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Abstract
Many shared memory algorithms have to deal with the problem of determining whether the value of
a shared object has changed in between two successive accesses of that object by a process when the
responses from both are the same. Motivated by this problem, we define the signal detection problem,
which can be studied on a purely combinatorial level. Consider a system with n + 1 processes
consisting of n readers and one signaller. The processes communicate through a shared blackboard
that can store a value from a domain of size m. Processes are scheduled by an adversary. When
scheduled, a process reads the blackboard, modifies its contents arbitrarily, and, provided it is a
reader, returns a Boolean value. A reader must return true if the signaller has taken a step since the
reader’s preceding step; otherwise it must return false.

Intuitively, in a system with n processes, signal detection should require at least n bits of shared
information, i.e., m ≥ 2n. But a proof of this conjecture remains elusive. We prove a lower bound
of m ≥ n2, as well as a tight lower bound of m ≥ 2n for two restricted versions of the problem,
where the processes are oblivious or where the signaller always resets the blackboard to the same
fixed value. We also consider a one-shot version of the problem, where each reader takes at most
two steps. In this case, we prove that it is necessary and sufficient that the blackboard can store
m = n + 1 values.
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1 Introduction

1.1 The Signal Detection Problem
Consider a system consisting of n+ 1 processes, one signaller, s, and n readers, r1, . . . , rn,
that communicate through a shared blackboard. The blackboard can contain one value from
a domain of size m. Processes are scheduled to take steps one at a time by an adversarial
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26:2 Space Lower Bounds for the Signal Detection Problem

scheduler. Whenever a process takes a step, it atomically reads the blackboard and can
modify its contents arbitrarily, i.e. without interruption from other processes.

In the signal detection problem, each time a reader, ri, has taken a step, it must return a
Boolean value. If ri has no preceding step, it can return either true or false. Otherwise, it
must return true if and only if the signaller has taken a step since ri’s preceding step. We
are concerned with how large m has to be for this problem to be solvable.

1.2 Simple Signal Detection Algorithms
For large or even unbounded values of m, there are simple solutions to the signal detection
problem. For example, the board could store an unbounded signal counter that is initially 0.
Each time the signaller takes a step, it increments the counter. When a reader is scheduled,
it simply memorizes the counter value, but does not change it. To detect whether a signal
has occurred since its last step, a reader only needs to compare the current counter value
with the one it read in its previous step. The number of values the blackboard needs to store
grows with the number of signals that occur, which can be unbounded.

The following simple protocol works for all executions and needs only to store an n-bit
string (b1, . . . , bn) on the blackboard. Initially, b1 = · · · = bn = 0, and whenever the signaller
takes a step, it sets all bits to 1. For each j ∈ {1, . . . , n}, reader rj resets bit bj to 0, returns
false if this is rj ’s first step, and returns the old value of bj otherwise.

1.3 ABA Detection
Signal detection is related to the fundamental ABA detection problem in asynchronous
shared memory systems. In such systems, a process that observes the same value A in some
shared object in two successive accesses cannot tell whether the value of the object remained
unchanged between them. More formally, it cannot distinguish between an execution in
which the shared object did not change and an execution in which the value of the object
changed from A to some other value B and then back to A. Many shared memory algorithms
have to deal with this problem.

A well-known example is the double-collect algorithm for performing an atomic scan of
an array [1]: A process repeatedly performs a collect (reading all components of the array
one by one) until the sequences of values read in two consecutive collects are the same. This
algorithm is only correct (linearizable) if no ABAs occur, meaning that any two consecutive
reads of the same array entry return the same value if and only if the value of the array entry
was not changed between the two reads. This is because it can be shown that, provided no
ABAs occur, the sequence returned by a scan must be the contents of the array at the end of
its second last collect and the beginning of its last collect. However, in executions in which
ABAs occur, this implementation might incorrectly return a sequence of values that was not
the contents of the array at any point during the execution.

A standard approach to dealing with ABAs is tagging, as introduced by IBM [6], whereby
a shared object gets augmented with a tag that changes with every write operation. If tags
are never reused, the ABA problem can be avoided. From a theory perspective this solution
is unsatisfactory: If there is no bound on the length of executions, then unbounded sized
objects are required to accommodate ever increasing tag values. Even though, in many
practical scenarios, a system may never run out of tags, it is often desirable or even necessary
to use an entire word for data. In such scenarios, the tag associated with a data word could
be stored in a subsequent memory location and double-width atomic instructions could be
used. However, these are not supported by most of today’s mainstream architectures [8].
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In some cases, it is possible to store the tag in an unrelated memory location [7], but this
requires technically difficult algorithms and tedious correctness proofs. As a result, algorithm
designers often deal with ABAs in an ad-hoc way. For example, handshaking bits can be
used to detect changes in the components of the array in a wait-free implementation of a
snapshot object [1]. Such solutions are algorithm specific and require individual correctness
proofs.

ABAs can also occur when using compare-and-swap (CAS) objects, which are provided by
most existing multiprocessor systems and are much more powerful than read/write registers.
Algorithms devised in theoretical research often use load-linked store-conditional (LL/SC)
objects, which do not suffer from ABAs, and can easily replace CAS objects. Unfortunately,
only a small number of multiprocessor systems provide LL/SC and they are weaker than the
LL/SC specification used in theoretical research. Variants of LL/SC available in modern
hardware restrict programmers severely in how the objects can be used [10], and “offer little
or no help with preventing the ABA problem” [9].

