can determine in polynomial
time whether val(G) is in the language L(M) of M .

STACS 2019
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Finally, we need the following fundamental result:

I Theorem 11 (c.f. [39]). Given two SLPs G and H, one can check in polynomial time
whether val(G) = val(H).

The compressed word problem for a finitely generated group G with the finite symmetric
generating set Σ is the following decision problem:
Input: an SLP G over the alphabet Σ.
Question: does val(G) represent the group identity of G?
It is an easy observation that the computational complexity of the compressed word problem
for G does not depend on the chosen generating set Σ in the sense that if Σ′ is another
finite symmetric generating set for G, then the compressed word problem for G with respect
to Σ is logspace reducible to the compressed word problem for G with respect to Σ′ [30,
Lemma 4.2]. Therefore we do not have to specify the generating set.

5 The compressed word problem for hyperbolic groups

Fix a δ-hyperbolic group G with the finite symmetric generating set Σ, where δ > 0 is chosen
in such a way that all geodesic triangles are δ-thin. We can moreover assume that δ is an
integer (later, we want to cut off from a word its prefix and suffix of length a certain multiple
of δ). Let us set ζ := 2δ ≥ 1 for the following.

We need an extension of SLPs by two operators: so-called tether operators and cut
operators. A TCSLP (T stands for “tethered”, C stands for “cut”) over the alphabet Σ is a
tuple G = (V, ρ, S), where V is a finite set of variables such that V ∩ Σ = ∅, S ∈ V is the
start variable, and ρ is a mapping with domain V such that for every A ∈ V , ρ(A) (the
right-hand side of A) is of one of the following forms:
(1) a word w ∈ (V ∪ Σ)∗
(2) an expression B[: i] or B[i :] with B ∈ V and i ∈ N ([: i] and [i :] are called cut operators),
(3) an expression B〈a, b〉 with B ∈ V and a, b ∈ Bζ(1) (〈a, b〉 is called a tether operator).
Moreover, we require that the relation {(B,A) ∈ V × V : B occurs in ρ(A)} is acyclic.
The reflexive and transitive closure of this relation is denoted with ≤G . We evaluate
variables of type (1) as for SLPs. If ρ(A) = B[: i] or ρ(A) = B[i :] then we define
valG(A) = valG(B)[: i] or valG(A) = valG(B)[i :], respectively. Finally, if ρ(A) = B〈a, b〉 we
define valG(A) := shlex(a valG(B) b). The reader might ask what happens if i > |valG(B)| in
case ρ(A) = B[: i] or ρ(A) = B[i :]. This will not occur in the TCSLPs constructed in this
paper.

For convenience we will also allow more complex right-hand sides ρ(A) such as for instance
(B[: i]〈a, b〉)(C[j :]〈c, d〉). We define the size of such a right-hand side as the total number of
occurrences of symbols from Σ∪V in the right-hand side. The size of G is obtained by taking
the sum over all variables. Note that the numbers i ∈ N in cut operators do not contribute
to the size of a TCSLP. This does not cause any problems. If one encodes these numbers in
binary notation and adds the lengths of these encodings to the size of an TCSLP, then this
would only increase the size by a constant factor.

If right-hand sides of type (2) do not occur, we speak of a TSLP and if right-hand sides
of type (3) do not occur, we speak of a CSLP. CSLPs are also known as composition systems
and have been studied before, see for example [18]. In [28], CSLPs are used in the polynomial
time algorithm for the compressed word problem of a free group.

We say that the TCSLP G is shortlex, if for every variable A, the word valG(A) is
shortlex reduced. Note that right-hand sides of type (1) may lead to words that are not
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shortlex reduced, since the concatenation of two shortlex reduced words is not necessarily
shortlex reduced. The goal of this section is to compute from a given shortlex TCSLP G in
polynomial time an SLP G′ such that val(G) =G val(G′). In a first step we will present such
a transformation only for TSLPs. In a second step, we will transform a shortlex TCSLP into
an equivalent TSLP. This second step is inspired by the polynomial time transformation of a
CSLP into an equivalent SLP from [18].

