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ABSTRACT 

The avian hippocampus (Hp) is believed to be homologous to mammalian hippocampus 

both from a developmental and an anatomical view-point. In one-day old domestic chicks 

(Gallus domesticus), studies have demonstrated that it may playa key role in the acquisition 

of one-trial passive avoidance learning (PAL) where the aversive experience is exposure to a 

bitter tasting substance, methyl anthranilate. 

In the present study, following PAL the numerical density of asymmetric axospinous 

synapses decreased by 36% in the dorsal Hp of the right hemisphere of MeA trained compared 

to control birds, 6 hours after training. In contrast, 24h post PAL there is a 33% decrease in 

numerical density of asymmetric axodendritic synapses in the MeA trained group in relation to 

the same area of control chicks. 

Cell proliferation studies using the thymidine analogue, bromodeoxyuridine, (BrdU) 

demonstrated a 47% reduction in cell proliferation in the dorsal Hp of the MeA trained group 

24h later in comparison with controls, which di~appears after 9 days. In nucleus taeniae of 

amygdala and the arcopallium dorsale and intermediale, there are no differences between birds 

24h or 9 days post BrdU injection but in olfactory bulb of MeA trained chicks cell labelling 

increases by 95% and 71.4% respectively, compared to control and water-trained birds, 24 h 

after PAL. The increase is more dramatic 9 days post PAL, when the MeA-trained group 

shows a 259% and 314% increase respectively in relation to control and water-trained 

animals. Following PAL apoptotic studies in the Hp 24h, 5 and 9 days post BrdU injection 

demonstrated that there were no differences in cell death between the different groups. 

Radioimmunoassay measurements of cortisol in chick forebrain tissue demonstrated 

longer term increase in levels of steroid in the chick Hp compared to arcopallium and striatum 

mediale 20 minutes after training, indicating that PAL is a stressful experience which may 

explain synaptic density and cell proliferation reduction observed after PAL. 
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HVC High Vocal Center 

ICE interleukin-Ip converting enzyme 

IGF-l insulin-like growth factor 1 

IL interleukin 

IMHV intermediate medial hyperstriatum ventrale 

IMM intermediate medial mesopallium 

i.p. intraperitoneal 

ITM intermediate term memory 

La lateral amygdala 

LaDL lateral amygdala, dorsolateral part 

LaM lamina mesopallialis 

LaVL lateral amygdala, vetrolateral part 

LaVM lateral amygdala, vetromedial part 

LFS lamina frontalis superior 

LFSM lamina frontalis suprema 

LHy region lateralis hypothalami 

LoC locus coeruleus 

LPO lobus parolfactorius 

LPS lamina pallio-subpallialis 

LPS Lipopolysaccharide 

13 



LSO organum septi laterale 

LTM long term memory 

LTP long term potentiation 

M mesopallium 

MARCKS myristoylated alanine rich C kinase substrate 

Me medial amygdala 

MeA methyl anthranilate 

MD mesopallium dorsale 

mGluRs metabotropic glutamate receptors 

mit mitochondrion 

MNM mediorostral nidopalliumlmesopallium 

mo molecular layer 

MRs mineralcorticoid receptors 

MV mesopallium ventrale 

N nidopallium 

Na+!IC ATPase sodium-potassium adenosine trisphosphatase 

NBM nucleus basalis magnocellularis 

NCAM neural cell adhesion molecule 

nCPa nucleus commissurae pallii 

NnC dorsocaudal nidopallium 

NDB(FDB) nucleus diagonalis Brocae 

NeoN nuclear neuronal marker 

NGF nerve growth factor 

NL nidopallium laterale 

NMDA N-methyl-D-aspartate 

nNOS neuronal nitric oxide synthase 

NO nitric oxide 

NOS nitric oxide synthase 

NPY neuropeptide Y 

NSE neuron-specific enolase 

NSTL nucleus striae terminalis lateralis 

NT N eurotrophins 

NT-3 Neurotrophin-3 
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NT-4/5 Neurotrophin-4/5 

nTSM nucleus tractus septopallio-mesencephalicus 

OA nucleus olfactorius anterior 

OM tractus occipito-mesencephalicus 

OMPFC orbital and medial prefrontal cortex 

OV nucleus ovoidalis 

PAL passive avoidance learning 

PCVL plexus choroideus ventriculi lateralis 

PHA-L Phaseolus vulgaris leucoagglutin 

PHN nucleus periventricularis hypothalami 

PKA Protein kinase A 

PLR prolactin releasing hormone 

PoA posterior pallial amygdala 

PSA-NCAM polysialylated neural cell adhesion molecule 

PSD postsynaptic density 

PSD-95 postsynaptic density protein of 95 kD MW 

PVN nucleus parventricularis magnocellularis 

PVt(pv) paUidum ventrale 

RET relative electron transmission 

ROT nucleus rotundus 

RSd nucleus reticularis, superior, pars dorsalis 

RSP posterior retrosplenial cortex 

SA spine apparatus 

SAP-I02 synapse-associated protein of 102 kD MW 

SCN suprachiasmatic nucleus 

SER smooth endoplasmic reticulum 

SL lateral septum 

SM medial septum 

SMe stria medullaris 

SNc substantia nigra pars compacta 

SPC segmented, completely partitioned synapses 

SPf substance P field 

SPm medial substance P field 
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StL striatum laterale 

STM short term memory 

StM striatum mediate 

SVZ sub ventricular zone 

T thyroxine 

TeA tricarboxylic acid 

TdT terminal deoxynuc1eotidyl transferase 

TeO tectum opticum 

thai thalamus 

TnA nucleus taeniae of the amygdala 

TrkB tyrosine kinase B 

TrO tractus opticus 

TSM tractus septopallio-mesencephalicus 

TuO tuberculum olfactorium 

Va vallecula telencephali 

VC ventral core of Hp 

VHp ventral hippocampus 

VIP vasoactive intestinal polypeptide 

VL ventrolateral Hp 

VL ventriculus lateralis 

VM ventromedial Hp 

VMN nucleus ventromedialis hypothalami 

VO ventriculus olfactorius 

VS ventral striatum 
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PREFACE 

The mammalian hippocampus has been intensively investigated in relation to its role in 

the processes of learning and memory (OIds et aI., 1990; Gould et aI., 1999b; Ramirez-Amaya 

et aI., 2001) and in particular its involvement in long term potentiation. It has been 

demonstrated that the mammalian hippocampus shows synaptic remodelling (Ramirez-Amaya 

et aI., 1999; Popov et aI., 2004) which appears to be a correlate of long term potentiation 

(LTP) (Toni et a1., 1999; Toni et a1., 2001), which may provide a model of learning (Bliss and 

Lomo, 1973). 

The avian hippocampus has been suggested to be homologous to the mammalian 

hippocampus (Kallen, 1962; Casini et aI., 1986; Erichsen et aI., 1991; Krebs et aI., 1991). 

However, the avian hippocampus has not been extensively examined and knowledge about its 

function and its participation in learning models is limited. Studies have shown that it is 

affected by ischaemia (Homer et a1., 1996) and spatial learning (Barnea and Nottebohm, 1994; 

Regolin and Rose, 1999; Shiflett et a1., 2004). In the domestic chicks Gallus domesticus it is 

involved in imprinting (McCabe and Horn, 1994; Sadananda and Bischof, 2004) and one-trial 

passive avoidance learning (PAL) (Sandi et aI., 1992; Unal et aI., 2002). It is still unclear, 

though, how the avian hippocampus is affected by PAL, which is unlikely to be exclusively 

related to the learning of a spatial task. Studies in the rat have shown that the hippocampus can 

be affected by other types of learning such as fear conditioning (Winocur, 1997; Shors et aI., 

2002) whilst stress has been also demonstrated to alter synaptic plasticity (Magarinos and 

McEwen, 1995; Gould et aI., 1997; Gould and Tanapat, 1999; Sandi et aI., 2003). 

The aim of this study is to examine the effects of passive avoidance learning in the 

chick hippocampus from two different aspects; synaptogenesis and neurogenesis. It has been 

shown that the avian hippocampus, in a similar way to the mammalian hippocampus 

(Schlessinger et a1., 1975; van Praag et a1., 1999; van Praag et aI., 2002), exhibits neurogenesis 
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in adulthood (Barnea and Nottebohm, 1994). Studies in rats (Kempermann et at, 1997a; 

Gould et at, 1999b; Shors et at, 2002) and avians (Alvarez-Buylla et at, 1988b; Alvarez

Buylla et at, 1992; Dermon et at, 2002) have implied that learning paradigms enhance cell 

proliferation or survival ofneurones (Kempermann et at, 1998; Gould et aI., 1999b). There is 

also the possibility that PAL may ease cell death as cell proliferation. In this connection, 

apoptotic studies will demonstrate any differences caused by PAL, whilst at the same time 

revealling basal levels of cell death in the control group at different time points after learning. 

The rat hippocampus is considered part of the 'limbic system' (Sapolsky et aI., 1985a)

an interconnected network of brain regions participating in emotional processing and learning 

(Papez, 1995). It has been demonstrated that the hippocampus is affected by stress in rats 

(Sapolsky et aI., 1985b) and primates (Ohl et aI., 2000; Fuchs et aI., 2001) and by learning 

tasks in mammals (Moser et at, 1995; van Praag et at, 2002) and chicks (Good, 1987; Unal et 

at, 2002). The chick hippocampus shows connectivity with the limbic arcopallium (Szekely, 

1999), which is homologous to the mammalian amygdala (Davies et at, 1997), the nucleus 

taeniae of amygdala (Szekely and Krebs, 1996; Cheng et at, 1999); with the latter being 

connected to the bulbus olfactorius (Reiner and Karten, 1985), an area strongly affected by 

strong odours (McKeegan, 2002) and therefore associated with PAL (Richard and Davies, 

2000). Therefore, cell proliferation studies were conducted in these areas in order to 

investigate the effects of passive avoidance learning in cell birth. 

Because the mammalian hippocampus can be influenced by stress and show 

impairments in memory formation (Bodnoff et at, 1995; McEwen and Sapolsky, 1995; 

Conrad et at, 1996) as well as structural alterations (Gould and Tanapat, 1999; Fuchs et at, 

2001; Vyas et at, 2002), a cortisol study was undertaken in this thesis (cortisol has already 

been identified in chick plasma, Idler et aI., 1976; Kalliecharan and Hall, 1976) to measure the 
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levels of this adrenal steroid in brain tissue, in particular in the arcopallium, striatum mediale 

(an area significantly affected by PAL, Dermon et ai., 2002) and in the hippocampus. 
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Chapter 1 

INTRODUCTION 
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The introduction of this thesis is aimed to present to the reader some of the topics that 

will be discussed below and help them understand the connection between learning and 

memory and their structural effects on certain areas of the chick limbic system. Relevant 

comparisons are made to mammalian literature where pertinent. 

1.1 LEARNING AND MEMORY IN THE CmCK BRAIN 

The chick is a good model to test learning paradigms, as well as the formation of 

memory, because the young domestic chick is precocial and learns a great deal of information 

during its first few days of life. Memory formation in the day old chick can be divided into 

three stages (Gibbs and N g, 1979a; b, Fig. 1.1). A short term stage (STM) is available for 10 

minutes after training and its activation is attributed to neuronal hyperpolarization caused by 

increases in potassium conductance, then an intermediate stage memory (lTM) follows from 

15 minutes until 50 minutes after training caused by sodium-potassium adenosine 

trisphosphatase (Na+/K+ ATPase) and finally the long term stage (LTM) which starts 55 

minutes post training and is characterised by post-translational glucosylation of pre-existing 

proteins, followed by a second wave of glycoprotein synthesis de novo (Crowe et ai., 1994; 

Freeman et aI., 1995, fig. 1.2.) 
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Fig 1.1. Stages of memory formation in relation to time (adapted from McGaugh, 1968) 
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Fig 1.2. Timecourse of double wave of glucoprotein fonnation and the effect of anisomycin 
(A) and 2-deoxygalactose (2-D-gal) (B). In diagram A, animals injected at 30 min before or up 
to 1.5 h after training and 4-5 hours after training showed amnesia when tested 24 hours after 
training, ··P<O.OI, ·"P<O.OOI (graph adapted from Freeman et aI., 1995). In diagram B, 
injections of 2-deoxyga1actose 5.5-8 h after training resulted in amnesia at 24h, ·P<0.05 
(graph adapted from Rose and Jork, 1987) 

On the other hand, memory retrieval follows a series of biochemical steps starting with 

the flux of extracellular calcium (Gibbs et al. , 1979), then glutamate and finally N-methyl-D-
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aspartate (NMDA) receptor activation (Rickard et aI., 1994). In chicks, the immediate early 

genes c-jun and c-fos are also activated (Anokhin et aI., 1991; Anokhin and Rose, 1991; 

Mileusnic et aI., 1996). A very important discovery to enlighten memory formation processes 

was that long term memory is protein synthesis dependent (Davis and Squire, 1984). Although 

anisomycin (protein synthesis inhibitor), if injected before training causes amnesia within one 

hour leading psychologists to the wrong conclusion that beyond that time point memory 

formation is protein synthesis independent (Gibbs and Ng, 1977). However, Freeman and 

colleagues (1995) have proven that there are two time windows for protein synthesis, since 

anisomycin injections made 4-5 hours after training were amnestic when animals were tested 

24h after the training. Although memory formation events involve the upregulation ofNMDA 

receptors 30 min after training, 5,5 hours post-training, AMPA receptors are activated but not 

NMDA (Steele and Stewart, 1995). Finally, it has been demonstrated that two waves of 

glycoprotein synthesis occur (Scholey et aI., 1993; Crowe et aI., 1994), including cell adhesion 

molecules (CAMs), which have been suggested to participate in learning and synaptic 

remodelling procedures (Luthi et aI., 1994; Rusakov et aI., 1994; Skibo et at, 1998). 

Long-term memory can be defined as declarative (memory for facts and events-that is) 

and non-declarative (procedural-memory for performance such as motor skills and learning of 

rules and procedures-how to) memory (Fig. 1.3). A further subdivision of declarative is into 

episodic and semantic. 
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SHORT-TERM MEMORY ......... 
(time and place) (world, object, language knowledge) 

Fig.l.3 Drawing representing the structure of human memory demonstrating the relationship 
between different forms of declarative memory (adapted from Squire and Liss, 1968). 

Behavioural studies in domestic chicks have been conducted mainly by using two well 

established learning tasks, the passive avoidance learning (PAL) (Cherkin, 1969) and 

imprinting (Hom et aI., 1979; McCabe and Hom, 1988). During PAL the chicks are presented 

with a chrome bead dipped in a bitter tasty substance, methylanthranilate (MeA), which they 

peck and then demonstrate disgust responses, including head shaking, emission of distress 

sounds, bill wiping and backward movements. After pecking the bead, they will avoid a 

similar but dry bead for several days. In contrast, animals that are trained with a bead dipped 

in water will continue to peck when re-tested (Mileusnic et aI., 1980; Dermon et aI., 2002). 

The two main structures that participate in PAL are the intermediate medial mesopallium 

(IMM) and striatum mediale (StM) (Rose and Csillag, 1985; Curtis et aI., 1989; Lowndes and 

Stewart, 1994), although studies have proven the importance of other structures in memory 

formation or retention after PAL (Sandi et aI., 1992; Lowndes and Davies, 1994). Imprinting 

is based on the preference of young chicks to follow an object after having been exposed to it 

(Bateson, 1966; Boihuis, 1991). 

Imprinting has been demonstrated to activate the IMM by causing synaptic and 

molecular changes (McCabe et aI., 1981; Hom, 1998). Bilateral lesions to the IMM before or 
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3 h after imprinting have been demonstrated to prevent the chick from learning the imprinting 

paradigm (McCabe et aI., 1981), indicating that this area is essential for memory acquisition 

and retention. Ablations to the IMM 6 h after training had no effects, indicating that the IMM 

is not required for memory recall (McCabe et at, 1982). Some of the changes in the IMM 

after imprinting include an increase in NMDA receptors (McCabe and Hom, 1991), increase 

in phosphorylation (Sheu et aI., 1993), mRNA expression (Meberg et aI., 1996) and in the 

amount of myristoylated alanine rich C kinase substrate (MARCKS) (Solomonia et aI., 2003). 

There is also release of y-aminobutyric acid (GABA) and taurine (McCabe et aI., 2001), 

activation of early gene c{os and product Fos (Suge and McCabe, 2004), increase in neural 

cell adhesion molecule (NCAM) (Solomonia et aI., 1998) and clathrin heavy chain protein 

(Solomonia et at, 1997), which is responsible for vesicle recycling during synaptic plasticity 

processes (Maycox et aI., 1992). Synaptic changes demonstrated at electron microscope level 

also occur during imprinting (Bradley et at, 1981; Hom et aI., 1985) and increased neuronal 

activity has been recorded (Bradford and McCabe, 1994). Studies in the chick hippocampus 

have not, however, shown any gene or neuronal activity after imprinting (McCabe and Hom, 

1994; Suge and McCabe, 2004). 

Passive avoidance learning activates a number of biochemical and molecular 

procedures such as uptake of 2-deoxyglucose (Kossut and Rose, 1984; Rose and Csillag, 

1985), amyloid beta! A4 protein precursor (APP) upregulation (Mileusnic et aI., 2000) 

muscarinic (Rose et aI., 1980) and o-opioid receptor binding (Csillag et at, 1993), in vivo and 

in vitro L-leucine incorporation (Mileusnic et aI., 1980; Schliebs et aI., 1985) and activation of 

the early genes c-fos and c-jun around 40 minutes after training (Anokhin and Rose, 1991) and 

of their products 1-2 hours later (Freeman and Rose, 1995). At the same time as Fos 

production, an increase in calcium flux in synaptoneurosomes has been observed (Salinska et 

aI., 1999). A training paradigm similar to PAL has been carried out in hens and has shown an 
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increase in the levels of glucose available for utilisation from the brain (Gibbs and Summers, 

2002) via activation of P2 and P3 adrenoreceptors. Memory reinforcement may be taking place 

due to neurotransmitter release caused by glucose increase, an example being the case of 

acetylcholine (Kopf et aI., 2001). Additionally, changes in synaptic plasticity have been 

observed after PAL, such as an increase in synaptic density in the IMM (Doubell and Stewart, 

1993; Stewart and Rusakov, 1995) and StM (Stewart et aI., 1984; Hunter and Stewart, 1993), 

redistribution of neural cell adhesion molecule (NCAM) in the synaptic junction (Rusakov et 

aI., 1994) and interestingly a different pattern of morphological changes has been 

demonstrated after learning for symmetrical and asymmetrical synapses (Stewart et aI., 1987). 

Many studies have focused on the activation of NMDA receptors after PAL in chicks 

(Burchuladze and Rose, 1992), since it has been demonstrated that they participate in LTP 

(Bliss and Collingridge, 1993). Another glutamate receptor is that for a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic (AMPA), which along with NMDA plays a key role in LTP 

(Bliss and Collingridge, 1993). AMP A has been suggested to help the activation of NMDA 

receptors by providing the postsynaptic depolarization in order for NMDA receptors to reduce 

their blockage caused by Mg2+ (Bliss and Collingridge, 1993). Although studies are 

controversial as far as the participation of AMP A in memory formation is concerned 

(Burchuladze and Rose, 1992; Stewart et aI., 1992; Rickard et aI., 1994), indications point to 

the assumption that AMP A may be taking part in memory retention or recall (Steele and 

Stewart, 1995). 

There have been increases in NMDA receptor binding in the left IMM and StM 30 

minutes after PAL (Stewart et aI., 1992), which presumably result from an increased release in 

neurotransmitter glutamate which causes an upregulation of NMDA receptors (Steele et aI., 

1995) and as a result memory enhancement. Furthermore, 3 h after PAL, NMDA receptor 
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binding has been identified also in other areas such as the hippocampal formation (Stewart et 

aI., 1993). 

Neurotrophins (NT) have been suggested to take part in synaptic plasticity and memory 

formation. Brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) 

participate in the induction of LTP (Castren et aI., 1993), whilst NGF, neurotrophin 3 (NT-3) 

and neurotrophin-4/5 (NT -4 IS) are involved in spatial memory (Fischer et aI., 1987) and NGF 

is involved in memory consolidation of passive avoidance training in rats (Ricceri et aI., 

1994). In chicks, however, only BDNF is implicated in memory consolidation (Johnston and 

Rose, 2001) and transition from short to long term memory. Injection of BDNF antibodies 

influences the levels of SNAP-25 and syntaxin (Johnston et at., 1999) and therefore changes 

synaptic efficiency (Johnston and Rose, 2001). It has been suggested that an intracellular 

signal is transmitted via tyrosine kinase B (TrkB) receptors affecting GABAergic systems 

(McKay et aI., 1999). 

The chick brain shows asymmetry after learning (Stewart et at., 1984) as well as in 

perception of stimuli. The left avian hemisphere is concerned with discrimination and 

categorisation of object related cues (Prior et at., 2004) and individual stimuli like inhibiting 

pecks at distracting objects (Mench and Andrew, 1986), whilst the right hemisphere is 

essential for spatial tasks (Andrew, 1991). Studies have shown that lesions of the right IMM 

distract memory recall at the early stages of memory, whilst the same does not happen after 

ablations of the left IMM (Gilbert et aI., 1991; Andrew, 1999). As Andrew (1999) has implied, 

the human and the chick brain use the right hemisphere to preserve information available for 

use, whereas the left hemisphere is responsible for operations that belong or are part of the 

information maintained from the right hemisphere. 

Nitric oxide (NO) has been suggested to take part in learning and memory as well as 

synaptic plasticity procedures that trigger memory formation (Haley et aI., 1992; Hawkins et 
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al., 1998; Prast and Philippu, 2001) and modulation of aggression (Nelson et al., 1995). NO 

has been demonstrated to be a potential retrograde synaptic messenger in LTP (GaIly et al., 

1990; Haley et a1., 1992), whilst nitric oxide synthase has been located in hippocampal spines 

(Burette et al., 2002). Studies for the colour discrimination in cockerels have shown that 

lesions on the left hemisphere around the time of training impair memory formation (Rickard 

and Gibbs, 2003) as it has been also observed in chicks (Patterson et al., 1990). Therefore it 

has been suggested that the left hemisphere is activated immediately after learning, with 

neuronal (nNOS) and endothelial (eNOS) nitric oxide synthase isoforms being necessary for 

memory formation (Rickard and Gibbs, 2003). In rats, however, the production of LTP 

requires activation of either isoform (eNOS or nNOS) (Son et a1., 1996). Inhibition of eNOS 

in the right hemisphere occurs only if the inhibitors are administered during the intermediate 

stage of memory formation (15-55 minutes post training). In contrast, inhibitors ofnNOS have 

no effects (Rickard and Gibbs, 2003). Therefore, these authors suggested that nNDS is 

activated around the time of training, whilst eNOS is activated 10-25 minutes after training in 

the right hemisphere. Gibbs et al. (2003) concluded that in chicks the left hemisphere plays a 

crucial role in memory formation whilst the right hemisphere participates in ITM procedures. 

Other studies have shown the presence of NOS in the chick brain, demonstrating that the 

striatum mediale contains an abundance of NOS labelled neurones and extensive NOS 

labelled neurite arborisation (Panzica et al., 1994; von Bartheld and Schober, 1997), unlike the 

IMM and the arcopallium. The striatum mediate receives strong dopaminergic input from the 

area ventralis tegmenti (AVT) and substantia nigra pars compacta (SNc) (Moons et al., 1994); 

NO can affect the release of dopamine (Lonart et al., 1993), the latter modulating 

glutamatergic neurotransmission, which is involved in LIP and learning (Madison et al., 

1991; Rogers, 1993). 
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Lipopolysaccharide (LPS) is part of the membrane of Gram negative bacteria and 

infection causes the induction of cytokines interleukin IL-l J3 and IL-6 and the activation of 

hypothalamic-pituitary-adrenal (HPA) axis resulting in increased levels of circulating 

corticosteroids (Zuckerman et al., 1989). It has been shown to impair the performance of rats 

for the water maze training (Shaw et al., 2001), the induction of LIP (Bellinger et al., 1993) 

and passive avoidance learning in one day old chicks (Sell et al., 2001). It has been also 

demonstrated to disrupt the ITM and as a result consolidation of L TM, but leaving striatum 

mediale intact by disrupting the Na+/K+ ATPase activity and rising corticosterone levels (Sell 

et al., 2003). 

PAL has been shown to be a stressful experience elevating plasma corticosterone levels 

(Sandi and Rose, 1997). Interestingly, injections of corticosterone in the IMM just before or 

after weak training (10% MeA), enhance memory retention (Sandi and Rose, 1994a) whilst 

administration of glucocorticoid receptors antagonists cause amnesia for the strong training 

(100% MeA) (Sandi and Rose, 1994b). Furthermore, injections of corticosterone in the IMM 

enhance protein synthesis for 6 hours (Sandi et al., 1995). 

1.2 WHY STUDY THE ClUCK HIPPOCAMPUS? 

The hippocampus is strongly involved in learning of spatial tasks in rats (Moser et al., 

1993; Olsen et al., 1994; Ramirez-Amaya et aI., 2001) and birds (Biegler et al., 2001; 

Watanabe, 2002). The chick hippocampus has been demonstrated to participate also in other 

forms of learning such as the passive avoidance learning (Unal et al., 2002). It has been 

suggested that the chick hippocampus has bilateral connectivity with the intermediate medial 

mesopallium (IMM) (Bradley et al., 1985) and ipsilateral connections with the striatum 

mediale (StM) (Atoji et at, 2002)-two regions that are closely associated with PAL (Rose and 
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Csillag, 1985; Stewart and Rusakov, 1995; Csillag, 1999). Therefore, it could also be affected 

by PAL. 

1.3 THE HIPPOCAMPUS 

1.3.1 The mammalian hippocampus 

The hippocampal formation is in the mammalian brain and consists of 6 anatomically 

discrete sections (Fig. 1.4): entorhinal cortex, para- and presubiculum, the subiculum proper, 

Ammon's hom and dentate gyrus (Amaral and Witter, 1995). The hippocampus is responsible 

for episodic, declarative, contextual and spatial learning and memory (McEwen, 200 I). 

