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Abstract
For k ≥ 3, a k-rollercoaster is a sequence of numbers whose every maximal contiguous subsequence,
that is increasing or decreasing, has length at least k; 3-rollercoasters are called simply rollercoasters.
Given a sequence of distinct real numbers, we are interested in computing its maximum-length (not
necessarily contiguous) subsequence that is a k-rollercoaster. Biedl et al. (2018) have shown that
each sequence of n distinct real numbers contains a rollercoaster of length at least dn/2e for n > 7,
and that a longest rollercoaster contained in such a sequence can be computed in O(n log n)-time (or
faster, in O(n log log n) time, when the input sequence is a permutation of {1, . . . , n}). They have
also shown that every sequence of n > (k − 1)2 + 1 distinct real numbers contains a k-rollercoaster
of length at least n

2(k−1) −
3k
2 , and gave an O(nk log n)-time (respectively, O(nk log log n)-time)

algorithm computing a longest k-rollercoaster in a sequence of length n (respectively, a permutation
of {1, . . . , n}).

In this paper, we give an O(nk2)-time algorithm computing the length of a longest k-rollercoaster
contained in a sequence of n distinct real numbers; hence, for constant k, our algorithm computes
the length of a longest k-rollercoaster in optimal linear time. The algorithm can be easily adapted to
output the respective k-rollercoaster. In particular, this improves the results of Biedl et al. (2018),
by showing that a longest rollercoaster can be computed in optimal linear time. We also present an
algorithm computing the length of a longest k-rollercoaster in O(n log2 n)-time, that is, subquadratic
even for large values of k ≤ n. Again, the rollercoaster can be easily retrieved. Finally, we show an
Ω(n log k) lower bound for the number of comparisons in any comparison-based algorithm computing
the length of a longest k-rollercoaster.
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1 Introduction

The mathematical study of patterns occurring in sequences of numbers is a rather old and
well developed topic in combinatorics and algorithms on sequences. Within this topic, of
a particularly high interest is the study of long increasing and decreasing (not necessarily
contiguous) subsequences occurring in a sequence. For example, already in 1749, Euler
defined the Eulerian polynomials, which are the generating function for the number of
descents in permutations. Almost 200 years later, Erdős and Szekeres [9] proved the existence
of an increasing or a decreasing subsequence of length at least a + 1 in a sequence of at least
n = a2 + 1 distinct reals. More precisely, they have shown the following theorem.
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I Theorem 1 (Erdős and Szekeres, 1935). Every sequence of ab + 1 distinct real numbers
contains an increasing subsequence of length at least a + 1 or a decreasing subsequence of
length at least b + 1.

The theorem of Erdős–Szekeres is strongly related to, and in fact also follows from, the
well-known decomposition of Dilworth (see [18]) regarding chains and antichains in a finite
partially ordered set. Dilworth’s result can be restated in the context of the combinatorics of
patterns in sequences of numbers as follows.

I Theorem 2 (Dilworth, 1950). Any finite sequence S of distinct real numbers can be
partitioned into k ascending sequences, where k is the maximum length of a descending
sequence in S.

Recent surveys on the combinatorics of patterns occurring in sequences are [14,15].
The study of patterns in sequences of numbers also has a well developed algorithmic

side (see, e.g., [4, 8, 10, 13]). For instance, finding a longest increasing subsequence (not
necessarily contiguous) contained in the input sequence is a basic problem in theoretical
computer science, studied already from the 1960s [3, 16, 17], with applications in areas such
as bioinfomatics and physics (see [19] and the references therein). In particular, in 1975
Fredman [10] presented an algorithm (which he attributed to Knuth, now considered folklore)
computing the length of a longest increasing subsequence (LIS) in an array of n numbers in
O(n log n) time, and proved that this is optimal for comparison-based algorithms. If required,
the algorithm can be extended to retrieve such a subsequence. If the input sequence can be
sorted in linear time (in particular, when the input sequence is a permutation of {1, . . . , n})
and we do not require the algorithm to be comparison-based, the solution given by Fredman
can be implemented in O(n log log n) time, see [8] and the references therein. Fredman’s
algorithm is often called Patience Sorting, and has some connections to constructing the
so-called Young Tableaux [3, 16].

We consider a notion that is strongly related to longest increasing subsequences (and
longest decreasing subsequences). A run in a sequence of numbers is a maximal contiguous
subsequence that is either increasing or decreasing. A k-rollercoaster, where k ≥ 3, is a
sequence of numbers whose every run has length at least k; 3-rollercoasters are called, for short,
rollercoasters. For example, the sequence (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) is a 4-rollercoaster with
runs (3, 6, 8, 10), (10, 9, 5, 1), (1, 2, 4, 7, 11). Given a sequence S[1 : n] = (S[1], S[2], . . . , S[n])
of n distinct numbers, the k-rollercoaster problem is to find a maximum-size set of indices
i1 < i2 < · · · < im such that (S[i1], S[i2], . . . , S[im]) is a k-rollercoaster. In other words, this
problem asks for a longest k-rollercoaster contained in the input sequence S.

There is a simple, but useful, geometrical interpretation of k-rollercoasters. The input
sequence S[1 : n] can be depicted as a set P of points in the plane by translating, for i

from 1 to n, the number S[i] to a point pi = (i, S[i]). In this setting, a k-rollercoaster in
S translates to a polygonal path in the plane, whose vertices are points of P , and such
that every maximal sub-path, with positive- or negative-sloped edges, has at least k points.
The rollercoaster (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) is depicted in the left half of Figure 1. Two
4-rollercoasters occurring in the sequence (3, 6, 1, 8, 7, 17, 13, 10, 11, 12, 9, 5, 14, 4, 2, 15, 16) are
depicted in the right half of the same figure.

While rollercoasters seem interesting on their own as a combinatorial structure, the
original motivation for their study was a connection to computational geometry and graph
drawing, namely to point-set embeddings of caterpillars (see [5,6] and the references therein).
More precisely, constructing a long rollercoaster in a sequence of numbers was used as an
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Figure 1 Left: a 4-rollercoaster (3, 6, 8, 10, 9, 5, 1, 2, 4, 7, 11) with runs (3, 6, 8, 10), (10, 9, 5, 1),
(1, 2, 4, 7, 11). Right: two 4-rollercoasters, represented with a solid and, respectively, a dashed line,
in (3, 6, 1, 8, 7, 17, 13, 10, 11, 12, 9, 5, 14, 4, 2, 15, 16).

intermediate step towards obtaining a method of drawing a n-vertex top-view caterpillar,
with L-shaped edges, on a set of 25

3 n general orthogonal position points in the plane. This is
currently the best known bound on the number of points required to draw such a graph.