For a variable A, we define the height, height(A) for short, inductively by

height(A) = max{height(B) + 1: B ∈ V occurs in ρ(A)},

where max ∅ = 0. Let height(G) = height(S); it is the length of a longest chain in the partial
order ≤G that ends in S.

I Lemma 12. Given a TSLP G over the alphabet Σ, we can check in polynomial time whether
G is shortlex. Moreover, if G is shortlex, then we can compute in polynomial time an SLP G′
over G such that val(G) =G val(G′).

Proof. Let G = (V, ρ, S). In the same way as for SLPs, we can assume that all right-hand
sides from (V ∪ Σ)∗ are of the form a ∈ Σ or BC with B,C ∈ V (variables with right-hand
side ε can be eliminated). Let µ = height(G). We will transform G into the desired SLP G′.
This will be done by a bottom-up process; that is we consider the variables in G in order of
increasing height. If G is not shortlex, we will detect this during the transformation.

For a variable A, we define the tether-height, theight(A) for short, inductively as follows:
if ρ(A) = a, then theight(A) = 0,
if ρ(A) = BC, then theight(A) = max{theight(B), theight(C)}, and
if ρ(A) = B〈s, t〉 then theight(A) = theight(B) + 1.

By removing unused variables, we can assume that S has maximal height and maximal tether
height among all variables. For a nonterminal A we define ηA := theight(S)−theight(A)+1 > 0.

Consider a nonterminal A. Since we are processing the variables in order of increasing
height, we can assume that for all B <G A the word valG(B) is shortlex reduced. Let
w := valG(A). If |w| ≤ 16ζηA + 2ζ then we will explicitly compute the word w in the
process of defining the SLP G′. Otherwise, we will compute explicitly words `A, rA such that
w = `Aw

′rA for some word w′ of length at least 2ζ. The words `A and rA will satisfy the
length constraints 8ζηA ≤ |`A|, |rA| ≤ 8ζηA + 2ζheight(A). Moreover, in the latter case, the
SLP G′ will contain variables A′a,b for all a, b ∈ Bζ(1) such that valG′(A′a,b) = shlex(aw′b).
The A′a,b, together with a start variable S′, which will be added at the end of the process,
will be the only variables that we include in the SLP G′. All of the words that we compute
and store, such as the `A and rA, are to enable us to carry out the necessary computations,
and are not stored as part of G′.

We now make a case distinction on the form of the right-hand side ρ(A). We only consider
the most difficult case that ρ(A) = B〈a, b〉 for a, b ∈ Bζ(1).

Let u := valG(B) and v := valG(A) = shlex(aub). The word u is shortlex reduced by
assumption, and v is shortlex reduced by definition. Let η = ηB . We have ηA = η− 1 ≥ 1. If
|u| ≤ 16ζη + 2ζ then we have explicitly computed the word u. We explicitly compute the
word v = shlex(aub), and then distinguish the cases |v| ≤ 16ζη + 2ζ and |v| > 16ζη + 2ζ.
In the first case, there is nothing to do. If |v| > 16ζη + 2ζ, we factorise v as v = `Av

′rA
with |`A| = |rA| = 8ζη, and thus |v′| ≥ 2ζ. We can compute for all a, b ∈ Bζ(1) the word
shlex(av′b) and set ρ′(A′a,b) = shlex(av′b).

Now assume that |u| > 16ζη + 2ζ. We have computed words `B , rB such that 8ζη ≤
|`B |, |rB | ≤ 8ζη + 2ζheight(B) and u = `Bu

′rB for a word u′ of length at least 2ζ. Moreover,
we have already defined variables B′c,d for all c, d ∈ Bζ(1), which produce shlex(cu′d).
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Figure 5 The situation from the proof of Lemma 12. Dotted lines represent words that are given
by SLPs.

Using Proposition 10 we check in polynomial time for all c, d ∈ Bζ(1) whether the word

shlex(a`Bc−1)valG′(B′c,d)shlex(d−1rBb) = shlex(a`Bc−1)shlex(cu′d)shlex(d−1rBb)

is shortlex reduced, in which case it is shlex(a`Bu′rBb) = shlex(aub) = v; see Figure 5. By
Lemma 7, there must exist such c, d ∈ Bζ(1). Let s = shlex(a`Bc−1) and t = shlex(d−1rBb).
By the triangle inequality, these words have length at least 8ζη − 2ζ. Hence we can factorise
these words as s = wx and t = yz with |w| = |z| = 8ζ(η − 1) = 8ζηA ≥ 8ζ. The words
x and y have length at least 6ζ. We set `A := w and rA := z. These words satisfy the
required bounds on their lengths. Note that valG(A) = shlex(aub) = `Ax shlex(cu′d)yrA and
|x shlex(cu′d)y| ≥ 12ζ ≥ 2ζ.

