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Abstract
In search problems, a mobile searcher seeks to locate a target that hides in some unknown position
of the environment. Such problems are typically considered to be of an on-line nature, in that the
input is unknown to the searcher, and the performance of a search strategy is usually analyzed by
means of the standard framework of the competitive ratio, which compares the cost incurred by the
searcher to an optimal strategy that knows the location of the target. However, one can argue that
even for simple search problems, competitive analysis fails to distinguish between strategies which,
intuitively, should have different performance in practice.

Motivated by the above, in this work we introduce and study measures supplementary to
competitive analysis in the context of search problems. In particular, we focus on the well-known
problem of linear search, informally known as the cow-path problem, for which there is an infinite
number of strategies that achieve an optimal competitive ratio equal to 9. We propose a measure
that reflects the rate at which the line is being explored by the searcher, and which can be seen
as an extension of the bijective ratio over an uncountable set of requests. Using this measure we
show that a natural strategy that explores the line aggressively is optimal among all 9-competitive
strategies. This provides, in particular, a strict separation from the competitively optimal doubling
strategy, which is much more conservative in terms of exploration. We also provide evidence that
this aggressiveness is requisite for optimality, by showing that any optimal strategy must mimic the
aggressive strategy in its first few explorations.
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1 Introduction

Searching for a hidden target is an important paradigm in computer science and operations
research, with numerous applications. A typical search problem involves an environment,
a mobile searcher (who may, or may not, have knowledge of the environment) and a hider
(sometimes also called target) who hides at some position within the environment that is
oblivious to the searcher. The objective is to define a search strategy, i.e., a traversal of the
environment, that optimizes a certain efficiency criterion. A standard approach to the latter
is by means of competitive analysis, in which we seek to minimize the worst-case cost for
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7:2 Best-Of-Two-Worlds Analysis of Online Search

locating the target, divided by some concept of “optimal” solution; e.g., the minimum cost to
locate the target once its position is known. Even prior to the advent of online computation
and competitive analysis, search games had already been studied under such normalized
measures within operations research [9]. Explicit studies of the competitive ratio and the
closely related search ratio were given in [7] and [28], respectively, and led to the development
of online searching [24, 11] as a subfield of online computation. See also [1] for an in-depth
treatment of search games, including the role of payoff functions that capture the competitive
ratio.

In this work we revisit one of the simplest, yet fundamental search problems, namely
the linear search, or, informally, cow-path problem. The setting involves an infinite (i.e.,
unbounded) line, with a point O designated as its origin, a searcher which is initially placed
at the origin, and an immobile target which is at some position on the line that is unknown
to the searcher. More specifically, the searcher does not know whether the hider is at the left
branch or at the right branch of the line. The searcher’s strategy S defines its exploration of
the line, whereas the hider’s strategy H is determined by its placement on the line. Given
strategies S,H, the cost of locating the hider, denoted by c(S,H) is the total distance
traversed by the searcher at the first time it passes over H. Let |H| denote the distance of
the hider from the origin. The competitive ratio of S, denoted by cr(S), is the worst-case
normalized cost of S, among all possible hider strategies. Formally,

cr(S) = sup
H

c(S,H)
|H|

. (1)

It has long been known [8, 20] that the competitive ratio of linear search is 9, and is
achieved by a simple doubling strategy: in iteration i, the searcher starts from O, explores
branch i mod 2 at a length equal to 2i, and then returns to O. However, this strategy is
not uniquely optimal; in fact, it is known that there is an infinite number of competitively
optimal strategies for linear search (see Lemma 6 in Section 3). In particular, consider an
“aggressive” strategy, which in each iteration searches a branch to the maximum possible
extent, while maintaining a competitive ratio equal to 9. This can be achieved by searching,
in iteration i, branch i mod 2 to a length equal to (i+ 2)2i+1 (see Corollary 8).

While both doubling and aggressive are optimal in terms of competitive ratio, there
exist realistic situations in which the latter may be preferable to the former. Consider, for
example, a search-and-rescue mission for a missing backpacker who has disappeared in one
of two (very long) concurrent, hiking paths. Assuming that we select our search strategy
from the space of 9-competitive strategies, it makes sense to choose one that is tuned to
discovering new territory, rather than a conservative strategy that tends to often revisit
already explored areas.

With the above observation in mind, we first need to quantify what constitutes efficiency in
exploration. To this end, given a strategy S and l ∈ R+, we define D(S, l) as the cost incurred
by S the first time the searcher has explored an aggregate length equal to l, combined in both
branches. An efficient strategy should be such that D(S, l) is small, for all l. Unfortunately,
this criterion by itself is insufficient: Consider a strategy that first searches one branch to a
length equal to L, where L is very large. Then D(S, l) is as small as possible for all l < L;
however, this is hardly a good strategy, since it all but ignores one of the branches (and thus
its competitive ratio becomes unbounded as L→∞).

To remedy this situation, we will instead use the above definition in a way that will allow
us a pairwise comparison of strategies, which also considers all possible explored lengths.
More formally, we define the following:
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I Definition 1. Let S1, S2 denote two search strategies, we define the discovery ratio of S1
against S2, denoted by dr(S1, S2), as

dr(S1, S2) = sup
l∈R+

D(S1, l)
D(S2, l)

.

Moreover, given a class S of search strategies, the discovery ratio of S against the class S is
defined as

dr(S,S) = sup
S′∈S

dr(S, S′).

In the case S is the set Σ of all possible strategies, we simply call dr(S,S) the discovery ratio
of S, and we denote it by dr(S).

Intuitively, the discovery ratio preserves the worst-case nature of competitive analysis,
and at the same time bypasses the need for an “offline optimum” solution. Note that if a
strategy S has competitive ratio c then it also has discovery ratio c; this follows easily from
the fact that for every hider position H, c(S,H) ≥ D(S, |H|). However, the opposite is not
necessarily true.