To study the complexity of ABA detection, Aghazadeh and Woelfel [2] defined an ABA
detecting register, which extends a read/write register with the ability to detect ABAs. It
supports the operations DWrite(x), which changes the value of the object to x, and DRead(),
which returns the current value of the object together with a Boolean flag. The flag is true
if and only if the process has previously performed DRead() and, since its last preceding
DRead(), some process performed DWrite(). The authors proved space lower bounds and
time-space-tradeoffs for linearizable implementations of ABA detecting registers in shared
memory systems with n processors that provide bounded atomic base objects, such as
read/write registers or CAS objects. For example, if only bounded read/write registers are
available as base objects, then at least n− 1 of them are needed to obtain an obstruction-free
ABA detecting register. If bounded CAS objects are also available, then any implementation
using m base objects has step-complexity Ω(n/m).

All the lower bound results in [2] are specific to the base objects provided by the system,
and provide no insights for systems using different sets of base objects. But we conjecture that
there is a large, general lower bound for the amount of information that needs to be stored
in a system for processes to detect ABAs: Intuitively, the system state needs to keep track
of whether the value of the object has changed since each process last accessed the object.
This requires at least n bits of information. Hence, it seems believable that detecting ABAs
in any system with arbitrarily powerful base objects requires at least n bits of information to
be stored either in the base object or in the hardware implementing the base objects (for
example, implementing LL/SC objects). Using the reasonable assumption that a single base
object can store O(logn) bits of information, this would imply that Ω(n/ logn) base objects
are required for implementing a single ABA detecting object.

The signal detection problem is a restricted version of the problem of detecting ABAs
in asynchronous shared memory systems, stripped down to the essentials necessary for
determining the information theoretic requirements. Its definition is self-contained, and
the problem can be studied without any background knowledge on shared memory systems.
If n processes can detect ABAs in a standard asynchronous shared memory system with
arbitrarily strong primitives, then they can also solve signal detection. Therefore, if m∗ is
the smallest value of m (the number of values stored on the blackboard) for which signal
detection can be solved, then log2 m

∗ is a lower bound for the number of bits needed for
ABA detection.

STACS 2019



26:4 Space Lower Bounds for the Signal Detection Problem

1.4 Results
We conjecture that any solution to the signal detection problem requires m ≥ 2n. This
simply defined combinatorial problem does not seem to have a simple solution and a proof of
the conjecture has eluded us so far. Even a proof of a polynomial lower bound is surprisingly
non-trivial. We show the following.

I Theorem 1. In any algorithm for the signal detection problem, the blackboard stores
m = Ω(n2) different values.

To obtain better understanding, we consider several restricted versions of the signal
detection problem and prove tight upper and lower bounds for them.

First, we consider a one-shot version of signal detection, where no reader takes more than
two steps (but the signaller can take arbitrarily many steps). We show that this problem is
strictly easier than the unrestricted version of the problem by showing that one-shot signal
detection can be solved with n+ 1 different blackboard values, which is optimal.

I Theorem 2. The minimum number of different values that the blackboard stores in an
algorithm that solves the one-shot signal detection problem is m = n+ 1.

Then we consider the case of oblivious processes. Here each process p is equipped with
a fixed function fp : {0, . . . ,m − 1} → {0, . . . ,m − 1}. When taking a step it replaces
the blackboard contents x with fp(x). Hence, what a process writes to the blackboard is
independent of the process’ internal state (but the return value of a reader’s step may not be).
In the simple algorithm above, which uses m = 2n blackboard values, processes are oblivious.
In fact, what a reader returns also only depends on the contents of the blackboard and not
on its internal state. We prove that when processes are oblivious, no better algorithm exists.

I Theorem 3. In any algorithm for the signal detection problem with oblivious processes,
the blackboard stores m ≥ 2n different values.

The signal detection problem with oblivious processes is similar to determining the
minimum size of a dictionary in a sequential system. A dictionary supports three operations,
insert(x), query(x), and reset(), where x is a parameter chosen from a domain of size n. A
call to query(x) returns true if there has been an insert(x) operation since the last reset()
operation or since the beginning of the execution, if there has been no reset(). Otherwise, it
returns false. A dictionary implemented using b(n) bits immediately yields a solution to the
signal detection problem with oblivious processes as follows: A blackboard with m = 2b(n)

possible values is used to store the dictionary. When a signaler takes a step, it simulates a
reset() operation on the dictionary stored on the blackboard. Similarly, when reader ri takes
a step, it simulates query(i) followed by insert(i) on the dictionary and then returns the
return value of its query operation. However, an arbitrary solution to the signal detection
problem does not seem to yield an implementation of a dictionary. The difficulty is that the
return value of a step by a reader ri can depend on the state of the reader and, thus, its
entire past execution. In contrast, the result of a query(i) operation is only a function of the
state of the dictionary. Hence, the n-bit information theory lower bound for implementing a
dictionary cannot be used to obtain Theorem 3.

We also consider signal detection with identical signals, where the signaller always resets
the blackboard to the same value. Note that the simple algorithm above with m = 2n

uses identical signals. Studying this restricted problem has another motivation: Consider a
shared memory system, where shared memory objects may be reset to their initial states
at arbitrary times. For example, this can happen due to power outages if volatile memory
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is used. A solution to signal detection with identical signals corresponds to an algorithm
where processes can detect that such faults have happened. This may allow them to start a
recovery procedure. This is dual to the recently introduced notion of recoverable algorithms
[5, 4, 3], which tolerate power outages when the local variables of processes are stored on
volatile memory, but shared memory is non-volatile.