CAl 

Fig 1.4. A. Representation of the mammalian hippocampus. Arrow indicates input from the 
subiculum. CA: comus ammonis (Ammon's hom), DG: dentate gyrus, DGCL: dentate gyrus 
cellular layer, mo: molecular layer. B. Coronal section of hippocampus. H: hippocampus, thai: 
thalamus, RSP: posterior retrosplenial cortex (Popov et aI., 2004, fig. I , page 253). C. 
Connectivity representation. Mf: mossy fibre pathway, SB: subiculum, sc: Schaffer pathway, 
pp: perforant pathway (Hough et aI., 2002, fig. 1 , page 298). 

LTP is an extensively studied model to explore the synaptic changes that underlie 

learning and memory in the hippocampus (Bliss and Lomo, 1973; Bliss and Collingridge, 

1993). LTP is an increase in synaptic activity that results from brief, high frequency 
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stimulation of afferent fibres (Barnes, 1979) and depends on coincident depolarization of both 

pre- and postsynaptic regions (Malinow and Miller, 1986). It produces mossy fibre 

synaptogenesis in CA3 (Adams et at, 1997) whilst other studies have demonstrated that LTP 

increases the number of ax os pi no us synapses in CAl (Chang and Greenough, 1984) and 

causes new synapse formation (Toni et a1.. 1999; Toni et a1.. 2001). Although the induction of 

LTP in CA3 is NMDA-receptor independent (Escobar et aI., 1997), in CAl in order for LTP 

to be induced. NMDA receptors must be activated via glutamate and simultaneously they 

should produce sufficient depolarization of the postsynaptic membrane to relieve a Mg2+ block 

in the ion channel and permit the entrance of calcium in the postsynaptic terminal (Lynch and 

Baudry, 1984; Malenka et at, 1988) 

The hippocampus participates in various types of learning and most notably spatial 

water-maze training (Morris, 1984), as well as aversive types oflearning. such as the passive 

avoidance response where animals receive electric shocks when entering a dark compartment 

(Black et at, 1977; Lorenzini et a1.. 1996). It responds physiologically to several hormones 

such as adrenal steroids (Lupien et at, 1998; Joels. 1999; Lathe. 2001), adrenaline (Miyashita 

and Williams, 2004), estradiol (Lam and Leranth, 2003). thyroid hormones (Meaney et a1.. 

2000; Matos et a1.. 2002) and serotonin (Meaney et at, 2000), which can provoke changes in 

synaptic connections and dendritic structure as well as in the dentate gyrus volume during 

development and in adult life (Lupien et a1.. 1998). 

In mammals, the hippocampus can be damaged by stroke (Strong et at, 1990; Sieber et 

aI., 1997; Frerichs. 1999; Letechipia-Vallejo et at, 2001) and head trauma (Fowler et a1.. 

2002) and is sensitive to ageing and repeated stress (Sapolsky. 1992; McEwen and Magarinos, 

1997). The dentate gyrus exhibits experience-dependent structural changes due to the 

continuation of neurogenesis (Altman and Das, 1965; Schlessinger et aI., 1975; Gould et a1.. 

1997; Gould et aI., 1999b; Gould et aI., 1999c) and synapse formation (Ramirez-Amaya et aI., 
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1999; Ramirez-Amaya et at, 2001) into adulthood, whilst it is also affected by environmental 

stimuli (Kempermann et al., 1997a; Winocur, 1997; Wood et al., 1999). Especially in adult 

life the reduction of neurogenesis as well as other pathological conditions can alter 

dramatically the volume of hippocampus resulting in a loss of memory and the inability of 

learning. Aged rats show impaired performances for tasks that involve spatial recognition (e.g. 

radial arm maze, water maze training, Morris, 1984; Gallagher and Burwell, 1989; Ward et al., 

1999) possibly because of alterations in visual ability (O'Steen et al., 1995; Lindner et at, 

1997) or stress responses (Bodnoff et al., 1995; Mabry et at, 1996). Dysfunction of 

hippocampus can cause vegetative and endocrine abnormalities as well as memory and 

cognitive deficits (Zola-Morgan et aI., 1986; Rempel-Clower et al., 1996) with episodic 

memory (information about 'where-when-what', (Clayton et aI., 2003) being disrupted more 

than semantic memory (Vargha-Khadem et at, 1997). 

Previous studies have exhibited that the dorsal and ventral hippocampus participate in 

different memory processes and lesions caused in the abovementioned areas affect behavioural 

learning in diverse ways (Hughes, 1965; Sinnamon et al., 1978). Dorsal hippocampus lesions 

prevented rats from learning the water maze training unlike ventral lesions (Moser et aI., 1993; 

Moser et al., 1995). In addition, the former caused impairments in the preservation of memory 

after passive avoidance response (Winocur and Bindra, 1976; Black et al., 1977; Cogan and 

Reeves, 1979; Walsh et al., 1984). The ventral hippocampus in rats has efferent connections 

with several subcortical regions like the basolateral amygdala (Ebert et at, 1995) and the 

medial prefrontal cortex (Ishikawa and Nakamura, 2003) the latter participating in the 

regulation of fear emotions and fear related behaviour (Morgan et at, 1993; Quirk et at, 

2000), which may indicate that the ventral hippocampus may play a key role in autonomic, 

emotional, social and reproductive procedures (Moser and Moser, 1998). On the other hand 

lesions to the dentate gyrus by the microtubule disrupter colchicine (Sutherland et at, 1983), 
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or adrenalectomy (Conrad and Roy 1993) impair patial learning in rat imilarly t 

ischaemic Ie ions of the CA I region (Volpe et aI. , 1992; I en et aI. , 1994). The e data imply 

that the dorsal and the ventral hippocampu control different function and that there i a 

combination of diver e connection and La k in the hipp campu (Mo er and Mo er, 199 ). 

1.3.2 The chick hippocampus 

The avian hippocampal formation, which include the hippocampu (Hp) and the area 

parahippocampali (APH) (Karten and H do , 1967), occupie the d r medial part f the 

telencephalon and originate from th medial pallium (At ji et aI., 2 2 . It i n idered t be 

homologou to the mammalian hipp ampu (e T bl 1.1 ~ r mparl on f regi n ), 

becau e from an embryological a pect it emerge fr m the arne part f the devel ping neural 

tube and i likewi e p iti ned relative t th lateral v ntricle a d c the mammalian 

hippocampu (Kallen, 1962). 

Neocortex Avian Wul t, nidopallium 
mc:!::ol'ul llium 

Table 1.1. Table illu trating homologue tructure between the mammal ian and avian brain. 

Studie have hown that there are parallel in gene expre i n during deve1 pmcnt 

(Puelles et at., 2000). Furthermore, it how re emblance in c nnectivity a ini et at. , 19 6; 

Szekely, 1999; Atoji et al. 2002; Hough et al. 2002), ncurotran mitter c ntent Erich en et 

33 



ai., 1991; Krebs et aI., 1991) and electrophysiological properties similar to the theta rhythm 

(Siegel et ai., 2000). 

The input and output connections of the avian hippocampus (see Fig 1.5) are similar to 

those of the mammalian hippocampus since both regions receive projections from the 

contralateral hippocampus, the thalamus, the hypothalamus, the raphe nuclei and the locus 

coeruleus (Benowitz and Karten, 1976; Krayniak and Siegel, 1978; Casini et aI., 1986; Trottier 

et aI., 1995), project to the hypothalamus and the septal nuclei, whilst demonstrate reciprocal 

connectivity with the diagonal band and arcopallium (amygdala in mammals) (Bons et aI., 

1976; Bouille et ai., 1977; Casini et ai., 1986; Lorenzini et aI., 1996; Szekely and Krebs, 

1996). 

IPSILA TERAL CONTRALATERAL 

CDL APH 

\ t 
HD 

t 
T 

APH COL 

Stm (LPO ) Hppocampus Hppocampus 
VP~ 

VS Hm, Ht 

I t 1 
NDB (FOB) TnA Septum Septum 

Fig 1.5. Drawing illustrating the afferent and efferent connections of the dorsal hippocampus. 
Double arrowheads show reciprocal connections. The septum receives more afferents in 
relation to efferents and therefore the arrowhead is smaller. The dashed line divides the brain 
into right and left side. The oval shape indicates the oval commisure (drawing from Atoji et 
ai., 2002). APH: area parahippocampalis, TnA: nucleus taeniae of the amygdala, Stm (LPO): 
striatum mediale, VS: ventral striatum, HD: hyperpallium densocellulare, CDL: area 
corticoidea dorsolateralis, HI: lateral limb of V-shaped area, Ht: triangular part of the 
hippocampus, PVt (PV): pallidum ventrale, NDB (FDB): nucleus of the diagonal band (from 
Atoji et ai., 2002, fig 14, page 194). 

Additionally, there appear to be morphological similarities of neuronal types in the 

hippocampi of these different species (Molla et aI., 1986; Montagnese et aI., 1996; Tombol et 

ai., 2000). However, one of the differences (Bingman et ai., 2003) centres on the pallial 
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sensory inputs into the HF, which exhibit anatomical differences between pigeons and rats. 

Through evolution, the cerebral hemispheres have enlarged (Bingman et al., 2003) and have 

formed the neocortex in mammals and the anterior forebrain Wulst in birds. Regions within 

the neocortex and avian Wulst are the sources of visual input into HF that give the visual 

information to the hippocampus to include space perception as part of memory (Bingman et 

al.,2003). 

The avian hippocampus appears to be a much simpler structure than the mammalian 

hippocampus due to its lack of lamination, in other words the absence of cytoarchitectonically 

distinct layers. This cytoarchitectural difference makes it difficult to characterize the avian 

hippocampal formation into regional subdivisions. Based on immunocytochemical (Erichsen 

et al., 1991), cell morphology (Molla et al., 1986), connectivity (Casini et al., 1986; Szekely, 

1999; Atoji et al., 2002) and electrophysiological data (Siegel et al., 2002) the ventral 

hippocampal formation resembles the mammalian Ammon's hom. The dorsal avian 

hippocampus in contrast is considered to be equivalent to the dentate gyrus and the APH to the 

subiculum (Casini et a1., 1986; Krebs et a1., 1991; Szekely, 1999; Atoji et aI., 2002). 

Specifically, Erichsen et a1. (1991) divided the avian hippocampus into 7 subregions (Fig 

1.5.), from area 1 to 7. Area 2 corresponds to mammalian Ammon's hom (CAI-CA3), area 3 

to the dentate gyrus, area 4 to the hilus, area 6 to the subiculum and area 7 to the entorhinal 

cortex. 

In the zebra finch, 4 subregions have been suggested, the V formation that corresponds 

to Ammon's hom, the DM that relates to the dentate gyrus, the DL that matches up to the 

subiculum (although the division of the DL areas is not unmistakably characterized) and SP 

field that relates to the entorhinal cortex (Szekely and Krebs, 1996, Fig. 1.6; Szekely, 1999). 
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A Homing Pigeon Atlas BlmmunocytOChem.istrY 
Karten and Hodos, 1967 Erichsen et al., 1991 

~. I 
APK ~1 

C Goigi Impregnation 
Monta nese at al., 1996 . c. 

HA 

Hem 

Fig. 1.6. A.The avian HP and APH according to the pigeon atlas of Karten and Hodos, 1967. 
B Avian subdivisions of the HF based on immunocytochemical markers. I.alveus, 2.Ammon's 
hom, 3. hilus, 4, 5.dentate gyrus, 6. subiculum, 7. entorhinal cortex. C. Avian HF based on 
Golgi techniques. CI: entorhinal cortex, Hem: Ammon's hom, PHc: subiculum. D. 
Subdivisions based on anterograde and retrograde pathway tracing techniques. DM: dentate 
gyrus, V: Ammon's hom, DL: subiculum, SPf: entorhinal cortex (from Siegel et aI., 2002, 
fig.8, page 266). 

To further support the hypothesis that the dorsomedial part of the hippocampus 

resembles to the dentate gyrus, serotonergic immunohistochemistry has revealed a dense 5-

HT+ fibre network in this area (Metzger et al., 2002), as occurs in the mammalian dentate 

gyrus (Hornung et al., 1990). The entorhinal cortex in mammals receives afferents from the 

olfactory bulb, anterior olfactory nucleus and piriform cortex (Amaral and Witter, 1995). 

Electrophysiological studies (Siegel et al., 2002, Fig. 1.7.) have demonstrated different firing 

rates of units in the ventral and dorsocaudal in relation to dorsorostral HF. 
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Fig. I. 7. Model of 
subdivisions of the aVian 
hippocampus proposed by 
Siegel et aI., 2002 based on 
electrophysiological 
techniques. In this model, the 
"dentate gyrus" is limited to 
the dorsocaudal HF, the 
subiculum like regIOn IS 

restricted to the dorsorostral 
HF, whilst the ventral region 
is equivalent to Ammon's 
hom. Arrows show the flow 
of information assuming that 
the flow resembles that of the 
mammalian hippocampus 
(drawing from Siegel et aI., 
2002, page 266, modified by 
P .L.Gabbott). 

Furthermore, the abovementioned authors showed that the dorsocaudal region IS 

equivalent to the dentate gyrus whilst the dorsorostral part is comparable partially to the 

mammalian subiculum. In the pigeon the APH receives inputs from the olfactory bulb via the 

piriform cortex (CPi) (Reiner and Karten, 1985; Bingman et aI., 1994). This finding indicates 

a possible equivalence of part of the APH to the entorhinal cortex. Studies after injections of 

neuronal tracers (biotinylated dextran amine - BOA and choline toxin B subunit-CTB) into 

the hippocampus at A. 6.50, have shown that in the medial part of the APH, BDA or CTB 

somata were located, whilst in the lateral part of APH, BDA fibres terminated (Atoji et aI., 

2002). Additionally, these authors demonstrated that the medial part of APH projects 

ventromedially and the lateral dorsolaterally as the APH projects rostrally. These findings, in 

conjunction with the studies of Siegel et aI. (2002) indicate that the medial part of APH is 

comparable to the entorhina1 cortex and the lateral part to the subiculum (Atoji et aI., 2002). 
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The involvement of the mammalian hippocampus in spatial memory and other aspects 

of cognition (Squire, 1992; Wood et al., 2000) is controlled by a one-way feed-forward 

trisynaptic pathway (Amaral and Witter, 1995) that can be summarised as a series of 

projections running from the entorhinal cortex to the dentate gyrus to the CA3 region of 

Ammon's horn to the CAl region and then to the subiculum and back to the entorhinal cortex 

(Andersen et al., 1971; Finnerty and Jefferys, 1993; Kahn et al., 2003). In the pigeon, Hough 

et al. (2002) by using stimulation evoked field potentials (EFPs) has suggested a circuit within 

the avian hippocampus (Fig 1.8.): 

DL --> OM --> ipsi and contralateral ventral regions, VM and VL --> VM --> VL--> 

OLv 

A6.5 Connectivity 

Sensory 
Inputs 

A8.0 Connectivity 

Sensory ~-----

Inputs 

Fig.1.8. Summary of connectivity as seen at indicated levels of the pigeon brain. OLd: dorsal 
dorsolateral Hp, OLv: ventral dorsolateral Hp, OM: dorsomedial Hp, VL: ventrolateral Hp, 
VM: ventromedial Hp, VC: ventral core of Hp. Scale bar Imm (drawing from Hough et al., 
2002, pages 301 and 303) 

This connectivity outline can be further supported by the fact that the pigeon 

dorsolateral Hp (OL) receives sensory input and contains two neuropeptides that exist in the 
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mammalian entorhinal cortex, preprotachykinin (substance P) and leucine encephalin staining 

(Amaral and Campbell, 1986; Erichsen et aI., 1991). These data along with connectivity 

studies which show that the DL when stimulated results in evoked field potentials (EFPs) in 

dorsomedial Hp (OM) (Hough et aI., 2002). The DM, which is efferent to the DL, appears to 

be equivalent to the dentate gyrus because it demonstrates choline acetyltransferase 

immunoreactivity (Krebs et aI., 1991) as is found in the dentate gyrus of mammals (Amaral 

and Campbell, 1986), in addition to substance P and vasoactive intestinal polypeptide (VIP) 

(Erichsen et aI., 1991; Krebs et aI., 1991). These findings together indicate that the DL is 

homologous to the entorhinal cortex, since the latter also projects to the dentate gyrus in 

mammals (Andersen et aI., 1971). The substance P field (SPt) shows a dense network of fibres 

and terminals which are immunoreactive for substance P (SP-ir). SP-ir was also found in the 

area called the medial substance P field (SPm), which is located lateral to the SPf. The latter 

constructs the borders of the hippocampus and covers a big part of the area parahippocampalis 

(Gould et aI., 2001b). Substance P is probably species specific, since studies carried out did 

not show any immunoreactivity for three tit species (Parus caeru/eus, Parus major, Parus 

atricapi//us) unlike studies in the junko (Junco hyema/is), where SP+ cells were located along 

the ventricle and the entire hippocampus (Gould et aI., 200Ib). Additionally, there was a 

positive relation between the size of the hippocampus and the SPm. 

Furthermore, neuropeptide Y (NPY) fibres and cell bodies (Gray and Morley, 1986) 

were also found in the avian hippocampus. Injection of NPY in the mouse hippocampus 

ameliorates performance and memory for training in the T -maze (Flood et aI., 1989). Because 

it is believed that NPY helps memory improvement and food intake (Clark et aI., 1984; 

Richardson et aI., 1995), it is possible that there would be more NPY in the hippocampus of 

food storing birds during the peak of food storing season due to food collection and spatial 

memory formation (Gould et aI., 2001b). The posterior ventral dorsolateral Hp (DLv) appears 
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to be equivalent to the subiculum since it receives output from a structure similar to CA 1 as it 

happens in mammals (Witter et aI., 1989b). Pyramidal cells in the mammalian Ammon's hom 

are surrounded by inhibitory basket-like terminals of cholecystokinin (Somogyi et aI., 1984; 

Nunzi et aI., 1985) in a similar way to that of the ventral layers of the avian hippocampal 

formation (Erichsen et aI., 1991). Finally, other studies suggest that although the dorsal 

regions are implied to be equivalent to the dentate gyrus and the entorhinal cortex, they are 

displaced from each other along the anteroposterior axis (Siegel et aI., 2002) with the 

dorsorostral areas (A 6.0-7.5) having subiculum like properties, contrasting with previous 

studies (Erichsen et aI., 1991; Montagnese et aI., 1996; Szekely and Krebs, 1996). 

The avian hippocampus (and area parahippocampalis) is involved in homing (Lee et aI., 

1998a; Strasser et aI., 1998; Gagliardo et aI., 1999; Regolin and Rose, 1999), food storing 

(Sherry et aI., 1989; Clayton and Krebs, 1994) and spatialleaming (Lee et aI., 1998a; Regolin 

and Rose, 1999). The hippocampus thus allows flying birds to perform long-distance 

migrations (Regolin and Rose, 1999) or to maintain recollection of the location of a 

disappeared object for a time period before starting to look for and locate it (Alerstam, 1990). 

In pigeons, it has been suggested that the hippocampal formation takes part in navigation map 

learning (Bingman et aI., 1990). A navigation map is the sum of environmental landmarks or 

stimulus features that are combined into a single allocentric spatial representation that includes 

all the landmarks that characterize the target sites (Bingman et aI., 2003). Food storing species 

choose spatial cues instead of non-spatial (although available) when storing food for retrieval, 

probably because in nature local characteristics of an area may change as weather conditions 

change, whilst spatial features remain unchangeable (Shettleworth, 2003). In contrast, non

storing birds use non-spatial cues for short term working memory duties (Macphail and 

Bolhuis, 200 I). 
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Hippocampal lesions cause reduced ability to recall the location of hidden food (Krebs 

et aI., 1989; Sherry et aI., 1989) as well as homing (Bingman et aI., 1984; Bingman et aI., 

1985) unlike hyperpallial lesions that do not cause any impairments. Pigeons with 

hippocampal formation lesions are impaired in discriminating conditional colours (Good, 

1987) indicating possible loss of behavioural flexibility. However, Watanabe (2002), has 

shown that when the hippocampus was lesioned and birds were tested in a small space they 

could discriminate colours, so the test space itself is important in discrimination tasks. To 

support Watanabe's studies, a recent investigation has shown that lesions of Hp did not affect 

the ability of pigeons to learn non-spatial, conditional discrimination and novel stimulus 

presentation tasks (Strasser et aI., 2004) unlike lesions in the rodent Hp which is believed to be 

involved in tasks other than of spatial nature (Dusek and Eichenbaum, 1997; Wood et aI., 

1999). 

Studies from other groups have shown that the hippocampus also plays a significant 

role for the passive avoidance training in chicks; unilateral lesions to the left hemispheric 

hippocampus before passive avoidance learning caused amnesia for the acquisition and 

retention of the task (Sandi et aI., 1992) whilst changes in synaptic plasticity were recently 

reported (Unal et aI., 2002). The hippocampus has been shown to be less affected than the 

mesopallium intermediomediale (IMM, previously termed intermediate medial hyperstriatum 

ventrale-IMHV) in the presence of a stimulus (Nicol et at, 1998) and lesions of the avian 

hippocampal formation do not appear to affect memory for individual stimuli (Good and 

Macphail, 1994). Chick hippocampal neurones are affected by distance or approach 

movements (Nicol et at, 1998). McCabe and Hom (1994) have demonstrated an increase in 

Fos activity in the chick hippocampus after high level "movement" activity as with the "theta 

cells" in the mammalian hippocampus (Vertes and Kocsis, 1997; Buzsaki, 2002; Cantero et 

aI., 2003). 
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Species that store food have been shown to have larger hippocampal formations in 

relation to non-storing species (Krebs et aI., 1989; Sherry et aI., 1989) which may be explained 

by the fact that food storers need a larger hippocampus to allow them to increase the time 

length during which they will remember spatial information (Biegler et aI., 2001). Food

storing shows seasonal preference; chickadees and titmice store more food in the autumn and 

early winter (Biegler et aI., 2001) preparing themselves for the forthcoming winter. Food 

storing can be also affected by changes in temperature, day length, or even the availability of 

food. Some researchers have shown that the size of hippocampus is larger relative to the 

telencephalon and the body size in October (Smulders et at, 1995) while others have 

demonstrated that there is increased neurogenesis at that time of year in free-ranging black

capped chickadees (Bamea and Nottebohm, 1994). It has been suggested that neuronal 

replacement must be taking place for the hippocampus to maintain a balance, so that cellular 

death of older neurones is compensated by new neurones which in tum will be incorporated 

into the circuit. Increased cell proliferation may help the young animals deal with the demands 

of environmental changes (Smulders et at, 1995). Another explanation could be that volume 

changes may be attributed to cell birth (increase of cell number) or cell death caused by 

enhancement of memory or lack of experience respectively (Clayton and Krebs, 1994). 

Furthermore, birds with reduced experience have less neurones and more apoptotic cells 

indicating probably that there is a minimum requirement of experience that is mandatory to 

cause alterations in the avian hippocampus (Clayton and Krebs, 1994). At the same time, 

under laboratory conditions, the stress of captivity may cause an increase in cell death or a 

reduction in cell proliferation due to stress dependent neurochemical signals (Hoshooley and 

Sherry, 2004). In addition, the latter authors support the idea that cells which are not 

functionally required fail to be recruited in the hippocampus. Laboratory photoperiodical 

experiments did not show any volume changes, which may, however, be attributed to the fact 
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that avian species need more than the food storing experience (probably environmental 

stimuli) for their hippocampal formations to show volumetric changes (Krebs et al., 1995). 

Glutamate receptor binding studies (Stewart et al., 1999) showed that non-storers had 

higher binding levels per unit area of tissue in relation to storers, although the latter had larger 

hippocampal volumes but similar neuronal density (Krebs et al., 1989; Healy et al., 1994). The 

explanation for this finding is unclear, especially given that mammals need NMDA receptor 

activation for acquisition of memory for water maze training (Liang et al., 1994; Ylinen et al., 

1995; Bannerman et aI., 1997). A recent study has shown that NMDA receptor activity is 

essential for long term memory formation in black-capped chickadees (Shiflett et al., 2004). 

Additionally, other studies have shown the importance of NMDA receptors for accurate 

homing in pigeons (Riters and Bingman, 1994). NMDA receptors inactivation can lead to 

deficits during memory acquisition, but does not affect retrieval procedures, short term 

memory preservation or post-acquisition memory consolidation (Shiflett et al., 2004). 

Furthermore, the interval length between learning trials can determine if the presence of 

NMDA receptors is required or not. Only long intervals between training processes necessitate 

the activation ofNMDA receptors for spatial learning tasks. 

Nonetheless, Wieraszko and Ball (1993) have demonstrated that the avian 

hippocampus does not require activation of NMDA receptors for the induction of LTP. In 

contrast, studies in the avian hippocampus (Szekely, 1999) and other brain areas (Holscher 

and Rose, 1992) have shown the importance for nitric oxide synthesis for memory formation 

in the form ofLTP as it also happens in mammals (Meyer et al., 1998; Okere and Kaba, 2000; 

Susswein et al., 2004). Studies in the mammalian hippocampus have demonstrated that the 

induction of LTP based on NMDA receptors activation varies between the different 

subregions (Bliss and Collingridge, 1993; Malenka and Nicoll, 1993). NMDA receptors 

activation is essential in CA3 for spatial recognition whilst dentate gyrus and CAl require 
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them for the creation of long term memory (Lee and Kesner, 2002). Inactivation of NMDA 

receptors in the dorsocaudal region of the avian hippocampus prevents acquisition of long 

term memory formation (Shiflett et aI., 2004). 

Not many studies have been presented showing the spatial abilities of the domestic 

chick (Gallus domesticus). However, some older studies have demonstrated that chicks have 

an extraordinary ability to use spatial cues to retrieve food (Rashid and Andrew, 1989). 

Studies have shown hemispheric asymmetry, depending on the eye (hemisphere) they use for 

encoding of information; chicks are better at topographical learning (global spatial cues) when 

they use the left eye (right hemisphere-optic chiasma) (Rashid and Andrew, 1989; Tommasi 

and Vallortigara, 2001; Kahn and Bingman, 2004), whilst they use the right eye (left

hemisphere) for colour discrimination (Vallortigara et aI., 1996; Tommasi et aI., 2000), 

identification of local cues in the environment (Kahn and Bingman, 2004) and working 

memory (Vallortigara, 2000). There are differences between the avian species regarding 

hippocampal asymmetries. In pigeons, the left hemisphere regulates navigation map learning 

(Gagliardo et aI., 2001) and object specific cue discrimination, whilst both hemispheres are 

responsible for position-specific cues (Prior and Gunturkun, 2001; Prior et aI., 2002). In 

contrast, food storing birds use the right hemisphere for spatial cues and the left for object 

recognition cues (Clayton and Krebs, 1994) as observed in chicks. 