It is worth pointing out that one could have defined the discovery ratio over a discrete,
countable space (i.e., the target hides at some integer distance from the origin), which turns
out to be identical to the bijective ratio. This performance measure was introduced in [5]
as an extension of (exact) bijective analysis of online algorithms [4], and which in turn
is based on the pairwise comparison of the costs induced by two online algorithms over
all request sequences of a certain size. Bijective analysis has been applied in fundamental
online problems (with a discrete, finite set of requests) such as paging and list update [6],
k-server [14, 5], and online search1 [15].

In what concerns linear search, in this work we choose to present the analysis over a
“continuous” space of requests for two reasons. First, we demonstrate that this is indeed
possible, which can be useful for other online problems which are defined over a continuous
setting of requests (e.g., k-server problems defined over a metric space rather than over a
finite graph). Second, the discretization introduces certain unnecessary and undesirable
technical issues, e.g., in the choice of the “right” t for strategy Rt ( see Lemma 11). While
the analysis is still tractable for our problem, for more complex search domains such as star
search, the discrete analysis may be too complicated to yield results. We further discuss the
connections between the discovery and the bijective ratios in Section 4.

The above observation implies that the discovery ratio inherits the appealing properties
of bijective analysis, which further motivate its choice. In particular, note that bijective
analysis has helped to identify theoretically efficient algorithms which also tend to perform
well in practice (such as Least-Recently-Used for paging [6], and greedy-like k-server policies
for certain types of metrics [5]). Furthermore, if an algorithm has bijective ratio c, then its
average cost, assuming a uniform distribution over all request sequences of the same length,
is within a factor c of the average cost of any other algorithm. Thus, bijective analysis can be
used to establish “best of both worlds” types of performance comparisons. In fact, assuming
again uniform distributions, much stronger conclusions can be obtained, in that bijective
analysis implies a stochastic dominance relation between the costs of the two algorithms [5].
However, since the search domain is infinite, one must be careful in defining a uniform

1 In [15], online search refers to the problem of selling a specific item at the highest possible price, and is
not related to the problem of searching for a target.
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7:4 Best-Of-Two-Worlds Analysis of Online Search

distribution of requests. More specifically, one could fix L ≥ 1 and consider the uniform
density function on the space [−L,−1]∪ [1, L] (where the origin is assumed to be at 0). Thus,
the probability that a request is at distance at most x from the origin is (x − 1)/(L − 1).
Our results then correspond to the setting in which L is unknown to the algorithm, and
thus can be arbitrarily large. For known, and thus bounded L, the situation is much more
complicated, since the optimal competitive ratio now depends on L and does not have a
closed formula [13]. Our overall techniques still apply but the results unavoidably will be
much more technical, and probably not tight.

It should be noted that the central question we study in this work is related to a
phenomenon that is not unusual in the realm of online computation. Namely, for certain
online problems, competitive analysis results in very coarse performance classification of
algorithms. This is due to the pessimistic, worst-case nature of the competitive ratio. The
definitive example of an online problem in which this undesired situation occurs is the
(standard) paging problem in a virtual memory system, which motivated the introduction of
several analysis techniques alternative to the competitive ratio (see [19] for a survey). In our
paper we demonstrate that a similar situation arises in the context of online search, and we
propose a remedy by means of the discovery ratio. We emphasize, however, that in our main
results, we apply the discovery ratio as supplementary to the competitive ratio, instead of
using it antagonistically as a measure that replaces the competitive ratio altogether.

Contribution

We begin, in Section 2, by identifying the optimal tradeoff between the competitive ratio of a
strategy and its discovery ratio (against all possible strategies). The result implies that there
are strategies of discovery ratio 2 + ε, for arbitrarily small ε > 0, which is tight. As corollary,
we obtain that strategy doubling has discovery ratio equal to 3. These results allow us to
set up the framework and provide some intuition for our main results, but also demonstrate
that the discovery ratio, on itself, does not lead to a useful classification of strategies, when
one considers the entire space of strategies.

Our main technical results are obtained in Section 3. Here, we apply synthetically both
the competitive and the discovery ratios. More precisely, we restrict our interest to the
set of competitively optimal strategies, which we further analyze using the discovery ratio
as a supplementary measure. We prove that the strategy aggressive, which explores the
branches to the furthest possible extent while satisfying the competitiveness constraint, has
discovery ratio 8

5 ; moreover, we show that this is the optimal discovery ratio in this setting.
In contrast, we show that the strategy doubling has discovery ratio 7

3 . In addition, we
provide evidence that such “aggressiveness” is requisite. More precisely, we show that any
competitively optimal strategy that is also optimal with respect to the discovery ratio must
have the exact same behavior as the aggressive strategy in the first five iterations.

In terms of techniques, the main technical difficulty in establishing the discovery ratios
stems from answering the following question: given a length l ∈ R+, what is the strategy S
that minimizes D(S, l), and how can one express this minimum discovery cost? This is a
type of inverse or dual problem that can be of independent interest in the context of search
problems, in the spirit of a concept such as the reach of a strategy [23], also called extent
in [24] (and which is very useful in the competitive analysis of search strategies). We model
this problem as a linear program for whose objective value we first give a lower bound; then
we show this bound is tight by providing an explicit 9-competitive strategy which minimizes
D(S, l).
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Related work

The linear search problem was first introduced and studied in works by Bellman [10] and
Beck [8]. The generalization of linear search to m concurrent, semi-infinite branches is known
as star search or ray search; thus linear search is equivalent to star search for m = 2. Optimal
strategies for linear search under the (deterministic) competitive ratio were first given by [9].
Moreover [21] gave optimal strategies for the generalized problem of star search, a result that
was rediscovered later [7]. Some of the related work includes the study of randomization [26];
multi-searcher strategies [29]; multi-target searching [27, 30]; searching with turn cost [18, 3];
searching with an upper bound on the target distance [23, 13]; fault-tolerant search [17]; and
the variant in which some probabilistic information on target placement is known [24, 25].
This list is not exclusive; see also Chapter 8 in the book [1].