In [5], the following results regarding k-rollercoasters were shown. First, from a com-
binatorial point of view, for k = 3, it was shown that the length of a longest rollercoaster
contained in a sequence of n ≥ 7 distinct numbers is at least dn

2 e. As far as k-rollercoasters
are concerned, it was shown that for k > 4 every sequence of n > (k − 1)2 + 1 distinct
numbers contains a k-rollercoaster of length at least n

2(k−1) −
3k
2 . From an algorithmic

point of view, both previously mentioned results were constructive, leading to an O(n)-
time (respectively O(n log k)) algorithm computing a long (but not necessarily a longest)
rollercoaster (respectively, k-rollercoaster) contained in a sequence of n distinct numbers. A
longest rollercoaster contained in such a sequence was computed by an extension of Fredman’s
algorithm in O(n log n)-time, and if the input sequence is a permutation of {1, . . . , n} (or,
more generally, sortable in linear time) in O(n log log n) time. By further generalising this
approach, an O(nk log n)-time (respectively, O(nk log log n)-time) algorithm computing a
longest k-rollercoaster in a sequence of n distinct numbers (respectively, a permutation of
{1, . . . , n}) can be obtained. Note that, by the theorem of Erdös and Szekeres, a sequence of
n distinct numbers always contains a b

√
nc-rollercoaster, and the aforementioned algorithm

computes a longest such rollercoaster in O(n1.5 log n) time.

Our contributions. We consider the problem of computing a longest k-rollercoaster in an
input sequence S[1 : n] and provide three results.

Firstly, we design a comparison-based algorithm computing the length of a longest k-
rollercoaster in a sequence of n distinct numbers in O(nk2) time. Thus, we obtain an optimal
linear-time algorithm for constant values of k, in particular for k = 3. This significantly
improves the results of [5] and shows that, even though longest rollercoasters are related to
longest increasing subsequences, the rich combinatorial structure of the former makes them
provably easier to find. The starting point of our algorithm is the following natural dynamic
programming formulation. For each 2 ≤ i ≤ k, and for each element S[j], we compute
a longest (not necessarily contiguous) subsequence of S ending with S[j] and with every
run of length at least k, except for the last run, which has only i elements if i < k and at
least k elements if i = k. Now the difficulty is to find the predecessor S[j′] of S[j] in such
a subsequence in time proportional to k, in particular avoiding any kind of binary search.

STACS 2019
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We greedily decompose the input sequence into blocks with a certain property related to
Dilworth’s theorem and prove, by a careful case analysis, that j′ must belong to the previous
few such blocks. This, together with the special structure of the blocks and appropriate data
structures, allows us to find j′ in O(k) amortised time.

Secondly, we focus on the case of large k. Given that both the previous and the new
algorithm have at least linear dependency on k, it might seem plausible that this is inherent
to the problem, for example that for k ≥ b

√
nc the running time of any algorithm needs to

be Ω(n1.5). We show that this is not the case by designing a subquadratic algorithm that
computes a longest k-rollercoaster in a sequence of n distinct numbers in O(n log2 n) time.
To obtain this result, we exploit the fact that if an increasing (respectively, decreasing) run in
a longest k-rollercoaster extends from S[i] to S[j], then that run should be LIS (respectively,
longest decreasing sequence, LDS for short) in S[i : j]. If one arranges the length of LIS
(respectively, LDS) in S[i : j] in an n×n matrix then the matrix has the anti-Monge property.
It is known that all row maxima of an anti-Monge matrix can be found in O(n) time [2],
that is, in sublinear time w.r.t. the size of the matrix (given an oracle access to the elements
of the matrix). Such properties have been successfully exploited to speed up certain dynamic
programming algorithms. We also follow this route, and construct a longest k-rollercoaster
using dynamic programming, essentially by gluing together LISs and LDSs of consecutive
contiguous subsequences of S.

Thirdly, we show that any comparison-based algorithm computing a longest k-rollercoaster
needs Ω(n log k) comparisons. Our reasoning is similar to the one used by Fredman to show
that any comparison-based algorithm computing a LIS needs Ω(n log n) comparisons. We
leave as an open problem to close the gap between the lower and upper bounds shown here.

The paper is organised as follows. After a series of preliminaries, we describe the O(nk2)-
time algorithm for computing the length of a longest k-rollercoaster, followed by the
O(n log2 n)-time algorithm. We conclude with the lower bound for the number of com-
parisons needed to compute the length of a longest k-rollercoaster in a sequence of length n.
The proofs omitted here for space reasons can be found in [12].

2 Preliminaries

We consider sequences of distinct real numbers and work in the comparison-based model.
If S is a sequence of n numbers, then |S| = n is the length of the sequence, and S[i]
denotes its ith element. A subsequence of S is a sequence (S[i1], S[i2], . . . , S[im]), defined
by specifying the indices 1 ≤ i1 < i2 < . . . < im ≤ n. For 1 ≤ i ≤ j ≤ n, S[i : j]
denotes the contiguous subsequence (S[i], S[i + 1], . . . , S[j]); in particular, S[1 : n] denotes
the entire S. Note that unless explicitly stated, a subsequence is not necessarily contiguous.
An increasing subsequence (respectively, decreasing subsequence) of S is a subsequence
(S[i1], S[i2], . . . , S[im]) such that S[ij ] < S[ij+1], for all 1 ≤ j ≤ m − 1 (respectively,
S[ij ] > S[ij+1], for all 1 ≤ j ≤ m − 1). A longest increasing (respectively, decreasing)
sequence, for short LIS (respectively, LDS), is an increasing (respectively, decreasing) sequence
with the largest possible length. Fredman gave an O(n log n)-time algorithm for computing
the length of LIS, denoted res in Algorithm 1. A byproduct of this algorithm is a partition
of S[1 : n] into res non-increasing subsequences that can be obtained by creating, for every
1 ≤ j ≤ res, a list of elements that has been stored in R[j].

A run in a sequence of numbers is a maximal contiguous subsequence that is increasing
or decreasing. A k-rollercoaster is a sequence of numbers such that every run has length
at least k; 3-rollercoasters are called, for short, rollercoasters. Given a sequence S[1 : n]
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Algorithm 1 Finding the length of LIS of S.
1: R[0]← 0
2: res← 0
3: for i← 1 to n do
4: k ← max{j : R[j] < S[i]} . binary search over R[0] < R[1] < R[2] < . . .

5: R[k + 1]← S[i]
6: res← max{res, k + 1}
7: return res

we are interested in finding its longest subsequence that is a k-rollercoaster. To make the
exposition easier to follow, we focus on finding the length of such a subsequence. Recovering
the subsequence itself is, in all our algorithms, rather straightforward.

