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—— Abstract

In the NP-hard EDGE DOMINATING SET problem (EDS) we are given a graph G = (V, E) and an
integer k, and need to determine whether there is a set F' C E of at most k edges that are incident
with all (other) edges of G. It is known that this problem is fixed-parameter tractable and admits a
polynomial kernelization when parameterized by k. A caveat for this parameter is that it needs to
be large, i.e., at least equal to half the size of a maximum matching of G, for instances not to be
trivially negative. Motivated by this, we study the existence of polynomial kernelizations for EDS
when parameterized by structural parameters that may be much smaller than k.

Unfortunately, at first glance this looks rather hopeless: Even when parameterized by the deletion
distance to a disjoint union of paths Ps of length two there is no polynomial kernelization (under
standard assumptions), ruling out polynomial kernelizations for many smaller parameters like the
feedback vertex set size. In contrast, somewhat surprisingly, there is a polynomial kernelization for
deletion distance to a disjoint union of paths Ps of length four. As our main result, we fully classify
for all finite sets H of graphs, whether a kernel size polynomial in |X| is possible when given X such
that each connected component of G — X is isomorphic to a graph in H.
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1 Introduction

In the EDGE DOMINATING SET problem (EDS) we are given a graph G = (V, F) and an
integer k, and need to determine whether there is a set F' C E of at most k edges that are
incident with all (other) edges of G. It is known that this is equivalent to the existence of a
maximal matching of size at most k. The EDGE DOMINATING SET problem is NP-hard but
admits a simple 2-approximation by taking any maximal matching of G. It can be solved in
time O*(2.2351%)! [18], making it fixed-parameter tractable for parameter k. Additionally,
for EDS any given instance (G, k) can be efficiently reduced to an equivalent one (G', k')
with only O(k?) vertices and O(k3) edges [33] (this is called a kernelization).

The drawback of choosing the solution size k as the parameter is that k is large on many
types of easy instances. This has been addressed for many other problems by turning to so
called structural parameters that are independent of the solution size. Two lines of research
in this direction have yielded polynomial kernelizations for several other NP-hard problems.

1 O*-notation hides factors that are polynomial in the input size.
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One possibility is to choose the parameter as the size of a set X such that G — X belongs to
some class C where the problem in question can be efficiently solved; such sets X are called
modulators. The other possibility is to parameterize above some lower bound for the solution,
i.e., the parameter is the difference between the solution size k and the lower bound.

The VERTEX COVER problem, where, given a graph GG and an integer k, we are asked
whether there are k vertices that are incident with all edges, has been successfully studied
under different structural parameters. It had been observed that VERTEX COVER is FPT
parameterized by the size of a modulator to a class C when one can solve vertex cover
on graphs that belong to C in polynomial time; e.g. if C is the graph class of forests or,
more generally, of bipartite or Kénig graphs. Furthermore, there also exist kernelizations
for VERTEX COVER parameterized by modulators to some graph classes C. The first of
a number of such results is due to Jansen and Bodlaender [19] who gave a kernelization
with O(£3) vertices where £ is the size of a (minimum) feedback vertex set of the input graph.
Clearly, the solution size k cannot be bounded in terms of ¢ alone because forests already
have arbitrarily large minimum vertex covers. This result has been generalized, e.g., for
parameterization by the size of an odd cycle transversal [24].

There are also parameterized algorithms for VERTEX COVER above lower bounds that
address the specific complaint about the seemingly unnecessarily large parameter value k in
many graph classes. It was first shown that VERTEX COVER parameterized by ¢ = k — M M
where MM stands for the size of a maximum matching is FPT [27]. In other words, the
parameter value £ is the difference between &k and the obvious lower bound. This has been
improved to work also for parameterization by £ = k — L P where LP stands for the minimum
fractional vertex cover (as determined by the LP relaxation) [5, 25] and, recently, even for
parameter £ = k — (2LP — M M) [13]. All of these above lower bound parameterizations of
VERTEX COVER also have randomized polynomial kernelizations [24, 23].

Motivated by the number of positive results for VERTEX COVER parameterized by struc-
tural parameters we would like to know whether some of these results carry over to the
related but somewhat more involved EDGE DOMINATING SET problem.

Our results. For kernelization subject to the size of a modulator to some tractable class C
there is bad news: Even if C contains only the disjoint unions of paths of length two (consisting
of three vertices each) we show that there is no polynomial kernelization for parameterization
by | X| with G — X € C unless NP C coNP/poly (and the polynomial hierarchy collapses).
The same is true when C contains at least all disjoint unions of triangles. Thus, for the usual
program of studying modulators to well-known hereditary graph classes C there is essentially
nothing left to do because the only permissible connected components would have one or two
vertices.? That said, as the next result shows, this perspective would ignore an interesting
landscape of positive and negative results that can be obtained by permitting certain forms
of connected components in G — X but not necessarily all induced subgraphs thereof, i.e., by
dropping the requirement that C needs to be hereditary (closed under induced subgraphs).

Indeed, there is, e.g., a polynomial kernelization for parameter | X| when all connected
components of G — X are paths of length four. This indicates that the structure even of
constant-sized components permitted in G — X determines in a nontrivial way whether or not
there is a polynomial kernelization. Note the contrast with VERTEX COVER where a modulator
to component size d admits a kernelization with O(k?) vertices for each fixed d. Naturally,
we are interested in finding out exactly which cases admit polynomial kernelizations.

2 This very modest case actually admits a polynomial kernelization.
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This brings us to our main result. For H a set of graphs, say that G is an H-component
graph if each connected component of G is isomorphic to some graph in H. We fully classify
the existence of polynomial kernelizations for parameterization by the size of a modulator to
the class of H-component graphs for all finite sets H. To clarify, the input consists of (G, k, X)
such that G — X is an H-component graph and the task is to determine whether G has an
edge dominating set of size at most k; the parameter is | X|. Note that these problems are
fixed-parameter tractable for all finite sets H because G has treewidth at most | X| + O(1).

» Theorem 1. For every finite set H of graphs, the EDGE DOMINATING SET problem

parameterized by the size of a given modulator X to the class of H-component graphs falls

into one of the following two cases:

1. It has a kernelization with O(|X|%) vertices, O(|X|?*1) edges, and size O(| X |4+ 1log | X|).
Moreover, unless NP C coNP/poly, there is no kernelization to size O(|X|%¢) for any
e >0. Here d=d(H) is a constant depending only on the set H.