I Theorem 4. In any algorithm for the signal detection problem with identical signals, the
blackboard stores m ≥ 2n different values.

The lower bound proofs of m ≥ 2n for signal detection with either oblivious readers or
identical signals have one interesting aspect in common. We show that one can reach a
configuration, C, from which 2n different blackboard values result from the 2n schedules
that are sub-sequences of (r1, . . . , rn). For our simple algorithm, each execution that ends
with the signaller taking a step results in a configuration with this property. We show
that a lower bound proof for the unrestricted signal detection problem cannot rely on this
property. In particular, we present an algorithm for two readers, r1 and r2, which uses a
bounded number of blackboard values, such that every reachable configuration C satisfies
the following: the schedules sr1 and sr2 performed starting from C result in configurations
with the same blackboard contents. Hence, in contrast to our earlier intuition, it is not
necessary for the blackboard to store information about which processes have taken steps
since the signaller last took a step: Csr1 and Csr2 are indistinguishable to the signaller.
This algorithm uses m = 16 blackboard values, so it does not contradict our conjecture.
However, it has interesting implications for lower bound proof techniques - for example, the
approach that we used to prove Theorem 4 does not apply to this particular algorithm.

2 Preliminaries

We consider a deterministic, asynchronous system in which n + 1 processes with unique
IDs in {s, r1, . . . , rn} communicate with one another using a single shared blackboard. Each
time a process takes a step, it atomically reads the blackboard, may change the value of the
blackboard based on its state and the value it read, and updates its state.

A configuration C consists of a value, v(C), for the blackboard and a state for each
process. An execution is an alternating sequence of configurations and steps. If C is a
configuration and α is a finite execution starting from C, then Cα denotes the configuration
at the end of α. For any set of processes, P , a P -only execution is an execution in which
only processes in P take steps in the execution. A solo execution is a P -only execution in
which P contains only one process, i.e., all steps in the execution are by the same process.

A schedule is a sequence of processes (in which the same process can occur multiple times).
For any (deterministic) algorithm and for any configuration C, a schedule α determines a
unique execution starting from C in which the processes take steps in the order specified by
the schedule. The configuration at the end of this execution is called Cα.

Two configurations, C and C ′, are indistinguishable to a set of processes, P , if v(C) = v(C ′)
and each process in P has the same state in C as it does in C ′. If C and C ′ are indistinguishable
to P and α is a finite P -only execution from C, then it is also an execution from C ′, and Cα
and C ′α are also indistinguishable to P .

3 One-Shot Signal Detection

Recall that in the one-shot signal detection problem, no reader takes more than two steps,
but the signaller can take arbitrarily many steps. Consider the following algorithm that
solves this problem using m = n+ 1 values:

STACS 2019
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The blackboard initially has value 0.
Whenever s takes a step, it resets the blackboard contents to 0.
When ri takes its first step, it changes the blackboard contents to i if it reads 0; otherwise
it leaves the blackboard unchanged. In either case, ri locally stores the value vi 6= 0 of
the blackboard immediately after its first step and returns false. Let vi 6= 0 denote the
value of the blackboard immediately after this step.
When ri takes its second step, it returns false if it reads vi from the blackboard; otherwise
it returns true. It does not change the value of the blackboard in either case.

Note that only the signaller changes the blackboard contents to 0 and a reader only
changes the blackboard contents from 0. Thus, if the signaller does not take any steps
between the two steps of reader ri, then the value of the blackboard remains vi during this
interval and ri returns false.

If the signaller does take a step between the two steps of reader ri, then the blackboard
is reset to 0. Consider the last step, S′, by the signaller during this interval. If no reader
takes its first step after S′, but before the second step by ri, then ri will read 0 from the
blackboard on its second step and return true Otherwise, consider the first step after S′ in
which a reader rj takes its first step. It will change the blackboard contents to j. Note that
j 6= vi, since rj is the only reader that can change the blackboard contents to j and rj has
not previously taken a step. In this case, ri will read j from the blackboard on its second
step and return true.

There is also a matching lower bound. In both of the following proofs, it is sufficient to
restrict attention to executions in which each reader takes at most two steps.

I Lemma 5. Let C be a configuration and let r be a reader. If α is a ({r1, . . . , rn}−{r})-only
execution from C ′ = Cr and β is a ({s, r1, . . . , rn} − {r})-only execution from C ′αs, then,
for every configuration D in α and every configuration E in β, v(D) 6= v(E).

Proof. Suppose not. Then there is some configuration D in α and some configuration E
in β such that v(D) = v(E). Since r takes no steps in αsβ, D and E are indistinguishable
to r. Note that r must return false if it takes a step in configuration D, because s has not
taken any steps since r last took a step. However, r must return true if it takes a step in
configuration E, because s has taken a step since r last took a step. This is impossible,
because D and E are indistinguishable to r. J

We can now prove Theorem 2, restated for convenience:

I Theorem 2. The minimum number of different values that the blackboard stores in an
algorithm that solves the one-shot signal detection problem is m = n+ 1.

Proof. In the beginning of this section, we gave an algorithm for one-shot signal detection
in which blackboard stores n+ 1 values. In the following we show that, in any algorithm for
one-shot signal detection, the blackboard stores at least n+ 1 different values.

