
Sparsification of Binary CSPs
Silvia Butti
Department of Information and Communication Technologies, Universitat Pompeu Fabra,
Barcelona, Spain
silvia.butti@upf.edu

Stanislav Živný
Department of Computer Science, University of Oxford, UK
standa.zivny@cs.ox.ac.uk

Abstract
A cut ε-sparsifier of a weighted graph G is a re-weighted subgraph of G of (quasi)linear size that
preserves the size of all cuts up to a multiplicative factor of ε. Since their introduction by Benczúr and
Karger [STOC’96], cut sparsifiers have proved extremely influential and found various applications.
Going beyond cut sparsifiers, Filtser and Krauthgamer [SIDMA’17] gave a precise classification of
which binary Boolean CSPs are sparsifiable. In this paper, we extend their result to binary CSPs on
arbitrary finite domains.

2012 ACM Subject Classification Theory of Computation → Graph algorithms analysis

Keywords and phrases constraint satisfaction problems, minimum cuts, sparsification

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.17

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 714532).
The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein.
Silvia Butti: Work mostly done while at the University of Oxford.
Stanislav Živný: Stanislav Živný was supported by a Royal Society University Research Fellowship.

1 Introduction

The pioneering work of Benczúr and Karger [4] showed that every edge-weighted undirected
graph G = (V,E,w) admits a cut-sparsifier. In particular, assuming that the edge weights are
positive, for every 0 < ε < 1 there exists (and in fact can be found efficiently) a re-weighted
subgraph Gε = (V,Eε ⊆ E,wε) of G with |Eε| = O(ε−2n logn) edges such that

∀S ⊆ V, CutGε(S) ∈ (1± ε)CutG(S),

where n = |V | and CutG(S) denotes the total weight of edges in G with exactly one endpoint
in S. The bound on the number of edges was later improved to O(ε−2n) by Batson, Spielman,
and Srivastava [3]. Moreover, the bound O(ε−2n) is known to be tight by the work of Andoni,
Chen, Krauthgamer, Qin, Woodruff, and Zhang [2].

The original motivation for cut sparsification was to speed up algorithms for cut problems
and graph problems more generally. The idea turned out to be very influential, with several
generalisations and extensions, including, for instance, sketching [1, 2], sparsifiers for cuts in
hypergraphs [9, 11], and spectral sparsification [15, 14, 13, 8, 12].

Filtser and Krauthgamer [7] considered the following natural question: which binary
Boolean CSPs are sparsifiable? In order to state their results as well as our new results, we
will now define binary constraint satisfaction problems.

© Silvia Butti and Stanislav Živný;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 17; pp. 17:1–17:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/188358643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-0171-2021
mailto:silvia.butti@upf.edu
https://orcid.org/0000-0002-0263-159X
mailto:standa.zivny@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.STACS.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Sparsification of Binary CSPs

An instance of the binary1 constraint satisfaction problem (CSP) is a quadruple I =
(V,D,Π, w), where V is a set of variables, D is a finite set called the domain,2 Π is a set
of constraints, and w : Π → R+ are positive weights for the constraints. Each constraint
π ∈ Π is a pair ((u, v), P), where (u, v) ∈ V 2, called the constraint scope, is a pair of distinct
variables from V , and P : D2 → {0, 1} is a binary predicate. A CSP instance is called
Boolean if |D| = 2, i.e., if the domain is of size two.3

For a fixed binary predicate P , we denote by CSP(P) the class of CSP instances in which
all constraints use the predicate P . Note that if we take D = {0, 1} and P defined on D2 by
P (x, y) = 1 iff x 6= y then CSP(P) corresponds to the cut problem.

We say that a constraint π = ((u, v), P) is satisfied by an assignment A : V → D

if P (A(u), A(v)) = 1. The value of an instance I = (V,D,Π, w) under an assignment
A : V → D is defined to be the total weight of satisfied constraints:

ValI(A) =
∑

π=((u,v),P)∈Π

w(π)P (A(u), A(v)).