Hemispheric asymmetry has also been demonstrated after passive avoidance training. 

Lesions to the left hippocampus before passive avoidance training caused amnesia for the task, 

whilst no effects were observed after lesions of the right hippocampus (Sandi et aI., 1992). 

The authors concluded that the left hippocampus plays an important role in the acquisition and 

retention of memory, during at least the initial stages of memory formation. In addition, 

studies in the IMM and striatum mediale (Stm, previously termed lobus parolfactorius-LPO) 

have confirmed that blocking of the glycine site of NMDA receptors with the antagonist 7-
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chlorokynurenate resulted in blockage of memory formation for the passive avoidance 

learning paradigm (Steele and Stewart, 1993). This finding was in accordance with previous 

studies that have shown the importance of the left IMM for the specific task (Rose, 1991; 

Sandi et at, 1993). 

As mentioned above, the presence of VIP is apparent in the avian hippocampus. VIP in 

particular has been shown to be a prolactin (PLR)- releasing hormone in rats, monkeys (Kato 

et at, 1978; Frawley and Neill, 1981; Peeins-Thompson et at, 1996) and hens (Sharp et aI., 

1989; Talbot et al., 1991). PRL secretions cause a lactogenic response in mammals (Kuenzel 

et at, 1997). VIP similarities between mammals and avian species include vasodilation , 

increased blood flow, exocrine gland secretion in mammals (Shimizu and Taira, 1979; 

Andersson et at, 1982) and increased secretion from salt glands in birds (Lowy et at, 1987; 

Gerstberger et at, 1988). It is also implicated in energy metabolism in the mammalian brain 

(Magistretti et at, 1981) and is a marker for the chick visceral forebrain system (Kuenzel and 

Blahser, 1993), which is a system in the avian brain that dominates homeostatic mechanisms 

during stressful and emotional periods (van der Kooy et al., 1984). Concomitantly, the peptide 

is a modulator or metabolic component of circadian rhythm and is found in the 

suprachiasmatic nucleus (SCN) in rats, an area that can be influenced by photoperiod (Moore, 

1983; Kafka et at, 1985; Aguilar-Roblero et at, 1994; Silver and Moore, 1998). It should be 

mentioned, though, that the SCN (Harmar et at, 2002) as well as the retina (Cavallaro et al., 

1996) are also characterised by the presence of pituitary adenylate cyclase-activating 

polypeptide (PACAP), which is a novel member of the secretin/glucagon/vasoactive intestinal 

peptide (VIP) superfamily and is also involved in the regulation of the circadian rhythm 

(Arimura, 1992). It has been demonstrated that there are three types of P ACAP receptors 

(Harmar et at, 1998), PAC 1, VPAC 1 and VPAC 2, the latter showing affinity also for VIP 

(Harmar et at, 1998), implying that there may be cross-reactivity between VIP and PACAP. 
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Similarly, the medial basal hypothalamus and septal region of the dove brain 

demonstrate VIP-immunoreactive neurones, which are suggested to be photoreceptor neurones 

(Silver et at, 1988). Apart from dense levels of VIP mRNA above the cell body region of 

neurones in the hippocampus, high VIP mRNA levels are present in the AI (intermediate 

arcopallium) and TnA (nucleus taeniae of amygdala), as well as in the bulbus olfactorius (BO) 

(Kuenzel et aI., 1997). 

It can be concluded that the avian hippocampus needs further investigation to fully 

elucidate its function, connectivity properties and structural changes. Studies have 

demonstrated clearly that it is homologous to the mammalian hippocampus (Kallen, 1962; 

Erichsen et aI., 1991; Szekely and Krebs, 1996; Tommasi and Vallortigara, 2001; Atoji and 

Wild, 2004), which renders the avian hippocampus an interesting model for behavioural and 

anatomical studies. 

Since the amygdala is a pivotal limbic structure processing sensory information about 

stress and fear (Akirav and Richter-Levin, 1999; Ebner et aI., 2004) it will be discussed in 

some detail. Its general characteristics are described below as an introduction to stress and fear 

in the chick PAL response, since relatively little is known of equivalent regions in birds. 

1.4 TIlE AMYGDALA 

1.4.1 The mammalian amygdala 

The mammalian amygdala is a complex structure in its organisation consisting of a 

number of different nuclei involved in a variety of information processing functions; central 

nucleus, basal nucleus and medial nucleus (Paxinos, 1995). The amygdala can be divided into 

pallial and subpallial amygdala (Puelles et aI., 2000), where the cortical and the basolateral 

amygdala are characterized as pallial structures and in particular they derive from the ventral 

pallium (Johnston, 1923; McDonald, 1998; Swanson and Petrovich, 1998), whilst the 
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centromedial amygdala is considered to be a subpallial structure (Puelles et aI., 2000). The 

amygdala is centrally placed in the neural circuitry responsible for emotion (LeDoux, 1992) 

and has been implicated to participate in conditioned fear to cues (Nader et aI., 2001) and to 

environment (Roozendaal et aI., 1993). It has been suggested that it is also involved in fear 

extinction (Marsicano et aI., 2002; Walker and Davis, 2002) and reward learning (Hall et aI., 

2001; Parkinson et aI., 2001). The human amygdala participates also in visual stimuli 

processing that are involved with emotional importance in social situations, one striking 

example being the recognition of facial expressions of humans (Darwin, 1827/1965; Kling and 

Brothers, 1992). Bilateral lesions to the human amygdala cause deficits in the recognition of 

facial fear expressions (Adolphs et aI., 1994). The amygdala is part of the limbic system and is 

closely related to the autonomic nervous system, providing evidence for the participation of 

the amygdala in emotional situations (LeDoux et al., 1988; Amaral et al., 1992; Lee et aI., 

1998b). The limbic system consists of the cingulate gyrus, the parahippocampal gyrus, the 

hippocampal formation, the septal area, the nucleus accumbens, parts of the hypothalamus, 

neocortical areas and the amygdala (Maclean, 1955). The telencephalon consists of basal 

ganglia and cortical hemispheres. The basal ganglia link the thalamus and the cerebral cortex 

through diverse circuits including the limbic circuit and are responsible for a number of 

functions including voluntary movement, cognitive and emotional tasks. 

The amygdala is filled with binding sites for substances that control fear and 

aggression, such as benzodiazepines (Niehoff and Kuhar, 1983) and serotonin (Hensman et 

aI., 1991; Saudou et aI., 1994). Furthermore, it has been shown that amygdalar neurones are 

activated during social interaction (Kling et al., 1979) in humans and communication in 

primates (Jurgens, 1982). 

It takes part in paradigms where both learning and stress are concerned and especially 

when the training is highly emotional (Cahill and McGaugh, 1990). Induction of L TP has 
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been shown after fear conditioning studies (McKernan and Shinnick-Gallagher, 1997; 

Tsvetkov et aI., 2002), indicating an association between learning and stress in the 

amygdala. The amygdala is the storage place of emotional events, fearful in particular 

(Cahill and McGaugh, 1998; Cahill et aI., 1999; Vazdarjanova and McGaugh, 1999) 

1.4.1.1 The basal nucleus of the amygdala 

The basolateral nucleus (BLA) (Fig 1.9) is a very important nucleus in the amygdala 

because it modulates hippocampal memory procedures (Cahill and McGaugh, 1998; 

Roozendaal, 2000; Packard and Cahill, 2001) and electrical stimulation of BLA has biphasic 

effects on long term potentiation in the dentate gyrus, indicating participation of the amygdala 

in hippocampal associated events (Akirav and Richter-Levin, 1999). The connection between 

the hippocampus and the amygdala allows the former to receive information about odours and 

stress emotions, whilst the latter puts the events in the right context (Akirav et al., 2001). 

The basolateral amygdala projects to the medial portion of the prefrontal areas, 

especially the orbital and medial prefrontal cortex (OMPFC) (Krettek and Price, 1977; Bacon 

et aI., 1996), which are implicated in learning and memory procedures (Kesner et aI., 1996; 

Ragozzino et aI., 1998; Baldwin et aI., 2002) and in emotional situations (Jinks and McGregor, 

1997; Quirk et al., 2000). So, the amygdalar OMPFC [the OMPFC makes connections also 

with other limbic structures (Jay and Witter, 1991)], has been suggested to take part in 

classical fear conditioning (Garcia et al., 1999) and reward memory (Gaffan et aI., 1993). 
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Fig.l.9. Nissl stained sections showing the cytoarchitecture of the rat amygdaloid nuclei. 
BLA: basolateral amygdaloid nucleus, anterior part, BL V: basolateral amygdaloid nucleus, 
ventral part, BMA: basomedial amygdaloid nucleus, anterior part, BMP: basomedial 
amygdaloid nucleus, posterior part, BLP: basolateral amygdaloid nucleus, posterior part, La: 
lateral amygdala, LaDL: lateral amygdala, dorsolateral part, La VM: lateral amygdala, 
ventromedial part, LaVL: lateral amygdala, ventrolateral part, (from The Rat Nervous system, 
G. Paxinos, Second Edition, Academic Press, C, D: page, 512-3). 

Noradrenergic activation of the BLA has been suggested to control memory acquisition 

and plasticity in the hippocampus (Ikegaya et aI., 1997; Frey et aI., 2001). At the same time, 

although the BLA does not have as highly dense glucocorticoids receptors as the hippocampus 

(McEwen and Sapolsky, 1995; Morimoto et aI., 1996), activation of the BLA is necessary for 

excretion of adrenal steroids which will affect the hippocampal memory storage (Roozendaal 

and McGaugh, 1996; Roozendaal et aI., 1996; Roozendaal and McGaugh, 1997; Ferry et al., 

1999). Ipsilateral priming activation of the BLA has enhancing effects on DG-LTP (Akirav 

and Richter-Levin, 1999, 2002), whilst central amygdaloid nucleus (CeA) priming did not 

provoke the same effects, suggesting that it does not take part in hippocampal memory and 

plasticity (Ikegaya et aI., 1994; Roozendaal and McGaugh, 1996, 1997). 

Functional imaging studies have shown that the amygdala is greatly triggered during 

odour processing and especially if the odour is very intensive (Zald and Pardo, 1997; 

Anderson et al., 2003). BLA lesions caused impairments for olfactory memory (Cahill and 

McGaugh, 1990, 1998) and as mentioned above, the BLA adapts hippocampal plasticity 
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which may be implying that the BLA could influence memory by turning the olfactory 

stimulus into an encoding memory (Eichenbaum and Cohen, 2001). 

The lateral nucleus (La) (fig 1.9) is a subdivision of the basolateral amygdala and is the 

main area that makes sensory input comprehensible and transmits it to the other nuclei of the 

amygdaloid complex for processing (LeDoux et al., 1990a). 

Sensory information will then reach the hypothalamus and brainstem to control 

behavioural, autonomic and endocrine responses to sensory input (LeDoux, 1995). As 

connectivity is concerned, the basal and accessory basal nuclei project to the lateral nucleus of 

the amygdala (Savander et aI., 1997). These projections are arranged in such a way, so that the 

basal nucleus projects to the ventrolateral part and the accessory projects to the medial lateral 

nucleus (Savander et aI., 1997). Electron microscopy studies have demonstrated that the basal 

nucleus forms asymmetric and symmetric synapses with the ventrolateral part, implying the 

formation of both excitatory and inhibitory inputs respectively. The projections of the 

accessory basal nucleus to the lateral amygdala form only asymmetric synapses, indicating 

that this pathway is mainly excitatory (Savander et aI., 1997). 

The accessory basal nucleus could be a mediator passing data about the internal state of 

an organism as well as about past incidents and contextual issues (Savander et aI., 1997). The 

accessory basal nucleus receives projections from the lateral hypothalamic area (Allen et aI., 

1991), which is responsible for behavioural responses to hunger, thirst, aggression and 

reproduction (Swanson, 1987) in mammals and the hippocampal formation via the ventral 

subiculum, which could pass on information from the medial temporal lobe memory system 

(Squire and Zola-Morgan, 1991) and spatial or contextual information (LeDoux, 1995) in rats 

and primates. The basal nucleus of the amygdala is a very important structure, because it is 

closely associated with stress (Akirav and Richter-Levin, 1999), whilst it also shows 
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homology to the chick arcopallium (Davies et at, 1997) as already mentioned in Table 1.1 

(see page 13). 

1.4.2 Tbe cbick arcopallium (A) (arcbistriatum) and nucleus taeniae of tbe amygdala 

(foA) 

The arcopallium (A) is a large heterogeneous area of the caudal, ventrolateral avian 

telencephalon. It can be divided at least in two major parts, one of which is homologous to the 

mammalian amygdala, whilst the other receives somatosensory input (Zeier and Karten, 

1971). Some of the subdivisions of the arcopallium (Fig. 1. 1 0, 1.11) include the arcopallium 

dorsa1e (AD), the arcopallium intermedium (AI), and the nucleus taeniae of the amygdala 

(TnA) (Karten and Hodos, 1967; Reiner et at, 2004). The amygdala-equivalent part has been 

suggested to be part of the limbic system. In avian species the limbic system consists of the 

hippocampus, the intermediate arcopallium (ventral intermediate archistriatum), the septal 

nuclei, the preoptic area, the area ventralis tegmenti (AVT), the hypothalamus, the 

dorsomedial thalamus, prefrontal-equivalent pallial regions such as the caudolateral 

nidopallium (NeL) (Mogensen and Divac, 1982; Waldmann and Gunturkun, 1993) and the 

nucleus taeniae of the amygdala. 

Electrical stimulation of the arcopallium has been demonstrated to provoke fear or 

escape responses in mallards (Phillips, 1964), pigeons (Goodman and Brown, 1966) and 

chickens (Phillips and Youngren, 1971). On the other hand, electrolytic lesions increase tonic 

immobility in chickens (Maser et aI., 1973) and impair conditioned fear avoidance in pigeons 

(Darters, 1975), whilst kainic acid lesions provoke reduction in fear responses in domestic 

chicks (Phillips and Youngren, 1986). Suction as well as bilateral electrolytic lesions to the 

arcopallium produce impaired ability for performance on the passive avoidance learning 

(PAL) task (Benowitz, 1972; Lowndes and Davies, 1994). Therefore, it has been suggested 
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that the arcopallium may belong to a memory circuit along with the IMM and StM that have 

been identified as key areas for their involvement in passive avoidance training (Rose and 

Csillag, 1985; Patel and Stewart, 1988). 

Moreover, the arcopallium has been demonstrated to have reciprocal connections with 

the IMM (Bradley et at, 1985), whilst it also projects to the StM (Szekely et al., 1994; Csillag 

et at, 1997; Davies et at, 1997). For that reason, it has been implied that the arcopallium is a 

mediator area transferring the acquired information from the IMM to the StM (Lowndes and 

Davies, 1994). The arcopallium also receives afferents from the septal nuclei (Montagnese et 

al., 2004). Lesions of the part of the arcopallium which is considered a limbic area (eg. 

intermediate arcopallium, AI) have been shown to increase failure for the passive avoidance 

training (Lowndes and Davies, 1994). However, no signs of increased fear were observed after 

presentation of novel objects (Lowndes and Davies, 1995). 

After passive avoidance training an upregulation of D 1 receptors has been demonstrated 

without, though, increases in dopamine levels (Stewart et aI., 1996). Since the arcopallium 

plays a role in passive avoidance training, it has been suggested that dopamine receptors are 

upregulated, possibly by enhanced arcopallial input caused due to fear or aversion. Thus, the 

output signal to reduce pecking behaviour is strong. Therefore, it is suggested that the 

arcopallium may be transmitting information to the StM not to peck for an extensive time 

period after training (Csillag, 1999). 

1.4.2.1 Arcopallium donale (AD) 

By using the anterograde pathway tracer Phaseolus vulgaris /eucoagg/utin (PHA-L) 

studies have demonstrated that afferents from the chick arcopallium project to parts of the 

Wulst, the mesopallium (M) and the nidopallium (N), as well as to the locus coeruleus (LoC) 

and the nucleus subcoeruleus ventralis (Davies et at, 1997). In particular, projections from the 
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dorsal arcopallium (AD) (Fig 1.10, 1.11) reach the ipsilateral hyperpallium densocellulare 

(HD), the mesopallium intermediomediale (IMM) and the mesopallium (M). The AD projects 

also to the StM, the lateral nidopallium (NL) and the antero-medial part of the nidopallium 

(Davies et al., 1997). The Stm along with the striatum laterale (StL) have been suggested to be 

equivalent to the mammalian caudate putamen (CPU) (Dubbeldam, 1991). 

The StM has been subdivided according to its afferents, i.e. whether the projections 

come from limbic or non-limbic telencephalic areas (Veenman et al., 1995) as well as 

according to efferents originating from that area that target the ventral tegmental area and the 

substantia nigra indicating that the medial striatum contains striatal-equivalent and nucleus 

accubens parts (Mezey and Csillag, 2002). In domestic chicks (Davies et al., 1997), the lateral 

part of the StM (non limbic), receives afferents from the AD as in pigeons (Veenman et al., 

1995), the latter projecting also to the visual thalamus, to the pontine reticular formation and 

cranial nerve motor nuclei as seen also in pigeons (Zeier and Karten, 1971), indicating 

possibly that the AD in chick is involved in the somatosensory system. The AD has been 

suggested to be homologous to the mammalian basal amygdala (B) (Martinez-Garcia et al., 

2002), because it receives dopaminergic and cholinergic projections, and projects to the 

medial (StM) and lateral (StL) striatum (Veenman et al., 1995), projections that could be taken 

as amygdalostriatal which in mammals arise mainly from the basal amygdala (Martinez

Garcia et al., 2002). 
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Fig. 1.10. Images representing the levels of arcopallium dorsale, nucleus taeniae of the 
amygdala and intermediate arcopallium. Anteroposterior coordinate A: 8.2, B: 8.0. AA: 
anterior arcopallium, AD: arcopallium dorsale, AI: arcopallium intermediale, M: mesopallium, 
N: nidopallium, HA: hyperpallium apicale, CPi: cortex piriformis, SL: nucleus septalis 
lateralis, AM: arcopallium mediale, NSTL: nucleus striae terminalis lateralis, SM: nucleus 
septalis medialis, GP: globus pallidus, Hp: hippocampus, LFS: lamina frontalis superior, PVN: 
nucleus parventricularis magnocellularis, VL: ventriculus lateralis, TSM: tractus septopallio
mesencephalicus, CPa: commissurae pallii, NBM: nucleus basalis magnocellularis, PVT: 
pallidum ventrale, OM: tractus occipito-mesencephalicus, LSO: organum septi laterale, LHy: 
regio lateralis hypothalami, nCPa: nucleus commissurae pallii (adapted from Kuenzel and 
Masson, 1988) 

1.4.2.2 Arcopallium intermedium (AI) 

The arcopallium intermedium (AI) (Fig. 1.10 B, 1.11) is the only telencephalic area that 

shows bilateral projections to the dorsocaudal nidopallium (Metzger et aI. , 1998), a region 

which shows neuronal activity after acoustic or visual stimuli (Bock et aI. , 1997). PHA-L 

labelled fibres reach the StM, the StL, the Hp (as in the pigeon (Casini et aI., 1986», the APH, 

the septal nuclei and the pallidum ventrale (PVt) (Davies et aI., 1997). Projections were also 

found in the diencephalon, specifically in the tractus occipito-mesencephalicus (OM), ansa 

lenticularis (AL), fascicullus prosencephali lateralis (FPL) and tractus quintofrontalis. Fibres 

were also visible in the ipsilateral LoC, nucleus subcoeruleus, brainstem reticular fonnation 

and motor cranial nerve nuclei. It is clear that the AI has also connections with non-limbic 

areas (somatosensory) indicating heterogeneity. 
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According to Davies et a1. (1997), the limbic part of the arcopallium includes the AI, 

the anterior arcopallium (AA) and the posterior pallial amygdala (PoA). In contrast, the non 

limbic part comprises the AD, and the arcopallium mediale (AM) due to the presence of 

sensory, somatosensory and motor efferents. The AI is thought to be equivalent to the lateral 

and accessory basal amygdala as well as to the amygdalo-hippocampal area of the mammalian 

amygdala (Davies et aI., 1997; Martinez-Garcia et aI., 2002) due to a projection (Davies et aI., 

1997) rich in heavy metals to the ventromedial hypothalamus (Dubbeldam et aI., 1997). In 

particular, the basolateral amygdala in mammals shows zink-containing projections to the 

ventromedial hypothalamus via the stria terminalis which originates from ventral pallial 

structures, such as the accessory basal nucleus of the amygdala (Swanson and Petrovich, 

1998), which supports the hypothesis of homology between the AI and basal accessory 

nucleus (Martinez-Garcia et aI., 2002). 

1.4.2.3 Nucleus taeniae amygdala (fnA) 

TnA is located within the medial arcopallium (Fig. 1.10, 1.11). It has been suggested 

that it is homologous to the mammalian medial amygdala (Thompson et aI., 1998; Cheng et 

aI., 1999). In the Japanese quail and ring doves it shows high concentrations of estrogens and 

antrogens (Martinez-Vargas et aI., 1976; Watson and Adkins-Regan, 1989; Foidart et aI., 

1999) and demonstrates aromatase activity (Foidart et aI., 1995). A projection reaches the 

rostral part of TnA from the olfactory bulb (Reiner and Karten, 1985) as it also happens in 

hamsters (Lehman and Winans, 1982). 
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Fig. 1.11. Representation of levels where the arcopallium dorsale, intermediale and mediale 
are located together with the nucleus taeniae of the amygdala. C: A. 7.6, D: A 7.0, E: A.6.6, F: 
A.6.2. AD: arcopallium dorsale, AI: arcopallium intermediale, AM: arcopallium mediale, 
TnA: nucleus taeniae of the amygdala, CPi: cortex piriformis, TeO: tectum opticum, DA: 
tractus dorso-arcopallialis, ROT: nucleus rotundus, TrO: tractus opticus, Hp: hippocampus, 
APH: area parahippocampalis, VL: ventriculus lateralis, COL: area corticoidea dorsolateralis, 
M: mesopalium, N: nidopallium, FL: field L, HA: hyperpallium apicale, LFS: lamina frontalis 
superior, SM: medial septum, SL: lateral septum, OM: tractus occipito-mesencephalicus, LHy: 
regio lateralis hypothalami, SMe: stria medullaris, TSM: tractus septopallio-mesencephalicus, 
PVN: nucleus parventricularis magnocellularis, NBM: nucleus basalis magnocellularis, LaM: 
lamina mesopallialis, StL: striatum lateralis, GP: globus pallidus, RSd: nucleus reticularis, 
superior, pars dorsalis, PHN: nucleus periventricularis hypothalami, PCVL: plexus choroideus 
ventriculi lateralis, DMA: nucleus dorsomedialis anterior thalami, DMAI: nucleus 
dorsomedialis anterior thalami, pars lateral is, DMAm: nucleus dorsomedialis anterior thalami, 
pars medialis, nTSM: nucleus tractus septopallio-mesencephalicus, VMN: nucleus 
ventromedialis hypothalami, LPS: lamina pallio-subpallialis, CIO: capsula intema occipitalis, 
HM: nucleus habenularis medialis, HL: nucleus habenularis lateralis, OV: nucleus ovoidalis 
(adapted from Kuenzel and Masson, 1988). 
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One type of male sexual behaviour is appetitive sexual behaviour (Balthazart and Ball, 

1998; Pfaus et aI., 2001), where the male looks for and flirts with the right female. Studies of 

sexual behaviour in rats have shown that the medial amygdala (Me) participates in male 

appetitive sexual behaviour (Everitt, 1990). Me is also highly activated by emotional stress as 

it has been demonstrated by c-Fos expression (Dayas et at, 1999). A similar situation may be 

taking place in the TnA, since serotonergic immunoreactivity studies have shown the presence 

of high concentrations of serotonergic fibres in this area (Metzger et aI., 2002). Serotonin is 

enhanced after aggression and anxiety (Lucki, 1998) as well as after stressful situations (Gruss 

and Braun, 1997). Damage of the Me causes impairments in male sexual behaviour in rats 

(Kondo and Arai, 1995; Kondo and Yamanouchi, 1995) and hamsters (Lehman and Winans, 

1982). 

Lesions in TnA have caused delays to males to approach females and the contact lasted 

shorter time. In addition, the number of successful copulations was decreased and the time 

needed for males to copulate with females was longer. At the same time, vocalization was also 

affected in the presence of female quails (Thompson et aI., 1998). The authors suggested that 

the delay in approaching females and the short contact time may be explained by lack of 

sexual excitement in the presence of sexual stimuli and sexual attraction (Holloway and 

Domjan, 1993; Thompson et at., 1998). No motor damage was noticed, so the lack of 

copulation was due to the damaged TnA (Thompson et aI., 1998). In hamsters, abolition of 

copulation was observed after complete elimination of the olfactory input to the Me (Lehman 

and Winans, 1982). 

Other studies, however, have not shown any deficits in sexual behaviour in male quails 

after lesions in TnA (Lehman and Winans, 1982). This discrepancy may be suggesting that 

there are subdivisions in the TnA (Parfitt and Newman, 1998). Lesions to the TnA of females 

have revealed that female doves have become more capable towards nest cooing (Cheng et a1., 
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1999) either due to reduction of fear emotions or lesions in the brain circuit regulating sexual 

behaviour. 

Homology to the mammalian medial amygdala can be implied through numerous 

studies, of a) connectivity and b) hormonal expression. Tract-tracing studies have shown that 

both TnA and Me receive sub-cortical sensory inputs and establish connections with the 

hippocampal complex (Cheng et aI., 1999). TnA projects to the hypothalamus and the preoptic 

area in pigeons and doves in a similar manner to the Me (Thompson et aI., 1998; Cheng et aI., 

1999). Studies of the expression of mRNA for androgen receptors (AR), and estrogen type a 

(ERa) and type P (ERP) receptors in TnA of the quail (Foidart et aI., 1999) as well as of other 

species (Ball et aI., 1999; Bernard et aI., 1999) show a similar arrangement to that of the Me 

(Wood et aI., 1992). 

