Die Kristallstruktur von Calciumhexacyanoferrat(II)-Hexamethylentetramin-Wasser(1/1/6) Ca₂[Fe(CN)₆]·C₆H₁₂N₄·6H₂O

The Crystal Structure of Calciumhexacyanoferrate(II)-Hexamethylenetetramine-Water(1/1/6) $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O$

H.-Jürgen Meyer und Joachim Pickardt*

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12

Z. Naturforsch. 43b, 135-137 (1988); eingegangen am 31. Juli 1987

Crystal Structure, Hexacyanoferrate, Hexamethylenetetramine

 $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O$ crystallizes in the monoclinic space group B2/b with a = 1130,2(4), b = 1373,5(4), c = 1353,0(4) pm and $\gamma = 97,17^{\circ}$. The X-ray single crystal structure determination converged at R = 0.055 (2057 reflections). Each of the four Fe(CN)₆ octahedra (Z = 4) in the unit cell is coordinated by six Ca atoms with mean N_{CYAN}-Ca distances of 253.5(3) pm. The Ca atoms are bridged by hexamethylenetetramine and water molecules.

Einleitung

Alkali- und Erdalkalimetallhexacyanoferrate bilden mit tertiären Aminen wie Hexamethylentetramin ("HMT") kristalline Addukte [1]. Bei der Untersuchung einer Reihe dieser Addukte [2] stellte sich heraus, daß die Kristallstrukturen dieser Addukte zwar hinsichtlich der Anordnung bestimmter Atomgruppen charakteristische Merkmale aufweisen, sich jedoch in der Anzahl der enthaltenen HMT-Moleküle unterscheiden.

Experimentelles

Farblose säulenförmige Kristalle von $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O$ wurden durch Diffusion einer wäßrigen Lösung von Hexamethylentetramin (HMT) in eine wäßrige Lösung von Calciumhexacyanoferrat(II) erhalten.

Analyse: $C_{12}H_{24}N_{10}O_6Ca_2Fe$ Ber. C 26,67 H 4,48 N 25,92, Gef. C 25,73 H 4,43 N 25,26.

Eine nach der Schwebemethode durchgeführte Dichtebestimmung ergab mit $\rho = 1.7$ g/cm³ einen Gehalt von Z = 4 Formeleinheiten in der Elementarzelle. Die Messung der Röntgenintensitäten erfolgte mit einem automatischen Einkristalldiffraktometer (Syntex P2₁) an einem Einkristall mit ungefähren Kantenlängen von $0.25 \times 0.15 \times 0.3$ mm unter Verwendung von monochromatischer MoK_a-Strahlung (Graphitmonochromator). Die Messung einer halben Ausbreitungskugel des reziproken Gitters ergab systematische Auslöschungsbedingungen einer Bzentrierten Elementarzelle sowie einer *b*-Gleitspiegelebene senkrecht zu *z*.

Als mögliche Raumgruppen kamen daher Bb und die zentrosymmetrische Raumgruppe B2/b (beide 1st setting) in Betracht. Für die Datenreduktion wurden die Programme des Syntex-XTL-Systems verwendet (LP-Korrektur, keine Absorptionskorrektur).

Ansätze zur Strukturlösung wurden mittels Direkter Methoden mit dem Programmsystem MULTAN [3] erhalten. Strukturverfeinerung und anisotrope Berechnungen von 30 Nichtwasserstoffatomen mit dem Programmsystem SHELX-76 [4] konvergierten bei R = 0.055 für die Raumgruppe B2/b. Methylenwasserstoffatome wurden unter der Annahme einer sp³-Hybridisierung der Kohlenstoffatome und C-H-Bindungslängen von 1.08 Å berechnet, Wasserstoffatome der Wassermoleküle wurden aus einer Differenz-Fourier-Synthese lokalisiert.

Ergebnisse und Diskussion

Die stereographische Darstellung der Elementarzelle (Abb. 1) zeigt zwei um z = c/2 gegeneinander verschobene Ebenen (mit Schwerpunkt bei $x \approx 1/4$ und x = 3/4), entsprechend der B-Zentrierung durch die Translationen 0,5 + x und 0,5 + z. Außerhalb

^{*} Sonderdruckanforderungen an Prof. Dr. J. Pickardt.

^{**} Abkürzung: HMT = Hexamethylentetramin.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/88/0200–0135/\$01.00/0

Abb. 1. Stereoskopische Darstellung der Elementarzelle von $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O.$

dieser Ebenen befinden sich HMT-Moleküle mit dem Schwerpunkt auf den zweizähligen Achsen (bei 0,1/4,0;0,3/4,0;0,1/4,1/2;0,3/4,1/2), wodurch sich spezielle Positionen (4e) für zwei der Kohlenstoffatome, C13 und C14 (vgl. Tab. II), ergeben. Die Eisenatome besetzen spezielle Lagen (4d) im Inversionszentrum.

