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Abstract: A Banach space X is sequentially Right (resp. weak sequentially Right) if every
Right subset of X™ is relatively weakly compact (resp. weakly precompact). A Banach
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1. INTRODUCTION

A bounded subset A of a Banach space X is called a Dunford-Pettis (DP)
(resp. limited) subset of X if every weakly null (resp. w*-null) sequence (z}))
in X* tends to 0 uniformly on A4; i.e.,

liﬁn (sup{|z, (z)| : x € A}) = 0.

A sequence (x,,) is DP (resp. limited) if the set {x, : n € N} is DP (resp.
limited).

A subset S of X is said to be weakly precompact provided that every
sequence from S has a weakly Cauchy subsequence. Every DP (resp. limited)
set is weakly precompact [37, p. 377], [1] (resp. [4, Proposition]).

An operator T': X — Y is called weakly precompact (or almost weakly
compact) if T(Bx) is weakly precompact and completely continuous (or
Dunford-Pettis) if T maps weakly convergent sequences to norm convergent
sequences.

In [35] the authors introduced the Right topology on a Banach space X.
It is the restriction of the Mackey topology 7(X**, X) to X and it is also the
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topology of uniform convergence on absolutely convex o(X*, X**) compact
subsets of X*. Further, 7(X** X) can also be viewed as the topology of
uniform convergence on relatively o(X™*, X**) compact subsets of X* [26].

A sequence (z,) in a Banach space X is Right null if and only if it is
weakly null and DP (see Proposition 1).

An operator T : X — Y is called pseudo weakly compact (pwc) (or
Dunford-Pettis completely continuous (DPcc)) if it takes Right null sequences
in X into norm null sequences in Y ([35], [25]). Every completely continuous
operator T': X — Y is pseudo weakly compact. If T': X — Y is an operator
with weakly precompact adjoint, then T is a pseudo weakly compact operator
([18, Corollary 5]).

A subset K of X* is called a Right set (R-set) if each Right null sequence
(zn) in X tends to 0 uniformly on K [26]; i.e.,

liTan (sup{|z*(zn)| : 2" € K}) =0.

A Banach space X is said to be sequentially Right (SR) (has property (SR))
if every pseudo weakly compact operator T : X — Y is weakly compact, for
any Banach space Y [35]. Banach spaces with property (V') are sequentially
Right ([35, Corollary 15]).

A subset A of a dual space X* is called an L-limited set if every weakly
null limited sequence (x,,) in X converges uniformly on A [39]; i.e.,

li}ln (sup{|z*(zn)| : 2" € A}) = 0.

A Banach space X has the L-limited property if every L-limited subset
of X* is relatively weakly compact [39]. An operator T': X — Y is called
limited completely continuous (lcc) if T maps weakly null limited sequences
to norm null sequences [40].

In this paper we introduce the weak sequentially Right (wSR) and wL-
limited properties. A Banach space X is said to have the weak sequentially
Right (wSR) (resp. the wL-limited) property if every Right (resp. L-limited)
subset of X* is weakly precompact. We obtain some characterizations of these
properties with respect to some geometric properties of Banach spaces, such
as the Gelfand-Phillips property, the Grothendieck property, and properties
(wV) and (wL). We generalize some results from [39]. We also show that
property (SR) can be lifted from a certain subspace of X to X.

We study whether the projective tensor product X ® Y has the (SR)
(resp. the L-limited) property if L(X,Y*) = K(X,Y*), and X and Y have
the respective property. We prove that in some cases, if X ®,Y has the (wSR)
property, then L(X,Y™) = K(X,Y™).



ISOMORPHIC PROPERTIES IN PROJECTIVE TENSOR PRODUCTS 3

2. DEFINITIONS AND NOTATION

Throughout this paper, X, Y, E, and F' will denote Banach spaces. The
unit ball of X will be denoted by Bx and X* will denote the continuous
linear dual of X. An operator T : X — Y will be a continuous and linear
function. We will denote the canonical unit vector basis of ¢y by (e,) and
the canonical unit vector basis of ¢; by (e}). The set of all operators, weakly
compact operators, and compact operators from X to Y will be denoted by
L(X,Y), W(X,Y), and K(X,Y). The projective tensor product of X and Y
will be denoted by X ®, Y.

A bounded subset A of X* is called an L-set if each weakly null sequence
(z5,) in X tends to 0 uniformly on A4; i.e.,

liTILn (sup{|z*(zn)| : 2* € A}) = 0.

A Banach space X has the Dunford-Pettis property (DPP) if every weakly
compact operator T': X — Y is completely continuous, for any Banach space
Y. Schur spaces, C(K) spaces, and Lj(u) spaces have the DPP. The reader
can check [8], [9], and [10] for a guide to the extensive classical literature
dealing with the DPP.

A Banach space X has the Dunford-Pettis relatively compact property
(DPrcP) if every Dunford-Pettis subset of X is relatively compact [14]. Schur
spaces have the DPrcP. The space X does not contain a copy of ¢; if and only
if X* has the DPrcP if and only if every L-set in X* is relatively compact
([14, Theorem 1], [13, Theorem 2]).

The space X has the Gelfand-Phillips (GP) property if every limited sub-
set of X is relatively compact. The following spaces have the Gelfand-Phillips
property: Schur spaces; spaces with w*-sequential compact dual unit balls (for
example subspaces of weakly compactly generated spaces, separable spaces,
spaces whose duals have the Radon-Nikodym property, reflexive spaces, and
spaces whose duals do not contain ¢;); dual spaces X* whith X not contain-
ining ¢1; Banach spaces with the separable complementation property, i.e.,
every separable subspace is contained in a complemented separable subspace
(for example L;(u) spaces, where (i is a positive measure) [42, p. 31], [4, Prop-
osition], [12, Theorem 3.1 and p. 384], [11, Proposition 5.2], [13, Corollary 5.

A series Y x, in X is said to be weakly unconditionally convergent (wuc)
if for every xz* € X*, the series > |x*(x,)| is convergent. An operator T :
X — Y is called unconditionally converging if it maps weakly unconditionally
convergent series to unconditionally convergent ones.
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A bounded subset A of X* is called a V-subset of X* provided that
lim (sup{ |2z*(zn)| : 2* € A}) =0)

for each wuc series >z, in X.