For 0 < ε < 1, an ε-sparsifier of I = (V,D,Π, w) is a re-weighted subinstance Iε = (V,D,Πε ⊆
Π, wε) of I such that

∀A : V → D, ValIε(A) ∈ (1± ε) ValI(A).

The goal is to obtain a sparsifier with the minimum number of constraints, i.e., |Πε|.
A binary predicate P is called sparsifiable if for every instance I ∈ CSP(P) on n = |V |

variables and for every 0 < ε < 1 there is an ε-sparsifier for I with O(ε−2n) constraints.
We call a (not necessarily Boolean or binary) predicate P a singleton if |P−1(1)| = 1.
Filtser and Krauthgamer showed, among other results, the following classification. Let P

be a binary Boolean predicate. Then, P is sparsifiable if and only if P is not a singleton.4 In
other words, the only predicates that are not sparsifiable are those with support of size one.

Contributions. As our main contribution, we identify in Theorem 2 the precise borderline
of sparsifiability for binary predicates on arbitrary finite domains, thus extending the work
from [7] on Boolean predicates. Let P be a binary predicate defined on an arbitrary
finite domain D. Then, P is sparsifiable if and only if P does not “contain” a singleton
subpredicate. More precisely, we say that P “contains” a singleton subpredicate if there
are two (not necessarily disjoint) subdomains B,C ⊆ D with |B| = |C| = 2 such that the
restriction of P onto B × C is a singleton predicate.

The crux of Theorem 2 is the sparsifiability part, which is established by a reduction
to cut sparsifiers. Unlike in the classification of binary Boolean predicates from [7], we do
not rely on a case analysis that differs for different sparsifiable predicates but instead give a
simpler argument for all sparsifiable predicates. The idea is to reduce (the graph of) any
CSP instance, as was done in [7], via the so-called bipartite double cover [5]. However, there
is no natural assignment in the reduced graph (as it was in the Boolean case in [7]). In
order to overcome this, we define a graph GP whose edges correspond to the support of the

1 Some papers use the term two-variable.
2 Some papers use the term alphabet.
3 Some papers use the term binary to mean domains of size two. In this paper, Boolean always refers to a

domain of size two and binary always refers to the arity of the constraint(s).
4 Filtser and Krauthgamer use the term valued CSPs for what we defined as CSPs. We prefer CSPs in

order to distinguish them from the much more general framework of valued CSPs studied in [10].

S. Butti and S. Živný 17:3

predicate P . Using a simple combinatorial argument, we show (in Proposition 7) that, under
the assumption that P does not “contain” a singleton subpredicate, the bipartite complement
of GP is a collection of bipartite cliques. This special structure allows us to find a good
assignment in the reduced graph.

In view of Filtser and Krauthgamer’s work [7], one might conjecture that P is sparsifiable
if and only if P is not a singleton. While it is easy to show that if a (possibly non-binary
and non-Boolean) predicate P is a singleton then P is not sparsifiable, our results show
that the borderline of sparsifiability lies elsewhere. In particular, by Theorem 2, there are
binary non-Boolean predicates that are not sparsifiable but are not singletons. Also, there
are non-binary Boolean predicates that are not sparsifiable but are not singletons.

We remark that the term “sparsification” is also used in an unrelated line of work in which
the goal is, given a CSP instance, to reduce the number of constraints without changing
satisfiability of the instance; see, e.g., [6].

2 Classification of Binary Predicates

Throughout the paper we denote by n = |V | the number of variables of a given CSP instance.
The following classification of binary Boolean predicates is from [7].

I Theorem 1 ([7, Theorem 3.7]). Let P : {0, 1}2 → {0, 1} be a binary Boolean predicate. Let
0 < ε < 1.
1. If P is a singleton then there exists an instance I of CSP(P) such that every ε-sparsifier

of I has Ω(n2) constraints.
2. Otherwise, for every instance I of CSP(P) there exists an ε-sparsifier of I with O(ε−2n)

constraints.