Die Anordnung der Hexacyanoferrat-Ionen entspricht annähernd einer Flächenzentrierung. Die Hälfte der resultierenden Tetraederlücken sind mit HMT-Molekülen besetzt. Die Oktaederlücken des Hexacyanoferrat-Gerüstes werden von mit Koordinationswasser verbrückten Calciumionen

Tab. I. Daten zur Röntgenstrukturanalyse.

Verbindung $Ca_2[Fe(CN)_6] \cdot Ca_2[Fe(CN)_6] \cdot Ca_2[Fe(CN$	$Ca_{2}[Fe(CN)_{6}] \cdot C_{6}H_{12}N_{4} \cdot 6H_{2}O$		
Molare Masse M [g·mol ⁻¹]	540,4		
Gitterkonstanten a [pm]	1130,2(4)		
b [pm]	1373,5(4)		
c [pm]	1353,0(4)		
Winkel γ [°]	97,17		
Zellvolumen V [Å ³]	2083,9		
Röntgendichte ρ [g·cm ⁻³]	1,72		
Anzahl der Formeleinheiten	4		
Linearer Absorptionskoeffizient μ			
$[cm^{-1}]$	12,0		
Systematische Auslöschungen	$hkl h+l \neq 2n$		
	$hk0 \ k \neq 2n \ (h \neq 2n)$		
	$00l(l \neq 2n)$		
Kristallklasse	2/m		
Raumgruppe	B2/b		
Meßbereich	$0^{\circ} < 2\theta \leq 50^{\circ}$		
Gesamtzahl der gemessenen Reflex	xe 5161		
davon symmetrieunabhängig	2393		
für die Verfeinerung verwendet			
$F_o > 2\sigma(F_o)$	2057		
$R = \Sigma F_{o} - F_{c} / \Sigma F_{o} $	0,055		
$R_{\rm w} = \Sigma \sqrt{\rm w} F_{\rm o} - F_{\rm c} / \Sigma \sqrt{\rm w} F_{\rm o} $	0,055		
$R_{\rm g} [\Sigma w F_{\rm o} - F_{\rm c} ^2 / \Sigma w F_{\rm o}^2]^{1/2}$	0,059		
$W = 1/\sigma(F_o)$			

Tab. II. Atomparameter in Ca₂[Fe(CN)₆]·C₆H₁₂N₄·6H₂O. Standardabweichungen sind in Klammern angegeben. B_{eq} = 1/3 (B₁₁ + B₂₂ + B₃₃ + 2B₁₂·cos γ).

Atom	x	у	z	\mathbf{B}_{eq}
Fe 1	0,2500(0)	0,5000(0)	0,2500(0)	0,84
C1	0,0806(4)	0,4785(3)	0,2707(3)	1,10
C2	0,2581(4)	0,3618(3)	0,2755(3)	1,29
C3	0,2361(3)	0,4704(3)	0,1101(3)	1,20
N1	-0.0216(3)	0,4661(3)	0,2878(3)	1,80
N2	0,2612(4)	0,2791(3)	0,2916(3)	1,93
N3	0,2350(3)	0,4505(3)	0,0263(3)	1,72
N11	-0,0775(3)	0,3064(2)	0,4538(3)	1,08
N12	-0,0782(3)	0,1802(3)	0,5813(3)	1,28
C11	0,0017(4)	0,3736(3)	0,5174(3)	1,26
C12	0,1521(4)	0,2637(3)	0,5180(3)	1,38
C13	0,0000(0)	0,2500(0)	0,6429(4)	1,43
C14	0,0000(0)	0,2500(0)	0,3926(4)	1,15
Ca1	0,2749(1)	0,8960(1)	0,1508(1)	0,96
01	0,2555(3)	0,9300(2)	0,3274(2)	1,37
02	0,4428(4)	0,6369(4)	0,6396(4)	3,22
03	0,4621(5)	0,8631(5)	0,4319(5)	7,26

 $(H_2O-Ca-(H_2O)_2-Ca-H_2O)$ ausgefüllt. Neben vier Koordinationswassermolekülen enthält die Verbindung zwei Strukturwassermoleküle pro Formeleinheit. Die über Sauerstoffatome der Wassermoleküle verbrückten Calciumionen bewirken eine gegenläufige Verkippung der Hexacyanoferrationen, die ihrerseits mit allen sechs CN-Gruppen an Calciumionen koordiniert sind.