It remains to define the right-hand sides of the variables A′g,h for all g, h ∈ Bζ(1). Let us fix
g, h ∈ Bζ(1). The lower bounds on the lengths of w, x, y, z allow us to apply Lemma 7 to the
geodesic rectangles with sides a, `B , c, wx and d, rB , b, yz, respectively (all of these words have
been computed explicitly). We can compute in polynomial time e, f ∈ Bζ(1) and factorisations
`B = w′x′, rB = y′z′ as shown in Figure 5. By the triangle inequality, the words x′ and y′
must have length at least 4ζ. Now consider the geodesic rectangle with sides x′u′y′, shlex(ge),
shlex(fh), and shlex(gex′u′y′fh). Since |x′|, |y′| ≥ 4ζ and |shlex(ge)|, |shlex(fh)| ≤ 2ζ, we
can apply Lemma 7 again: There must exist i, j ∈ Bζ(1) such that the word

shlex(gex′i−1) valG′(B′i,j) shlex(j−1y′fh) = shlex(gex′i−1) shlex(iu′j) shlex(j−1y′fh)

is shortlex reduced, in which case the above word is shlex(gex′u′y′fh). Using Proposition 10,
we can compute such i, j ∈ Bζ(1) in polynomial time. We finally define the right-hand side
of A′g,h as ρ′(A′g,h) = shlex(gex′i−1)B′i,j shlex(j−1y′fh).

This concludes the definition of the right-hand sides for the variables A′a,b. We complete
the definition of G′ by adding a start variable S′ to G′ and setting ρ′(S′) = `SS

′
1,1rS . J

The next lemma generalises Lemma 12 to TCSLPs.

I Lemma 13. Given a TCSLP G over the alphabet Σ, we can check in polynomial time
whether G is shortlex. Moreover, if G is shortlex, then we can compute in polynomial time an
SLP G′ over G such that val(G) =G val(G′).

Proof sketch. The idea of the proof is taken from [18], where it is shown that a CSLP can
be transformed in polynomial time into an equivalent SLP. Let G = (V, ρ, S) be the input
TCSLP. We can assume that all right-hand sides from (V ∪ Σ)∗ are of the form a ∈ Σ or
BC with B,C ∈ V . By Lemma 12 it suffices to transform G into an equivalent TSLP. Let
µ = height(G). Consider a variable A such that ρ(A) = B[: i]; the case that ρ(A) = B[i :]
can be dealt with analogously. We can assume that i ≤ |valG(B)| (this will be true for the
TCSLP constructed in the proof of Theorem 15 below). By considering the variables in order
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of increasing height, we can moreover assume that no cut operator occurs in the right-hand
side of any variable C <G A. We then push the operator in ρ(A) towards smaller (with
respect to <G) variables. Thereby we add at most µ new variables to the TCSLP. Moreover
the height of the TCSLP after the cut elimination is still bounded by µ. Hence, the final
TSLP has at most µ · |V | variables. In addition, every right-hand side of the final TSLP will
have length at most 2ζ + 1, so its size will be polynomially bounded. J

I Lemma 14. Given shortlex TCSLPs G0 and G1 such that val(Gi) represents the group
element gi, we can check in polynomial time, whether dΓ(g0, g1) ≤ δ. Moreover, if this is
true, we can compute a ∈ Bδ(1) such that g0a =G g1.

Proof. For all a ∈ Bδ(1) we compute, by adding one new variable to G0, a shortlex TCSLP
G0,a for shlex(val(G0)a). Using Lemma 13 and Theorem 11 we can check in polynomial time
whether val(G0,a) = val(G1), which is equivalent to g0a =G g1. J

Finally, we can prove the main technical result of this section:

I Theorem 15. From a given SLP G over the alphabet Σ we can compute in polynomial
time an SLP G′ for shlex(val(G)).