A Banach space X has property (V) if every V-subset of X* is relatively
weakly compact [33]. A Banach space X has property (V) if every uncon-
ditionally converging operator T' from X to any Banach space Y is weakly
compact [33, Proposition 1]. C'(K) spaces and reflexive spaces have property
(V) ([33, Theorem 1, Proposition 7]). A Banach space X has property (wV)
if every V-subset of X* is weakly precompact [41].

A Banach space X has the reciprocal Dunford-Pettis property (RDPP)
if every completely continuous operator T' from X to any Banach space Y is
weakly compact. The space X has the RDPP if and only if every L-set in
X* is relatively weakly compact [28]. Banach spaces with property (V') have
the RDPP [33]. A Banach space X has property (wL) if every L-set in X*
is weakly precompact [19].

A topological space S is called dispersed (or scattered) if every nonempty
closed subset of S has an isolated point. A compact Hausdorff space K is
dispersed if and only if ¢; ¥ C(K) [34, Main theorem)].

The Banach-Mazur distance d(X,Y') between two isomorphic Banach spaces
X and Y is defined by inf(||T||||T~!||), where the infinum is taken over all iso-
morphisms T from X onto Y. A Banach space X is called an L,.-space
(resp. Li-space) [5, p. 7] if there is a A > 1 so that every finite dimensional
subspace of X is contained in another subspace N with d(N, () < X (resp.
d(N,071) < X) for some integer n. Complemented subspaces of C'(K') spaces
(resp. L1(p)) spaces) are Loo-spaces (resp. Li-spaces) ([5, Proposition 1.26]).
The dual of an L£i-space (resp. Loo-space) is an Loo-space (resp. Li- space)
([5, Proposition 1.27]). The L-spaces, Li-spaces, and their duals have the
DPP ([5, Corollary 1.30]).

3. THE WEAK SEQUENTIALLY RIGHT AND wL-LIMITED PROPERTIES
The following result gives a characterization of Right null sequences.

PROPOSITION 1. A sequence (x,) in a Banach space X is Right null if
and only if it is weakly null and DP.

Proof. Suppose that (x,) is a Right null sequence in X. Then (z,) is
weakly null, since the Right topology is stronger than the weak topology.



ISOMORPHIC PROPERTIES IN PROJECTIVE TENSOR PRODUCTS 5

Let (x) be a weakly null sequence in X*. Since {x} : n € N} is relatively
weakly compact in X* and (z,) is Right null, (x,) converges uniformly on
{z} : n € N}. Therefore lim, sup; |z} (z,)| = 0, and thus lim,, |z} (z,)| = 0.
Hence {z,, : n € N} is a DP set.

Suppose that (x,) is a weakly null DP sequence. Let K be a relatively
weakly compact subset of X*. Suppose that (x,) does not converge uniformly
on K. Let € > 0 and let (x}) be a sequence in K so that |z} (z,)| > € for all n.
Without loss of generality suppose that (z) converges weakly to z*, z* € X*.
Since (z}, — x*) is weakly null in X* and (zy,) is DP, lim, (z} — 2*)(z,) = 0.
Thus lim, 2}, (xz,) = 0, a contradiction. Hence (z,) converges uniformly to
zero on K, and thus (z,,) is Right null. 1

A Banach space X is sequentially Right if and only if every Right subset
of X* is relatively weakly compact [26, Theorem 3.25]. A Banach space X
has the L-limited property if and only if every limited completely continuous
operator T' : X — Y is weakly compact, for every Banach space Y [39,
Theorem 2.8]. In the next theorem we give elementary operator theoretic
characterizations of weak precompactness, relative weak compactness, and
relative norm compactness for Right sets and L-limited sets. The argument
contains the theorems in [26] and [39] just cited.

We say that a Banach space X is weak sequentially Right (wSR) or has
the (wSR) property (resp. has the wL-limited property) if every Right (resp.
L-limited) subset of X* is weakly precompact. If 1 & X* then X is weak
sequentially Right and has the wL-limited property, by Rosenthal’s theorem
([8, Ch. XI]).

THEOREM 2. Let X be a Banach space. The following assertions are
equivalent:

1. (i) For every Banach space Y, every pseudo weakly compact operator T :
X — Y has a weakly precompact (weakly compact, resp. compact)
adjoint.

(ii) Every pseudo weakly compact operator T : X — ( has a weakly
precompact (weakly compact, resp. compact) adjoint.

(iii) Every Right subset of X* is weakly precompact (relatively weakly com-
pact, resp. relatively compact).
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2. (i) For every Banach space Y, every limited completely continuous operator
T : X — Y has a weakly precompact (weakly compact, resp. compact)
adjoint.

(ii) Every limited completely continuous operator T': X — {, has a weakly
precompact (weakly compact, resp. compact) adjoint.

(iii) Every L-limited subset of X* is weakly precompact (relatively weakly
compact, resp. relatively compact).

Proof. We will show that 1.(i)=-1.(ii)=-1.(iii)=-1.(i) in the weakly precom-
pact case as well as 2.(i)=-2.(ii)=-2.(iii)=-2.(i) in the compact case. These two
arguments are similar, and the arguments for the remaining implications of
the theorem follow the same pattern.

1. (weakly precompact) (i)=-(ii) is clear.

(ii)=-(ili) Let K be a Right subset of X* and let (x}) be a sequence in K.
Define T': X — lo by T'(z) = (z}(z)). Let (z,,) be a Right null sequence in
X. Since K is a Right set,

lim ||T'(xy,)|| = limsup |z} (z,)| = 0.
n n i

Therefore T' is pseudo weakly compact, and thus 7™ : £i — X* is weakly
precompact. Hence (T%(e})) = (x}) has a weakly Cauchy subsequence.

(iii)=(i) Let T': X — Y be a pseudo weakly compact operator. Let (z,,) be
a Right null sequence in X. If y* € By, (T*(y*),z5) < ||T(xy)|| = 0. Then
T*(By~) is a Right subset of X*. Therefore 7%(By+) is weakly precompact,
and thus T is weakly precompact.