We denote by
(
D
2
)

= {B ⊆ D : |B| = 2} the set of two-element subsets of D. For a binary
predicate P : D2 → {0, 1} and B,C ∈

(
D
2
)
, P |B×C denotes the restriction of P onto B × C.

The following is our main result, generalising Theorem 1 to arbitrary finite domains.

I Theorem 2 (Main). Let P : D2 → {0, 1} be a binary predicate, where D is a finite set
with |D| ≥ 2. Let 0 < ε < 1.
1. If there exist B,C ∈

(
D
2
)
such that P |B×C is a singleton then there exists an instance I

of CSP(P) such that every ε-sparsifier of I has Ω(n2) constraints.
2. Otherwise, for every instance I of CSP(P) there exists an ε-sparsifier of I with O(ε−2n)

constraints.

The rest of this section is devoted to proving Theorem 2.
First we introduce some useful notation. We set [r] = {0, 1, . . . , r − 1}. We denote by

X t Y the disjoint union of X and Y . For any r ≥ 2, we define r-Cut : [r]2 → {0, 1} by
r-Cut(x, y) = 1 if and only if x 6= y.

Given an instance I = (V,D,Π, w) ∈ CSP(P), we denote by GI the corresponding graph
of I; that is, GI = (V,E,w) is a weighted directed graph with E = {(u, v) : ((u, v), P) ∈ Π}
and w(u, v) = w((u, v), P). Conversely, given a weighted directed graph G = (V,E,w) and
a predicate P : D2 → {0, 1}, the corresponding CSP(P) instance is IG,P = (V,D,Π, w),
where Π = {(e, P) : e ∈ E} and w(e, P) = w(e). Hence, we can equivalently talk about
instances of CSP(P) or (weighted directed) graphs. Thus, an ε-P -sparsifier of a graph
G = (V,E,w) is a subgraph Gε = (V,Eε ⊆ E,wε) whose corresponding CSP(P) instance
IGε,P is an ε-sparsifier of the corresponding CSP(P) instance IG,P of G.

Case (1) of Theorem 2 is established by the following result.

STACS 2019

17:4 Sparsification of Binary CSPs

I Theorem 3. Let P : D2 → {0, 1} be a binary predicate. Assume that there exist B,C ∈
(
D
2
)

such that P |B×C is a singleton. For any n there is a CSP(P) instance I with 2n variables
and n2 constraints such that for any 0 < ε < 1 it holds that any ε-sparsifier of I has n2

constraints.

Proof. Suppose B = {b, b′}, C = {c, c′} and assume without loss of generality that
P |B×C

−1(1) = {(b, c)}; that is, the support of P |B×C is equal to {(b, c)}. Consider a
CSP(P) instance I = (V,D,Π, w), where

V = X t Y , X = {x1, . . . , xn}, and Y = {y1, . . . , yn};
Π = {πij = ((xi, yj), P) : 1 ≤ i, j ≤ n};
w are arbitrary positive weights.

We have |Π| = n2. We note that B and C may not be disjoint. We consider the family of
assignments Aij : V → B ∪ C for 1 ≤ i, j ≤ n such that Aij(xi) = b, Aij(x) = b′ for every
x ∈ X \ {xi}, Aij(yj) = c, and Aij(y) = c′ for every y ∈ Y \ {yj}. Then, we have

P (Aij(u, v)) =

P (b, c) = 1 if u = xi, v = yj ,

P (b, c′) = 0 if u = xi, v ∈ Y \ {yj},
P (b′, c) = 0 if u ∈ X \ {xi}, v = yj ,

P (b′, c′) = 0 if u ∈ X \ {xi}, v ∈ Y \ {yj}.

Therefore,

ValI(Aij) =
∑
π∈Π

w(π)P (Aij(π)) = w(πij) > 0.