Linear search and its generalization can model settings in which we seek an intelligent
allocation of resources to tasks under uncertainty. For this reason, the problem and its solution
often arises in the context of diverse fields such as AI (e.g., in the design of interruptible
algorithms [12, 2]) and databases (e.g., pipeline filter ordering [16]).

Strategy aggressive has been studied in [23, 24] in the special case of maximizing the
reach of a strategy (which informally is the maximum possible extent to which the branches
can be searched without violating competitiveness) when we do not know the distance of
the target from the origin. Although this gives some intuition that aggressive is indeed
a good strategy, to the best of our knowledge, our work is the first that quantifies this
intuition, in terms of comparing to other competitively optimal strategies using a well-defined
performance measure.

Due to space limitations, some proofs are omitted or only sketched.

Preliminaries

In the context of linear search, the searcher’s strategy can be described as an (infinite) sequence
of lengths at which the two branches (numbered 0,1, respectively) are searched. Formally, a
search strategy is determined by an infinite sequence of search segments {x0, x1, . . .} such
that xi > 0 and xi+2 > xi for all i ∈ N, in the sense that in iteration i, the searcher starts
from the origin, searches branch i mod 2 to distance xi from the origin, and then returns back
to O. We require that the search segments induce a complete exploration of both branches
of the line, in that for every d ∈ R+, there exist i, j ∈ N such that x2i ≥ d, and x2j+1 ≥ d.

The constraint xi+2 > xi implies that the searcher explores a new portion of the line
in each iteration. It is easy to see that any other strategy X that does not conform to the
above (namely, a strategy such that iterations i, i+ 1 search the same branch, or a strategy
in which xi+2 ≤ xi can be transformed to a conforming strategy X ′ such that for any hider
H, c(X ′, S) ≤ c(X,H)). For convenience of notation, we will define xi to be equal to 0, for
all i < 0. Given a strategy X, we define Tn(X) (or simply Tn, when X is clear from context)
to be equal to

∑n
i=0 xi. For n < 0, we define Tn := 0.

We say that the searcher turns in iteration i at the moment it switches directions during
iteration i, namely when it completes the exploration of length xi and returns back to the
origin. Moreover, at any given point in time t (assuming a searcher of unit speed), the
number of turns incurred by time t is defined accordingly.

We will denote by Σ the set of all search strategies, and by Σc the subset of Σ that
consists of strategies with competitive ratio c. Thus Σ9 is the set of competitively optimal
strategies, and Σ∞ ≡ Σ. When evaluating the competitive ratio, we will make the standard
assumption that the target must be at distance at least 1 from O, since no strategy can have
bounded competitive ratio if this distance can be arbitrarily small.

STACS 2019



7:6 Best-Of-Two-Worlds Analysis of Online Search

2 Strategies of optimal discovery ratio in Σ

We begin, by establishing the optimal tradeoff between the competitive ratio and the discovery
ratio against all possible strategies. This will allow us to obtain strategies of optimal discovery
ratio, and also setup some properties of the measure that will be useful in Section 3.

Let X,Y , denote two strategies in Σ, with X = (x0, x1, . . .). From the definition of the
discovery ratio we have that

dr(X,Y ) = sup
i∈N

sup
δ∈(0,xi−xi−2]

D(X,xi−1 + xi−2 + δ)
D(Y, xi−1 + xi−2 + δ) .

Note that for i = 0, we have

D(X,xi−1 + xi−2 + δ)
D(Y, xi−1 + xi−2 + δ) = D(X, δ)

D(Y, δ) ≤
δ

δ
= 1.

This is because for all δ ≤ x0, D(X, δ) = δ, and for all δ > 0, D(Y, δ) ≥ δ. Therefore,

dr(X,Y ) = sup
i∈N∗

sup
δ∈(0,xi−xi−2]

D(X,xi−1 + xi−2 + δ)
D(Y, xi−1 + xi−2 + δ) . (2)

The following theorem provides an expression of the discovery ratio in terms of the search
segments of the strategy.

I Theorem 2. Let X = (x0, x1, . . .). Then

dr(X,Σ) = sup
i∈N∗

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
.

Proof. Fix Y ∈ Σ. From the definition of search segments in X, we have that

D(X,xi−1 + xi−2 + δ) = 2
i−1∑
j=0

xj + xi−2 + δ, for δ ∈ (0, xi − xi−2]. (3)

Moreover, for every Y , we have

D(Y, xi−1 + xi−2 + δ) ≥ xi−1 + xi−2 + δ. (4)

Substituting (3) and (4) in (2) we obtain

dr(X,Y ) ≤ sup
i∈N∗

sup
δ∈(0,xi−xi−2]

2
∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ
≤ sup
i∈N∗

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
. (5)

For the lower bound, consider a strategy Yi = (yi0, yi1, . . .), for which yi0 = xi−1 + xi−2 + δ

(the values of yij for j 6= 0 are not significant, as long as Yi is a valid strategy). Clearly,
D(Yi, xi−1 + xi−2 + δ) = xi−1 + xi−2 + δ. Therefore, (2) implies

dr(X,Yi) ≥ sup
δ∈(0,xi−xi−2]

2
∑i−1
j=0 xj + xi−2 + δ

xi−1 + xi−2 + δ
=

2
∑i−1
j=0 xj + xi−2

xi−1 + xi−2
. (6)

The lower bound on dr(X,Σ) follows from dr(X,Σ) ≥ supi∈N∗ dr(X,Yi). J
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In particular, note that for i = 2, Theorem 2 shows that for any strategy X,

dr(X,Σ) ≥ 3x0 + 2x1

x0 + x1
≥ 2.

We will show that there exist strategies with discovery ratio arbitrarily close to 2, thus
optimal for Σ. To this end, we will consider the geometric search strategy defined as
Gα = (1, α, α2, . . .), with α > 1.