Let C0 be the initial configuration. For 1 ≤ j ≤ n, let Cj = Cj−1srj , and let Cn+1 = Cns.
For 1 ≤ i < n, consider the empty execution α from Ci and the execution β from Cis

with schedule ri+1 · · · srns. By Lemma 5 with C ′ = Ci and r = ri, v(Ci) 6= v(E) for all
configurations E in β. In particular, v(Ci) 6= v(Cj) for i+ 1 ≤ j ≤ n+ 1.

For i = n, consider the empty execution α from Cn and the empty execution β from
Cns = Cn+1 By Lemma 5 with C ′ = Cn and r = rn, v(Cn) 6= v(Cn+1).

Hence |{v(C1), . . . , v(Cn), v(Cn+1)}| = n+ 1. J



F.Ellen, R. Gelashvili, P.Woelfel, and L. Zhu 26:7

There is a simple generalization of the algorithm for one-shot signal detection using
m = n+ 1 values to an algorithm for signal detection using m = bn+ 1 values when each
reader can perform at most b + 1 steps: When a reader ri reads a 0 from the blackboard
in its j’th step, for 1 ≤ j ≤ b, it changes the blackboard contents to (i, j), instead of i, and
stores the value of the blackboard in vi. When ri takes its first step, it always returns false.
When ri takes subsequent steps, it returns false if it reads vi from the blackboard; otherwise
it returns true.

4 Identical Signals

Suppose that the signaller always resets the contents of the blackboard to a fixed value, say
0. We show that the blackboard must be able to store at least 2n values.

Given a set of readers, R, let ~R denote the schedule consisting of one occurrence of each
reader in R, in order of their identifiers, and letM(R) denote the set {ri : i ≤ j for some rj ∈
R} of all readers whose identities are less than or equal to the largest identity of the readers
in R. In particular, M(∅) = ∅. For example, M({r1, r4, r8}) = {r1, r2, . . . , r8}. Notice that,
for any two sets of readers R and R′, either M(R) ⊆M(R′) or M(R′) ⊆M(R). There are
n+ 1 such sets, i.e., |{M(R) : R ⊆ {r1, . . . , rn}}| = n+ 1.

I Lemma 6. If the blackboard can only store a finite number of different values, then it
is possible to reach a configuration D such that, for every set of readers, T , there is a
(M(T ) ∪ {s})-only execution β from D~Ts such that v(D~Tsβ) = v(D~T ).

Proof. Assume that, for all reachable configurations C, there is a set of readers, T , such that,
for all (M(T ) ∪ {s})-only executions β from C ~Ts, v(C ~Tsβ) 6= v(C ~T ). We define an infinite
sequence (Ci)i≥0 of reachable configurations as follows. Let C0 be the initial configuration.
For j ≥ 1, let Tj be a set of readers such that for all (M(Tj) ∪ {s})-only executions β from
Cj−1 ~Tjs, v(Cj−1 ~Tjsβ) 6= v(Cj−1 ~Tj). The existence of Tj follows from the assumption, since
Cj−1 is reachable. Let Cj = Cj−1 ~Tjs.

Consider the infinite sequence (M(Tj))j≥1. Since |{M(R) : R ⊆ {r1, . . . , rn}}| = n+ 1,
some set of readers occurs in the sequence infinitely often. Let M be the largest such set, let
J = {j ≥ 1 : M(Tj) = M}, and let k∗ = min{k ≥ 1 : M(Tj) ⊆M for all j ≥ k}. Note that,
for all k, ` ∈ J such that k∗ ≤ k < `, the schedule ~Tk+1s~Tk+2s · · · ~T` is (M ∪ {s})-only. Thus,
by definition of Tk, v(Ck

~Tk) 6= v(Ck
~Tks~Tk+1s · · · ~T`) = v(C`

~T`). Therefore, the blackboard
can store an infinite number of values. J

This allows us to prove Theorem 4 (restated):

I Theorem 4. In any algorithm for the signal detection problem with identical signals, the
blackboard stores m ≥ 2n different values.

Proof. Suppose the blackboard can only store a finite number of values. Then, by Lemma 6,
it is possible to reach a configuration D such that, for any set of readers T , there is a
(M(T ) ∪ {s})-only execution β from D~Ts such that v(D~Tsβ) = v(D~T ).

Suppose there exist two different sets of readers R,R′ ⊆ {r1, . . . , rn} such that v(D~R) =
v(D ~R′). Without loss of generality, ~R = ~Tx ~X and ~R′ = ~T ~X ′, where x ∈ R−R′ and ~T is the
longest common prefix of ~R and ~R′. Note that M(T ) ∩ ({x} ∪X ∪X ′) = ∅ since ~R and ~R′

are sorted. By definition of D, there is a (M(T )∪ {s})-only execution β from D~Ts such that
v(D~Tsβ) = v(D~T ). Consider the execution β′ from D~Txs which has the same schedule as β.
Since D~Ts and D~Txs are indistinguishable to M(T ) and s always sets the blackboard to 0,
the corresponding configurations in β and β′ are indistinguishable to M(T ). In particular,

STACS 2019



26:8 Space Lower Bounds for the Signal Detection Problem

v(D~Txsβ) = v(D~T ). Since (M(T ) ∪ {s, x}) ∩X ′ = ∅, configurations D~Txsβ and D~T are
indistinguishable to the set of readers X ′. Thus v(D~Txsβ ~X ′) = v(D~T ~X ′) = v(D ~R′) =
v(D~R) = v(D~Tx ~X). Since x /∈M(T ) ∪X ∪X ′ ∪ {s}, it follows that D~Txsβ ~X ′ and D~Tx ~X
are indistinguishable to x. Note that x must return false if it takes a step in configuration
D~Tx ~X, because s has not taken any steps since x last took a step. However, x must return
true if it takes a step in configuration D~Txsβ ~X ′, because s has taken a step since x last took
a step. This is impossible, because these two configurations are indistinguishable to x.