2. It has no polynomial kernelization unless NP C coNP /poly.

To obtain the classification one needs to understand how connected components of G — X
that are isomorphic to some graph H € H can interact with a solution for G, and to derive

properties of H that can be leveraged for kernelizations or lower bounds for kernelization.
Crucially, edge dominating sets for G may contain edges between X and components of G— X.

From the perspective of such a component (isomorphic to H) this is equivalent to first covering
edges incident with some vertex set B C V(H) (the endpoints of chosen edges to X) and
then covering the remaining edges by a minimum edge dominating set for H — B. Depending
on the size of a minimum edge dominating set of H — B and further properties of H, such
a set B may be used to rule out any polynomial kernelizations or to give a lower bound
of O(]X|97¢) for the kernel size, where d = |B|. Conversely, absence of such sets or an
upper bound for their size can be leveraged for kernelizations. Some sets B may make others
redundant, further complicating both upper and lower bounds.

For a given finite set ‘H of graphs, the lower bound obtained from the classification is
simply the strongest one over all H € H. If this does not already rule out a polynomial
kernelization then, for each H € H, we can reduce the number of components isomorphic
to H to O(|X|4H)) where d(H) depends only on H. Moreover, we also have the almost
matching lower bound of O(| X |4*)=¢)  assuming NP ¢ coNP/poly. The value d(#) is the
maximum over all d(H) for H € H that yield such a polynomial lower bound; it can be
computed in time depending only on H, i.e., in constant time for each fixed H.

Regarding parameterization above lower bounds, we prove that it is NP-hard to determine
whether a graph G has an edge dominating set of size equal to the lower bound of half the size
of a maximum matching. This rules out any positive results for parameter ¢ = k — %M M.

Related work. The parameterized complexity of EDGE DOMINATING SET has been studied
in a number of papers [9, 10, 31, 32, 33, 34, 8, 18]. Structural parameters were studied, e.g., by
Escoffier et al. [8] who obtained an O*(1.821) time algorithm where £ is the vertex cover size
of the input graph, and by Kobler and Rotics [22] who gave a polynomial-time algorithm for
graphs of bounded clique-width. It is easy to see that EDS is fixed-parameter tractable with
respect to the treewidth of the input graph. Prieto [26] was the first to find a kernelization
to O(k?) vertices for the standard parameterization by k; this was improved to O(k?) vertices
and O(k?) edges by Xiao et al. [33] and further tweaked by Hagerup [15]. Our work appears to
be the first to study the existence of polynomial kernelizations for EDS subject to structural
parameters, though some lower bounds, e.g., for parameter treewidth are obvious.
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Classically, EDGE DOMINATING SET remains NP-hard on planar cubic graphs, bipartite
graphs with maximum degree three [36]. This implies NP-hardness already for | X| = 0 when
considering parameterization by a modulator to any graph class containing this special case.
EDGE DOMINATING SET has also been studied from the perspective of approximation [12, 4,
3, 29, 8], enumeration [20, 14, 21], and exact exponential-time algorithms [28, 32, 30, 35].

Organization. We begin with some preliminaries in Section 2. Section 3 provides some
intuition for the main result by proving the lower bound for EDGE DOMINATING SET para-
meterized by the size of a modulator to a Ps-component graph as well as the polynomial
kernelization for parameterization by the size of a modulator to a Ps-component graph.
Section 4 gives a detailed statement of the main result including the required definitions to
determine which result applies for any given set . Due to space restrictions, the proof of
the main result and the hardness proof for parameter ¢ = k — %M M are deferred to the full
version of this work. We conclude in Section 5.

2 Preliminaries

We use standard graph notation as given by Diestel [7]. In particular, for a graph G = (V, E)
we let N(v) = {u €V | {u,v} € E} and N[v] = N(v) U {v}; similarly, N[X] = |J,cx N[z]
and N(X) = N X]\ X. Welet E(X,Y) = {{z,y} | v € X,y € Y} and we let §(v)
{{u,v} | v € V,{u,v} € E}. By G[X] we denote the induced subgraph of G on vertex set
X and by G — X the induced subgraph on vertex set V' \ X; we let G —v =G — {v}. We
denote the size of a minimum edge dominating set of a graph G by EDS(G).

Let H be a set of graphs. We say that a graph G is an H-component graph if each
connected component of GG is isomorphic to some graph in H. Clearly, disconnected graphs
in H do not affect which graphs G are H-component graphs and, thus, our proofs need
only consider the connected graphs H € H. We write H-component graph rather than
{H }-component graph for single (connected) graphs H.

Let [n] denote the set {1,2,...,n}.

Parameterized complexity. A parameterized problem Q is a subset of ¥* x N where
is any finite set. The second component k of instances (x, k) is called the parameter. A
parameterized problem Q is fized-parameter tractable if there is an algorithm that correctly
solves all instances (z,k) in time f(k)|x|® where f is a computable function and ¢ is a
constant independent of k. A kernelization for Q is an efficient algorithm that, given an
instance (z, k), takes time polynomial in |z| + k and returns an instance (z’, k') of size at
most f(k) such that (x,k) € Q if and only if (2/,k’) € Q where f is a computable function.
The function f is also called the size of the kernelization and a kernelization is polynomial
(resp. linear) if f(k) is polynomially (resp. linearly) bounded in k.

We use the notion of a cross-composition [2], which is a convenient front-end for the seminal
kernel lower bound framework of Bodlaender et al. [1] and Fortnow and Santhanam [11].
A relation R C ¥* x X* is a polynomial equivalence relation if equivalence of two strings
x,y € X* can be tested in time polynomial in |z| + |y| and if R partitions any finite set
S C ¥* into a number of classes that is polynomially bounded in the largest element of S.

» Definition 2 ((OR-)cross-composition [2]). Let L C X* be a language, let R be a polynomial
equivalence relation on X*, and let @ C ¥* x N be a parameterized problem. An (OR-)cross-
composition of L into Q (with respect to R) is an algorithm that, given t instances x1,...,xs €



E. C. Hols and S. Kratsch

>* of L belonging to the same equivalence class of R, takes time polynomial in Ele ;]
and outputs an instance (y,k) € * x N such that the following hold:
“PB”: The parameter value k is polynomially bounded in max!_, |z;| + logt.
“OR”: The instance (y, k) is yes for Q if and only if at least one instance x; is yes for L.
An (OR-)cross-composition of L into Q of cost f(t) instead satisfies “OR” and “CB”:
“CB”: The parameter value k is bounded by O(f(t) - (max!_, |z;])¢), where ¢ is some
constant independent of t.