2. (compact) (i)=-(ii) is clear.

(ii)=(iii) Let K be an L-limited subset of X* and let (z}) be a sequence
in K. Define T : X — (o, as above and note that T is limited completely
continuous. Thus 7% : 5 — X* is compact, and (T*(e})) = (z}) has a norm
convergent subsequence.

(ili)=(1) Let T : X — Y be a limited completely continuous operator.
Let (xy,) be a weakly null limited sequence in X. If y* € By, (T*(y*),zn) <
|T(zy)|| = 0. Then T*(By~) is an L-limited subset of X*. Therefore T*(By~)
is relatively compact, and thus T™ is compact. |

COROLLARY 3. If X is weak sequentially Right (has the wL-limited, resp.
the L-limited property), then every quotient space of X has the same property.
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Proof. We only prove the result for the weak sequentially Right property.
The proofs for the other properties are similar.

Suppose that X is weak sequentially Right. Let Z be a quotient space
of X and @ : X — Z be a quotient map. Let T : Z — FE be a pseudo
weakly compact operator. Then T'Q) : X — E is pseudo weakly compact, and
thus (T'Q)* is weakly precompact by Theorem 2. Since Q*T*(Bj,) is weakly
precompact and Q* is an isomorphism, T*(Bj,) is weakly precompact. Apply
Theorem 2. |}

COROLLARY 4. Suppose X is weak sequentially Right and Y is a Banach
space. Then an operator T : X — Y is pseudo weakly compact if and only if
T :Y* — X* is weakly precompact.

Proof. If T : X — Y is pseudo weakly compact, then T* : Y* — X* is
weakly precompact by Theorem 2, since X is weak sequentially Right.
The converse follows from [18, Corollary 5]. 1

COROLLARY 5. (i) If X is weak sequentially Right (resp. has the wL-
limited property), then every pseudo weakly compact (resp. limited com-
pletely continuous) operator T : X — Y is weakly precompact.

(ii) If X is an infinite dimensional space with the Schur property, then X
is not weak sequentially Right (resp. does not have the wL-limited property).

(iii) If X is weak sequentially Right (resp. has the wL-limited property),

then /1 7& X.

Proof. (i) Suppose X is weak sequentially right (resp. has the wL-limited
property). Let T : X — Y be pseudo weakly compact (resp. limited com-
pletely continuous). Then T™ is weakly precompact by Theorem 2. Hence T’
is weakly precompact, by [2, Corollary 2].

(ii) Since X has the Schur property, the identity operator i : X — X is
pseudo weakly compact (resp. limited completely continuous). Since X is an
infinite dimensional space with the Schur property, 7 is not weakly precompact.
Apply (i).

(iii) Apply Corollary 3 and (ii). 1

COROLLARY 6. A Banach space X has the L-limited property if every
separable subspace of X has the same property.

Proof. Let T : X — Y be a limited completely continuous operator. Then
for every closed subspace Z of X, T|z is limited completely continuous. Let
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(zn) be a sequence in Bx and let Z = [z, : n € N] be the closed linear
span of (z,). Since Z is a separable subspace of X, Z has the L-limited
property. Since T'|z is limited completely continuous, it is weakly compact
by Theorem 2. Then there is a subsequence (x,, ) of (z,) so that (T'(x,,)) is
weakly convergent. Thus T is weakly compact. Apply Theorem 2. 1

ExaMpPLE. Corollary 6 cannot be reversed. Indeed, consider ¢; as a sub-
space of lo,. By [39, Theorem 2.11], /o, has the L-limited property. However,
¢1 does not have the L-limited property, by [39, Corollary 2.9] (or Corollary

5 (ii)).

THEOREM 7. The Banach space X has the DPP if and only if every Right
subset of X* is an L-set.

Proof. Suppose X has the DPP. Then every weakly null sequence (z,,) is
DP ([9, Theorem 1]). Therefore every Right subset of X* is an L-set.

Conversely, let T': X — Y be a pseudo weakly compact operator. Then
T*(By~) is a Right subset of X*, hence an L-set. Therefore T is completely
continuous, and thus X has the DPP by [26, Proposition 3.17], [25, Theorem
1.5], [18, Theorem 10]. 1

COROLLARY 8. Suppose that X has the DPP. Then the following are
equivalent:

(i) X does not contain a copy of £;.
(ii

(ii

)
) Every L-set in X* is relatively compact.

) Every Right subset of X* is relatively compact.
(iv) X* has the Schur property.

Proof. (i)<(ii) by [13, Theorem 2]. (ii)<(iii) by Theorem 7. (i)<(iv) by
9, p. 23]. 1

COROLLARY 9. X™ has the Schur property if and only if every Right subset
of X* is relatively compact.

Proof. If X* has the Schur property, then X has the DPP and X does not
contain a copy of ¢1 (]9, p. 23]). Hence every Right subset of X* is relatively
compact by Corollary 8.
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Conversely, let (z}) be a weakly Cauchy sequence in X*. Then (z}) is a

Right set, by the proof of [26, Corollary 3.26]. Thus () is relatively compact,
and X™* has the Schur property. |1

COROLLARY 10. (i) Suppose X has the DPP and Y has the DPrcP. Then
any operator T' : X — 'Y is completely continuous.

(ii) The space X has the DPP and the DPrcP if and only if X has the
Schur property.

Proof. (i) Let T : X — Y be an operator. Since Y has the DPrcP, T is
pseudo weakly compact. Then T*(By~) is a Right set, thus an L-set in X*
(by Theorem 7). Hence T is completely continuous.

(ii) Suppose X has the DPP and the DPrcP. Then the identity operator
i: X — X is completely continuous by (i). Hence X has the Schur property.
If X has the Schur property, then X has the DPP and the DPrcP. |

Corollary 10 (i) generalizes [13, Corollary 6] when Y is a dual space E*
with E not containing ¢; (since E* has the DPrcP [14, Theorem 1)).

A bounded subset A of X* is called w*- sequentially compact if every
sequence from A has a subsequence which converges to a point in the w*-
topology of X*.