Hence, v(D~R) 6= v(D ~R′) for all different sets of readers R and R′, so |{v(D~R) : R ⊆
{r1, . . . , rn}}| = 2n. J

If the signaller can only read from the blackboard and write to the blackboard, but
cannot perform atomic read-modify-write operations, the blackboard must also store at least
2n different values. The same proof works, provided the scheduler only lets the signaller
write to the blackboard in solo executions that begin with a read of the blackboard. In
such executions, the signaller writes a fixed sequence of values, that does not depend on the
steps taken by the readers. This is all that is necessary to prove that the corresponding
configurations in β and β′ are indistinguishable to M(T ) and, therefore, v(D~Txsβ) = v(D~T ).

5 Oblivious Processes

Recall that a process is oblivious, if what it writes to the blackboard in a step only depends on
the value of the blackboard at the beginning of that step. In this section we prove Theorem 3,
which we restate for convenience:

I Theorem 3. In any algorithm for the signal detection problem with oblivious processes,
the blackboard stores m ≥ 2n different values.

Proof. Suppose the blackboard stores fewer than 2n different values. For every (possibly
empty) set of readers R and every positive integer i, consider the schedule ρi(R), which
consists of s~R repeated i times. Because the blackboard stores fewer than 2n different values,
the blackboard contents will repeat when schedule ρ2n(R) is applied starting from the initial
configuration, C0. Let L(R) = v(C0ρ`(R)), where ` is the index of the first repetition in the
sequence v(C0ρi(R))i≥1.

Let R and R′ be any two different sets of readers. Without loss of generality, suppose there
is a reader rk ∈ R′ \R. To obtain a contradiction, assume that L(R) = L(R′). Let 0 < i < j

and 0 < i′ < j′ be such that L(R) = v(C0ρi(R)) = v(C0ρj(R)) and L(R′) = v(C0ρi′(R′)) =
v(C0ρj′(R′)). Since processes are oblivious, and v(C0ρi′(R′)) = L(R′) = L(R) = v(C0ρi(R)),
it follows that v(C0ρi′(R′)ρj−i(R)) = v(C0ρi(R)ρj−i(R)) = v(C0ρj(R)) = v(C0ρi′(R′)).
Since rk takes no steps in ρj−i(R), configurations C0ρi′(R′)ρj−i(R) and C0ρi′(R′) are indis-
tinguishable to rk. This is impossible, as the signaller has taken a step after rk’s last step in
C0ρi′(R′)ρj−i(R), but not in C0ρi′(R′), so rk would have to return different responses if it
takes the next step. Thus, if R 6= R′, then L(R) 6= L(R′).

However, since there are 2n different sets of readers and the blackboard stores fewer than
2n different values, this contradicts the pigeon-hole principle. J

6 The General Setting

LetM = {M(R) : R ⊆ {r1, . . . , rn}}, and recall that |M| = n+ 1. For any execution α, let
M(α) denote M(R), where R is the set of readers that take steps in α.
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I Lemma 7. If the blackboard can only store a finite number of different values, then, from
any configuration, it is possible to reach a configuration D such that, for any pair of executions
α and β from D, there exists an (M(α) ∪M(β) ∪ {s})-only execution γ from Dα such that
v(Dαγ) = v(Dβ).

Proof. Let C0 be an arbitrary configuration. To obtain a contradiction, suppose that, for all
configurations C reachable from C0, there are two executions, α and β from C such that for
all (M(α) ∪M(β) ∪ {s})-only executions γ from Cα, v(Cαγ) 6= v(Cβ).

We inductively define an infinite execution δ starting from C0 and an infinite sequence of
configurations Cj , for j ≥ 0, in this execution such that Cj precedes Cj+1. In particular, Cj

is reachable from C0, so there exist two executions, αj+1 and βj+1 from Cj such that for all
(M(αj+1) ∪M(βj+1) ∪ {s})-only executions γ from Cjαj+1, v(Cjαj+1γ) 6= v(Cjβj+1). Let
Cj+1 = Cjαj+1 and let δ = α1α2 · · · .

For j ≥ 1, let Mj = M(αj) ∪M(βj) ∈M. SinceM is finite, there exists at least one set
inM that occurs an infinite number of times inM1,M2,M3, . . . . Let M ′ denote the largest
such set and let J = {j ≥ 1 : Mj = M ′} be the set of indices of the occurrences of M ′. Let
k∗ = min{k ≥ 1 : Mj ⊆ M ′ for all j ≥ k} be the first such index after which no set larger
than M ′ occurs. Note that, if k∗ ≤ k < ` then γ = αk+1 · · ·α`−1β` is an (M ′ ∪ {s})-only
execution from Ck−1αk. Hence, if k, ` ∈ J , then v(Ck−1βk) 6= v(Ck−1αkγ) = v(C`−1β`).
Thus {v(Ck−1βk) : k ≥ k∗ and k ∈ J} is an infinite set of values that can appear on the
blackboard. This contradicts the assumption that the blackboard can only store finite number
of different values. J

Let D be a configuration such that, for any pair of executions α and β from D, there
exists an (M(α) ∪M(β) ∪ {s})-only execution γ from Dα such that v(Dαγ) = v(Dβ). For
0 ≤ i < j ≤ n, let δ(i, j) denote the schedule r1sr2s . . . risri+1ri+2 . . . rj . For example,
δ(0, 3) = r1r2r3 and δ(2, 3) = r1sr2sr3.