I Lemma 3. For Gα defined as above, we have dr(Gα,Σ) = 2α2+α−1
α2−1 .

In particular, Lemma 3 shows that the discovery ratio of Gα tends to 2, as α → ∞,
hence Gα has asymptotically optimal discovery ratio. However, we can show a stronger
result, namely that Gα achieves the optimal trade-off between the discovery ratio and the
competitive ratio. This is established in the following theorem. Note that the competitive
ratio of Gα is easily verified to be 1 + 2 α2

α−1 (and is minimized for α = 2).

I Theorem 4. For every strategy X ∈ Σ, there exists α > 1 such that dr(X,Σ) ≥ 2α2+α−1
α2−1

and cr(X) ≥ 1 + 2 α2

α−1 .

In order to prove Theorem 4, we will use of a result by Gal [22] and Schuierer [31]
which, informally, lower-bounds the supremum of an infinite sequence of functionals by the
supremum of simple functionals of a certain geometric sequence, and which we state here
in a simplified form. This result will allow us to lower bound the supremum of a sequence
of functionals by the supremum of simple functionals of a geometric sequence. Given an
infinite sequence X = (x0, x1, . . .), define X+i = (xi, xi+1, . . .) as the suffix of the sequence
X starting at xi.

I Theorem 5 ([22, 31]). Let X = (x0, x1, . . .) be a sequence of positive numbers, r an integer,
and α = lim supn→∞(xn)1/n, for α ∈ R ∪ {+∞}. Let Fi, i ≥ 0 be a sequence of functionals
which satisfy the following properties:
1. Fi(X) only depends on x0, x1, . . . , xi+r,
2. Fi(X) is continuous for all xk > 0, with 0 ≤ k ≤ i+ r,
3. Fi(λX) = Fi(X), for all λ > 0,
4. Fi(X + Y ) ≤ max(Fi(X), Fi(Y )), and
5. Fi+1(X) ≥ Fi(Xk+1), for all k ≥ 1,
then

sup
0≤i<∞

Fi(X) ≥ sup
0≤i<∞

Fi(Gα).

Proof of Theorem 4. Let X = (x0, x1, . . .) denote a strategy in Σ. From (6) we know that

dr(X,Σ) ≥ sup
i
Fi(X),

where Fi(X) is defined as the functional
2
∑i−1

j=0
xj+xi−2

xi−1+xi−2
. Moreover, the competitive ratio of

X can be lower-bounded by

cr(X) ≥ sup
i
F ′i (X), where F ′i (X) = 1 + 2

∑i+1
j=0 xj

xi
.

This follows easily by considering a hider placed at distance xi + ε, with ε→ 0, at the branch
that is searched by X in iteration i.

STACS 2019
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It is easy to see that both Fi(X) and F ′i (X) satisfy the conditions of Theorem 5 (this
also follows from Example 7.3 in [1]). Thus, there exists α defined as in the statement of
Theorem 5 such that

dr(X,Σ) ≥ sup
i
Fi(Gα) =

2
∑i−1
j=0 α

j + αi−2

αi−1 + αi−2 , and (7)

cr(X,Σ) ≥ sup
i
F ′i (Gα) = 1 + 2

∑i+1
j=0 α

j

αi
. (8)

It is easy to verify that if α = 1, then dr(X,Σ), cr(X,Σ) = ∞. We can thus assume that
α > 1, and thus obtain from (7), (8), after some manipulations, that

dr(X,Σ) ≥ sup
i

2(α2 − 1
αi−2 ) + α− 1
α2 − 1 = 2α2 + α− 1

α2 − 1 , and

cr(X,Σ) ≥ 1 + sup
i

2
∑i+1
j=0 α

j

αi
= sup

i
1 + 2

α2 − 1
αi

α− 1 = 1 + 2 α2

α− 1 ,

which concludes the proof. J

Note, however, that although Gα, with α→∞ has optimal discovery ratio, its competitive
ratio is unbounded. Furthermore, strategy doubling ≡ G2 has optimal competitive ratio
equal to 9, whereas its discovery ratio is equal to 3. This motivates the topic of the next
section.

3 The discovery ratio of competitively optimal strategies

In this section we focus on strategies in Σ9, namely the set of competitively optimal strategies.
For any strategy X ∈ Σ9, it is known that there is an infinite set of linear inequalities that
relate its search segments, as shown in the following lemma (see, e.g, [24]).

I Lemma 6. The strategy X = (x0, x1, x2, . . .) is in Σ9 if and only if its segments satisfy
the following inequalities

1 ≤ x0 ≤ 4, x1 ≥ 1 and xn ≤ 3xn−1 −
n−2∑
i=0

xi, for all n ≥ 1.

We now define a class of strategies in Σ9 as follows. For given t ∈ [1, 4], let Rt denote the
strategy whose search segments are determined by the linear recurrence

x0 = t, and xn = 3xn−1 −
n−2∑
i=0

xi, for all n ≥ 1.

In words, Rt is such that for every n > 1, the inequality relating x0, . . . , xn is tight. The
following lemma determines the search lengths of Rt as function of t. The lemma also implies
that Rt is indeed a valid search strategy, for all t ∈ [1, 4], in that xn > xn−2, for all n, and
xn →∞, as n→∞.

I Lemma 7. The strategy Rt is defined by the sequence xn = t(1+ n
2 )2n, for n ≥ 0. Moreover,

Tn(Rt) = t(n+ 1)2n.
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Proof. The lemma is clearly true for n ∈ {0, 1}. For n ≥ 2, the equality xn = 3xn−1 −∑n−2
i=0 xi implies that Tn =

∑n
i=0 xi = 4xn−1. Therefore,

Tn − Tn−1 = 4xn−1 − 4xn−2 ⇒ xn = 4(xn−1 − xn−2).