If L is NP-hard then both forms of cross-compositions are known to imply lower bounds
for kernelizations for Q. Theorem 4 additionally builds on Dell and van Melkebeek [6].

» Theorem 3 ([2, Corollary 3.6.]). If an NP-hard language L has a cross-composition to Q then
Q admits no polynomial kernelization or polynomial compression unless NP C coNP/poly.

» Theorem 4 ([2, Theorem 3.8.]). Let d,e > 0. If an NP-hard language L has a cross-
composition into Q of cost f(t) = t'/4°M) where t is the number of instances, then Q has no
polynomial kernelization or polynomial compression of size O(k?%) unless NP C coNP/poly.

All our composition-based proofs use for L the NP-hard MULTICOLORED CLIQUE problem.
Therein we are given a graph G = (V, E), an integer k, and a partition of V into k sets
Vi,..., Vi of equal size; we need to determine whether there is a clique of size k in G that
contains exactly one vertex from each set V;. Such a set X is called a multicolored k-clique.

3 EDS parameterized by the size of a modulator to a Ps- resp.
Ps-component graph

In this section we study the difference of EDGE DOMINATING SET parameterized by the size
of a modulator to a P3-component graph and EDGE DOMINATING SET parameterized by
the size of a modulator to a Ps-component graph, which are both more restrictive than
parameterization by size of a feedback vertex set (modulator to a forest). Note that the latter
is FPT, because the treewidth is at most the size of the feedback vertex set plus one and
EDGE DOMINATING SET parameterized by the treewidth is FPT. Hence, EDGE DOMINATING
SET parameterized by the above modulators is FPT too.

First, we show that EDGE DOMINATING SET parameterized by the size of a modulator
to a P3-component graph has no polynomial kernelization unless NP C coNP/poly. This
rules out polynomial kernelizations for a large number of interesting parameters like feed-
back vertex set size or size of a modulator to a linear forest. Somewhat surprisingly, we
then show that when parameterized by the modulator to a Ps-component graph we do
get a polynomial kernelization.

3.1 Lower bound for EDS parameterized by the size of a modulator to
a Ps-component graph

We give a kernelization lower bound for EDGE DOMINATING SET parameterized by the size of
a modulator X, such that deleting X results in a disjoint union of P3’s. To prove this we
give a cross-composition from MULTICOLORED CLIQUE.

» Theorem 5. EDGE DOMINATING SET parameterized by the size of a modulator to a Ps-
component graph (and thus also parameterized by the size of a modulator to a linear forest)
does not admit a polynomial kernelization unless NP C coNP /poly.
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Figure 1 Construction of the graph G’ with k = 4, where X' = WU ZuUZ'UVUTUT USUS".

Proof. To prove the theorem we give a cross-composition from the NP-hard MULTICOLORED
CLIQUE problem to EDGE DOMINATING SET parameterized by the size of a modulator to
a P3-component graph. Input instances are of the form (G, k;) where G; comes with a
partition of the vertex set into k color classes. (Since the color classes are of equal size it
holds that k& < |V(G;)|.) For the polynomial equivalence relation R we take the relation that
puts two instances (G1, k1), (G, k2) of MULTICOLORED CLIQUE in the same equivalence class
if k1 = ko and |V(G1)| = |V(G2)|. It is easy to check that R is a polynomial equivalence
relation. (Instances with size at most N have at most N vertices. Thus, we get at most N2
classes for instances of size at most N.)

Let a sequence of instances I; = (G;, k)!_; of MULTICOLORED CLIQUE be given that are
equivalent under R. We identify the color classes of the input graphs so that all graphs have
the same vertex set V' and the same color classes Vi, Vs, ..., Vi. Let n := |V;| be the number
of vertices of each color class; thus, each instance has |V| = n - k vertices. We assume w.l.o.g.
that every instance has at least one edge in E(V,, V) for all 1 < p < ¢ < k; otherwise, this
instance would be a trivial no instance and we can delete it. Furthermore, we can assume
w.l.o.g. that ¢ = 2° for an integer s, since we may copy some instances if needed (while at
most doubling the number of instances and increasing logt by less than one).

Now, we construct an instance (G, k', X') of EDGE DOMINATING SET parameterized
by the size of a modulator to a P3-component graph, where the size of X’ is polynomially
bounded in n + k + s (see Figure 1 for an illustration). We add a set V consisting of k- n
vertices to graph G’ which represents the vertices of the ¢ instances. The set V' is partitioned
into the k color classes Vi, Vs, ..., Vi. To choose which vertices are contained in a clique of
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size k, we add a set T' = {t1,to,...,t;} and a set T" = {t],t5, ..., ¢, }, each of size k, to G'.
We make t; € T, with j € [k], adjacent to all vertices in V; and to vertex t; € T’. Next,
we add two sets Z, Z’/, each of size s, and a set W of size 25 to G’ and add edges to G’
such that each vertex in Z has exactly one private neighbor in Z’ and is adjacent to all
vertices in W. The set W contains (2;) > 2% different subsets of size s. For each instance

(G;, k), with i € [t], we pick a different subset of size s of W and denote it by W (4). For all

1 <p < q<kweadd a vertex s, 4 and a vertex s;, , to G’; these will correspond to the edge

sets E(V,, Vy). Let S ={sp, | 1<p<qg<k}and S ={s,, |1 <p<q<k} Wemake

vertex s, , adjacent to vertex s;, , for all 1 < p < g < k. For each graph Gj, for i € [t], we
add |E(G;)| paths of length two to the graph G’; every Pj represents exactly one edge of
the graph G;. Let P = uf ufus, denote the path of instance i € [t] that represents edge

e € E(G;). Finally, we make vertices in P¢, with ¢ € [t] and e € E(G;), adjacent to vertices

in the sets W, V, and S as follows: We make vertex uf, of path P, with i € [t], which

represents edge e = {x,y} € F(G;) adjacent to the vertices x,y in V" and to all vertices in the
set W (i) C W. Additionally, we make vertex uf adjacent to vertex s, , where 1 <p < g <k

such that e € E(V,, V).