3 Computing a Longest k-Rollercoaster in O(nk2)-Time

In this section we show how to find a longest k-rollercoaster of S[1 : n] in O(nk2) time.
We begin our algorithm with a preprocessing phase. An alternating k-decomposition of

S[1 : n] is a partition of S[1 : n] into contiguous subsequences (called parts) S1, S2, . . . , Sm

such that the length of LIS in the odd parts (S1, S3, S5, and so on) is k while the length
of LDS in the even parts is k, possibly smaller for the very last part, and additionally by
removing the last element of any odd (even) part we obtain a sequence with LIS (LDS) of
length less than k. In other words, for ` ≥ 1, S` is either the shortest contiguous subsequence
of S that follows directly after S1 · · ·S`−1 and has for ` odd (even) a LIS (respectively, LDS)
of length k, if such a subsequence exists, or the whole remaining part of S otherwise. For
example, an alternating 3-decomposition of S = (1, 4, 2, 5, 8, 7, 6, 3) is (1, 4, 2, 5), (8, 7, 6), (3).

I Lemma 3. An alternating k-decomposition of S[1 : n] can be found in O(n log k) time.

Proof. By terminating Algorithm 1 as soon as res = k we can find the shortest prefix of S

with LIS equal to k in O(d log k) time, where d is the length of the prefix. Then we find the
shortest prefix of the remaining suffix of S with LDS equal to k, and repeat. Overall, this
takes O(n log k) time because all parts are disjoint. J

I Proposition 4. Let A be a k-rollercoaster in S. Any part S` contains elements of at most
four consecutive runs of A.

Proof. By contradiction. Let S′` be S` without the last element. If S` contains elements of
five consecutive runs of A then S′` contains elements of four consecutive runs of A, and hence
all elements of two such consecutive runs. Thus, if S` is an odd (even) part then S′` contains
LIS (LDS) of length k, which contradicts the definition of an alternating k-decomposition. J

By Dilworth’s theorem, a part with LIS of length k can be decomposed into k decreasing
subsequences, and such a decomposition can be obtained as a byproduct of Algorithm 1.
Thus, we can decompose each part into up to k monotone (increasing or decreasing, depending
on whether the part is odd or even) subsequences. These subsequences can be then merged
to obtain a sorted list P` of all elements in the corresponding part S` in O(n log k) overall
time, for example by first merging pairs of subsequences, then quadruples, and so on.

Before moving on to the description of our algorithm, we need a combinatorial lemma
that relates an alternating k-decomposition to a longest rollercoaster.

STACS 2019



30:6 Fast and Longest Rollercoasters

I Lemma 5. Suppose that x = S[j] is a non-first element occurring in an increasing run of
a longest k-rollercoaster, and y = S[j′] is its predecessor in the same run, and consider an
alternating k-decomposition of S[1 : n]. Then either x and y are in the same part Si, or y is
in one of the parts Si−4, Si−3, Si−2, Si−1.

Proof. By contradiction. Suppose that there are at least four parts between x and y, i.e., x

is in Si and y is in some Sk with k < i− 4. Let r denote the run in the k-rollercoaster that
contains x and y, let d be the length of r, and let ` be such that r[`] = y and r[` + 1] = x.
We assume that r is an increasing run (see Figure 2); the case when r is decreasing can be
treated in the same way.

y

x

︸ ︷︷ ︸
r

r[1] r[`+ 1]r[`] r[d]

Figure 2 The increasing run r from Lemma 5, with the points x and y highlighted.

Consider the following four cases:
1. ` ≤ k− 1 (i.e., there are at most k− 2 elements in r before y) and k− 2 ≥ d− `− 1 (there

are at most k − 2 elements in r after x).
2. ` ≤ k − 1 and k − 1 ≤ d− `− 1 (there at least k − 1 elements in r after x).
3. ` ≥ k (there are at least k − 1 elements in r before y) and k − 2 ≥ d− `− 1.
4. ` ≥ k and k − 1 ≤ d− `− 1.

Recall that there are at least four whole parts between x and y. Therefore, in particular
there are three consecutive parts Si′ , Si′+1, and Si′+2 such that the first has LIS of length k,
the second has LDS of length k, and the third has LIS of length k.

In the first case, we replace r[2 : d− 1] with LIS of Si′ , the LDS of Si′+1, and LIS of Si′+2.
It is straightforward to verify that we obtain a valid k-rollercoaster, and because we remove
at most 2k − 4 elements and add at least 3k, this creates a longer k-rollercoaster, which is
a contradiction. In the second case, we replace r[2 : `] with LIS of Si′ and LDS of Si′+1.
Again, it is straightforward to verify that we obtain a valid longer k-rollercoaster, because
we remove at most k − 2 elements and add at least 2k. Similarly, in the third case, we
replace r[` + 1 : d− 1] with LDS of Si′+1 and LIS of Si′+2 to obtain a longer k-rollercoaster.
Finally, in the fourth case we simply insert LDS of Si′+1 between x and y to obtain a longer
k-rollercoaster. J

After the initial preprocessing phase we apply dynamic programming. For 1 ≤ i ≤ k,
we say that a subsequence of S (not necessarily contiguous) is a (k, i)+-rollercoaster if it
ends with an increasing run of length exactly i when i < k and at least k when i = k, while
every other run is of length at least k. Additionally, we consider k-rollercoaster ending with
a decreasing run as (k, 1)+-rollercoaster. We want to construct, for every 1 ≤ i ≤ k and
1 ≤ j ≤ n, a longest (k, i)+-rollercoaster ending with S[j]. To this end we calculate M+[j, i],
the position in S of the predecessor of S[j] in such a (k, i)+-rollercoaster, and L+[j, i], the
length of the respective (k, i)+-rollercoaster. A (k, i)−-rollercoaster is defined similarly, except
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that the last run should be decreasing, and we also calculate the values M−[j, i] and L−[j, i],
defined similarly to the above and corresponding to such a (k, i)−-rollercoaster. We only
describe in detail how to compute M+[j, i] and L+[j, i], as M−[j, i] and L−[j, i] are computed
analogously. The computation proceeds from left to right, that is, we iterate over the parts
S1, S2, . . . and compute, for every element S[j] of the current part S`, the values of M+[j, i]
and L+[j, i] for every 1 ≤ i ≤ k. See Algorithm 2 for a high-level overview of the algorithm.

Algorithm 2 Computing the length of a longest k-rollercoaster.
1: Find an alternating k-decomposition S1, . . . , Sm of S.
2: for 1 ≤ ` ≤ m do
3: Merge the k monotone subsequences constituting S` to obtain a single sorted list P`.
4: for 1 ≤ ` ≤ m do

. For each S[j] in S` and 1 ≤ i ≤ k, we compute the following:
M+[j, i]: position in S of the predecessor of S[j] in its (k, i)+-rollercoaster
L+[j, i]: length of the respective (k, i)+-rollercoaster

5: for 2 ≤ i ≤ k do
6: for 1 ≤ d ≤ 4 and each S[j] ∈ S` in the order of their occurrences in P` do
7: Find Md

+[j, i] and Ld
+[j, i].