The following theorem generalizes [39, Theorem 2.2 (b), (c)].

THEOREM 11. If (x}) is a w*-Cauchy sequence in X*, then {z} : n € N}
is an L-limited set.

Proof. Supppse that (z) is a w*-Cauchy sequence in X* and {z} : n € N}
is not an L-limited set. By passing to a subsequence if necessary, there is an
e > 0 and a weakly null limited sequence (x,) in X such that |z} (z,)| > €
for all n. Let ky = 1 and choose k2 > ki so that |z} (wk,)| < €/2. We can
do this since (z,) is weakly null. Continue inductively. Choose k,, > k,,—1 so
that [z} (7g,)| < €/2 for all n. Then

(@, = 25, ) (@r)| = [, (2r,) — 2, (23, > €/2.

This is a contradiction, since (z; —x} ) is w*-null in X* and (xy,) is
’ kn kn—1 n

limited in X. |1

A Banach space X has the Grothendieck property if every w*- convergent
sequence in X* is weakly convergent [10, p. 179]. A space X is weakly sequen-
tially complete if every weakly Cauchy sequence in X is weakly convergent.
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COROLLARY 12. (i) If X has the L-limited property, then X* is weakly
sequentially complete.

(i1) ([39, Theorem 2.10]) If X has the L-limited property, then X is a
Grothendieck space.

Proof. (i) Suppose that X has the L-limited property. Let (x}) be a weakly
Cauchy sequence in X*. By Theorem 11, {z} : n € N} is an L-limited set,
and thus relatively weakly compact. Hence (z7)) is weakly convergent.

(ii) Let (x}) be a w*- convergent sequence in X*. By Theorem 11, (z})
is an L-limited set, thus relatively weakly compact. Hence (z}) is weakly
convergent. |

COROLLARY 13. (i) A Banach space X with the Gelfand-Phillips property
has the wL-limited property if and only if X* contains no copy of £1.

(ii) A Banach space X with the DPrcP has the (wSR) property if and
only if X* contains no copy of {1.

(iii) If X has the wL-limited property, then ¢y is not complemented in X.

(iv) ([39, Corollary 2.9]) A Banach space X is reflexive if and only if it has
the Gelfand-Phillips property and the L-limited property.

(v) ([7, Corollary 17]) A Banach space X is reflexive if and only if it has
the DPrcP and the (SR) property.

Proof. (i) Suppose that X has the Gelfand-Phillips property and the wL-
limited property. Then the identity operator ¢ : X — X is limited completely
continuous (since X has the Gelfand-Phillips property) and i* : X* — X*
is weakly precompact by Theorem 2. Hence X* contains no copy of ¢1, by
Rosenthal’s /1 theorem. The converse follows by Rosenthal’s ¢; theorem.

(ii) The proof is similar to that of (i).

(iii) Suppose that X has the wL-limited property. Since ¢ is separable,
it has the Gelfand-Phillips property [4, Proposition|. By (i), cg does not have
the wL-limited property. Hence cp is not complemented in X by Corollary 3.

(iv) If X is reflexive, then it has the Gelfand-Phillips property [4, Propo-
sition] and the L-limited property. Conversely, X* contains no copy of ¢; by
(i) and X* is weakly sequentially complete by Corollary 12. Then X*, thus
X, is reflexive.

(v) Suppose X is reflexive. Then X has the (SR) property and X* does
not contain a copy of ¢;. Hence X** thus X, has the DPrcP ([13, Theorem
2]). Conversely, X* contains no copy of /1 by (i) and X* is weakly sequentially
complete by [26, Corollary 3.26]. Then X is reflexive. 1
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EXAMPLE. The converse of Corollary 12 (i) does not hold. Let X be the
first Bourgain-Delbaen space [5, p. 25]. Then X has the Schur property and
X* is weakly sequentially complete. Since X has the Schur property, X does
not have the L-limited property (by Corollary 13 (iv)).

COROLLARY 14. (i) If X has property (wV'), then X is weak sequentially
Right.

(ii) If X has the L-limited (resp. the wlL-limited) property, then X is
sequentially Right (resp. weak sequentially Right).

(iii) If X is sequentially Right (resp. weak sequentially Right), then it has
the RDPP (resp. property (wL)).

(iv) If X is an infinite dimensional space with the L-limited property, then
X* does not have the Schur property.

Proof. (i) Suppose X has property (wV). Let T : X — Y be pseudo
weakly compact. Then T is unconditionally converging [35, Proposition 14].
Hence T™ is weakly precompact [19, Theorem 1]. Apply Theorem 2.

(ii) Suppose X has the the L-limited (resp. the wL-limited) property. Let
(z5,) be a weakly null limited sequence in X. Then (x,) is a weakly null DP
sequence. Hence every Right subset of X™* is L-limited, thus relatively weakly
compact (resp. weakly precompact).

(iii) Suppose X is sequentially Right (resp. weak sequentially Right).
Every L-set in X* is a Right set, thus relatively weakly compact (resp. weakly
precompact). Hence X has the RDPP [28] (resp. property (wL)).

(iv) Suppose that X has the L-limited property. Then X has the
Grothendieck property, by Corollary 12 (ii). By the Jossefson-Nissezweig the-
orem, there is a w*-null sequence (z},) in X* of norm one. Then (x}) is weakly
null and not norm null, and X* does not have the Schur property. |

The fact that a space with property (SR) has the RDPP was obtained in
[26, Corollary 3.3].

EXAMPLE. The converse of Corollary 14 (i) is not true. Let Y be the
second Bourgain-Delbaen space [5, p. 25]. The space Y is a non-reflexive Loo-
space with the DPP that does not contain ¢y or /1 and such that Y™* ~ /4.
The space Y is sequentially Right by Corollary 8. Since Y does not contain
cp, the identity operator i : Y — Y is unconditionally converging ([8, p. 54])
and ¢* : Y* — Y™ is not weakly precompact (since Y* ~ ¢;). Thus Y does
not have property (wV) by [19, Theorem 1].
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The converse of Corollary 14 (ii) (strong properties) is not true. The second
Bourgain-Delbaen space Y is sequentially Right and does not have the L-
limited property (by Corollary 14 (iv)).

