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Abstract. We describe algorithms for computing eigenpairs (eigenvalue-eigenvector pairs) of a
complex n× n matrix A. These algorithms are numerically stable, strongly accurate, and theoreti-
cally efficient (i.e., polynomial-time). We do not believe they outperform in practice the algorithms
currently used for this computational problem. The merit of our paper is to give a positive answer
to a long-standing open problem in numerical linear algebra.
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So the problem of devising an algorithm [for the
eigenvalue problem] that is numerically stable
and globally (and quickly!) convergent remains
open.

J. Demmel [25, p. 139]

1. Introduction

1.1. The problem

The quotation from Demmel opening this article, though possibly puzzling for those who
day-to-day satisfactorily solve eigenvalue problems, summarizes a long-standing open
problem in numerical linear algebra. The first algorithm that comes to mind for computing
eigenvalues —to compute the characteristic polynomial χA of A and then compute (i.e.,
approximate) its zeros— has proved to be numerically unstable. The so called Wilkinson’s
polynomial,

w(x) :=

20∏
i=1

(x − i) = x20
+ w19x

19
+ · · · + w1x + w0,
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is often used to illustrate this fact. For a diagonal matrix D with diagonal entries
1, 2, . . . , 20 (and therefore with χD(x) = w(x)) an error of 2−23 in the computation
of w19 = −210 produces, even if the rest of the computation is done error-free, catas-
trophic variations in the zeros of χD . For instance, the zeros at 18 and 19 collide into a
double zero close to 18.62, which will unfold into two complex conjugate zeros if the
error in w19 is further increased. And yet, there is nothing wrong in the nature of D (in
numerical analysis terms, as we will see below, D is a well-conditioned matrix for the
eigenvalue problem). The trouble appears to lie in the method.

Barred from using this immediate algorithm due to its numerical instability, re-
searchers devoted efforts to come up with alternative methods which would appear to be
stable. Among those proposed, the one that is today’s algorithm of choice is the iterated
QR with shifts. This procedure behaves quite efficiently in general and yet, as Demmel
pointed out in 1997 [25, p. 139],

after more than 30 years of dependable service, convergence failures of this algorithm
have quite recently been observed, analyzed, and patched [. . . ]. But there is still no global
convergence proof, even though the current algorithm is considered quite reliable.

Our initial quotation followed these words in Demmel’s text. It asked for an algorithm
which will be numerically stable and for which convergence, and if possible small com-
plexity bounds, can be established. Today, more than 20 years after Demmel’s text, this
demand retains all of its urgency: it is not known if any of the standard numerical linear
algebra algorithms satisfies the properties above. For example:

• The unshifted QR algorithm terminates with probability 1 but is probably infinite aver-
age cost if approximations to the eigenvectors are to be output (see [32]).
• The QR algorithm with Rayleigh Quotient shift fails for open sets of real input matrices

(see [8, 9]).
• We do not know whether the Francis (double) shift algorithm converges generally on

real or complex matrices, nor an estimate of its average cost.
• Other algorithms in modern texts are analyzed but do not estimate the (necessarily

infinite in the worst case) number of iterations, which usually relies on experimental
results; see for example [40] which uses a divide and conquer algorithm or [26] which
is in turn based on the algorithm in [6].

Algorithms which output approximate eigenvalues without accompanying approximate
eigenvectors might be easier to analyze. The experimental evidence of [41] for symmet-
ric matrices suggests that many of the algorithms in use are of average finite cost and even
that there is some universality. An informal explanation of this fact is that the eigenval-
ues of symmetric matrices are very well conditioned: see for example [56, eq. (1.5)]. But
eigenvectors are another matter. When the matrices are close to having multiple eigen-
values, the condition of the eigenvector tends to infinity. For example, even for 2 × 2
symmetric matrices, any pair of orthogonal vectors (a, b) and (−b, a) are the eigenvec-
tors of a matrix (

1+ ε1 ε3
ε3 1+ ε2

)
for |εi |, i = 1, 2, 3, arbitrarily small.
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The only goal of this paper is to give a positive answer to Demmel’s question. The set
of our main results can be informally stated as follows.

Main results. We exhibit algorithms which on input a complex matrix A with complex
Gaussian entries generate (with probability 1) an “excellent” approximation to one of
(or all) the (eigenvalue, eigenvector) pairs of A. Some of these algorithms are deter-
ministic while some are randomized. Their running time (expected running time for the
randomized case) is polynomial in n on average (with respect to A) as well as under a
standard smoothed analysis.

More precisely, the average complexity bounds we prove, for n×nmatrices, are O(n7)—
for the computation of a single eigenpair with either a deterministic or a randomized
algorithm, and O(n9)—for the computation of all eigenpairs with a deterministic algo-
rithm. Note that these are just upper bounds: the practical performance of the algorithms
might be better (see §2.10). The precise statements of the main results are in Theo-
rems 2.25, 2.28, and 2.35.

1.2. A few words on approximations

It must be said upfront that we do not think the algorithm we propose will outperform,
in general, iterated QR with shifts. It nonetheless possesses some worthy features which
we want to describe in this introduction. The key one, already mentioned, is that both
convergence and complexity bounds can be established for it. It is also numerically stable.
But in addition, it is strongly accurate.

A starting point to understand the meaning of this last claim is the observation that
there are two different obstructions to the exact computation of an eigenpair. Firstly, the
use of finite precision, and the ensuing errors accumulating during the computational pro-
cess. The expression numerically stable is usually vested on algorithms for which this ac-
cumulated error on the computed quantities is not much larger than that resulting from an
error-free computation on an input datum which has been read (and approximated) with
machine precision. Secondly, the nonlinear character of the equations defining eigenval-
ues and eigenvectors in terms of the given matrix. For n ≥ 5, we learned from Abel
and Galois that we cannot write down these eigenvalues in terms of the matrix entries,
not even using radicals, and the same remains true for eigenvectors. Hence, we can only
compute approximations of them and this is so even assuming infinite precision in the
computation.

The expression strongly accurate refers to the quality of these approximations. It is
common to find in the literature (at least) three notions of approximation which we next
briefly describe. To simplify, we illustrate with the computation of a value ζ ∈ C from a
datum A ∈ CN (and the reader may well suppose that this computation is done with infi-
nite precision). We let ζ̃ be the quantity actually computed and we consider the following
three requirements on it:

Backward approximation. The element ζ̃ is the solution of a datum Ã close to A. Given
ε > 0, we say that ζ̃ is an ε-backward approximation when ‖A − Ã‖ ≤ ε (resp.
‖A− Ã‖ ≤ ε‖A‖ if we are interested in relative errors).
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Forward approximation. The quantity ζ̃ is close to ζ . Given ε > 0, we say that ζ̃ is an
ε-forward approximation when |ζ − ζ̃ | ≤ ε (resp. |ζ − ζ̃ | ≤ ε|ζ |).

Approximation à la Smale. An appropriate version of Newton’s iteration, starting at ζ̃ ,
converges immediately, quadratically fast, to ζ , either in absolute or relative error.

These requirements are often, but not always, increasingly demanding. For instance, if
ζ is an ε-backward approximation then the forward error |ζ − ζ̃ | is bounded, roughly,
by ε cond(A). Here cond(A) is the condition number of A, a quantity usually greater
than 1. So, in general, ε-backward approximations are not ε-forward approximations,
and if A is poorly conditioned, ζ̃ may be a poor forward approximation of ζ (we note,
however, that backward approximations do not necessarily exist, and condition numbers
smaller than 1 do occur). We also observe that if ζ̃ is an approximation à la Smale we can
obtain an ε-forward approximation from ζ̃ by performing O(log |log ε|) Newton’s steps
(see for example Theorem 1.1 below). To obtain an approximation à la Smale from an
ε-forward approximation we need, in contrast, that ε will be of the order of the inverse of
the condition of the zero (see Theorem 2.12 below).

When we say that our algorithm is strongly accurate, we refer to the fact that the
returned eigenpairs are approximations à la Smale of true eigenpairs.

In our case, we can not only efficiently compute ε-forward approximations as above
but also with respect to relative error. These are pairs (ζ, w) satisfying

dP(w, v) ≤ ε and |ζ − λ| ≤ ε|λ|

for some true eigenpair (λ, v) of A. Here dP(w, v) denotes the angle between w and v
(note that here the scaling of eigenvectors renders the relativization of the error moot).

Theorem 1.1. We exhibit an algorithm that, given a matrix A ∈ Cn×n, an approximate
eigenpair (ζ, w) returned by any of the algorithms in the main results, and an accu-
racy ε ∈ (0, 1/2), produces an ε-forward approximation (in relative error) of the ap-
proximated true eigenpair (λ, v). The algorithm terminates provided λ 6= 0. Its average
cost over Gaussian matrices A (independently of the chosen approximate eigenpair) is
O(n3 log2 log2(n/ε)).

Combining our main results with Theorem 1.1 we can thus compute ε-forward approx-
imations (in relative error) of all eigenpairs of random Gaussian matrices with average
running time O(n9

+ n3 log2 log2(n/ε)). See §11 for a proof of Theorem 1.1.

1.3. A few words on complexity

The cost, understood as the number of arithmetic operations performed, of computing an
approximation of an eigenpair for a matrix A ∈ Cn×n, depends on the matrix A itself.
Actually, and this is a common feature in numerical analysis, it depends on the condition
number cond(A) of the matrix A. But this condition number is not known a priori. It was
therefore advocated by Smale [51] to eliminate this dependency in complexity bounds by
endowing data space with a probability distribution and estimating expected costs. This
idea has its roots in early work of Goldstine and von Neumann [57].
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In our case, data space is Cn×n, and a common probability measure to endow it with
is the standard Gaussian. Expectations of cost with respect to this measure yield expres-
sions in n usually referred to as average cost. A number of considerations, including the
suspicion that the use of the standard Gaussian could result in complexity bounds which
are too optimistic compared with “real life”, prompted Spielman and Teng to introduce
a different form of probabilistic analysis, called smoothed analysis. In this, one replaces
the average analysis’ goal of showing that

for a random A it is unlikely that the cost for A will be large

by

for all Â, it is unlikely that a slight random perturbation A = Â+1A will require
a large cost.

The expectations obtained for a smoothed analysis will now be functions of both the di-
mension n and some measure of dispersion for the random perturbations (e.g., a variance).

Smoothed analysis was first used for the simplex method of linear programming [54].
Some survey expositions of its rationale are in [53, 55, 17]. One may argue that it has been
well accepted by the scientific community from the fact that Spielman and Teng were
awarded the Gödel 2008 and Fulkerson 2009 prizes for it (the former by the theoretical
computer science community and the latter by the optimization community). Also, in
2010, Spielman was awarded the Nevanlinna prize, and smoothed analysis appears in the
laudatio of his work.

In this paper we will exhibit bounds for the cost of our algorithm both for average and
smoothed analyses.

1.4. A few words on numerical stability

The algorithm we deal with in this paper belongs to the class of homotopy continuation
methods. Experience has shown that algorithms in this class are very stable and stability
analyses have been done for some of them, e.g. [16, 11, 23]. Because of this, we will
assume infinite precision all along this paper and steer clear of any form of stability anal-
ysis. We nonetheless observe that such an analysis can be easily carried out following the
steps in the papers mentioned above.

1.5. Previous and related work

Homotopy continuation methods go back, at least, to the work of Lahaye [33]. A detailed
survey of their use in solving polynomial equations is in [35]. More explicit focus on
eigenvalue computations is considered in [21, 36, 37, 38] but we do not know of any
serious attempt to implement them.

In the early 1990s Shub and Smale set up a program to understand the cost of solving
square systems of complex polynomial equations using homotopy methods. In a collec-
tion of articles [45, 46, 47, 48, 49], known as the Bézout series, they put in place many of
the notions and techniques that occur in this article. The Bézout series did not, however,
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conclusively settle the understanding of the cost above, and in 1998 Smale proposed it as
the 17th in his list of problems for the mathematicians of the 21st century [52]. A prob-
abilistic solution to this problem was found in [12, 13], then a deterministic quasipoly-
nomial solution was described in [18]. Finally, a deterministic polynomial solution was
recently found by Lairez [34] and is now considered fully answered by the community.

The results in these papers cannot be directly used for the eigenpair problem since
instances of the latter are ill-posed as polynomial systems. But the intervening ideas can
be reshaped to attempt a tailor-made analysis for the eigenpair problem. A major step in
this direction was done by Armentano in his PhD thesis (see [3] and its precedent [24]),
where the condition number µ for the eigenpair problem was exhaustively studied. A fur-
ther step was taken in [5] where µ was used to analyze a randomized algorithm for the
Hermitian eigenpair problem.

Our paper follows this stream of research.
Since the appearance of our work, Paul Breiding [15] has successfully generalized the

ideas of our paper to the computation of eigenpairs of homogeneous polynomial systems.

1.6. Structure of the exposition

The remainder of this paper is divided into two parts. In the first one, §2 below, we intro-
duce all the technical preliminaries, we describe with details the algorithms, and we state
our main results (Theorems 2.25, 2.28, and 2.35). The condition number µ, Newton’s
method, the notion of approximate eigenpair, and Gaussian distributions are among these
technical preliminaries. The second part, which occupies us in the subsequent sections, is
devoted to proofs. Some short proofs are included in §2 as well.

2. Preliminaries, basic ideas, and main result

2.1. Spaces and metric structures

Let Cn×n be the set of n×n complex matrices. We endow this complex linear space with
the Frobenius Hermitian product 〈 , 〉F and the associated Frobenius norm ‖ · ‖F given
by

〈A,B〉F := trace(B∗A) =
n∑

i,j=1

aij bij , ‖A‖F = 〈A,A〉
1/2
F ,

where A = (aij ) and B = (bij ). The unit sphere will be denoted by S(Cn×n) or simply
by S. We endow the product vector space Cn×n × C with the canonical Hermitian inner
product structure and its associated norm structure and (Euclidean) distance.

The space Cn is equipped with the canonical Hermitian inner product 〈 , 〉. We denote
by P(Cn) the associated projective space. This is a smooth manifold which carries a
natural Riemannian metric, namely, the real part of the Fubini–Study metric on P(Cn).
The Fubini–Study metric is the Hermitian structure on P(Cn) given in the following way:
for x ∈ Cn,

〈w,w′〉x :=
〈w,w′〉

‖x‖2
(1)
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for all w, w′ in the Hermitian complement x⊥ = {v ∈ Cn | 〈x, v〉 = 0} of x in Cn. We
denote by dP the associated Riemannian distance. An explicit formula for that distance
(see for example [14, p. 226]) is

dP(v,w) = arccos
|〈v,w〉|

‖v‖ · ‖w‖
. (2)

Note that this formula makes sense for v,w ∈ Cn (as the distance between the respective
projective classes).

The space Cn×n×C×P(Cn) is endowed with the Riemannian product structure. The
resulting distance equals

dist((A, λ, v), (A′, λ′, v′))2 := ‖A− A′‖2F + |λ− λ
′
|
2
+ dP(v, v

′)2.

We will only use this distance on S × C × P(Cn). Note that for A,A′ ∈ S, the distance
dist((A, λ, v), (A′, λ′, v′)) is smaller than or equal to the natural geodesic (product) dis-
tance in S×C×P(Cn). For any nonzero matrix A ∈ Cn×n (not necessarily of unit norm)
we will write

distA((λ, v), (λ
′, v′))2 :=

|λ− λ′|2

‖A‖2F
+ dP(v, v

′)2.

Note that for any nonzero A ∈ Cn×n, distA is a distance function in C × P(Cn), and if
A ∈ S, then distA((λ, v), (λ

′, v′)) = dist((A, λ, v), (A, λ′, v′)).

2.2. The varieties V , W , 6′ and 6

We define the solution variety for the eigenpair problem as

V = Vn := {(A, λ, v) ∈ Cn×n × C× P(Cn) : (A− λ Id)v = 0}.

Proposition 2.1 ([3, Proposition 2.2]). The solution variety V is a smooth submanifold
of Cn×n × C× P(Cn), of the same dimension as Cn×n.

The set V inherits the Riemannian structure of the ambient space. Associated to it there
are natural projections:

V

π2π1

Cn×n C× P(Cn)

(3)

Because of Proposition 2.1, the derivative Dπ1 at (A, λ, v) is a linear operator between
spaces of equal dimension. The subvariety W of well-posed triples is the subset of triples
(A, λ, v) ∈ V for whichDπ1(A, λ, v) is an isomorphism. In particular, if (A, λ, v) ∈W ,
the projection π1 has a branch of its inverse (locally defined) taking A ∈ Cn×n to
(A, λ, v) ∈ V .
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Let Pv⊥ : Cn → v⊥ be the orthogonal projection. Given (A, λ, v) ∈ Cn×n × C ×
P(Cn), we let Aλ,v : v⊥→ v⊥ be the linear operator given by

Aλ,v := Pv⊥ ◦ (A− λ Id)|v⊥ . (4)

If we choose a representative such that ‖v‖ = 1 and we assume that Aλ,v is invertible,
then we have

iCnAλ,vPv⊥ = (Id− vv
∗)(A− λ Id)(Id− vv∗), (5)

iCnA
−1
λ,vPv⊥ =

(
(Id− vv∗)(A− λ Id)(Id− vv∗)

)†
, (6)

where iCn : v⊥→ Cn is the inclusion and † denotes Moore–Penrose pseudoinverse.
The set of well-posed triples is exactly

W := {(A, λ, v) ∈ V : Aλ,v is invertible} (7)

(see [3, Lemma 2.7]). We define 6′ := V \W to be the variety of ill-posed triples, and
6 = π1(6

′) ⊂ Cn×n the discriminant variety, i.e., the subset of ill-posed inputs.

Remark 2.2. From (7) it is clear that the subset 6′ is the set of triples (A, λ, v) ∈ V
such that λ is an eigenvalue of A of algebraic multiplicity at least 2. Hence 6 is the set
of matrices A ∈ Cn×n with multiple eigenvalues, and for A ∈ Cn×n \6, the eigenvalues
of A are pairwise different and π−1

1 (A) is the set of triples (A, λ1, v1), . . . , (A, λn, vn),
where (λi, vi), i = 1, . . . , n, are the eigenpairs of A.

Proposition 2.3 ([19, Proposition 20.18]). The discriminant variety 6 ⊂ Cn×n is a
complex algebraic hypersurface. Consequently, dimR6 = 2n2

− 2 for all n ≥ 2.

2.3. Unitary invariance

Let Un be the group of n × n unitary matrices. The group Un naturally acts on P(Cn) by
U · w := Uw. In addition, Un acts on Cn×n by conjugation (i.e., U · A := UAU−1),
and on Cn×n × C by U · (A, λ) := (UAU−1, λ). These actions define an action on the
product space Cn×n × C× P(Cn), namely,

U · (A, λ, v) := (UAU−1, λ, Uv). (8)

Remark 2.4. The varieties V , W , 6′, and 6 are invariant under the action of Un (see [3]
for details).