Proof. By Lemma 13 it suffices to compute in polynomial time a shortlex TCSLP G′ for
shlex(val(G)). For this, we process G bottom-up; that is, we consider the variables in order
of increasing height. Assume that G = (V, ρ, S) and that G is in Chomsky normal form.
The TCSLP G′ will contain all variables from V plus some auxiliary variables. Let us write
G′ = (V ′, ρ′, S). For every variable A ∈ V we will have valG′(A) = shlex(valG(A)). Consider
a variable A ∈ V and assume that, for all variables B <G A, we have already defined ρ′(B)
in such a way that valG′(B) = shlex(valG(B)).

If ρ(A) = a ∈ Σ then we set ρ′(A) := shlex(a). Now assume that ρ(A) = BC. Thus we
have already defined TCSLPs for the words u := shlex(valG(B)) and v := shlex(valG(C)).
Moreover, by Lemma 13 we can transform these TCSLPs into SLPs. Using these SLPs, we
can compute the lengths m = |u| and n = |v|. If m = 0 or n = 0, then we set ρ′(A) := C or
ρ′(A) := B, respectively. So let us assume that m and n are both non-zero. Moreover, we
only consider the case that m ≤ n; the other case is symmetric. From the SLP for u we can
compute an SLP for u−1. Consider the geodesic paths P0 := P[u−1] and P1 := P[v]. Using
Lemma 14 we can check whether dΓ(P0(m), P1(m)) ≤ δ.

Case 1. dΓ(P0(m), P1(m)) ≤ δ. In this case, we can compute by Lemma 14 a word a of
length at most δ such that a =G uv[: m]. The situation is shown in Figure 6 on the left.
We set ρ′(A) := C[m :]〈a, 1〉.

Case 2. dΓ(P0(m), P1(m)) > δ. Using binary search, we compute an integer i ∈ [0,m− 1]
such that dΓ(P0(i), P1(i)) ≤ δ and dΓ(P0(i + 1), P1(i + 1)) > δ. For this we store an
interval [p, q] ⊆ [0,m] such that p < q, dΓ(P0(p), P1(p)) ≤ δ and dΓ(P0(q), P1(q)) > δ.
Initially, we set p = 0 and q = m, and we stop if q = p + 1. In each iteration, we
compute r = d(p+ q)/2e and check, using Lemma 14, whether dΓ(P0(r), P1(r)) ≤ δ or
dΓ(P0(r), P1(r)) > δ. In the first case we set p := r and do not change q, and in the
second case we set q := r and do not change p. Hence, in each iteration the size of
the interval [p, q] is roughly halved. Therefore, the binary search stops after O(log(m))
iterations, which is polynomial in the input length. In addition to the position i, we can
also compute a ∈ Bδ(1) that labels a path from P0(i) to P1(i).
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Figure 6 Case 1 (left) and 2 (right) from the proof of Theorem 15.

Let P2 be the unique geodesic path from P0(m) to P1(n) that is labelled with a shortlex
reduced word. Note that this path is labelled with shlex(uv). By Lemma 8 there exist i0 ≤ i1
such that dΓ(P0(i+ 1), P2(i0)) ≤ δ and dΓ(P1(i+ 1), P2(i1)) ≤ δ. We therefore iterate over
all b, c ∈ Bδ(1), compute the word s := shlex(b−1u[m− i− 1]av[i]c−1) explicitly, and check
whether the word

shlex(u[: m− i− 1]b) s shlex(cv[i+ 1 :]) (1)

is shortlex reduced too, in which case it is shlex(uv). This can be done using Proposition 10 and
using the fact that SLPs for u and v are available. From these SLPs we can compute TCSLPs
for shlex(u[: m− i− 1]b) and shlex(cv[i+ 1 :]), which can be transformed into SLPs using
Lemma 13. It is guaranteed by Lemma 8 that we will find b, c ∈ Bδ(1) such that the word in (1)
is shortlex reduced. For these b, c we finally set ρ′(A) := (B[: m−i−1]〈1, b〉) s (C[i+1 :]〈c, 1〉).
This concludes the proof of the theorem. J

A word w ∈ Σ∗ represents the group identity if and only if shlex(w) = ε. Hence, Corollary 1
from the introduction follows directly from Theorem 15.