I Lemma 8. If 0 ≤ i < j ≤ n, 0 ≤ i′ < j′ ≤ n, and either i 6= i′ or j 6= j′, then
v(Dδ(i, j)) 6= v(Dδ(i′, j′)).

Proof. First consider the case when i 6= i′. Without loss of generality, suppose that i < i′.
The state of reader ri+1 is the same in configurations Dδ(i, j) and Dδ(i′, j′). In configuration
Dδ(i, j), if ri+1 takes a step, it must return false, because s has not taken any steps since
ri+1 last took a step. In configuration Dδ(i′, j′), if ri+1 takes a step, it must return true,
because s has taken i′ − i steps since ri+1 last took a step. If v(Dδ(i, j)) = v(Dδ(i′, j′)),
then configurations Dδ(i, j) and Dδ(i′, j′) are indistinguishable to ri+1, which is impossible.
Thus v(Dδ(i, j)) 6= v(Dδ(i′, j′)).

Now consider the case when i = i′ and j 6= j′. Without loss of generality, suppose that
j < j′. Let δ′ = rj+1 · · · rj′ , so δ(i′, j′) = δ(i, j)δ′. By Lemma 7, where α is the execution of
schedule δ(i, j)s starting from D and β is the execution of schedule δ(i, j) starting from D,
there exists an {r1, . . . , rj , s}-only execution γ such that v(Dδ(i, j)sγ) = v(Dδ(i, j)).

To obtain a contradiction, suppose that v(Dδ(i′, j′)) = v(Dδ(i, j)). Configurations
Dδ(i′, j′) and Dδ(i, j) are indistinguishable to r1, . . . , rj , and s, since the signaller and these
readers take no steps in δ′. Let g be the schedule of execution γ. Then v(Dδ(i′, j′)sg) =
v(Dδ(i, j)sg) = v(Dδ(i, j)sγ) = v(Dδ(i, j)) = v(Dδ(i′, j′)). Since rj+1 does not appear in sg,
configurations Dδ(i′, j′)sg and Dδ(i′, j′) are indistinguishable to rj+1. Note that rj+1 must
return false if it takes a step in configuration Dδ(i′, j′), because s has not taken any steps
since rj+1 last took a step. However, rj+1 must return true if it takes a step in configuration
Dδ(i′, j′)sg, because s has taken a step since rj+1 last took a step. This is impossible,
because Dδ(i′, j′)sg and Dδ(i′, j′) are indistinguishable to rj+1. J
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Using this lemma, we obtain Theorem 1 (restated for convenience):

I Theorem 1. In any algorithm for the signal detection problem, the blackboard stores
m = Ω(n2) different values.

Proof. Consider any algorithm for signal detection in which the blackboard stores a finite
number of different values. By Lemma 7, there is a reachable configuration D such that, for
any pair of executions α and β from D, there exists an (M(α)∪M(β)∪{s})-only execution γ
from Dα such that v(Dαγ) = v(Dβ). By Lemma 8, for all different choices of 0 ≤ i < j ≤ n,
the value of the blackboard in configuration Dδ(i, j) is different. There are n(n+1)/2 ∈ Ω(n2)
such choices. J

7 Two Process Algorithm

We describe an algorithm for signal detection among n = 2 readers, r1 and r2, using
m = 16 values. The algorithm has the property that, for every reachable configuration C,
v(Csr1) = v(Csr2). This will allow us to show that, from any reachable configuration C,
the number of different blackboard values that can be reached from C using {r1, r2}-only
executions is at most 3. Thus, in order to show the existence of 4 different blackboard values
from some configuration C, the signaller must also take steps. Note that our proof of the
reset case does not do this, so it is unlikely to be generalized.

At all times, the contents of the blackboard is a quadruple (track, position, both, flag) ∈
{0, 1}4. Initially, the blackboard has value (0, 0, 1, 1). The flag is used to indicate whether
the last step was taken by the signaller. In particular, the signaller always sets flag to 1
and the readers always set flag to 0. Each reader ri has 3 local variables, ti, pi and jumpi.
Initially, (ti, pi) = (0, 0) and jumpi = false. Variables ti and pi represent the last values
that ri wrote to the track and position fields of the blackboard, even if it didn’t change their
values. Readers only change these fields when the signaller sets flag to 1. If t1 = t2 and
p1 = p2 in some configuration C, then both = 1 in C. Otherwise, it is 0. If variable jumpi is
true, then when ri takes its next step, it will change the track, provided it sees track = ti,
position = pi, both = 0, and flag = 1 on the blackboard.

