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Abstract
Let A and B be two sets of points in Rd, where |A| = |B| = n and the distance between them
is defined by some bipartite measure dist(A, B). We study several problems in which the goal is
to translate the set B, so that dist(A, B) is minimized. The main measures that we consider are
(i) the diameter in two and three dimensions, that is diam(A, B) = max{d(a, b) | a ∈ A, b ∈ B},
where d(a, b) is the Euclidean distance between a and b, (ii) the uniformity in the plane, that is
uni(A, B) = diam(A, B)− d(A, B), where d(A, B) = min{d(a, b) | a ∈ A, b ∈ B}, and (iii) the union
width in two and three dimensions, that is union_width(A, B) = width(A ∪B). For each of these
measures we present efficient algorithms for finding a translation of B that minimizes the distance:
For diameter we present near-linear-time algorithms in R2 and R3, for uniformity we describe a
roughly O(n9/4)-time algorithm, and for union width we offer a near-linear-time algorithm in R2

and a quadratic-time one in R3.
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8:2 Bipartite Diameter and Other Measures Under Translation

1 Introduction

Determining the similarity between two sets of points in a metric space, and, in general,
determining the value of some measure defined for two sets of points, is a well investigated
problem in computational geometry. Sometimes, however, the answer that is obtained is
meaningless, unless one of the sets undergoes some transformation before performing the
computation. In this paper, we consider a family of problems in which the goal is to compute
a translation which minimizes some bipartite measure. For example, one of the measures that
we consider is the bipartite diameter, which is the distance between the farthest bichromatic
pair, that is the maximum distance between a point from one set and a point from the
other set.

The motivation for studying these problems is twofold. The first, as mentioned, is to find
a translation for which the computed value is most meaningful. The second is when we are
allowed to translate one of the sets in order to minimize some bipartite measure. In general,
problems in which the goal is to find a transformation of a given type that minimizes or
maximizes some measure are fundamental in computational geometry and have been studied
extensively. It is therefore somewhat surprising that the natural versions that we study here
have not been considered before. For example, another measure that we consider is the
bipartite uniformity, which is the difference between the bipartite diameter and the distance
between the closest bichromatic pair. When this difference is small, all bichromatic distances
are similar, which is often a desirable property due to its close connection to the notions of
fairness and balancing. Thus, the optimization problem in this case is to translate one of the
sets to achieve the best possible uniformity.

Formally, let A = {a1, . . . , an} and B = {b1, . . . , bm} be two sets of points in Rd. For
the sake of simplicity, we assume that m = n, and obtain bounds that depend only on n;
however, it is not difficult to adapt our algorithms and bounds to the case where the sets
A and B have different sizes. We are interested in problems of the following kind: Find a
translation t∗ that minimizes some bipartite measure of A and B + t over all translations t,
where B + t denotes B translated by t.1 The main bipartite measures that we consider are
(i) diameter, denoted diam(A,B), and defined as max{d(a, b) | a ∈ A, b ∈ B}, where d(a, b)
is the Euclidean distance between a and b, (ii) uniformity, denoted uni(A,B), and defined as
diam(A,B) − d(A,B), where d(A,B) = min{d(a, b) | a ∈ A, b ∈ B}, and (iii) union width,
denoted union_width(A,B), and defined as width(A∪B), i.e., the width of the union of the
two sets.

Notice that while for the (one-sided) Hausdorff distance (see below) one considers the
distance from each point of A to its closest point in B, for the bipartite diameter measure
one considers the distance from each point of A to its farthest point in B: The former variant
is more relevant when B represents a set of homogeneous facilities, equally acceptable, while
the latter variant is more relevant when B represents a set of unique facilities such that it is
desirable to be close to all of them.

Related work. When comparing two sets of points of the same size, a natural approach is
to find a matching or a mapping of one set to the other, such that the distances between
the matched points are small. For instance, in the problem of congruence testing [6, 17],

1 This class of problems naturally extends to other types of transformations, such as rotations, rigid
motions, homothethies, similarity transformations, etc. In this paper, we will confine ourselves to
translations, unless otherwise stated.
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one needs to decide if there exists a geometric transformation (a combination of translation,
rotation, and reflection) that maps a point set A exactly or approximately into a point set B
of the same size. Another example is the well-known RMS distance, where the goal is to
minimize the sum of squares of distances in a perfect matching between A and B [2].

In general, when one of the sets is larger than the other, we can look for a minimum
partial matching, which in some sense corresponds to a copy of the smaller set in the larger
one. This version of the problem (under various geometric transformations) was also widely
investigated for bottleneck matching [8, 15], RMS distance [7], and more [20].