6 Further compressed decision problems

6.1 Computing the order of a compressed group element
An easy consequence of Corollary 1 is the following result:

I Corollary 16. Let G be a hyperbolic group G with the finite symmetric generating set Σ.
From a given SLP G over the alphabet Σ one can compute in polynomial time the order (an
element from N ∪ {∞}) of the group element represented by val(G).

Proof. Let G be an SLP over the alphabet Σ. It is known that every hyperbolic group has
a finite number of conjugacy classes of finite subgroups, and hence that there is a bound
on the order of its finite subgroups [23, Theorem 6.8.4]. So there exists a constant c = c(G)
such that the order of every element g ∈ G belongs to {1, . . . , c,∞}. Hence, in order to
compute the order of (the group element represented by) val(G), it suffices to check whether
val(G)k =G 1 for any 1 ≤ k ≤ c. By Corollary 1, this can be done in polynomial time. J

6.2 Compressed conjugacy and centralisers
Let G be a finitely generated group G with a fixed finite symmetric generating set for G. For
group elements g, h ∈ G we use the standard abbreviation gh = h−1gh, which is extended
to lists L = (g1, . . . , gk) with gi ∈ G by Lh = (gh1 , . . . , ghk ). We extend these definitions to
words over Σ in the obvious way. The compressed conjugacy problem for G is the following
problem:
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Input: SLPs G and H over the alphabet Σ.
Question: Do G and H represent conjugate elements in G? That is, does there exist g ∈ G

with val(G)g =G val(H)?

More generally, we can define the compressed simultaneous conjugacy problem for G:
Input: Finite lists LG := (G1, . . . ,Gk) and LH := (H1, . . . ,Hk) of SLPs over the alphabet Σ.
Question: Do LG and LH represent conjugate lists of elements in G? That is, does there

exist g ∈ G with val(Gi)g =G val(Hi) for all 1 ≤ i ≤ k?
In the case when the answer to either of these questions is positive, we might also want to
compute an SLP for an element g ∈ G that conjugates val(G) to val(H) or LG to LH.

The compressed centraliser problem for G is the following computation problem:
Input: A finite list (G1, . . . ,Gk) of SLPs over G.
Output: A finite list of SLPs (H1, . . . ,Hl) such that {val(H1), . . . , val(Hl)} is a generating

set for the centraliser of the group elements represented by val(G1), . . . , val(Gk).
The proofs of Theorems 2 and 4 from the introduction can be found in the full version
[22]. A linear-time algorithm for solving the conjugacy problem of a hyperbolic group G is
described in [12, Section 3]. This was generalised in [5] to a linear-time algorithm for the
(uncompressed) simultaneous conjugacy problem and the centraliser problem. We show in
[22] that essentially the same algorithms (modulo applications of Theorem 15) can be used to
solve the compressed (simultaneous) conjugacy problem for G and the compressed centraliser
problem in polynomial time.

6.3 Compressed knapsack
Let G be a finitely generated group with the finite symmetric generating set Σ. A knapsack
expression over G is a rational expression of the form E = v0u

∗
1v1u

∗
2v2 · · ·u∗kvk with k ≥ 0

and ui, vi ∈ Σ∗. A solution for E is a tuple (n1, n2, . . . , nk) ∈ Nk of natural numbers such
that v0u

n1
1 v1u

n2
2 v2 · · ·unk

k vk =G 1. The length of E is defined as |E| = |v0|+
∑k
i=1 |ui|+ |vi|.

The knapsack problem for G is the following decision problem:
Input: A knapsack expression E over G.
Question: Does E has a solution?
In [35] it was shown that the knapsack problem for a hyperbolic group can be solved in
polynomial time. A crucial step in the proof for this fact is the following result, which is of
independent interest:

I Theorem 17 (c.f. [35]). For every hyperbolic group G there exists a polynomial p(x) such
that the following holds: if a knapsack expression E = v0u

∗
1v1u

∗
2v2 · · ·u∗kvk over G has a

solution then it has a solution (n1, . . . , nk) ∈ Nk such that ni ≤ p(|E|) for all 1 ≤ i ≤ k.