8: for each S[j] ∈ S` do
9: L+[j, i]← max{Ld

+[j, i] : 1 ≤ d ≤ 4}
10: Set M+[j, i] so that it corresponds to L+[j, i].
11: Compute, for each S[j] ∈ S`, L−[j, i] and M−[j, i] with a similar approach.
12: repeat 4 times
13: for each S[j] ∈ S` do
14: L+[j, 1]← max{L−[j, k], 1}
15: M+[j, 1]←M−[j, k] if L−[j, k] > 0 and 0 otherwise
16: for 2 ≤ i ≤ k do
17: for each S[j] ∈ S` in the order of their occurrences in P` do
18: Find M ′

+[j, i], L′+[j, i] using decomposition of S` into k monotone sequences.
19: for each S[j] ∈ S` do
20: L+[j, i]← max{L+[j, i], L′+[j, i]}
21: Update M+[j, i] so that it corresponds to L+[j, i].
22: Update, for each S[j] ∈ S`, L−[j, i] and M−[j, i] with a similar approach.
23: return max{max{L−[j, k], L+[j, k]} : 1 ≤ j ≤ n}

When we begin computing the arrays M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤
i ≤ k, corresponding to all S[j] ∈ S`, we have already computed M+[j′, 1], M+[j′, 2], . . . ,

M+[j′, k] and L+[j′, 1], L+[j′, 2], . . . , L+[j′, k], as well as M−[j′, 1], M−[j′, 2], . . . , M−[j′, k]
and L−[j′, 1], L−[j′, 2], . . . , L−[j′, k], for every S[j′] ∈ S`′ such that `′ < `.

We start with computing the values M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤ i ≤ k,
assuming that the predecessor S[j′] of S[j] in its corresponding rollercoaster belongs to S`−d,
for some 1 ≤ d ≤ 4. In such case the longest rollercoaster ending at S[j′] has been already
correctly determined and the computation is quite straightforward. If S[j′] also belongs to
S`, we must be more careful to guarantee that the longest rollercoaster ending at S[j′] is
already known. We proceed in iterations. In the tth iteration, we guarantee to compute the
values such that at most t runs of the corresponding rollercoaster contain elements from S`.
By Proposition 4, four iterations are enough. In a single iteration, we start with computing

STACS 2019
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the initial values M+[·, 1], L+[·, 1], M−[·, 1] and L−[·, 1] corresponding to S[j] being the first
element of its run. These values can be simply copied from the already known M−[·, k],
L−[·, k], M+[·, k] and L+[·, k] corresponding to S[j] being the last element of a rollercoaster
with less than t runs containing elements from S` (or set to 1 corresponding to S[j] being the
only element in the rollercoaster). This is correct because a (k, 1)+-rollercoaster is actually
either a (k, k)−-rollercoaster or a sequence consisting of a single element. Then, we calculate
the values M+[·, i], L+[·, i], M−[·, i] and L−[·, i], for 2 ≤ i < k, such that the predecessor
S[j′] ∈ S` belongs to the same run as S[j]. By performing the calculation for i = 2, 3 . . . , k−1
in this order we guarantee that the longest rollercoaster ending at the predecessor S[j′] ∈ S`

is already known for all S[j] ∈ S`, but the computation is still not completely trivial and
requires a different approach depending on whether S` was decomposed into at most k

increasing, respectively decreasing, subsequences. Finally, we extend this to i = k.

M+[j, i] belongs to S`−d for some 1 ≤ d ≤ 4. We process S`−d to identify some
candidates, denoted Md

+[j, i] and Ld
+[j, i], for M+[j, i] and L+[j, i], respectively, for every

S[j] ∈ S`. The idea is to compute these candidates in the order in which the elements S[j]
occur on the sorted list P`. So, let us consider P` and P`−d. For each element S[j] in the
current part we want to identify a longest (k, i− 1)+-rollercoaster ending in S`−d with an
element less than S[j]. Thus, as P`−d is increasing, for every element of the current part we
need to consider all elements in a prefix of P`−d. Also, if S[j′] is to the right of S[j] in P`,
that is, S[j′] ≥ S[j], then the prefix of P`−d that we need to consider to compute Md

+[j′, i]
is at least as long as the prefix that we need to consider to compute Md

+[j, i]. Therefore,
we can use two pointers to sweep through P` and P`−d from left to right, and obtain the
information needed to compute Md

+[j, i] and Ld
+[j, i], for every S[j] ∈ S`. At the beginning

the pointers point to the first element of P` and P`−d, respectively. Say that the current
element in P` and P`−d is S[j] and S[h], respectively (we update indices j and h along with
the pointers). We keep moving forward the pointer corresponding to S[h] until we find an
element S[h] > S[j]. Then we set Md

+[j, i] = h′ and Ld
+[j, i] = L+[h′, i] + 1, where S[h′] is

an element occurring earlier than S[h] in P`−d with the largest value of L+[h′, i− 1]. The
element S[h′] is maintained as we move from left to right in P`−d. Then we proceed to the
next element in P`. Overall, computing candidates Md

+[j, i] and Ld
+[j, i], for every S[j] ∈ S`,

takes O(|S`−d|+ |S`|) time.

M+[j, i] belongs to S` decomposed into k increasing subsequences. Recall that we
have already computed M+[j′, i′] and L+[j′, i′] for every i′ < i and S[j′] ∈ S`, and the goal
is to identify candidates, denoted M ′

+[j, i] and L′+[j, i], for M+[j, i] and L+[j, i], respectively,
for every S[j] ∈ S`. Consider the decomposition of S` into k increasing subsequences
I1, I2, . . . , Ik. The elements of every sequence are increasing w.r.t. their value and w.r.t their
position in S. Consider an element S[j] ∈ Ia and 1 ≤ b ≤ k (possibly a = b). The elements
of Ib that can be the predecessor of S[j] in a (k, i)+-rollercoaster (that is, possible candidates
for M+[j, i]) are both less w.r.t. value and w.r.t. position in S. Thus, these elements form a
prefix of Ib, and for every S[j] ∈ Ia and 1 ≤ b ≤ k we want to maximise L+[h′, i] over all
S[h′] in such a prefix. As in the previous case, we can use two pointers to sweep through
Ia and Ib and compute, for every S[j] ∈ Ia, the element S[h′] ∈ Ib that could precede S[j]
in a (k, i)+-rollercoaster with the largest value of L+[h′, i− 1]. Finally, we set M ′

+[j, i] and
L′+[j, i] to correspond to the largest such value among all 1 ≤ b ≤ k. Overall, computing the
candidates M ′

+[j, i] and L′+[j, i], for every S[j] ∈ S`, takes O(k|S`|) time.
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M+[j, i] belongs to S` decomposed into k decreasing subsequences. This is the most
complicated case. Recall that the decomposition into k decreasing subsequences D1, D2, . . . ,