Another way to compare two sets of points of different sizes, is to use some bipartite
distance measure for point sets, such as the well-known Hausdorff distance. The Hausdorff
distance between two sets of points is the maximum of the distances from a point in each of
the sets to the nearest point in the other set (the one-sided version of Hausdorff distance
is a special case of our framework, but we do not consider it here beyond this summary).
Huttenlocher et al. [19] showed that the minimum Hausdorff distance under translation in R2

can be computed in O(mn(m+ n)α(mn) log(mn)) time, where m and n are the sizes of the
two sets. The minimum Hausdorff distance under geometric transformations was widely
investigated in the literature, and we refer to [2] for a survey of the results. A different
example of bipartite measure is the maximum overlap between the convex hulls of the sets
A and B. This measure was considered in [5], where, assuming A and B are point sets of
size n in R3, an algorithm is presented that computes the optimal translation in expected
time O(n3 log4 n).

In this paper, we focus on three bipartite measures under translation: diameter, uniformity,
and width. To our knowledge, all three measures are being considered here for the first time.

The diameter of a set of n points in the plane can be computed in O(n logn) time.
However, in higher dimensions the problem becomes much harder. Clarkson and Shor [13]
gave a randomized algorithm with expected running time O(n logn) for points in R3, which
is not very efficient in practice. Then there was a sequence of attempts to find a (simple)
deterministic algorithm, which led to an optimal O(n logn) deterministic algorithm by
Ramos [22].

The width of a set A of n points in the plane is the smallest distance between a pair of
parallel lines, such that the closed strip between the lines contains A, and it can be easily
computed in time O(n logn) using the rotating calipers method. However, again, in three
dimensions the problem becomes harder, and the best-known algorithm is an O(n3/2+ε)
expected time algorithm, due to Agarwal and Sharir [3].

To compute the uniformity of two point sets under translation, we construct the minimum
enclosing annulus of a set of n points in the plane (with only O(

√
n) extreme points). In [3],

it is shown that the minimum enclosing annulus of n points in the plane (without a constraint
on the number of extreme points) can be computed in O(n3/2+ε) expected time, which is
the current state of the art for this problem.

Our results. Consider the set P = {a − b | a ∈ A, b ∈ B} of all translations that take
a point b ∈ B to a point a ∈ A. We show that the optimal translations in the diameter
and uniformity problems are the centers of the minimum enclosing circle of P and the
minimum-width annulus containing P, respectively. Thus, we could apply the best known
algorithms for computing these objects to obtain solutions to these problems. More precisely,
applying the algorithm of Megiddo [21] for computing the minimum enclosing ball would
yield an O(n2)-time solution for the diameter problem, in any fixed dimension, and applying
the algorithm of Agarwal and Sharir [3] for computing the minimum-width annulus would

STACS 2019



8:4 Bipartite Diameter and Other Measures Under Translation

yield an O(n3+ε)-time solution for the uniformity problem in the plane. However, by making
some additional observations and employing sophisticated known techniques, we are able to
do much better. Specifically, we solve the diameter problem in O(n logn) time in the plane
and in O(n log2 n) expected time in three dimensions, and we solve the uniformity problem in
the plane in O(n9/4+ε) expected time, for any ε > 0. As a by-product of the latter result, we
show that the minimum enclosing annulus of n points in the plane with only O(

√
n) extreme

points can be computed in O(n9/8+ε) expected time (in contrast to O(n3/2+ε) expected time
for the unconstrained case, see above).

For the union width problem under translation, we present an O(n logn)-time solution
in the plane and an O(n2)-time one in three dimensions. Finally, we consider another new
width-based measure, the red-blue width. The directional red-blue width (w.r.t. direction v)
is the maximum red-blue distance after projecting the points onto a line parallel to direction
v. The red-blue width is then defined as the minimum directional red-blue width over all
directions. In other words, it measures the width of A+ (−B), the Minkowski sum of A and
−B. We present solutions for the red-blue width problem under translation that run in time
O(n logn) and O(n2), respectively, in the plane and in three dimensions.

2 Diameter

In the first problem that we consider, the measure is the bipartite diameter. Given two sets
of points A = {a1, . . . , an} and B = {b1, . . . , bn} in Rd, the bipartite diameter of A and B is
diam(A,B) = max{d(a, b) | a ∈ A, b ∈ B}, where d(a, b) is the Euclidean distance between a
and b.

I Problem 1 (Bipartite Diameter under Translation). Find a translation t∗ that minimizes
the bipartite diameter of A and B + t over all translations t. That is, for any translation t,
diam(A,B + t∗) ≤ diam(A,B + t).

Consider the set P = {a − b | a ∈ A, b ∈ B} of all possible translations taking a point
of B to a point of A. Clearly, |P| = O(n2).