Hence, if Iε = (V,D,Πε, wε) is an ε-sparsifier of I, we must have that πij ∈ Πε for every
1 ≤ i, j ≤ n, as otherwise we would have

ValIε(Aij) =
∑
π∈Πε

wε(π)P (Aij(π)) = 0 /∈ (1± ε) ValI(Aij).

Therefore, we have Πε = Π and hence |Πε| = |Π| = n2. J

The main tool used in the proof of Theorem 1 (2) from [7] is a graph transformation
known as the bipartite double cover [5], which allows for a reduction to cut sparsifiers [3].

I Definition 4. For a weighted directed graph G = (V,E,w), the bipartite double cover of
G is the weighted directed graph γ(G) = (V γ , Eγ , wγ), where

V γ = {v(0), v(1) : v ∈ V };
Eγ = {(u(0), v(1)) : (u, v) ∈ E};
wγ(u(0), v(1)) = w(u, v).

Given an assignment A : V → [r], we let A = (A0, . . . , Ar−1) be the induced r-partition
of V , where Aj = A−1(j). For a binary predicate P : [r]2 → {0, 1} and an instance
I = (V, [r],Π, w) ∈ CSP(P), we define ValI(A) = ValI(A). Moreover, for a weighted directed
graph G and a binary predicate P , we define ValG,P (A) = ValIG,P (A). We denote the set of
all r-partitions of V by Partr(V).

For any r-partition A = (A0, . . . , Ar−1) of the vertices of V , let A(j)
i = {v(j) : v ∈ Ai}.

Thus Aγ = (A(0)
0 , A

(1)
0 , . . . , A

(0)
r−1, A

(1)
r−1) is a 2r-partition of the vertices of V γ .

We use an argument from the proof of Theorem 1 (2) from [7] and apply it to non-Boolean
predicates.

S. Butti and S. Živný 17:5

I Proposition 5. Let P : [r]2 → {0, 1} and P ′ : [r′]2 → {0, 1} be binary predicates. Suppose
that there is a function fP : Partr(V) → Partr′(V γ) such that for any weighted directed
graph G on V and for any r-partition A ∈ Partr(V) it holds that

ValG,P (A) = Valγ(G),P ′(fP (A)),

where γ(G) = (V γ , Eγ , wγ) is the bipartite double cover of G. If there is an ε-P ′-sparsifier
of γ(G) of size g(n) then there is an ε-P -sparsifier of G of size O(g(n)).

Proof. Given G = (V,E,w), let γ(G)ε = (V,Eγε , wγε) be an ε-P ′-sparsifier of the bipartite
double cover γ(G) of G. Define a subgraph Gε = (V,Eε, wε) of G by Eε = {(u, v) :
(u(0), v(1)) ∈ Eγε } and wε(u, v) = wγε (u(0), v(1)). Notice that γ(Gε) = γ(G)ε, Eε ⊆ E, and
Eγ = O(|E|).

Then, we have

ValGε,P (A) = Valγ(Gε),P ′(fP (A))
= Valγ(G)ε,P ′(fP (A)) ∈ (1± ε) Valγ(G),P ′(fP (A)) = (1± ε) ValG,P (A)

and

|Eε| ≤ |Eγε | = O
(|V γ |
ε2

)
= O

(|V |
ε2

)
,

implying that Gε is also an ε-P -sparsifier of G.
Moreover, |Eε| ≤ |Eγε | = g(n) implies |Eε| = O(g(n)). J

We now focus on proving Case (2) of Theorem 2. Assume that for any B,C ∈
(
D
2
)
,

P |B×C is not a singleton. Our strategy is to show that in this case the value of a CSP(P)
instance under any assignment can be expressed as the value of a corresponding CSP(`-Cut)
instance (for some ` ≤ 2|D|) under the same assignment.

For an undirected graph G = (V,E) and a subset U ⊆ V , we denote the vertex-induced
subgraph on U by G[U] and its edge set by E[U]. For a possibly disconnected undirected
graph G, we denote the connected component containing a vertex v by Gv = (V (Gv), E(Gv)).
Finally, we denote the degree of vertex v in graph G by dG(v).