Dk was obtained with Algorithm 1. In more detail, Da consists of elements assigned to R[a]
throughout the execution of the algorithm. Thus, if S[j] ∈ Da then the predecessor of S[j]
in a sought longest (k, i)+-rollercoaster, denoted S[j′], must belong to Db for some 1 ≤ b < a.
Indeed, Algorithm 1 first processes S[j′] and then S[j], so if S[j′] ∈ Db then R[b] ≤ S[j′]
when processing S[j] and consequently S[j′] < S[j] implies that S[j] is assigned to R[a] with
a > b. So, we first compute the candidates M ′

+[j, i] and L′+[j, i] for every S[j] ∈ D1, then
for every S[j] ∈ D2, and so on. That is, consider a decreasing subsequence Da and suppose
that we have already computed the desired result for all elements in D1, D2, . . . , Da−1. Note
that at this point we have already computed, for every S[j] ∈ D1 ∪ . . . ∪Da−1, the values of
Md

+[j, i] and Ld
+[j, i], for 1 ≤ d ≤ 4, as well as the values M ′

+[j, i] and L′+[j, i] corresponding
to the current iteration. Thus, we are already able to set M+[j, i] and L+[j, i] by choosing
the option that maximises the length of the corresponding (k, i)+-rollercoaster, which is
important when extending this case to i = k.

Consider an element S[j] ∈ Da and 1 ≤ b < a. The elements of Db that can be the
predecessor of S[j] in a (k, i)+-rollercoaster (that is, possible candidates for M+[j, i]) are both
less w.r.t. value and w.r.t. position in S, similarly as in the previous case. The difference
is that now these elements form contiguous subsequence X of Db that is not necessarily a
prefix. The first element of X can be found by searching for the first element with sufficiently
small value, while its last element can be found by searching the last element with sufficiently
small position (note that X might be empty). Let S[j′] be the next element after S[j] in Da,
and Y be its corresponding contiguous subsequence of Db consisting of possible predecessors
in a (k, i)+-rollercoaster. Clearly, S[j] > S[j′] while j < j′. Thus, the first element of Y is
either the same as the first element of X or occurs after the first element of X in Da, while
the last element of Y is either the same as the last element of X or occurs after the last
element of X in Da (assuming that both X and Y are non-empty). Thus, we sweep through
Da while maintaining the current contiguous subsequence X of Db corresponding to the
possible predecessors of the current S[j] ∈ Da. This requires the following tool.

I Lemma 6 ([11]). There is a data structure that maintains a list of elements under the
following operations: pop an element from the front, push an element in the back, and return
the maximum element in the current list, each in O(1) time.

When processing the current element S[j] ∈ Da we maintain the first element S[f ] ∈ Db

such that S[f ] < S[j] and the last element S[`] ∈ Db such that ` < j. Then X consists of
all elements between S[f ] and S[`] in Db (inclusive), and is maintained in a structure from
Lemma 6 storing the lengths of their corresponding (k, i)+-rollercoaster, that is, the already
known value of L+[·, i− 1]. This allows us to extract the element S[j′] ∈ X with the largest
value of L+[j′, i− 1], and set M ′

+[j, i] = j′ and L′+[j, i] = L+[j′, i− 1] + 1 in constant time,
while updating f and ` takes amortised constant time. Overall, computing the candidates
M ′

+[j, i] and L′+[j, i], for every S[j] ∈ S`, takes O(k|S`|) time.

Case i = k. To compute M+[j, k] and L+[j, k], we first use exactly the same approach as
before for i = k, so consider the values of M+[·, k − 1] and L+[·, k − 1]. But this only allows
us to compute the length of a longest (k, k)+-rollercoaster with the last run of length exactly
k. To extend this to arbitrary (k, k)+-rollercoasters with the last run of length greater than k

we additionally run the same algorithm but instead of looking at M+[·, k− 1] and L+[·, k− 1]
we use M+[·, k] and L+[·, k], including the values already computed in this extra step in the
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30:10 Fast and Longest Rollercoasters

third case. The reason why this works is that, due to the order in which we consider the
elements of S`, at the moment when we compute the length of a longest (k, k)+-rollercoaster
ending with S[j], and which may have more than k elements in the final run, we have already
computed the length of a longest (k, k)+-rollercoaster ending with any element S[j′] which
may be a predecessor of S[j] on the respective (k, k)+-rollercoaster.

Conclusion. With these final remarks, our algorithm is completely described. It only remains
to find the element S[j] for which max{L−[j, k], L+[j, k]} is maximum. The correctness
follows from the comments made throughout its description. To compute the complexity, it
is enough to note that each part S` of the partition of S is processed in O(k|S`|) time, for
each 2 ≤ i ≤ k. Adding this up, we get that the total complexity of our algorithm is O(nk2).

I Theorem 7. For every sequence S[1 : n] and k ≥ 3, the length of a longest k-rollercoaster
in S can be found in O(nk2)-time.

4 Computing a Longest k-Rollercoaster in O(n log2 n)-Time

Before we describe our algorithm, we introduce two preliminary procedures. Firstly, we
introduce the definition of an anti-Monge matrix and the algorithm for finding the maximum
in every column of such a matrix. Secondly, we describe the algorithm for finding LIS in
contiguous subsequences of the input sequence. Finally, we describe the algorithm computing
a longest k-rollercoaster in this sequence, using the previously developed tools as black boxes.

Monge matrices. Let A be an n× n matrix, and A[i, j] denote its element in the ith row
from the top and the jth column from the left. A is Monge (respectively, anti-Monge)
if, for every 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n, the Monge equality holds, namely
A[i, k] + A[j, `] ≤ A[i, `] + A[j, k] (respectively, A[i, k] + A[j, `] ≥ A[i, `] + A[j, k]). An n× n

falling staircase anti-Monge matrix is a matrix with blanks such that for every blank all
elements below and to the left are blanks, and the anti-Monge inequality holds whenever
the four concerned elements are non-blank. Similarly, an n× n reverse falling staircase anti-
Monge matrix is a matrix with blanks such that for every blank all elements above and to the
right are blanks, and the anti-Monge inequality holds whenever the four concerned elements
are non-blank. Finally, an n× n matrix A is totally monotone if, for every 1 ≤ i < j ≤ n

and 1 ≤ k < ` ≤ n, A[i, k] ≤ A[i, `] implies A[j, k] ≤ A[j, `].

0 1 2 2 2
-1 0 1 1 2
-2 -1 0 1 2
-3 -2 -1 0 1
-4 -3 -2 -1 0

4
3 2
2 1
4 4 2 6

1 2 2 2
1 2
1 2

1

Figure 3 Anti-Monge matrix, reverse falling staircase anti-Monge matrix, and falling staircase
anti-Monge matrix.