The characteristic polynomial of the above linear recurrence is ξ2 − 4ξ + 4, with the unique
root ξ = 2. Thus, xn is of the form xn = (a+ bn)2n, for n ≥ 0, where a and b are determined
by the initial conditions x0 = t and x1 = 3t. Summarizing, we obtain that for n ≥ 0 we have
that xn = t(1 + n

2 )2n, and Tn = 4xn−1 = t(n+ 1)2n. J

Among all strategies in Rt we are interested, in particular, in the strategy R4. This strategy
has some intuitively appealing properties: It maximizes the search segments in each iteration
(see Lemma 9) and minimizes the number of turns required to discover a certain length (as
will be shown in Corollary 10). Using the notation of the introduction, we can say that
R4 ≡ aggressive. In this section we will show that aggressive has optimal discovery ratio
among all competitively optimal strategies. Let us denote by x̄i the search segment in the
i-th iteration in aggressive.

I Corollary 8. The strategy aggressive can be described by the sequence x̄n = (n+ 2)2n+1,
for n ≥ 0. Moreover, Tn(aggressive) = (n+ 1)2n+2, for n ≥ 0.

The following lemma shows that, for any given n, the total length discovered by any
competitively optimal strategy X at the turning point of the n-th iteration cannot exceed
the corresponding length of aggressive. Its proof can also be found in [24], but we give a
different proof using ideas that we will apply later (Lemma 11).

I Lemma 9. For every strategy X = (x0, x1, . . .) with X ∈ Σ9, it holds that xn ≤ x̄n, for
all n ∈ N, where x̄n is the search segment in the n-th iteration of aggressive. Hence, in
particular, we have xn + xn−1 ≤ x̄n + x̄n−1, for all n ∈ N.

Proof. For a given n ≥ 0, let Pn denote the following linear program.

max xn

subject to 1 ≤ x0 ≤ 4,
x1 ≥ 1,

xi ≤ 3xi−1 −
i−2∑
j=0

xj , 1 ≤ i ≤ n.

We will show, by induction on i, that for all i ≤ n,

xn ≤ (i+ 2)2i−1xn−i − i2i−1Tn−i−1(X).

The lemma will then follow, since for i = n we have

xn ≤ (n+ 2)2n−1x0 ≤ (n+ 2)2n−1 · 4 = (n+ 2)2n+1 = x̄n,

where the last equality is due to Corollary 8. We will now prove the claim. Note that,
the base case, namely i = 1, follows directly from the LP constraint. For the induction
hypothesis, suppose that for i ≥ 1, it holds that

xn ≤ (i+ 2)2i−1xn−i − i2i−1Tn−i−1(X). (9)
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We will show that the claim holds for i+ 1. Since

xn−i ≤ 3xn−i−1 − Tn−i−2(X), (10)

then

xn ≤ (i+ 2)2i−1(3xn−i−1 − Tn−i−2(X))− i2i−1Tn−i−1(X) (subst. (10) in (9))
= (i+ 2)2i−1(3xn−i−1 − Tn−i−2(X))− i2i−1(Tn−i−2(X) + xn−i−1) (def. Tn−i−1)
= (i+ 3)2ixn−i−1 + (i+ 1)2iTn−i−2(X), (arranging terms)

which completes the proof of the claim. J

Given strategy X and l ∈ R+, definem(X, l) as the number of turns that X has performed
by the time it discovers a total length equal to l. Also define

m∗(l) = inf
X∈Σ9

m(X, l),

that is, m∗(l) is the minimum number of turns that a competitively optimal strategy is
required to perform in order to discover length equal to l. From the constraint x0 ≤ 4,
it follows that clearly m∗(l) = 0, for l ≤ 4. The following corollary to Lemma 9 gives an
expression for m∗(l), for general values of l.

I Corollary 10. For given l > 4, m∗(l) = m(aggressive, l) = min{n ∈ N≥1 : (3n+ 5)2n ≥
l}.

Proof. From Lemma 9, the total length discovered by any X ∈ Σ9 at the turning point
of the n-th iteration cannot exceed x̄n + x̄n−1 for n ≥ 1, which implies that m∗(l) = n, if
l ∈ (x̄n−1 + x̄n−2, x̄n + x̄n−1] for n ≥ 1. In other words,

m∗(l) = min{n ∈ N≥1 : x̄n + x̄n−1 ≥ l}.

From Corollary 8, we have x̄n = (n+ 2)2n+1, for n ≥ 0. Hence,

m∗(l) = min{n ∈ N≥1 : (3n+ 5)2n ≥ l}. J

The following lemma is a central technical result that is instrumental in establishing the
bounds on the discovery ratio. For a given l ∈ R+, define

d∗(l) = inf
X∈Σ9

D(X, l).

In words, d∗(l) is the minimum cost at which a competitively optimal strategy can discover
a length equal to l. Trivially, d∗(l) = l if l ≤ 4. Lemma 11 gives an expression of d∗(l) for
l > 4 in terms of m∗(l); it also shows that there exists a t ∈ (1, 4] such that the strategy Rt
attains this minimum cost.

We first give some motivation behind the purpose of the lemma. When considering
general strategies in Σ, we used a lower bound on the cost for discovering a length l as given
by (4), and which corresponds to a strategy that never turns. However, this lower bound is
very weak when one considers strategies in Σ9. This is because a competitive strategy needs
to turn sufficiently often, which affects considerably the discovery costs.

We also give some intuition about the proof. We show how to model the question by
means of a linear program. Using the constraints of the LP, we first obtain a lower bound on
its objective in terms of the parameters l and m∗(l). In this process, we also obtain a lower
bound on the first segment of the strategy (x0); this is denoted by t in the proof. In the next
step, we show that the strategy Rt has discovery cost that matches the lower bound on the
objective, which suffices to prove the result.
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I Lemma 11. For l > 4, it holds

d∗(l) = D(Rt, l) = l · 6m∗(l) + 4
3m∗(l) + 5 , where t = l · 22−m∗(l)

3m∗(l) + 5 ∈ (1, 4].