The converse of Corollary 14 (iii) (strong properties) is not true. Let J be
the original James space [24]. Since J is separable and 1-codimensional in J**,
all duals of J are separable and ¢; fails to embed in any of them. Moreover,
none of these spaces can be weakly sequentially complete. Thus J and its
duals are weak sequentially Right, but none of these spaces are sequentially
Right by [26, Corollary 3.26], since their duals are not weakly sequentially
complete. Since J does not contain ¢1, every completely continuous operator
on J is compact (by a result of Odell [37, p. 377]), and thus weakly compact.
Hence J has the RDPP.

The following theorem shows that the space E has property (SR) if some
subspace of it has property (SR).

LEMMA 15. ([23, Theorem 2.7]) Let E be a Banach space, F' a reflexive
subspace of E (resp. a subspace not containing copies of ¢1), and Q : E —
E/F the quotient map. Let (x,) be a bounded sequence in E such that
(Q(zy)) is weakly convergent (resp. weakly Cauchy). Then (x,) has a weakly
convergent (resp. weakly Cauchy) subsequence.

Let E be a Banach space and F' be a subspace of E*. Let
tF={z€FE:y"(z)=0forally” € F}.

THEOREM 16. (i) Let E be a Banach space and F' be a reflexive subspace
of E*. If *F has property (SR) (resp. the L-limited property), then E has
the same property.

(ii) Let E be a Banach space and F be a subspace of E* not containing
copies of £1. If - F has property (wSR) (resp. the wL-limited property), then
E has the same property.

Proof. We only prove (i) for the (SR) property. The other proofs are
similar.

Suppose that - F has property (SR). Let Q : E* — E*/F be the quotient
map and i : E*/F — (1F)* be the natural surjective isomorphism ([31,
Theorem 1.10.16]). It is known that iQ : E* — (+F)* is w* — w* continuous,
since iQ(x*) is the restriction of z* to - F ([31, Theorem 1.10.16]). Then there
is an operator S :* F' — E such that iQ = S*.
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Let T : E — G be a pseudo weakly compact operator. Then TS :* F — G
is pseudo weakly compact. Since *F has property (SR), T'S has a weakly
compact adjoint, by Theorem 2. Since S*T™ = iQT™ is weakly compact and ¢
is a surjective isomorphism, QT is weakly compact. Let (z) be a sequence
in Bg+. By passing to a subsequence, we can assume that (QT™(x})) is weakly
convergent. Hence (T7(x})) has a weakly convergent subsequence by Lemma
15. Thus E has property (SR). 1

The w* — w continuous operators from X* to Y will be denoted by
Ly (X*Y).

THEOREM 17. Let X be a Banach space and A be a bounded subset of
X*. The following are equivalent:

(i) A is an L-limited set.

(ii) Every operatorT € Lq,«(X*, co) that is w*-norm sequentially continuous
maps A into a relatively compact set.

Proof. (1)=(ii) Let T' € Ly+(X™*,¢p) be an operator so that 7" is w*-norm
sequentially continuous. Note that T € Ly»(¢1,X), (z,) = (T™(e})) is a
weakly null sequence in X, and T'(z*) = (x*(x;));. If (x}) is a w*-null sequence
in X* and y € By, then

(25, T ()] < 1T (23)]| — 0.

Hence T*(By,), thus (z,), is limited. Since A is an L-limited set,
Sup,ea |2*(zn)] — 0. Therefore T'(A) is relatively compact in ¢y, by the
characterization of relatively compact subsets of c¢y.

(ii)=(1) Let (x,) be a weakly null limited sequence in X. Define T :
X* = ¢ by T(z*) = (x*(xp))n. Note that T*(b) = > bpxn, b = (by) € {1,
T*(¢1) € X, and T € Ly+(X™, o). If (x})) is a w*-null sequence in X*, then

1T (y,)|| = sup |7, (zi)| — 0,

since (z;) is limited. Hence T is w*-norm sequentially continuous operator,
and T'(A) is relatively compact in ¢g. By the characterization of relatively
compact subsets of cg, supy«cy|z*(x,)] — 0, and thus A is an L-limited
subset of X*. 1

An operator T : X — Y is called limited if T'(Bx) is a limited subset of
Y ([4]). The operator T is limited if and only if 7% : Y* — X* is w*-norm
sequentially continuous.
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COROLLARY 18. Let X be a Banach space and A be a bounded subset of
X*. The following are equivalent:

(i) A is an L-limited set.

(ii) For every limited operator S € Ly»({1,X), S*(A) is relatively compact.

Proof. (i)=(ii) Let S € Ly=(¢1,X) be a limited operator. Then S* €
Ly+(X*,¢p) and S* is w*-norm sequentially continuous. By Theorem 17,
S*(A) is relatively compact.

(ii)=(i) Let T" € L= (X*, cp) be a w*-norm sequentially continuous opera-
tor and let S = T*. Then S € L+ (¢1,X), S is limited, and S*(A) is relatively
compact. By Theorem 17, A is an L-limited set. |

COROLLARY 19. Suppose that A is a bounded subset of X* such that for
every € > 0, there is an L-limited subset A. of X* such that A C A, + eBx~.
Then A is an L-limited set.

Proof. Suppose that A satisfies the hypothesis. Let ¢ > 0 and A, as in
the hypothesis. Let T' € Ly« (X™, ¢g) be an operator such that 7" is w*-norm
sequentially continuous and ||T']] < 1. Then T'(A) C T'(A¢) + €Be,, and T'(A¢)
is relatively compact by Theorem 17. Then T'(A) is relatively compact [8, p.
5], and thus A is an L-limited set by Theorem 17.

4. THE (wSR) AND wL-LIMITED PROPERTIES IN
PROJECTIVE TENSOR PRODUCTS

In this section we consider the (SR) and L-limited properties in the pro-
jective tensor product X ®,; Y. We begin by noting that there are examples
of Banach spaces X and Y such that X ®; Y has the (SR) and L-limited
properties. If 1 < ¢’ < p < oo, then L(€p,ly) = K (¢, Ly) ([36], [10, p. 247]).
If ¢ is the conjugate of ¢/, then ¢, ® ¢, is reflexive (by [38, Theorem 4.19], [10,
p. 248]), and thus has the (SR) and L-limited properties. Then the spaces
X =/, and Y = {; are as desired.