Let us now recall some basic facts regarding Monge matrices.

I Observation 8. Adding the same value to every element in a row (or a column) of an
anti-Monge matrix results in an anti-Monge matrix.

I Observation 9. To check if an array is anti-Monge it is sufficient to check if every
contiguous 2× 2 submatrix is anti-Monge.
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The following lemma follows from the well-known SMAWK algorithm [2].

I Lemma 10 (Lemma 3.3 in Aggarwal et al. [1]). All row maxima in a reverse falling staircase
totally monotone matrix can be found in O(n) time.

By transposing the matrix and observing that being anti-Monge implies being totally
monotone we obtain the following.

I Corollary 11. All column maxima in a falling staircase anti-Monge matrix can be found
in O(n) time.

LIS-in-range queries. Let S[1 : n] be the input sequence. Define M as an (n + 1)× (n + 1)
matrix with 0-indexed rows and columns, such that M [i, j] is the length of LIS in S[i + 1 : j]
for i < j and M [i, j] = j − i otherwise (the anti-Monge matrix in Figure 3 is such a matrix
for the sequence (3, 4, 1, 2)). As hinted by our example, this matrix turns out to have a rather
special structure as observed by Tiskin [20]. We describe this structure in the following.

Let S′ be the sequence obtained by sorting S (recall that S consists of distinct elements),
and observe that LIS of S is the same as a longest common sequence (LCS, for short) of S

and S′. Thus, we can think that M [i, j] is LCS of S′ and S[i + 1 : j]. As such, the following
result can be shown (see [20] and the references therein).

I Lemma 12. M is anti-Monge.

Our algorithm needs to access the elements of M . Since the matrix contains (n + 1)2

elements, it is too large to be explicitly stored in memory. Fortunately, Tiskin also showed
how to create in O(n log2 n) time an O(n)-space implicit representation of M that allows us
to obtain any of its elements in O(log n) time [20]. Before we present the internals of this
representation, we need to introduce some additional definitions illustrated in Figure 4.

I Definition 13. Let A be any n×n matrix. Its distribution matrix AΣ is an (n+1)× (n+1)
matrix defined by AΣ[x, y] =

∑
i≥x,j<y A[i, j], for every 1 ≤ x ≤ n + 1, 1 ≤ y ≤ n + 1.

I Definition 14. A permutation matrix is a square matrix that has exactly one 1 in every
row and column, and the remaining elements are equal to 0.

0 1 0
1 0 0
0 0 1

0 1 2 3
0 1 1 2
0 0 0 1
0 0 0 0

Figure 4 A permutation matrix A and its distribution matrix AΣ.

Now, we can provide the final ingredients of the construction. For two strings w1 and
w2 of length d, Tiskin defines in [20] a (2d + 1) × (2d + 1) matrix L in the following way.
Let w′2 be the string equal to ?dw2?d, whose positions are indexed from −(d− 1) to 2d. The
rows of L are indexed from −d to d, while the columns of L are indexed from 0 to 2d. The
elements of L are defined by L[i, j] = LCS(w1, w′2[i + 1 : j]) if j > i, and L[i, j] = j − i

otherwise. In this definition, it is assumed that ? matches any character. If w2 is the input
sequence S and w1 is S′ then, for 0 ≤ i, j ≤ n we have L[i, j] = M [i + 1, j + 1]. Tiskin proved
(Theorem 4.10 in [20]) that there exists 2d× 2d permutation matrix P such that L[i, j] =
j − i− P Σ[i, j]. Furthermore, he provided an O(n log2 n)-time algorithm that finds all the
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30:12 Fast and Longest Rollercoasters

non-zero entries of P (Algorithm 8.2 in [20]). Having all the non-zero entries of P we can
apply a dominance counting structure of Chazelle [7] that can be constructed in O(n log n)
time, uses O(n) space, and calculates P Σ[i, j] and hence also M [i + 1, j + 1] in O(log n) time.
Summarising, in O(n log2 n) time we obtain a structure that returns any element of M in
O(log n) time. We similarly obtain a matrix storing the length of LDS of every S[i + 1 : j].

Description of the algorithm. Let S[1 : n] be the input sequence. For every 1 ≤ x ≤ n,
let res[x] be the length of a longest k-rollercoaster in S[1 : x], and inc[x] (respectively, dec[x])
be the length of a longest k-rollercoaster in S[1 : x] with the last run increasing (respectively,
decreasing). Note that we do not require that these k-rollercoasters contain S[x]. Then,
res[x] = max{dec[x], inc[x]}, for 1 ≤ x ≤ n. Firstly, we introduce two structural lemmas.

I Lemma 15. Let A be a k-rollercoaster in S[1 : i] with the last run decreasing, and r be an
increasing subsequence in S[i : n] such that |r| ≥ k. Then there exists a k-rollercoaster in
S[1 : n] of length at least |A|+ |r| − 1 with the last run increasing.

Proof. Let A′ be the sequence consisting of all elements from both A and r. Recall that a
sequence is a k-rollercoaster if every run has length at least k. In order to show that A′ is a
k-rollercoaster with last run increasing we need to consider three cases: the first element of r

is the last element of A, the first element of r is greater than the last element of A, and the
first element of r is less than the last element of A.

In the first case, all runs in A′ but the last are the same as in A, and the last run is equal
to r. Since A is a k-rollercoaster and |r| ≥ k we conclude that A′ is a k-rollercoaster. A and
r have one common element, so |A′| = |A|+ |r| − 1.

In the second case, all runs in A′ but the last are also the same as in A, and the last run
consists of the last element of A and r. Again we conclude that A′ is a k-rollercoaster. Since
A and r have no common elements, |A′| = |A|+ |r|.

In the third case, all runs in A′ but the last two are the same as in A. The second-to-last
run in A′ consist of the last run of A and the first element of r, and the last run in A′ is r.
Hence, A′ is a k-rollercoaster. Since A and r have no common elements, |A′| = |A|+ |r|. J

I Lemma 16. Consider a longest k-rollercoaster in S[1 : n] with the last run increasing
(respectively, decreasing), and let r be its last run with the first element S[i]. Then r is a
longest increasing (respectively, decreasing) subsequence in S[i : n].

Proof. By contradiction. Let A be a longest k-rollercoaster from the statement of the lemma,
and suppose that there exists a longer increasing sequence r′ in S[i : n]. Let A′ be the prefix
of A ending at S[i]. Observe that |A′| = |A| − |r| + 1. Then by Lemma 15 there exists a
k-rollercoaster in S of length at least |A′|+ |r′| − 1 = |A| − |r|+ |r′| > |A|. J

The above lemmas allow us to obtain the formula for calculating the arrays inc and dec.
Recall that M [i, j] is the length of LIS in S[i + 1 : j]. Let M ′ be the matrix obtained from M

by replacing all elements less than k by −∞, and let Z(j, j′) be the set of indices j ≤ i ≤ j′

such that length of LIS in S[i : j′] is at least k (or, in other words, M ′[i− 1, j′] 6= −∞).