B Claim 1. Let t be a translation and let St be the minimum enclosing ball of P centered
at t. Then, the radius rt of St is equal to diam(A,B + t).

Proof. Since rt is the radius of the minimum enclosing ball of P centered at t,

rt = max
a∈A, b∈B

d(a− b, t) = max
a∈A, b∈B

‖(a− b)− t‖

= max
a∈A, b∈B

‖a− (b+ t)‖

= max
a∈A, b∈B

d(a, b+ t) = diam(A,B + t). C

I Corollary 2. The optimal translation t∗ minimizing bipartite diameter coincides with the
center c = c(P) of the minimum enclosing ball S = S(P) of P.

Notice that Corollary 2 implies that the optimal translation t∗ is unique. The minimum
enclosing ball of a set of n points can be computed in linear time or expected linear time
using, e.g., Megiddo’s algorithm [21] or Welzl’s randomized algorithm [24], respectively.
Therefore, by Corollary 2, one can compute the optimal translation by simply finding c in
O(n2) time. In this section we present near-linear-time algorithms for the problem in two
and three dimensions.
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Diameter in the plane. Let Q be the set of extreme points of P. Denote by CH(X) the
convex hull of a point set X.

Since P is the Minkowski sum of two sets of size n, it is well known [14] that Q has
size O(n) and can be constructed in linear time from CH(A) and CH(B) using the rotating
calipers method of [18,23].

Once Q is constructed, we compute its minimum enclosing disk S′ = S(Q) = S(P).

I Theorem 3. Let A and B be two sets of points in R2, both of size n. A translation t∗ that
minimizes the bipartite diameter of A and B + t can be found in O(n logn) time.

Diameter in three dimensions. We describe an algorithm for computing the minimum
enclosing ball of P, without computing P (whose size may be Θ(n2)) explicitly. We adapt
Clarkson’s scheme for solving LP-type problems [12] to the problem of computing the
minimum enclosing ball of a set of points; see [1] for a similar-in-spirit adaptation of
Clarkson’s scheme to an entirely different situation.

The high-level algorithm uses an initially empty set X of points. It repeats the following
process until the minimum enclosing ball is found.
1: Pick a random sample R of P of size 4n.
2: Compute the minimum enclosing ball S = S(R∪X).
3: Find the set of violators V , i.e., the set of all points of P that are not in S. If |V | > 2n

(there are too many violators), go to 1.
4: If V = ∅, then return S and stop, else X ← X ∪ V and go to 1.

We call an iteration of the algorithm that reaches line 4 “successful.” Clarkson’s analysis
establishes that in each iteration the expected size of V is n. Therefore, for a random choice
of R, the probability of the number of violators being at most 2n is at least 1

2 , so an iteration
is unsuccessful with probability at most 1

2 . In particular, a constant expected number of
unsuccessful iterations is followed by a successful one.

On the other hand, it is not difficult to check (see Clarkson’s analysis once again) that,
when violators are found, one of the violators must be a point defining the minimum enclosing
ball. Therefore, the number of successful iterations cannot exceed five: each iteration adds
at least one of the points defining the desired ball to X and once all of them are in X,
the optimal ball is discovered in line 2, there are no further violators, and the algorithm
stops. Therefore the total number of iterations is expected to be O(1) and the size of the
set X never grows beyond O(n). Thus in each iteration we invoke a standard minimum-ball
algorithm on O(n) points, requiring O(n) expected time.

Next, we describe how to efficiently implement steps 1 and 3. A random sample of P can
be obtained by repeatedly picking random points a ∈ A and b ∈ B and returning a− b.

The set of violators V can be found by modifying an algorithm by Chazelle et al. [10] for
kth nearest neighbor search. First, consider the following problem:

I Problem 2. Given two sets A and B, each of n points in R3, and a distance r, decide
whether there are two points a ∈ A and b ∈ B with d(a, b) > r.

This problem can be solved in O(n logn) expected time by the following algorithm:
1: Set IA =

⋂
a∈AD(a, r), where D(a, r) is the ball of radius r centered at a, and construct

a corresponding inside/outside point-location data structure. (This structure preprocesses
the set {D(a, r)|a ∈ A} to facilitate point location queries of the form “Given a point
q, is it contained in IA or not?”). IA, together with its corresponding inside/outside
point-location data structure, can be computed using the randomized O(n logn)-time
algorithm of Clarkson and Shor [13], after which queries are answered in O(logn) time.

STACS 2019



8:6 Bipartite Diameter and Other Measures Under Translation

2: If IA = ∅, then clearly there exist two such points. Otherwise, check for each b ∈ B
whether b ∈ IA. This can be done by n point-location queries in total O(n logn) time.
If for some b ∈ B, b /∈ IA, there exists some a ∈ A for which d(a, b) > r.