2.4. Condition of a triple

In a nutshell, condition numbers measure the worst possible output error resulting from
a small perturbation on the input data. More formally, a condition number is the operator
norm of the derivative of a solution map such as the branches of π−1

1 mentioned in §2.1
above (see [19, §14.1.2] for a general exposition).
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In the case of the eigenpair problem, one can define two condition numbers for the
eigenvalue and the eigenvector, respectively, and formulas for both of them have been
known at least since [56]. Armentano has shown that one can merge the two in a single
one (see §3 in [3] for details). Deviating slightly from [3], we define the condition number
of (A, λ, v) ∈ Cn×n × C× Cn as

µ(A, λ, v) := ‖A‖F ‖A
−1
λ,v‖ (9)

(or ∞ if Aλ,v is not invertible) where ‖ · ‖ is the operator norm. This coincides with
µv(A, λ, v) in [3]. Note that from (6), if (A, λ, v) is such that µ(A, λ, v) < ∞ and
‖v‖ = 1, then

µ(A, λ, v) = ‖A‖F
∥∥((Id− vv∗)(A− λ Id)(Id− vv∗))†∥∥. (10)

Remark 2.5. The condition number µ is invariant under the action of the unitary
group Un, i.e., µ(UAU−1, λ, Uv) = µ(A, λ, v) for all U ∈ Un, and scale invariant
on the first two components, i.e., µ(sA, sλ, v) = µ(A, λ, v) for all s ∈ C \ {0}.

Lemma 2.6 ([3, Lemma 3.8]). For (A, λ, v) ∈ V we have µ(A, λ, v) ≥ 1/
√

2. ut

The essence of condition numbers is that they measure how much outputs may vary when
inputs are slightly perturbed. The following result, which we will prove in §3, quantifies
this property for µ.

Proposition 2.7. Let 0 : [0, 1] → V , 0(t) = (At , λt , vt ), be a smooth curve such that
At lies in the unit sphere of Cn×n for all t . Write µt := µ(0(t)). Then, for all t ∈ [0, 1],

|λ̇t | ≤

√
1+ µ2

t ‖Ȧt‖, ‖v̇t‖ ≤ µt‖Ȧt‖.

In particular,
‖0̇(t)‖ ≤

√
6µt‖Ȧt‖.

Condition numbers are generally associated to input data. In the case of a problem with
many possible solutions (of which returning an eigenpair of a given matrix is a clear
case) one can derive the condition of a data from a notion of condition for each of these
solutions. A discussion of this issue is given in [19, §6.8]. For the purposes of this paper,
we will be interested in two such derivations: the maximum condition number of A,

µmax(A) := max
1≤j≤n

µ(A, λj , vj ),

and the mean square condition number of A,

µav(A) :=

(
1
n

n∑
j=1

µ(A, λj , vj )
2
)1/2

=

(
1
n

n∑
j=1

‖A‖2F ‖A
−1
λj ,vj
‖

2
)1/2

.

Condition numbers themselves vary in a controlled manner. The following Lipschitz
property and its corollary make this statement precise.
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Theorem 2.8. Let A,A′ ∈ S, let v, v′ ∈ Cn be nonzero, and let λ, λ′ ∈ C. Suppose that

µ(A, λ, v)dist((A, λ, v), (A′, λ′, v′)) ≤
ε

4
√

3
for some ε ∈ (0, 1).

Then
1

1+ ε
µ(A, λ, v) ≤ µ(A′, λ′, v′) ≤

1
1− ε

µ(A, λ, v).

Corollary 2.9. Let A ∈ S, A 6∈ 6, and let A′ ∈ S be such that

‖A− A′‖F ≤
ε

50µmax(A)2
for some ε ∈ (0, 1/2).

Then A′ 6∈ 6 and (1+ ε)−1µmax(A) ≤ µmax(A
′) ≤ (1− ε)−1µmax(A).

We give the proofs of Theorem 2.8 and Corollary 2.9 in §4 below.
We close this paragraph observing that restricted to the class of normal matrices, the

condition number µ admits the following elegant characterization.

Lemma 2.10 ([3, Lemma 3.12]). Let A ∈ Cn×n \ 6 be normal, and let (λ1, v1), . . . ,

(λn, vn) be its eigenpairs. Then

µ(A, λ1, v1) =
‖A‖F

min2≤j≤n |λj − λ1|
. ut

2.5. Newton’s method and approximate eigenpairs

For a nonzero matrix A ∈ Cn×n, we define the Newton map associated to A,

NA : C× (Cn \ {0})→ C× (Cn \ {0}),

by

NA

(
λ

v

)
=

(
λ

v

)
−

(
λ̇

v̇

)
, where

(
λ̇

v̇

)
= (DFA(λ, v)|C×v⊥)

−1FA

(
λ

v

)
and FA(λ, v) = (A − λ Id)v is the evaluation map. This is a rational map (it is only
defined on an open subset of C × (Cn \ {0})). It was introduced in [3] as a Newton-like
operator associated to the evaluation map FA, and the following formulas were obtained
for v̇ and λ̇ (recall the definition of Aλ,v from (4)):

v̇ = iCnAλ,v
−1 Pv⊥Av, λ̇ =

〈(λ Id− A)(v − v̇), v〉

〈v, v〉
. (11)

The map NA is defined for every (λ, v) ∈ C× (Cn \ {0}) such that Aλ,v is invertible. It is
immediate to check that for k ≥ 0 and z ∈ C we have

Nk
zA

(
zλ

v

)
=

(
z 0
0 1

)
Nk
A

(
λ

v

)
, (12)

where the superscript k means k iterations. See [3, Sec. 4] for more details.
The notion of approximate solution as a point where Newton’s method converges to a

true solution immediately and quadratically fast was introduced by Steve Smale [50]. It al-
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lows one to elegantly talk about approximations without dependencies on pre-established
accuracies. In addition, these approximate solutions are “excellent approximations” (as
mentioned in the statement of the main results) in a very strong sense: the distance to the
exact solution dramatically decreases with a single iteration of Newton’s method. In the
context of eigenpair computations this concept is settled as follows.

Definition 2.11. Given (A, λ, v) ∈W we say that (ζ, w) ∈ C× (Cn \ {0}) is an approx-
imate eigenpair of A with associated eigenpair (λ, v) when for all k ≥ 1 the kth iterate
Nk
A(ζ, w) of the Newton map at (ζ, w) is well defined and satisfies

distA(N
k
A(ζ, w), (λ, v)) ≤ (1/2)

2k−1distA((ζ, w), (λ, v)).

The following result estimates, in terms of the condition of an eigenpair, the radius of a
ball of approximate eigenpairs associated to it. For a complete proof see [3, Theorem 5].

Theorem 2.12. There is a universal constant c0 > 1/5 with the following property. Let
(A, λ, v) ∈W with ‖A‖F = 1 and let (ζ, w) ∈ C× (Cn \ {0}). If

distA((λ, v), (ζ, w)) ≤
c0

µ(A, λ, v)
,

then (ζ, w) is an approximate eigenpair of A with associated eigenpair (λ, v).

It is a simple exercise to check that for any nonzero z ∈ C, (ζ, w) is an approximate
zero of A with associated zero (λ, v) if and only if (zζ, w) is an approximate zero of
zA with associated zero (zλ, v). So from the point of view of analyzing the effect of the
Newton methods we may pick whatever scaling is convenient. For us it will be convenient
to assume that ‖A‖F = 1, which we will do in the following.

Proof of Theorem 2.12. Note that [3, Theorem 5] is the same result with c0 = 0.2881,
but the definition of the condition number in [3] is slightly different from ours. More
exactly, if we denote by κ(A, λ, v) the condition number defined in [3] then we have
κ(A, λ, v) = max(1, µ(A, λ, v)). Theorem 2.12 is hence true with κ in place of µ and
c0 = 0.2881. However, from Lemma 2.6 we know that µ(A, λ, v) ≥ 2−1/2, which read-
ily implies κ(A, λ, v) ≤

√
2µ(A, λ, v). Theorem 2.12 now follows from the fact that

0.2881 >
√

2/5. ut

Remark 2.13. We note that NA(ζ, w) can be computed from the matrix A and the pair
(ζ, w) in O(n3) operations, since the cost of this computation is dominated by that of
inverting a matrix (or simply solving a linear system).

2.6. Gaussian measures on Cn×n

Let σ > 0. We say that the complex random variable Z = X +
√
−1Y has distribution

NC(0, σ 2) when the real part X and the imaginary part Y are independent and identi-
cally distributed (i.i.d.) drawn from N (0, σ 2/2), i.e., they are Gaussian centered random
variables with variance σ 2/2.
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If Z ∼ NC(0, σ 2) then its density ϕ : C→ R with respect to the Lebesgue measure
is given by

ϕ(z) :=
1
πσ 2 e

−|z|2/σ 2
.

We will write v ∼ NCn(0, σ 2) to indicate that the vector v ∈ Cn is random with
i.i.d. coordinates drawn from NC(0, σ 2). Also, we say thatA ∈ Cm×n is (isotropic) Gaus-
sian and we write A ∼ NCm×n(0, σ 2) if its entries are i.i.d. Gaussian random variables.
The resulting probability space is sometimes called the Ginibre ensemble.

If Â ∈ Cm×n and G ∼ NCm×n(0, σ 2), we say that the random matrix A = G+ Â has
the Gaussian distribution centered at Â, and we write A ∼ NCm×n(Â, σ

2). The density
of this distribution is given by

ϕ
Â,σ
m×n(A) :=

1
(πσ 2)mn

e−‖A−Â‖
2
F /σ

2
.

For conciseness, we will sometimes write A ∼ NCm×n when Â = 0 and σ = 1.
Crucial in our development is the following result giving a bound on the average

condition for Gaussian matrices arbitrarily centered. Its statement is similar to the main
technical result in [19, Thm. 3.6]. We will prove it in §7.

For technical reasons we will be interested in the following variation of µ:

µF (A, λ, v) := ‖A‖F ‖A
−1
λ,v‖F

(note that we have only replaced ‖A−1
λ,v‖ by ‖A−1

λ,v‖F ) and the corresponding

µF,av(A) :=

(
1
n

n∑
j=1

µF (A, λj , vj )
2
)1/2

.

Theorem 2.14. For Â ∈ Cn×n and σ > 0 we have

E
A∼NCn×n (Â,σ

2)

µF,av(A)
2

‖A‖2F
≤

n

σ 2 .

Moreover, for A chosen with the uniform distribution U (S) in the unit sphere S of Cn×n
we have

E
A∼U (S)

µF,av(A)
2
≤ n3.

Remark 2.15. (i) We note that no bound on the norm of Â is required in the first claim
of Theorem 2.14. Indeed, using µF,av(sA) = µF,av(A), it is easy to see that the assertion
for a pair (Â, σ ) implies the assertion for (sÂ, sσ ), for any s > 0.

(ii) It is remarkable that if we change Gaussian matrices to some classes of struc-
tured matrices, the expected value of the condition number can be very high: see for
example [10] and references therein.
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2.7. Truncated Gaussians and smoothed analysis

For T , σ > 0, we define the truncated Gaussian NCn×n,T (0, σ 2) on Cn×n to be the dis-
tribution given by the density

ρσT (A) =

{
ϕ

0,σ
n×n(A)/PT ,σ if ‖A‖F ≤ T ,

0 otherwise,
(13)

where PT ,σ := ProbA∼NCn×n (0,σ
2){‖A‖F ≤ T }, and, we recall, ϕ0,σ

n×n is the density of

NCn×n(0, σ 2). For the rest of this paper we fix the threshold T :=
√

2 n. The fact that
‖A‖2F is chi-square distributed with 2n2 degrees of freedom, along with [20, Corollary 6],
yields the following result.

Lemma 2.16. We have PT ,σ ≥ 1/2 for all 0 < σ ≤ 1. ut

The space Cn×n of matrices with the Frobenius norm and the space Cn2
with the canoni-

cal Hermitian product are isomorphic as Hermitian product spaces. Hence, the Gaussian
NCn×n(0, σ 2) on the former corresponds to the Gaussian NCn2 (0, σ 2) on the latter, and
we can deduce invariance of NCn×n(0, σ 2) under the action of Un2 (in addition to that for
conjugation under Un discussed in §2.3), and the same is true for the truncated Gaussian.
In particular, the push-forward of both distributions for the projection Cn×n \ {0} → S,
A 7→ A/‖A‖F , is the uniform distribution U (S) (see [19, Chapter 2] for details), and

E
A∼NCn×n (0,σ

2)
F(A) = E

A∼NCn×n,T (0,σ
2)
F(A) = E

A∼U (S)
F(A) (14)

for any measurable scale invariant function F : Cn×n→ [0,∞).
Complexity analysis has traditionally been carried out either in the worst-case or in

an average-case. More generally, for a function F : Rm → R+ (some measure for the
computational cost of solving an instance in Rm), the former amounts to the evaluation
of supa∈Rm F(a) and the latter to that of Ea∼D F(a) for some probability distribution
D on Rm. Usually, D is taken to be the standard Gaussian in the input space. With the
beginning of the century, Daniel Spielman and Shang-Hua Teng introduced a third form
of analysis, smoothed analysis (see [53, 55] or [19, §2.2.7]), which is meant to interpolate
between worst-case and average-case.

The idea is to replace the two operators above (supremum and expectation) by a com-
bination of the two, namely,

sup
â∈Rm

E
a∼D(â,σ )

F(a)

where D(â, σ ) is a distribution “centered” at â having σ as a measure of dispersion.
A typical example is the Gaussian N (â, σ 2). Another example, used for scale invariant
functions F , is the uniform measure on a spherical cap centered at â and with angular
radius σ on the unit sphere S(Rm) (reference [19] exhibits smoothed analyses for both
examples of distribution). In this paper we will perform a smoothed analysis with respect
to a truncated Gaussian. More precisely, we will be interested in quantities of the form

sup
Â∈Cn×n

E
A∼NCn×n,T (Â,σ

2)

F(A)
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where F will be a measure of computational cost for the eigenpair problem. We note that,
in addition to the usual dependence on n, this quantity depends also on σ and tends to∞
when σ tends to 0. When F is scale invariant, as in the case ofµav orµmax, it is customary
to restrict attention to matrices of norm 1, that is, to study the following quantity:

sup
Â∈S

E
A∼NCn×n,T (Â,σ

2)

F(A). (15)

2.8. The eigenpair continuation algorithm

We are ready to describe the main algorithmic construct in this paper. When dealing with
algorithms it will be more convenient to view the solution variety as the corresponding
subset of Cn×n × C× (Cn \ {0}), which, abusing notation, we still denote by V .

Given two matrices B0, B ∈ S, B 6= ±B0, let α := dS(B0, B) ∈ (0, π) be the
spherical distance (i.e. the angle) from B0 to B, and let

LB0,B = {Bs : 0 ≤ s ≤ α} (16)

be the portion of the great circle in S, parametrized by arc-length, joining B0 and B, so
Bα = B. By abuse of notation, for any A0, A ∈ Cn×n such that A0, A are not R-linearly
dependent, we simply write

dS(A0, A) := dS(A0/‖A0‖F , A/‖A‖F ) and LA0,A := LA0/‖A0‖F ,A/‖A‖F .

The following definition plays a distinguished role in the continuation algorithm. It uses
a constant c∗ which we will later take to be 10−4 (cf. §5.1).

Definition 2.17. If (A, λ, v) ∈W, (ζ, w) ∈ C× (Cn \ {0}) with distA((ζ, w), (λ, v)) ≤
c∗/µ(A, λ, v), then we say that (ζ, w) is a certified approximate eigenpair of A (with
associated eigenpair (λ, v)). The initial neighborhood of the set W is the set

W̃ :=
{
(A, ζ,w)

∣∣∣∣ ∃(λ, v) : (A, λ, v) ∈W and distA((ζ, w), (λ, v)) ≤
c∗

µmax(A)

}
.

The term certified in Definition 2.17 is justified by Theorem 2.12.
Suppose that we are given an initial triple (B0, ζ0, w0) ∈ W̃ , B0 ∈ S and an input

matrix B ∈ S \ {±B0}. Let (λ0, v0) ∈ C× P(Cn) be the exact eigenpair of B0 associated
to (ζ0, v0). As a consequence of the inverse function theorem, if (LB0,B \ {B0})∩6 = ∅,
then the map s 7→ Bs can be uniquely extended to a continuous map

[0, α] → V, s 7→ (Bs, λs, vs). (17)

We call this map the lifting of LB0,B with origin (B0, λ0, v0). We can try to approximate
the eigenpair (λα, vα) of B by following the lifting of LB0,B . To this end we can dif-
ferentiate Bsvs − λsvs = 0 with respect to s. This produces an Initial Value Problem
(IVP) whose solution can be approximated by any standard numerical ODE solver. The
main ingredient for the complexity estimate is the number of points in the discretization
of [0, α] needed to approximate the solution of the IVP.

Formalizing this idea to get an actual guarantee of convergence is a nontrivial task;
only a nonconstructive method has been described in [3] following the ideas in [44]. We
now describe how to algorithmically construct a numerically stable method for this task:
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(λ0, v0)

(λ1, v1)

B0 B = BαBsi

(λsi , vsi )

(ζi , wi)

Bsi+1

(λsi+1 , vsi+1)

(ζi+1, wi+1)

C× Cn

Fig. 1. The continuation of the solution path.

subdivide the interval [0, α] into subintervals with extremities at 0 = s0 < s1 < · · · < sK
= α and successively compute approximations (ζi, wi) of (λsi , vsi ), starting with (ζ0, w0)

and then using Newton’s method. To ensure that these are good approximations, we ac-
tually want to ensure that for all i, (ζi, wi) is an approximate eigenpair of Bsi+1 . Figure 1
attempts to convey the general idea.

The algorithmic counterpart of this idea is the following.

Algorithm 1. Path-follow

Input: A,A0 ∈ Cn×n \ {0}, and (ζ0, w0) ∈ C× Cn

Preconditions: ‖w0‖ = 1, RA0 6= RA, (ζ0, w0) is a certified approximate
eigenpair of A0 (with some associated eigenpair (λ0, v0)).

redefine A0 := A0/‖A0‖F, A1 := A/‖A‖F
α := dS(A0, A1), s0 := 0, B := A0, i = 0
repeat

Ȧ := unit tangent vector (in the direction of the

parametrization) to LA0,A1 at B

1s := Choose step(B, Ȧ, ζi, wi)
si+1 := min{α, si +1s}
B := point in LA0,A1 with dS(A0, B) = s

(ζi+1, wi+1) := N
3
B(ζi, wi) (three Newton iterations)

if |ζi+1| > 1 then ζi+1 = ζi+1/|ζi+1|.

i := i + 1
until s = α

return (ζ ′, w′) = (‖A‖F ζi, wi)

Output: (ζ ′, w′) ∈ C× Cn

Postconditions: The execution halts if the lifting (At , λt , vt ), 0 ≤ t ≤

dS(A0, A), of LA0,A at (λ0, v0) does not meet 6′. In this case, (ζ ′, w′) is a
certified approximate eigenpair of A with associated eigenpair (λ1, v1).
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Remark 2.18. Note that in particular any triple (A0, λ0, v0) ∈ W is an acceptable start-
ing point for Path-follow for generic A ∈ Cn×n.