Suppose ri reads (t, p, b, f) from the blackboard. Then, in its next step, ri does the
following:
1. If f = 1 and b = 1, then ri changes track, sets position to 0, sets both to 0, and sets

jumpi to false.
2. If f = 1, b = 0, t = ti, p = pi and jumpi = false, then ri only changes position.
3. If f = 1, b = 0, t = ti, p = pi, and jumpi = true, then ri changes track, sets position to

0, and sets jumpi to false.
4. If f = 1, b = 0, t = ti, and p 6= pi, then ri changes track and sets jumpi to false.
5. If f = 1, b = 0, and t 6= ti, then ri changes position and sets jumpi to true.
6. If f = 0 and t 6= ti or p 6= pi, then ri sets both to 1 and sets jumpi to false.
7. If f = 0, t = ti, and p = pi, then ri doesn’t change anything.
In the first 6 cases, ri returns true. In case 7, ri returns false. Pseudocode appears in
Algorithm 1.

Note that consecutive steps by a process do not change its state or the blackboard.
Moreover, if s takes a step followed by an {r1, r2}-only execution in which they each take at
least one step, then, in the resulting configuration, their ti and pi variables will be equal to
track and position on the blackboard. From then on, r1 and r2 will not change their local
variables or the blackboard until the next signaller step. Therefore, we may restrict attention
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to schedules of the form α1sα2 · · · sα` and sα1sα2 · · · sα`, where each αk is an {r1, r2}-only
schedule in which r1 and r2 each occur at most once and αk is non-empty for k < `. Since
flag is initially 1, a step by the signaller does not change the value of the blackboard. Hence
we may assume α begins with s.

Algorithm 1: Pseudocode for reader ri.
1 (track, position, both, flag)← read from blackboard
2 if (flag = 0) ∧ ((track, position) = (ti, pi)) then
3 return false

4 if (flag = 0) then
5 write (track, position, 1, 0) to blackboard
6 else if (both = 0) ∧ ((track 6= ti) ∨ ((position = pi) ∧ ¬jumpi)) then
7 write (track, 1− position, 0, 0) to blackboard
8 else
9 write (1− track, 0, 0, 0) to blackboard

10 jumpi ← (flag = 1) ∧ (both = 0) ∧ (track 6= ti)
11 (ti, pi)← last track and position written
12 return true

Given a reachable configuration C, let ti(C), pi(C), and jumpi(C) denote the value of
reader ri’s local variables ti, pi, and jumpi, respectively, in C, and let track(C), position(C),
both(C), and flag(C) denote the values of the track, position, both, and flag fields, respec-
tively, on the blackboard in C.

I Lemma 9. For every reachable configuration C and every i ∈ {1, 2},

(ti(C), pi(C)) 6= (track(Csr3−i), position(Csr3−i)) .

Proof. Suppose, for a contradiction, that this is not the case. Consider a shortest schedule
α such that, in configuration C = C0α, (ti(C), pi(C)) = (track(Csr3−i), position(Csr3−i)),
for some i ∈ {1, 2}. As discussed above, α = sα1 · · · sα`, where each αk is an {r1, r2}-only
schedule in which r1 and r2 each occur at most once and αk is non-empty for k < `.

Suppose ri does not occur in α. Then ti(C) = ti(C0) = 0. Since flag(C0) = 1, both(C0) =
1, and track(C0) = 0, track(C0sr3−i) = 1. If only s and r3−i take steps from C0sr3−i, then
neither changes track. Since α is a {s, r3−i}-only schedule, track(Csr3−i) = 1. Therefore,
ti(C) = 0 6= 1 = track(Csr3−i), which contradicts the fact that ti(C) = track(Csr3−i).

Now suppose that ri occurs at least once in α. Suppose it last occurs in αk. Let
C ′ = C0sα1 · · · sαk. Since ri does not occur in the remainder of α, (ti(C), pi(C)) =
(ti(C ′), pi(C ′)) = (track(C ′), position(C ′)). There are 3 cases:

Case 1: k = `. Then C = C ′. If r3−i takes a step from Cs, it either changes track or position.
Hence, either ti(C) 6= track(Csr3−i) or pi(C) 6= position(Csr3−i). This contradicts the
fact that (ti(C), pi(C)) = (track(Csr3−i), position(Csr3−i)).

Case 2: k < ` and αk contains both r1 and r2. Then 1 = both(C ′) = both(C ′s). Hence,
if r3−i takes a step from C ′s, it changes track to 1 − track(C ′). As ri does not take
any more steps, r3−i does not subsequently change track. Thus, ti(C) = track(C ′) 6=
1− track(C ′) = track(Csr3−i). This contradicts the fact that ti(C) = track(Csr3−i).

Case 3: k < ` and αk = ri. Since sα1 · · · sαk is strictly shorter than sα1 · · · sα`,
(ti(C ′), pi(C ′)) 6= (track(C ′sr3−i), position(C ′sr3−i)). Moreover, if α = sα1 · · · sαks,
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then C = C ′s, so (ti(C), pi(C)) 6= (track(Csr3−i), position(Csr3−i)), contrary to the
assumption. Hence αk+1 = r3−i.

Suppose track(C ′sr3−i) 6= ti(C ′) or jump3−i(C ′sr3−i) is true. In the first case, r3−i

changed from ti(C ′) = track(C ′) to 1− track(C ′) and it stays on this track. In the second
case, track(C ′sr3−isr3−i) = 1 − track(C ′) and it stays on this track. In either case, this
implies that track(Csr3−i) = 1− track(C ′). Therefore, ti(C) = track(C ′) 6= track(Csr3−i),
which is a contradiction.