I Proposition 17. For every 1 ≤ x ≤ n, the following holds:

inc′[x] = max{dec[i] + M ′[i− 1, x]− 1 : i ∈ Z(1, x)}, inc[x] = max{inc′[x], M ′[0, x]}.

If Z(1, x) is empty then we set inc′[x] = 0.
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Proof. By Lemma 15 we obtain that for every i ∈ Z(1, x) there exists a k-rollercoaster
in S[1 : x] with the last run increasing of length at least dec[i] + M ′[i − 1, x] − 1. We
conclude that inc′[x] is less or equal to the length of a longest k-rollercoaster with the last
run increasing in S[1 : x]. Observe that M ′[0, x] corresponds to an increasing run of length
at least k or is equal to −∞. We obtain that inc[x] is less or equal than the length of a
longest k-rollercoaster with the last run increasing in S[1 : x].

For the converse, consider a k-rollercoaster A with the last run increasing in S[1 : x]. If A

consists of just a single run then its length is M ′[0, x]. Otherwise, let S[i] be the first element
in the last run of A. Then by Lemma 16 the length of the last run is equal to M ′[i− 1, x]
and the length of A is dec[i] + M ′[i− 1, x]− 1. Overall, the length of A is at most inc[x]. J

Proposition 17 cannot be applied directly if we aim to achieve the announced O(n log2 n)
time complexity, and we need to introduce some auxiliary definitions. For every 1 ≤ d ≤ x

we define incd[x] as follows:

inc′d[x] = max{dec[i] + M ′[i− 1, x]− 1 : i ∈ Z(1, d− 1)}, incd[x] = max{inc′d[x], M ′[0, x]}.

If Z(1, d− 1) is empty then we set inc′d[x] = 0. In other words, incd[x] is equal to the length
of a longest k-rollercoaster in S[1 : x] with the last run increasing and starting at an element
S[i] with i < d or LIS of S[1 : n] of length at least k. Thus, inc1[x] is equal to either 0 or the
length of a LIS in S[1 : x]. We similarly define decd[x].

I Observation 18. For every j > i− k + 1, incj [i] = inc[i].

We describe a function Compute that receives a contiguous subsequence S[i : j] together
with the previously calculated arrays inci[i : j] and deci[i : j], and returns the arrays inc[i : j]
and dec[i : j]. To calculate the length of a longest k-rollercoaster in S[1 : n] we invoke the
function with the whole S[1 : n] and the arrays inc1[1 : n], dec1[1 : n] as arguments, and
return the maximum over the two resulting arrays. Note that inc1[1 : n] and dec1[1 : n] can
be calculated in O(n log n) time using Algorithm 1.

Let m =
⌈

i+j
2
⌉
. The main idea of Compute is to call the function recursively for the left

half to calculate inc[i : m− 1] and dec[i : m− 1]. The next step is to calculate incm[m : j]
and decm[m : j] using tools from the previous paragraphs (as described below). Finally, we
recursively calculate inc[m : j] and dec[m : j]. Concatenating the results from both recursive
calls gives us the desired result. This is summarised in Algorithm 3.

Algorithm 3 Computing the length of a longest k-rollercoaster.
1: procedure Compute(k, S[i : j], inci[i : j], deci[i : j])
2: if j − i + 2 ≤ k then
3: {inc[i : j], dec[i : j]} ← {inci[i : j], deci[i : j]}
4: return {inc[i : j], dec[i : j]}
5: m←

⌈
i+j
2
⌉

6: {inc[i : m−1], dec[i : m−1]} ← Compute(k, S[i : m−1], inci[i : m−1], deci[i : m−1])
7: Compute incm[m : j] and decm[m : j]
8: {inc[m : j], dec[m : j]} ← Compute(k, S[m : j], incm[m : j], decm[m : j])
9: return {inc[i : j], dec[i : j]}
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30:14 Fast and Longest Rollercoasters

Computing incm[m : j] and decm[m : j]. We only describe how to calculate incm[m : j],
as decm[m : j] can be computed by a similar approach. Recall the previously introduced
matrix M ′, obtained by replacing values less than k by −∞ in M . Let Ainc be the (m− i)×
(j + 1 −m) matrix with rows indexed from i to m − 1 and columns indexed from m to j

satisfying:

Ainc[x, y] =
{

dec[x] + M ′[x− 1, y]− 1 when M ′[x− 1, y] 6= −∞,

blank otherwise.

Since we are able to retrieve any element of M ′ in O(log n) time using LIS-in-range queries,
and the value of dec[x], for every i ≤ x ≤ m− 1, is already available, each element of Ainc
can be calculated in O(log n) time. Furthermore, we have the following property.

I Proposition 19. A is a falling staircase anti-Monge matrix.

Proof. By Lemma 12 M is an anti-Monge matrix. By Observation 8 this is still the case if
we add the same value to all elements in the same row.

To prove that A is a falling staircase matrix consider a non-blank element A[i, j]. Then
M [i, j] ≥ k. But this implies M [i− 1, j] ≥ k and M [i, j + 1] ≥ k (as long as i > 1 and j < n),
so all elements above and to the right are also non-blank as required. J

I Proposition 20. For every m ≤ ` ≤ j, incm[`] is equal to either inci[`] or the maximum in
the `th column of A.

Proof. For every m ≤ ` ≤ j, incm[`] is equal to either inci[`] or max{dec[j] + M ′[j−1, `]−1 :
j ∈ Z(i, m− 1)}. However, the latter is exactly the maximum in the `th column of A. J

I Lemma 21. We can compute incm[m : j] and decm[m : j] in O((j − i + 1) log n) time.

Proof. By Proposition 20 computing incm[m : j] reduces to finding all the column maxima
in A. Since A is a falling staircase anti-Monge matrix, we can use the algorithm from
Corollary 11. Access to any element of A requires O(log n) time, so in total we obtain
O((j − i + 1) log n) time complexity. J

We can now state with the main result of this section.

I Theorem 22. For every sequence S[1 : n] and k ≥ 3, the length of a longest k-rollercoaster
in S can be found in O(n log2 n) time.