The algorithm Path-follow is unambiguous except for the subroutine Choose step, which
will be described at the end of §5.2. We next state the main results for it. Recall that the
point s` ∈ [0, α] is the value of s generated by Path-follow at the `th iteration. ForK ∈ R
we denote by dKe the smallest integer which is greater than or equal to K .

Theorem 2.19. Suppose that LA0,A = {Bs}s∈[0,α] (so B0 = A0/‖A0‖F and Bα =
A/‖A‖F ) and assume that LA0,A ∩ 6 = ∅. Then the algorithm Path-follow stops af-
ter at most dKe steps where K is given by

K := K(A,A0, ζ0, w0) := C

∫ α

0
µ(Bs, λs, vs)‖(Ḃs, λ̇s, v̇s)‖ ds.

Here the pairs (λs, vs) are given by (17).
More generally, let q ∈ Z, q ≥ 0. Then Path-follow stops after at most (the smallest

integer greater than or equal to)

q + C

∫ α

sq

µ(Bs, λs, vs)‖(Ḃs, λ̇s, v̇s)‖ ds

steps. The returned pair (ζ, w) is an approximate eigenpair of A with associated eigen-
pair (λα, vα). Here, C ≤ 3000 is a universal constant.

For 0 ≤ a < b ≤ α, the quantity

Lµ,a,b(Bs, λs, vs) =

∫ b

a

µ(Bs, λs, vs)‖(Ḃs, λ̇s, v̇s)‖ ds (18)

in Theorem 2.19 is the length of the curve {(Bs, λs, vs) : a ≤ s ≤ b} in the so-called
condition metric. This is the metric that is obtained by pointwise multiplying the natural
metric in S×C×P(Cn) by the condition number squared. We call Lµ,a,b(Bs, λs, vs) the
condition length of this curve.

The proof of Theorem 2.19 is given in §5.3.

Remark 2.20. From Proposition 2.7 , we have

Lµ,sq ,α(Bs, λs, vs) ≤
√

6
∫ α

sq

µ(Bs, λs, vs)
2 ds.

The following result gives an alternative bound to the number of steps.

Corollary 2.21. Let A0, A ∈ Cn×n be R-linearly independent and consider the path
At = (1−t)A0+tA which satisfiesA1 = A. If LA0,A∩6 = ∅ then, for any q ∈ Z, q ≥ 0,
the algorithm Path-follow stops after at most dKe steps where

K := q +
√

6C‖A0‖F ‖A1‖F

∫ 1

tq

µ(At , λt , vt )
2

‖At‖
2
F

dt
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with

tq :=
‖A0‖F

‖A1‖F (sinα cot sq − cosα)+ ‖A0‖F
.

Here, λt , vt are the eigenvalue and eigenvector of At defined by continuation.

Proof. From Theorem 2.19 and Remark 2.20, if we let C′ =
√

6C, the number of steps
is at most the smallest integer greater than or equal to

q + C′
∫ α

sq

µ(Bs, λBs , vBs )
2 ds = q + C′

∫ α

sq

µ(Bs, λBs , vBs )
2
‖Ḃs‖F ds,

where λBs and vBs are the eigenvalue and eigenvector ofBs defined by continuation. Now,
if we reparametrize that spherical segment by Ct = At/‖At‖F , t ∈ [0, 1], the integral
does not change. The quantity above is thus equal to

q+C′
∫ 1

tq

µ(Ct , λCt , vCt )
2
‖Ċt‖F dt =

Rmk. 2.5
q+C′

∫ 1

tq

µ(At , λt , vt )
2
∥∥∥∥ ddt

(
At

‖At‖F

)∥∥∥∥ dt.
Substituting Ȧt = A1−A0 and At = (1− t)A0+ tA1 in this last formula and with some
elementary computations (see [19, Lemma 17.5]) we conclude that∥∥∥∥ ddt

(
At

‖At‖F

)∥∥∥∥ ≤ ‖A0‖F ‖A1‖F

‖At‖
2
F

.

The corollary follows (the value of tq is obtained by the reparametrization from sq ). ut

The inequality of Remark 2.20 implies that (up to constants) the upper bound for the
number of steps by an algorithm in terms of the condition length as in Theorem 2.19 is
smaller than the upper bound in terms of the integral of the squared condition number
as in Corollary 2.21. A similar situation applies in the context of polynomial system root
finding. In this case implementations exist in both contexts (see [49, 18, 11, 23]). The
condition length algorithm is more subtle and the proof of correctness more difficult, both
for the polynomial system and eigenpair cases. So the temptation is to present condition
number squared algorithms. Here for the first time we present a quantitative estimate of
the improvement which is significant and which justifies presenting the more complex
condition length algorithm (another estimate of this kind was established shortly after
in [4]). In Theorem 2.29 a randomized algorithm is studied. The upper bound given by
the condition length algorithm is O(n2) while an algorithm with complexity given by the
condition number squared would give O(n3).

In our main results we are interested in the cost of our algorithms over random ma-
trices A. The following quantity—the expected number of iterations of Path-follow for a
given initial triple (A0, λ0, v0) ∈W—becomes essential:

Avg Num Iter(A0, λ0, v0) := E
A∼NCn×n

K(A,A0, λ0, v0).
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We can also consider the smoothed number of iterations of Path-follow that results by
drawing instead the input matrix A from NT (Â, σ

2) where Â ∈ S is arbitrary. We thus
define

Smd Num Iter(A0, λ0, v0, σ ) := sup
Â∈S

E
A∼NCn×n,T (Â,σ

2)

K(A,A0, λ0, v0).

Proposition 2.22. For (A0, λ0, v0) ∈W we have

Avg Num Iter(A0, λ0, v0) = O(n4µ(A0, λ0, v0)
2)

and, for all σ ∈ (0, 1],

Smd Num Iter(A0, λ0, v0, σ ) = O(n4µ(A0, λ0, v0)
2/σ 2).

Remark 2.23. Note that Proposition 2.22 ensures that Path-follow halts in finite time
with probability 1 even if A0 ∈ 6, as long as µ(A0, λ0, v0) is finite. The algorithm does a
first step that depends on µ(A0, λ0, v0) only and advances to Bs1 with s1 > 0. After that,
the fact that the real codimension of 6 in Cn×n is 2 (shown in Proposition 2.3) ensures
that, almost surely, (LA0,A \ {A0}) ∩ 6 = ∅. Therefore, with probability 1, none of the
matrices Bs is in 6 and the integral over [s1, α] in Theorem 2.19 is finite. Also, note that
one does not need to have the exact eigenpair (λ0, v0), but it suffices to have a certified
approximate eigenpair of A0 with associated eigenpair (λ0, v0). In particular, it suffices
to have (A0, λ0, w0) ∈ W̃ .

To compute all the eigenpairs from an initial matrix A0 ∈ Cn×n \ 6 and its eigenpairs
(λ(1), v(1)), . . . , (λ(n), v(n)) we may proceed by following the n paths corresponding to
taking these eigenpairs in the initial triples. In this case, we will be interested in the
quantities

Avg Num Iter All(A0) :=

n∑
i=1

Avg Num Iter(A0, λ
(i), v(i))

= E
A∼NCn×n

n∑
i=1

K(A,A0, λ
(i), v(i))

and

Smd Num Iter All(A0, σ ) := sup
Â∈S

E
A∼NCn×n,T (Â,σ

2)

n∑
i=1

K(A,A0, λ
(i), v(i)).

For these quantities we prove the following result.

Proposition 2.24. For A0 ∈ Cn×n \6 we have

Avg Num Iter All(A0) = O(n4µmax(A0)
2)

and, for all σ ∈ (0, 1],

Smd Num Iter All(A0, σ ) = O(n4µmax(A0)
2/σ 2).
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We prove Propositions 2.22 and 2.24 in Section 8. Note that the latter does not immedi-
ately follow from the former since in general

n∑
i=1

µ(A0, λ
(i), v(i))2 � µmax(A0)

2.

2.9. Initial triples and global algorithms

The Path-follow routine assumes an initial triple (A0, λ0, v0) at hand. We next deal with
this issue. We first consider the case of computing a single eigenpair. In this case we
consider the diagonal matrix H whose diagonal entries are (1, 0, . . . , 0) and its well-
posed eigenpair (1, e1).

Algorithm 2. Single Eigenpair

Input: A ∈ Cn×n

(ζ, w) := Path-follow(A,H, 1, e1)

Output: (ζ, w) ∈ C× Cn

Postconditions: The execution halts if the lifting of LH,A at (1, e1) does not
meet 6′. In this case, the returned (ζ, w) is a certified approximate eigenpair
of A.

We can formally state (and prove) the first of our main results. To this end, we define
the average cost Avg Cost(n) of Single Eigenpair to be the average (over the input ma-
trix A) of the number of arithmetic operations performed by the algorithm. We similarly
define its smoothed cost Smd Cost(n, σ ).

Theorem 2.25. The algorithm Single Eigenpair returns (almost surely) an approximate
eigenpair of its input A ∈ Cn×n. Its average cost satisfies

Avg Cost(n) = O(n7).

For every 0 < σ ≤ 1, its smoothed cost satisfies

Smd Cost(n, σ ) = O(n7/σ 2).

Proof. Lemma 2.10 and ‖H‖F = 1 imply that µ(H, 1, e1) = 1. The statement is then a
consequence of Proposition 2.22 and the fact that the average cost is obtained by multi-
plying Avg Num Iter(H, 1, e1) by the cost O(n3) of each iteration. ut

Remark 2.26. The triple (H, 1, e1) is the version, in our context, of the initial pair pro-
posed by Shub and Smale [49] for the computation of zeros of polynomial systems. In this
later context, the problem of showing that one can efficiently follow linear homotopies
with this initial pair remains open.
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The fact that any other eigenpair ofH is ill-posed prevents us from using them to compute
other eigenpairs of A. If we want to compute all the eigenpairs of A, we will need to
consider a different approach.

To do so, for any fixed n ≥ 2, let

D := diag(η1, . . . , ηn), (19)

where the ηi are points in the unit side hexagonal lattice chosen in such an order that
0 = |η1| ≤ · · · ≤ |ηn|. We recall that the hexagonal lattice is the set of points of the form

Q

(
a

b

)
, where Q :=

(
1 1/2
0
√

3/2

)
, a, b ∈ Z.

Lemma 2.27. We have µmax(D) ≤
√

3/2
π
n+ o(n).

Proof. We first find a real number r > 0 with the property that the disk D(r) of radius r
contains at least n points in the hexagonal lattice. To do so, note that a lattice point Q

(
a
b

)
is in D(r) if and only if (

a

b

)
∈ Q−1D(r).

Now, the singular values of Q−1 are
√

2 and
√

2/3, so Q−1D(r) is an ellipse of area
2πr2/

√
3 and maximal radius

√
2r . Dividing by the smallest integer N > 2

√
2 r and

translating the resulting ellipse to have center (1/2, 1/2), we look for points of the form
(a/N, b/N) with a, b ∈ {0, . . . , N − 1} which lie inside an ellipse of area

2πr2
√

3N2

contained in [0, 1]2. This is a particular instance of the problem of counting lattice points
in semialgebraic sets, a well studied problem for which a quite complete solution is for
example [14, Th. 3, p. 327]. We conclude that the number of points in the hexagonal
lattice in D(r) is at least

2πr2
√

3
− 2N ≥

2πr2
√

3
− 4
√

2 r − 2.

In particular, we can find n lattice points in a disk of radius r = 31/4/((2π)1/2n1/2
+

o(n1/2)). Moreover, around each lattice point we can place a circle of radius 1/2 without
overlappings. From the mean value equality for analytic functions, for any z ∈ C and
ε > 0 we have

|z|2 = |z2
| =

∣∣∣∣ 1
πε2

∫
|y−z|<ε

y2 dy

∣∣∣∣ ≤ 1
πε2

∫
|y−z|<ε

|y|2 dy.

We thus have

‖D‖2F =

n∑
j=1

|ηj |
2
≤

∑
z

|z|2 ≤
4
π

∑
z

∫
|y−z|<1/2

|y|2 dy ≤
4
π

∫
|y|<r+1/2

|y|2 dy,
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where z runs over all lattice points contained in D(r). Computing the last integral yields

‖D‖2F ≤ 2r4
+ o(r4) =

3n2

2π2 + o(n
2).

Finally, from Lemma 2.10 we conclude that

µmax(D)
2
= ‖D‖2F ≤

3n2

2π2 + o(n
2). ut

We now put together the continuation algorithm Path-follow and this specific initial triple.

Algorithm 3. All Eigenpairs

Input: A ∈ Cn×n

compute D and ηj as defined in (19)
for j ∈ {1, . . . , n} do

(ζj , wj ) := Path-follow(A,D, ηj , ej )

Output: ((ζ1, w1), . . . , (ζn, wn)) ∈ (C× Cn)n

Postconditions: The algorithm halts if LD,A ∩ 6 = ∅. In this case, the
pairs (ζj , wj ) are certified approximate eigenpairs ofAwith pairwise different
associated eigenpairs.

We can now state (and prove) the second of our main results.

Theorem 2.28. The algorithm All Eigenpairs returns (almost surely) n approximate
eigenpairs of its input A ∈ Cn×n, with pairwise different associate eigenpairs. Its av-
erage cost satisfies

Avg Cost(n) = O(n9).

For every σ ≤ 1 its smoothed cost satisfies

Smd Cost(n, σ ) = O(n9/σ 2).

Proof. This easily follows from Lemma 2.27 and Proposition 2.24. As in the proof of
Theorem 2.25, we recall that the cost of each iteration is O(n3). ut

2.10. Computer experiments

The algorithm Single Eigenpair was implemented in Matlab by Liu Yiting, and this im-
plementation was used to get an empirical estimate of its average number of iterations
and average cost.

To estimate these averages she generated 200 random complex matrices Aj ∈ Cn×n
for n = 4, 8, 16, 32. For each n and each j she computed an eigenpair forAj and recorded
the number Inj of iterations performed by Single Eigenpair to do so. Then she computed
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the (empirical) average number of iterations Iter(n) = 1
200

∑200
j=1 Inj . She did the same

for n = 64 but only with 30 matrices. She obtained, respectively, 1571.4, 3464.9, 6410.4,
9390.6, and 13941.

In order to estimate the growth of Iter(n) with n she did a linear regression between
log2 Iter(n) and log2 n for n = 4, 8, 16, 32 and 64. The regression line obtained was
log2 Iter(n) ≈ 0.7737(log2 n) + 9.3026. The value of the regression coefficient, close
to 1, shows that this line is a very good fit to the functional dependence log2 Iter(n) =
f (log2 n). Taking exponential with base 2 on both sides, we get Iter(n) ≈ 632 n0.78, and
therefore an empirical estimate of O(n3.78) for Avg Cost(n), substantially better than the
O(n7) in Theorem 2.25 (but still worse than the empirical behavior of the eigensolvers
currently used).

2.11. Randomized algorithms

In this section we follow the ideas in [13] adapting them to the case of eigenpair compu-
tations. Consider the probability distribution D in the solution variety V defined via the
following procedure:

randomly choose A0 ∼ NCn×n

randomly choose one eigenpair (λ0, v0) of A0
(20)

Next assume that we have a routine draw from D to draw triples (A0, λ0, v0) from the
distribution D on V . Then we can consider the following algorithm.

Algorithm 4. Random initial triple (scheme)

Input: A ∈ Cn×n

(A0, λ0, v0) := draw from D
(ζ, w) := Path-follow(A,A0, λ0, v0)

Output: (ζ, w) ∈ (C× Cn)n

Postconditions: The execution halts if the lifting of LA0,A at (λ0, v0) does
not meet 6′. In this case, (ζ, w) is an approximate eigenpair of A.

The interest of this algorithmic scheme is that we can prove better bounds (than those in
Theorem 2.25) for the number of iterations of Path-follow.

Theorem 2.29. The expected average number of homotopy steps of Path-follow in Algo-
rithm 4 satisfies

E
A∼NCn×n

E
(A0,λ0,v0)∼D

K(A,A0, λ0, v0) ≤ 4Cn2,

where C is as in Theorem 2.19.
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Theorem 2.29, which will be proved in Section 9, brings to focus the need of an imple-
mentation of draw from D. It must be noted though that a direct implementation is not
possible since the second line in (20) (choosing (λ0, v0) at random) implicitly requires
solving an EVP problem, the very question that this article is attempting to solve! This is
a similar situation to that solved in [12, 13], where a random polynomial system and one
of its zeros at random had to be chosen. It is also similar to that dealt with in [5] for the
computation of eigenpairs of Hermitian matrices. A version of the proof of Theorem 2.29
with the Gaussian Unitary Ensemble replacing the Gaussian distribution actually yields
an improvement over the main result in [5]. (We note in passing that the case of Her-
mitian matrices is one of the few instances where a proof of convergence of a practical
eigensolver, such as the Francis–Kublanovskaya’s QR, is actually known [7].)

It must also be noted that by following the method in [34] for the polynomial system
case Algorithm 4 can probably be de-randomized without increasing the complexity.

Corollary 2.30. In the case of Hermitian matrices, the expected average number of ho-
motopy steps of Path-follow in Algorithm 4 (with the randomization algorithm in [5] in
place of draw from D) is O(n2). This yields an expected cost of O(n5) for the compu-
tation of one eigenpair and of O(n6) for the computation of all of them. Here the input
matrix H is drawn from the Gaussian Unitary Ensemble. ut

Following the ideas in those papers, we note that Theorem 2.29 would yield an algo-
rithm with average running time O(n5) if we could find some collection of probability
spaces �n and functions ψn : �n→ Vn, n ≥ 2, such that:

1. Choosing ω ∈ �n can be done starting with a number of random choices of numbers
with the NC distribution, and performing some arithmetic operations on the results,
the total expected running time being at most O(n5).

2. Given ω ∈ �n, ψn(ω) is computable in average time O(n5), that is, the expected
number of arithmetic operations for computing ψn(ω) must be O(n5).

3. Choosing ω at random in �n and computing (A0, λ0, v0) = ψn(ω) is equivalent to
choosing A0 ∼ NCn×n at random and choosing at random (λ0, v0) such that Av0 =

λ0v0. That is, for any measurable mapping φ : Vn→ [0,∞] we must have

E
ω∼�n

φ(ψn(ω)) = E
A0∼NCn×n

1
n

∑
λ0,v0:A0v0=λ0v0

φ(A0, λ0, v0), (21)

so that we can apply this equality to

φ(A0, λ0, v0) = E
A∼NCn×n

K(A,A0, λ0, v0)

and apply Theorem 2.29.

Unfortunately, we are not able to produce a collection of probability spaces �n and func-
tions ψn as described above. However, we will prove that relaxing (21) to the following
less restrictive situation is actually possible: instead of demanding the equality in (21) we
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can just demand an inequality where the right-hand term is multiplied by some polyno-
mial in n. Moreover, we do not need (21) to hold for every measurable function φ since
all the interesting functions for the EVP problem are projective functions, invariant under
the action of the unitary group. We can thus relax (21) to hold only with a polynomially
bounded inequality, and for unitary invariant projective functions. Proving that this can
actually be done is our goal now. (Meanwhile our ideas have been adapted to the more
general setting of eigenpairs of polynomial systems in [15].)