Now suppose that track(C ′sr3−i) = ti(C ′) and jump3−i(C ′sr3−i) is false. Since r3−i did
not change the track and jump3−i is false, (t3−i(C ′), p3−i(C ′)) = (track(C ′), position(C ′)).
Let C ′′ = C0sα1 · · · sαk−1. Since αk = ri, (t3−i(C ′′), t3−i(C ′′)) = (t3−i(C ′), t3−i(C ′)). Since
the latter is (track(C ′), position(C ′)) = (track(C ′′sri), position(C ′′sri)), this contradicts
the minimality of α.

Therefore, in all cases, we reach the desired contradiction. J

The next lemma proves that the algorithm has the desired property.

I Lemma 10. For every reachable configuration C, v(Csr1) = v(Csr2).

Proof. Suppose, for a contradiction, that this is not the case. Consider a shortest α from
the initial configuration C0 such that v(C0αsr1) 6= v(C0αsr2). Let C = C0α and write
α = sα1 · · · sα`. Notice that α` is non-empty as, otherwise, α′ = sα1 · · · sα`−1 is a shorter
execution such that v(C0α

′sr1) 6= v(C0α
′sr2). Moreover, α` /∈ {r1r2, r2r1} since, otherwise,

both(Cs) = 1 and both r1 and r2 set the blackboard to (1 − track(C), 0, 0, 0) from Cs.
Hence, α` = ri, for some i ∈ {1, 2}. Then (ti(C), pi(C)) = (track(C), position(C)). Let
C ′ = C0sα1 · · · sα`−1. There are two cases to consider.

Case 1: jumpi(C) is true. By the pseudocode, since jumpi(C) is true, ri saw that
both(C ′s) = 0, track(C ′s) 6= ti(C ′s), and it wrote ti(C) = track(C ′) and pi(C) =
1 − position(C ′). Since track(C ′) 6= ti(C ′s), it must be that track(C ′s) = t3−i(C ′s).
It follows that the next step of r3−i in Cs is to write (1 − track(C), 0, 0, 0). However,
this is precisely what ri does in its next step from Cs as well since jumpi is true and
(ti(C), pi(C)) = (track(C), position(C)). This is a contradiction.

Case 2: jumpi(C) is false. Then both(C ′s) = 0 and track(C ′s) = ti(C ′s). There are two
subcases to consider:

Suppose that either position(C ′s) 6= pi(C ′s) or jumpi(C ′s) is true. Then r3−i was
the last reader to take a step before C ′, t3−i(C ′s) = track(C ′s), and p3−i(C ′s) =
position(C ′s). Moreover, the next step of ri from C ′s is to write (1−track(C ′s), 0, 0, 0).
Thus, track(C) 6= track(C ′). It follows that the next step of r3−i from Cs is to write
(track(C), 1− position(C), 0, 0). This is a contradiction.
Suppose that position(C ′s) = pi(C ′s) and jumpi(C ′s) is false. Since both(C ′s) = 0, C ′
cannot be the initial configuration and, thus, ri was the last reader to take a step before
C ′ and α`−1 = ri. By Lemma 9, (t3−i(C ′), p3−i(C ′)) 6= (track(C ′), position(C ′)). By
definition of α, v(C ′sri) = v(C ′sr3−i). Thus, as ri did not change the track, it must
be that track(C ′s) 6= t3−i(C ′s) or (position(C ′s) = p3−i(C ′s) and jump3−i(C ′s) is
false). Since (t3−i(C ′), p3−i(C ′)) 6= (track(C ′), position(C ′)), it must be the former.
Thus, r3−i’s next step from Cs is to write (track(C), 1− position(C), 0, 0), which is
exactly what ri does. This is a contradiction.

In all cases, we reach the desired contradiction. J

I Lemma 11. For any configuration C, |{v(Cα) : α is a {r1, r2}-only execution}| ≤ 3.
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Proof. For any configuration C, let α′ be the longest {r1, r2}-only execution such that
C = C ′α′. Notice that it suffices to prove that the claim holds for configuration C ′. By our
earlier assumption that s takes a step immediately after the initial configuration, we may
assume that s took the last step before C ′.

By Lemma 10, v(C ′r1) = v(C ′r2). Subsequently, from C ′ri, the steps by ri do not
change the blackboard value. If r3−i takes a step, then it sets both to 1 and v(C ′r1r2) =
v(C ′r2r1). After this, neither ri or r3−i can change the blackboard. Hence {v(C ′α) :
α is a {r1, r2}-only execution} = {v(C ′), v(C ′r1), v(C ′r1r2)}. J

Finally, we prove that the algorithm is correct.

I Lemma 12. In every execution, each reader returns the correct responses.

Proof. Suppose not, so that there is some execution α from the initial configuration C0
such that, in C = C0α, some ri returns an incorrect response in its next step from C.
Write α = α′riα

′′, where α′′ is a {s, r3−i}-only execution. If s does not take any steps
in α′′, then ri returns false, which is correct. So, s takes at least one step in α′′ and ri

returns false in its next step from C. By the pseudocode, this implies that flag(C) = 0
and (ti(C), pi(C)) = (track(C), position(C)). It follows that we may write α′′ = α′′′sr3−i.
However, this contradicts Lemma 9 from C ′ = C0α

′′′ with ri. In particular, ri returns true
in its next step from C = C ′sr3−i. J
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