TnA projects to the hippocampus in pigeons (Casini et aI., 1986) and receives efferents 

from the hippocampus both from medial and lateral routes (Casini et aI., 1986; Atoji et aI., 

2002). The hippocampus in birds, as in mammals (Brown and Zador, 1990) does not receive 

direct input from the olfactory bulb, but this projection is mediated through the TnA in birds 

and the CeA in mammals. TnA sends efferents to the hypothalamus and in particular to the 

lateral and posterior medial hypothalamus and the paraventricular and preoptic areas in a 

bilateral way in doves and ipsilateral in starlings (Cheng et aI., 1999). Additionally, it projects 

to the SL, the StM and the HD. TnA shares bilateral connections with the anterior commissure 

in ring doves and the tectal commissure in starlings (Cheng et aI., 1999). Together with the 

AM it sends efferents to the mesopallium and the mesopallium intermediomediale, explaining 

probably the reason why the arcopallium plays a role in filial imprinting and passive 

avoidance training (Lowndes and Davies, 1994; Lowndes et aI., 1994). Weak projections to 

the nidopallium caudolaterale (NCL) were also found in ring doves and starlings which is in 

agreement with other studies (Leutgeb et aI., 1996). Finally, efferents from the TnA of the ring 
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dove reach the ovoidalis shell, the tractus nuclei ovoidalis, the bed nucleus of stria terminalis 

(BST) and the OM (Cheng et aI., 1999). 

Next, the olfactory bulb will be described, a structure which participates in odour 

recognition (Reinken and Schmidt, 1986; Buonviso and Chaput, 2000; McKeegan, 2002) and 

in chicks has been demonstrated to have connectivity with the TnA (Reiner and Karten, 1985). 

In rats, the olfactory bulb exhibits neurogenesis in adult life (Bayer, 1983; Winner et aI., 

2002), however little is known about the avian olfactory bulb and cell birth as an effect of 

PAL. 

1.5 BULBUS OLFACTORIUS (DO) 

The BO (in chicks, Fig. l.12) is the area of the brain that receives olfactory signals 

directly from receptor neurones and then transmits the information to the rest of the central 

nervous system. The perception of olfactory sense needs a molecular machinery in order to 

transform a chemical stimulus into electrical signal. Most information comes from mammalian 

research; it has been demonstrated that olfactory chemoreceptors are neurones that detect 

chemical substances in the air and enhance axonal arborisation in order to make contacts with 

neurones in the olfactory bulb. They interact particularly with a given odour molecule and 

participate in odour identification (Lancet, 1986). These receptors belong to the superfamily of 

seven transmembrane domain proteins. 

Odour stimulation causes neuronal activity to the olfactory neurones in rats (Lancet, 

1986). The firing rates of neurones in the BO of hens (Steward, 2000a) show similar pattern 

with these of the mammals (Doving, 1987). Studies on odorant concentrations are 

controversial; some researchers suggest that concentration of an odorant substance affects 

neuronal activity (Reinken and Schmidt, 1986), while others have shown that activity remains 
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constant to concentration changes (Doving, 1987). It is noteworthy that the rat 's olfactory 

neurones show reduced activity to recognizable odours (Buonviso and Chaput, 2000). 

B 
LFSM 

D 

Fig 1.12. Representation of the levels that BO is located. Anteroposterior coordinates for A: 
14.6, B:14.2, C:13.8, 0: 13.6. BO: bulbus olfactorius, HA: hyperpalliurn apicale, HI: 
hyperpalliurn intercalatum, MD: mesopallium dorsale, MV: mesopallium ventrale, HD: 
hyperpalliurn densocellulare, VO: ventriculus olfactorius, N: nidopallium, M: mesopallium, 
LaM: lamina mesopallialis, LFS: lamina frontalis superior, LFSM: lamina frontalis suprema, 
CPP: cortex prepiriformis, OA: nucleus olfactorius anterior, Va: vallecula telencephali 
(adapted from Kuenzel and Masson, 1988). 

In chicks, the left olfactory bulb has been suggested to be dominant, since studies 

have shown that chickens respond to odours when sniffing from the left but not the right 

nostril (Vallortigara and Andrew, 1994; Rogers et aI., 1998). A number of odours appear to 

have an aversive effect for chicks such as blood (Jones and Black, 1979), odours of insects 
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(Roper and Marples, 1997) and cat fur (Fluck et at, 1996), even from the day of hatching 

(Burne and Rogers, 1996). 

An interesting point for behavioural studies is that chicks can smell methyl anthranilate 

(MeA) and take it for aversive odour (Marples and Roper, 1997) as observed from the 

latencies to peck the bead dipped in MeA. One day old chicks can associate odours with the 

colour of the bead in the passive avoidance learning (PAL) paradigm and can recall the smell 

of MeA. Therefore it has been suggested that MeA may be taking part in memory 

consolidation (Burne and Rogers, 1997). Other bitter but odourless substances (e.g. 

denatonium benzoate, quinine, Bourne et at, 1991; Marples and Roper, 1997) do not seem to 

be strong aversive stimuli for chicks resulting in decreased ability to remember PAL 

suggesting a strong link between limbic structures participating in PAL (e.g. mesopallium, 

arcopallium) and BO (Richard and Davies, 2000). 

In the chick brain, the olfactory bulb sends afferents to the cortex piriformis (CPi), 

which is considered homologous to the mammalian CPi (Reiner and Karten, 1985; Bingman et 

aI., 1994) and helps the animals associate atmospheric odours with navigation maps and 

discriminate odorant stimuli (Gagliardo et at, 1997), the medial septum, the TnA, the 

olfactory tubercle (Reiner and Karten, 1985) the 8tM and the mesopallium (Rieke and 

Wenzel,1978). 

1.6 SYNAPTOGENESIS 

The functional units of the neuronal system are the neurone and the glial cells. The 

neuron consists of the cell body from which radiate dendritic processes that receive afferent 

synaptic information and the axon process that sends input to the dendrites and gives output of 

information. The nervous system operates by the creation of functional connections between 

its components so that neurones can communicate with each other. These connections are 
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called synapses, which are cellular junctions and their formation is associated with 

developmental events such as cell proliferation, neuronal survival, migration and death as well 

as dendritic and axonal arborisation (Goodman and Shatz, 1993). 

During dendritic and axonal arborisation dynamic changes in branching occur, such as 

branch addition, elimination, lengthening and shortening (Pokorny and Yamamoto, 1981 a; 

Cohen-Cory and Fraser, 1995; Baloyannis et al., 2000). During synaptogenesis, synapses are 

formed, mature, are stabilised and are eliminated by procedures that involve pre- and post

synaptic signal transmission (Katz and Shatz, 1996; Cohen-Cory, 2002), indicating that 

synapses can alter their function as well as their morphology by continuous shape changes 

demonstrating plasticity (Fischer et al., 1998), probably due to neuronal activity which leads 

to actin polymerisation (Fischer et al., 2000) or increases in intracellular calcium (Korkotian 

and Segal, 1999). 

LTP, an enduring activity-dependent increase in synaptic efficacy believed to be the neural 

correlate for learning (Bliss and Lomo, 1973; Malenka and Nicoll, 1999), has been shown to 

cause the growth of filopodia (Maletic-Savatic et al., 1999), trigger the increase of synapses 

with perforated postsynaptic densities (PSDs) followed by multiple spine buttons where two 

spines develop from the same dendrite (Toni et al., 1999). 

1.6.1 Dendritic spines 

Most of the neuronal synapses occur on the surface of the dendrites. These synapses 

are formed either on the dendritic shaft or on spines that project from them (Harris, 1999). 

Dendritic spines are the main postsynaptic sites receiving glutamate from excitatory synapses 

and were probably evolved to bear the enormous number of synapses that take place between 

the neurones in the mammalian brain (Fig.l.I3). 
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Fig 1.13. Image of chick 
ventral hippocampus. A 
mushroom spine synapse 
between a dendritic spine and 
an axon terminal (axo-dendritic 
synapse) is marked with a red 
asterisk. The post synaptic 
density (PSD) of this synapse 
can be clearly seen (labelled 
with an arrow). A symmetric 
synapse is marked with a star 
between an axon terminal 
(presynaptic part) and a soma 
(axo-somatic synapse). ER: 
endoplasmic reticulum, at: 
axon terminal, den: dendrite, 
mit: mitochondrion, GA: Golgi 
apparatus. (N ikolakopoulou 
2004) Scale bar 200nm 

It has been suggested that spines appear or disappear subject to the age and activity of a 

neurone (Harris, 1999). Spines are very sensitive to calcium concentration changes, so a small 

elevation of calcium causes elongation to spines, in contrast high elevations cause the collapse 

of a spine (Harris, 1999). Additionally, limiting the concentrations of calcium may be 

providing a protective mechanism for dendrites and the soma, whilst high concentrations may 

lead to dendritic swelling, microtubular breakdown and excitotoxicity (Choi, 1995). Spine 

shape influences calcium circulation within the spine independently from the dendrite 

(Korkotian and Segal, 1998). 

There are different kinds of spines; thin spmes, which dominate in the adult brain 

(Harris et aI., 1992; Fiala et aI. , 1998) and they are characterised by a length greater than the 

spine neck diameter ending in a bulbous head, stubby spines which are short and wide with no 
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restriction on the neck diameter, sessile spines with greater length than diameter and the lack 

of bulbous head and mushroom spines (fig. 1.13) which have a constricted neck and a large 

irregular head (Sorra and Harris, 2000). 

1.6.2 Postsynaptic density (PSD) 

Synapses are characterised by a dense thickening, the postsynaptic density (PSD, see 

Fig. 1.13). It is attached under the surface of the spine membrane either on the top or the side 

of the spine head of the postsynaptic part, transversely from a presynaptic axon that contains 

vesicles (Sorra and Harris, 2000). It can fonn a simple disk (macular PSD), a perforated ring 

like shape or an extremely irregular or fragmented fonnation (Sorra and Harris, 2000). PSDs 

have been suggested to arrange adhesion between the pre- and postsynaptic parts and to 

regulate receptor clustering and function (Siekevitz, 1985) as well as calcium signal dependent 

systems. PSD is particularly thick and visible on asymmetric (excitatory) synapses (Landis et 

al., 1974, Fig. 1.14). 

In the synaptic membrane there are at least four major categories of receptors including 

NMDA, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate, metabotropic 

glutamate receptors (mGluRs) (Nusser et al., 1998; Racca et al., 2000). NMDA receptors can 

be found in the centre of the PSD (Racca et aI., 2000), AMPA are located across the surface of 

the PSD and mGluRs are positioned on the outside surface of the PSD (Lujan et al., 1996) 
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Fig 1.14. Image taken from the 
dorsal hippocampus of one day 
old chick. An asymmetric synapse 
is formed between Atl and At2 
(axo-axonal synapse). A 
symmetric is formed between Atl 
and At3 (axo-axonal synapse). At: 
axon terminal, mvb: multi 
vesicular body, den: dendrite, sp: 
spine mit: mitochondrion. Notice 
the lack of mitochondria in spines. 
(Nikolakopoulou 2004) Scale bar 
=200nm 

The PSD comprises tubulin, actin, fodrin and calmodulin (Kennedy, 1993), whilst the 

main protein present in the postsynaptic density is the (l subunit of the Ca2+ calmodulin kinase 

type II (CaMKII) (Kennedy et aI., 1983), which is a target of Ca2+ that passes through NMDA 

receptors and participates in synaptic plasticity (Silva et aI., 1992). Protein kinase A (PKA) 

regulates plasticity by altering CaMKII activity (Blitzer et aI., 1998). PKA phosphorylation of 

GluRl AMP A receptor subtype although is essential for induction of LTP (Esteban et aI., 

2003), is not adequate since CaMKII is also needed. Possibly PKA makes AMP A receptors 

available for synapse stability. 

The PSD also includes receptor binding proteins such as postsynaptic density protein of 

95 kD MW (PSD-95) and guanylate kinase associated proteins (GKAPs) which group 

glutamate receptors on the spine head (Kim and Huganir, 1999). Glutamate receptor clustering 

proteins, for instance, PSD-95/SAP90, PSD-93/Chapsyn and synapse-associated protein of 
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102 kD MW (SAP-l 02) bind to NMDA receptors (Brenman et al.. 1996a; Muller et al.. 1996). 

whilst SAP97 binds to AMP A receptors in vitro (Leonard et al.. 1998). PSD-95 binds tightly 

to NMDA receptors at synapses and they are both abundant in the PSD (Kornau et al.. 1997). 

Other proteins that interact with the PDZ domains (repeated conserved segments for protein

protein interaction. Kandel et aI., 2000) of the PSD-95 are the neuronal nitric oxide synthase 

(nNOS) (Brenman et a1.. 1996b), neuroligin (Irie et aI., 1997) and SynGAP (Kim et al.. 1998). 

1.6.3 Organelles in dendritic spines 

Spines contain smooth endoplasmic reticulum (SER), which is an elongated, flattened 

or enlarged structure consistent of cisternae and is present in almost half of the hippocampal 

dendritic spines, regulating the calcium concentration in spines (Spacek and Harris, 1997). It 

mainly appears in mushroom spines, whilst only a small proportion of thin spines exhibit SER 

(Spacek and Harris. 1997). In mushroom spines SER creates the spine apparatus (SA). which 

arranges the synthesis of the membrane bound proteins and their transport (Steward et aI., 

1996) as well as intracellular calcium increases (Capani et aI., 2001). SER volume remains 

stable while spine size changes, however. SA becomes more plastic in larger synapses and 

increases its size (Spacek and Harris, 1997). 

Polyribosomes are also present in the dendritic spine cytoplasm (Steward and Reeves, 

1988) and it has been implied that when localised to the postsynaptic part of a synapse may 

supply a site for local and spine specific translation of proteins. Endosomes exist in dendritic 

spines which may be taking part in protein degradation. 

Dendritic spines lack mitochondria (Fig. 1.13) unlike the dendrites where ATP is 

produced (Sorra and Harris. 2000). Hippocampal dendritic spines have a cytoskeleton that is 

actin based. whilst dendrites have also microtubules and intermediate filaments (Markham and 

Fifkova, 1986; Kaech et aI., 1997). Intense staining for F-actin has been observed in the 
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dendritic spine head, whilst it disappeared or eliminated in the spine neck (Capani et aI., 

2001). Profilin is an actin-binding protein that participates in actin polymerization at the cell 

surface (Buss et at, 1992). It clusters in dendritic spine heads after activation of postsynaptic 

NMDA receptors and it participates in the control of actin function and spine shape stability 

(Ackermann and Matus, 2003), by steadying actin filaments and supporting the 

submembraneous actin network (Rothkegel et aI., 1996). 

1.6.4 Perforated PSD/synapses 

Perforated synapses are those with a gap in the PSD (Calverley and Jones, 1990). They 

have a spine head area and a PSD area three times larger than the simple synapses (Toni et at, 

2001) and can be fenestrated, horseshoe like or segmented (Hering and Sheng, 2001). 

Perforated synapses were increased during development after rats were exposed to an enriched 

environment (Greenough et aI., 1978), after LTP (Toni et aI., 1999) and kindling (Geinisman 

et aI., 1990) and have been suggested to indicate synapse turnover (Harris et at, 1992). Since 

dendritic spines are extremely plastic, they can change their morphology within seconds 

(Fischer et at, 1998) and therefore perforated synapses can be created very quickly (Toni et 

at, 1999). 

Another suggestion is that perforated synapses can actually alter the receptor turnover 

at the PSD (Maletic-Savatic and Malinow, 1998; Sorra et at., 1998). Since perforated synapses 

have a larger PSD, they probably contain more receptors (Sorra et aI., 1998). Addition or 

removal of receptors from the neuronal network may be resulting in the discontinuation of the 

PSD. Perforated synapses could attribute to increased synaptic strength, because they have 

larger PSDs and since the PSDs are separated from their correlate by transition zones in the 

presynaptic terminal (Harris and Kater, 1994). 
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1.6.5 PSDs and LTP 

Totally segmented, completely partitioned synapses (SCP) have been shown to 

experience a numerical increase after early phases of NMDA receptor dependent LTP (Toni et 

a1., 2001), while shortly afterwards their numbers return to control levels (Geinisman et a1., 

1993; Toni et aI., 2001). In particular, SCPs contain a wide variety of coated vesicles and have 

long spinules associated with the PSD after LTP (Toni et aI., 2001), whilst multiple spine 

boutons consist of two spines, one similar to normal synapses and a much smaller one, 

probably newly formed and immature. The high presence of vesicles may be an indication of 

membrane-protein transport among the SA and the synaptic membrane (Spacek and Harris, 

1997). The synaptic strength of the SCP has been attributed to the number of postsynaptic 

AMPA receptors (Malenka and Nicoll, 1999; Sheng and Kim, 2002). More AMPA receptors 

have been found in perforated than in non-perforated synapses (Desmond and Weinberg, 

1998). The induction of L TP has been attributed to either the alteration of functional 

properties of AMPA receptors or the inclusion of new receptors (Liao et aI., 1995). Other 

studies indicate that LTP mediates the production of AMPA receptor subunits (Nayak et ai., 

1998). 

AMPARs arbitrate most of the brain's excitatory synaptic transmission, whilst NMDA 

receptors regulate the distribution of calcium and concomitantly they control the mechanisms 

underlying the trafficking and targeting of the AMPARs (Scannevin and Huganir, 2000; 

Sheng and Kim, 2002). The SCPs exhibit a significantly larger PSD in relation to any other 

synaptic subtype (Ganeshina et ai., 2004) and express more AMPA receptors in comparison 

with other axospinous junctions. NMDARs activation is essential for early stages of 

synaptogenesis, such as localized and quick development of dendritic filopodia and new 

synapse formation (Maletic-Savatic et a1., 1999). AM PARs are required at later phases, since 

blockage of AMP ARs has been suggested to cause a decrease in axonal arborisation in mature 
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neurones (Zou and Cline, 1999; Cline et al., 2001). These studies indicate that NMDARs are 

developmentally needed before operating AMP ARs (Lee and Sheng, 2000). 

Dendritic spines usually make a single synapse, indicating probably a specialization in 

contacts rather than an expansion of the postsynaptic area (Shepherd, 1996). Studies have 

shown that synapses split under certain circumstances such as LTP in the dentate gyrus of the 

hippocampus (Trommald et al., 1990), not in CA 1 though (Sorra et al., 1998), rearing in 

enriched environment (Jones et al., 1997) and chronic use of amphetamines (Robinson and 

Kolb, 1997). 

During branching (splitting) the PSD of small synapses enlarges and perforates, whilst 

at the same time a division of the presynaptic bouton takes place by the intrusion of a spinule 

(narrow projections of the dendritic surface, Westrum and Blackstad, 1962) that projects from 

the perforation in the dividing PSD into the presynaptic bouton. As the synapse divides, the 

spinule is retracted (Sorra et al., 1998). The spinules derive from the head or the neck of a 

spine, never from the PSD, and they project into boutons. After the splitting of the synapse, a 

branched synapse occurs which has two heads originating from the same presynaptic part. 

Finally daughter synapses are created from each fragment of the earlier perforated synapse. 

However, the results of LTP studies are quite controversial. Unlike studies 

demonstrating synapse doubling (Toni et al., 1999), others have shown that after LTP there are 

no increases in size of synapses (Toni et al., 1999). Newly developing synapses lack AMPA 

receptors exhibiting only NMDA receptors and therefore are silent (Gomperts et al., 1998; 

Petralia et aI., 1999). Presynaptically silent synapses are those that show insufficient glutamate 

release to activate AMPA receptors, whilst postsynaptically silent are those that lack 

functional AMP A subunits relying only on NMDA receptor conductivity which in tum is 

blocked due to Mg2
+ (Isaac, 2003). When NMDA receptors are blocked, the dendrites extend 

filopodia protrusions, returning probably to an immature state (McKinney et al., 1999). 
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Activations of NMDA receptors and calcium influx could mediate the release of nitric oxide 

in spines, which then could stimulate growth by local diffusion in presynaptic axons and 

boutons (Nikonenko et aI., 2003). The axonal outgrowths could then initiate the production of 

shaft synapses (Fig. 1.15) which in tum would become spine synapses. Shaft synapses, in 

particular, that have originated from resorbed spines and protospines, may re-appear to form 

spines (Pokorny and Yamamoto, 1981 b). Nitric oxide can influence synaptic growth by 

interacting with actin filaments (Hindley et aI., 1997). 

1.6.6 New spines and synapse formation 

Fig 1.15. A symmetric axo
dendritic (shaft) synapse is 
formed between an axon 
terminal (presynaptic) and a 
dendrite (asterisk). ER 
(endoplasmic reticulum) can be 
seen on the top of the dendrite. 
(Nikolakopoulou 2004). Scale 
bar= 200 nm 

Synaptic construction starts when axons come close to their targets and create 

connections with dendritic arbors or the soma of a neurone. Dendritic spines do not start to 

exist before the formation of synapses. Filopodia, which are long thin protrusions located at 

the periphery of migrating cells and growth cones, start to rapidly project from dendrites and 

axons, especially during the early stages of synaptogenesis (Ziv and Smith, 1996). Synapses 

can be found on filopodia during the first 2-3 postnatal weeks (Papa and Segal, 1996; Fiala et 
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at, 1998). Synaptic vesicles appear when axons and filopodia establish contacts (Ahmari et 

at, 2000) and accumulate at varicosities of the presynaptic sites (Ahmari et at, 2000). 

Filopodia have a darker cytoplasm than spines, they terminate in a pointed head and they are 

much longer than mature spines (Fiala et aI., 1998). Filopodia are plentiful in the brain during 

the first postnatal week, (however, only 25% of synapses occur on them, the rest take place 

directly on dendritic shafts) afterwards they are replaced by shaft synapses and stubby spines, 

they decrease both in number and size to finally give their place to mushroom and thin 

synapses in the adult brain (Hering and Sheng, 2001). Therefore it has been suggested that 

filopodia are precursors to shaft synapses, in particular they do not seem to provide permanent 

support for synapses, instead they guide nascent synapses to dendritic shafts which finally 

mature to give dendritic spines (Harris et at, 1992; Fiala et at, 1998). 

A hypothesis for spine synapses formation is based on the idea that spines originate 

from shaft synapses by a process of outgrowth (Pokorny and Yamamoto, 1981 b). Another 

hypothesis for synapse formation is based on the creation of synapses on the tip of the 

filopodium which then retracts towards the dendritic shaft pulling the presynaptic axon along, 

an observation made after in vitro studies (Ziv and Smith, 1996). Spines can be also formed de 

novo (Engert and Bonhoeffer, 1999) due to activity and calcium concentration changes. 

In addition, filopodia lack postsynaptic density protein (PSD 95) clusters which appear 

concomitantly with filopodia formation in the proto spines to become copious in mature spines 

supporting even more the hypothesis of filopodia giving rise to glutamatergic synapses (Ziv 

and Smith, 1996). In vitro studies have shown that the presynaptic differentiation occurs 

earlier than postsynaptic in the developing hippocampal neurones (Okabe et aI., 2001). 

Astrocytes provide energy to the neurones by increasing the action potential

independent quantal release so that neurones can complete their functions as well as control 

the formation and efficacy of synapses (Pfrieger and Barres, 1996, 1997). They re-accumulate 
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(Rothstein et aI., 1996; Danbolt, 2001), supply neurones with (Hertz et aI., 1999) and arrange 

glutamate release via glutamate transporters (Hertz et aI., 1999; Del Arco et aI., 2003) and 

participate in the recycling of glutamate via glutamine and intermediates of the tricarboxylic 

acid (TCA) cycle (Schousboe et aI., 1997). Their ability to clear excessive extracellular 

glutamate suggests that they protect neurones from excitotoxic glutamate concentrations 

which could result in neuronal cell death (Rosenberg and Aizenman, 1989). They also take 

part in cell-cell interactions through adhesion junctions (Spacek and Harris, 1998) and 

intercellular calcium influx (Vernadakis, 1996). 

In addition, glia does not increase presynaptic activity only by calcium influx, instead it 

influences the number of vesicles released (Ullian et aI., 2001). These authors have also 

demonstrated that removal of glia, causes reductions of the number of synapses indicating that 

it affects synaptic stability and is necessary for synapse preservation. In vitro studies have 

shown that the formation of synapses begins after astrocytes have started to appear suggesting 

that glia contributes dynamically in synapse increases (Ullian et aI., 2001). Furthermore, glia 

offers steadiness postnatally, since during embryonic stages of an organism synapses are 

extremely plastic and immature and has been implied to take part in learning and memory 

procedures (Hyden and Lange, 1966). Cell swelling or gliosis would increase glia-spine 

contacts resulting in spine retraction, as it happens after chronic human epilepsy where the 

size and density of spines is decreased (Scheibel et aI., 1974). 

1.6.7 Cell Adhesion MolKules and their role in synaptogenesis 

Cell adhesion molecules (CAMs) participate in synaptogenesis (Bruses, 2000) and 

members of the cadherin family have been shown to reside at synaptic junctions (Benson and 

Tanaka, 1998; Huntley and Benson, 1999), probably through homophilic/trans (on a different 

cell) interactions between identical cadherin molecules (Inoue et aI., 1998; Boggon et aI., 
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2002). Cadherins are Ca2+ dependent (Hatta and Takeichi, 1986; Tomaselli et aI., 1988) and 

are located at puncta adherentia which is linked to actin filaments (Spacek and Harris, 1998) 

and is located between the presynaptic axon and the postsynaptic dendritic spine at the edges 

of PSD (Spacek and Harris, 1997). Puncta adherentia contains apart from cadherins, neural 

adhesion molecules, catenins and nexilin (Uchida et aI., 1996; Ohtsuka et aI., 1998). Actin 

could act in this case as a scaffold and bind synapsin and other molecules to the presynaptic 

part, regulating in this way presynaptic activity. Cadherins are not necessary for the 

continuation of synaptic vesicle organization (Togashi et aI., 2002). 

Neuroligins, another type of transmembrane cell adhesion molecules, are located in the 

postsynaptic membranes of glutamatergic synapses and are considered to be taking part in the 

regulation of synaptic signals (Song et aI., 1999). Neurexins are the cell-surface receptors of 

neuroligins (Ichtchenko et aI., 1995). B-neurexins interact with PDZ proteins, controlling the 

gathering of presynaptic active zones (Dean et aI., 2003). Endogenous neurexins are located in 

the synaptic terminals and their gathering causes generation of synaptic vesicles (Dean et at., 

2003). Integrins on the other hand form cell-cell and cell-extracellular matrix adhesive 

connections (Springer, 1990) and play an important role during neural development (Bronner

Fraser, 1987). 