We start by defining �n and ψn. Consider the classical Stiefel manifold consisting of
orthonormal (n− 1)-frames in Cn, given by

Sn−1(Cn) := {Q ∈ Cn×(n−1)
: Q∗Q = In−1},

endowed with its natural probability measure given by the restriction of the Frobenius
Hermitian structure to the tangent bundle.

For every n ≥ 2, let

An := {(M,Q) : ker(M) = ker(Q∗)} ⊆ C(n−1)×n
× Sn−1(Cn). (22)

In other words, An consists of pairs of matrices M,Q such that the columns of Q form
an orthonormal basis of the complement of ker(M). The set An has a natural probability
measure µAn

given by

µAn
(X) := E

M∼NC(n−1)×n
E

Q: (M,Q)∈An

1X(M,Q)

for measurable sets X ⊆ An. Here, Q has the uniform distribution in the compact mani-
fold {Q ∈ Sn−1(Cn) : (M,Q) ∈ An} and 1X is the indicator function of X.

Definition 2.31. Let

�n := {(λ,w, (M,Q)) : 2<(λ̄ tr(MQ)) ≤ 1− |λ|2(n− 1)} ⊆ C× Cn−1
×An

be endowed with the product measure µ�n , normalized to have total unit mass (see Re-
mark 2.32 below). Then, let

ψn(λ,w,M,Q) :=

((
λ w∗

0 MQ+ λIn−1

)
, λ, e1

)
.

Remark 2.32. An explicit description of the product measure µ�n is as follows:

µ�n(Y ) := Cn E
λ,w

µAn
({(M,Q) : (λ,w,M,Q) ∈ Y })

for measurable sets Y ⊆ �n, where λ ∼ NC, w ∼ NCn×1 and Cn is a normalizing
constant given by

C−1
n = Prob

(λ,M,Q)∈C×An

(
2<(λ̄ tr(MQ)) ≤ 1− |λ|2(n− 1)

)
. (23)

Our last main result (see Section 10 for a proof) is the following.
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Theorem 2.33. Let �n and ψn be as in Definition 2.31 for all n ≥ 2. Then:

(1) Choosing ω ∈ �n can be done by choosing 2n2
− 2n+ 1 numbers with the NC dis-

tribution, checking a test which involves the computation of a Moore–Penrose inverse
and computing two QR decompositions. This process may be repeated as a function
of the test’s outcome, but the expectation of the number of times the test is performed
is at most Cn. The total expected running time is O(n3Cn).

(2) Given ω ∈ �n, computing ψn(ω) can be done with running time O(n3).
(3) For any unitarily invariant measurable mapping φ : V → [0,∞] we have

E
ω∼�n

φ(ψn(ω)) ≤ enCn E
A0∼NCn×n

1
n

∑
λ0,v0:A0v0=λ0v0

φ(A0, λ0, v0). (24)

Note that (24) can be understood as follows: let m1 be the push-forward measure of ψn
in V and let m2 be the measure in V given by

m2(X) = E
A0∼NCn×n

1
n
]{(λ0, v0) : A0v0 = λ0v0, (A0, λ0, v0) ∈ X}

for any measurable set X ⊆ V . Then the Radon–Nikodym derivative dm1/dm2 is
bounded above by enCn.

Problem 2.34. Describe an alternative collection (�n, ψn) which satisfies a sharper ver-
sion of (24), with a constant in the place of nCn. This would improve the running time of
the algorithm Random initial triple below by a factor of O(nCn).

We are now prepared to describe our random homotopy algorithm.

Algorithm 5. Random initial triple

Input: A ∈ Cn×n

Randomly choose ω ∈ �n
(A0, λ0, v0) := ψn(ω) (note that v0 = e1)

(ζ, w) := Path-follow(A,A0, λ0, v0)

Output: (ζ, w) ∈ (C× Cn)n

Postconditions: The execution halts if the lifting of LA0,A at (λ0, v0) does
not meet 6′. In this case, (ζ, w) is an approximate eigenpair of A.

From Theorem 2.33, the expected running time of the computation of (A0, λ0, v0)

is O(n3Cn). Moreover, the expected number of homotopy steps in the execution of
Path-follow(A,A0, λ0, v0) is

S = E
A∼NCn×n , ω∼�n

K(A,ψn(ω)) = E
ω∼�n

E
A∼NCn×n

K(A,ψn(ω)),
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where K(A,ψn(ω)) is as in Theorem 2.19. From (24), we have

S ≤ e nCn E
A0∼NCn×n

1
n

∑
λ0,v0:A0v0=λ0v0

E
A∼NCn×n

K(A,A0, λ0, v0)

≤
Th. 2.29

O(n3Cn).

We multiply the number of steps by O(n3) to get the following complexity bound.

Theorem 2.35. The algorithm Random initial triple returns (almost surely) an approxi-
mate eigenpair of its input A ∈ Cn×n. Its average cost satisfies

Avg Cost(n) = O(n6Cn) ≤
Lem. 10.1

O(n7). ut

3. Some properties of the condition number µ

There is a general geometric framework for defining condition numbers [19, §14.3]. In
our situation, this framework takes the following form.

If (A, λ, v)∈W , then from the inverse function theorem the projection π1 : V→Cn×n
(cf. (3)), around (A, λ, v), has a local inverse U → V, B 7→ (B,G(B)), that is defined
on an open neighborhood U of A in Cn×n. We call G the solution map. The map G
decomposes as G = (Gλ,Gv), where

Gλ : U → C and Gv : U → P(Cn)

associate to matrices B ∈ U an eigenvalue and the corresponding eigenvector. Let

DGλ(A) : Cn×n→ C and DGv(A) : Cn×n→ v⊥

be the derivatives of these maps at A. The condition numbers for the eigenvalue λ and the
eigenvector v of A are defined as follows:

µλ(A, λ, v) := ‖DGλ(A)‖ and µv(A, λ, v) := ‖DGv(A)‖,

where the norms are the operator norms with respect to the chosen norms (on Cn×n we
use the Frobenius norm and on v⊥ the norm given by (1)).

Lemma 14.17 in [19] gives explicit descriptions of DGλ and DGv . Before stating it,
we recall that if λ is an eigenvalue of A there exists u ∈ P(Cn) (the left eigenvector) such
that (A− λ Id)∗u = 0. Recall the linear map Aλ,v : v⊥→ v⊥ introduced in (4).

Lemma 3.1. Assume that Av = λv and λ has multiplicity 1. Then the associated left
eigenvector is

u = v − iCnA
−∗

λ,vPv⊥A
∗v. (25)

Here we have denoted A−∗λ,v := (A
−1
λ,v)
∗. Note that 〈u, v〉 = ‖v‖2.

Proof. Take a representative such that ‖v‖ = 1 and let

z := iCnA
−∗

λ,vPv⊥A
∗v =

(6)

(
(Id− vv∗)(A− λ Id)∗(Id− vv∗)

)†
A∗v.
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From the definition of the Moore–Penrose pseudoinverse, z is the unique element in v⊥

that minimizes ‖(Id−vv∗)(A−λ Id)∗z−A∗v‖, that is, we have (Id−vv∗)(A−λ Id)∗z =
Pv⊥(A

∗v) = (Id− vv∗)A∗v or equivalently

(A− λ Id)∗z = A∗v + tv for some t ∈ C.

Premultiplying both sides by v∗ we have

v∗(A− λ Id)∗z = v∗A∗v + t‖v‖2, so 0 = (λv)∗v + t‖v‖2 = (λ̄+ t)‖v‖2,

hence t = −λ̄ and then

(A− λ Id)∗(v − z) = (A− λ Id)∗v − A∗v + λ̄v = 0,

that is, v − z is a left eigenvector of A with associated (left) eigenvalue λ̄ as wanted. ut

The following is Lemma 14.17 in [19].

Lemma 3.2. Let (A, λ, v) ∈ W and let u be a left eigenvector of A with eigenvalue λ̄.
Then:
(a) 〈v, u〉 6= 0.
(b) The derivative of the solution map is given by DG(A)(Ȧ) = (λ̇, v̇), where

λ̇ =
〈Ȧv, u〉

〈v, u〉
, v̇ = −A−1

λ,v Pv⊥Ȧv. ut

The following result, which follows directly from Lemma 3.2, was already pointed out
in [56] (see also [19, Prop. 14.15]).

Proposition 3.3. Choosing the Frobenius norm on TACn×n = Cn×n and 1
‖v‖
‖ · ‖ on v⊥,

the condition numbers µv for the eigenvector problem and µλ for the eigenvalue problem
satisfy

µλ(A, λ, v) = ‖DGλ(A)‖ =
‖u‖ ‖v‖

|〈u, v〉|
=
(25)

‖u‖

‖v‖
≤

√
1+ µ(A, λ, v)2

and

µv(A, λ, v) = ‖DGv(A)‖ = ‖A
−1
λ,v‖ =

µ(A, λ, v)

‖A‖F
. ut

Proof of Proposition 2.7. The first two inequalities are immediate from Proposition 3.3.
For the third one, note that

‖0̇(t)‖ = ‖(Ȧ, λ̇, v̇)‖ ≤ ‖Ȧ‖

√
1+ µ2

t + (1+ µ
2
t ) ≤ ‖Ȧ‖

√
6µ2

t

the last inequality since µt ≥ 1/
√

2 (Lemma 2.6). ut

Our last lemma is a version of Lemma 2.6 without the assumption that our point lies
on W .

Lemma 3.4. For A ∈ Cn×n, w ∈ Cn and ζ ∈ C with |ζ | ≤ ‖A‖F we have

µ(A, ζ,w) ≥
1

1+
√

1− ‖w∗A‖2

‖w‖2‖A‖2F

≥
1
2
.
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Proof. We can assume that w = e1 and write

A =

(
λ a∗

b Â

)
,

where λ ∈ C and a, b ∈ Cn−1. Then Aζ,w ≡ Â− ζ Idn−1 and

µ(A, ζ, e1)

‖A‖F
= ‖(Â− ζ Idn−1)

−1
‖ ≥

1

‖Â− ζ Idn−1‖
≥

1

‖Â‖ + |ζ |

≥
1√

‖A‖2F − ‖e
∗

1A‖
2
+ ‖A‖F

.

The lemma follows. ut

4. Proofs of Theorem 2.8 and Corollary 2.9

It will be handy to use the definition of µ given in (10). We start with a very simple linear
algebra lemma about the Moore–Penrose pseudoinverse.

Lemma 4.1. Let R,R′ ∈ Cn×n be such that R has rank n − 1. Assume moreover that
det(R′) = 0 and

‖R − R′‖ ≤ ε/‖R†
‖ for some 0 ≤ ε < 1.

Then R′ has rank n− 1 and

‖R†
‖

1+ ε
≤ ‖R′†‖ ≤

‖R†
‖

1− ε
.

Proof. Let σ and σ ′ be the smallest nonzero singular values of R and R′, respectively.
Note that σ − ‖R − R′‖ ≤ σ ′ ≤ σ + ‖R − R′‖ (this is a classical fact proved for
the first time in [58]; see also [29, Cor. 8.6.2]). In particular, σ ′ ≥ σ − ‖R − R′‖ =

‖R†
‖
−1
−‖R−R′‖ > 0, so R′ has rank at least n−1 and by hypothesis it has rank n−1.

Moreover, we have

‖R†
‖ =

1
σ
=

1
σ ′

σ ′

σ
≤ ‖R′†‖

σ + ‖R − R′‖

σ
≤ (1+ ε)‖R′†‖.

The upper bound follows from a similar argument. ut

Proof of Theorem 2.8. Choose representatives such that ‖v‖ = ‖v′‖ = 1 and let

Q := (Id− vv∗)(A− λ Id)(Id− vv∗), Q′ := (Id− v′v′∗)(A′ − λ′Id)(Id− v′v′∗).

We have rank(Q) = n−1 since µ(A, λ, v) <∞ by our assumption (see (10)). We claim
that

‖Q−Q′‖ ≤ ε/‖Q†
‖, (26)

which from Lemma 4.1 implies that Q′ has rank n− 1 and

‖Q†
‖

1+ ε
≤ ‖Q′†‖ ≤

‖Q†
‖

1− ε
,
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that is (recall ‖A‖F = ‖A′‖F = 1),

µ(A, λ, v)

1+ ε
≤ µ(A′, λ′, v′) ≤

µ(A, λ, v)

1− ε
,

as wanted.
It remains to prove the claim. To do so, let (At , λt , vt ) be a geodesic in Cn×n × C×

P(Cn), parametrized by arc-length, joining (A, λ, v) and (A′, λ′, v′), so by hypothesis we
have t ∈ [0, ε/(4

√
3 ‖Q†

‖)] and we can choose representatives vt in such a way that

v̇t ⊥ vt , ‖vt‖ = 1, ‖Ȧt‖2F + |λ̇t |
2
+ ‖v̇t‖

2
= 1, for all t ∈ [0, ε/(4

√
3 ‖Q†

‖)].

Let Qt := (Id − vtv
∗
t )(At − λt Id)(Id − vtv

∗
t ). In order to bound ‖Q̇t‖ we first note that

for x ∈ Cn,

‖(v̇tv
∗
t + vt v̇

∗
t )(x)‖ = ‖v̇t 〈x, vt 〉 + vt 〈x, v̇t 〉‖ =

√
‖v̇t‖2|〈x, vt 〉|2 + ‖vt‖2|〈x, v̇t 〉|2

= ‖v̇t‖
√
|〈x, vt 〉|2 + |〈x, v̇t/‖v̇t‖〉|2 ≤ ‖v̇t‖ ‖x‖,

that is, ‖v̇tv∗t + vt v̇
∗
t ‖ ≤ ‖v̇t‖. On the other hand,

‖At − λt Id‖ ≤ ‖At‖ + |λt | ≤ ‖At‖ + ‖At‖ ≤ 2‖At‖F = 2,

so computing the derivative of Qt we see that

‖Q̇t‖ ≤ 2‖v̇tv∗t + vt v̇
∗
t ‖ ‖At − λt Id‖ + ‖Ȧt − λ̇t Id‖

≤ 4‖v̇t‖ + ‖Ȧt − λ̇t Id‖ ≤ 4(‖v̇t‖ + ‖Ȧt‖ + |λ̇t |)

≤ 4
√

3(‖v̇t‖2 + ‖Ȧt‖2 + |λ̇t |2)1/2 = 4
√

3.

Thus, we have ‖Q − Q′‖ ≤
∫ ε/(4√3 ‖Q†

‖)

0 4
√

3 dt ≤ 4
√

3 ε/(4
√

3 ‖Q†
‖), finishing the

proof of (26) and that of Theorem 2.8. ut

Proof of Corollary 2.9. Consider the portion LA,A′ = {At } of the great circle defined
for t ∈ [0, α] where α = dS(A,A′). Let (λ, v) be any eigenpair of A. From the inverse
function theorem, the map t 7→ 0(t) = (At , λt , vt ) ∈ W (given by the local inverse
of π1) is defined and, with dist(t) := dist((A, λ, v), (At , λt , vt )), satisfies

dist(t) <
ε

4
√

3µ(A, λ, v)
, t ∈ [0, δ), (27)

for some maximal δ ∈ (0, α]. From Theorem 2.8 this implies

µ(0(t)) ≤
µ(A, λ, v)

1− ε
, t ∈ [0, δ), (28)

giving a global bound for the norm of the derivative of the solution map. Thus, 0(t) can
be continuously extended to [0, δ] and from maximality of δ, either δ = α or δ < α
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and (27) must become an equality when changing t to δ. In this last case, which we will
rule out by contradiction, note that from Proposition 2.7 and (28),

dist(δ) ≤

∫ δ

0
‖0̇(t)‖ dt ≤

√
6
∫ δ

0
µ(0(t)) dt ≤

√
6 δ
µ(A, λ, v)

1− ε
.

Now, in our range of values, we have α = dS(A,A′) = 2 arcsin(‖A − A′‖F /2) <
1001
1000‖A− A

′
‖F , which, together with δ < α, implies

dist(δ) <
1001‖A−A′‖F

√
6µ(A, λ, v)

1000(1−ε)
≤

1001ε
√

6
50000(1−ε)µ(A, λ, v)

<
ε

4
√

3µ(A, λ, v)
,

which is a contradiction (note that we have used the bound ‖A−A′‖Fµ(A, λ, v)2 ≤ ε/50
and the fact that ε < 1/2). We thus conclude that δ = α and the corollary follows
from (27) and Theorem 2.8. ut

5. Condition-length homotopy continuation

The goal of this section is to fully describe the routine Choose step (with which the
algorithm Path-follow will be complete) and to prove Theorem 2.19.

To do so, it will be useful to denote by β(A, ζ,w) the length (in the tangent space) of
the Newton step with matrix A ∈ S and input (ζ, w) ∈ C × P(Cn). That is, if we take a
representative such that ‖w‖ = 1,

β(A, ζ,w)2 := ‖(DFA(ζ, w)|C×w⊥)
−1FA(ζ, w)‖

2
=

∥∥∥∥(λ̇v̇
)∥∥∥∥2

= |λ̇|2 + ‖v̇‖2,

where λ̇, v̇ are given in (11). When ‖v̇‖ is small, β approximates the length of the Newton
step also under the distance dist. Indeed,

distA((ζ, w),NA(ζ, w))
2
= |λ̇|2 + dP(w,w − v̇)

2

=
(2)
|λ̇|2 +

(
arccos

|〈w,w − v̇〉|

‖w‖ ‖w − v̇‖

)2

= |λ̇|2 +

(
arccos

1√
1+ ‖v̇‖2

)2

.

It is easy to check that

9
10x

2
≤

(
arccos

1
√

1+ x2

)2

≤ x2 for x ≤ 1
3 ,

so we have proved that whenever ‖v̇‖ ≤ 1/3,
9

10β(A, ζ,w) ≤ distA((ζ, w),NA(ζ, w)) ≤ β(A, ζ,w). (29)

(The upper bound inequality is valid regardless of the value of ‖v̇‖.) The knowledge of β
allows us to bound the distance from an approximate eigenpair to the associated exact
eigenpair.
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Lemma 5.1. Assume that (ζ, w) is an approximate eigenpair of A ∈ S with associated
eigenpair (λ, v). Then distA((ζ, w), (λ, v))≤2β(A, ζ,w). Moreover, if β(A, ζ,w)≤1/3
we also have

1
2β(A, ζ,w) ≤ distA((ζ, w), (λ, v)) ≤ 2β(A, ζ,w).

Proof. We have
distA((ζ, w), (λ, v)) ≤ distA((ζ, w),NA(ζ, w))+ distA(NA(ζ, w), (λ, v))

≤
(29)
β(A, ζ,w)+ 1

2distA((ζ, w), (λ, v)),

the last from the definition of approximate eigenpair. The upper bound in the statement
follows. By a similar argument,

distA((ζ, w), (λ, v)) ≥ distA((ζ, w),NA(ζ, w))− distA(NA(ζ, w), (λ, v))

≥
(29)

9
10β(A, ζ,w)−

1
2distA((ζ, w), (λ, v)),

and the lower bound follows as well. ut

5.1. The Lipschitz property of β

To describe Choose step we need a set of constants satisfying a few relations. Not all
of them are used in the description of Choose step. Some only occur in the proof of the
correctness of Path-follow. We will consider constants c1, c

′

1, cu, c
′
u, c∗, c4, c5, c6, c7,K .