Let us now consider the compressed knapsack problem for G. It is defined in the same
way as the knapsack problem, except that the words ui, vi ∈ Σ∗ are given by SLPs. The
compressed knapsack problem for Z is NP-complete [17, Proposition 4.1.1]. In fact, this
problem corresponds to a variant of the classical knapsack problem for binary encoded
integers (for an integer z, it is easy to construct in polynomial time from the binary encoding
of z an SLP over the symmetric generating set {a, a−1} of Z which evaluates to az or to
(a−1)−z). Using this fact, Corollary 1 and Theorem 17, we can easily deduce Theorem 5
from the introduction, as follows.

Proof of Theorem 5. Consider a knapsack expression E = v0u
∗
1v1u

∗
2v2 · · ·u∗kvk over G,

where the ui and vi are given by SLPs Gi and Hi, respectively. We then have |ui| ≤ 3|Gi|/3 and
|vi| ≤ 3|Hi|/3; see the proof of Lemma 1 in [6] (these bounds on the lengths of the ui and vi do
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not assume that the Gi andHi are in Chomsky normal form). LetN := |H0|+
∑k
i=1(|Gi|+|Hi|)

be the input length. By Theorem 17, there exists a polynomial p(x) such that E has a
solution if and only if it has a solution (n1, . . . , nk) ∈ Nk such that ni ≤ p(|E|) for all
1 ≤ i ≤ k. We obtain a bound of the form 2O(N) on the ni. Hence, we can guess a tuple
(n1, . . . , nk) ∈ Nk with all ni bounded by 2O(N) and then check whether it is a solution of
E. The latter can be done in polynomial time by constructing from the SLPs Gi and Hi an
SLP G for v0u

n1
1 v1u

n2
2 v2 · · ·unk

k vk using Proposition 9. Finally, we check in polynomial time
whether val(G) =G 1 using Corollary 1.

The second statement of Theorem 5 follows from the well known fact that every infinite
hyperbolic group contains a copy of Z together with the above mentioned result for Z. J

7 Conclusion and open problems

We proved that for every hyperbolic group G, several compressed decision problems (where
input words are represented by straight-line programs) can be solved in polynomial time,
namely the compressed versions of the following problems: the word problem, computing the
order of a group element, the simultaneous conjugacy problem, computing the centralizer of
a finite set of group elements, and the knapsack problem.

An important open problem is the precise complexity of the compressed word problem
for finitely generated linear groups. We mentioned in the introduction that the compressed
word problem for every finitely generated linear group belongs to the complexity class coRP.
It is open, whether this upper bound can be improved to P for every finitely generated linear
group. This is a very difficult question: as mentioned in the introduction, the compressed
word problem for the finitely generated linear group SL3(Z) is equivalent (up to polynomial
time reductions) to polynomial identity testing. The precise complexity of the latter problem
is an outstanding open problem in algebraic complexity theory that is tightly related to
lower bounds in circuit complexity theory [24]. But there are many interesting subclasses of
finitely generated linear groups, for which it is open whether a polynomial time algorithm
for the compressed word problem exists. Let us mention braid groups and Baumslag-Solitar
groups BS(1, p) (for p ≥ 2) in this context.

Another interesting class of groups, where compressed decision problems have not been
considered in depth so far are automaton groups. A concrete open problem is the complexity
of the compressed word problem for the Grigorchuk group. The (uncompressed) word problem
for the Grigorchuk group can be solved in deterministic logarithmic space [15].

Let us finally mention the compressed variant of the generalized word problem (or
subgroup membership problem) for a finitely generated free group F (Σ). The input consists
of a finite list of SLPs for words w,w1, . . . , wn ∈ (Σ ∪Σ−1)∗ and the question is whether the
group element represented by w belongs to the subgroup generated by the group elements
represented by the words w1, . . . , wn. In the standard (uncompressed) setting this problem
can be easily solved in polynomial time using Stalling’s folding procedure, see [41] for an
efficient implementation. It is open, whether also the compressed generalized word problem
for a finitely generated free group can be solved in polynomial time.
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