Another CAM, the neural cell adhesion molecule (NCAM) has been shown to 

participate in LTP in the dentate gyrus of free moving rats (Fazeli et aI., 1994). NCAM along 

with Ll (neuron/glial CAM (NgCAM) and NrCAM are members of the Ll family) belong to 

the immunoglobulin superfamily and are cell surface macromolecules which have the ability 

to regulate cell-cell interactions during development and in adult life due to their recognition 

and adhesion capacity and participate in synaptogenesis, neurite outgrowth and migration 

(Rutishauser et at, 1983; Covault and Sanes, 1986; Seki and Arai, 1993; Hu et aI., 1996; Kuhn 

et aI., 1996). NCAM makes Ca2+-independent cell-cell connections and forms 
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homophilic/trans or/and heterophilic/cis interactions (Cunningham et aI., 1987; Soroka et aI., 

2003). Post-translationally, 2-8-linked polysialic acid (PSA) chains are attached (Doherty et 

aI., 1990) to NCAM -80 (Yang et aI., 1992) and L 1 (Acheson et aI., 1991; Zhang et aI., 1992). 

Addition of PSA causes a decrease of membrane-membrane binding rate (Hoffman and 

Edelman, 1983; Rutishauser et aI., 1988) and promotes neurite outgrowth (Doherty et al., 

1990). PSA-NCAM has been implicated in learning (Seki and Rutishauser, 1998; Solomonia 

et al., 1998; Knafo et al., 2004; Sandi et al., 2004) whilst an increase in polysialation of 

NCAM -180 has been demonstrated in the rat hippocampus after passive avoidance training 

(Doyle et al., 1992). The expression of PSA-NCAM can be also affected by stress (Merino et 

al., 2000; Nacher et al., 2004) 

1.6.8 Neurotrophins 

Neurotrophins such as BDNF, NT-3, NT4/5 and NGF have been suggested to regulate 

synaptogenesis and affect presynaptic neurones as well as postsynaptic targets (von Bartheld 

et al., 2001). Neurotrophins can change dendritic and axon morphology as well as dendritic 

spine stability in developing neurones (McAllister et al., 1999). BDNF has been suggested to 

control axonal and dendritic branching and remodelling (Cohen-Cory and Fraser, 1995; Lom 

and Cohen-Cory, 1999), it increases the efficiency of synaptic communication (Boulanger and 

Poo, 1999), participates in the maturation process of inhibitory and excitatory synapses 

(Rutherford et a1., 1998) and possibly plays an essential role in synapse formation and stability 

(Katz and Shatz, 1996; Poo, 2001) as has been observed for axonal arborisation after in vivo 

imaging (Alsina et aI., 2001). Previous studies have shown that it participates in the 

conversion of immature silent synapses into functional AMPA receptor synapses (Itami et al., 

2000). Additionally, BDNF controls synaptic vesicle protein expression and the density of 

synaptic innervation (Gonzalez et al., 1999; Pozzo-Miller et aI., 1999). Studies have shown 
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that BDNF modulates synaptic connectivity (Causing et at, 1997) and alters synaptic density 

without changing the axon number (Causing et at, 1997). 

1.6.9 Other factors affecting synaptogenesis and spine formation 

1.6.9.1 Ageing 

Many different factors affect synaptogenesis. Ageing has been shown to decrease the 

number and the surface area of synapses, whilst the synaptic size increases. Additionally, pre 

and postsynaptic elements become thicker with age, in contrast, vesicle size decreases 

(Schulpis et at, 2001). Synaptic efficacy is reduced due to decreased transmitter release and 

receptor density (Scheuer et at, 1995). Synaptic proteins are also decreased in axons and 

dendrites (Hatanpaa et at, 1999) as well as dendritic branches, their length and their cell soma 

size (Anderson and Rutledge, 1996). 

1.6.9.2 Learning and stress 

Learning paradigms and stress have been demonstrated to alter synaptic plasticity. 

Water maze training causes mossy fibre synaptogenesis in CA3 stratum oriens (Ramirez

Amaya et at, 1999). An enriched environment can also provoke increases in synaptic density 

in the CA3 (Altschuler, 1979) even after ageing (Arnaiz et aI., 2004). The stratum radiatum of 

CAl has also demonstrated synaptic increases after conditioning (Wenzel et at, 1980). 

Finally, LTP as already mentioned has been shown to increase the number of spine boutons 1 h 

after LTP as well as the number of synaptic contacts between axons and dendrites (Toni et at, 

1999). It must be mentioned, though, that in birds although L TP is present in the avian brain, it 

does not require NMDA receptor activation, indicating probably different mechanisms 

involved in synaptic plasticity (Wieraszko and Ball, 1993; Margrie et at, 1998). 
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Many studies have been focused on synaptogenesis in the chick brain mainly after 

passive avoidance training and imprinting. Increases in spine density have been demonstrated 

particularly in the left StM (Stewart et aI., 1987; Lowndes and Stewart, 1994) and IMM (Patel 

and Stewart, 1988) 24 hours after PAL in the MeA trained group in relation to controls. 

Furthermore, a decrease in postsynaptic density length in the right IMM and an increase in the 

number of synaptic vesicles in the left hemisphere have been observed in the MeA trained 

group (Stewart et aI., 1984). On the other hand, lh after PAL studies have shown an increase 

in the number of asymmetric spine synapses in the right IMM whilst there is a concomitant 

decrease of the synaptic height (size of postsynaptic density) in the same area (Doubell and 

Stewart, 1993). These authors have also shown an increase of numerical density in the left 

IMM and StM 1 hour after PAL, which had disappeared 24 afterwards. A recent study has 

also demonstrated a numerical increase in shaft synapses in the dorsolateral Hp after PAL, as 

well as a decrease in mean synaptic height (Unal et aI., 2002). 

In contrast to these studies, auditory filial imprinting has been suggested to reduce the 

number of spine synapses in the mediorostral nidopalliumlmesopallium (MNM) and 

dorsocaudal nidopallium (NOC) (Bock and Braun, 1998; Braun et aI., 1999). Auditory filial 

imprinting requires the activation of NMOA receptors for synapse elimination, indicating 

probably a different activation mechanism for emotion-related learning tasks (Bock and 

Braun, 1999a, b). Another factor that can alter synaptic plasticity is ischaemia, which causes a 

significant reduction in synaptic density of asymmetric synapses in the dorsal (Horner et aI., 

1996) and the ventral Hp (Horner et at, 1998) 7 days after ischaemia. These authors argue that 

the uncontrolled release of glutamate (since asymmetric synapses are presumed to be 

excitatory) following ischaemic episodes (Rothman and Olney, 1986) is responsible for cell 

death (Szatkowski and Attwell, 1994) due to activation of NMOA receptors (Ghribi et a1., 

1994) and the increases ofCa+2 influx. 
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Learning has been demonstrated to cause structural changes to the mammalian (Rogan 

et aI., 1997; Ramirez-Amaya et aI., 1999; van Praag et aI., 1999) and avian brain (McCabe and 

Hom, 1988; Hom, 1998). In the chick brain PAL has been exhibited to cause synaptic 

remodelling (Stewart et aI., 1987; Stewart and Rusakov, 1995), whilst recent studies have 

shown an increase in cell proliferation in IMM and StM (Dermon et aI., 2002). However, little 

is known about the effects of PAL on cell proliferation and neurogenesis. Below, the origin of 

newborn cells is described along with mechanisms that can influence neurogenesis in the 

vertebrate brain. 

1.7 CELL PROLIFERATION-NEUROGENESIS 

Adult neurogenesis has been identified in the brain of rodents (Altman and Das, 1965; 

Cameron et aI., 1993; Kempermann et aI., 1997 a; Gould et aI., 1999b; van Praag et aI., 1999; 

Dayer et aI., 2003), birds (Nottebohm, 1989; Alvarez-Buylla, 1990a; Patel et aI., 1997; Lee et 

aI., 1998a), fish (Zikopoulos et aI., 2001; Zupanc, 2001; Zupanc and Clint, 2003), amphibians 

(Chetverukhin and Polenov, 1993; Polenov and Chetverukhin, 1993), lizards (Perez-Canellas 

and Garcia-Verdugo, 1996), snakes (Wang and Halpern, 1988), primates (Gould et aI., 1999c; 

Gould et aI., 1999a; Rakic, 2002a) and humans (Eriksson et aI., 1998; Roy et at, 2000; 

Haughey et aI., 2002; Curtis et al., 2003). Studies in monkeys and humans have indicated that 

hippocampal neurogenesis is lower when compared with rodents (Eriksson et at., 1998; 

Kornack and Rakic, 1999), which is due probably to different maturation stages examined .. 

Neurogenesis can be studied by 5-bromo-2-deoxyuridine (BrdU) 

immunohistochemistry (Gould et aI., 1998; see Fig. 1.15 for examples of BrdU labelled cells 

from Nikolakopoulou, 2001; Dermon et aI., 2002; Dayer et aI., 2003), eH]thymidine 

(Alvarez-Buylla et aI., 1990; Barnea and Nottebohm, 1994; Cameron and Gould, 1994), 

retroviruses or green fluorescent protein (GFP), the latter often introduced with the help of a 
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retrovirus (van Praag et aI., 2002) and endogenous Ki-67 (Del Bigio, 1999; Dayer et aI., 

2003). BrdU immunohistochemistry has demonstrated that the total length of the cell cycle in 

twenty day old mice lasts for almost 16 hours, the S phase lasts for 8 hours and a maximum of 

24% of the cells in the hilus are proliferating (Nowakowski et a1., 1989). The rate of 

neurogenesis has been identified as 1 neuronl2000 granule cells per day in 3 month old mice 

(Kempermann et aI., 1997b). 

In the hippocampus, newborn neurones (precursors) derive from stem cells that are 

located in the sub granular zone of the dentate gyrus and differentiate into granule neurones 

(Altman and Das, 1965; Cameron et aI., 1993; Kuhn et a1., 1996) which survive for 8 months 

in rodents (Altman and Das, 1965), 12 months in primates (Gould et a1., 2001a) and 2 years in 

humans (Eriksson et aI., 1998). Stem cells are cells that can self renew and are multipotent, 

whilst progenitors are cells that can be either unipotent or multipotent and show less self 

renewal ability and precursors are those that are a mixed or unidentified population (Weiss et 

a1., 1996). Studies have demonstrated that neural stem cells exist only in the ventricular 

subependyma, whilst the dentate gyrus contains only progenitors in the sub granular layer 

(Chiasson et aI., 1999; Seaberg and van der Kooy, 2002). Neural stem cells give rise to neural 

or glial progenitors which in tum induce the production of precursors (Gage, 2000). The 

former have the ability to differentiate into functional neurones with mature neurones 

properties (Song et at, 2002). There was an assumption that in mammals neuronal cells are 

not born in the sub- or ventricular zone, but they rather arise from precursor cells that are 

located at these regions (Altman and Das, 1965; Kaplan and Hinds, 1977) unlike birds where 

neurones are born in the ventricular zone (Alvarez-Buylla et aI., 1990, examples of BrdU+ 

cells originating from the VZ are presented in Fig. 1.16). 
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Fig. 1.16. Ventricular zone of the mesopallium of a female (A) and a male (B) 2 day old quail 
(Cotumix japonicus). These animals were injected with BrdU the first day post hatching and 
were sacrificed the next day. The BrdU labelled cells (arrows) can be easily visualised in both 
cases. It is interesting to mention that the male quail in this case shows more newborn cells in 
relation to the female animal. Images C and D represent the mesopallium of a female and male 
quail respectively. These animals were injected on P5 and were sacrificed the next day (P6). 
Again the male shows more BrdU positive cells, however more cells are also present in 
relation to the P2 male, indicating probably that at five days cell proliferation is more intense 
(Nikolakopoulou, 2001). Scale bars =50llm 

Lois and Alvarez (1993) have demonstrated in vitro that cells located in the 

subventricular zone are precursors that can actually give rise to neurones or glia after 

proliferation. 

76 



After precursors divide, they migrate along radial glia (Schlessinger et al., 1975) into 

the granular cell layer and start to show neuronal processes along with the expression of 

polysialylated neural cell adhesion molecule (PSA-NCAM) (Seki and Arai, 1993) where they 

are incorporated and start to express neuronal markers (eg neuron-specific enolase, NSE) 

(Cameron et al., 1993; Jin et al., 2001). The newly formed neurones are added in the brain 

throughout life and they concentrate in the deeper layers of granule cell layer where they 

gradually replace earlier formed neurones (Crespo et al., 1986). Four types of cells have been 

identified in the subventricular zone (SVZ) based on immunohistochemical and morphological 

properties (Lois and Alvarez-Buylla, 1994; Garcia-Verdugo et aI., 1998). Type A are 

migratory neuroblasts, type Bare astrocytes, type C are precursors and type D (Lois and 

Alvarez-Buylla, 1994; Seri et aI., 2001) originate from type B cells and are an intermediate 

step before the formation of C type cells. It has been suggested that the line of progression is 

B->(D)->C->A (Doetsch et al., 1999). 

Studies further support that astrocytes provoke the proliferation of types Band C in 

order to differentiate into type A cells (Lim and Alvarez-Buylla, 1999). Other studies have 

demonstrated that neurones can originate from astrocytes and radial glia, implying that 

neurones and glia may be derived from the same lineage and that astrocytes in the SVZ are 

neural stem cells (Lim and Alvarez-Buylla, 1999; Noctor et aI., 2001). In addition, astrocytes 

can affect the number of newborn neurones that are produced from neuronal precursors (Song 

et al., 2002) as well as control the phenotype of neurones based on the area of origin (Denis

Donini et al., 1984; Skogh et al., 2001). Astrocytes that give rise to neurones are limited to 

specific areas of the CNS and don't affect neighbouring astroglial cells (Malatesta et al., 

2003). 

Neurogenesis can be influenced by learning (Alvarez-Buylla et al., 1988b; 

Kempermann et al., 1997a; van Praag et al., 1999) and stress (Lemaire et al., 2000; King et al., 
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2004). Below, the effects of stress in the vertebrate brain are described and associated with 

PAL in one-day old chick brain. 

1.8 STRESS 

Stress is one of the factors that can cause morphological alterations to the brain and 

provoke pathological conditions to the organism (Munck et al., 1984; Brindley and Rolland, 

1989). In addition, stress has been suggested to be responsible for depression, possibly 

through an existing neurochemical relationship (Trolle, 1955; Iny et al., 1994) and Cushing's 

syndrome (von Werder et al., 1971; Spencer and Hutchison, 1999; Drapeau et al., 2003b). 

The HPA axis is activated after exposure to stimuli that threaten homeostasis and is 

considered part of the defence system of an individual (Spencer and Hutchison, 1999). It 

receives positive feedback from the amygdala (arcopallium in birds), but negative from the 

hippocampus (Bouille and Bayle, 1973; Sapolsky et al., 1985a; Schul kin et al., 1994; 

Mizoguchi et al., 2003). The HPA is affected by corticotrophin-releasing-factor (CRF), which 

is involved in stress responses in rats (Rivier et al., 1982; Herman and Cullinan, 1997) and 

birds (Launay et al., 1993) and elevated corticosterone levels in birds (Furuse et al., 1997). 

Lipopolysaccharide (LPS) has also been shown to increase HPA activity, by increasing 

the concentration of circulating glucocorticoids (Zuckerman et al., 1989) as well as plasma 

corticosterone levels in the avian brain (Sell et al., 2003). Adrenocorticotropic hormone 

(ACHT) (Rivier, 1999), corticosterone (CORT) and cortisol (in rats and humans respectively) 

are adrenal hormones secreted from the adrenal medulla and especially CORT and cortisol 

have been implied to participate in metabolism after stressors in order to regulate energy 

requirements (Nagra and Meyer, 1963; Feller and Neville, 1966; Remage-Healey and Romero, 

2001). 
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The hippocampus expresses high levels of adrenal steroid receptors (McEwen et al., 

1994; van Steensel et aI., 1996), type I (mineralcorticoid, MRs) and type II (glucocorticoids, 

GRs) that take part in synaptic plasticity and neuronal excitability (Reul and de Kloet, 1985; 

De Kloet et al., 1998; de Kloet, 2000). The two types of receptors have different binding 

affinities, MRs bind corticosterone with high affinity, whilst GRs have one tenth of the 

affinity of MRs (Reul and de Kloet, 1985). When corticosterone circulation is in basal levels, 

the MRs are occupied, on the contrary, when the levels ofCORT begin to elevate, the GRs get 

gradually occupied (Reul and de Kloet, 1985; Reul et al., 1987). The GRs concentration is 

increased between the 9th and 15th postnatal day as has been demonstrated by autoradiographic 

studies (Meaney et aI., 1985). The GRs are involved in memory formation whilst MRs take 

part in perceiving the environmental stimuli and navigate the behavioural action to be adopted, 

in particular blocking of GRs didn't allow consolidation of the water maze task, whereas 

inhibition of MRs changed the search strategy (Oitzl and de Kloet, 1992; Roozendaal and 

McGaugh, 1997). 

LTP has been shown to be affected by stress in CAl, CA3 and DO, where high levels 

of corticosterone or chronic stress caused suppression of LTP (Pavlides et al., 1993; Pavlides 

et al., 2002). Furthermore, CORT elevation has been suggested to increase glutamate release 

in the hippocampus of adult rats (Gilad et al., 1990; Moghaddam et al., 1994) and binding 

increases have been observed in NMDA receptors as well as elevation of NR2A and NR2B 

mRNA subunits (Weiland et al., 1997). It has been shown that NMDA receptors are 

downregulated in the amygdala during fear conditioning in order for the brain to be protected 

from excitotoxicity (Zinebi et al., 2003), indicating a possible connection between elevated 

glucocorticoids, calcium increases and activation ofNMDARs by glutamate. 

Chronic stress has been demonstrated to attenuate glucocorticoid negative feedback, 

and it has been demonstrated that in depressed patients the HP A axis function is disrupted and 
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does not respond to cortisol secretion levels (Kalin et aI., 1982; Holsboer, 1983). High 

corticosterone levels have been shown to downregulate BDNF and NT -3 in the hippocampus 

(Smith et aI., 1995; Ueyama et al., 1997; Nitta et al., 1999), implying that synapse stabilization 

or cell survival may be affected, since addition of BDNF in culture suppresses cell death 

(Nitta et al., 1999). 

During stress, cell interactions may also be disturbed due to decreased expression of 

NCAM in the prefrontal cortex (Sandi and Loscertales, 1999) and hippocampus (Sandi et al., 

2001) after increases in plasma CORT concentrations. Finally, volume loss has been 

suggested to be caused as a result of neuronal death and neurogenesis suppression (Lee et al., 

2002a). In rhesus monkeys it has been suggested that prenatal treatment with dexamethasone 

resulted in 30% reduction of hippocampal size in adult life (Uno et al., 1994), whilst patients 

with Cushing's disease and elderly people have also demonstrated volume reductions due to 

elevated cortisol probably because of dendritic tree shrinkage (Starkman et al., 1992; Convit et 

al., 1995). At a molecular level, it has been indicated that glucocorticoids can downregulate 

the expression of early genes (Yin and Howells, 1992). 

Corticosterone controls learning and memory procedures in animals and humans (Sandi 

and Rose, 1994a, b; Wolkowitz, 1994; Lupien and McEwen, 1997). However, chronic stress 

or high quantities of CORT can be verified to be harmful for memory (Bodnoff et al., 1995; 

Conrad et al., 1996). Studies have shown that continuous blockage of glucocorticoid receptors 

resulted in facilitation of memory and learning processes unlike phasic blockage that impaired 

memory formation (Oitzl et al., 1998). It has been well documented that moderate levels of 

corticosterone enhance learning and memory (Sandi et al., 1997), whilst very high levels 

disrupt memory acquisition and learning (Diamond et al., 1999); the performance of animals 

under stress follows a U shaped distribution, low levels of corticosterone do not facilitate 

learning due to lack of motivation (Anderson, 1976), high levels disrupt memory as described 
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above, whilst moderate stress helps the animal concentrate on the factors providing 

information in order to memorize the environmental stimuli (Selden et al., 1990) in view of 

the fact that corticosterone improves passive avoidance behaviour (McEwen and Sapolsky, 

1995). 

In one day old chick, studies have shown that corticosteroid receptor antagonists cause 

amnesia for passive avoidance learning (Sandi and Rose, 1994b) and corticosterone facilitates 

longer memory preservation for the weak passive avoidance training task (10% MeA in 

absolute ethanol) until 24 h post training (Sandi and Rose, 1994a), indicating that a 

considerable amount of stress is essential for memory retention and the transition from short 

term to long term memory (Sandi and Rose, 1997). Corticosteroid inhibitors also caused 

amnesia for the passive avoidance learning paradigm in a dose dependent way (Loscertales et 

al., 1997). Corticosterone has been proposed to promote long term memory by affecting 

glycoprotein synthesis (Sandi et al., 1995). NCAM antibodies during the second wave of post 

translational glucosylation 5.5 hours after training reduced the beneficial effects of 

corticosterone, whilst corticosterone injections enhanced glycoprotein synthesis for the same 

time point. Corticosterone has been implied to participate in the development of an animal 

because studies have shown that injections of CORT in E20 dark-incubated chick embryos 

facilitated memory retention for the weak passive avoidance training, whilst the same 

phenomenon was not observed if animals were injected earlier or later (Sui et al., 200 I). 

Accumulation of CORT has been suggested to cause neuronal loss in later years, 

implying a role for corticosterone in ageing (Sapolsky et aI., 1985b). Injections of CORT on 

mid-aged rats caused effects similar to those of ageing such as cell loss, CORT receptor 

depletion, probably as a result of concentrating CORT cell death and increased glia. 

Therefore, Sapolsky and colleagues (1985) concluded that stress experience throughout 

lifetime and the resulting accumulation ofCORT may be responsible for increasing the effects 
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of ageing. Additionally, HPA dysfunction and hypersecretion of glucocorticoids that have 

been observed during ageing are considered some of the causes for neuronal loss (Coleman 

and Flood, 1987), since adrenalectomy reversed the effects of ageing, in particular neuronal 

loss and memory impairment (Landfield et aI., 1981), nonetheless PSA-NCAM expression 

was not upregulated (Montaron et aI., 1999). 

Other studies do not agree with these results, instead they suggest that elevated 

glucocorticoids during ageing may play a role in hippocampal atrophy, synaptic loss and 

reduction of neurogenesis, but not in neuronal loss (Lupien et aI., 1998; Lemaire et aI., 2000). 

Reduced neurogenesis during ageing may also result from maternal deprivation (Mirescu et 

aI., 2004) or prenatal stress (Lemaire et aI., 2000). Glial fibrillary acidic protein (GFAP) 

mRNA levels are much higher in adult animals in relation to younger rats (Morgan et aI., 

1997). Another assumption is that the perseverance of excitatory amino acids release in the 

aged brain after stress may render the aged hippocampus more susceptible to damage (Lowy 

et aI., 1995). 

1.9 CELL DEATH 

Apoptosis is the process during which the cell uses ATP from its stores to activate the 

appropriate intracellular flow of actions with the intention that the cell dies under controlled 

conditions. This will eliminate the toxic effects of local inflammation and cellular spillage 

(Lowy et aI., 1995). Apoptosis needs gene activation for these events to take place and is a 

natural way of cell death for cell popUlations (Kerr et aI., 1972; Wyllie et aI., 1980; Gould et 

aI., 1994). Some of the genes known to affect apoptosis are the bcl-2, bax, interleukin-lp 

converting enzyme (ICE), bcl-x and the suppressor tumour gene p53 (Reagan and McEwen, 

1997). bcl-2 and bcl-x are negative regulators of cellular death, bax is a promoter of cell death 

which suppresses its function when it creates dimmers with bC/-2, ICE is a protease that turns 
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the inactive pro-interleucin-l into active IL-IP and its overexpression causes apoptotic death, 

whilst p53 mediates DNA repair after cell damage. However, if DNA damage is very severe, 

p53 induces apoptosis to prevent the formation and expansion of mutated DNA (Reagan and 

McEwen, 1997). Cell membrane and organelles are preserved until late apoptosis phases 

constructing apoptotic bodies (Reagan and McEwen, 1997). Cells that die from apoptosis are 

phagocytosed or digested by neighbouring cells or macrophages (Wyllie et at, 1980). The 

final signs of apoptosis are regulated by caspases, which are apoptotic cysteine proteases, and 

involve chromatin condensation and nuclear fragmentation that lead to DNA laddering, 

cleavage of cytoskeletal proteins, survival proteins and cellular substrates (Chan and Mattson, 

1999). Necrosis, on the other hand, is a degenerative procedure which is characterized by 

irregular cellular signals that lead to cell lysis (Fawthrop et aI., 1991). 

Thyroxine (T 4) can induce cell death in the High Vocal Center (HVC) and other 

telencephalic areas of the adult zebra finch brain that experience neuronal turnover 

(Tekumalla et al., 2002). Chronic treatment with T 4 can cause reduction in the total number of 

HVC neurones and hyperthyroidism can increase neuronal death which is not compensated by 

neuronal substitution. 

Excessive acetylcholinesterase (AChE) can trigger neuronal death and astrocytic 

hypertrophy in the dentate gyrus of rats (Chacon et al., 2003) accompanied by learning 

impairments. 

Energy restriction is another cause of reduced cell proliferation and increased cell death 

(Dunn et aI., 1997). It has been reported that in vivo energy restriction and corticosterone 

mediate cell death probably due to the reduced circulation of survival factors that these agents 

regulate, conversely the same effect has not been demonstrated after in vitro studies (Jiang et 

at, 2002). 
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Finally, low doses of kainic acid can provoke hippocampal CAl and CA3 delayed cell 

lose by apoptosis (Humphrey et aI., 2002), since p53 is increased in CA3 pyramidal cells 

(Sakhi et aI., 1994), without causing seizures (Montgomery et aI., 1999). This delayed 

apoptotic death has been shown to be accompanied by neurogenesis, probably in order for lost 

neurones to be replaced (Dong et aI., 2003). 