These are any collection of positive numbers satisfying the following:

√
3 c′1 ≤ c1 <

1
3
,
√

3 c′u ≤ cu −
3
2c

2
1(
√

3− 1)
1− 3c1

4
√

3 c∗ < 1, c4 = c∗ + (1+ 4
√

3 c∗)(c1 + 2cu), 4
√

3 c4 < 1,

2(1+ 4
√

3 c∗)

1− 4
√

3 c4
cu < Kc∗ <

1
5
, c5 = c

′
u(1− 4

√
3 c∗)− 2

2c∗ + 3
2c

2
1(1+ 4

√
3 c∗)

(1− 3c1)
,

c6 =
c5(1− 3c1)− 2(1+ 3c1)c∗

2(1+ 3c1)(1+ 4
√

3 c4)
, c7 = min

(
c′1(1− 4

√
3 c∗)

(1+ 4
√

3 c4)
, c6

)
.

A collection of parameters satisfying these constraints is shown in Table 1.

Table 1. Our choice of constants for Path-follow

c′1 10−3 c4 0.005306 . . .
c1

√
3 c′1 c5 0.00099 . . .

c′u 10−3 c6 0.00038 . . .

cu
√

3 c′u +
3c2

1(
√

3−1)
2(1−3c1) K 64

c∗ 10−4 c7 0.00038 . . .

In addition to these constants, for the sake of clarity, we spell out a working hypothesis
that we will repeatedly use.
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Hypothesis 5.2. We have (A, λ, v) ∈ V , ‖A‖F = 1, and (ζ, w) is an approximate eigen-
pair of A satisfying |ζ | ≤ 1 and

µ(A, λ, v)distA((λ, v), (ζ, w)) < c∗.

Also, θ : [0, π) → S, θ(s) = As , is some arc-length parametrized half-great circle with
A0 = A.

It is easy to see from Theorem 2.12 that under Hypothesis 5.2 we have β(A, ζ,w) < 1/3
and in particular we can apply Lemma 5.1.

The main goal of this section is to prove the following result. Recall that we have
defined

FA(λ, v) = (A− λ Id)v.

Lemma 5.3. Under Hypothesis 5.2, let s ≤ c1/µ(A0, ζ, w) where 0 ≤ c1 < 1/3. Let

8 = ‖(DFA0(ζ, w)|C×w⊥)
−1Ȧ0w‖.

Then
β−(s) ≤ β(As, ζ, w) ≤ β

+(s),

where

β−(s) =
s8− β(A0, ζ, w)−

3
2c

2
1/µ(A0, ζ, w)

1+ 3c1
,

β+(s) =
s8+ β(A0, ζ, w)+

3
2c

2
1/µ(A0, ζ, w)

1− 3c1
.

For the proof we need some stepping stones.

Lemma 5.4. Let A ∈ S, ζ ∈ C, and |ζ | ≤ 1, w ∈ Cn, ‖w‖ = 1. Then

‖(DFA(ζ, w)|C×w⊥)
−1
‖ ≤ 3µ(A, ζ,w).

Proof. This result is similar to [3, Proposition 6.6], but our assumptions are weaker and
our definition of condition number is slightly different (see the proof of Theorem 2.12).
We can assume that w = e1 for the proof and write

A =

(
λ a∗

b Â

)
,

where λ ∈ C and a, b ∈ Cn−1. Then, for ζ̇ ∈ C and ẇ ∈ Cn−1,

DFA(ζ, e1)

(
ζ̇ ,

(
0
ẇ

))
= (A− ζ Id)

(
0
ẇ

)
− ζ̇ e1 =

(
λ− ζ a∗

b Â− ζ Idn−1

)(
0
ẇ

)
− ζ̇ e1

=

(
−1 a∗

0 Â− ζ Idn−1

)(
ζ̇

ẇ

)
.
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We thus have

‖(DFA(ζ, w)|C×w⊥)
−1
‖ =

∥∥∥∥∥
(
−1 a∗

0 Â−ζ Idn−1

)−1
∥∥∥∥∥ =

∥∥∥∥(−1 a∗(Â−ζ Idn−1)
−1

0 (Â−ζ Idn−1)
−1

)∥∥∥∥
≤

∥∥∥∥(0 0
0 (Â−ζ Idn−1)

−1

)∥∥∥∥+∥∥∥∥(−1 a∗(Â−ζ Idn−1)
−1

0 0

)∥∥∥∥
≤ ‖A−1

ζ,w‖+

√
1+‖a‖2‖A−1

ζ,w‖
2

= µ(A, ζ,w)+
√

1+‖a‖2µ(A, ζ,w)2,

the last two claims in this chain by definition of Aζ,w and the fact that ‖A‖F = 1. Now,
from Lemma 3.4 we know that µ(A, ζ,w) ≥ (1+

√
1− ‖a‖2)−1, which implies

µ(A, ζ,w)+
√

1+ ‖a‖2µ(A, ζ,w)2

µ(A, ζ,w)
= 1+

√
‖a‖2 +

1
µ(A, ζ,w)2

≤ 1+
√
‖a‖2 + (1+

√
1− ‖a‖2)2 = 1+

√
2+ 2

√
1− ‖a‖2 ≤ 3,

the last inequality due to 0 ≤ ‖a‖ ≤ ‖A‖F = 1. We have proved that

‖(DFA(ζ, w)|C×w⊥)
−1
‖ ≤ µ(A, ζ,w)+

√
1+ ‖a‖2µ(A, ζ,w)2 ≤ 3µ(A, ζ,w),

and the bound claimed in the lemma follows. ut

Lemma 5.5. Under Hypothesis 5.2, let s > 0 satisfy 3µ(A0, ζ, w)s < 1. Then

‖(DFAs (ζ, w)|C×w⊥)
−1(DFA0(ζ, w)|C×w⊥)‖ ≤

1
1− 3µ(A0, ζ, w)s

,

‖(DFA0(ζ, w)|C×w⊥)
−1(DFAs (ζ, w)|C×w⊥)‖ ≤ 1+ 3µ(A0, ζ, w)s.

Proof. Note that

DFA0(ζ, w)|C×w⊥(η̇, ẋ) = DFAs (ζ, w)|C×w⊥(η̇, ẋ)+ (A0 − As)ẋ,

hence

‖Id− (DFA0(ζ, w)|C×w⊥)
−1(DFAs (ζ, w)|C×w⊥)‖

≤ ‖(DFA0(ζ, w)|C×w⊥)
−1
‖ ‖As − A0‖ ≤

Lem. 5.4
3µ(A0, ζ, w)s

where we have used ‖As − A0‖ ≤ ‖As − A0‖F ≤ s. The second claim in the state-
ment is now obvious and the first one follows from the Banach lemma, ‖(Id +1)−1

‖ ≤

(1− ‖1‖)−1, valid for ‖1‖ < 1. ut
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Lemma 5.6. Under Hypothesis 5.2, let s > 0 satisfy 3µ(A0, ζ, w)s < 1 and let

8aux(s) := ‖(DFA0(ζ, w)|C×w⊥)
−1(A0 − As)w‖.

Then
8aux(s)− β(A0, ζ, w)

1+ 3µ(A0, ζ, w)s
≤ β(As, ζ, w) ≤

8aux(s)+ β(A0, ζ, w)

1− 3µ(A0, ζ, w)s
.

Proof. From the definition,

β(As, ζ, w) = ‖(DFAs (ζ, w)|C×w⊥)
−1FAs (ζ, w)‖

= ‖[(DFAs (ζ, w)|C×w⊥)
−1(DFA0(ζ, w)|C×w⊥)]

· (DFA0(ζ, w)|C×w⊥)
−1(FA0(ζ, w)+ (As − A0)w)‖. (30)

Thus,

β(As, ζ, w) ≤ ‖(DFAs (ζ, w)|C×w⊥)
−1(DFA0(ζ, w)|C×w⊥)‖(8aux(s)+ β(A0, ζ, w)).

Similarly, we have

β(As, ζ, w) ≥
8aux(s)− β(A0, ζ, w)

‖(DFA0(ζ, w)|C×w⊥)
−1(DFAs (ζ, w)|C×w⊥)‖.

The statement now follows from Lemma 5.5. ut

Proof of Lemma 5.3. We claim that we can write

As = A0 + sȦ0 +
1
2 s

2B

for some B with ‖B‖F ≤ 1. Indeed, this is an elementary observation which follows
from the fact that As is a great circle in the sphere (one can choose As to be the circle
parametrized by (cos s, sin s, 0, . . . , 0) to prove it). As a consequence we have

|8aux(s)− s8| ≤ ‖(DFA0(ζ, w)|C×w⊥)
−1(A0 − As + sȦ0)w‖

≤
1
2 s

2
‖(DFA0(ζ, w)|C×w⊥)

−1
‖ ≤

Lem. 5.4

3
2 s

2µ(A0, ζ, w).

The upper and lower bounds for β(As, ζ, w) in Lemma 5.3 now follow from this last
estimate and Lemma 5.6. ut

5.2. The step’s length in the homotopy continuation

The following result is crucial for the understanding of the homotopy algorithm. Its proof
follows a logic which is similar to that of the proof of Corollary 2.9.
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Proposition 5.7. Under Hypothesis 5.2, let s′ > 0 be any number such that

c′1 ≤ µ(A, ζ,w)s
′
≤ c1

and let s′′ be any number such that

c′u ≤ µ(A, ζ,w)β
+(s′′) ≤ cu,

where β+ is as in Lemma 5.3. Let s̄ = min(s′, s′′). Then

I. The (continuous) branch of the solution map π−1
1 ◦ θ : [0, s̄] → V with π−1

1 ◦ θ(0) =
(A, λ, v) is well defined.

II. For every s ∈ [0, s̄], let (As, λs, vs) := π−1
1 ◦ θ(s). Then

1

1+ 4
√

3 c4
µ(A, λ, v) < µ(As, λs, vs) <

µ(A, λ, v)

1− 4
√

3 c4
(31)

and
distAs ((λs, vs), (ζ, w)) <

Kc∗

µ(As, λs, vs)
. (32)

In particular, (ζ, w) is an approximate eigenpair of As with associated eigenpair (λs, vs)
for every s ∈ [0, s̄]. Finally, the condition length Lµ,0,s̄(π−1

1 (As)) (see (18)) of the curve
π−1

1 (As) is at least c7.

Before we prove Proposition 5.7 we make a few comments on how the proofs of the
proposition and Theorem 2.19 proceed. The hypotheses β+(s′′) give us a bound on the
distance from (ζ, w) to (λs, vs) and ultimately (λ, v) to (λs, vs). Together with the bound
on s′ this allows us to invoke Theorems 2.12 and 2.8 to prove conclussions I and II of the
proposition. The tricky part will be to prove the last statement that Lµ,0,s̄(π−1

1 (As)) ≥ c7.
This statement gives us the upper bound on the number of steps in Theorem 2.19 as the
condition length divided by c7. Now to see that∫ s̄

0
µ(As, λs, vs)‖(Ȧs, λ̇s, v̇s)‖ ds = Lµ,0,s̄(π

−1
1 (As)) ≥ c7

it will suffice to prove that∫ s̄

0
‖(Ȧs, λ̇s, v̇s)‖ ds ≥

const
µ(A, λ, v)

,

since µ is almost constant on the interval. For this it will suffice to prove that one of∫ s̄

0
‖Ȧs‖ ds or

∫ s̄

0
‖v̇s‖ ds

is greater than const/µ(A, λ, v). The first integral is s̄. We will see that if s̄ is small
then distA(vs, v) is greater than or equal to some constant over µ(A, λ, v), and so is the
integral of ‖v̇s‖ which is the length of a path between v and vs .

Proof of Proposition 5.7. We prove the first part of the proposition. From the inverse
function theorem and the continuity of µ, there exists a maximal s∗ ≤ s̄ such that I and II
hold with [0, s̄] changed to [0, s∗). The global upper bound forµ(π−1

1 (As)) shown in (31)
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is in turn an upper bound for the derivative of the solution map, for s ∈ [0, s∗). A standard
limit argument in compact sets then implies that π−1

1 ◦ θ can be extended in a continuous
manner to [0, s∗], and because (31) and (32) are open conditions, we must have one of
the two following scenarios:

(i) s∗ = s̄ and both (31) and (32) hold with s∗ in place of s, or
(ii) at least one of (31) and (32) does not hold with s∗ in place of s.

We now discard the second option. Note that from Hypothesis 5.2 and Theorem 2.8,

1

1+ 4
√

3 c∗
µ(A, λ, v) < µ(A, ζ,w) <

µ(A, λ, v)

1− 4
√

3 c∗
. (33)

Then, for every s ∈ [0, s∗],

dist((A, ζ,w), (As, ζ, w)) = ‖A− As‖F < s∗ ≤ s′ ≤
c1

µ(A, ζ,w)
≤
(1+ 4

√
3 c∗)c1

µ(A, λ, v)
,

and because s∗ ≤ s′′, from Lemma 5.3 we have

β(As, ζ, w) ≤ β
+(s) ≤

cu

µ(A, ζ,w)
<
(1+ 4

√
3 c∗)cu

µ(A, λ, v)
.

From Lemma 5.1 (recall that from II and Theorem 2.12, (ζ, w) is an approximate eigen-
pair of As with associated eigenpair (λs, vs) for s ≤ s∗), this last inequality implies

distAs ((ζ, w), (λs, vs)) ≤ 2β(As, ζ, w) <
2(1+ 4

√
3 c∗)cu

µ(A, λ, v)
. (34)

We have thus proved that for every s ∈ [0, s∗],

dist((A, λ, v), (As, λs, vs)) ≤ distA((λ, v), (ζ, w))+ dist((A, ζ,w), (As, ζ, w))

+ distAs ((ζ, w), (λs, vs))

<
c∗

µ(A, λ, v)
+
(1+ 4

√
3 c∗)c1

µ(A, λ, v)
+

2(1+ 4
√

3 c∗)cu
µ(A, λ, v)

=
c4

µ(A, λ, v)
.

Then, from Theorem 2.8 (note the strict inequality in the displayed formula above),

1

1+ 4
√

3 c4
µ(A, λ, v) < µ(As∗ , λs∗ , vs∗) <

µ(A, λ, v)

1− 4
√

3 c4
. (35)

Thus, (31) holds at s∗ and moreover

distAs∗ ((λs∗ , vs∗), (ζ, w)) <
(34),(35)

2(1+ 4
√

3 c∗)cu
(1+ 4

√
3 c4)µ(As∗ , λs∗ , vs∗)

<
Kc∗

µ(As∗ , λs∗ , vs∗)
.

That is, (32) holds at s∗ and we can discard option (ii), proving the first part of the propo-
sition.
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For the last claim of the proposition, note that the condition length of the curve
π−1

1 (As) is

Lµ,0,s̄(π
−1
1 (As)) =

∫ s̄

0
µ(π−1

1 (As))‖Dπ
−1
1 (As)Ȧs‖ ds

≥
(31)

µ(A, λ, v)

1+ 4
√

3 c4

∫ s̄

0
‖Dπ−1

1 (As)Ȧs‖ ds.

If s̄ = s′ then using the fact that the integrand is greater than or equal to 1, and (33),
we have

Lµ,0,s̄(π
−1
1 (As)) ≥

µ(A, λ, v)

1+ 4
√

3 c4
s′ ≥

c′1

1+ 4
√

3 c4

µ(A, λ, v)

µ(A, ζ,w)
≥
c′1(1− 4

√
3 c∗)

(1+ 4
√

3 c4)
.

Assume now that s̄ = s′′. Then

Lµ,0,s̄(π
−1
1 (As)) ≥

µ(A, λ, v)

1+ 4
√

3 c4

∫ s̄

0
‖Dπ−1

1 (As)Ȧs‖ ds

≥
µ(A, λ, v)

1+ 4
√

3 c4
dist((A0, λ0, v0), (As̄, λs̄, vs̄)).

Now, note that (recall (A0, λ0, v0) = (A, λ, v))

dist((A0, λ0, v0),(As̄, λs̄, vs̄))

≥ dist((A0, ζ, w), (As̄, λs̄, vs̄))− distA0((λ0, v0), (ζ, w))

≥ distAs̄ ((ζ, w), (λs̄, vs̄))− c∗/µ(A, λ, v).

We need a lower bound for this last term. We first note that from Lemma 5.1 and Hypoth-
esis 5.2,

β(A, ζ,w) ≤
2c∗

µ(A, λ, v)
≤

2c∗
(1− 4

√
3 c∗)µ(A, ζ,w)

, (36)

the last by (33). Using this last bound and, again, Lemmas 5.1 and 5.3, we have

2
1+ 3c1

1− 3c1
distAs̄ ((ζ, w), (λs̄, vs̄)) ≥

1+ 3c1

1− 3c1
β(As̄, ζ, w)

≥
1+ 3c1

1− 3c1
β−(s̄) = β+(s̄)− 2

β(A, ζ,w)+ 3
2c

2
1/µ(A, ζ,w)

1− 3c1

≥
c′u

µ(A, ζ,w)
− 2

β(A, ζ,w)+ 3
2c

2
1/µ(A, ζ,w)

1− 3c1

≥
c′u(1− 4

√
3 c∗)

µ(A, λ, v)
− 2

2c∗ + 3
2c

2
1(1+ 4

√
3 c∗)

(1− 3c1)µ(A, λ, v)
=

c5

µ(A, λ, v)
.

For the inequality in the third line we have used the assumption in the statement and
s = s′′. For the inequality in the fourth line, we have used (33) and (36). For the equality
in the fourth line we have used the definition of c5.
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We have thus shown that if s̄ = s′′, then

Lµ,0,s̄(π
−1
1 (As)) ≥

µ(A, λ, v)

1+ 4
√

3 c4

(
c5(1− 3c1)

2(1+ 3c1)µ(A, λ, v)
−

c∗

µ(A, λ, v)

)
=

c5(1− 3c1)− 2(1+ 3c1)c∗

2(1+ 3c1)(1+ 4
√

3 c4)
= c6.

Since c7 ≤ c6, the proof is complete. ut

We can finally describe the subroutine Choose step. It is important to note that given
any matrix A ∈ Cn×n, one can compute in O(n3) arithmetic operations, for example by
first reducing A to tridiagonal Hessenberg form and then using the main result of [31], a
number r such that ‖A‖ ≤ r ≤

√
3 ‖A‖. That is, we can compute operator norms within

a factor of
√

3, and consequently we can compute µ within a factor of
√

3.

Algorithm 6. Choose step

Input: B, Ȧ ∈ S, and (ζ, w) ∈ C× Cn, ‖w‖ = 1

compute r > 0 such that µ(B, ζ,w) ≤ r ≤
√

3µ(B, ζ,w)
s′ := c1/r

8 := ‖(DFB(ζ, w)|C×w⊥)
−1Ȧw‖

compute s′′, the solution of the linear equation

8s′′ + β(B, ζ,w)+ 3
2c

2
1

√
3/r

1− 3c1
=
cu

r

s̄ := min(s′, s′′)

Output: 1s = s̄ ∈ [0, π]

The step size computed by Choose step cannot be too small, as we show now.