Im Vergleich zu einigen anderen Metallhexacyanoferrat-HMT-Addukten, die häufig zwei HMT-Moleküle je $Fe(CN)_6$ -Einheit enthalten [1, 2, 5], liegt bei diesem Addukt nur ein Verhältnis von 1:1 vor. Verantwortlich hierfür ist die Gruppierung $[Ca_2(H_2O)_4]$. Obwohl sich der Schwerpunkt dieser Gruppierung auf oktaedrischen Lücken des $Fe(CN)_6$ -Gerüstes befindet, ragen die hydratisierten Calciumionen in jede zweite der tetraedrischen Lükken hinein, so daß eine Einlagerung von HMT in

Abb. 2. Koordinationsverhältnisse in $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O$ (ein Achtel Zellausschnitt, Projektion auf *ab*-Ebene).

diese Lücken aus sterischen Gründen nicht in Betracht kommt.

Abb. 2 zeigt die Koordinationssphäre der Calciumionen: Jedes Calciumion ist von drei N_{CYAN}-Atomen benachbarter Hexacyanoferrat-Ionen (mittlerer Bindungsabstand etwa 253 pm), einem N_{HMT}-Atom des Hexamethylentetramins (Bindungsabstand etwa 261 pm) und drei Sauerstoffatomen O1, O1*, O2 der Wassermoleküle (mittlerer Bindungsabstand etwa 245 pm) koordiniert. Die kristallographisch äquivalenten Sauerstoffatome O1 und O1* dienen dabei als Brückenliganden zwischen zwei benachbarten Calciumionen. O1 und O1* besitzen eine tetraedrische Umgebung mit den erwähnten Bindungen zu zwei Calciumionen und zwei Wasserstoffatomen. Die Wasserstoffatome bilden Wasserstoffbindungen mit N12_{HMT} (H12) und O3 (H11) aus. Das Sauerstoffatom O2 besitzt lediglich eine Bindung zu einem Calciumion und zwei Wasserstoffatomen, von denen eines über eine Wasserstoffbin-

- A. Weiss, A. Weiss und U. Hofmann, Z. Anorg. Allg. Chem. 273, 9 (1953).
- [2] H.-J. Meyer, Diss. TU Berlin 1987, D-83.
- [3] P. Main, L. Lessinger und M. M. Woolfson, Dep. of Physics, York, England and G. Germain, J.-P. Declercq, Belgium, MULTAN 1977.

Tab. III. Wichtige Bindungsabstände (pm) in $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O$.

Bindung	Abstand (pm)	Bindung	Abstand (pm)
Ca1-O1	244,9(3)	C1-N1	117,0(6)
Ca1-O2	245,1(3)	C2-N2	116,1(6)
Ca1-N1	252,0(3)	C3-N3	116,7(6)
Ca1-N2	251,3(3)	C11-N11	147,9(5)
Ca1-N3	256,7(3)	C11-N12	148,3(5)
Ca1-N11	261,0(3)	C12-N11	148,0(5)
Fe1-C1	192,1(4)	C12-N12	147,8(5)
Fe1-C2	194,2(4)	C13-N12	147,8(5)
Fe1-C3	193,8(4)	C14-N11	149,1(5)

Tab. IV. Wichtige Bindungswinkel (°) in $Ca_2[Fe(CN)_6] \cdot C_6H_{12}N_4 \cdot 6H_2O$.

Atome	Winkel	Atome	Winkel
C2-Fe1-C1	89,5(2)	N3-C3-Fe1	175,6(4)
C3-Fe1-C1	93,3(2)	N12-C13-N12	111,3(5)
C3-Fe1-C2	88,9(2)	N11-C14-N11	112,5(4)
N1-C1-Fe1	177,0(4)	C14-N11-C11	107,4(3)
N2-C2-Fe1	178,9(4)		

dung mit O3 (H21) wechselwirkt. O3 bildet nur schwache Wasserstoffbindungen aus und liegt somit als rein zeolithisches Wassermolekül im Kristallgitter vor. Die HMT-Moleküle verbrücken, mit den beiden nicht über Wasserstoffbindungen koordinierten N11-Atomen, zwei benachbarte Calciumionen. Außerhalb der abgebildeten Ebene (Abb. 2) liegt ein HMT-Molekül, um etwa z = c/4 verschoben. Die Bindung N3_{CYAN}-Ca ist bei einer Betrachtung aus dieser Perspektive nicht sichtbar.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52621, des Autors und des Zeitschriftenzitates angefordert werden.

Der Deutschen Forschungsgemeinschaft danken wir für die Förderung dieser Arbeit, dem Fonds der Chemischen Industrie für die finanzielle Unterstützung.

- [4] G. M. Sheldrick, SHELX 76, Program for crystal structure determination, Univ. of Cambridge, England.
- [5] J. Pickardt, J. Kähler, N. Rautenberg und E. Riedel, Z. Naturforsch. 39b, 1126 (1984).