During apoptosis the cell undergoes death under controlled conditions that inhibit the 

creation of toxicity due to cellular destruction (Roy and Sapolsky, 2003). Apoptosis is a type 

of cell death that requires gene activation to take place and has been suggested to be the 

normal way of loss of cell populations (Wyllie et aI., 1980; Gould et aI., 1994). Cells may 

experience apoptosis as a natural process during development. 

Cell death can be increased or decreased according to the milieu that surrounds the cell. 

Increases in the levels of adrenal steroids by administration of corticosterone and aldosterone 

reduce neurogenesis (Gould et aI., 1991a) as well as cell death (Gould et aI., 1991b). In 

contrast, adrenalectomized rats show increased cell death after adrenalectomy (ADX) (Sloviter 

et aI., 1993a; Cameron and Gould, 1994, 1996). New cells that are born in the hippocampus 

have been observed to die before they reach maturity between 6 and 28 days after labelling 

with BrdU (Cameron et aI., 1993; Gould et at, 1999b; Dayer et at, 2003); almost 50% of 

newborn cells have been identified as apoptotic. Most of the apoptotic cells were found in the 

borders of the hilus with the granular cell layer, indicating that neuronal death starts in the 

neurogenic zone of the dentate gyrus (Gould et at, 1990; Bengzon et aI., 1997; Biebl et al., 

2000). 

Apart from neurones, glia have been suggested to experience apoptosis at different 

developmental stages (Soriano et at, 1993; Dalmau et aI., 2003) as well as in CNS pathologies 

(Nguyen et at, 1994; Vela et aI., 2002). One possible reason for apoptosis may be the 

competition for survival for both neurones (Cowan et aI., 1984; Reynolds and Wilkin, 1988) 
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and astrocytes (Reynolds and Wilkin, 1988; Krueger et aI., 1995) and the use of neurotrophic 

factors. 

Apoptosis of newborn cells has been also observed in the proliferative zone of the 

cerebral cortex (Thomaidou et aI., 1997), particularly 1 in 14 cells die at embryonic day 16, 

whilst the number increases at newborn rats reaching 1 cell in every 1.5. In the olfactory bulb 

apoptosis has been demonstrated in the layers (mitral and granule cell layer) where new cells 

innervate (Fiske and Brunjes, 2001) indicating possibly that older neurones die to make space 

for newer ones to incorporate in the circuitry (Kaplan et aI., 1985). Cell death has been also 

identified in the BO after the newly formed cells have extended branches and have created 

synaptic contacts, implying that the survival of neurones depends on their activity (Petreanu 

and Alvarez-Buylla, 2002). Therefore, an assumption from these studies could be that cell 

death regulates neuro- and gliogenesis during all stages of neonatal and postnatal development 

into maturity. 

Stress and high levels of glucocorticoids have been suggested to trigger neuronal death 

(Sapolsky et aI., 1985b; Sapolsky, 1996), probably by apoptosis in rats (Sapolsky, 1996) and 

tree shrews (Lucas sen et aI., 2001). Studies in the electron (Sloviter et aI., 1993a) and light 

microscopes (Sloviter et aI., 1993b) have demonstrated that glucocorticoids cause apoptosis, 

as has been demonstrated by observation of morphological characteristics. 

To strengthen this hypothesis, studies on gene expression have been conducted after 

ADX or cerebral ischaemia. These studies have demonstrated that p53 is expressed in the 

dentate gyrus after ADX (Schreiber et aI., 1994), bax increases and bcl-2 and bcl-x reduction 

have been found in CAl cells after ischaemia (Krajewski et a1.. 1995; Chen et at., 1996). 

Inhibition of excitatory amino acid (EAA) transporters can lead to increased levels of 

glutamate at the synapse and consequently to excessive activation of EAA receptors. 

Excessive glutamate can elevate the concentrations of Ca2
+ causing apoptotic death through 
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the generation of oxygen free radicals, the buffering capacity of mitochondria and the 

activation of endonucleases sensitive to Ca2
+ concentrations (Reagan and McEwen, 1997). 

The latter can regulate DNA strand cleavage, leading to apoptosis (Montague et aI., 1994). 

Furthermore, elevated calcium concentrations and excitotoxicity can cause decreases of 

mitochondria dependent respiration (Sun and Gilboe, 1994) leading to the creation of oxygen 

free radicals. 

Oxidative stress has also been suggested to induce neuronal apoptosis (Linnik et aI., 

1993) during stroke, however the gene kallikrein could reverse the damage caused by 

ischaemia by increasing the levels of NO, which is considered an antioxidant (Xia et at, 

2004). In cortical cultures oxygen-glucose deprivation have been shown to induce both 

necrosis and apoptosis (Gwag et aI., 1995). Free oxygen radicals can cause DNA damage 

leading to neuronal death (Liu and Martin, 2001). 

Other data, however, do not agree with the assumption that glucocorticoids lead to 

apoptosis, they rather speculate that glucocorticoids do not cause DNA cleavage, a 

characteristic of apoptosis and further support that more studies need to be performed in order 

to prove that apoptosis could be a side effect of elevated glucocorticoids (Masters et aI., 1989; 

Roy and Sapolsky, 2003). 

In aged rats (Liu et aI., 2003), mitochondrial oxidative stress is taking place at the 

initial steps of apoptosis (Esteve et aI., 1999), during which glutathione oxidation opens the 

permeability transition pores of the mitochondria by making the hepatocytes and brain cells 

susceptible to apoptosis (Mather and Rottenberg, 2000; Minana et at., 2002). Another cue for 

apoptosis is the increased release of cytochrome c in the heart of aged rats (Phaneuf and 

Leeuwenburgh, 2002). 

Neurogenesis in the rat hippocampus is frequently followed by apoptotic death; in 

particular, newborn cells may die before they mature (between 6 and 28 days after birth, 
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Cameron et aI., 1993; Dayer et aI., 2003). Almost half of the newborn cells have been also 

recognized to be apoptotic and the majority are located in the neurogenic zones of the rat 

hippocampus (Gould et at., 1990; Bengzon et aI., 1997; Biebl et aI., 2000). Glial cells also 

undergo apoptosis (Dalmau et at., 2003), indicating that apoptosis may occur as a consequence 

of competition for energy and space resources between neurones (Cowan et al., 1984) and 

astrocytes (Reynolds and Wilkin, 1988; Krueger et aI., 1995). 

Stress and ageing may be some of the causes for the induction of apoptosis (Sapolsky et 

aI., 1985b; Sapolsky, 1996; Lucassen et al., 2001; Schulpis et al., 2001; Phaneuf and 

Leeuwenburgh, 2002). Excess levels of corticosterone may cause an increase in glutamate 

release (Gilad et aI., 1990; Moghaddam et aI., 1994), resulting in elevated Ca2+ concentrations 

which could lead to apoptosis via the generation of oxygen free radicals (Reagan and 

McEwen, 1997). ADX has been shown to enhance the expression of tumor gene p53, which 

promotes cellular death when DNA damage is severe and may lead to the formation of 

mutated DNA (Reagan and McEwen, 1997), additionally ADX increases cell death (Sloviter 

et aI., 1993b; Cameron and Gould, 1994). 

In chicks, studies have shown that apoptosis takes place in the HVC (High Vocal 

Center) during song learning by adult songbirds (Alvarez-Buylla and Kim, 1997) and it has 

been suggested that older neurones die in favour of newborn neurones which will become 

incorporated into the brain and participate in the formation of new memories and synaptic 

remodelling. 
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In this chapter the methodological details are provided of the two different aspects of 

studies on plasticity after passive avoidance training in the chick brain. The first part describes 

synaptogenesis where the objective was to investigate the formation of new synapses after 

passive avoidance training and the second part describes a cell proliferation project where the 

number of new born cells was counted and then characterized for cell type in each area of 

interest. 

Animals 

Commercially obtained Ross Chunky eggs (domestic chick-Gallus domesticus) were 

incubated and hatched in our own brooders until 18±6 hours old. Chicks were placed in pairs 

in small aluminium pens illuminated by red bulbs at a temperature of 25-30oC. One of the 

birds was marked with a black marker on the head so that it could be distinguished from the 

other. The animals were then left undisturbed for 45 minutes so that they could familiarize 

with each other and adapt to the novel environment. 

2.1 SYNAPTOGENESIS 

2.1.1 Animal training 

The animals were separated into three groups, naive (undisturbed, developmental 

control), water-trained (appetitive task) (W) and methylanthranilate-trained (MeA). Chicks 

were first pretrained by being presented a small white bead 3mm in diameter 3 times with 

intervals of 5 minutes between presentations. Animals that successfully pecked the bead were 

noted as 'peck' whilst those that did not peck were noted as 'no peck'. In order for the chicks 

to be included in the study, they should have pecked the white bead 3 times. Ten minutes after 

the last presentation of the white bead, a chrome bead 4mm in diameter that was either dipped 

in water or in methylantbranilate (MeA) was presented to the animals (training). Chicks peck 
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once and if they have tasted MeA they should exhibit a disgust response by shaking their 

heads, emitting stress sounds and beating their beaks on the ground. Chicks are tested 6 hours 

(naIve group n=7, water group n=5, MeA group n=5) (it is known that between 5.5 and 8 

hours there is a second wave of glycoprotein synthesis, involving neural cell adhesion 

molecules, which are invilved in the formation of long-term meory, Rose, 1995b) or 24 hours 

(naive group n=6, water group n =6, MeA group n=5) after training by the presentation of a 

dry chrome bead. 

Pre-training H20 

'" . Test 6 or 24h later 
Training 'V:) ) Peck 

~ ~e~ Test 6 or 24h later 
~--------~~~ No peck 

Fig. 2.1. Representation of passive avoidance learning (PAL). One-day old chicks were pre
trained by the presentation of a white bead, then trained by the presentation of a chrome bead 
dipped either in water or methylanthranilate (MeA). Six or twenty four hours after training, 
animals were tested by the presentation of a dry chrome bead and their response was recorded. 

If they had tasted water during the training, they should have pecked the dry bead 

whilst if they had tasted MeA they should have remembered the bitter taste and therefore 

avoid the chrome bead. Animals that failed to remember the task (-20%) were excluded from 

the study. All experimental procedures took place under UK Home Licence and were also in 

agreement with the European Communities directive (86/609/EEC) for the care and use of 

laboratory animals. 

2.1.2 Tissue fIXing and postfIXing 

Animals were anesthetized by intraperitoneal (i.p) injection with 0.2 ml of sodium 

pentobarbital after testing. They were then transcardially perfused with heparin in 0.9% saline 
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to avoid blood clotting followed by 20 mlof 3.75% acrolein in 2% paraformaldehyde in O.1M 

PB, pH=7.4 (speed 33 rpm/min, 8.25ml/min), which helps to preserve the ultrastructure of the 

tissue. Then 150ml of 4% paraformaldehyde was perfused with a perfusion pump at speed of 

30 rpm/min. Brains were removed from the skull and were postfixed at 4°C overnight in the 

same fixative (Dong et at, 2003). 

2.1.3 Tissue processing 

The brains were washed in 0.1 M PB for 10 minutes and the cerebellum was removed 

with a razor blade. A hole was made along the horizontal axis in the left hemisphere with a 

syringe needle and the brains were then stuck with cyanoacrylate to the base of a vibrating 

microtome (VT 1000, Leica, UK) and dipped into a bath filled with 0.1 M PB pH=7.4. The 

brains were cut at 100 J.Lm thickness with the use of a blade at speed scale 6 (lmm/sec) and 

frequency scale 10 (100Hz). All the sections of the levels of the brain that contained the 

hippocampus (Hp) were kept sequentially in 6-well plates filled with O.lM PB. They were 

then transferred into cryoprotectant solution (keeps the tissue from freezing) and kept in the 

freezer at _20°C until they were processed for electron microscopy (Dong et at, 2003). 
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" /" ~ ~ 
Fig 2.2. A. Series of sections at the level of hippocampus that were used for electron 
microscopy studies. Small squares show the areas examined in the ventral and dorsal Hp. B. 
Enlargement of the dorsal and ventral Hp. 

Two sections of each experimental sample (antero-posterior coordinate A.7.8 and 8.2, 

fig.2.2) were removed from cryoprotectant solution and washed in PB 0.1 M for 15 minutes 

before they were further processed. The sections were flattened in O.1M PB in Coor's dishes 

and then the PB was removed using glass pipettes and was replaced with 2% osmium tetroxide 

in 0.1 M PB. The dishes were covered and were left to incubate in a fume cupboard for I hour. 

Osmium was then removed and the sections were rinsed by aspiration in 0.1 M PB three times 

3 minutes each. The tissue was dehydrated with a graded ethanol series of 30%, 50%, 70%, 

and 95% ethanol for 5 minutes each. Sections were then transferred to capped vials and 

dehydration continued with 100% ethanol plus molecular sieve twice for 10 min each, next 

propylene oxide followed twice 10 minutes each time and after that sections were incubated in 

1: 1 propylene oxide:Epon overnight at room temperature rotating. Next day the solution was 

replaced with fresh 100% Epon and the sections were further rotated for 2 hours. Trays with 
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fluorhalocarbon film (Aclar) on which the sections were going to be flat embedded were 

thoroughly cleaned with alcohol. The sections were then transferred onto Aclar with flattened 

cocktail sticks. The excess Epon was removed from sections with tissue by pressing carefully 

on tissue and bubbles of Epon were removed from the edges of the tissue with cotton buds. 

Five drops of Epon were dropped among tissue and then the sections were covered with clean 

Aclar that served as cover. Aclar was pushed hard to remove bubbles from the tissue and the 

excess that came out from the edges was wiped off with tissue. Heavy weights were put on top 

of the tissue and the sections were put in oven at 60°C for 48 hours to polymerize. 

After two days the sections were removed from the oven and the top cover of the Aclar 

was carefully removed. With the use of a stereoscope, the hippocampus was divided into 

ventral and dorsal (fig 2.3, Szekely and Krebs, 1996; Szekely, 1999). 

Fig. 2.3. Division of ventral and dorsal hippocampus (Hp) IS shown, antero-posterior 
coordinate 8.2 mm to ear bars. 

With a scalpel blade the areas of the hippocampus were removed and the small pieces 

of processed tissue were stuck separately onto numbered blank Epon blocks with 

cyanoacrylate. The numbers were coded so that the investigator was blind to the origin of the 

blocks and this was similar in all further experiments described in this thesis. The blocks were 

then put in the oven at 60°C overnight so that the tissue pieces were firmly stuck to the resin 

stubs. 
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2.1.4 Tissue cutting and staining for electron microscopy 

The blocks with tissue were cut on an ultramicrotome (Leica, UK). The excess Epon 

around the tissue was removed with a razor blade and the tissue cut into a mesa (perfect square 

created with a glass knife) so that when the tissue was then cut with a diamond knife, the 

sections adhered to each other in a perfectly aligned ribbon. The mesa is first aligned with the 

diamond knife and then the knife bath is filled with water. Two hundred nm thick sections 

were cut in order to determine if they were at sufficient depth in the tissue and then ribbons of 

70 nm thick sections were cut and collected carefully with the use of an eyelash mounted on a 

cocktail stick on carbon coated thin film made of 2% formvar in chloroform which rests in the 

middle of CulNi slots. The slots were left to dry and then placed in a grid box until stained. 

The slot holder, where slots were placed to be stained, must be very clean in order not 

to leave any dirt on the film or the sections. The sections were first placed in uranyl acetate in 

dark for 30 minutes, washed throughout 3 times in distilled water and then dipped into 

Reynolds lead citrate surrounded by NaOH pellets for 7 minutes. Sections were again washed 

and dried with filter paper. 

2.1.S Electron Microscopy 

The beam current was normally set at 74 J.1A which was required for thickness 

estimation, spot size was 2, condenser aperture was set to 200 Jim, the objective aperture was 

set at 50 Jim and the current density was set at 80 KV. The slot holder takes two grids, the first 

of which was the diffraction grating for magnification check (2160 lines per mm) whilst the 

other was the grid for analysis. Images were collected from the electron microscope (EM) via 

a Gatan BioScan camera. The eucentric height of the diffraction grating was adjusted at 

magnification of 12K. The section was focused by using the image wobbler. The next step was 
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to acquire a digital image at 12K, which was then analyzed by an image analysis software for 

Macintosh computers (NIH image). 

In order to determine section thickness, the section of interest was located at low 

magnification (x300). The thickness estimation is based on the difference in electron 

scattering in pAlcm2 of unexposed areas of the support film and of the support film plus resin 

without tissue (De Groot, 1988). The relative electron transmission (RET) at a magnification 

12K was used to measure the pAlcm2 of the film close to the edge of the section. adjusted to 

50 ± 0.5 on an unexposed area and take at least two readings. Then, five readings from 

capillaries are taken. To ensure that the area was truly unexposed the pA/cm2 should increase 

at least 5. In order to calculate the thickness of the section it is necessary to calculate the RET 

from the formula : RET= ES section/ES film X I 00. A standard curve (fig. 2.4) was created for 

RET for sections of different thicknesses. Small's minimal fold technique (de Groot and 

Bierman, 1986; De Groot, 1988; Tigges et aI. , 1996) is a direct measurement of section 

thickness from deliberately introduced folds. 
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Fig. 2.4. Thickness estimation diagram made by Small folds from sections 40nm to 120nm 
thick. The equation is used to calculate the thickness of a section where x = RET 
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At low magnification, the sections from which the images of disectors are going to be 

obtained are located and the black dot is placed on some point of the section that is going to 

serve as the 'look up' section (usually close to the top edge or top side). This place is saved 

with the use of a specimen relocation system, Deben Sprite computerized stage controller. 

Then, I move to the next section of interest that is going to be the 'reference section', and the 

same place is located on this section and saved. The eucentric height is set (it must be set 

every time a new slot is analyzed) and an image of the look up section is taken. Then, with the 

use of Gatan Digital Micrograph v 3.4.4 software, an image at the same point of the reference 

section is captured. These two sections are a pair of sections that make up the disector pair. 

This procedure is repeated until 20 disector pairs are acquired. 

2.2 NEUROGENESIS 

2.2.1 LIGHT MICROSCOPY 

2.2.1.1 Animal training 

The pretraining was the same as described above for the synapse counting experiment. 

Immediately after the pretraining, control and trained animals are injected intraperitoneally 

with a single dose of a BrdU normal saline solution (O.lmg/g of body weight; Sigma, UK). 

Animals were left for 30 minutes and then trained as described before. Animals were tested 24 

hours after the training and sacrificed immediately after training (control n=6, water trained 

n=8, MeA trained n=8), and 9 days (control n=5, water trained n=5, MeA trained n=5) post 

BrdU injection. The animals sacrificed at 9 days after injected with BrdU were taken back to 

the brooders after having spent 48 hours in the pens, under the care of the Animal House 

personnel. 
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2.2.1.2 Tissue fIXing and postfIXing 

Animals were anesthetized by being injected with 0.2 ml to O.4ml of sodium 

pentobarbital depending on body weight. They were then transcardially perfused with heparin 

(600 USP/l) in 0.9% saline to avoid blood clotting followed by 120 ml to 200 ml (determined 

by age and body weight) of 4% paraformaldehyde in O.lM PB, pH=7.4 (speed 30 rpm/min, 

7.5mllmin). Brains were removed from the skull and were postfixed at 40C overnight in 4% 

paraformaldehyde and 10% sucrose for cryoprotection. Next day the solution was replaced 

with 20% sucrose in O.IM PB, pH=7.4 and the brains were further cryoprotected overnight. 

Then the brains were frozen in a beaker containing isopentane that was surrounded by dry ice 

to keep temperature around _500 C. The brains were dipped in isopentane for 20 minutes with 

constant agitation to avoid sticking to the walls of the beaker and then wrapped in foil and 

kept in a -800 C freezer until immunocytochemistry (de Groot and Bierman, 1986). 

2.2.1.3 BrdU immunocytochemistry 

Brains of animals sacrificed 24 hours and 9 days post BrdU injection were cut using a 

cryostat microtome (Leica, UK) and 50j.Lm thick free-floating sections were collected in 

phosphate buffer (PB O.IM, pH=7.4) (de Groot and Bierman, 1986). In a pilot study, the 

sampling distance was determined taking into consideration the fact that the sections should be 

a safe distance apart to avoid sampling of the same cell profile twice. Furthermore, the 

optimum sampling distance depends also on the size of the telencephalon which in tum is 

determined by the developmental stage (Bolam, 1992). Therefore, in this case one series of 

sections every 300j.Lm (1/6) was used for BrdU immunocytochemistry. Sections were kept 

from the point where the Hp first appeared. 

Sections were incubated for 2h at 65 °c in 1:1 formamide/2XSSC, rinsed in 2XSSC for 

5 min and then incubated in 2N HCI at room temperature for 30 min to denaturate DNA. 
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Tissue was rinsed 3x5 min and lxlOmin in O.1M PB and then was transferred in 3% (v/v) 

hydrogen peroxide in O.IM PB, pH=7.4 for 10 min to block the endogenous peroxidase. Three 

washes in O.IM PB followed and then the tissue was blocked with 1.5% (v/v) horse normal 

serum, 0.1% (v/v) Triton X-100 in O.1M PB blocking solution for 20 min at room temperature. 

The sections were incubated overnight at 10 °c with a mouse anti-BrdU monoclonal antibody 

solution (Becton Dickinson, UK) diluted 1:100 in 0.1 % Triton X-IOO in O.lM PB, pH=7.4. On 

the second day, the sections were rinsed in O.1M PB 3x5 min and then incubated with a 

biotinylated horse anti-mouse IgG secondary antibody (Vector Laboratories, UK) diluted 

1:200 in O.IM PB for 2h at room temperature. Tissue was again rinsed in phosphate buffer and 

then transferred in an avidinlbiotinlperoxidase solution (Vector Laboratories, ABC kit, diluted 

1:50 A and 1:50 B in O.IM PB, pH= 7.4) for Ih in the dark at room temperature. Tissue was 

rinsed successively in O.IM PB, pH=7.4 and O.IM Tris buffer saline, pH=7.5. BrdU 

containing cells were visualized by the polymerization of 0.05% diaminobenzidine (DAB kit, 

Sigma) in 0.01 % hydrogen peroxide in Tris buffer saline for 2 min at room temperature. The 

reaction was stopped by dipping the sections in Tris buffer saline (O.IM TBS, pH=7.5) and 

they were next mounted on gelatinated slides and left to dry. For light microscope observation 

they were dehydrated in graded series of ethanol and cleared with xylene and were 

covers lipped using Entellan rapid mounting media (Merck, Germany). 

2.2.2 IMMUNOFLUORESCENCE 

All of the steps of the first day including the step of blocking were repeated for 

fluorescence immunocytochemistry. The sections were incubated overnight at 4 °c with a rat 

anti-BrdU monoclonal antibody (Abcam, UK, diluted 1:100 in 0.1% Triton X-100 in O.1M 

PB). On the second day, after rinsing the tissue 3 times in O.IM PB, sections were incubated 

with Alexa Fluor 647 goat anti rat IgG secondary antibody (to bind onto the rat a-BrdU) 

98 



diluted 1:200 in O.1M PB for 2h at room temperature to visualize BrdU positive cells. Next, 

the tissue was washed in O.IM PB 3x1O min and then incubated in 2% goat normal serum, 

0.1 % Triton X-I 00 in 0.1 M PB and finally incubated for 48h at 4 °c with a marker for mature 

astrocytes, glial fibrillary acidic protein (GF AP, diluted 1 :500), or neuronal nucleus marker 

(NeuN, diluted 1:1000) (aU from Chemicon Internationa1,UK), O.l%Triton X-100 in O.lM PB, 

pH=7.4. The sections were afterwards rinsed in phosphate buffer and after that they were 

incubated in an Alexa Fluor 488 goat anti mouse IgG 1 secondary antibody (to bind onto 

mouse anti-NeuN or mouse anti-GFAP). In order to detect non-specific labelling, adjacent 

sections were incubated in the absence of the primary or the secondary antibody and in each 

case there was no detectable labelling. Then the tissue was throughout rinsed and the sections 

were mounted on gelatinated slides and left to dry in dark at room temperature. Then, they 

were covers lipped using fluoromount mountant (BDH, UK) and stored in the fridge. 

2.3 QUANTIFICATION 

2.3.1 SYNAPTOGENESIS 

2.3.1.1 Stereology 

i) Disector 

Two sections separated by one section from each block were chosen for estimation of 

synapse density (number of distinct synapses in a unit reference volume) using the 'disector' 

technique (Sterio, 1984). The disector can take a 3-dimensional measurement in space without 

taking into account the volume, the shape or height of the object or particle being counted. 

The idea of the physical dis ector is to take two serial sections a known distance apart, with an 

unbiased counting frame on the reference section, transects (2D profile or set of profiles 

through a particle, -a particle is a discrete three dimensional object in 3D space, whilst a 

profile is a 3D object cut by a 2D section) are counted if seen in one section and not in the 
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other. In reality the disector is a clever strategy for counting the number of times a continuous 

scan would have hit particles for the first time. In stereology it is important to create random 

samples that are related to spatial position. Uniform random sampling means that every object 

has the same likelihood of being sampled as all other elements. Selected areas were used for 

synaptic density estimation that occupied one third of the disector image captured by the 

Gatan camera. The mathematical type for calculation of the numerical density (Nv) of 

synapses IS: 

Nv synapse = I:Q- syn I t.A 

where 1:Q- syn is the total number of counted synapses in the sections, t is the section thickness 

(distance between the two sections) and A is the area of the counting frame see fig. 2.5). 

t REFERENCE t LOOK-UP 

Fig. 2.5. Example of two images used for synapse density estimation with the disector 
method. The image on the right is the 'look-up' image whilst the left is the 'reference' image. 
Only synapses that are located within the borders of the lines are counted. The dashed lines are 
the forbidden lines, so if a synapse touches the dashed lines is not counted. An asymmetric 
spine on a dendrite is marked with an asterisk in both images so· it is not counted. The block 
arrow in the look up section indicates an asymmetric synapse onto a dendrite which is counted 
since it does not appear in the reference section. The black arrow indicates a symmetric 
synapse onto a spine (look up section). The red arrowheads show an asymmetric synapse onto 
a spine in both images and therefore are not counted. In the reference image the star indicates 
a symmetric axodendritic synapse. In this case three synapses would have been counted, one 
symmetric axodendritic and one asymmetric axodendritic synapse in the reference section and 
one symmetric axospinous in the look-up section. 
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ii) Synapse counting 

Synapses are counted only if they exist in one of the two sections. They are not 

counted if they touch the forbidden lines (left side and bottom lines, fig 2.4). They are 

identified as 'asymmetric shaft' if the postsynaptic density (PSD) is thicker at the postsynaptic 

side and if the postsynaptic part is a dendrite and 'asymmetric spine' if the postsynaptic 

structure is a spine. Symmetric shaft and spine are synapses where both the pre- and 

postsynaptic parts have the same density. In general a synapse is identified by the pre- and 

postsynaptic apposition zones and the presence of at least 3 synaptic vesicles at the 

presynaptic element. 