IDefinition 6. Let G = (UtV,E) be an undirected bipartite graph. The bipartite complement
G = (U t V,E) of G has the following edge set:

E = {{u, v} : u ∈ U, v ∈ V, {u, v} /∈ E}.

The following property of bipartite graphs will be crucial in the proof of Theorem 8.

I Proposition 7. Let G = (U tV,E) be a bipartite graph with |U | = |V | = r, r ≥ 2. Assume
that for any u, u′ ∈ U and v, v′ ∈ V we have |E[{u, u′, v, v′}]| 6= 1. Then, for any v ∈ U t V
with dG(v) > 0, Gv is a complete bipartite graph with partition classes {U ∩ V (Gv)} and
{V ∩ V (Gv)}.

Proof. For contradiction, assume that there are u ∈ U and v ∈ V such that {u, v} 6∈ E but
u and v belong to the same connected component of G. Choose u and v with the shortest
possible distance between them. Let u = u0, u1, . . . , uk = v be a shortest path between u and
v in G, where k ≥ 3 is odd. We will show that |E[{u0, u1, uk−1, uk}]| = 3, which contradicts
the assumption that |E[{u0, u1, uk−1, uk}]| 6= 1.

If k = 3 then the claim holds since we assumed that {u0, u1}, {u1, u2}, {u2, u3} ∈ E and
{u0, u3} 6∈ E.

STACS 2019

17:6 Sparsification of Binary CSPs

Let k ≥ 5. We will be done if we show that {u1, uk−1} ∈ E, as by our assumptions
{u0, u1}, {uk−1, uk} ∈ E and {u0, uk} 6∈ E. To this end, note that {u0, uk−2} ∈ E as
otherwise u0 and uk−2 would be a pair of vertices with the required properties but of distance
k− 2, contradicting our choice of u and v. Thus, {u1, uk−1} ∈ E as otherwise we would have
|E[{u0, u1, uk−2, uk−1}]| = 3, which contradicts |E[{u0, u1, uk−2, uk−1}]| 6= 1. J

Case (2) of Theorem 2 is established by the following result.

I Theorem 8. Let P : D2 → {0, 1} be a binary predicate such that for any B,C ∈
(
D
2
)
we

have that P |B×C is not a singleton. Then, for every 0 < ε < 1 and every instance I of
CSP(P) there is a sparsifier of I with O(ε−2n) constraints.

Proof. Let I = (V,D,Π, w) be an instance of CSP(P) with r = |D|. Without loss of
generality, we assume that D = [r]. Let G = GI = (V,E,w) be the corresponding (weighted
directed) graph of I, and let γ(G) = (V γ , Eγ , wγ) be the bipartite double cover of G. Recall
that for an assignment A : V → [r], we denote Ai = A−1(i). Thus, A = (A0, . . . , Ar−1)
forms an r-partition of V .

Our goal is to show the existence of a function fP : Partr(V) → Part`(V γ) (for some
fixed ` ≤ 2r) such that

∀A : V → [r], ValG,P (A) = Valγ(G),`-Cut(fP (A)). (1)

Assuming the existence of fP , we can finish the proof as follows. Batson, Spielman,
and Srivastava established the existence of a sparsifier of size O(ε−2n) for any instance of
CSP(2-Cut) [3]. By [7, Section 6.2], this implies the existence of a sparsifier of size O(ε−2n)
for any instance of CSP(`-Cut). Consequently, by Proposition 5 and (1), there is a sparsifier
of size O(ε−2n) for the instance IG,P = I.

It remains to show the existence of fP satisfying (1).
In the proof of Theorem 1 (2) in [7], such functions are given for a binary Boolean predicate

P with support size |P−1(1)| ∈ {0, 2, 4}. In what follows we give a construction of fP for an
arbitrary binary predicate P : [r]2 → {0, 1} with r ≥ 2 from the statement of the theorem.