The set X' is defined to contain all vertices that do not participate in the paths P¢, i.e.,
X' =WuzZuZ UVUTuT'uSuUJs’. Clearly, G — X’ is a P3-component graph and
| X'|=4s+k-n+2k+2- (g) Let ¥ =k + s+ Z§=1 |E(G;)|. Note that the size of k' can
depend linearly on the number of instances, because our parameter is the size of X', which
is polynomially bounded in n + s, as k < n. We return the instance (G', k', X'); clearly, this
instance can be generated in polynomial time.

Now, we have to show that (G, k', X’) is a YES-instance of EDS if and only if there
exists an ¢* € [t] such that (G;=, k) is a YES-instance of MULTICOLORED CLIQUE.

(=) Assume first that (G, k', X') is yes for EDS and that there exists an edge dominating
set F' of size at most k¥’ in G’. We can always pick F' such that it fulfills the following properties
(most hold for all solutions of size at most k'):

1. The vertex sets S, T, and Z must be subsets of V(F'): E.g., for each edge {z,z'} with
z € Z and 2’ € Z' the set V(F') must contain z or 2’; if it contains 2’ then {z,7'} € F as
it is the only edge incident with z’; either way we get z € V(F). The same applies for S
and S’, and for T" and T".

2. Because S,T,Z C V(F) but SUT U Z is an independent set, the set F' must contain at
least | S| edges incident with S, |T| edges incident with T', and |Z| edges incident with Z.
By straightforward replacement arguments we may assume that F' contains exactly the
following edges incident with SUT U Z: |T| edges between T and V', |Z| edges between Z
and W, and |S| edges between S and middle vertices u of P3’s in G’ — X’. Furthermore,
we can assume that these edges are a matching, because no color class is empty, no edge
set E(V,,V,) is empty, and Z is adjacent to all vertices in W.

3. For each Pf = uf ufuf 5, which represents the edge e of instance (G, k), at least vertex
u§ must be an endpoint of an edge in F: Indeed, to cover the edge {uf,u$,} one of its
two vertices must be in V(F). Similar to Property 1 above, if u$, € V(F') then F must
contain its sole incident edge {uf,u§,} and, hence, uf € V(F).

4. An edge in F cannot have its endpoints in two different P3’s of G’ — X’ because no such
edges exist.

Let Fr = FAE(T,V), let Fy = FNE(Z,W), let Fs = FNE(S, {u¢ | i € [t],e € E(Gy)}),

and let Fr = F'\ (Fr U Fz U Fs). Hence, due to Properties 1 and 2, we have

t
k
Fal < K = Frl = 1P|~ 17l < Y 1BG01 - (5).
i=1
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By Property 3, all vertices u{ are endpoints of edges in F'. Among Fr U Fz U Fg this can
only be true for the |S| = (’;) edges in Fs. Since there are exactly S°1_, |E(G;)| vertices u¢,
which is (greater or) equal to |Fr| 4 |Fs|, and there are no edges connecting different such
vertices, each edge in Fr U Fy is incident with a private vertex u§. This also implies that
all edges in F'r have no endpoints in V' U W as those sets are not adjacent to any vertex uy.
Thus, in W exactly the |Z| = s endpoints of Fy are endpoints of F. Similarly, in V exactly
the |T| = k endpoints of Fr are endpoints of F; let X C V denote this set of k vertices.
Observe that by construction of G’ the set X contains exactly one vertex from each color
class, because ¢; € T, for j € [k], is only adjacent to vertices of V.

Now, consider any path Pf = ug ufuf, where uf is an endpoint of an edge f € Fs.
Clearly, the other endpoint of f lies in S, and, by the above accounting, no other edge of F’
is incident with uf; or uf,. In particular, this implies that all neighbors of u7,; in W and
V must be endpoints of edges in F. If e = {,y} then these neighbors of uf, are the set
W (i) C W and the vertices x,y € V, and, by construction of G’, the edge {z,y} must exist
in G;. Thus, W (i) U{z,y} C V(F) which implies that z,y € X.

Repeating this argument for all |S| = (g) paths of this type, we can conclude the following:
(1) All paths correspond to the same instance i* € [t] because we require W (i) C V(F), but
exactly |Z| = |[W(i*)| = s such vertices are in V(F). (Different values of ¢ would require
different sets W (i), exceeding size s.) (2) There are (g) edges of G;- represented by the
paths and all their endpoints must be in X = VNV (F). Since | X| = k, the edges must
form a clique of size k on vertex set X in G;«. We already observed above that X contains
exactly one vertex per color class, hence, instance (G;+, k) is yes, as claimed.

(«<:) For the other direction, assume that for some i* € [t] the MULTICOLORED CLIQUE
instance (G, k) is a YES-instance. Let X = {x1,22,...,2;} € V be a multicolored clique
of size k in G;» with z; € V; for j € [k], let E’ be the set of edges of the clique X, and let
epqg = {Tp,xq} for 1 < p < ¢ < k. We construct an edge dominating set F' of G’ of size
at most k" as follows: First we add the k edges {t;,x;} for j € [k] between T and X C V;
thus, TU X C V(F). We then add a maximum matching (of size s) between W (i*) C W
and Z to the set F. This matching saturates W (i*) and Z because |Z| = |W(i*)| = s;
thus, W (i*) U Z C V(F). Next, we add the edges {u;?, s, ,} for all edges ¢, , € E', with
1 <p<q <k, tothe set F;; hence S C V(F). Finally, for all other paths P¢, with
i €[t], e € E(G;), and i # i* or e ¢ E', we add the edge {uf,uf} to F. (We have thus
selected exactly one edge incident with each path of G’ — X’.) By construction, it holds that
Fl=k+s+ X0 [E(G) =K.

It remains to show that F' is indeed an edge dominating set of G’. To prove this, it
suffices to show that V(G') — V(F) is an independent set in G’. We already know that
SUTUW(GE)UX UZ CV(F). Moreover, V(F) contains the middle vertex u$ for all Ps’s
in G’ — X’ and it contains ug for all Py’s that do not correspond to an edge of the clique X
(i.e., with 7 # ¢* or with ¢ = ¢* but e # e, 4 for any 1 < p < ¢ < k). The sets S, T, and Z’
are independent sets whose neighborhoods S, T, and Z are subsets of V(F). Similarly, all
vertices uf , have their single neighbor u§ in V(F). Thus, only vertices in W'\ W (i*) and
V'\ X could possibly be adjacent to vertices uff:f, which correspond to the edges of G;«[X],
in G’ = V(F), but this can be easily refuted: Indeed, each u"{ is adjacent only to z;, and x,
in V, which are both in X C V(F), and to the vertices in W (i*) in W, but W (i*) C V(F)
as well. Thus V(G’) — V(F) is an independent set in G’ and hence F is an edge dominating
set for G’ of size at most &’. Thus, (G', k', X’) is yes, which completes the cross-composition.