2.3.2 CELL PROLIFERATION 

Cell profile counting was confined within neuroanatomical borders of the chick 

forebrain regions as well as the ventricular zone adjacent to there areas where applicable with 

the use of a stereoscope and the areas of interest were outlined. The total number of BrdU 

labelled cell profiles was counted in counting frames of the total surface throughout the 

section thickness of the total areas of interest. Images of the areas were captured from a Nikon 

E800 microscope connected with a Pentium IV personal computer via a Nikon 5 Megapixel 

camera (DXI200) and the images were measured using analySIS software. The total number 

of cells was divided by the whole area of each region and the ratio of the number of cells/area 

(mm2
) calculated. At the same time the volume of each area can be calculated if the area of 

each anatomical structure is multiplied with the thickness of the section (50 Jlm). 

2.3.3 IMMUNOFLUORESCENCE 

For immunofluorescence five images/section of a known surface area were captured 

using Leica TCS confocal microscope from 5 serial sections of each brain and all the BrdU 
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positive cells in the hippocampus and area parahippocampalis were counted and then 

identified if they presented double labelling. Percentages were determined by dividing the 

number of each type of double labelled cells (ND), by the total number of BrdU positive cells 

present in the brain (NB) which is then multiplied by 100, 

%=(ND/NB) X 100 

All the measurements were made per mm2
• 

2.3.4 VOLUME ESTIMATION 

The estimation of the volume of the individual areas is very important, because it will 

reveal any volume changes caused by stress. These volumes can be calculated using the 

Cavalieri method (Oorschot, 1996; Wulfsohn et aI., 2004). From the experiments used for cell 

proliferation, the total area of each anatomical structure area is known since it has been 

measured with the use of analySIS software. The total area is then multiplied with the 

thickness of the section, which is 50J.lm, and then multiplied x6, since the sampling distance 

used is one section every 300 J.lm (116). The equation for total volume estimation for each area 

in mm3 is 

V area = total area (mml) x 0.05mm x 6 

2.3.5 STATISTICAL ANALYSIS 

Three- and four- way analyses of variance (ANOV A) for cell proliferation and 

synaptogenesis respectively were used for testing the statistical differences between the 

different training groups and experimental conditions. All of the analyses were conducted 

using STATISTICA 6.0 software and values P<0.05 were taken as statistically significant. If 

the P value was less that 0.05, then a least significant difference (LSD) Fisher test was 
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performed to specify the differences present. Again, formal statistical significance was set at 

P<0.05 

2.4 CORTISOL STUDIES 

2.4.1 Animal training 

Animals (n=80) were pre-trained as described in part 2.1 i. Five (n=40) and twenty 

minutes (n=40) after pre training, the animals were decapitated and the hippocampus, striatum 

mediale and arcopallium were immediately dissected with a scalpel blade and the removed 

tissue was transferred in foil and frozen in isopentane kept in dry ice. The procedure of tissue 

dissection needed to be fast in order to avoid tissue decomposition. Samples were kept in -

80°C until cortisol extraction studies were performed. 

2.4.2 Cortisol extraction 

Cortisol extraction was performed as described in de Jesus et a1. (1991), In particular, 

tissue samples were homogenized in 5 times v/w phosphate buffer saline (PBS, O.OIM, 

pH=7.3, containing 0.14M NaCl). 250 III of the homogenate were extracted twice with diethyl 

ether by strong vortexing for 1 min. The aqueous phase was frozen at _80° C in isopentane and 

the ether layer was transferred to another tube. Combined extracts were dried in a water bath 

at 45°C in an atmosphere of nitrogen. Extracts were resuspended in 250 III PBS containing 

gelatin (0.1 %) and 100 III aliquots (in duplicate) were used for radioimmunoassay (RIA). 

Extraction efficiencies were monitored for each sample by addition of tritiated cortisol to 

homogenates extracted in the same manner as samples that were used for RIA. The average 

recovery for the samples was 92%. 
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2.4.3 Radioimmunoassay (RIA) 

Cortisol was measured by radioimmunoassay (Sufi et aI., 1994). Samples were 

analysed in duplicate in 100 J.11 of homogenate. The first step of the procedure is the 

preparation of reagents (tracer, antiserum and dextran-charcoal reagent). The working tracer 

solution is prepared by removing 150 J.11 from the stock solution, pouring the solution into a 

tube and then evaporating the solvent. The solution is then redissolved in 15 ml of assay buffer 

for 30 minutes. This solution contains 3.7 KBq/ml (100 nCi/ml) of tritiated cortisol (1,2,6,7-

eH] cortisol) (Amersham). The antiserum (generated in rabbits against cortisol-21-

hemisuccinate-BSA, Chemicon, UK) is prepared by mixing the contents of one antiserum vial 

with Buffer S and allowing them to stand for 10 minutes. The antiserum used cross-reacts with 

cortisol (100%), cortisone «0.1%), corticosterone (9.2%), ll-deoxycortisol (27.1%), 

progesterone (0.8%), 17a hydroxyprogesterone (0.8%), lla hydroxyprogesterone (0.07%) and 

testosterone (0.08%) measured at 50% zero binding. The standards were then prepared by 

setting up a rack of 5 xlOml test tubes in which Iml of buffer S is poured. Solution B is 

prepared from 100 J.11 of ethanol mixed with 10ml of Buffer S. Solution B is heated at 40°C for 

30 minutes and is then left to cool at 4°C before use. Solution B contains cortisol at a 

concentration of 60nmol/l. In tube 1 1 ml of solution B is added with a pipette; then by using 

the same pipette and tip, Iml of solution from tube 1 is transferred into tube 2. The solution in 

tube 2 is mixed carefully and then 1 ml is removed from tube 2 into tube 3 and the content is 

well mixed. The same procedure is continued untillml of tube 4 has been transferred into tube 

5. 

This assay is for 100 tubes which should be arranged as: 

a) tubes 1-2: total counts tubes (TC) 

b) tubes 3-4: non specific binding tubes (NSB) 

c) tubes 5-6; 49-50; 99-100: zero antigen tubes (BO) 
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d) tubes 7-18: standard tubes 

e) tubes 19-98: unknown samples including sets of quality control samples 

In TC tubes 100 III of the working solution of 1,2,6,7-eH] cortisol and 400 III of 

Buffer S are added. In these tubes no charcoal reagent will be added after the end of the 

incubation. In NSB tubes 100 III and 600 III of buffer (PB 0.1 M) are added. In BO tubes, 500 

III of buffer (PB 0.1 M), 100 III of tracer and 100 J.lI of antiserum are added and finally in the 

standard and unknown sample tubes 100 III of standard or sample, 100 III of tracer, 100 III of 

antiserum and 400 III of Buffer S are added. The tubes are incubated overnight (18 hours) at 

4°C and then 200 III charcoal reagent is added where applicable. The tubes are vortex mixed 

and left to stand for 30 minutes at 4°C. Then, the tubes are centrifuged at a minimum of 1500g 

for 15 minutes. After centrifugation, the supernatant was carefully transferred into scintillation 

vials. In order to avoid drift at the separation stage, it is important to keep all the tubes at 4°C 

when adding charcoal and the addition must take place rapidly so that the time of contact of 

the incubation medium is not too different across the assay. 

Scintillation cocktail is added in every scintillation tube and the tubes are left to stand 

for 1 hour and are then transferred to the counter, where the scintillation counting occurred for 

each sample. The results were calculated from a dose-response curve of plots of bound counts 

vs. log dose. Results are presented in ng g-l brain, following recovery correction. 
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CHAPTER 3 

SYNAPSE FORMATION 

IN THE CHICK HIPPOCAMPUS 

6 AND 24 HOURS 

AFTER 

PASSIVE AVOIDANCE LEARNING 

107 



3.1 INTRODUCTION 

As mentioned earlier, the avian hippocampus has been suggested to be homologous to 

the mammalian hippocampus (Kallen, 1962; Erichsen et al., 1991; Atoji et al., 2002). Previous 

studies have shown that as in mammals the bird hippocampus is responsible for spatial 

memory (Bingman et al., 1990; Regolin and Rose, 1999; Kahn and Bingman, 2004) and 

demonstrates synaptic plasticity in the form of LTP (Margrle et at, 1998). In the domestic 

chick Gallus domesticus, previous studies have proposed that the hippocampus is affected by 

the passive avoidance learning paradigm (Sandi et al., 1992; Unal et al., 2002). 

The present study has examined the effects of passive avoidance training 6 hours after 

testing, because it has been shown that at this time point a protein cascade takes place in order 

for short term memory to be consolidated into long term memory (Rose, 1991, 1995a, b) when 

synaptic changes occur (Rose and Stewart, 1999). Furthermore, studies in the chick IMM and 

StM 24 hours after passive avoidance training have shown synaptic remodelling and formation 

in the MeA trained group in relation to controls (Stewart et al., 1987; Patel and Stewart, 1988; 

Hunter and Stewart, 1993; Lowndes and Stewart, 1994). The hippocampus was divided into 

two separate regions, ventral and dorsal, and these areas were studied individually, since 

previous studies from our group have shown different responses after ischaemia in these two 

regions of the chick hippocampus (Homer et aI., 1996). In the rat brain the dorsal and the 

ventral hippocampus have been confirmed to play different roles in learning tasks (Moser et 

al., 1993; Hock and Bunsey, 1998; Moser and Moser, 1998). Here, each hemisphere was 

studied separately, since it is believed that chicks show hemispheric asymmetry (Stewart et aI., 

1987; Gagliardo et at, 2001) possibly due to the occlusion of the left eye while in ovo 

(Rogers, 1990). At the same time, comparisons were made between 6 and 24 hours in order to 

investigate any possible transient increases or reductions in the synaptic density among the 

different synapse types, since it is known by now that synapses belong to a very dynamic 
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system and can change their shape within seconds (Hering and Sheng, 200 I). More 

importantly, 6 hours is the beginning of the protein synthesis required to enable structural 

changes necessary for long term memory formation and by 24h this process should be well 

advanced (Rose and Stewart, 1999). 

Fig 3.1. The maJonty of synapses in the chick hippocampus are asymmetric (presumed 
excitatory) as can be seen in image A. Images Band C show magnified examples of 
asymmetric axospinous and axodendritic synapses. Red asterisks represent axospinous 
asymmetric synapses, whilst blue asterisks indicate axodendritic asymmetric synapses. Scale 
bar in image A= IJ..lm, in image Band C=250nm 
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Fig 3.2. A. A perforated asymmetric synapse in chick hippocampus onto a dendritic spine (sp) 
is marked with yellow asterisks. In image B all the asymmetric spine synapses are marked 
with red asterisks. ER: endoplasmic reticulum, den: dendrite, At: axon terminal. Scale bars= 
200nm 
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3.2 SYNAPSE ULTRASTRUCTURE 

In this study four different types of synapses were examined; asymmetric shaft, 

asymmetric spine, symmetric shaft and symmetric spine synapses. The asymmetric shaft or 

asymmetric axodendritic synapses are presented in figs 3.3 and 3.4. The asymmetric spine or 

asymmetric axospinous synapses are demonstrated in figs. 3.1, 3.2 and 3.5. Synapses are 

termed as symmetric when the pre- and the post-synaptic density have the same thickness. 

Symmetric shaft synapses are shown in figure 3.6. 

Fig 3.3. A dendrite in ventral hippocampus of a control bird 24h post training receiving two 
asymmetric synapses from presynaptic axon terminals (At) resulting in axodendritic synapses. 
Asymmetric shaft synapses are marked with blue, whilst red asterisks show asymmetric spine 
synapses. Mit: mitochondrion, den: dendrite. Scale bar=200 nm. 
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Fig 3.4. Images of asymmetric shaft synapses (on dendrites) in dorsal one day old chick 
hippocampus marked with blue asterisks. Red asterisk shows an asymmetric spine (sp) 
synapse. The presynaptic part can be clearly distinguished by the presence of vesicles (ves), 
den: dendrite, mit: mitochondrion, At: axon terminal, ves: vesicles. Scale bars=200 nm 
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Fig 3.5. Representation of asymmetric spine synapses marked with a red asterisk from the 
right hemisphere of the ventral Hp of water trained group. The blue asterisk indicates 
asymmetric shaft synapses whilst the yellow shows a perforated asymmetric spine synapse. 
Den: dendrite, At: axon terminal, mit: mitochondrion, sp: spine. Scale bars=200 nm 
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Fig 3.6. Representation of a symmetric shaft synapse marked with arrowheads from the dorsal 
Hp of MeA trained group. Red and blue asterisks indicate asymmetric spine and asymmetric 
shaft synapses respectively. Den: dendrite, mit: mitochondrion, At: axon terminal, ves: 
vesicles, sp: spine. Scale bars=200 nm 
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3.3 RESULTS 

3.3.1 6 HOURS POST TRAINING 

Four sets of data are presented below, ventral Hp-Ieft hemisphere, ventral Hp- right 

hemisphere, dorsal Hp-Ieft hemisphere, dorsal Hp- right hemisphere. 

A four way analysis of variance (ANOV A) was used to test differences in synaptic 

density (dependent factor), as a result of hemisphere, area, training and time after training 

(comparisons between 6h and 24h post training groups were conducted which are also 

presented below, in section 3.3.2). For each type of synapses a separate four way ANOVA 

was carried out. 

3.3.1.1 Asymmetric shaft 

Data for asymmetric shaft synapses in the ventral and dorsal Hp 6 hours post training 

for control, water and MeA birds are presented in Fig 3.7 and 3.8. In the left hemisphere or the 

right hemisphere, no obvious differences exist in the total number of synapses between the 

groups. Six hours post training there is a 48% increase in the asymmetric axodendritic 

synapses in the left hemisphere of the ventral Hp of the water trained group in relation to the 

right hemisphere. Four way ANOV A showed statistical differences for brain regions 

examined (ventral and dorsal Hp) (Fl. 109=4.648, P=O.033), and the interaction between 

hemisphere and area of study (Fl. 109=5.546, P=O.02). LSD post hoc analysis demonstrated 

that 6 hours post training the ventral Hp of the right hemisphere shows significantly lower 

synapse density in relation to the left hemisphere of the same area (P=O.045) in the water 

trained group. No other differences were found for these types of synapses at this time point 

(tables 3.1,3.2, Fig 3.7). 
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Fig 3.7. Graph showing the results for asymmetric synapse types in the ventral and dorsal 
hippocampus both in the right and left hemisphere (control n=6, water n=5 , MeA n=5). In 
graph 3.7 A the asterisks indicate the reduction of asymmetric spine synapses in the MeA 
trained group in the dorsal Hp of the right hemisphere (P=O.0008). In graph B the t represents 
the difference between the right and the left hemisphere in the water trained group (n=5) 
(P=O.045) for asymmetric shaft synapses, whilst the t and + show the differences of right and 
left hemisphere of water and MeA trained groups for asymmetric spine synapses (P=O.O 17 and 
P=O.04 respectively). Columns represent means of data and vertical bars show standard error 
means (S.E.M). 
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3.3.1.2 Asymmetric spine 

Data for asymmetric axospinous synapses are demonstrated in Fig. 3.7. In the ventral 

Hp, there is a 44% increase in asymmetric axospinous synapses in the left hemisphere of water 

trained birds in comparison with the right hemisphere. Additionally, in the ventral Hp of the 

left hemisphere, there is a 33% increase for this type of synapses in the MeA trained group in 

relation to the right hemisphere. In the right hemisphere, the dorsal Hp of the control group 

shows a 26% increase in comparison with the ventral Hp of the same hemisphere. In the dorsal 

Hp of the right hemisphere, the MeA trained group shows a 36% decrease in asymmetric 

axospinous synapses in comparison with control animals 6 hours after training. Four way 

ANOV A revealed statistically significant differences for the interaction of time after training 

and training group (F2. 109=3.377, P=0.038). Therefore, a three way ANOVA (training group, 

hemisphere, area) was performed between the different groups at 6 hours, which revealed that 

6 hours post training there is a statistically significant difference between the training groups 

(F2.52=3.856, P=0.027) and the interaction between hemisphere (LSD post hoc analysis 

demonstrated that only the right hemisphere shows differences between the groups) and group 

(F2.52=3.738, P=0.03). 

After four way ANOV A post hoc tests were performed which showed that 6 hours post 

training the dorsal part of the right hemisphere of the control animals has significantly more 

asymmetric synapses on spines in relation to the MeA trained group (P=0.00084) and in 

comparison with the ventral part of the right hemisphere of controls (P=0.04). Furthermore, 

the water and the MeA trained groups show hemispheric dissimilarities after 6 hours of 

training, where the ventral part of the right hemisphere shows less asymmetric spine synapses 

in relation to the left hemisphere (P= 0.017 and P=0.04 respectively) (tables 3.1, 3.2, 3.4, Fig 

3.7). 
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Table 3.1. Synaptic density expressed as Nv syn/llm3 in the left hemisphere of the ventral Hp 
6 hours post training ± standard error means (S.E.M) (control n=6, water n=5 , MeA n=5). All 
control animals are developmental controls. 

ASYMMETRIC ASYMMETRIC SYMMETRIC SYMMETRIC TOTAL 
SHAFT SPINE SHAFT SPINE 

0.47±0.OS 1.28±0.09 0.012±0.OO7 0.02±0.01 1.78±0. 11 

WATER 0.46±0.O7 1.36±0.11 O.0l±0.0048 0.03±O.019 1.6S±0.2 
TRAINED 

MeA 0.39±O.O4 1.42±O.14 O.03S(*)±0.009 0.02±0.009 1.92±0.2 
TRAINED 

Table 3.2. Synaptic density expressed as Nv syn/J.lm3 in the right hemisphere of the ventral 
Hp 6 hours post training ± standard error means (S.E.M) (control n=6, water n=5, MeA n=5). 
All control animals are developmental controls 

ASYMMETRIC ASYMMETRIC SYMMETRIC SYMMETRIC TOTAL 
SHAFT SPINE SHAFT SPINE 

CONTROL 0.37±0.O4 1. 29±O.0 1 2 0.02±O.012 0.O14±0.006 1.7±0.lS 

WATER 0.31±0.OS (t) 0.94±0.08 (t) 0.02S±0.OI8 0.033±0.027 1.3±O.lS 
TRAINED 

MeA 0.32±O.03 I .07±O.092(t) 0.016±0.0068 0.02S±0.00S 1.4±0.12 
TRAINED 

(differences between groups are indicated by asterisks (*), the double crosses (t) show 
differences between different hemispheres of the same group. The underlined control group 
indicates differences between the ventral and dorsal part of the same group-see table 3.4) 
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3.3.1.3 Symmetric shaft 

The results for symmetric shaft synaptic density are presented in Fig 3.S and tables 3.1, 

3.2, 3.3, 3.4. Statistically significant differences were found for the interaction between hours 

and training group (F2• 109= 3.125, P=0.04S). No differences were found between the main 

factors. Therefore, a three way ANOV A was carried out (hours post training, hemisphere and 

area) where statistically significant differences occurred for the main factor of time (FI , 

34= 13 .16, P=0.0009), which show that at 6h post training there are significantly more 

symmetric axodendritic synapses in the MeA trained group in relation to 24 hours after 

training. Fisher LSD post hoc analysis was performed for all the factors (training group, hours 

post training, hemisphere and area) that showed that the ventral part of the left hemisphere of 

the MeA trained group shows a 192% increase in symmetric axodendritic synapses in relation 

to the control group (P=0.023). 

Table 3.3 Synaptic density expressed as Nv syn/llm3 in the left hemisphere of the dorsal Hp 6 
hours post training ± standard error means (S.E.M) (developmental control n=6, water n=5, 
MeA n=5). 

ASYMMETRIC 1 ASYMMETRIC j SYMMETRIC SYMMETRIC TOTAL 
SHAFT SPINE SHAFT SPINE 
O.37±O.OS 

I 
1.3S±O.1 

I 
O.OO9±O.OO4S O.OO25±O.OO2 1.76±O.13 

O.36±O.O36 
I 

1.15±O.OS 
I 

O.OI5±O.OOS O.O12±O.OO46 1.54±O.O8 

O.37±O.O2 
I 

1.33±O.O7 
I 

O.O26±O.OO76 O.023±O.OOS 1.75±O.O7 

Table 3.4 Synaptic density expressed as Nv syn/llm3 in the right hemisphere of the dorsal Hp 
6 hours 

CONTROL I O.42±O.O35 1.62±O.23 O.O25±O.OO8 O.O4±O.O2 2.1±O.26 

WATER O.41 ±O.O16 1.2S±O.07 I' O.O2±O.O12 O.O3±O.O2 1.6±O.12 
TRAINED 

-
J I LOS (*)±O.O7 I' O.O26±O.OO8 MeA O.33±O.O33 O.O36±O.O2 1.4±O.ll 

TRAINED 

Asterisk (*) shows significant differences between control and MeA trained groups for 
asymmetric spine density (P= O.OOOS) 
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Fig. 3.8. Data showing symmetric synapse types examined in the dorsal and ventral 
hippocampus, both left and right hemisphere (control n=6, water n=5, MeA n=5). In graph B, 
the MeA trained group shows an increase in the symmetric shaft synapses in the left 
hemisphere of the ventral Hp. Columns represent means of data of six control, five water and 
five MeA trained birds and vertical bars represent standard error means (S.E.M). Note 
difference in y axis scale compared with fig. 3.7 
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3.3.1.4 Symmetric spine 

No statistical differences were found in any areas or hemispheres after statistical 

analysis for symmetric synapses on spines (tables 3.1, 3.2, 3.3, 3.4, Fig. 3.8) 

3.3.224 HOURS POST TRAINING 

3.3.2.1 Asymmetric shaft 

Data for asymmetric axodendritic synapses in control, water and MeA trained birds 24h 

post training are shown in Fig. 3.9, whilst the values for each area (ventral, dorsal) and 

hemisphere (right, left) are displayed in tables 3.5, 3.6, 3.7, 3.8. Four way ANOVA showed 

statistical differences for brain regions examined (ventral and dorsal Hp) (Fl. 109=4.648, 

P=0.033), and the interaction between hemisphere and area of study (Fl. 109=5.546, P=0.02), 

so Fisher LSD post hoc was performed. No differences have been found for the synaptic 

density of total synapses between the groups or the areas and hemispheres examined. In the 

dorsal hippocampus of the right hemisphere there is a 33% decrease in Nvsyn in the MeA 

trained group in comparison with control birds (P= 0.038) (fig.3.10). Furthermore, the right 

hemisphere of the dorsal hippocampus demonstrates a 29.4% increase in axodendritic 

synapses (i.e. asymmetric shaft) in comparison with the left hemisphere (P= 0.031). In the left 

hemisphere of the ventral hippocampus synapses show a 29.4% transient increase in relation 

to the dorsal part (P=0.042) (tables 3.6, 3.7 Fig. 3.9 and 3.10). 

3.3.2.2 Asymmetric spine synapses 

The results for asymmetric spine synapses are presented in tables 3.5-3.8 and fig. 3.9. 

NvSyn shows a 9.5% increase in the ventral Hp of the left hemisphere in the MeA trained birds 

in comparison with controls. In the ventral Hp of the right hemisphere the water trained group 

shows 8% and 13% increase in Nvsyn in relation to MeA trained and control birds respectively. 

Post hoc analysis showed no significant differences for this type of synapses among the 24 

hours groups. 
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Fig 3.9. Data showing the effect of passive avoidance training on synaptic density (Nv/~m3) 
in the dorsal and ventral hippocampus of the right and left hemisphere. The t in graph A 
marks the difference shown between the asymmetric shaft synapses in the dorsal hippocampus 
of the control animals, where the left hemisphere has significantly less asymmetric shaft 
synapses in relation to the right (P=O.031). In the same graph the MeA trained group has 
significantly less asymmetric synapses onto dendrites in comparison with the control group 
(P=O.038). Columns show mean values (control n=6, water n=6, MeA n=6) of birds and 
vertical bars represent standard error means (S.E.M). 
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Table 3.5. Synaptic density expressed as Nv syn/llm3 in the right hemisphere of the dorsal Hp 
24 hours post training ± standard error means (S.E.M) (developmental control n=6, water n=6, 
MeAn=6 

ASYMMETRIC ASYMMETRIC SYMMETRIC ] SYMMETRIC TOTAL 
SHAFT SPINE SHAFT SPINE 

CONTROL I O.SI±O.069 1.31±O.18 O.013±O.OOS 
I 

0.012±O.006 1.8S±O.23 

WATER 

1 
0.44±0.04S 1.32±O.1 O.02±0.OO66 

I 
0.021±0.0 13 1.8±O.11 

TRAINED 

MeA I 0 . 34(*)±O~ 1.25±O.12 O.Ol±O~ O.004±O.0038 I 1.6±O.13 
TRAINED 

(The asterisk (*) shows the significant decrease in asymmetric axodendritic synapses in the 
MeA trained group in relation to control birds, P=O.038) 

Table 3.6. Synaptic density expressed as Nv syn/llm3 in the left hemisphere of the dorsal Hp 
24 hours post training ± standard error means (S .E.M) (developmental control n=6, water n=6, 
MeAn=6) 

ASYMMETRIC 1 ASYMMETRIC SYMMETRIC 
SPINE SHAFT SHAFT 

O.36±O.038 (t) 

I 
1.23±O.13 O.012±0.O04 O.012±O.O06 1.62±0.17 

0.37±O.O14 

I 
1.37±0.14 O.OI±0.OO8 O.016±0.009 1.68±0.14 

MeA O,4±0.O37 

I 
1.25±0.O9 O.01±0.OO4 0.004±0.002 1.66±0.11 

TRAINED 

(Double cross (t) indicates that the dorsal Hp of control animals in the left hemisphere has 
significantly less asymmetric shaft synapses in relation to the right hemisphere (P=O.042), 
whilst concomitantly it has less asymmetric shaft synapses in comparison with the ventral part 
of the left hemisphere. 