Although the bipartite double cover is commonly defined as a directed graph, in this
proof we will consider the undirected bipartite double cover γ(G) of G.5 We also define an
auxiliary graph GP = (V P , EP), where

V P = {v0, v
′
0, . . . , vr−1, v

′
r−1},

EP = {{vi, v′j} : P (i, j) = 1}.

Let ` be the number of connected components of GP , the bipartite complement of GP .
By definition, ` ≤ |V P | = 2r.

We need to find a function fP : Partr(V) → Part`(V γ) that satisfies (1) for all A ∈
Partr(V). Such a function corresponds to a map c : V P → [`] on the vertices of GP with
the following property:

∀i, j ∈ [r]
{
{vi, v′j} ∈ EP =⇒ c(vi) 6= c(v′j)
{vi, v′j} /∈ EP =⇒ c(vi) = c(v′j).

5 We had defined the bipartite double cover as a directed graph. However, here it is easier to deal with
undirected graphs, as since `-Cut is a symmetric predicate, the direction of the edges makes no difference.
Furthermore, notice that by the way the bipartite double cover is constructed, removing the direction
does not turn the graph into a multigraph.

S. Butti and S. Živný 17:7

We call such maps colourings. Indeed, the colouring c induces, for A, an assignment
Aγ : V γ → [`] of the vertices of γ(G) which satisfies

Aγ(u) = c(vA(u)) and Aγ(u′) = c(v′A(u))

and which, in turn, induces a partition {Ui}`−1
i=0 of V γ with Ui = (Aγ)−1(i). We define

fP (A) = (U0, . . . , U`−1). Now for any u, v ∈ V and for any assignment A : V → [r], we have

P (A(u), A(v)) = 1 ⇐⇒ {vA(u), v
′
A(v)} ∈ E

P

⇐⇒ c(vA(u)) 6= c(v′A(v))

⇐⇒ Aγ(u) 6= Aγ(v′)
⇐⇒ `-Cut(Aγ(u), Aγ(v′)) = 1.

Moreover, by the definition of the graph bipartite double cover, we have w(u, v) = wγ(u, v′)
for all u, v ∈ V , implying that

ValG,P (A) = ValG,P (A0, . . . , Ar−1) =
∑

(u,v)∈E

w(u, v)P (A(u), A(v))

=
∑

(u,v′)∈Eγ
wγ(u, v′)`-Cut(Aγ(u), Aγ(v′)) = Valγ(G),`-Cut(Aγ)

= Valγ(G),`-Cut(U0, . . . , U`−1) = Valγ(G),`-Cut(fP (A))

as required.
While a colouring does not exist for an arbitrary bipartite graph, we now argue that a

colouring does exist if the auxiliary graph GP arises from a predicate P from the statement
of the theorem. Since for any B,C ∈

([r]
2
)
we have |P |B×C

−1(1)| 6= 1, GP satisfies the
assumptions of Proposition 7. Therefore, the ` separate connected components which form
its bipartite complement GP are complete bipartite graphs. We can assign one of the `
colours to each connected component to get a colouring for the graph GP . J

3 Conclusion

For simplicity, we have only presented our main result on binary CSPs over a single domain.
However, it is not difficult to extend our result to the so-called multisorted binary CSPs, in
which different variables come with possibly different domains.

We have classified binary CSPs (on finite domains) but much more work seems required
for a full classification of non-binary CSPs. We have made some initial steps.

For any k ≥ 3, the k-ary Boolean “not-all-equal” predicate k-NAE : {0, 1}k → {0, 1} is
defined by k-NAE−1(0) = {(0, . . . , 0), (1, . . . , 1)}. Kogan and Krauthgamer showed that the
k-NAE predicates, which correspond to hypergraph cuts, are sparsifiable [9, Theorem 3.1]. By
extending bipartite double covers for graphs in a natural way to k-partite k-fold covers, we
obtain sparsifiability for the class of k-ary predicates that can be rewritten in terms of k-NAE.
On the other hand, we identify a whole class of predicates that are not sparsifiable, namely
those k-ary predicates that contain a singleton `-cube for some ` ≤ k. However, there are
predicates which do not fall in either of these two categories; that is, predicates that cannot
be proved sparsifiable via k-partite k-fold covers but also cannot be proved non-sparsifiable
via the current techniques. An example of such predicates are the “parity” predicates.