IfHCLX,)Y),ze Xandy* € Y* let Hz) ={T(z): T € H} and
H(y*) = {T*(y*) : T € H}.

In the proofs of Theorems 23 and 25 we will need the following results.
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THEOREM 20. (]20, Theorem 1]) Let H be a subset of K(X,Y') such that

(i) H(zx) is weakly precompact compact for all x € X.
(ii) H*(y*) is relatively weakly compact for all y* € Y*.

Then H is weakly precompact.

THEOREM 21. (]20, Theorem 3]) Suppose that L(X,Y) = K(X,Y) and
H is a subset of K(X,Y') such that:

(i) H(x) is relatively weakly compact for all z € X.
(ii) H*(y*) is relatively weakly compact for all y* € Y*.

Then H is relatively weakly compact.

LEMMA 22. Suppose L(X,Y™*) = K(X,Y™). If (zy,) is a weakly null DP
sequence in X and (y,) is a DP sequence in'Y, then (x, ®yy) is a weakly null
DP sequence in X ®, Y.

Proof. Suppose that (x,) is weakly null DP in X and |y,|| < M for all
neN. Let T € L(X,Y") ~ (X ®; Y)* ([10, p. 230]). Since T is completely
continuous,

(T, 2n @ yn) < M|T(xn)|[ — 0.

Thus (2, ® yy,) is weakly null in X ®, Y.

Let (Ay,) be a weakly null sequence in (X ®,Y)* ~ L(X,Y™) and let 2** €
X**. Since the map vz : L(X,Y*) = K(X,Y™") = Y*, 7= (T) = T**(2*)
is linear and bounded, (A}*(x**)) is weakly null in Y*. Therefore

(@™, A (yn)) = (A7"(2™), yn) — 0,

since (yy) is DP in Y. Hence (A} (y,)) is weakly null in X*. Then
{(Ans 20 @ yn) = (Ap(Yn), Tn) = 0,

since (z5,) is DP in X. Thus (z, ® y) s DPin X ®, Y. |1

THEOREM 23. ([7, Theorem 18]) Suppose that L(X,Y™*) = K(X,Y™*). If
X and Y are sequentially Right, then X ®,; Y is sequentially right.
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Proof. Let H be a Right subset of (X ®,Y)* ~ L(X,Y*) = K(X,Y*). We
will use Theorem 20. We will verify the conditions (i) and (ii) of this theorem.
Let (75,) be a sequence in H and let € X. We prove that {T,,(z) : n € N}
is a Right subset of Y*. Let (y,) be a Right null sequence in Y. Thus (y,) is
weakly null and DP. For each n,

(Tn(2), yn) = (Tn, * @ Yn)-

We show that (r®y,,) is Right null in X®,Y. If T" € (X®,Y)* ~ L(X,Y™)
([10, p. 230]), then

|<T,33‘ ®yn>| = |<T(x)vyn>| — 0,

since (y,,) is weakly null. Thus (z ® y,,) is weakly null. Let (A,,) be a weakly
null sequence in (X ®, Y)* ~ L(X,Y™). Since the map ¢, : L(X,Y™) — Y™,
¢.(T) = T(z) is linear and bounded, (A, (x)) is weakly null in Y*. Therefore

|<Am$®yn>| = |<An(x)ayn>| — 0,

since (y,) is DP in Y. Thus (z ® y,,) is DP and (z ® y,,) is Right null. Since
(T},) is a Right set,

Thus {75, (x) : n € N} is a Right subset of Y*, hence relatively weakly compact
(by Theorem 2). We thus verified (i) of Theorem 20.

Let y** € Y**. We show that {T'(y**) : n € N} is a Right subset of X*.
Let (x,) be a Right null sequence in X. Thus (z,) is weakly null and DP. For
each n,

(T3 (y™), an) = (Y™ Tn(n))

It is enough to show that (7),(z,)) is weakly null in Y*. Let (y,) be a
Right null sequence in Y. By Lemma 22 and Proposition 1, (z, ®y,) is Right
null in X ®; Y. Since (T,) is a Right set,

|<Tnamn ®yn>| = |<Tn(xn)ayn>| — 0.

Therefore (T),(zy)) is a Right subset of Y*, thus relatively weakly compact
(by Theorem 2). By passing to a subsequence, we can assume that (7, (zy,)) is
weakly convergent. Let y € Y. An argument similar to the one above shows
that (z, ® y) is Right null in X ®, Y. Then

(T 20 @ )| = [{Tn(2n), )| = 0,
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since (7},) is a Right set. Hence (T},(xy)) is w*-null. Since (T5,(x,)) is also
weakly convergent, (T),(zy)) is weakly null. Then {T7F(y**) : n € N} is a Right
subset of X*. Hence {T;(y**) : n € N} is relatively weakly compact (by The-
orem 2). By Theorem 20, H is weakly precompact. We can assume without
loss of generality that (7},) is weakly Cauchy. Since X and Y are sequen-
tially Right, X* and Y* are both weakly sequentially complete [26, Corollary
3.26], and thus L(X,Y*) = K(X,Y™) is weakly sequentially complete, by [22,
Theorem 3.10]. Then (73,) is weakly convergent.

Remark. Theorem 23 can also be proved as follows. Let H be a Right
subset of (X ®, Y)* ~ L(X,Y*) = K(X,Y™) and let (T},) be a sequence in
H. By the proof of Theorem 23, {T},(x) : n € N} and {7, (y**) : n € N} are
relatively weakly compact for all z € X and y** € Y**. By Theorem 21, H is
relatively weakly compact.

LEMMA 24. Suppose L(X,Y™*) = K(X,Y™). If (x,) is a weakly null lim-
ited sequence in X and (y,) is a limited sequence in Y, then (z, ® y,) is a
weakly null limited sequence in X ®, Y.