Proposition 5.8. The value 1s returned by Choose step(B, Ȧ, ζ, w) satisfies

1s ≥ R/µ(B, ζ,w)2 with R = c7(1− 4
√

3 c4)
2/6 > 0.

5.3. Proof of Theorem 2.19 and Proposition 5.8

We now prove Theorem 2.19, and Proposition 5.8 will follow straightforwardly from our
arguments.

From the definition of Path-follow it is clear that we can assume that ‖A0‖F =

‖A‖F = 1. We further assume that the constants c′1, c1, c
′
u, cuc∗, c4, c5, c6, c7 andK take

the values in Table 1 and denote by π−1
1 (LA0,A) the lift of LA0,A with origin (A0, λ0, v0).

Note that this lift is well defined since, by hypothesis, LA0,A ∩6 = ∅.
Let Bi be the matrix B at the beginning of the ith iteration of Path-follow. Also, let

(λi, vi) be such that (Bi, λi, vi) is the (unique) triple in π−1
1 (LA0,A) above Bi .
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We first prove that for all i ≥ 0, (ζi, wi) is an approximate zero of Bi with associated
eigenpair (λi, vi) and satisfies

distBi ((ζi, wi), (λi, vi)) < c∗/µ(Bi, λi, vi).

We reason by induction. The step i = 0 is true by hypothesis (recall Definition 2.17). For
the induction step, note that the s′ defined by Choose step satisfies (we omit the subscripts
i in (Bi, ζi, wi) in the next few lines)

c′1
µ(B, ζ,w)

≤
c1

√
3µ(B, ζ,w)

≤ s′ ≤
c1

µ(B, ζ,w)
.

Moreover, s′′ satisfies

β+(s′′) =
8s′′ + β(B, ζ,w)+ 3

2c
2
1/µ(B, ζ,w)

1− 3c1

≤
8s′′ + β(B, ζ,w)+ 3

2c
2
1

√
3/r

1− 3c1
=
cu

r
≤

cu

µ(B, ζ,w)
,

and

β+(s′′) =
8s′′+β(B, ζ,w)+ 3

2c
2
1/µ(B, ζ,w)

1− 3c1
≥
8s′′+β(B, ζ,w)+ 3

2c
2
1/r

1− 3c1

=
cu−

3
2c

2
1(
√

3− 1)/(1− 3c1)

r
≥
cu−

3
2c

2
1(
√

3− 1)/(1− 3c1)
√

3µ(B, ζ,w)
≥

c′u

µ(B, ζ,w)
.

We are thus under the hypothesis of Proposition 5.7 with s̄ = 1s (by construction in
Choose step), which guarantees that (ζi, wi) is an approximate eigenpair of the ma-
trix Bi+1. Moreover, Proposition 5.7 also implies

distBi+1((ζi, wi), (λi+1, vi+1)) < Kc∗/µ(Bi+1, λi+1, vi+1).

SinceKc∗ < 1/5, we deduce (using Theorem 2.12) that (ζi, wi) is an approximate eigen-
pair of Bi+1 with associated eigenpair (λi+1, vi+1). Consequently, after three steps of
Newton iteration, (ζi+1, wi+1) satisfies (recall K = 64)

distBi+1((ζi+1, wi+1), (λi+1, vi+1)) <
1

223−1

64c∗
µ(Bi+1, λi+1, vi+1)

=
c∗

2µ(Bi+1, λi+1, vi+1)
. (37)

If |ζi+1| ≤ 1, this finishes the induction step. Otherwise, the algorithm divides ζi+1 by its
norm; in that case we have

distBi+1

((
ζi+1

|ζi+1|
, wi+1

)
, (λi+1, vi+1)

)
≤ distBi+1

((
ζi+1

|ζi+1|
, wi+1

)
, (ζi+1, wi+1)

)
+ distBi+1((ζi+1, wi+1), (λi+1, vi+1))

≤ |ζi+1| − 1+
c∗

2µ(Bi+1, λi+1, vi+1)
.
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On the other hand, from (37) we have (use |λi+1| ≤ ‖Bi+1‖F = 1)

|ζi+1 − λi+1| <
c∗

2µ(Bi+1, λi+1, vi+1)
, so |ζi+1| < 1+

c∗

2µ(Bi+1, λi+1, vi+1)
,

hence

distBi+1

((
ζi+1

|ζi+1|
, wi+1

)
, (λi+1, vi+1)

)
<

c∗

µ(Bi+1, λi+1, vi+1)
,

and the induction step is finished also in the case |ζi+1| > 1.
The induction step is complete. In particular, this shows the last part of the statement.
To show the complexity bounds, assume Path-follow has performed q + ` iterations

and let 0 = s0 < s1 < · · · < sq < · · · < sq+` be the corresponding values of s. Then

Lµ,sq ,sq+`(π
−1
1 (Bs)) =

∑̀
i=1

∫ sq+i

sq+i−1

µ(As, λs, vs)‖(Ȧs, λ̇s, v̇s)‖ ds

=

∑̀
i=1

Lµ,sq+i−1,sq+i (π
−1
1 (As)) ≥ `c7,

the inequality by the last claim of Proposition 5.7. But the algorithm halts as soon as
sq+` = α, i.e., as soon as

Lµ,sq ,sq+`(π
−1
1 (As)) = Lµ,sq ,α(π

−1
1 (As)),

which occurs as soon as ` ≥ c−1
7
∫ α
sq
µ(As, λs, vs)‖(Ȧs, λ̇s, v̇s)‖ ds, as claimed in the

theorem (note that C := c−1
7 ≤ 3000).

We finally prove Proposition 5.8. From Proposition 5.7 we have

µ(B, ζ,w)21s ≥
(31)

(1− 4
√

3 c4)
2
∫ 1s

0
µ(As, λs, vs)

2 ds

≥
Prop. 2.7

(1− 4
√

3 c4)
2

6
Lµ,0,1s (π

−1
1 (As)) ≥

c7(1− 4
√

3 c4)
2

6
,

so Proposition 5.8 follows. ut

6. Integration in the solution variety

6.1. The coarea formula

On a Riemannian manifold M there is a well defined measure volM obtained by integrat-
ing the indicator functions 1A of Borel measurable subsets A ⊆ M against the volume
form dM of M ,

volM(A) :=

∫
M

1A dM.

Dividing 1A by volM(M) if volM(M) <∞ leads to a natural notion of uniform distribu-
tion on M , which we will denote by U (M). More generally, we will call any measurable
function f : M → [0,∞] such that

∫
M
f dM = 1 a probability density on M . We abuse

notation and sometimes write Ex∈M instead of Ex∼U (M).
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The coarea formula (a modern classical formula due to Federer [28], see the Appendix
of [30] for a smooth version) is an extension of the transformation formula to not neces-
sarily bijective smooth maps between Riemannian manifolds. In order to state it, we first
need to generalize the notion of Jacobians.

Suppose that M,N are Riemannian manifolds of dimensions m, n, respectively,
such that m ≥ n. Let ψ : M → N be a smooth map. By definition, the derivative
Dψ(x) : TxM → Tψ(x)N at a regular point x ∈ M is surjective. Hence the restriction
of Dψ(x) to the orthogonal complement of its kernel yields a linear isomorphism. The
absolute value of its determinant is called the normal Jacobian (sometimes called normal
determinant in the context of linear algebra [1]) of ψ at x and is denoted by NJψ(x). We
set NJψ(x) := 0 if x is not a regular point.

If y is a regular value of ψ , then the fiber Fy := ψ−1(y) is a Riemannian submanifold
of M of dimension m − n, and it makes sense to integrate functions on Fy . Moreover,
Sard’s lemma states that almost all y ∈ N are regular values.

We can now state the coarea formula.

Theorem 6.1 (Coarea formula). Suppose that M,N are Riemannian manifolds of di-
mensions m, n, respectively, and let ψ : M → N be a surjective smooth map such that
Dψ is surjective a.e. Let Fy = ψ−1(y). Then for any function χ : M → R that is inte-
grable with respect to the volume measure of M we have∫

M

χ dM =

∫
y∈N

(∫
Fy

χ

NJψ
dFy

)
dN,

and the integrals involved are well defined. ut

It should be clear that this result contains the change of variables formula as a special
case. Moreover, if we apply the coarea formula to the projection π2 : M × N → N ,
(x, y) 7→ y, we retrieve Fubini’s theorem since NJπ2 = 1.

6.2. Coarea formula and double fibrations

The coarea formula can be readily applied to the following situation. Assume that
three Riemannian manifolds M , N1, N2 are equipped with surjective smooth mappings
π1 : M → N1 and π2 : M → N2 whose derivatives are a.e. surjective, so NJπ1 and
NJπ2 are a.e. nonzero. Let χ : M → [0,∞) be a measurable mapping. From Theo-
rem 6.1 applied to π1 we have (here dx and dy stand for the volume forms in M and N1,
respectively) ∫

x∈M

χ(x)NJπ1(x) dx =

∫
y∈N1

∫
x∈π−1

1 (y)

χ(x) dx dy.

On the other hand, Theorem 6.1 applied to π2 yields∫
x∈M

χ(x)NJπ1(x) dx =

∫
z∈N2

∫
x∈π−1

2 (z)

NJπ1(x)

NJπ2(x)
χ(x) dx dz.

We thus have the following result.
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Theorem 6.2. LetM , N1, N2 be Riemannian manifolds equipped with surjective smooth
mappings π1 : M → N1 and π2 : M → N2 whose derivatives are a.e. surjective. Let
χ : M → [0,∞) be a measurable mapping. Then∫

y∈N1

∫
x∈π−1

1 (y)

χ(x) dx dy =

∫
z∈N2

∫
x∈π−1

2 (z)

NJπ1(x)

NJπ2(x)
χ(x) dx dz.

(Note that when M and N1 have the same dimension, one can replace the inner integral
on the left-hand side by a ( finite or countable) sum.) ut

In the next sections we shall apply this result in two different contexts. A linear algebra
argument simplifies the computation of the quotient of normal Jacobians. Let E and F be
finite-dimensional, complex Euclidean vector spaces and let ϕ : E → F be a surjective
linear mapping. Consider the graph 0 := {(x, ϕ(x)) | x ∈ E} of ϕ. Then 0 is a linear
subspace of E × F and the two projections

p1 : 0→ E, (x, ϕ(x)) 7→ x, and p2 : 0→ F, (x, ϕ(x)) 7→ ϕ(x),

are linear maps. Note that p1 is an isomorphism and p2 is surjective as ϕ is.

Lemma 6.3. Under the above assumptions, we have

NJp1

NJp2
= |det(ϕϕ∗)|−1.

Proof. This result is [14, Lemma 3(b), p. 242], although we rewrite it for complex vector
spaces here (note the comment in [14, proof of Theorem 5, p. 243]). ut

6.3. The solution variety for the eigenpair problem

Recall from §2.2 that we have the two projections

π1 : V → Cn×n, (A, λ, v)→ A, and π2 : V → C× P(Cn), (A, λ, v)→ (λ, v),

and, for (A, λ, v) ∈ V , the linear operator Aλ,v : v⊥ → v⊥ given by Pv⊥(A − λ Id)|v⊥ .
In order to apply Theorem 6.2 we first need to compute the quotient of normal Jacobians
there.

Proposition 6.4. Let p := (A, λ, v) ∈ W and choose a representative such that
‖v‖ = 1. Then the derivative Dπ1(p) : TpW → TACn×n is an isomorphism, the deriva-
tive Dπ2(p) : TpW → T(λ,v)(C× P(Cn)) is surjective, and

NJπ1(p)

NJπ2(p)
= |det(Aλ,v)|2 = det(Aλ,vA∗λ,v).

Proof. By unitary invariance, we may assume without loss of generality that v = e1 =

(1, 0, . . . , 0), and then

A =

(
λ c∗

0 B

)
, c ∈ Cn−1, B ∈ C(n−1)×(n−1),
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so Aλ,v = B − λ Idn−1. Let 0 = {(Ȧ,DG(A)Ȧ) : Ȧ ∈ Cn×n} ⊆ Cn×n × C× v⊥ where
G is the appropriate branch of the solution map defined in some open neighborhood of A.
We are under the hypotheses of Lemma 6.3, so

NJπ1(p)

NJπ2(p)
=

NJ(Dπ1(p))

NJ(Dπ2(p))
= det

(
DG(A, λ, v)DG(A, λ, v)∗

)−1
.

From Lemmas 3.1 and 3.2, we have

DG(A, λ, v)Ȧ=

(
〈Ȧv, v − iCnA

−∗

λ,vPv⊥A
∗v〉

−A−1
λ,vPv⊥Ȧv

)
=

(
v∗ − v∗AiCnA

−1
λ,vPv⊥

−A−1
λ,vPv⊥

)
Ȧv=RȦv,

whereR : Cn→ C×v⊥ ≡ Cn is the linear operator multiplying by Ȧv in the last formula.
A standard linear algebra argument then shows that det(DG(A, λ, v)DG(A, λ, v)∗) =
det(RR∗) = |det(R)|2. Now, we can identify

iCn ≡

(
0

Idn−1

)
, Pv⊥ ≡

(
0 Idn−1

)
,

which implies that in the standard basis we have

R =

(
1 ∗

0 −A−1
λ,v

)
,

thus showing that |det(R)|2 = |det(A−1
λ,v)|

2, and the proposition follows. ut

We are now ready to rewrite Theorem 6.2 in this setting. The following is an important
technical result that we will use several times.

Proposition 6.5. Let χ : V → [0,∞) be a measurable mapping. Then∫
A∈Cn×n

∑
λ,v:Av=λv

χ(A, λ, v) dA

=

∫
(λ,v)∈C×P(Cn)

∫
A:Av=λv

χ(A, λ, v)|det(Aλ,v)|2 dAd(λ, v).

Moreover, assume that χ is unitarily invariant in the sense that χ(A, λ, v) =
χ(UAU∗, λ, Uv) for any unitary matrix U ∈ Un. Fix any a.e. continuous mapping
Cn \ {0} → Un, v 7→ Uv , such that Uve1 = v/‖v‖ for all v. Then, for every Â ∈ Cn×n
and σ > 0,

E
A∼NCn×n (Â,σ

2)

∑
λ,v:Av=λv

χ(A, λ, v)

=
1

0(n)σ 2(n−1) Ev E
(λ,w,B)

e−‖ŷv‖
2/σ 2

χ

((
λ w∗

0 B

)
, λ, e1

)
|det(B − λIn−1)|

2, (38)

where v ∈ P(Cn) has the uniform distribution, ŷv = Pv⊥Âv/‖v‖, and λ ∼ NC(λ̂, σ 2),
w ∼ NCn−1(ŵ, σ 2), and B ∼ NC(n−1)×(n−1)(B̂, σ 2) are independent Gaussian random
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variables centered at

λ̂ :=
〈Âv, v〉

‖v‖2
, ŵ := J ∗U∗v Â

∗Uve1, B̂ := J ∗U∗v ÂUvJ.

Here, J is the n×(n−1)matrix whose columns are e2, . . . , en (and hence J ∗ = (0 Idn−1)

is the matrix of Pe⊥1 : C
n
→ e⊥1 ). In particular, if Â = 0 then ŷv = 0, λ̂ = 0, ŵ = 0 and

B̂ = 0, so v can be removed from the expected value in (38).

Proof. The first claim follows directly from Theorem 6.2 and Proposition 6.4.
For the second claim, let I be the left-hand side of (38). Change χ(A, λ, v) to

(σ 2π)−n
2
χ(A, λ, v)e−‖A−Â‖

2
F /σ

2
in the first formula to get

I =
1

(σ 2π)n
2

∫
(λ,v)∈C×P(Cn)

∫
A:Av=λv

χ(A, λ, v)|det(Aλ,v)|2e−‖A−Â‖
2
F /σ

2
dAd(λ, v).

Note that {A : Av = λv} can be parametrized by

(w,B) 7→ A = Uv

(
λ w∗

0 B

)
U∗v ,

where w ∈ Cn−1 and B ∈ C(n−1)×(n−1). This parametrization preserves distances; more-
over |det(Aλ,v)| = |det(λIn−1 − B)| and from the fact that χ is unitarily invariant, we
have

I =

1

(σ 2π)n
2

∫
(λ,v,w,B)

χ

((
λ w∗

0 B

)
, λ, e1

)
|det(λIn−1−B)|

2e−‖A−Â‖
2
F /σ

2
d(λ, v,w,B),

where A is given by the formula above. Note now that we can write

‖A− Â‖2F =

∥∥∥∥(λ w∗

0 B

)
− U∗v ÂUv

∥∥∥∥2

F

= |λ− e∗1U
∗
v ÂUve1|

2
+ ‖w∗ − e∗1U

∗
v ÂUvJ‖

2
+ ‖B − J ∗U∗v ÂUvJ‖

2
F

+ ‖J ∗U∗v ÂUve1‖
2

=

∣∣∣∣λ− v∗Âv
‖v‖2

∣∣∣∣2 + ‖w − J ∗U∗v Â∗Uve1‖
2
+ ‖B − J ∗U∗v ÂUvJ‖

2
F + ‖ŷv‖

2,

and the second claim of the theorem follows if we note that the volume of P(Cn) is
πn−1/0(n). ut

6.4. The linear solution variety

It will be useful to consider a geometrical scheme similar to that of §6.3 for the case of
solving linear systems: we consider

V lin
:= {(M, v) ∈ C(n−1)×n

× P(Cn) : Mv = 0}.
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The linear solution variety V lin is an n(n − 1)-dimensional smooth submanifold of
C(n−1)×n

× P(Cn), and again it inherits the Riemannian structure of the ambient space
(cf. [19, (17.14)]).

The linear solution variety is equipped with two projections

π lin
1 : V

lin
→ C(n−1)×n, (M, v) 7→ M, π lin

2 : V
lin
→ P(Cn), (M, v) 7→ v. (39)

Note that π lin
2 is regular at every (M, v) ∈ V lin and π lin

1 is regular at (M, v) ∈ V lin if and
only if M is of maximal rank.

For M ∈ C(n−1)×n, (π lin)−1(M) is a copy of the projective linear subspace corre-
sponding to the kernel of M in P(Cn), and for v ∈ P(Cn), (π lin

2 )−1(v) is a copy of the
linear subspace of C(n−1)×n consisting of the matrices A such that Av = 0.

We can apply Theorem 6.2 to integrate functions in V lin using the projections in (39).
The tangent space to V lin at a regular point (M, v) can be identified with

{(Ṁ, v̇) : Ṁv +Mv̇ = 0, v∗v̇ = 0} = {(Ṁ, v̇) : v̇ = ϕ(Ṁ)}, ϕ(Ṁ) = −M†Ṁv.

