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Abstract: The so-called phase-locked delayed feedback control method is applied to a Jeffcott rotor supported
by rolling-element bearings but with negative damping and then to the same rotor supported hy journal bear-
ings, to improve the stability of motion of the rotor. The control parameters arc determined in terms of the
characteristic equation of the controlled rotor. The results of numerical simulations show that the stability of
motion of the rotor is greatly improved with the help of the phase-locked delayed feedback control method.
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1. INTRODUCTION

The stability of motion of a rotor is a major concern in the practice. The change in
oil temperature, rub between rotor and stator or some other disturbances-for example,
earthquake-and fluctuations in the net voltage can bring a rotor into unstable motion.
Although much effort is exerted to cope with the instability, the unstable vibration cannot
be completely avoided. It causes serious damage to a machine when it occurs and is

not eliminated at once. Hence, it is desirable to suppress the instability of a rotor when
disturbances appear.

The vibration of a rotor excited by imbalance is periodic. It should be suppressed by
balancing the rotor, but not by a control system. Otherwise, strong forces will be transmitted
to the foundation, on one hand, and, on the other hand, the control system must supply much

power, which gives rise to the difficulties in the realization of the control system.
To this end, an active control method is desired, which is only activated when the motion

of a rotor tends to be unstable but does not interfere with the periodic motion resulting from
imbalance. In this way, both the unstable vibration of the rotor and the forces transmitted to

the foundation will be reduced.
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In this work, the so-called phase-locked delayed feedback control method (Faragher,
1996; Gasch and Liao, 1996; Krodkiewski and Faragher, 1995) is applied to a Jeffcott rotor
supported by rolling-element bearings but with negative damping and to the same rotor
supported by journal bearings. The control parameters are acquired from the characteristic
equation. The results of numerical simulations show that the stability of motion of a rotor is
greatly improved with the help of the phase-locked delayed feedback control method.

2. STABILITY IMPROVEMENT OF MOTION OF A JEFFCOTT ROTOR
SUPPORTED BY ROLLING-ELEMENT BEARINGS WITH THE HELP OF

THE PHASE-LOCKED DELAYED FEEDBACK CONTROL

To gain an insight into the phase-locked delayed feedback control method, we first consider
a Jeffcott rotor supported by ball bearings, but with negative damping.

Figure 1 (a) indicates a Jeffcott rotor supported on ball bearings, and Figure 1 (b) shows
a block diagram of the phase-locked delayed feedback control system. The differential

equations depicting the motion of the rotor are

where m represents the mass of the rotor; c and s the damping and stiffness, respectively;
2~r

A and B are the control parameters; and T - ~ is the period of the excitation due to

imbalance. , ’

Arranging equations ( 1 ) and (2) in complex form, we obtain

where z = x + j y

Equation (3) has one periodic particular solution that does not depend on the control
parameters a and b:
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Table 1. Relationship of control parameters a and b to the real and imaginary parts, R and
U, of the dominant root.

The periodic solution (equation (4)) is identical with that of the uncontrolled system. This
is one of the most important features of the phase-locked delayed feedback control method.

When no control is present, that is, a = b = 0, the homogeneous solution of equation
(3) takes the form:

~ 

, ,

From equation (6), it follows that the periodic motion of the uncontrolled rotor system
depicted by equation (4) is unstable; when the damping D is negative, that is, if a disturbance
takes place, the disturbed motion grows to infinity with time. Figures 2 (a) and (b) show
the unstable motion attributed to a negative damping (damping D = -5%). A negative
damping can result from inner damping of material, seal, rub between rotor and stator, or
other abnormal sources. Hence, even such a simple rotor may be also involved in an unstable
motion.

To keep the rotor system in stable motion, the control is now applied to it. We deal with

only the homogeneous equation of equation (3), which governs the stability of the solution
(equation (4)), that is,

The homogeneous solution to equation (7) with control parameters can be assumed to have
the form -

Substituting it into equation (7), we obtain the characteristic equation

With the following assumption

equation (9) can be separated into the real and imaginary parts
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Figure 3. The real and imaginary parts of the roots of the characteristic equations (11) and (12) with
a = 0 and b = -41.7. The solid lines are the solution to equation(11); the dashed lines are the solution
to equation (12); the intersection points are the solution to equations (11) and (12).

The values of R and U, which simultaneously satisfy both equations (11 and 12), define
the roots of the characteristic equation. Clearly, the homogeneous solution (equation (8))
will decay with time t if the value of the real part, R, is negative. We define the root of
equation (9), which has the largest real part R, as the dominant root. If the dominant root
has negative real part, then all the roots have negative real parts. Thus, we choose proper
control parameters a and b, so that all the roots of the characteristic equations (11) and (12)
have negative real parts, then the homogeneous solution due to a disturbance will decrease
with time and the periodic motion (equation (4)) will become asymptotically stable. With the
help of a computer program, equations (11) and (12) can be solved and the values of R and
U, which satisfy both equations (11) and (12), can be found.