Proof. Let X = (x0, x1, . . .) ∈ Σ9 denote the strategy which minimizes the quantity D(X, l).
Then there must exist a smallest n ≥ m∗(l) such that the searcher discovers a total length l
during the n-th iteration. More precisely, suppose that this happens when the searcher is at
branch n mod 2, and at some position p (i.e., distance from O), with p ∈ (xn−2, xn]. Then
we have xn−1 + p = l, and

d∗(l) = D(X, l) = 2
n−1∑
i=0

xi + p = 2
n−1∑
i=0

xi + (l − xn−1) = 2
n−2∑
i=0

xi + xn−1 + l.

Therefore, d∗(l) is the objective of the following linear program.

min 2
n−2∑
i=0

xi + xn−1 + l

subject to xn + xn−1 ≥ l,
1 ≤ x0 ≤ 4,
xi−2 ≤ xi, i ∈ [2, n]

1 ≤ xi ≤ 3xi−1 −
i−2∑
j=0

xj , i ∈ [1, n].

Recall that n ≥ m∗(l) is a fixed integer. Let Obj denote the objective value of the linear
program. We claim that, for 1 ≤ i ≤ n,

xn−i ≥
22−i

3i+ 5 l + 3i− 1
3i+ 5Tn−i−1 and Obj ≥ 6i+ 4

3i+ 5 l + 9 · 2i

3i+ 5Tn−i−1.

The claim provides a lower bound of the objective, since for i = n it implies that

x0 ≥
22−n

3n+ 5 l and Obj ≥ 6n+ 4
3n+ 5 l ≥

6m∗(l) + 4
3m∗(l) + 5 l,

where the last inequality follows from the fact n ≥ m∗(l). We will argue later that this lower
bound is tight.

First, we prove the claim, by induction on i, for all i ≤ n. We first show the base case,
namely i = 1. Since xn ≤ 3xn−1 − Tn−2 and xn + xn−1 ≥ l, it follows that

xn−1 ≥ l − xn ≥ l − (3xn−1 − Tn−2)⇒ xn−1 ≥
l

4 + Tn−2

4 , hence

Obj = l + 2Tn−2 + xn−1 ≥ l + 2Tn−2 + l

4 + Tn−2

4 = 5
4 l + 9

4Tn−2,

thus the base case holds. For the induction step, suppose that

xn−i ≥
22−i

3i+ 5 l + 3i− 1
3i+ 5Tn−i−1 and Obj ≥ 6i+ 4

3i+ 5 l + 9 · 2i

3i+ 5Tn−i−1.
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Then,

3xn−i−1 − Tn−i−2 ≥ xn−i (by LP constraint)

≥ 22−i

3i+ 5 l + 3i− 1
3i+ 5Tn−i−1 (ind. hyp.)

= 22−i

3i+ 5 l + 3i− 1
3i+ 5(Tn−i−2 + xn−i−1) (def. Tn−i−1)

By rearranging terms in the above inequality we obtain

(3− 3i− 1
3i+ 5)xn−i−1 ≥

22−i

3i+ 5 l + (1 + 3i− 1
3i+ 5)Tn−i−2 ⇒

6i+ 16
3i+ 5 xn−i−1 ≥

22−i

3i+ 5 l + 6i+ 4
3i+ 5Tn−i−2 ⇒ xn−i−1 ≥

21−i

3i+ 8 l + 3i+ 2
3i+ 8Tn−i−2,

and

Obj ≥ 6i+ 4
3i+ 5 l + 9 · 2i

3i+ 5Tn−i−1 (ind. hyp.)

= 6i+ 4
3i+ 5 l + 9 · 2i

3i+ 5(Tn−i−2 + xn−i−1) (def. Tn−i−1)

≥ 6i+ 4
3i+ 5 l + 9 · 2i

3i+ 5Tn−i−2 + 9 · 2i

3i+ 5( 21−i

3i+ 8 l + 3i+ 2
3i+ 8Tn−i−2) (ind. hyp.)

= 6i+ 10
3i+ 8 l + 9 · 2i+1

3i+ 8 Tn−i−2.

This concludes the proof of the claim, which settles the lower bound on d∗(l). It remains to
show that this bound is tight. Consider the strategy Rt, with t = 22−m∗(l)

3m∗(l)+5 l. In what follows
we will show that Rt is a feasible solution of the LP, and that D(Rt, l) = 6m∗(l)+4

3m∗(l)+5 l.
First, we show that t ∈ (1, 4]. For the upper bound, from Corollary 10, we have

(3m∗(l) + 5)2m∗(l) ≥ l, which implies that

1 ≥ l · 2−m∗(l)

3m∗(l) + 5 ⇒ 4 ≥ l · 22−m∗(l)

3m∗(l) + 5 ⇒ 4 ≥ t.

In order to show that t > 1, consider first the case l ∈ (4, 5]. Then m∗(l) = 1, which implies
that

t = 22−m∗(l)

3m∗(l) + 5 l = l

4 ≥ 1.

Moreover, if l > 5, by Corollary 10, m∗(l) is the smallest integer solution of the inequality
(3n+ 5)2n ≥ l, then (3m∗(l) + 2)2m∗(l)−1 < l, hence

t = 22−m∗(l)

3m∗(l) + 5 l = 4l
(3m∗(l) + 5)2m∗(l)

= 2l
(3m∗(l) + 2)2m∗(l)−1 · 3m∗(l)+5

3m∗(l)+2

>
2l

l · 3m∗(l)+5
3m∗(l)+2

= 6m∗(l) + 4
3m∗(l) + 5 > 1.