Note that ϕ is a linear mapping defined from C(n−1)×n to v⊥. A routine computation
shows that, if ‖v‖ = 1, then ϕϕ∗ : v⊥ → v⊥ satisfies ϕϕ∗(w) = Pv⊥M

†(M†)∗iCnw.
Writing down the singular value decomposition of M , it follows that det(ϕϕ∗) =
det(MM∗)−1. From Lemma 6.3 it follows that

NJ(π lin)(M, v)

NJ(π lin
2 )(M, v)

= |det(MM∗)|. (40)

Proposition 6.6. Let φlin : V lin
→ [0,∞] be a measurable unitarily invariant function

in the sense that φlin(M, v) = φlin(MU∗, Uv) for any unitary matrix U ∈ Un. Then

E
M∼NC(n−1)×n

(φlin(M, ker(M)) =
1

0(n)
E

B∼NC(n−1)×(n−1)

φlin((0 B), e1)|det(B)|2.

Proof. Let χ(M) = φlin(M, ker(M))e−‖M‖
2
F . Theorem 6.2 and (40) imply that∫

M∈C(n−1)×n
χ(M) dM =

∫
v∈P(Cn)

∫
M:Mv=0

|det(MM∗)|χ(M) dM dv.

Now, |det(MM∗)|2χ(M) = |det(MU(MU)∗)|2χ(MU∗) for all U ∈ Un by hypothesis.
Hence, by parametrizing {M : Mv = 0} by {(0 B)U∗v : B ∈ C(n−1)×(n−1)

} where
Uv ∈ Un is any matrix satisfying Uve1 = v (we are assuming ‖v‖ = 1), we conclude that
the inner integral on the right-hand side above does not depend on v. We thus have∫

M∈C(n−1)×n
χ(M) dM = vol(P(Cn))

∫
B∈C(n−1)×(n−1)

|det(B)|2χ((0, B)) dB.

The proposition follows from the form of the Gaussian density (recall §2.6) by noting that
vol(P(Cn)) = πn−1/0(n). ut
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Assume now that we are given an a.e. continuous function α : C(n−1)×(n−1)
→ [0,∞].

We can produce a unitarily invariant function defined on V lin as follows:

φlin(M, v) = E
Q: (M,Q)∈An

α(MQ),

where An is given in (22). Note that

φlin((0 B), e1) = E
U∈Un−1

α(BU).

It is a simple exercise to check that φlin is unitarily invariant in the sense of Proposi-
tion 6.6. Applying Proposition 6.6 to φlin then yields

E
M∼NC(n−1)×n

E
Q: (M,Q)∈An

α(MQ) =
1

0(n)
E
B

E
U∈Un−1

α(BU)|det(B)|2.

(The expected value in the unitary group is again with respect to the uniform distribu-
tion coming from its Riemannian structure.) Finally, using Fubini’s theorem, we can in-
terchange the integration order in the right-hand term, and then note that the isometry
B 7→ BU preserves the value of the integral inside. We obtain the following corollary.

Corollary 6.7. Let α : C(n−1)×(n−1)
→ [0,∞] be an a.e. continuous function. Then

E
M∼NC(n−1)×n

E
Q: (M,Q)∈An

(α(MQ)) =
1

0(n)
E

B∼NC(n−1)×(n−1)

α(B)|det(B)|2. ut

7. Proof of Theorem 2.14

We begin with the following result.

Proposition 7.1. The following inequality holds for every Â ∈ Cm×m and σ > 0:

E
A∼NCm×m (Â,σ

2)

‖A−1
‖

2
F |det(A)|2 ≤

m

σ 2 E
A∼NCm×m (Â,σ

2)

|det(A)|2.

Furthermore, equality holds if and only if Â = 0. In particular,

E
A∼NCm×m (0,σ

2)
‖A−1

‖
2
F |det(A)|2 = m!mσ 2m−2.

Proof. Expanding the determinant of A by the kth column we have

det(A) =
m∑
j=1

(−1)j+kaj,k det(Aj,k),

where Aj,k denotes the matrix that results from A by removing the j th row and kth
column. Hence,

|det(A)|2 = det(A)det(A) =
m∑

j,j ′=1

(−1)j+j
′
+2kaj,kaj ′,k det(Aj,k)det(Aj ′,k).
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Observe that the random variables aj,k and aj ′,k are independent of det(Aj,k) and
det(Aj

′,k). Then

E
A∼NCm×m (Â,σ

2)

|det(A)|2 =
m∑

j,j ′=1

(−1)j+j
′
+2k E(aj,kaj ′,k)E(det(Aj,k)det(Aj ′,k)).

Now observe that

E(aj,kaj ′,k) =

{
âj,k âj ′,k if j 6= j ′,

σ 2
+ |̂aj,k|

2 otherwise.

We conclude that for k = 1, . . . , m,

E
A∼NCm×m (Â,σ

2)

|det(A)|2 = E |det([A; k; Âk])|2 + σ 2
m∑
j=1

E |detAj,k|2, (41)

where [A; k; Âk] is the matrix formed by replacing the (random) kth column of A by the
(deterministic) kth column of Â. Summing on k we get

mE
A
|det(A)|2 =

m∑
k=1

E |det([A; k; Âk])|2 + σ 2
m∑

j,k=1

E |detAj,k|2. (42)

On the other hand, from a direct application of Cramer’s rule and (42), we deduce that

σ 2 E
A∼NCm×m (Â,σ

2)

‖A−1
‖

2
F |det(A)|2 = σ 2

m∑
j,k=1

E |detAj,k|2

= mE |det(A)|2 −
m∑
k=1

E |det([A; k; Âk])|2,

and the first claim of the proposition follows. Moreover, when Â = 0, the last term in the
sum above is zero. We leave the proof of the converse to the reader. Using (41) and the
fact that the matrices Aj,k are NC(m−1)×(m−1)(0, σ 2)-distributed, one can prove working by
induction the equality

E
A∼NCm×m (0,σ

2)
|det(A)|2 = σ 2mm!.

The second claim of the proposition follows. ut

Corollary 7.2.
E

M∼NC(n−1)×n

‖M†
‖

2
F = n− 1.

Proof. From Proposition 6.6 with φlin(M, ζ ) = ‖M†
‖

2
F , we have

E
M∼NC(n−1)×n

‖M†
‖

2
F =

1
0(n)

E
B∼NC(n−1)×(n−1)

‖B−1
‖

2
F |det(B)|2 =

Prop. 7.1
n− 1

as claimed. ut



1422 Diego Armentano et al.

Corollary 7.3. For any B̂ ∈ C(n−1)×(n−1), σ > 0, and λ ∈ C, we have

E
B
‖(B − λIn−1)

−1
‖

2
F |det(B − λIn−1)|

2
≤
n− 1
σ 2 E

B
|det(B − λIn−1)|

2,

where B ∼ NC(n−1)×(n−1)(B̂, σ 2).

Proof. Note that

E
B
‖(B − λIn−1)

−1
‖

2
F |det(B − λIn−1)|

2
= E
C∼NC(n−1)×(n−1) (Ĉ,σ 2)

‖C−1
‖

2
F |detC|2,

where Ĉ = B̂ − λIn−1. The proof readily follows from Proposition 7.1. ut

Proof of Theorem 2.14. Fix any a.e. continuous mapping v 7→ Uv such that for v in
P(Cn), Uv is a unitary matrix with Uve0 = v/‖v‖. From (38) applied to χ(A, λ, v) =
1
n
µ2
F (A, λ, v)/‖A‖

2
F =

1
n
‖A−1

λ,v‖
2
F we have

E
A∼NCn×n (Â,σ

2)

µF,av(A)
2

‖A‖2F

=
1

n0(n)σ 2(n−1) Ev E
(λ,w,B)

e−‖ŷv‖
2/σ 2
‖(B − λIn−1)

−1
‖

2
F |det(B − λIn−1)|

2, (43)

where ŷv = Pv⊥Âv/‖v‖, v ∈ P(Cn), has the uniform distribution, and λ ∼ NC(λ̂, σ 2),
w ∼ NCn−1(ŵ, σ 2), and B ∼ NC(n−1)×(n−1)(B̂, σ 2) for some λ̂, ŵ, B̂ which depend
uniquely on Â and v.

From (43) and Corollary 7.3 we have

E
A∼NCn×n (Â,σ

2)

µF,av(A)
2

‖A‖2F
≤

n− 1
σ 2σ 2(n−1)0(n+ 1)

E
v

E
(λ,w,B)

e−‖ŷv‖
2/σ 2
|det(B − λIn−1)|

2.

Now, if we apply again (38) to the constant function χ ≡ 1/n we get

1 = E
A∼NCm×m (Â,σ

2)

1 =
1

0(n+ 1)σ 2(n−1) Ev E
(λ,w,B)

e−‖ŷv‖
2/σ 2
|det(B − λIn−1)|

2,

and we have thus proved that

E
A∼NCn×n (Â,σ

2)

µF,av(A)
2

‖A‖2F
≤
n− 1
σ 2 ≤

n

σ 2 ,

as claimed.
This proves the first part of Theorem 2.14. For the second part, let

I := E
A∼U (S)

µF,av(A)
2

be the quantity we want to compute. From the first part of the theorem (with Â = 0 and
σ = 1) we have

1

πn
2

∫
A∈Cn×n

µF,av(A)
2

‖A‖2F
e−‖A‖

2
F dA ≤ n. (44)
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On the other hand,

1

πn
2

∫
A∈Cn×n

µF,av(A)
2

‖A‖2F
e−‖A‖

2
F dA =

1

πn
2

∫
∞

0

e−ρ
2

ρ2

∫
A:‖A‖F=ρ

µF,av(A)
2 dAdρ.

(45)
Now, because µF,av(A) is invariant under multiplication of A by nonzero complex num-
bers, denoting νρ = vol({A : ‖A‖F = ρ}), we have

1
νρ

∫
A: ‖A‖F=ρ

µF,av(A)
2 dA = I, 0 < ρ <∞. (46)

We deduce from (44)–(46) that

I

πn
2

∫
∞

0

νρe
−ρ2

ρ2 dρ ≤ n.

Note now that

νρ =
2πn

2

0(n2)
ρ2n2

−1

to conclude that

I ≤
n0(n2)

2
∫
∞

0 ρ2n2−3e−ρ
2
dρ
=

n0(n2)

0(n2 − 1)
= n(n2

− 1) ≤ n3.

The theorem follows. ut

8. Proof of Propositions 2.22 and 2.24

8.1. Proof of Proposition 2.22

First note that Path-follow starts by normalizing the input, so from (14) we can assume
that ‖A0‖F = 1 and A ∼ NCn×n,T (0, 1) where T =

√
2 n. From Remark 2.23, for

integration purposes we can also assume that (LA0,A \ {A0}) ∩ 6 = ∅. Corollary 2.21
with q = 1 implies that

Avg Num Iter(A0, λ0, v0) = E
A∼NCn×n,T

dK(A,A0, λ0, v0)e

≤ 2+
√

6C E
A∼NCn×n,T

‖A‖F

∫ 1

t1

µ(At , λt , vt )
2

‖At‖
2
F

dt

≤ 2+
√

6C E
A∼NCn×n,T

‖A‖F

∫ 1

t1

n∑
j=1

µ(At , λ
(j)
t , v

(j)
t )2

‖At‖
2
F

dt,

(47)

where At = (1− t)A0 + tA, the pairs (λ(j)t , v
(j)
t ) are defined by continuation for all the

eigenpairs of At , and

t1 = inf
‖A‖F≤T

1
‖A‖F (sinα cot(Choose step(A0, Ȧ0, λ0, v0))− cosα)+ 1

.
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We therefore have (use T =
√

2 n)

Avg Num Iter(A0, λ0, v0) ≤ 2+
√

6CnT E
A∼NCn×n,T

∫ 1

t1

µav(At )
2

‖At‖
2
F

dt

≤ 2+
√

48Cn2 E
A∼NCn×n

∫ 1

t1

µav(At )
2

‖At‖
2
F

dt. (48)

We have used (13) and Lemma 2.16 for the last inequality. In order to bound the last term
in the previous expression, we interchange the order of integration,

E
A∼NCn×n

∫ 1

t1

µav(At )
2

‖At‖
2
F

dt =

∫ 1

t1

(
E

A∼NCn×n

µav(At )
2

‖At‖
2
F

)
dt.

Now, for fixed t , ifA∼NCn×n thenAt=(1−t)A0+tA satisfiesAt∼NCn×n((1−t)A0, t
2),

and from Theorem 2.14 we have

E
A∼NCn×n

µav(At )
2

‖At‖
2
F

≤
n

t2
,

which implies

E
A∼NCn×n

∫ 1

t1

µav(At )
2

‖At‖
2
F

dt ≤

∫ 1

t1

n

t2
dt ≤

n

t1
. (49)

We are thus left with the task of evaluating t1. Note that s1 = Choose step(A0, Ȧ0, λ0, v0)

(the length of the first step in the execution of Path-follow) is at least R/µ(A0, λ0, v0)
2

by Proposition 5.8. Hence cot s1 ≤ 1/s1 ≤ µ(A0, λ0, v0)
2/R and it follows that

t1 ≥
1

T (cot s1 + 1)+ 1
≥ �

(
1

nµ(A0, λ0, v0)2

)
.

Putting together this bound and inequalities (48) and (49) we deduce the claimed bound
for Avg Num Iter(A0, λ0, v0).

We next prove the smoothed analysis bounds. Reasoning as in (47) we see that the
smoothed number of iterations Smd Num Iter(A0, λ0, v0, σ ) is bounded by

2+
√

6C sup
Â∈S

E
A∼NCn×n,T (Â,σ

2)

n∑
j=1

‖A‖F

∫ 1

t1

µ(At , λ
(j)
t , v

(j)
t )2

‖At‖
2
F

dt.

The rest of the argument is almost exactly as above, the only difference being the bound
‖A‖F ≤ T + ‖Â‖F =

√
2 n+ 1. ut
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8.2. Proof of Proposition 2.24

We are now following all the n paths (each starting with a different eigenpair of A0).
Applying Corollary 2.21 with q = 1 to each of them we obtain

Avg Num Iter(A0) = E
A∼NCn×n,T

n∑
j=1

K(A,A0, λ
(j), v(j))

≤ 2n+
√

6C E
A∼NCn×n,T

‖A‖F

n∑
j=1

∫ 1

t
(j)

1

µ(At , λ
(j)
t , v

(j)
t )2

‖At‖
2
F

dt

≤ 2n+
√

6C E
A∼NCn×n,T

‖A‖F

∫ 1

t∗1

n∑
j=1

µ(At , λ
(j)
t , v

(j)
t )2

‖At‖
2
F

dt, (50)

where t∗1 = min{t (1)1 , . . . , t
(n)
1 }. We can now reason as in the preceding proof to deduce

that
Avg Num Iter(A0) = O(n3/t∗1 )

as well as t (j)1 ≥ �
( 1
nµ(A0,λ(j),v(j))2

)
for j = 1, . . . , n. It follows from these bounds that

t∗1 ≥ �

(
1

nµmax(A0)2

)
.

The rest of the proof follows as in the preceding proposition. ut

9. Proof of Theorem 2.29

We begin with an auxiliary result. For simplicity, in what follows we write S := S(Cn×n).
We also consider the manifold

S := {(A, Ȧ) ∈ S× S : Ȧ ∈ TAS}

and denote by U (S) the normalized product distribution on it, that is, the probability
distribution coming from the product structure. Given any measurable mapping φ : S →
[0,∞], let

Iφ := E
A0,A∈S

∫ dS(A0,A)

0
φ(As, Ȧs) ds, (51)

where, as usual, the As are such that {As : 0 ≤ s ≤ dS(A0, A)} = LA0,A, and Ȧs is the
unit tangent vector (in the direction of the parametrization) to LA0,A at As .

Lemma 9.1. For any measurable mapping φ : S× S→ [0,∞] we have

Iφ =
π

2
E

(A,Ȧ)∼U (S)
φ(A, Ȧ). (52)

Proof. We consider the manifold R := {(A0, A, s) ∈ S × S × (0, π) : s < dS(A0, A)}

with the product structure and let

ψ : R→ S, (A0, A, s) 7→ (As, Ȧs).
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We can then write Iφ = vol(S)−2 ∫
R φ ◦ ψ . Applying the coarea formula (Theorem 6.1)

yields

Iφ =
1

vol(S)2

∫
(A,Ȧ)∈S

φ(A, Ȧ)q(A, Ȧ) d(A, Ȧ), (53)

where

q(A, Ȧ) =

∫
(B0,B,s)∈ψ−1(A,Ȧ)

1
NJ(ψ)(B0, B, s)

d(B0, B, s).

Our goal now is to prove that q(A, Ȧ) is a constant (independent of A, Ȧ). It will be
useful to consider the two diagonal matrices 1 = E11 and 1̇ = E22 where Eij denotes
the standard basis of Cn×n. Note that (1, 1̇) ∈ S.

We now fix (A, Ȧ) ∈ S. Let σ : Cn×n → Cn×n be an isometric change of basis such
that σ(A) = 1 and σ(Ȧ) = 1̇. Denoting σS = σ ×σ and σR = σ ×σ × IdR, where IdR
is the identity mapping in R, it is easy to check by writing down the formula for As that
ψ ◦ σR = σS ◦ ψ . We are under the hypothesis of [14, Lemma 4, p. 244] (which holds
for surjective maps in general, not only for projections), proving that

NJ(ψ)(σ−1
R (C0, C, s)) = NJ(ψ)(C0, C, s), ∀ (C0, C, s) ∈ R. (54)

Moreover, the mapping σR|ψ−1(A,Ȧ) is an isometry from ψ−1(A, Ȧ) to ψ−1(1, 1̇),
which from the change of variables theorem implies

q(A, Ȧ) =

∫
(B0,B,s)∈ψ−1(A,Ȧ)

1
NJ(ψ)(B0, B, s)

d(B0, B, s)

=
(54)

∫
(B0,B,s)∈ψ−1(A,Ȧ)

1

NJ(ψ)(σ−1
R (B0, B, s))

d(B0, B, s)

=

∫
(B0,B,s)∈ψ−1(1,1̇)

1
NJ(ψ)(B0, B, s)

d(B0, B, s) = q(1, 1̇),

which proves that q(A, Ȧ) is equal to some constant Ĉ.
Since this holds for any measurable function φ, we can take the latter to be constant

with value 1 to derive the value of Ĉ. Then (53) becomes

Iφ =
1

vol(S)2

∫
(A,Ȧ)∈S

Ĉ d(A, Ȧ) =
vol(S)
vol(S)2

Ĉ.

And it follows from (51) (always with φ ≡ 1) that

Iφ = E
A,A0∈S

dS(A0, A).

Hence,

E
A,A0∈S

dS(A,A0) = Ĉ
vol(S)
vol(S)2

.
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Note that the change of variables A0 7→ −A0 does not change the expected value in this
last formula. Moreover, dS(A,A0)+ dS(A,−A0) = π for all A,A0 ∈ S. Thus,

vol(S)
vol(S)2

2Ĉ = E
A,A0∈S

dS(A,A0)+ E
A,A0∈S

dS(A,−A0)

= E
A,A0∈S

(dS(A,A0)+ dS(A,−A0)) = π,

proving that

Ĉ =
vol(S)2π
2vol(S)

.