Proof. By Lemma 22, (x, ® y,) is a weakly null. Let (4,,) be a w*-null
sequence in (X ®; Y)* ~ L(X,Y™). Then (A}(z)) is a w*-null sequence in
Y*. If x € X, then (A, (z),yn) = (A} (yn),x) — 0, since (y,,) is limited in Y.
Hence (A} (yp)) is w*-null in X*. Since (x,,) is limited,

<Ana Tn & yn> = <A;kz(yn)7 l’n> — 0.

Thus (2, ® yy,) is limited in X @, Y. |}

THEOREM 25. ([7, Theorem 25]) Suppose that L(X,Y™*) = K(X,Y™*). If
X andY have the L-limited property, then X ®,Y has the L-limited property.

Proof. The proof is similar to the proof of Theorem 23 and uses Lemma, 24.

Remark. Theorem 25 can also be proved with a method similar to the one
in the previous remark.

The fact that the (SR) and L-limited properties are inherited by quotients,
immediately implies the following result.
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COROLLARY 26. (i) Suppose that L(X*,Y*) = K(X*,Y"), and X* and
Y are sequentially Right. Then the space N1(X,Y') of all nuclear operators
from X toY is sequentially Right.

(ii) Suppose that L(X*,Y*) = K(X*,Y*), and X* and Y have the L-
limited property. Then the space N1(X,Y') of all nuclear operators from X
to Y has the L-limited property.

Proof. It is known that N1(X,Y) is a quotient of X* ®, Y ([38, p. 41]).
(i) Apply Theorem 23. (ii) Apply Theorem 25. |

Observation 1. If T :' Y — X* be an operator such that 77| x is (weakly)
compact, then T is (weakly) compact. To see this, let T : Y — X* be
an operator such that T*|x is (weakly) compact. Let S = T*|x. Suppose

x** € Bx«» and choose a net (z,) in Bx which is w*- convergent to x**.

Then (T*(zq)) % T*(2**). Now, (T*(z4)) € S(Bx), which is a relatively
(weakly) compact set. Then (T*(x,)) — T*(z**) (resp. (T*(za)) — T*(x**)).
Hence T*(Bx++) C S(Bx), which is relatively (weakly) compact. Therefore
T*(Bx==) is relatively (weakly) compact, and thus 7" is (weakly) compact.

It follows that if L(X,Y™) = K(X,Y™), then L(Y, X™*) = K(Y, X™).

The following result improves Corollaries 19 and 21 of [7].

COROLLARY 27. If X is sequentially Right and Y* has the Schur property
(or'Y is sequentially Right and X* has the Schur property), then X ®, Y is
sequentially Right.

Proof. Since Y* has the Schur property, every Right set in Y* is relatively
compact (by Corollary 9). Let T': X — Y™ be an operator. Then T is
pseudo weakly compact (since Y* has the Schur property), hence compact
(by Theorem 2). Apply Theorem 23.

THEOREM 28. Suppose that L(X,Y*) = K(X,Y™). The following state-
ments are equivalent:

1. (i) X and Y are sequentially Right and at least one of them does not con-
tain 61.
(ii) X ®,Y is sequentially Right.

2. (i) X andY have the L-limited property and at least one of them does not
contain ¢1.
(ii) X ®, Y has the L-limited property.



ISOMORPHIC PROPERTIES IN PROJECTIVE TENSOR PRODUCTS 19

Proof. We only prove 1. The other proof is similar.

(i)=(ii) by Theorem 23.

(ii)=-(i) Suppose that X ®, Y is sequentially Right. Then X and Y are
sequentially Right, since the sequentialy Right property is inherited by quo-
tients [26, Proposition 3.8]. We will show that ¢; > X or ¢; <+ Y. Suppose
that ¢, — X and ¢; — Y. Hence L1 — X* ([32, Theorem 3.4], [8, p. 212]).
Also, the Rademacher functions span ¢, inside of L1, and thus fo — X™*. Sim-
ilarly 9 < Y™*. Then ¢y — K(X,Y™) ([15, Theorem 3], [21, Corollary 21]).
Thus ¢, <> X ®, Y ([3, Theorem 4], [8, Theorem 10, p. 48]), a contradiction
with Corollary 5 (iii). H§

Observation 2. If /1 — X and {1 — Y, then fo — X* and {5 — Y™,
and cg — K(X,Y™) ([15, Theorem 3], [21, Corollary 21]). More generally,
if 44, = X and ¢, — Y*, p > 2, then ¢g — K(X,Y™) ([15], [21]). Thus

h<S X, Y ([3, Theorem 4], [8, Theorem 10, p. 48]). Hence X ®, Y is
not weak sequentially Right (and does not have the wL-limited property), by
Corollary 5 (iii).

COROLLARY 29. Suppose that L(X,Y™*) = K(X,Y™).

1. If X®,Y is weak sequentially Right, then X and Y are weak sequentially
Right and at least one of them does not contain {1.

2. If X ®,;Y has the wL-limited property, then X and Y have the wL-
limited property and at least one of them does not contain f;.

Proof. We only prove 1. The other proof is similar. If X ®, Y is weak
sequentially Right, then X and Y are weak sequentially Right, since the weak
sequentially Right property is inherited by quotients (by Corollary 3). Apply
Observation 2. 1

COROLLARY 30. ([7, Theorem 22]) Suppose that X and Y have the DPP.
The following statements are equivalent:

(i) X andY are sequentially Right and at least one of them does not con-
tain 61.

(ii) X ®,Y is sequentially Right.
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Proof. (i)=(ii) Suppose that X and Y have the DPP. Without loss of
generality suppose that ¢; ¥+ X. Then X* has the Schur property [9]. Apply
Corollary 27.

(ii)=-(i) by Observation 2. |

By Corollary 30, the space C(K7) ®, C(K3) is sequentially Right if and
only if either K or K> is dispersed.

Next we present some results about the necessity of the condition
L(X,Y*) = K(X,Y"*). It is implicit in [6] that a Banach space X has all
bilinear forms weakly sequentially continuous if and only if every operator
S ¢ X — X* transforms weakly null sequences into L-sets. Emmanuelle
shows in [13] that a Banach space X does not contain ¢; if and only if every
L-set in X™ is relatively compact. Then, it is easy to see that if X and Y are
not containing ¢;, then L(X,Y™*) = K(X,Y™) if and only if every operator
T : X — Y* transforms weakly null sequences into L-sets (for more details
see [6]).