The last inequality holds since we have m∗(l) ≥ 1, for l > 5. This concludes that t ∈ (1, 4],
and Rt is a feasible solution of the LP since Rt satisfies all other constraints by its definition.
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It remains thus to show that D(Rt, l) = 6m∗(l)+4
3m∗(l)+5 l. By Lemma 7, we have

xm∗(l) + xm∗(l)−1 = t

(
1 + m∗(l)

2

)
2m
∗(l) + t

(
1 + m∗(l)− 1

2

)
2m
∗(l)−1

= t · 2m
∗(l) · 3m∗(l) + 5

4 = 22−m∗(l)

3m∗(l) + 5 l · 2
m∗(l) · 3m∗(l) + 5

4 = l.

Then Rt has exactly discovered a total length l right before the m∗(l)-th turn. Hence,

D(Rt, l) = 2Tm∗(l)−2 + xm∗(l)−1 + l

= t · (m∗(l)− 1) 2m
∗(l)−1 + t ·

(
1 + m∗(l)− 1

2

)
2m
∗(l)−1 + l (by Lemma 7)

= t · (3m∗(l)− 1)2m∗(l)

4 + l (arranging terms)

= 22−m∗(l)

3m∗(l) + 5 l ·
(3m∗(l)− 1)2m∗(l)

4 + l (substituting t)

=
(

3m∗(l)− 1
3m∗(l) + 5 + 1

)
· l = 6m∗(l) + 4

3m∗(l) + 5 · l. (arranging terms)

This concludes the proof of the lemma. J

We are now ready to prove the main results of this section. Recall that for any two
strategies X,Y , dr(X,Y ) is given by (2). Combining with (3), as well as with the fact that
for Y ∈ Σ9, we have that D(Y, l) ≥ d∗(l), (from the definition of d∗), we obtain that

dr(X,Σ9) = sup
i∈N∗

sup
δ∈(0,xi−xi−2]

Fi(X, δ), where Fi(X, δ) =
2
∑i−1
j=0 xj + xi−2 + δ

d∗(xi−1 + xi−2 + δ) . (11)

Recall that for the strategy aggressive ≡ R4 = (x̄0, x̄1, . . .), its segments x̄i are given in
Corollary 8.

I Theorem 12. For the strategy aggressive it holds that dr(aggressive,Σ9) = 8/5.

Proof. We will express the discovery ratio using (11). For i = 1, and δ ∈ (0, x̄1], we have
that

F1(aggressive, δ) = 2x̄0 + δ

d∗(x̄0 + δ) = 8 + δ

d∗(4 + δ) .

From Lemma 11, d∗(4 + δ) = (4 + δ) · 6·1+4
3·1+5 = 5(4+δ)

4 ; this is because 1 ≤ m∗(4 + δ) ≤
m∗(16) = 1. Then,

F1(aggressive, δ) = 8 + δ
5(4+δ)

4

= 32 + 4δ
20 + 5δ , hence sup

δ∈(0,x̄1]
F1(aggressive, δ) = 8

5 . (12)

For given i ≥ 2, and δ ∈ (0, x̄i − x̄i−2], we have

Fi(aggressive, δ) = 2Ti−1 + x̄i−2 + δ

d∗(x̄i−1 + x̄i−2 + δ) ,

where Ti−1 is given by Corollary 8. Moreover, from Lemma 11 we have that

d∗(x̄i−1+x̄i−2+δ) = (x̄i−1+x̄i−2+δ)· 6m
∗(x̄i−1 + x̄i−2 + δ) + 4

3m∗(x̄i−1 + x̄i−2 + δ) + 5 = (x̄i−1+x̄i−2+δ)· 6i+ 4
3i+ 5 ,
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where the last equality follows from the fact that m∗(x̄i−1 + x̄i−2 + δ) = i. This is because

i ≤ m∗(x̄i−1 + x̄i−2 + δ) ≤ m∗(x̄i−1 + x̄i−2 + x̄i − x̄i−2) = m∗(x̄i + x̄i−1) = i.

Substituting with the values of the search segments as well as Ti−1, we obtain that

Fi(aggressive, δ) = i · 2i+2 + i · 2i−1 + δ

((i+ 1)2i + i · 2i−1 + δ) · 6i+4
3i+5

= 9i · 2i−1 + δ

((3i+ 2)2i−1 + δ) · 6i+4
3i+5

.

Since

∂Fi(aggressive, δ)
∂δ

= − 2i+1(3i− 1)(3i+ 5)
(3i+ 2)(2n(3i+ 2) + 2δ)2 ≤ 0,

then Fi(aggressive, δ) is monotone decreasing in δ. Thus

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) = 9i · 2i−1

((3i+ 2)2i−1) · 6i+4
3i+5

= 9i(3i+ 5)
(3i+ 2)(6i+ 4) ,

and then

sup
i∈Ni≥2

sup
δ∈(0,x̄i−x̄i−2]

Fi(aggressive, δ) = (9 · 2)(3 · 2 + 5)
(3 · 2 + 2)(6 · 2 + 4) = 99

64 <
8
5 . (13)

Combining (11), (12) and (13) yields the proof of the theorem. J

The following theorem shows that aggressive has optimal discovery ratio among all
competitively optimal strategies.

I Theorem 13. For every strategy X ∈ Σ9, we have dr(X,Σ9) ≥ 8
5 .

Proof. Let X = (x0, . . .). We will consider two cases, depending on whether x0 < 4 or x0 = 4.
Suppose, first, that x0 < 4. In this case, for sufficiently small ε, we have m∗(x0 + ε) = 0,
which implies that d∗(x0 + ε) = x0 + ε, and therefore.

F1(X, ε) = 2x0 + ε

d∗(x0 + ε) = 2x0 + ε

x0 + ε
,

from which we obtain that

sup
δ∈(0,x1]

F1(X, δ) ≥ F1(X, ε) ≥ 2x0 + ε

x0 + ε
→ 2, as ε→ 0+.