STACS 2019

17:8 Sparsification of Binary CSPs

References
1 Kook Jin Ahn and Sudipto Guha. Graph Sparsification in the Semi-streaming Model. In

Proceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP’09), Part II, volume 5556 of Lecture Notes in Computer Science, pages 328–338.
Springer, 2009. doi:10.1007/978-3-642-02930-1_27.

2 Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and
Qin Zhang. On Sketching Quadratic Forms. In Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science (ITCS’16), pages 311–319, 2016. doi:
10.1145/2840728.2840753.

3 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan Sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012. doi:10.1137/090772873.

4 András A. Benczúr and David R. Karger. Approximating s-t Minimum Cuts in Õ(n2) Time.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing
(STOC’96), pages 47–55, 1996. doi:10.1145/237814.237827.

5 Richard A. Brualdi, Frank Harary, and Zevi Miller. Bigraphs versus digraphs via matrices.
Journal of Graph Theory, 4(1):51–73, 1980. doi:10.1002/jgt.3190040107.

6 Hubie Chen, Bart M. P. Jansen, and Astrid Pieterse. Best-case and Worst-case Sparsifiability
of Boolean CSPs. In Proceedings of the 13th International Symposium on Parameterized and
Exact Computation (IPEC’18), 2018. arXiv:1809.06171.

7 Arnold Filtser and Robert Krauthgamer. Sparsification of Two-Variable Valued Constraint
Satisfaction Problems. SIAM Journal on Discrete Mathematics, 31(2):1263–1276, 2017.
doi:10.1137/15M1046186.

8 Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A
general framework for graph sparsification. In Proceedings of the 43rd ACM Symposium on
Theory of Computing (STOC’11), pages 71–80. ACM, 2011. doi:10.1145/1993636.1993647.

9 Dmitry Kogan and Robert Krauthgamer. Sketching Cuts in Graphs and Hypergraphs. In
Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science (ITCS’15),
pages 367–376, 2015. doi:10.1145/2688073.2688093.

10 Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. The Complexity of General-
Valued CSPs. SIAM Journal on Computing, 46(3):1087–1110, 2017. doi:10.1137/16M1091836.

11 Ilan Newman and Yuri Rabinovich. On Multiplicative Lambda-Approximations and Some
Geometric Applications. SIAM Journal on Computing, 42(3):855–883, 2013. doi:10.1137/
100801809.

12 Tasuko Soma and Yuichi Yoshida. Spectral Sparsification of Hypergraphs. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’19), 2019.

13 Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective Resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

14 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC’04), pages 81–90. ACM, 2004. doi:10.1145/
1007352.1007372.

15 Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011. doi:10.1137/08074489X.

http://dx.doi.org/10.1007/978-3-642-02930-1_27
http://dx.doi.org/10.1145/2840728.2840753
http://dx.doi.org/10.1145/2840728.2840753
http://dx.doi.org/10.1137/090772873
http://dx.doi.org/10.1145/237814.237827
http://dx.doi.org/10.1002/jgt.3190040107
http://arxiv.org/abs/1809.06171
http://dx.doi.org/10.1137/15M1046186
http://dx.doi.org/10.1145/1993636.1993647
http://dx.doi.org/10.1145/2688073.2688093
http://dx.doi.org/10.1137/16M1091836
http://dx.doi.org/10.1137/100801809
http://dx.doi.org/10.1137/100801809
http://dx.doi.org/10.1137/080734029
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1145/1007352.1007372
http://dx.doi.org/10.1137/08074489X

	Introduction
	Classification of Binary Predicates
	Conclusion