As an example, the following system parameters are given:

In terms of both equations (11) and (12), the following control parameters a and b are chosen,
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Figure 4. The stabilization of unstable vibration of a rotor with negative damping.

which make all the real parts of the eigenvalues negative. Hence, the rotor becomes stable.
Figure 3 shows a plot of the solution for R and U in terms of equations (11) and (12). The
points where the lines intersect, that is, where both equations (11) and (12) are satisfied, are
the characteristic roots of equation (9). Table 1 gives the relationship of the control parameters
a and b to the real and imaginary parts, R and U, of the dominant root.

To simulate an abnormal operation process of a rotor, a positive damping (D = 0.2) is
first introduced in the rotor. The homogeneous solution decays and the rotor vibrates with
a constant amplitude and at the frequency of imbalance. At time to = 0.2 s, the damping
becomes negative (D = -0.2), the homogeneous solution due to a disturbance grows with
time, and the motion of the rotor becomes unstable. At ti = 0.24 s, the control parameters
a and b are introduced in the system, then the homogeneous solution decreases with time
quickly and the rotor returns to the periodic motion excited by imbalance. Figure 4 shows the
stabilization of the unstable motion. The periodic motion of the controlled rotor is identical
with that of the uncontrolled rotor. It shows that the phase-locked delayed feedback control
method does not change the periodic motion of the uncontrolled rotor, while it improves its
stability.

3. STABILITY IMPROVEMENT OF MOTION OF A JEFFCOTT ROTOR
SUPPORTED BY JOURNAL BEARINGS WITH THE HELP OF THE PHASE-

LOCKED DELAYED FEEDBACK CONTROL

Journal bearings can bring high damping in a rotor, which suppresses the vibration due to
imbalance of the rotor particularly at critical speeds. However, journal bearings can cause
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Figure 5. A Jeffcott rotor supported by journal bearings.

an unstable vibration of a rotor through a phenomenon known as oil whip, which is a self-
excited vibration induced by the oil film (Someya et al., 1989). In this case, the rotor vibrates
violently. If it is not eliminated immediately, bearing failure and damage to the rotor may
result.

To this end, the phase-locked delayed feedback control method is applied to a Jeffcott
rotor supported by journal bearings, shown in Figure 5, to improve the stability of the rotor
system.

3.1. Differential Equations of Motion of the Controlled Rotor Supported by Journal Bearings

The differential equation of motion of the rotor can be expressed in the matrix form

where

is the displacement vector of the rotor and bearing,
r - - -
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is the mass matrix, and

are the damping and stiffness matrices, respectively, which are related to the Sommerfeld
number of the journal bearings (Gasch and Pfuetzner, 1975).

The right vectors of equation (13) represent the excitation due to imbalance and the
control forces, respectively, that is,

where A_ , B_ , A,,, and B,, represent the control parameters in z- and y-directions,
respectively.

The particular periodic solution to equation (13) should be identical with that of the
uncontrolled rotor system (Az = B: = A~, = B y = 0).

3.2. Equations of Perturbations

To gain an insight into the stability of the controlled rotor, the perturbated motion of the rotor
is introduced as follows

where % is the periodic motion and 0 x is the perturbations.
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Substituting equation( 16) into equation (13), we obtain the perturbed equation

The solution can be given by

Inserting it into equation( 17), we obtain the characteristic equation

Dividing the first two rows of determinant (19) by s and multiplying the last two rows by
C A /? 

b. h fi II 
. 

d.. I h 
...SOAR we obtain the following dimensionless characteristic equation:

Fstat
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where

Cù = /~ is the eigenfrequency of the rotor supported by ball bearings6D = t / &horbar; is the eigenfrequency of the rotor supported by ball bearingsm
_ 

Fa ’Ü t l~/ 2
so 2YVRr ~ is the Sommerfeld number (Gasch and Pfuetzner, 1975)2~’7~/oi)~

5’oA~Q
~ dik S° ~ RS2 - the dimensionless damping coefficients of the journal bearing (i, k = z, v)

FSt:~t. t. 

’ 
&dquo;

(Gasch and Pfuetzner, 1975)
r/BD

yik - -1k +-- is the dimensionless stiffness coefficients of the journal bearing (i, k = ~, y)
Fst.at. t. 