From (53) we conclude that for any measurable nonnegative function φ we have

Iφ =
π

2
E

(A,Ȧ)∼U (S)
φ(A, Ȧ),

as wanted. ut

Proof of Theorem 2.29. Consider the measurable function φ : S → [0,∞] defined by

φ(A, Ȧ) =
1
n

∑
(λ,v):Av=λv

µ(A, λ, v)‖(Ȧ, λ̇, v̇
)
‖,

for A ∈ S and Ȧ ∈ TAS such that A 6∈ 6, where λ̇, v̇ are the functions of (A, Ȧ) and
(λ, v) given in Lemma 3.2. (If A ∈ 6 we set φ(A, Ȧ) = ∞.)

From Theorem 2.19, denoting I = Iφ , we have (for some constant C > 1)

E
A,A0∼NCn×n

1
n

∑
λ0,v0:A0v0=λ0v0

K(A,A0, λ0, v0) ≤ CI. (55)

Note that the left-hand side of (55) is the quantity to be bounded in Theorem 2.29. It is
therefore enough for us to show that I ≤ 4n2. To do so, write SA := {A′ : (A,A′) ∈ S}
⊆ TAS for A ∈ S. First note that SA is just the unit sphere in TAS, so it has a natural
volume form inherited from Cn×n and vol(SA) is independent ofA. Moreover, the normal
Jacobian of the projection S → S, (A, Ȧ) 7→ A, is constant and equal to 1/

√
2 (this is

easy to prove: check that for Ȧ ∈ TAS and the pair of the form (Ȧ, Ȧ′) in T(A,A′)S which
is orthogonal to the kernel of the derivative of the projection is (Ȧ,−Re〈A′, Ȧ〉A), then
note that the vectors of that form obtained from any orthogonal basis of TAS whose first
element is A′ are orthogonal and only one of them, (A′,−A), changes its norm by

√
2),

so we have vol(S) =
√

2 vol(S)vol(SA). From Lemma 9.1 and Theorem 6.1, we then
have

I =
π

2
E

(A,Ȧ)∼U(S)
φ(A, Ȧ)

=
π
√

2
E
A∈S

1
n

∑
(λ,v):Av=λv

µ(A, λ, v) E
Ȧ∈SA

‖(Ȧ, λ̇, v̇)‖. (56)
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In order to estimate this last quantity we shall use Lemma 9.2 below. Note first that from
Cauchy–Schwarz,

E
Ȧ∈SA

‖(Ȧ, λ̇, v̇)‖ ≤
(

1+ E
Ȧ∈SA

(|λ̇|2 + ‖v̇‖2)
)1/2

≤
Lem. 9.2

(
1+

1
n2 − 1/2

(1+ 2µF (A, λ, v)2)
)1/2

≤
n≥2

1
√

7

(
9+

16
n2µF (A, λ, v)

2
)1/2

.

It is a simple exercise to check that for positive x ∈ R we have x(9 + 16x2/n2)1/2 ≤

9n/8+ 4x2/n. Using this inequality we get, from the inequalities above,

I ≤
π
√

14
E
A∈S

1
n

∑
(λ,v):Av=λv

(
9n
8
+

4
n
µF (A, λ, v)

2
)
.

We next use Theorem 2.14 (averaging over A ∈ S) and bound this last quantity by

I ≤
π
√

14

(
9n
8
+

4
n
n3
)
=

π
√

14

(
9n
8
+ 4n2

)
≤
n≥2

4n2, (57)

which finishes the proof. ut

We have used the following technical lemma which is in the spirit of [2]. Note that
as pointed out in the proof of Theorem 2.29, SA is just the unit sphere in the tangent
space TAS and thus has a natural measure inherited from the inner product in Cn×n.

Lemma 9.2. Let (A, λ, v) ∈ V with ‖A‖F = 1. Define SA := {A′ : (A,A′) ∈ S} ⊆ TAS
as in the proof of Theorem 2.29 (that is, SA is the unit sphere of TAS) and, for Ȧ ∈ SA,
let λ̇, v̇ be as in Lemma 3.2. Then

E
Ȧ∈SA

|λ̇|2 =
1

n2 − 1/2
(µλ(A, λ, v)

2
− |λ|2/2), E

Ȧ∈SA
‖v̇‖2 =

1
n2 − 1/2

‖A−1
λ,v‖

2
F .

In particular, from Proposition 3.3,

E
Ȧ∈SA

(|λ̇|2 + ‖v̇‖2) ≤
1

n2 − 1/2
(1+ 2‖A−1

λ,v‖
2
F ) =

1
n2 − 1/2

(1+ 2µF (A, λ, v)2).

Proof. Note that TAS coincides with the (real) orthogonal complement, with respect to
<〈·, ·〉F , of A ∈ Cn×n. Thus dimR(TAS) = 2n2

− 1. On this space we consider the
push-forward measure of the standard Gaussian distribution on Cn×n by the orthogonal
projection Cn×n→ TAS.

Since TAS has the (real) orthogonal decomposition R
√
−1A⊕ A⊥, where R

√
−1A

is the linear real subspace generated by
√
−1A, in particular we conclude that the Gaus-

sian distribution on TAS coincides with the distribution t
√
−1A + Ḃ ∈ TAS where

t ∼ N (0, 1/2) and Ḃ ∼ NA⊥ are independent.
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Claim I. Given a linear operator L : TAS→ Ck , we have

E
Ȧ∈TAS

‖L(Ȧ)‖2 = (n2
− 1/2) E

Ȧ∈SA
‖L(Ȧ)‖2

The claim follows by integrating in polar coordinates. More precisely,

E
Ȧ∈TAS

‖L(Ȧ)‖2 =
1

πn
2−1/2

∫
Ȧ∈TAS

‖L(Ȧ)‖2e−‖Ȧ‖
2
dȦ

=
1

πn
2−1/2

∫
∞

0
ρ2n2

e−ρ
2
dρ ·

∫
Ȧ∈SA

‖L(Ȧ)‖2 dȦ

= (n2
− 1/2) E

Ȧ∈SA
‖L(Ȧ)‖2,

where we have used the equalities
∫
∞

0 ρ2n2
e−ρ

2
dρ = 1

20(n
2
+ 1/2) and vol(SA) =

2πn
2
−1/2/0(n2

− 1/2).

Claim II. For ‖v‖ = 1, the push-forward measure of the Gaussian distribution on A⊥

by the map f : A⊥→ v⊥, Ȧ 7→ Pv⊥(Ȧv), is the standard Gaussian on v⊥.

Note that for all B ∈ Cn×n, we have 〈uv∗, B〉F = tr(B∗uv∗) = v∗B∗u = 〈u,Bv〉. Then
the set F := {ẇv∗ : ẇ ∈ v⊥} is a linear subspace of A⊥, and the kernel of f is the
Hermitian complement of F as a subset of A⊥. Since f |F : F → v⊥ is a linear isometry,
the claim follows from the characterization of the standard Gaussian distribution.

Claim III. Let m ∈ N. If η ∼ NCm and x ∈ Cm then

E
η∼NCm

|〈η, x〉|2 = ‖x‖2.

The proof of this claim is a standard exercise and is left to the reader.
Now we are ready to prove the lemma. We choose a representative of v such that

‖v‖ = 1 and a representative of the left eigenvector u such that 〈u, v〉 = 1. Note that this
implies by Proposition 3.3 and Lemma 3.2 that

µλ(A, λ, v) =
‖u‖ ‖v‖

|〈u, v〉|
= ‖u‖, λ̇ = 〈Ȧv, u〉, v̇ = −A−1

λ,vPv⊥Ȧv.

For the first statement, we have

E
Ȧ∈TAS

|λ̇|2 = E
Ȧ∈TAS

|〈Ȧv, u〉|2 = E
Ȧ∈TAS

|〈Ȧ, uv∗〉F |
2

= E
Ḃ∈N

A⊥

E
t∼N (0,1/2)

|〈t
√
−1A+ Ḃ, uv∗〉F |2.
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Since the mixed term of the expansion of |〈t
√
−1A+Ḃ, uv∗〉F |2 is linear in t , its expected

value is zero. Hence,

E
Ȧ∈TAS

|〈Ȧv, u〉|2 = E
Ḃ∈N

A⊥

E
t∼N (0,1/2)

(t2|〈A, uv∗〉F |
2
+ |〈Ḃ, uv∗〉F |

2)

= |λ|2/2+ E
Ḃ∈N

A⊥

|〈Ḃ, πA⊥(uv
∗)〉F |

2.

where we have denoted by πA⊥(uv
∗) the orthogonal projection of uv∗ onto A⊥. With the

identification of A⊥ and Cn2
−1 as Hermitian spaces, from Claim III (with m = n2

− 1)
we conclude that

E
Ḃ∈N

A⊥

|〈Ḃ, πA⊥(uv
∗)〉F |

2
= ‖πA⊥(uv

∗)‖2F = ‖uv
∗
‖

2
F − |λ|

2
= ‖u‖2 − |λ|2.

We have thus proved

E
Ȧ∈TAS

|〈Ȧv, u〉|2 = µλ(A, λ, v)
2
− |λ|2/2,

and from Claim I we conclude that

E
Ȧ∈SA

|〈Ȧv, u〉|2 =
1

n2 − 1/2
(µλ(A, λ, v)

2
− |λ|2/2),

as claimed in the lemma. The second statement in the lemma is proved in a very similar
fashion. This time we have

E
Ȧ∈TAS

|v̇|2 = E
Ȧ∈TAS

‖A−1
λ,vPv⊥Ȧv‖

2

= E
Ḃ∈N

A⊥

E
t∼N (0,1/2)

‖A−1
λ,vPv⊥(t

√
−1A+ Ḃ)v‖2

= E
Ḃ∈N

A⊥

‖A−1
λ,vPv⊥Ḃv‖

2
= E
ẇ∈N

v⊥

‖A−1
λ,vẇ‖

2
= ‖A−1

λ,v‖
2
F ,

the next to last equality coming from Claim II, and the last from the fact that for any
matrix B ∈ Cn×n we have Ex∼NCn ‖Bx‖

2
= ‖B‖2F (note the use of Frobenius instead of

operator norm in the last equality: that is a crucial point). The last statement of the lemma
then follows from Claim I. ut

10. Proof of Theorem 2.33

10.1. Proof of (1) and (2) in Theorem 2.33

Note that (2) is trivial. We thus prove (1). The procedure we suggest to choose ω ∈ �n
at random is the following (note that each step requires O(n3) arithmetic operations or
random choices):
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(1) Choose B ∼ NC(n−1)×(n−1) and let U be the Q factor in the QR decomposition of B.
Then multiply Q by the diagonal matrix with entries rii/|rii | where the rii are the
diagonal elements of the R factor. This produces a unitary matrix U uniformly dis-
tributed in Un−1 (see for example [39]).

(2) Choose λ ∼ NC and M ∼ NC(n−1)×n . Let H ∈ Un with the last column in ker(M)
(it is trivial to produce such an H by computing the QR decomposition of the matrix
whose columns are ker(M) and the columns ofM). ComputeQ as the product of the
first n× (n− 1) submatrix of H times U . This produces an element with the uniform
distribution in the set of Q ∈ Sn−1(Cn) such that (M,Q) ∈ An.

(3) If 2<(λ̄ tr(MQ)) > 1− |λ|2(n− 1) then discard λ,M,Q and repeat (1) and (2).
(4) Choose w ∼ NCn−1 .

The only subtle point is that steps (1) and (2) might have to be repeated an arbitrary
number of times. The expected number of times that steps (1) and (2) will be repeated is
related to Cn defined in (23) by

∞∑
k=1

Prob(step k is reached) =
∞∑
k=1

Prob
(
2<(λ̄ tr(MQ)) > 1− |λ|2(n− 1)

)k−1

=

∞∑
k=1

(1− C−1
n )k−1

=
1

(1− (1− C−1
n ))

= Cn.

10.2. Proof of (3) in Theorem 2.33

We are now prepared for proving (24). Let 1 be the characteristic function of the set

{(λ, B) : 2<(λ̄ tr(B)) ≤ 1− |λ|2(n− 1)} ⊆ C× C(n−1)×(n−1).

From the definition and Fubini’s theorem, for any measurable nonnegative function φ
defined on V , the expected value Eω∼�nφ(ψn(ω)) equals

Cn E
M

E
Q: (M,Q)∈An

E
λ,w

φ

((
λ w∗

0 MQ+ λIn−1

)
, λ, e1

)
1(λ,MQ)

= Cn E
M

E
Q: (M,Q)∈An

α(MQ),

where λ ∼ NC, M ∼ NC(n−1)×n , w ∼ NCn−1 and α : C(n−1)×(n−1)
→ [0,∞] is defined

by

α(B) = E
λ,w

φ

((
λ w∗

0 B + λIn−1

)
, λ, e1

)
1(λ, B).

We are then under the hypotheses of Corollary 6.7. Using this result we obtain

E
w∼�n

φ(ψn(w)) =
Cn

0(n)
E

B∼NC(n−1)×(n−1)

α(B)|det(B)|2.
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With the change of variables B + λIn−1 = D, which implies

‖B‖2F = ‖D‖
2
F + (n− 1)|λ|2 − 2<(λ̄ tr(D)),

this last expression equals

Cn

0(n)
E

λ,w,D
φ

((
λ w∗

0 D

)
, λ, e1

)
|det(D−λIn−1)|

2e−|λ|
2(n−1)+2<(λ̄ tr(D))

1(λ,D−λIn−1),

where D ∼ NC(n−1)×(n−1) . Now, note that

1(λ,D − λIn−1) 6= 0 ⇔ e−|λ|
2(n−1)+2<(λ̄ tr(D))

≤ e.

We have thus proved

E
w∼�n

(φ(ψn(w)) ≤
e Cn

0(n)
E

λ,w,D
φ

((
λ w∗

0 D

)
, λ, e1

)
|det(D − λIn−1)|

2

=
(38)
enCn E

A∼NCn×n

1
n

∑
λ,v:Av=λv

φ(A, λ, v).

This proves claim (3) in Theorem 2.33. ut

We prove the following (nonsharp) bound for the value of Cn.

Lemma 10.1. With the notations above,

Cn ≤ 4n.

Proof. Note that if 0 < |λ| ≤ (n− 1)−1/2, then for any nonzero M ∈ C(n−1)×n we have

Prob
Q

(
2<(λ̄ tr(MQ)) ≤ 1− |λ|2(n− 1)

)
≥ Prob

Q

(
2<(λ̄ tr(MQ)) ≤ 0

)
=

1
2
,

the last equality coming from the linearity of the trace. We thus have

Prob
λ,M,Q

(
2<(λ̄ tr(MQ)) ≤ 1−|λ|2(n− 1)

)
≥

1
π

∫
|λ|<(n−1)−1/2

e−|λ|
2

2
dλ =

1− e−1/(n−1)

2
.

We thus have

Cn ≤
2

1− e−1/(n−1) ≤ 4(n− 1) ≤ 4n,

as claimed. ut
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11. Proof of Theorem 1.1

Consider the following algorithm.

Algorithm 7. Relative Error

Input: ε ∈ (0, 1/2), A ∈ Cn×n, (ζ, w) ∈ C× Cn

Preconditions: (ζ, w) is a certified approximate eigenpair of A with associ-
ated eigenpair (λ, v), ‖w‖ = 1.

k := 0
(ζ ′, w′) := (ζ, w)

repeat

(ζ ′, w′) := NA(ζ
′, w′) (one Newton iteration)

k := k + 1
until k ≥ log2 log2

( 4‖A‖F
ε|ζ ′|

)
return (ζ ′, w′)

Output: (ζ ′, w′) ∈ C× Cn

Postconditions: The algorithm halts if λ 6= 0. In this case, (ζ ′, w′)
is an approximate eigenpair of A with associated eigenpair (λ, v), and
dS(w′, v) ≤ ε, and moreover |ζ ′ − λ| ≤ ε|λ| and distA((ζ, w), (λ, v)) ≤

(1/2)2
2k−1

c∗/µ(A, λ, v).

By hypothesis,

distA((ζ, w), (λ, v)) ≤
c∗

µ(A, λ, v)
< 1. (58)

Hence, |ζ − λ|/‖A‖F ≤ distA((ζ, w), (λ, v)) < 1, and the same bound holds with ζ
replaced by ζ ′ at all the iterations of the algorithm (by Definition 2.11). Using now
|λ| ≤ ‖A‖F , we deduce that |ζ ′| ≤ 2‖A‖F . Hence, at the end of the repeat loop the
value k satisfies

22k
≥

4‖A‖F
ε|ζ ′|

≥
2
ε
. (59)

This inequality implies that after k iterations of the loop we have, from the definition of
approximate eigenpair and the bound (58),

|ζ ′ − λ|

‖A‖F
≤ distA((ζ

′, w′), (λ, v)) ≤
c∗

µ(A, λ, v)

(
1
2

)2k−1

≤

(
1
2

)2k−1

=
2

22k
≤ ε.

(60)
In particular, dS(w′, v) ≤ ε as we wanted. On the other hand, the first inequality in (59)
implies

22k−1
|ζ ′| − ‖A‖F ≥ 2‖A‖F /ε − ‖A‖F ≥ ‖A‖F /ε,
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the last since ε < 1. We now use this inequality together with (60) to obtain

|ζ ′ − λ|

|λ|
≤
‖A‖F

|λ|22k−1
≤

‖A‖F(
|ζ ′| −

‖A‖F

22k−1

)
22k−1

=
‖A‖F

22k−1|ζ ′| − ‖A‖F
≤ ε,

i.e., |ζ ′ − λ| ≤ ε|λ|.
It remains to show that Relative Error halts provided λ 6= 0 and to estimate its average

running time when A is drawn from NCn×n . For this, we note that as soon as

k ≥ log2 log2

(
8‖A‖F
ε|λ|

)
we shall have (using (60))

|ζ ′| ≥ |λ| − ‖A‖F /22k−1
≥ |λ| − ε|λ|/4 = |λ|(1− ε/4).

Therefore, we will also have

log2 log2

(
4‖A‖F
ε|ζ ′|

)
≤ log2 log2

(
4‖A‖F

ε|λ|(1− ε/4)

)
≤ log2 log2

(
8‖A‖F
ε|λ|

)
≤ k.

Hence, the stopping condition will hold after at most

log2 log2

(
8‖A‖F
ε|λ|

)
≤ log2 log2

(
8‖A‖F ‖A−1

‖

ε

)
iterations (we have used |λ|−1

≤ ‖A−1
‖ for λ is an eigenvalue of A).

We finally estimate the average cost of Relative Error. Since each iteration of the
repeat loop requires O(n3) operations, this cost is at most O(n3) times

E
A∼NCn×n

log2 log2

(
8‖A‖F ‖A−1

‖

ε

)
≤ log2 log2

(
8
ε

E
NCn×n

‖A‖F ‖A
−1
‖

)
,

where we have used Jensen’s inequality. Bounds for the expected value of ‖A−1
‖ when

A ∼ NCn×n are known (see for example [19, Prop. 4.22]), which, together with the
Cauchy–Schwarz inequality E(fg) ≤ (E(f 2)E(g2))1/2, implies

E
A∼NCn×n

‖A‖F ‖A
−1
‖ ≤

√
n2 e(n+ 1)

2
≤ 2n3/2.

The statement follows. ut
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