By Theorem 3 the cross-composition from MULTICOLORED CLIQUE implies the claimed
lower bound for kernelization. <
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We proved that EDGE DOMINATING SET parameterized by the size of a modulator to a
P;-component graph has no polynomial kernelization unless NP C coNP/poly. A similar proof
establishes the same lower bound for modulators to K3-component graphs. As mentioned
in the introduction this rules out polynomial kernels using modulators to essentially all

interesting hereditary graph classes.

3.2 Polynomial kernelization for EDS parameterized by the size of a
modulator to a Ps-component graph

To illustrate why other, non-hereditary, sets H may well allow polynomial kernelizations for
parameterization by the size of a modulator X to an H-component graph, we sketch a simple
kernelization for the case of H = {Ps}, i.e., when components of G — X are isomorphic to
the path of length four. This does not use the full generality of the kernelization obtained
in Section 4 because Ps does not have any (later called) uncovered vertices or (later called)
strongly beneficial sets (which are the main source of complication).

For the kernelization we need the following theorem which is due to Hopcroft and Karp [17].

The second claim of the theorem is not standard (but well known).

» Theorem 6 ([17]). Let G be an undirected bipartite graph with partition R and S, on
n vertices and m edges. Then we can find a mazimum matching of G in time O(m+/n).
Furthermore, in time O(m+/n) we can find either a mazimum matching that saturates R or
a set Y C R such that |[Ng(Y)| < |Y| and such that there exists a mazimum matching M in
G — NglY] that saturates R\'Y .

» Theorem 7. EDGE DOMINATING SET parameterized by the size of a given modulator X to
a Ps-component graph admits a kernelization with O(|X|) vertices.

Proof. Let (G, k, X) be an instance of EDGE DOMINATING SET parameterized by the size
of a modulator to a Ps-component graph, and let C be the set of connected components
of G — X. We construct a bipartite graph Gp where one part is the set X, the other part
consists of one vertex sp for every connected component P in C, and where there is an
edge between z € X and sp with P = wjwewszwaws € C if and only if x is adjacent to a
vertex of P that is not the middle vertex ws. Now, we apply Theorem 6 to obtain either
a maximum matching in G that saturates X or a set Y C X such that |Ng, (Y)| < |Y]
and such that there exists a maximum matching in Gp — Ng,[Y] that saturates X \ Y. If

there exists a maximum matching in G that saturates X then let X; = X and X5 = 0.
Otherwise, if there exists a set Y with the above properties then let X; = X\Y and X5 =Y.

Observe that X5 also contains the vertices in X that are only adjacent to middle vertices of
components in C, and the vertices in X that are not adjacent to any component in C. Let M
be a maximum matching in Gp — Ng,, [X5] that saturates X;. The partition X;UX5 of X
fulfills the following properties:
Let C be the set of connected components P in C where sp is a vertex in Ng, (X2), i.e.,
Cy = {P = wiwawswyws € C | Ng({wi,we, ws,ws}) N Xo # 0}. It holds either that Co
is the empty set (when X, = (}) or that it contains less than |X5| connected components
of C, ie., |CQ| < |X2| (When Y =X, 7é (D)

3 Tt certainly does completely settle the question for modulators to H-component graphs for all hereditary
classes H. If H contains any connected graph with at least three vertices then we get a lower bound;
else all connected components have one or two vertices and there is a polynomial kernelization.
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For every vertex z € Xy, let P, = wjwjwiwijws be the connected component in
C1 := C\ Cy that is paired to = by M, i.e., {z,sp,} € M. It holds that there exists a
vertex w® € {wy, wd,w§, w¥} such that {w”, 2} € E(G) (definition of Gg). Note that
C; also contains all connected components that are not adjacent to any vertex in X or
where only the middle vertex of a path in C is adjacent to a vertex in X.
Using the above partition, one can show that there exists an optimum solution S that
contains for each path P, with € X; the locally optimal solution {{z,w”}, {w}, wi}}
resp. {{z,w”}, {w}, wi}} depending on whether w” € {w},w?} or w* € {wf,wi}. More
generally, for every vertex w of a path P € C, except the middle vertex, and every vertex
x € X that is adjacent to w there exists a local optimum solution to P that uses edge {w,z}
and has the middle vertex of P as an endpoint of the second solution edge. This is the
crucial difference to a path P’ = vyvavs of length two. Here, the only locally optimal solution
that dominates P’ and contains an edge between P’ and X is {{ve,z}} with z € X, but
this local solution does not contain the vertices vy and vz. We used this in our lower bound
construction to control which P;’s may be used to “buy” vertices in X.

» Reduction Rule 1. Delete X; from G, ie., let G' =G — X3, X' = X \ X; = X5, and
K =k.

> Claim 8. Reduction Rule 1 is safe.

Proof. Let F be an edge dominating set of size at most k£ in G. We construct an edge
dominating set F” of size at most k' = k in G’ by deleting every edge e = {z,y} € F if both
endpoints of e are contained in X7, or if exactly one endpoint is contained in X; and the
other endpoint is isolated in G’; and by replacing every edge e = {z,y} € F with z € X3
and y ¢ X; by exactly one edge in g/ (y) if dg/(y) # 0. It holds that F’ has size at most
k = k' because we either delete edges in F' or replace them one for one by a new edge. Since
every vertex in V(G') N V(F) is either contained in V(F’) or isolated in G’ it holds that F”
is an edge dominating set in G'.

For the other direction, let F’ be an edge dominating set of size at most &’ in G’. Consider
the path P, = wiwiwiwiw?f for some vertex € X;. It holds that the only vertex in P,
that can be adjacent to a vertex in X' = X \ X; = X5 is vertex wj; otherwise P, would be a
component in Co and not in C; (by definition of C; and Cs). Furthermore, the edge dominating
set F’ must dominate the two non-adjacent edges {wf, w3} and {w§,w?}. Since wf, wi,
wj, and w¥ are only adjacent to vertices in P, the set F’ must contain one of the two edges
ef o = {wi,wi}, €5 3 = {wg, w5} and one of the two edges €5 , = {w§, wi}, ef 5 = {wf, w5 }.
To obtain an edge dominating set of size at most k in G we replace for each vertex z € X;
these edges with the local optimum solution {{z,w*}, {w%, w%}} resp. {{z, w*}, {w§, wi}}
depending whether w® € {wf, wf} or w* € {w{,w3}. It holds that |F| < |F’| because for
every vertex x € X we replace the at least two edges in F' N {ef 5, €5 3,€5 4, €7 5} by the two
edges of the locally optimal solution {{x,w”}, {w}, w3}} resp. {{z, w"}, {wi, w}}.