Now we consider the thresholded reporting version of Problem 2:

I Problem 3. Given two sets A and B, each of n points in R3, a distance r and a parameter k,
report all the pairs of points a ∈ A, b ∈ B with d(a, b) > r, if there are at most k such pairs.
Otherwise, return TOO_MANY without necessarily listing them.

The reporting problem can be solved by building a binary tree of point-location data
structures. The root of the tree corresponds to IA. Next, we arbitrarily divide A into two
subsets A1, A2 of size n/2, and build two new point-location data structures, corresponding
to IA1 and IA2 , respectively. Then we continue recursively for A1 and A2. The total expected
preprocessing time is O(n log2 n).

To report the pairs with distance larger than r, we simply query the nodes of the tree as
in step 2 of the decision algorithm above. Given some b ∈ B, if b ∈ IA, then d(a, b) ≤ r for
all a ∈ A and we can stop the search with b. Else, if b /∈ IA, then there exists some a ∈ A for
which d(a, b) > r. In this case we check IA1 and IA2 recursively. At a leaf, I{a} = D(a, r),
so b /∈ I{a} means d(a, b) > r; in that case, report the pair (a, b). Keep count of the pairs
reported so far. If more than k pairs have been reported, stop and return TOO_MANY. For any
reported pair, we visit O(logn) nodes of the tree, including the ones where no pairs were
reported, and perform a logarithmic-time point-location query at each node. An additional
query is performed for every b ∈ B that is not part of any pair to be reported. Thus the
running time of the reporting phase is no more than O(n logn+ k log2 n).

The expected total running time of the algorithm is O((n+ k) log2 n).

I Observation 4. Let o be the center of the ball S and r its radius. A point a − b ∈ P is
in S if and only if d(a, b+ o) ≤ r.

Proof. The point a− b is in S if and only if d(a− b, o) ≤ r, and d(a− b, o) = ‖(a− b)− o‖ =
‖a− (b+ o)‖ = d(a, b+ o). J

The set of violators V can be found by solving problem 3 with the input A, B + o =
{b+ o | b ∈ B}, the radius of S, and k = 2n. We summarize our result.

I Theorem 5. Let A and B be two sets of points in R3, both of size n. A translation t∗ that
minimizes the bipartite diameter of A and B + t can be found in O(n log2 n) expected time.

3 Uniformity

Define uni(A,B) as the difference between the largest and the smallest distances between
a point of A and a point of B. Formally, we set uni(A,B) = diam(A,B)− d(A,B), where
d(A,B) = min{d(a, b) | a ∈ A, b ∈ B}. The quantity uni(A,B) measures the uniformity of
the red-blue distances. The smaller it is, the more uniform are the distances. One may
consider minimizing the ratio rather than the difference of these quantities, which we leave
for future research. In this section we consider the following problem:

I Problem 4 (Bipartite Uniformity under Translation). Find a translation t∗ that minimizes
the uniformity of A and B + t. That is, for any translation t, uni(A,B + t∗) ≤ uni(A,B + t).

We study this problem in the plane. Notice that in general t∗ may not be unique.
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B Claim 6. Let c be the center of a minimum-width enclosing annulus of P. Then, t∗ = c.

Proof. Similarly to the proof of Claim 1, for any translation t, the annulus St centered at
the point t with radii diam(A,B + t) and d(A,B + t) (St’s width is thus uni(A,B + t)),
contains all the points of P. Indeed, given some a− b ∈ P, we have d(a− b, t) = d(a, b+ t)
and d(A,B + t) ≤ d(a, b+ t) ≤ diam(A,B + t). Since c is the center of the minimum-width
enclosing annulus of P, we get uni(A,B + c) ≤ uni(A,B + t) for any translation t. C

We are thus left with the following algorithmic problem.

I Problem 5 (Restricted Minimum-Width Annulus). Given a set P of n2 points in the plane
with only O(n) extreme points, compute the minimum-width annulus covering P.

Note that if we apply a standard quadratic-time algorithm from the textbook [14] to P as
a black box, we would obtain running time O(n4). Instead, we could apply the cutting-edge
algorithm of Agarwal and Sharir [3] to P , again as a black box, to achieve O(n3+ε) expected
running time. But, as we shall see below, we improve these bounds by a more refined use of
these and other tools, for the specific situation presented above.