A Banach space X has the approximation property if for each norm com-
pact subset M of X and € > 0, there is a finite rank operator 7' : X — X such
that |72 — z|| < € for all x € M. If in addition 7" can be found with ||T'|| < 1,
then X is said to have the metric approximation property. C'(K) spaces, co,
lp, 1 < p < o0, Ly(p) (1 any measure), 1 < p < oo, and their duals have the
metric approximation property [10, p. 238].

A separable Banach space X has an unconditional compact expansion of
the identity (u.c.e.i) if there is a sequence (A4,,) of compact operators from X
to X such that > A, (z) converges unconditionally to x for all x € X [17]. In
this case, (Ay,) is called an (u.c.e.i.) of X.

A sequence (X,) of closed subspaces of a Banach space X is called an
unconditional Schauder decomposition of X if every x € X has a unique
representation of the form x = Y  x,, with x,, € X, for every n, and the
series converges unconditionally [30, p. 48].

The space X has (Rademacher) cotype ¢ for some 2 < ¢ < oo if there is a
constant C' such that for for every n and every x1, xs,...,2, in X,

n 1/q 1 1/q
(Z ||93i||q> <C (/0 II?“i(t)xindt> :
i=1

where (r,,) are the Radamacher functions. A Hilbert space has cotype 2 [8, p.
118]. L,-spaces have cotype 2, if 1 <p <2 [8, p. 118].
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THEOREM 31. Assume one of the following holds:

(i) If T : X — Y™ is an operator which is not compact, then there is a
sequence (T,,) in K(X,Y™) such that for each x € X, the series Y T,,(x)
converges unconditionally to T'(x).

(ii) X is an Loo-space and Y* is a subspace of an L;-space.

(iii) X = C(K), K a compact Hausdorff space, and Y* is a space with cotype
2.

(iv) Either X or Y* has an (u.c.e.i.).
(v) X has the DPP and ¢ — Y.
(vi) X and Y have the DPP.

If X ®,; Y is weak sequentially Right, then L(X,Y™*) = K(X,Y™).

Proof. Suppose that X ®, Y is weak sequentially Right. Then X and Y
are weak sequentially Right.

(i) Let T : X — Y™ be a noncompact operator. Let (7},) be a sequence
as in the hypothesis. By the Uniform Boundedness Principle, {d . T, :
A C N, A finite} is bounded in K(X,Y™*). Then ) 7, is wuc and not un-
conditionally convergent (since T is noncompact). Hence ¢y — K(X,Y™) ([3,
Theorem 5)), /1 <+ X @, Y ([3, Theorem 4]), and we have a contradiction
with Corollary 5 (iii).

Suppose (ii) or (iii) holds. It is known that any operator 7' : X — Y*
is 2-absolutely summing ([8, p. 189]), hence it factorizes through a Hilbert
space. If L(X,Y™) # K(X,Y™), then ¢g — K(X,Y™) (by [16, Remark 3]), a
contradiction.

(iv) If L(X,Y™) # K(X,Y™), then ¢p — K(X,Y™) (by [27, Theorem 6]),
a contradiction.

(v) Suppose that X has the DPP and ¢; — Y. By Observation 1, {1 # X.
Then X* has the Schur property ([9, Theorem 3]). Let T : ¥ — X* be
an operator. Then T is pseudo weakly compact (since X* has the Schur
property), and thus weakly precompact (by Corollary 5 (i)). Then L(Y, X*) =
K(Y,X*). Hence L(X,Y*) = K(X,Y™), by Observation 1.

(vi) Suppose that X and Y have the DPP. Then L(X,Y*) = K(X,Y™),
either by (v) if /1 < Y, or since Y* has the Schur property ([9, Theorem 3])
if {1 /Y (by an argument similar to the one in (v)). 1

Assumption (i) of the previous theorem is satisfied, for instance, if X* (or
Y*) has an (u.c.e.l.).
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ExAMPLES. By Theorem 31, the space ¢, ® ¢,, where 1 < p < ¢ < o0
and g and ¢ are conjugate, is not weak sequentially Right, since the natural
inclusion map i : £, — £, is not compact.

The space C(K) ®x {p, with K not dispersed and 1 < p < 2, is not weak
sequentially Right (by Observation 2, since £; — C(K) and {3 — £;).

For 1 < p1,p2 < 00, Ly, [0,1] ®x Ly, [0, 1] is not weak sequentially Right by
Corollary 5 (iii), since £1 <> Ly, [0,1] @ Ly,[0,1] ([38, Corollary 2.26]).

THEOREM 32. (i) Suppose Y* is complemented in a Banach space Z which
has an unconditional Schauder decomposition (Zy,), and L(X, Z,) = K(X, Z,,)
for allm. If X ®, Y is weak sequentially Right, then L(X,Y*) = K(X,Y™).

(ii) Suppose either X* or Y* has the metric approximation property. If
X ®, Y is sequentially Right, then W(X,Y™*) = K(X,Y™).

Proof. (i) Let T': X — Y™ be a noncompact operator, P, : Z — Z,,
P,(>_ zi) = zn, and let P be the projection of Z onto Y*. Define 7, : X — Y*
by Tn(z) = PP, T(z), = € X, n € N. Note that P,T is compact since
L(X,Z,) = K(X,Z,). Then T, is compact for each n. For each z € Z,
> P,(z) converges unconditionally to z; thus > T, (x) converges uncondi-
tionally to T'(z) for each € X. Then ) T, is wuc and not unconditionally
converging. Hence ¢y — K(X,Y™) ([3, Theorem 5]), and we obtain a contra-
diction.

(ii) Since X ®; Y is sequentially Right, (X ®, Y)* ~ L(X,Y™) is weakly
sequentially complete ([26, Corollary 3.26]). Under assumption (ii), [29, Corol-
lary 2.4] implies W (X,Y™*) = K(X,Y™).
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