It remains to show that F is indeed an edge dominating set in G. The set V(F) contains
all vertices in V(F’), except some vertices in the connected components P, with x € X,
where we change the edge dominating set F’. Furthermore, V(F') contains all vertices in
X1 because for every vertex x € X; the edge {w”,z} is contained in F. Thus, the only
edges that are possibly not dominated by F' have one endpoint in a path P, with z € X;.
Since wj is contained in V(F') (by construction), since every edge in P, is dominated by F'
(by construction), and since the vertices in {w{, wd, w§,w?} are only adjacent to vertices in
P, U X3, it follows that F' is an edge dominating set in G. <
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After applying Reduction Rule 1 it holds that for each path P = wiwswswsws € C; only
the vertex ws can be adjacent to a vertex in X, and we can assume that every (optimum)
solution contains the edges {ws, w3} and {ws,ws}. Additionally, one can show that there
exists an optimum solution that does not contain any edge between C; and X because we can
replace any such edge e = {x,v} with v € V(C;) by the edge {z,u} with u € Ng(z) \ V(Cy)
(or delete this edge when Ng(z) \ V(C1) = (). This allows us to delete C; from G.

» Reduction Rule 2. Delete all connected components in C; and decrease k by the size of a
minimum edge dominating set in Cy, i.e., let G’ =G —Cy, X' = X, and k' = k — EDS(Cy).

> Claim 9. Reduction Rule 2 is safe.

Proof. First, we will show that there exists an edge dominating set F' of size at most k in
G such that no edge in F' has one endpoint in a connected component of C; and the other
endpoint in X. Let F' be an edge dominating set of size at most k in G with F N E(Cy, X)
minimal, and let P = wjwowswsws be a path in C;. We can assume, w.l.o.g., that F' contains
the edges {ws, w3} and {ws,ws} because F' must dominate the non-adjacent edges {ws, ws},
{wy4, w5}, and the vertices wy, wa, wy, ws are only adjacent to vertices in P; otherwise, P
is contained in Cy and not C;. Now, assume for contradiction that there exists an edge
e ={x,y} € FNE(C,C) with z € X and y € P where P = wjwowswws is a path in
Cy. It holds that y = w3 because ws is the only vertex in P that is adjacent to a vertex in
X. If every vertex u € Ng(z) is contained in V(F) then let F = F \ {e}. Otherwise, let
F = F\{e}U{{z,u}}, where u € Ng(x)\V(F). It holds that F is an edge dominating set in
G because y = ws is still a vertex in V (F) which implies V (F) C V(F). Furthermore, u is not
contained in a connected component of C; because for every path P = wjwswswsws in C; the
vertex ws is contained in V' (F') and no other vertex is adjacent to a vertex in X. Now, the set
F is an edge dominating set of size at most k in G with F N E(Cy,X) € FNE(Cy, X) which
contradicts the minimality of F' N E(Cy, X) and proves that there exists an edge dominating
set F' of size at most k in G with F N E(Cy,X) = (. This implies that F' = F \ E(Cy)
is an edge dominating set of size at most k' in G’ when F' is a solution to (G, k, X) with
FﬂE(Cl,X) =0.

For the other direction, let I’ be an edge dominating set of size at most &’ in G’. To obtain
an edge dominating set F' of size at most k£ in G we add for every path P = wijwswswaws
in C; the two edges {wsy,ws} and {ws,w,}, which are a minimum edge dominating set of
P, to F'. Tt follows that F has size |F’'| + EDS(C1) < k. The set F' dominates all edges in
G — X as well as all edges between Co and X because F' C F, and because F' contains an
edge dominating set of C;. Additionally, F' dominates all edges between C; and X because F
dominates all middle vertices of the paths in C; which are the only vertices in C; that are
adjacent to X. Hence, F' is an edge dominating set of size at most k in G. <

Let (G', k', X') be the reduced instance. It holds that the set of connected components in

G’ — X' is Cy because we delete all other connected components during Reduction Rule 2.

Since |Ca] < | X3| = |X'| it follows that G’ has at most 5 - |Co| + | X'| < 6]X’| vertices. It
remains to show that we can perform the reduction in polynomial time. We apply each
Reduction Rule at most once. Furthermore, we can apply the Reduction Rules in polynomial
time because we can compute the partition of X as well as the sets C; and Cy in polynomial
time, and because we can delete sets of vertices from G and X in polynomial time. |

While this is not the full story about the classification in the following section, it hopefully
shows the spirit of how upper and lower bounds for kernelization can arise. Solution edges
between components of G — X and X play a crucial role and they affect the solutions for
components in nontrivial ways, e.g., apart from control opportunities, it depends on how
much budget is needed for H — B when edges between B and X are in the solution.
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4 EDS parameterized by the size of a modulator to an H-component
graph

In this section, we develop a complete classification of EDGE DOMINATING SET parameterized
by the size of a modulator to an H-component graph regarding existence of polynomial
kernelizations for all finite sets H. This is motivated by the observed difference between
modulating to Ps-component graphs (no polynomial kernelization unless NP C coNP /poly) vs.
modulating to Ps-component graphs (polynomial kernelization). To this end, we will study
which properties graphs H € H must have, such that EDGE DOMINATING SET parameterized
by the size of a modulator to an H-component graph has resp. does not have a polynomial
kernel. To recall, the input of our problem is a tuple (G, k, X) where G — X is an H-
component graph and we ask whether G has an edge dominating set of size at most k;
the parameter is | X|.