Let Q ⊂ P be the set of extreme points of P. Let F = FVor(Q) be the farthest-point
Voronoi diagram of Q, and let V = Vor(P) be the closest-point Voronoi diagram of P. We
compute V of size O(n2) in time O(n2 logn) and F of size O(n) in time O(n logn). It is
known (see, for example, [14, Section 7.4]) that the center of the minimum-width annulus
covering P must lie at (i) a vertex of F , (ii) a vertex of V , or (iii) an intersection point
between an edge of F and an edge of V . Cases (i) and (ii) can be handled in O(n2 logn)
time. Indeed, one can preprocess both F and V for point location and then locate vertices
of each diagram in the other, obtaining the identities of the closest and farthest points of P
for each Voronoi vertex and allowing one to compute the width of the annulus centered at it.

Hereafter we focus on case (iii). Its naïve implementation requires Ω(n3) time, as the
number of intersections between edges of F and V might be cubic in the worst case. (Indeed,
an O(n3)-time algorithm exists that simply overlays F and V . The vertices of the overlay
are precisely the points described in cases (i) through (iii) above. We can now process each
point in amortized constant time. See Section 4 of [14] for the routine details.)

Complete bipartite clique decomposition To do better, we start by recalling a variant of
a classical fact, first observed in [11].

I Fact 7. Let C and D be two sets, each consisting of non-crossing line segments in the
plane, with |C| = n, |D| = m, and n < m. Then there exists a collection of pairs {(Ci, Di)}
such that:
(a) Ci ⊂ C and Di ⊂ D.
(b) For every intersecting pair of segments (c, d) ∈ C ×D, there exists a unique i such that

(c, d) ∈ Ci ×Di.
(c) For every i, every segment in Ci intersects every segment in Di and the slopes of all

segments in Ci are larger than the slopes of all segments of Di, or vice versa.
(d) The collection {(Ci, Di)} can be constructed in time O((n+m) log2 n).
(e) The number of pairs in the collection is O(n logn).
(f)

∑
i |Ci| = O(n log2 n) and

∑
i |Di| = O(m log2 n).

We outline the proof here, as the version we need is slightly more general than the most
commonly used one, such as in [1,3] (see [1] for a very similar construction; the distinction is
in item (f), where we need separate bounds on

∑
i |Ci| and

∑
i |Di|); the usual assumption is

that n = m while in the application below we will set m = n2.

STACS 2019



8:8 Bipartite Diameter and Other Measures Under Translation

Proof. Construct a 2-level hereditary segment tree on C: Build a segment tree on the
segments of C so that each segment appears in O(logn) nodes and each node ν corresponds
to a canonical vertical strip Sν and a vertically ordered list Cν of (parts) of segments of
C that completely cross Sν left-to-right. For the second level, store each of the sets Cν in
a separate balanced binary tree Tν in vertical order; each node µ of Tν stores a canonical
subset Cµ of contiguous segments of Cν ; at the node µ we also store a second set Dµ ⊂ D
of segments, initially empty. Now query the structure with each segment d ∈ D. It crosses
O(logn) canonical vertical strips completely and its endpoints land in two leaves of the
primary tree, which correspond to elementary canonical strips.

For each strip Sν completely spanned by d, d crosses a contiguous portion of the segments
of Cν , represented by O(logn) canonical subsets, each corresponding to a node µ in Tν . We
add d to Dµ, for all such choices of ν and µ.

A very similar process handles the endpoints of D.
Having repeated this process for each d ∈ D,2 we output (Cµ, Dµ) for all secondary tree

nodes µ. It is easily verified that a pair of segments (c, d) ∈ C ×D cross if and only if there
is a (unique) µ with d ∈ Cµ and d ∈ Dµ.

The number of nodes µ in the secondary tree of Sν is O(|Cν |) and hence the number
of pairs (Cµ, Dµ) is O(n logn). By construction, each segment c ∈ C appears in O(log2 n)
nodes of the structure and we touch O(log2 n) nodes when searching for d ∈ D. This implies
the bounds on

∑
µ |Cµ| and on

∑
µ |Dµ|. J

Reduction to the minimum-“distance” problem between lines in three dimensions. We
now use a reinterpretation of the problem, first noticed in [4] and most recently used in [3]
to efficiently compute the minimum-width annulus covering a finite point set in the plane.

Lift the points of P to the standard paraboloid z = x2 + y2, obtaining the set P∗ and
the corresponding set Q∗ ⊂ P∗; we will use an asterisk to denote a lifted object. As is well
known, a minimal disk enclosing P in the plane corresponds to an upper tangent plane to
the convex hull CH(P∗) of P∗ (which coincides with the upper convex hull of Q∗), while
a maximal disk empty of points of P corresponds to a lower tangent plane to CH(P∗). In
case (iii) described above, the upper plane passes through an edge q∗1q∗2 of the upper hull
of Q∗ and the lower plane through an edge p∗1p∗2 of the lower hull of CH(P∗). The two
planes are parallel and this event corresponds precisely to the intersection of an edge c of V
separating the regions of p1 and of p2 and an edge d of F separating the regions of q1 and of
q2.