Proof. The algorithm needs O(n log2 n) preprocessing time to construct the LIS-in-range
(and LDS-in-range) structure. We compute inc1[1 : n] and dec1[1 : n] in O(n log n) time using
Algorithm 1. Then, we call the recursive function Compute. By Lemma 21 a call of the
function on S[i : j] takes O((j − i + 1) log n) time, so its running time is described by the
recurrence T (n) = 2T (n/2) + O(n log n) that solves to O(n log2 n). Thus, the overall time
complexity is O(n log2 n). J

5 Lower Bound

In the final section of our paper, we prove that any comparison-based algorithm computing
the length of a longest k-rollercoaster in an permutation S of {1, . . . , n}, for 4 ≤ k ≤ n

3 ,
performs at least Ω(n log k) comparisons. Let T be a binary comparison tree associated with
an algorithm that computes the result. The number of comparisons made in the algorithm is
equal to the height of T , and this is a lower bound on the execution time of the algorithm.
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Let A be a partial ordering associated with a path from the root to some leaf of T .
Since the algorithm cannot distinguish between permutations following the same path, every
permutation consistent with A has to give the same result. Our approach is to first identify
a set U of permutations of {1, . . . , n} such that log |U | = Θ(n log k), and any ordering
associated with a leaf of T can be consistent with at most one permutation from U . Hence,
the number of leaves in T is at least |U |. Since the height of a binary tree is at least logarithm
of the number of leaves, this will show that the height of T , and hence also the number of
comparison performed by the algorithm, is at least Ω(log |U |) = Ω(n log k).

We first recall the set Γ of `n−2` permutations of {1, . . . , n} proposed by Fredman in [10],
where ` is a parameter. These permutations are essentially different inputs S for an algorithm
computing the length of LIS, each leading to a different leaf in the comparison tree.

So, essentially, we want to construct input sequences (x1, . . . , xn), with their elements
x1, . . . , xn chosen so that certain linear orderings of the xis are induced. To create a
permutation from Γ we partition (x1, . . . , xn) into ` subsequences P1, P2, . . . , P`. To simplify
the exposure, let `prefix of a sequence be its prefix of length `, while the `suffix is its suffix
of length `; the remaining n− 2` elements are called `middle of the sequence. We partition
(x1, . . . , xn) in the following way: the ith element of `prefix (that is, xi) and the ith element
of `suffix (xn−`+i) belong to Pi. Each element from `middle of the sequence belongs to an
arbitrary chosen part Pj . This gives us `n−2` different partitions. For a partition P1, . . . , P`,
we assign values from {1, . . . , n} to the input sequence in such a way, that the elements of
each part Pi form a decreasing sequence and, for 1 i ≤ `, each element of Pi is less than any
element of Pi+1 (see Figure 5). So, each such possible assignment gives us a permutation
from Γ. LIS of any permutation from Γ is of length ` because it contains one element from
each Pi. LDS of any permutation of Γ is no longer than n− 2` + 2 because it contains at
most one element from `prefix and at most one from `suffix.

I Proposition 23. Each permutation from Γ can be split into ` descending subsequences in
only one way. For two different permutations from Γ these ways of splitting are different.

P2

P1

P3

`prefix `middle `suffix

Figure 5 Example permutation P ∈ Γ for ` = 3 in a plane. In this figure, we have P =
(6, 13, 20, 5, 19, 12, 4, 11, 18, 17, 16, 15, 10, 3, 9, 8, 2, 1, 7, 14).

We now consider the algorithm computing the length of a longest k-rollercoaster. Using
the permutations from Γ we create a set U of kn k−3

3k−3 permutations of {1, . . . , n}, again
with the same principle behind: they should be input sequences which lead to different
paths in the comparison tree associated to an algorithm computing the length of a longest
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k-rollercoaster. Observe that log (kn k−3
3k−3 ) = Θ(n log k), so this would imply the desired lower

bound of Θ(n log k) on the number of comparisons done by an algorithm to compute the
length of a longest k-rollercoaster.

A permutation from U is obtained as follows. Suppose that (3k − 3) divides n. Split
the sequence (x1, . . . , xn) into n

3k−3 blocks (contiguous subsequences) of size 3k − 3. We
will assign to the elements of the ith contiguous block (xi(3k−3)+1, . . . , x(i+1)(3k−3)) distinct
values from the set {i(3k − 3) + 1, . . . , (i + 1)(3k − 3)}, as follows. In every block, use one
of the permutations from Γ (with the parameter ` set to k) to values to the elements
xi(3k−3)+1, . . . , x(i+1)(3k−3) of that block, and then assign values to those elements according
to that ordering. In this way, we can create |Γ|

n
3k−3 = (kk−3)

n
3k−3 permutations of {1, . . . , n}.

Observe that in every block the length of a longest decreasing subsequence is less than
k. Since every block consists of strictly greater values than the previous ones, a longest
decreasing subsequence of every permutation from U is less than k. A longest increasing
subsequence of every element of Γ is equal to k, so a longest k-rollercoaster for every element
of U is equal to kn

3k−3 and consists only of longest increasing subsequences corresponding to
all the blocks glued one after the other. We can now show a result similar to Proposition 23.

I Proposition 24. Each permutation from U can be split into kn
3k−3 descending subsequence

in only one way. For two different permutations from U these ways of splitting are different.

Having constructed the set U , we can proceed with the lower bound. Let A be a partial
ordering associated with a path to some leaf of T (the comparison tree associated to the
algorithm computing the length of a longest k-rollercoaster). Since the algorithm cannot
distinguish between permutations following the same path, every permutation consistent
with A has to give the same result. We recall the following lemma.

I Lemma 25 (Lemma 3.6 in [10]). Let ≤ be a partial ordering defined on S. The maximum
length of LIS in S associated with any linear embedding of this ordering, is equal to the
minimum number of decreasing subsequences relative to ≤ into which S can be partitioned.

Now we can prove the following.

I Lemma 26. Let A be partial ordering associated with the path from the root to a leaf of T .
Only one permutation from U can be consistent with A.

Proof. Consider S ∈ U that is consistent with A, and let D = kn
3k−3 be the length of its LIS.

Now let m be the minimum number of decreasing subsequences relative to the results of
the comparisons made on the path A into which S can be partitioned. If m < d then S is
consistent with A, so we can partition S into the same decreasing subsequences, but S cannot
be divided into less than than d decreasing subsequences, a contradiction. If m > d then by
Lemma 25 there exists a permutation S′ consistent with A with the length of LIS greater
than d. S′ follows the same path as S in the comparison tree, but has a longer k-rollercoaster
(consisting only of LIS of S′) than S, a contradiction. Thus, m = d for any such S.

Consider two S1, S2 ∈ U consistent with A. By Proposition 24, the only partition of S1
into d decreasing sequences is different from the only such partition of S2 (into d decreasing
sequences), so A can be consistent with only one permutation, a contradiction. J

Thus, each permutation from U corresponds to a distinct leaf of T , making the depth of
T at least log |U | = Θ(n log k) as required and proving the following theorem.

I Theorem 27. For every k satisfying 4 ≤ k ≤ n
3 , any comparison-based algorithm that

computes the length of a longest k-rollercoaster in a permutation of {1, . . . , n} performs at
least Ω(n log k) comparisons.
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