In contrast to VERTEX COVER, where we can delete a vertex in the modulator if we
know that this vertex must be in a solution of certain size, this is not the case for EDGE
DOMINATING SET because we do not necessarily know which incident edge should be chosen.
Of course, we can check for a vertex z in the modulator X how not having this vertex as an
endpoint of a solution edge influences the size of a minimum edge dominating set of G — X.
But, even if we find out that a vertex x in the modulator X must be an endpoint of a solution
edge, we do not know if the other endpoint of the solution edge incident with x is in X or in
a connected component of G — X. If there would be a connected component C in G — X
with the property that there exists a vertex v € N(z) NV (C) with EDS(C) = EDS(C —v) + 1,
then it could be possible to have x as an endpoint of a solution edge without paying more
than the cost of a minimum edge dominating set in C. Thus, instead of finding vertices in
the modulator that must be endpoint of a solution edge, we want to find vertices in the
modulator that can be endpoints of a solution edge without spending more budget than the
size of a minimum edge dominating set in G — X. Similarly, getting edges to r vertices in
X while increasing the cost in C' by less than r is of interest (cost equal to r can always be
had). The following definition classifies relevant vertices and vertex sets in a graph H, which
may occur as a component of G — X.

» Definition 10. Let H = (V, E) be a connected graph.

We call a vertez v € V extendable if EDS(H —v) + 1 = EDS(H). We denote the set of
extendable vertices of H by Q(H). (Intuitively, these vertices allow a local solution for an
H-component in G — X that includes an edge {v,z} with z € X and v € V(H).)

We call a setY C Q(H) free if for all vertices v € Y and for all minimum edge dominating
sets F' in H there exists a minimum edge dominating set F' in H — v of size |F| — 1
and with V(F)\'Y C V(F'). By W(H) we denote the unique mazimum free set of H.
We call a vertex w € W (H) free.* (Intuitively, vertices in Y can be used for solution
edges between components and X, while covering the same vertices of H — Y as any local
optimum solution; thus, they cannot be used for lower bounds like for Ps-components.)
We call a vertex v € V uncovered if no minimum edge dominating set F' of H contains
an edge incident with v, i.e. v ¢ V(F). We denote the set of uncovered vertices by U(H).
(Intuitively, H-components with any v € U(H) adjacent to € X are easy to handle
because x ¢ V(F') would imply that the local cost for H increases above EDS(H).)

4 We show in the full version that W (H) is unique.
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Figure 2 Example of an H-component with EDS(H) = 4. The wavy edges are a possible minimum
edge dominating set of H.

For anyY CV define cost(Y) :=|Y |+ EDS(H —Y) — EDS(H).

(Intuitively, cost(Y") is equal to the additional budget that is needed for an H-component
of G— X when exactly the vertices in ¥ have solution edges to X. Note that cost({v}) =0
for all extendable vertices v.)

We call a set B C V \ W(H) beneficial if for all B C B we have |B| — cost(B) >

|B| — cost(B) or, equivalently, EDs(H — B) < EDS(H — B). Note that this must also
hold for B = () which implies that for all beneficial sets we have |B| — cost(B) > 0 or,
equivalently, EDS(H — B) < EDS(H).

(Intuitively, the solution may include |B| edges between B and some X’ C X while
increasing the cost for the H-component by exactly cost(B); this saves |B| — cost(B) > 0
over taking any |B| edges incident with X’. The condition for all B C B ensures that
the savings of getting | B| edges at cost cost(B) is greater than for any proper subset.)
We call a beneficial set B strongly beneficial if cost(B) < E?Zl cost(B;) holds for all
covers By, By, ..., Bn, € B of B. (Intuitively, for a strongly beneficial set B we cannot
get the same number of edges to X by using sets B; in several different H-components.)

» Example 11 (lllustration of Definition 10). Figure 2 shows a connected graph H. The size
of an edge dominating set in H is at least four because a solution has to dominate the four
pairwise non-adjacent edges {a, b}, {k,1},{j,d} and {g,h}. Thus, EDS(H) = 4 because the
wavy edges are an edge dominating set of H.

The vertices {a, b, k, [}, marked with a green cycle, as well as the vertices {d, h, j}, marked
with an orange rectangle, are extendable. But only the green marked vertices {a, b, k, [} are
free: Let F' be any minimum edge dominating set in H. The set F' must contain exactly one
of the two edges e; = {a,b} and es = {a, f}, and exactly one of the two edges e; = {k, [}
and ey = {k, f}. Now, F' = F'\ {e1,e2,e3,e4} U{f, k} is an edge dominating set in H —a
and H — b of size |F| — 1, and F' = F \ {e1,e2,€e3,e4} U {a, f} is an edge dominating set
in H—k and H — [ of size |F| — 1 which implies that the vertices {a,b, k,l} are free. The

vertices {d, h,j} are not free because no minimum edge dominating set F’ in H — d, resp.

H — h, resp. H — j has vertex ¢, which is not extendable, as an endpoint of a solution edge,
but the graph H has a minimum edge dominating set that has ¢ as an endpoint, namely
the one containing the wavy edges {a, b}, {h,c},{d,j}. The vertex e, marked with a blue
triangle, is uncovered.

The set {c, g} is strongly beneficial, whereas the set {c, g,4,7} is only beneficial, but not
strongly beneficial: The set {c, g} is beneficial because EDS(H —{¢, g}) = 3 and EDS(H —¢) =
EDS(H — g) = EDS(H) = 4, and strongly beneficial because the only possible non-trivial
cover of {c,g} is {c},{g} and cost({c,¢9}) = 1 < 2 = cost({c}) + cost({g}). The set
{¢,9,1,7} is beneficial because EDS(H — {¢,g,7,j}) = 2 and EDS(H — B) > 3 for all B C
{¢,9,i,7}. But {c,g,14,7} is not strongly beneficial because cost({c,g,%,j}) =2=141+0=
cost({¢c, g})+cost({i}) +cost({j}). Observe that the set {c, g,i} is not beneficial even though
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EDS(H — {c,g,i}) =3 < 4 = EDS(H), because {c, ¢} C {c,g,i} and EDS(H — {c,g,i}) =3 =
Bps(H — {c,9}).

We are now able to give a more detailed version of Theorem 1, which specifies for each
finite set H of connected graphs the kernelization complexity of EDGE DOMINATING SET
parameterized by the size of a modulator to H-component graphs.