It was observed in [4] that the width of the (minimal) annulus containing P and centered
at c ∩ d corresponds to the “distance” between two parallel planes passing through the lines
supporting edges q∗1q∗2 and p∗1p∗2 in R3; the distance is not measured using the conventional
Euclidean metric, but using a different function that satisfies the properties enumerated
in [3] (another application of their machinery is for computing the three-dimensional width
of a finite point set in R3; in that application the distance is Euclidean, for pairs of edges
that support parallel planes sandwiching the set; see [3] for the details).

In other words, we need to solve the following problem: For all pairs of lines q∗1q∗2 , p∗1p∗2
supporting upper and lower edges of CH(P∗) as above that correspond to a pair of crossing
edges of F and V , find the shortest “distance” between the lines q∗1q∗2 and p∗1p∗2.

2 One needs to repeat the process twice: once for d’s that are “steeper” than segments of C and once
for those “less steep.” More precisely, for each strip Sν , we classify segments d that span Sν into two
classes: Those that cross the left edge of Sν lower than the right edge, relative to the segments of Cν ,
and those that cross the left edge higher than the right edge. This way in the final pair (Cµ, Dµ) either
all segments of Cµ cross those from Dµ “from below,” or all “from above.”
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Complete bipartite case. Apply Fact 7 to the two sets of edges (line segments) C and D,
producing a decomposition into pairs {(Ci, Di)} with the described properties. We now focus
on one such pair, (Ci, Di). By construction, each pair of edges (c, d) ∈ Ci ×Di intersect. We
now perform the calculation on the corresponding pair of sets of lifted lines (C∗i , D∗i ), using
the “distance” defined above:

I Fact 8 (Agarwal and Sharir [3]). Given a set X of n lines and a set Y of m lines, so that
every line of X lies above every line of Y , the shortest “distance” between a line of X and a
line of Y can be computed in expected time O(n3/4+εm3/4+ε + n1+ε +m1+ε), for any ε > 0.

In particular, the best annulus width corresponding to points c∩d, with (c, d) ∈ (Ci×Di),
corresponds precisely to the shortest “distance” between C∗i , D∗i as above and can be
computed using Fact 8 in time O(n3/4+ε

i m
3/4+ε
i + n1+ε

i + m1+ε
i ), where ni = |Ci| and

mi = |Di|.

Putting it all together. Recall that in our case m = n2. Therefore, the total work required
includes O(n2 logn) for cases (i) and (ii), O((n+m) log2 n) = O(n2 log2 n) for constructing
the pairs {(Ci, Di)}, and finally the following for processing every pair (Ci, Di), using Fact 8:∑

i

O(n3/4+ε
i m

3/4+ε
i + n1+ε

i +m1+ε
i ),

subject to the constraints described in Fact 7. We bound the above expression by

O(n3ε) ·
∑
i

O(n3/4
i m

3/4
i + ni +mi),

where we have used the facts that ni ≤ n and mi ≤ n2, for all i. Since
∑
i ni = O(n log2 n) =

o(n1+ε) and
∑
imi = O(m log2 n) = o(n2+ε), the last two terms are bounded by o(n2+ε).

We proceed to focus on the larger first term.
Using Hölder’s inequality, we have∑
i

m
3/4
i n

3/4
i =

∑
i

m
3/4
i (n3

i )1/4 ≤ (
∑
i

mi)3/4 · (
∑
i

n3
i )1/4

≤ O(n2 log2 n)3/4(n3 ·O(log2 n))1/4 = O(n9/4 log2 n) = O(n9/4+ε),

where we have used the fact that
∑
imi = O(n2 log2 n),

∑
i ni = O(n log2 n), and ni ≤ n.

Plugging everything together, the expected running time of the entire algorithm is O(n9/4+4ε).
Replacing ε by ε/4 in the above reasoning, we obtain:

I Theorem 9. Given a set P of n2 points in the plane that has O(n) extreme points, the
total expected time required to compute the minimum-width annulus enclosing P is O(n9/4+ε),
for any positive ε.

Returning to our original motivation, we conclude:

I Theorem 10. Let A and B be two sets of points in R2, both of size n. A translation t∗
that minimizes the uniformity of A and B + t can be found in O(n9/4+ε) time.