’

(Gasch and Pfuetzner, 1975)

/I - 
f mg/s. is the ratio of the static deflection to the bearing clearance,// 
OR R - I 

is the ratio of the static deflection to the bearing clearance,

with
w~.F~, ~ &horbar; being the static bearing load
2

V’ = bearing width 
&dquo;

R = bearing radius
r = journal radius _

R - i&dquo;

~r = R ~. is the relative clearance
I

SZ = angular velocity of the journal
’7oil 

= viscosity of oil film. ° 
’

3.3. Stability Margin of Motion of the Uncontrolled Rotor

If no control acts on the rotor, that is, a. _ = b= = a,, = b,. = 0, the characteristic equation

(20) can be arranged into a polynomial of degree 6 with respect to unknown -
B~7
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The coefficients here are given by

with the following notations

Introducing the stability margin

I

into equation (21) and separating the real and imaginary parts of the equation give the
following two equations
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Figure 6. Response amplitude to imbalance versus operational speed.

In terms of the two equations, we can determine the frequency with which the rotor vibrates
in the stability boundary

and furthermore obtain the stability margin
I ...-... ,2 2 ..o &dquo;

,__ 
_ 

,

which means that the rotor will become unstable when the operational speed exceeds the
stability margin, equation (28).

The amplitude of the response to imbalance excitation is illustrated in Figure 6. It is

determined by direct integration of equation (13) without control. Here the parameters of
D ~’o 

= 0.390625, cr~ = 500 1 s,the rotor and bearing are chosen as S~~ = So ~ _ ~WRr~~,;,c~ 0.390625, co = 500 leu 2~~,)<:u
fJ. = 0.87, ~ = 0.05 mm, while Y ik and /3;k (i, k = z, y) are taken from Gasch and Pfuetzner
(1975). Figure 6 reveals that the amplitude will grow to infmity, if the operational speed
reaches the stability margin, say Dlim ;:::::: 700 1/s.
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Table 2. Relationship of the control parameters a and b to the real and imaginary parts, R
and U, of the dominant root.

Figures 7 (a) and (b) illustrate the unstable vibration in direction z and the orbit of the
rotor at an operational speed over the stability margin, that is Q = 770 1/s.

3.4. Stability Improvemellt of Motiou of the Controlled Rotor

We return to the characteristic equation (20). The eigenvalue can be assumed to be A =
R + iU. Separating the real and imaginary parts of equation (20) gives two equations for
unknown variables R, U, a= , b_ , a,,, and b,, as follows:

For the uncontrolled rotors = b: = ~, = b - 0, as case 1 the same parameters are

chosen, see Figurc 6, and the angular speed Q = 770 1/s. Numerically solving equations
(29) and (30) can find the values of R and U, which satisfy both equations at the same time.
Figure 8 shows a plot of the solutions to equations (29) and (30). The points where the
lines intersect are the characteristic roots. It can be seen that there are two roots that have a

positive real part (11.817 ~ j412.93). Hence, for case 1 the motion of the uncontrolled rotor

is unstable (see Figures 7(a) and (b)).
For the controlled rotor, let a= - a,, and b: = b,,, so as to reduce the number of the

unknown variables. In terms of equations (29) and (30), the control parameters are searched,
which makes the real part of all the characteristic roots negative.

For case 1, we choose a- = a _ -0.03 and b- = b _ -0. l. From Figure 9, one can
see that all the characteristic roots have a negative real part. Hence, the particular solution
to equation (13) is asymptotically stable. To confirm this result, equation (13) is integrated
numerically. The result of this integration is shown in Figures 10 (a) and (b). Figure 10
(a) shows the vibration of the controlled rotor in direction z, and (b) the orbit of the rotor.
It is evident that with the control parameters a= = a = -0.03 and b_ - b ,, = --0.1,
the periodic motion of the rotor becomes stable. Table 2 give the relationship of the control
parameters a and b to the real and imaginary parts, R and U, of the dominant root.

Even with smaller control parameters (absolut), that is a_ = a _ -0.01 and b= = b,. =

-0.07, the stability will also obviously be improved. Figure 11 shows the response amplitude
of the uncontrolled and controlled rotor to imbalance versus the operational speed. It reveals

that the periodic response of the rotor to imbalance in the stable range is not influenced by the
control, but the stability margin is expanded from f21irn 700 1/s to 895 1/s, say about 28%.
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Figure 11. The response amplitude of the uncontrolled and controlled rotor to imbalance, parameters
a~ = a. = -0.01 and b-- = b = -0.07.

4. CONCLUSIONS

The phase-locked delayed feedback control method is first applied to a rotor supported by
rolling-element bearings with negative damping and then to a rotor supported by journal
bearings. The control parameters are determined by numerically solving the characteristic
equation of the controlled rotor system. The result shows that the control method has

successfully stabilized the unstable periodic vibration due to imbalance without changing
it at all. Particularly, the method has greatly expanded the stability margin of motion of a
rotor supported by journal bearings, thus making the rotor much less sensitive to external
disturbances.
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