» Theorem 12. Let H be any finite set of connected graphs. The EDGE DOMINATING SET

problem parameterized by the size of a modulator to H-component graphs behaves as follows:

1. If H contains any graph H fulfilling one of the following items then there is no polynomial
kernelization unless NP C coNP /poly:

a. There is an extendable vertex in H that is not free, i.e., Q(H)\ W(H) # 0.

b. There is a strongly beneficial set B in H that contains an uncovered vertex, i.e.,
BNU(H) #0.

c. There is a vertex in H that is neither uncovered, free, nor neighbor of a free vertez,
i.e., V(H)\ (N[W(H) UU(H)) # 0.

d. There is a strongly beneficial set B C N(W(H)) in H such that no minimum edge
dominating set Fp of H — B covers all vertices of N(W(H)) \ B.

2. FElse, if H contains at least one graph that has a strongly beneficial set, then there is a
kernelization to O(|X|?) vertices, O(|X|41) edges, and size O(| X |4 log | X|), and there
is no kernelization to size O(|X|%7¢), for any ¢ > 0, unless NP C coNP/poly where d is
the size of the largest strongly beneficial set in any H € H.

3. Else, there is a kernelization to O(|X|?) vertices, O(|X|?) edges, and size O(| X | log |X|),
and there is no kernelization to size O(|X|?>7%), for any ¢ > 0, unless NP C coNP/poly.

Observe, Theorem 1 directly follows from Theorem 12 because disconnected graphs in
‘H do not affect the resulting class of H-component graphs, i.e., given any finite set H of
graphs we can take the subset H’ of connected graphs in H and apply Theorem 12 to H’.
As an example for applying the theorem, for H = {P3} we get Item 1la, for H = { P} we get
Item 1b, for H = {K3} and H = {K5} we get Item lc, and for H = {P2} = {K2}, H = {K4},
H ={Ps}, as well as H = {F = E} we get Item 3.

» Remark. We showed that EDGE DOMINATING SET parameterized by the size of a given
modulator X to a Ps-component graph admits a kernelization with O(|X|) vertices (see
Theorem 7). The reason why we the kernelization procedure of Item 3 only reduces to O(] X |?)
vertices instead of O(|X]|) vertices is that H-components can have uncovered vertices. This
leads to a different marking argument similar to the case for EDGE DOMINATING SET
parameterized by solution size. Note that EDS parameterized by solution size is covered
by Item 3.

Proof outline for Theorem 12. We begin by establishing a number of useful properties of
the terms introduced in Definition 10, e.g., that each graph H containing a beneficial set B
also contains a strongly beneficial set B’ C B (Proposition 13 (11)).

The kernelization lower bound of Item 1 is proved by generalizing the lower bound
obtained for P3-component graphs in Theorem 5. We define so-called control pairs by ab-
stracting properties of P3-components used in the proof and show that there is no polynomial
kernelization when any graph H € H has a control pair (Theorem 15). For a connected
graph H = (V, E) the pair (C, B) is called a control pair, if B C V is strongly beneficial, if
C CV\(Q(H)UB) and no vertex ¢ € C' is extendable in H — B, if there exists a minimum
edge dominating set F' in H such that C C V(F), and if for all minimum edge dominating
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sets Fp in H — B it holds that C ¢ V(Fg). Observe that for H = P; = vivovs the set B is
the vertex vo and the set C is the vertex vy (or vy). Afterwards, we show that graphs H
fulfilling Items 1a, 1b, 1c, or 1d have control pairs (Lemmas 17, 18, 19, and 20).

In Ttem 1d, and in the items below, we (may) use that no graph in #H fulfills Items 1a, 1b,
or le. Accordingly, each graph H € H has V(H) = N[W(H)|UU(H), i.e., each vertex of H
is uncovered, free, or neighbor of a free vertex. Moreover, every extendable vertex is also free,

ie., Q(H) = W(H), and strongly beneficial sets contain no (uncovered) vertices of U(H).

This implies that all strongly beneficial sets are subsets of N(W (H)), the neighborhood
of the free vertices, as neither uncovered nor free vertices can be contained and no further
vertices except those in N(W (H)) exist in H (in this case).

For Item 2 we have that no graph in A fulfills any of the Items la through 1d and that at
least one graph in H has a strongly beneficial set. Thus, in addition to the above restrictions
on H € H, we know that for each strongly beneficial set B, which here must be a subset of
N(W(H)), there is a minimum edge dominating set Fp of H — B that covers all vertices
in N(W(H)) \ B. We give a general kernelization procedure that reduces the number of
components in G — X to O(|X|?) where d is the size of the largest strongly beneficial set
among graphs H € H (Lemma 27). We then rule out kernelizations of size O(|X|¢~¢) using
only H-components, where H is any graph in H that exhibits the largest size d of strongly
beneficial sets (Lemma 31). Note that in the present item d is always at least two because
having a strongly beneficial set B of size one would mean that v € B is an extendable vertex
that is not free (because beneficial sets are disjoint from the set W (H) of free vertices), which
is handled by Item la.

Finally, for Item 3, it remains to consider the case that no graph H € H fulfills any of
the Items la through 1d and that no graph in H has a strongly beneficial set. It follows
that no graph in H has any beneficial sets (Proposition 13 (11)) and, as before, we have
V(H) = N[W(H)]UU(H). We obtain a kernelization to O(|X|?) vertices, O(|X|*) edges,
and size O(|X|?log|X|) (Lemma 23). The lower bound ruling out kernelizations of size
O(|X|>7¢) for any € > 0, and in fact for any set H, follows easily by a simple reduction from
VERTEX COVER for which a lower bound ruling out size O(n?~¢) is known [6] (Lemma 35). <

5 Conclusion

As our main result, we have given a complete classification for EDGE DOMINATING SET
parameterized by the size of a modulator to H-component graphs for all finite sets H. An
obvious follow-up question is to extend this result to infinite sets H. Our lower bounds of
course continue to work in this setting, and the upper bounds still permit us to reduce the
number of connected components (under the same conditions as before, e.g., that relevant
beneficial sets have bounded size). However, for infinite H, polynomial kernels also require
us to shrink connected components of G — X, and to derive general rules for this. Moreover,
even determining beneficial sets etc. for graphs H € H could no longer be dismissed as being
constant time. It is conceivable that such a classification is doable whenever graphs in H
have bounded treewidth, as this simplifies the required additional steps. Since most known
tractable graph classes for EDGE DOMINATING SET have bounded treewidth (and tractability
for G — X is required, or else NP-hardness for |X| = 0 rules out kernels and fixed-parameter
tractability), this seems like a reasonable goal. Apart from this, it would be nice to close the
gap between size O(| X |1 log |X|) and the lower bound of O(| X|4~¢).
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