4 Width

In this section, first we minimize the union width measure. The width of a point set is the
smallest distance between two parallel supporting hyperplanes of the set. Given two sets of
points A = {a1, . . . , an} and B = {b1, . . . , bn} in Rd, the union width of A and B is defined
as the width of their union, namely, union_width(A,B) = width(A ∪B).
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I Problem 6 (Union Width under Translation). Find a translation t∗ that minimizes the
union width of A and B + t over all translations t. That is, for any translation t, we have
union_width(A,B + t∗) ≤ union_width(A,B + t).

Directional width. The directional width function widthv(X) of a compact set X in Rd
gives, for every direction v, the distance between the two supporting hyperplanes of X that
are orthogonal to v:

widthv(X) = max
x1,x2∈X

(x1 − x2) · v.

In particular, the width of a set corresponds to the minimum of its directional widths. We
define the directional union width of A and B as the directional width of their union:

union_widthv(A,B) = widthv(A ∪B).

I Problem 7 (Directional Union Width under Translation). For a given direction v, find a
translation t∗ that minimizes the directional union width of A and B+t over all translations t.
That is, for any translation t, union_widthv(A,B + t∗) ≤ union_widthv(A,B + t).

B Claim 11. For a given direction v, the minimum directional union width under translation,
union_widthv(A,B + t), is equal to the maximum of widthv(A) and widthv(B).

Proof. To obtain the smallest directional width we translate B so that the slab between the
supporting hyperplanes of the wider set contains the other set, then union_widthv(A,B + t)
will be equal to the directional width of the wider set which means:

union_widthv(A,B + t) = max(widthv(A),widthv(B)). C

This claim reduces Problem 7 to finding the maximum of two directional widths. Now
we return to Problem 6, which now reduces to finding the minimum value of the function
max(widthv(A),widthv(B)) over all directions v. In Sections 4.1 and 4.2, we present an
O(n logn)-time algorithm for the two-dimensional and a quadratic-time algorithm for the
three-dimensional version of the problem. Finally, in Section 4.3, we define a bipartite
measure closely related to width and show that it can be computed using similar methods
with slight modifications.

4.1 Width in the plane
To compare the width of the two sets in different directions and measure the union width, we
first compute the convex hulls of the two sets in O(n logn) time. We use the rotating calipers
method of [18,23] to construct, for both A and B, their directional width functions widthv(A)
and widthv(B). Each of these two functions is a piecewise-algebraic function (with a suitable
choice of parametrization) of low degree with Θ(n) breakpoints. Now consider their pointwise
maximum defined by max(widthv(A),widthv(B)). The global minimum of this function,
according to Claim 11, determines the answer to Problem 7. It can be computed by merging
the two lists of breakpoints and computing the intersections between the function graphs in
each interval; the resulting function still has O(n) breakpoints in total and its minimum can
be computed in linear time which results in the following theorem.

I Theorem 12. The union width of two n-point sets in the plane can be computed in
O(n logn) time.
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4.2 Width in three dimensions
To better understand the problem, we first review the tools used to compute the standard
width of a set in R3. Recall that computing the width is equivalent to finding the smallest-
width slab enclosing the set. In their paper [18], Houle and Toussaint showed that two
supporting planes with minimum distance apart pass through either an antipodal vertex-
face (VF) pair or an antipodal edge-edge (EE) pair of the convex hull. To compute and
compare the antipodal pairs, they used the Gauss map (also called the normal diagram). In
this transformation, which was originally introduced to computational geometry by Brown [9],
the convex hull of the point set is mapped to the surface of a unit sphere S2. Every face is
mapped to a point (the direction of its outer normal), every edge is mapped to the great circle
arc connecting its two neighboring faces (the locus of the directions of all planes supporting
the set at the edge), and every vertex is mapped to a region (the locus of the directions of all
supporting planes at the vertex). Then they overlay the upper hemisphere of the Gauss map
on the lower hemisphere and compute the intersections between them. We call the resulting
diagram the antipodal diagram. Each vertex of the overlay corresponds to an antipodal VF
or EE pair, and the width can be determined by computing the distance of the antipodal
pair at these vertices and choosing the one with the smallest such distance.

The antipodal diagram encodes the antipodal pair of features for all directions and can
be viewed as a representation of the directional width function; in particular, it can be used
to compute the directional width for any given direction. As mentioned above, Houle and
Toussaint showed that the minimum can only occur at the vertices of the antipodal diagram,
not in the middle of an edge nor in the interior of a face [18].

To solve Problem 6, we need to represent the antipodal pairs and directional pairs for both
sets together. We create the new combined antipodal diagram by overlaying the antipodal
diagrams for A and for B.