Next, suppose that x0 = 4. In this case, for δ ∈ (0, x1], it readily follows that F1(X, δ) =
F1(aggressive, δ). Therefore, from (12), we have that

sup
δ∈(0,x1]

F1(X, δ) = sup
δ∈(0,x1]

32 + 4δ
20 + 5δ = 8

5 .

The lower bound follows directly from (11). J

Recall that doubling ≡ G2 = (20, 21, 22, . . .). The following theorem shows that within
Σ9, doubling has worse discovery ratio than aggressive. The proof follows along the lines
of the proof of Theorem 12, where instead of using the search segments x̄i of aggressive,
we use the search segment xi = 2i of doubling.

I Theorem 14. We have dr(doubling,Σ9) = 7
3 .
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A natural question arises: Is aggressive the unique strategy of optimal discovery ratio
in Σ9? The following theorem provides evidence that optimal strategies cannot be radically
different than aggressive, in that they must mimic it in the first few iterations.

I Theorem 15. Strategy X = (x0, x1, . . .) ∈ Σ9, has optimal discovery ratio in Σ9 only if
xi = x̄i, for 0 ≤ i ≤ 4.

Proof. Consider a strategy X(x0, x1, . . .) ∈ Σ9. Recall that the discovery ratio of X is given
by Equation (11). We will prove the theorem by induction on i.

We first show the base case, namely i = 0. The base case holds by the argument used in
the proof of Theorem 13 which shows that if x0 < 4, then dr(X,Σ9) ≥ 2. For the induction
step, suppose that, if X has optimal discovery ratio then for j ∈ [0, i], xj = x̄j , with i < 4.
We will show xi+1 = x̄i+1 by contradiction, hence assume xi+1 < x̄i+1. For sufficiently small
ε > 0, we have

m∗(xi+1 + xi + ε) = m∗(xi+1 + x̄i + ε) (by induction hypothesis)
≤ m∗(x̄i+1 + x̄i) (by monotonicity of m∗ and Lemma 9)
= i+ 1, (by definition of m∗)

which implies that, by Lemma 11,

d∗(xi+xi−1+ε) = (xi+xi−1+ε)· 6 ·m
∗(xi+1 + xi + ε) + 4

3 ·m∗(xi+1 + xi + ε) + 5 ≤ (xi+xi−1+ε)· 6 · (i+ 1) + 4
3 · (i+ 1) + 5 .

(14)

Therefore

Fi+2(X, ε) =
2 ·
∑i+1
j=0 xj + xi + ε

d∗(xi+1 + xi + ε)

= 2Ti(aggressive) + 2xi+1 + x̄i + ε

d∗(xi+1 + x̄i + ε) (by ind. hyp.)

≥ 2Ti(aggressive) + 2xi+1 + x̄i + ε

(xi+1 + x̄i + ε) · 6·(i+1)+4
3·(i+1)+5

(Equation (14))

= (i+ 1)2i+3 + (i+ 2)2i+1 + 2xi+1 + ε

(xi+1 + (i+ 2)2i+1 + ε) · 6·(i+1)+4
3·(i+1)+5

(Corollary 8)

≥ (i+ 1)2i+3 + (i+ 2)2i+1 + (i+ 3)2i+3 + ε

(i+ 3)2i+2 + (i+ 2)2i+1 + ε
· 3i+ 8

6i+ 10 . (monoton. on xi+1)

Hence

sup
δ∈(0,xi+2−xi]

Fi+2(X, δ) ≥ (i+ 1)2i+3 + (i+ 2)2i+1 + (i+ 3)2i+3

(i+ 3)2i+2 + (i+ 2)2i+1 · 3i+ 8
6i+ 10 = 9i+ 18

6i+ 10 ,

which is greater than 8
5 if i ≤ 3. We conclude, from (11) that dr(X,Σ9) > 8/5, which is a

contradiction. J

4 Connections between the discovery and the bijective ratios

In this last section we establish a connection between the discovery and the bijective ratios.
Bijective analysis was introduced in [4] in the context of online computation, assuming that
each request is drawn from a discrete, finite set. For instance, in the context of the paging
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problem, each request belongs to the set of all pages. Let In denote the set of all requests
of size n. For a cost-minimization problem Π with discrete, finite requests, let π : In → In
denote a bijection over In. Given two online algorithms A and B for Π, the bijective ratio of
A against B, is defined as

br(A,B) = min
π:In→In

sup
σ∈In

A(σ)
B(π(σ)) , for all n ≥ n0,

where A(σ) denotes the cost of A on request sequence σ.
Assuming In is finite, an equivalent definition of br(A,B) is as follows. Let A(i, n) denote

the i-th least costly request sequence for A among request sequences in In. Then

br(A,B) = sup
n

max
i

A(i, n)
B(i, n) .

Consider in contrast, the linear search problem. Here, there is only one request: the unknown
position of the hider (i.e., n = 1). However, the set of all requests is not only infinite, but
uncountable. Thus, the above definitions do not carry over to our setting, and we need to
seek alternative definitions. One possibility is to discretize the set of all requests (as in [5]).
Namely, we may assume that the hider can hide only at integral distances from the origin.
Then given strategies S1, S2, one could define the bijective ratio of S1 against S2 as supi

S1(i)
S2(i) ,

where S(i) denotes the i-th least costly request (hider position) in strategy S.
While the latter definition may indeed be valid, it is still not a faithful representation of the

continuous setting. For instance, for hiding positions “close” to the origin, the discretization
adds overheads that should not be present, and skews the expressions of the ratios. For this
reason, we need to adapt the definition so as to reflect the continuous nature of the problem.
Specifically, note that while the concept “the cost of the i-th least costly request in S” is not
well-defined in the continuous setting, the related concept of “the cost for discovering a total
length equal to l in S” is, in fact, well defined, and is precisely the value D(S, l). We can
thus define the bijective ratio of S1 against S2 as

br(S1, S2) = sup
l

D(S1, l)
D(S2, l)

,

which is the same as the definition of the discovery ratio (Definition 1).
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