I Observation 13. If the minimum directional union width under translation occurs at
direction v∗, then one of the following must occur (as it holds for the maximum of any two
functions):
1. widthv∗(A) ≥ widthv∗(B) and v∗ is a local minimum for widthv∗(A),
2. widthv∗(B) ≥ widthv∗(A) and v∗ is a local minimum for widthv∗(B), or
3. widthv∗(A) = widthv∗(B) and neither function has a local minimum at v∗.

In cases 1 and 2, the optimal direction is a local optimum of one of the two sets as well
and occurs at a vertex of the antipodal diagram. But what happens in case 3? Is it possible
that the minimum occurs in the middle of an edge or in the interior of a face? In order to
answer these questions we use the following lemma [18]:

I Lemma 14 (Houle and Toussaint [18]). Let `1 and `2 be parallel lines in R3. Let π1 and
π2 be distinct parallel planes containing `1 and `2, respectively. Then there exists a preferred
direction of rotation such that if π1 and π2 are rotated about `1 and `2, respectively, in that
direction to form new parallel planes π′1 and π′2, then d(π′1, π′2) < d(π1, π2).

B Claim 15. The minimum value of max(widthv(A),widthv(B)) cannot occur in the interior
of a face of the antipodal diagram.

Proof. Suppose for the sake of contradiction that the optimal direction v∗ lies in the interior
of a face of the diagram. Being in the interior means each set has an antipodal VV pair
in direction v∗. Since a VV pair cannot be an optimal direction for either of the sets
separately, according to Observation 13 the directional widths of A and B are equal, and we
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may translate them so that the two corresponding parallel slabs coincide. Therefore, each
supporting plane passes through exactly one vertex from each set. Let π1 and π2 be the
two supporting planes with a1, b1 ∈ π1 and a2, b2 ∈ π2. We can translate B so that b1 is
translated to a1. After translation, let `2 ⊂ π2 be the line through a2 and b2 and let `1 ⊂ π1
be the line through a1 parallel to `1. According to Lemma 14, there is a direction to rotate
the two planes so that they remain supporting for both sets, but the distance between them
is reduced, contradicting v∗ being the optimal direction. C

We proved that minimum union width cannot occur in the interior of a face; however,
unlike the width of a single set, the minimum union width may occur in the interior of an
antipodal diagram edge.

(An example when this happens will be described in the full version of this paper.) Even
though comparing directional width at vertices of the antipodal diagram is not sufficient
anymore, the following theorem proves that the union width still can be computed in quadratic
time.

I Theorem 16. The union width of two n-point sets in three dimensions can be computed
in O(n2) time.

Proof. Each of the four subdivisions used to create the antipodal diagram for the union width
has linear complexity, so their overlay has complexity O(n2) and can be computed in O(n2)
time using convex subdivision overlay algorithm of Guibas and Seidel [16]. Although the
minimum union width can occur at an interior point of a diagram edge, we can still compute
it in O(n2). Directional union width function along each edge has constant complexity and
we can find its minimum value in constant time. Since there are at most O(n2) edges and
vertices in the diagram, we can compute the minimum union width in O(n2) time. J

4.3 Red-blue width
We now present a different interpretation of the width of a set, to motivate the definition of
a new bipartite measure. Directional width of a point set X in a given direction v is the
maximum of all the pairwise distances projected on that direction, maxx1,x2∈X(x1 − x2) · v.
For two sets A and B, we define the directional red-blue width as

rb_widthv(A,B) = max
a∈A,b∈B

(a− b) · v,

and the red-blue width of A and B as the minimum of all the directional red-blue widths:

rb_width(A,B) = min
v

rb_widthv(A,B).

I Problem 8 (Red-blue Width under Translation). Find a translation t∗ that minimizes the
red-blue width of A and B + t over all translations t. That is, for any translation t, we have
rb_width(A,B + t∗) ≤ rb_width(A,B + t).

B Claim 17. For a given direction v, the minimum directional red-blue width under
translation is equal to the average of widthv(A) and widthv(B).

Proof. Since all the distances are projected on a line parallel to v, one can use the projection
of the points to compute the width. The two sets A and B get projected to intervals with
lengths equal to widthv(A) and widthv(B), respectively. A translation of B will translate its
corresponding interval along the line without changing its length. The extreme distances that
define the red-blue width are between the leftmost point of A and the rightmost point of B, and
vice versa. The maximum of these two distances is always at least widthv(A)/2+widthv(B)/2
and is realized when the two interval centers are aligned. C
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So to solve Problem 8, we need to minimize the sum of the two directional widths, rather
than their maximum, as in Problem 6. Using the same techniques with slight modifications
we obtain the following result; details are omitted in this version.

I Theorem 18. The red-blue width of two n-point sets A and B under translation can be
computed in O(n logn) time in the plane and O(n2) time in the three-dimensional space.
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