Table 3.7. Synaptic density expressed as Nv syn/llm3 in the left hemisphere of the ventral Hp 
24 hours post training ± standard error means (S.E.M) (developmental control n=6, water n=6, 
MeAn=6 

ASYMMETRIC ASYMMETRIC SYMMETRIC TOTAL 
SHAFT SPINE SHAFf 

CONTROL O.51±O.O32 1.27±O.123 0.O23±O.OO37 O.02±O.O03 1.83±O.lS 

WATER O,49±O.11 1.25±O.195 0.015±O.OOSS O.O3±O.O24 1.79±O.28 
TRAINED 

MeA 0,45±O.O5 1. 39±0.1 0.Ol±O.OO4 O.O09±O.O03 1.86±0.11 
TRAINED 
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Table 3.8. Synaptic density expressed as Nv synlJ.lm3 in the right hemisphere of the ventral 
Hp 24 hours post training ± standard error means (S.E.M) (developmental control n=6, water 
n=6, MeA n=6 

I 
ASYMMETRIC ASYMMETRIC SYMMETRIC 

________ ~.~SH_A_F_T ______ ~~, _SP_IN __ E ______ ~~~S~H~A~F~T ____ ~ 

CONTROL j 0.4S±O.04 I 1.28±O.1 

WATER 
TRAINED 

MeA 
TRAINED 

! 1.45±O.11 

------------' 

0.46±O.05 

_O_.4_3_±_O._05 __ --'! 1.34±O.03 

3.3.2.3 Symmetric shaft 

O.02±O.0055 

O.03±O.OOS 

O.OI2±O.006 

SYMMETRIC I TOTAL 
SPINE , L' ____ -" 

O.02±O.005 1 1.8±O.116 1 

O.OI6±O.0058 1 1.96±O.14 1 

O.OI2±O.004 ! 1.77±O.09 ! 

The results for symmetric spine synapses are presented in tables 3.5, 3.6, 3.7, 3.8 and 

fig. 3.10. The ventral Hp of the left hemisphere shows reduced numerical synaptic density in 

the MeA trained group in comparison with control (53% decrease) and water trained groups 

(27% decrease). In the ventral Hp of the right hemisphere the decreases are 43% and 54% for 

control and water trained groups respectively. No differences exist for the symmetric shaft 

synapses between the 24h groups after Fisher LSD post hoc was carried out. 

3.3.2.4 Symmetric spine 

The results for symmetric spine synapses are presented in tables 3.5, 3.6, 3.7, 3.8 and 

fig. 3.10. In the dorsal Hp of the left hemisphere, the MeA trained group shows a 75% 

decrease in relation to the water trained group and a 67% decrease in comparison with control 

birds. In the ventral Hp of the left hemisphere, the MeA trained group shows decreased 

synaptic density in relation to control (53% decrease) and water trained (71% decrease) 

animals. Finally in the dorsal Hp of the right hemisphere the control and water trained animals 

show 200% and 400% increases in relation to the MeA trained group. However, ANOV A had 

shown no differences, so post hoc test was not performed. 
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Fig 3.10. Data showing synaptic density of symmetric shaft and spine synapses (Nv/Jlm3) in 
the dorsal (A) and the ventral (B) hippocampus of the left and right hemisphere 24 h after 
training in control (n=6), water (n=6) and MeA trained (n=6) birds. Columns indicate means 
of data and vertical bars standard error means (S.E.M). Note difference in y axis scale 
compared with fig. 3.9. 
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3.3.3 DIFFERENCES IN SYNAPTIC DENSITY AMONG 6h AND 24h POST 

TRAINING GROUPS 

3.3.3.1 Asymmetric shaft 

A summary of data showing significant differences in synaptic density between 6h and 

24h after training which occurred after Fisher LSD post hoc test for the four synapse types is 

presented in table 3.9. There is 48% increase in asymmetric shaft synapses in the ventral 

hippocampus of the right hemisphere (P=O.OI2) of the water trained group (table 3.9) 24h in 

comparison with 6h after training. No other differences in asymmetric axodendritic density 

(asymmetric shaft) were revealed after post hoc analysis between 6h and 24h post training. 

Table3.9 Differences in synapse density between 6h (control n=6, water n=5, MeA n=5) and 
24h post training ± standard error means (S.E.M) (developmental control n=6, water n=6, 
MeA n=6). 

TRAINING 
GROUP 

WATER 

CONTROL 

WATER 

MeA 

SYNAPSE 
TYPE 

Asymmetric spine 
dorsal H ,right hem) 

Asymmetric spine 
(ventral Hp, right hem) 

Symmetric shaft 
(ventral Hp, left hem) 

3.3.3.2 Asymmetric spine 

6 h POST 
TRAINING 

0.31±O.055 
(P=O.012) 

1.61±0.23 
(P=O.033) 

I O.94±O.O845 
(P=O.OO24) 

O.O35±O.OO8 
(P=O.OI35) 

24 h POST 
TRAINING 

0.46±O.054 

1.31±O.176 

1.45±O.ll 

O.Oll±O.OO4 
I 

I 

Post hoc test showed a contrasting pattern 6h after training for the control and the 

water trained groups. Six hours post training the control group formed more asymmetric spine 

synapses (23% increase) in the dorsal hippocampus of the right hemisphere (P=O.033) in 
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relation to the group of 24h post training. In contrast, the water trained group 6h after training 

had less asymmetric synapses onto spines (35% decrease) in relation to the 24h water trained 

group in the ventral Hp of the right hemisphere (P=O.0024). No other changes were observed 

between 6h and 24h for asymmetric spine synapses in the different experimental conditions 

(table 3.9). 

3.3.3.3 Symmetric shaft 

Fisher LSD post hoc analysis revealed that 24h after training there is a 69% reduction in 

the symmetric shaft synapses in the ventral hippocampus of the left hemisphere of the MeA 

trained group in relation to 6h post training (P=O.0135) (table 3.9). Although the control group 

shows 92% increase in synaptic density in the ventral Hp of the left hemisphere 24h after 

training in comparison with 6h post training, this difference is not statistically significant. The 

MeA training group shows reduction in symmetric shaft numerical density in the dorsal Hp of 

the right and left hemisphere (62% decrease) 24h after training in relation to 6h. However, 

none of these reductions is statistically significant. 

3.3.3.4 Symmetric spine 

Although 24h post training the MeA trained group shows reduced synaptic density in 

the ventral Hp of the left (55% decrease) and right (52% decrease) hemisphere as well as the 

dorsal Hp of the left (83% reduction) and right (89% reduction) hemisphere, no post hoc test 

was performed due to lack of differences after four way ANOV A statistical analysis. 
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3.4 DISCUSSION 

The data presented in this study support earlier research which has shown that passive 

avoidance training affects hippocampal plasticity (Sandi et aI., 1992; Unal et aI., 2002). 

Interestingly, as has also been demonstrated previously in the chick brain (Stewart et aI., 1984; 

Sandi et a1., 1992; Sandi et a1., 1993) this study supports the finding of an hemispheric 

asymmetry in some synaptic parameters of the hippocampus. However, unlike the findings of 

Sandi and collaborators (1992), the left hemisphere was not solely affected; changes were also 

found in the right hemisphere 6 hours after training. The ventral hippocampus of the right 

hemisphere exhibited reduced synaptic density in relation to the left hemisphere for 

asymmetric shaft synapses in the water trained group and for asymmetric spine synapses in 

both the water and MeA trained groups. 

Concomitantly, there is an increase in the ventral hippocampus of the left hemisphere 

of symmetric shaft synapses of the MeA trained group in comparison with controls. This 

increase in symmetric shaft synapses in the MeA trained group may be an indication of 

inhibition of information or signal transmission in the ventral hippocampus. Symmetric 

synapses (type II) are presumed inhibitory, unlike asymmetric (type I) (Gray, 1959) which are 

presumed excitatory (Gray, 1959; Steward,2000b). 

In the dorsal hippocampus of the right hemisphere, surprisingly, there is a reduction in 

synaptic density in the MeA trained group in comparison with the control group. Studies in the 

rat so far have indicated that water maze training increases dendritic spine density in 

hippocampal CAl (Moser et a1., 1994) and enriched environment in has similar effects in CA3 

(Altschuler, 1979). In contrast, auditory filial imprinting in the chick has been shown to cause 

a reduction of spine density in the dorsocaudal nidopallium (Ndc) (Bock and Braun, 1999b) 

and mediorostral nidopalliuml mesopallium (MNM) (Bock and Braun, 1998). One may argue 

that passive avoidance training is not a spatial task and therefore is affected differently, 
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resulting in reduced synaptic connectivity in the MeA trained group. However, studies in the 

IMM Ih after passive avoidance learning have shown increases in spine density in the right 

hemisphere in relation to the left in MeA trained group as well as in comparison with 

untrained animals (Doubell and Stewart, 1993). At Ih post training the biochemical cascade 

for memory formation is probably different than after 6h (Rose, 1995a; Rose and Stewart, 

1999), since cell adhesion molecules, which are essential for memory formation, are activated 

5-8 hours post training (Scholey et al., 1993; Scholey et al., 1995). c-Fos and c-jun proteins 

show a peak in expression 1-2 hours after passive avoidance training (Freeman and Rose, 

1995). Consequently, the 6h may be the time point when the procedures for long term memory 

formation start to take place and as a result synaptogenesis data will be different from those at 

1 h post training. 

Another issue arising is the differences seen between the dorsal and the ventral 

hippocampus. In rats, lesions of the dorsal hippocampus impair spatialleaming and memory 

preservation after passive avoidance training (Black et al., 1977; Cogan and Reeves, 1979), 

whilst ventral lesions have no effects (Moser et al., 1993; Moser et al., 1995; Moser and 

Moser, 1998). The ventral hippocampus in contrast has been suggested to take part in 

autonomic, emotional and social procedures (Moser and Moser, 1998) due to its connections 

with the amygdala and the hypothalamus (Witter et al., 1989a; Risold and Swanson, 1996, 

1997). 

In the chick brain it has been suggested that the dorsal hippocampus is equivalent to 

the dentate gyrus, whilst the ventral is homologous to Ammon's hom based on 

electrophysiological (Siegel et al., 2002), immunocytochemical (Erichsen et at, 1991) and 

connectivity (Casini et at, 1986; Szekely, 1999; Atoji et at, 2002) data. The dorsal 

hippocampus in this study corresponded to area 3 and 4 of Erichsen et al. (1991) work 

(dorsomedial Hp and part of dorsolateral as in Szekely and Krebs, 1996), which are suggested 
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to be homologous to the dentate gyrus and hilus respectively, whereas the ventral 

hippocampus related to area 2, which shows homology with Ammon's hom. Furthermore, 

studies have also shown that the dorsal hippocampus has been proposed to have bilateral 

connections with the mesopallium and StM (Bradley et aI., 1985; Szekely and Krebs, 1996; 

Atoji et aI., 2002) which have been demonstrated to be involved in passive avoidance learning 

(Stewart et al., 1987; Stewart and Rusakov, 1995; Dermon et aI., 2002), whilst the ventral 

hippocampus sends efferents to the medial septum and the contralateral ventral hippocampus 

and arcopallium. 

The reduction in the axospinous synapse density in the MeA trained group in the dorsal 

hemisphere of the right hemisphere could be explained firstly either by late spine formation or 

secondly by branch elimination. In the first case, it is known from mammalian studies that 

shaft synapses first appear and then give rise to dendritic spines (Mates and Lund, 1983; Fiala 

et aI., 1998). The present data, however, have not shown any differences in the number of 

shaft synapses in the MeA trained group in relation to controls. Perhaps synaptogenesis is 

delayed in the MeA trained group and at a later time point more shaft synapses are formed 

which will eventually become spine synapses, though further data would be necessary to 

determine this. 

The second hypothesis could be branch elimination that would result in decreased 

dendritic spine formation (Alsina et aI., 2001). Many explanations could be given for this 

phenomenon; apoptosis may occur to eliminate dendrites and therefore although shaft 

synapses actually increase in number in order to form dendritic spines, cell death could 

counterbalance this increase resulting in the reduced formation of spine synapses. Thus, 

apoptosis may modulate synaptic remodelling probably by inducing the death of old or newly 

formed neurones after training so that new contacts may take place to transform short to long 

term memory and at the same time keep the synaptic balance in the chick brain. 
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Another perhaps more plausible assumption based on pnor data could be that passive 

avoidance training is a stressful experience. Older studies (Sandi and Rose, 1997) have 

demonstrated that plasma corticosterone levels are increased 5 min after MeA tasting, but 

return to basal levels by 15 min. Although the levels of corticosterone return to normal levels, 

the arousal of corticosterone may be affecting synaptic plasticity by acting on BDNF, which 

has been demonstrated to show reduced expression after stress (Smith et al., 1995; Ueyama et 

al., 1997). BDNF has been shown to participate and possibly enhance synaptic plasticity since 

its levels are increased after LTP (Castren et al., 1993). Furthermore, it has been shown to 

regulate axonal remodelling and branching (Inoue and Sanes, 1997; Lorn and Cohen-Cory, 

1999; McAllister et al., 1999), synapse formation and stability (Poo, 2001) and synaptic 

transmission (Boulanger and Poo, 1999). An alternative possibility may be that NMDA

mediated Ca2
+ overexpresses, eventually becoming toxic for the cell after corticosterone 

increases (Takahashi et al., 2002) resulting in cell death (Reagan and McEwen, 1997). 

Additionally, since it has been shown that stress reduces cell proliferation and induces 

apoptosis (Gould et al., 1991b; Gould et al., 1992; Gould et al., 1998; Gould and Tanapat, 

1999), it could also affect glial cells that are essential for glutamate levels regulation 

protecting the cell from Ca2
+ excitotoxicity (Vernadakis, 1996). 

Twenty four hours post training, a reduction in asymmetric shaft synapses in the MeA 

trained group was demonstrated in relation to control animals in the dorsal part of the right 

hippocampus. The most obvious hypothesis would be that shaft synapses tum to spine 

synapses and therefore their number is reduced, resulting in equal levels of spine synaptic 

density between the untrained animals and the MeA trained. However, the overall synaptic 

density is again slightly reduced in the MeA trained group since this significant reduction of 

shaft synapses is not compensated by significant increases in spine density. This might reflect 

inactivation since previous studies for the passive avoidance training have shown that 24h post 
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training increases in synapse density and deoxyglucose occur mainly in the IMM of the left 

hemisphere (Stewart et aI., 1984; Rose and Csillag, 1985; Patel and Stewart, 1988). In the 

StM, however, both hemispheres are affected (Stewart et aI., 1987; Hunter and Stewart, 1993; 

Lowndes and Stewart, 1994), as probably occurs in hippocampus. In this case we could also 

assume that this reduction may be due to apoptosis or stress as mentioned above. 

On the other hand, stress apart from reducing neurogenesis (Gould and Tanapat, 1999) 

has been shown to cause axon degeneration by Ca2
+ excitotoxicity which can lead to dendritic 

swelling and microtubular breakdown (Choi, 1995; Rothstein et aI., 1996). Therefore, it could 

be suggested that stress could cause synaptic density changes and remodelling through 

apoptosis or necrosis of the cell. 

A very interesting finding is that the control group shows enhanced shaft synaptic 

density in the right hemisphere 24 h post training. In particular, the data indicate that the 

dorsal part of the right hemisphere shows higher synaptic density in relation to the left 

hemisphere. Furthermore, the dorsal hippocampus of the left hemisphere shows also reduced 

shaft density in comparison with the ventral part. The dorsal part of the right hemisphere of 

the control group shows high synaptic activation, since also at 6h post training it showed 

higher spine density in relation to the MeA trained group and the ventral part of the control 

group. Thus this increase 6h after training could indicate a burst of synaptic remodelling that 

disappears 24 h after training possibly due to synaptic re-organization. These results provide 

support to previous studies which have shown that the information processing begins at the 

dorsal hippocampus of the right hemisphere, then being transferred to the ipsi and 

contralateral ventral part of the hippocampus to end up in the left dorsal hippocampus (Hough 

et aI., 2002), where probably due to the late arrival of information, synaptogenesis begins 

later. 
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In summary, there is hemispheric asymmetry in the hippocampus that is probably area 

dependent. In other words, the dorsal hippocampus of the right hemisphere shows increased 

synaptogenesis in relation to the left 24 h post training in the control group as well as to the 

ventral hippocampus of the right hemisphere 6h post training, whilst it appears to have higher 

synaptic density in the shorter term experiments (6h) in comparison with long term (24h). In 

addition, the left dorsal Hp 24h after training has a smaller shaft synaptic density than the 

ventral part. The water and MeA trained group 6h post training demonstrate higher axospinous 

synapse density in the left ventral hippocampus in relation to the right. Furthermore, in the 

water trained group it appears that the axospinous synapse density is increased at 24h post 

training in the right ventral hippocampus, the MeA trained group, does not follow the same 

pattern of changes. Additionally, the water trained group has higher shaft density in the left 

ventral hippocampus in comparison with the right hemisphere 6h after training, but again shaft 

density significantly increases in the right ventral hippocampus 24h after training. It is 

noteworthy that 6h post training the MeA trained group has reduced spine density in relation 

to controls, but 24 h after training it shows reduced shaft density in relation to the untrained 

group. After 6 of training the MeA trained group shows increased symmetric shaft density in 

relation to controls, but this disappears at 24 h post training. 

It is therefore clear that all hippocampal areas are affected by passive avoidance 

training, the right dorsal and the left ventral more than the rest. Changes occur both at 6 and 

24h post training, implying a constant alteration of synaptic plasticity and remodelling. Unlike 

the results from IMM, no apparent increases were found in the trained groups in relation to 

controls or to each other. The only exception was the symmetric shaft density of the MeA 

trained group at 6h, which ceases to exist at 24h post training. Although it is a very interesting 

finding, its explanation is unclear. It suggests that an inhibitory mechanism must be activated, 

probably affecting shaft and spine density in this group. 
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Another issue that arises is the reduction of shaft synapses in right dorsal Hp in the 

MeA trained group 24 h post training. Is it due to cell death or degeneration? Apoptosis may 

be a regulatory mechanism which influences synaptic transmission and efficacy. Older 

neurones may be dying in order to be replaced by new, still immature, without processes at the 

time point of examination. There is also the possibility of synaptic remodelling and neuronal 

degeneration due to alterations in the levels of corticosterone (Sandi and Rose, 1997) during 

PAL. More experimental testing e.g. neurotrophic factors and their expression need to be 

conducted to elucidate this finding. At 6 h post training the hippocampus shows reduced spine 

density in comparison to that in controls. This phenomenon may occur due to late onset of 

synaptogenesis in this area in the MeA trained group or limited dendritic arborisation. If a 

combination of both of these process were to occur it might be suggested that 24h after 

training, there is neuronal loss (shaft density reduction), but at the same time, spines may 

divide, as a result of learning and therefore the total number of synapses in this group does not 

change in respect to the untrained group. Consequently, the birth of new spines may be 

counterbalancing synaptic loss due to neuronal death or degeneration. 
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CHAPTER 4 

CELL PROLIFERATION 

IN THE 

CHICK BRAIN 

24 HOURS AND 9 DAYS 

AFTER PASSIVE AVOIDANCE 

LEARNING 
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4.1 INTRODUCTION 

Cell proliferation persists in the adult avian brain (Alvarez-Buylla and Nottebohm, 

1988; Alvarez-Buylla, 1990a, b; Alvarez-Buylla et at, 1994; Ling et at, 1997; Patel et at, 

1997) in the brain of teleosts (Zikopoulos et at, 2001) as well as in the mammalian brain 

(Altman and Das, 1965; Kaplan and Hinds, 1977; Gould et aI., 1999c; van Praag et al., 1999; 

Gage, 2002). The production of newborn neurones was first identified in the rat brain by 

Altman and Das, but their study was largely ignored until Nottebohm (1989) and Alvarez 

Buylla (1990), showed evidence of adult neurogenesis in the High Vocal Center (HVC), a 

brain area associated with singirig in the song bird. 

In the rat brain, neurogenesis has been documented in the subventricular zone (SVZ) 

(Morshead and van der Kooy, 1992; Lois and Alvarez-Buylla, 1993) and the dentate gyrus 

(Altman and Das, 1965; Bayer, 1982), in the borders of the hilus with the granule cell layer 

(Kuhn et at, 1996) and olfactory bulb, although in the latter newborn cells rather migrate long 

distance from the lateral ventricular zone (Lois and Alvarez-Buylla, 1993; Luskin, 1993; Lois 

and Alvarez-Buylla, 1994). Recent studies have also identified neurogenesis in Ammon's hom 

in the mouse (Rietze et al., 2000) and neocortex (Magavi et at, 2000; Rietze et al., 2000), 

although other researchers argue against neocortical neurogenesis (Kornack and Rakic, 2001; 

Rakic, 2002b). 

Newborn neurones in the dentate gyrus which survive demonstrate that they become 

part of the neural circuitry by receiving synaptic input on the cell bodies, which are 

surrounded by synaptic vesicles, and dendrites (Kaplan and Bell, 1984) and by extending 

axons to the mossy fibre pathway that ends up in CA3 (Stanfield and Trice, 1988; Markakis 

and Gage, 1999). Furthermore, recent studies have shown that newborn neurones exhibit 

action potentials and passive membrane properties similar to those of the mature neurones, 

indicating that they will mature to become functional mature neurones (van Praag et at, 2002). 
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Additionally, mature neurones are polarised, non-mitotic, with an axon and several dendrites 

and have the ability to release neurotransmitters at their synapses. 

Neurogenesis can be positively or negatively affected by different factors. Excitotoxic 

and mechanical lesions cause an increase in neuronal progenitor proliferation (Gould and 

Tanapat, 1997), as well as deactivation of NMDA receptors (Gould et al., 1994; Cameron et 

at, 1995). On the other hand, activation of NMDA receptors decreases neurogenesis 

(Cameron et at, 1995). These authors have concluded that NMDA receptors may be 

regulating the equilibrium of granule cells in the dentate gyrus during learning and inactivity 

periods. Temporal lobe seizures caused by excitatory amino acids has been also demonstrated 

to increase neurogenesis (Parent et al., 1997), as well as stroke (Bemabeu and Sharp, 2000; 

Arvidsson et al., 2002; Sharp et al., 2002). 

Neurogenesis can be also increased by i) ephrins and erythropoietin (Conover et at, 

2000), ii) neurogenin, directly as a transcriptional factor or indirectly by inhibiting 

astrogenesis (Sun et al., 2001), iii) retinoic acid (Takahashi et al., 1999), iv) antidepressant 

treatment including electroconvulsive treatment (Jacobs et al., 2000; Madsen et al., 2000; 

Malberg et at, 2000; Duman et at, 2001) and adrenalectomy (Cameron and Gould, 1994; 

Montaron et al., 1999) In particular, suppression of glucocorticoids by adrenalectomy 

enhances neurogenesis by division of immature cells (Gould et al., 1992; Cameron and Gould, 

1996), which can return to normal levels by restoration of diurnal and nocturnal levels of 

corticosterone (Rodriguez et al., 1998», v) serotonin (Gould, 1999), vi) BDNF (Benraiss et 

at, 2001; Lee et al., 2002b) and growth factors (Gensburger et al., 1987; Bovolenta et al., 

1996; Frade et at, 1996; Cameron et at, 1998a). Growth factors playa mitogenic role by 

increasing the number of cells undergoing the cell cycle, but also enhance the survival of 

dividing precursors that would undergo cellular death under normal circumstances (Drago et 

al., 1991; Mytilineou et al., 1992; Nakagami et al., 1997). Basic Fibroblast Growth Factor 
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(bFGF) has been demonstrated to stimulate DNA synthesis in neurogenetic populations in the 

hilus of the dentate gyrus and the SVZ (Wagner et aI., 1999). bFGF has been suggested to 

participate in hippocampal neuro- and gliogenesis during the perinatal period, since 

manipulations of bFGF in adult animals does not affect neuronal cell production (Kuhn et aI., 

1997; Wagner et al., 1999). Epidermal Growth Factor (EGF) and Insulin-like Growth Factor 

(IGF-I) on the other hand, increase mitosis and granule neuron number in the adult rat 

hippocampus (Kuhn et al., 1997; O'Kusky et al., 2000) as does Fibroblast Growth Factor-2 

(FGF-2), whilst BDNF and NT -3 promote neuronal differentiation (Ghosh and Greenberg, 

1995; Vicario-Abejon et al., 1995). 

Neurogenesis can be also increased by estrogens (Vicario-Abejon et aI., 1995), 

enriched environment (Vicario-Abejon et al., 1995; Nilsson et aI., 1999), exercise (van Praag 

et al., 1999), trace eyeblink conditioning and water maze training (Gould et aI., 1999b). 

However, not all hippocampus dependent tasks require production of new granule cells and 

spatial navigation in particular is a task that does not involve neurogenesis (Shors et al., 2002). 

LTP also increases the number of newly formed granule cells, indicating a direct relationship 

between learning and neurogenesis (Derrick et al., 2000). 

Neurogenesis can be reduced under certain conditions. Dopamine agonists (Teuchert

Noodt et al., 2000), NMDA receptor activation (Cameron et al., 1995; Cameron et al., 1998b), 

and factors such as stress (Gould et al., 1992) (Lemaire et al., 2000), exposure to predator 

odours (Tanapat et al., 2001) and ageing (Kuhn et aI., 1996; Cameron and McKay, 1999; 

Montaron et al., 1999) all ease reduced neurogenesis. Estradiol administration in female 

meadow voles initially enhances cell proliferation, but 48 hours later a reduction has been 

identified, indicating that non breeding females show higher neurogenesis. However, 

reproductive active females show increased cell survival (Galea and McEwen, 1999; Ormerod 

and Galea, 2001). 
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Pregnancy increases the levels of glucocorticoids (Magiakou et al., 1996) resulting in 

decreased neurogenesis (Cameron and Gould, 1994). Maternal deprivation has also been 

shown to reduce neurogenesis (King et al., 2004; Mirescu et al., 2004). Studies in the rat 

hippocampus have demonstrated enhanced neurogenesis after focal ischaemia, but only after 

NMDA receptors have been activated; blockage of NMDA receptors resulted in suppression 

of neurogenesis (Arvidsson et al., 2001). It has been suggested that stress reduces 

neurogenesis through activation of adrenal steroids and NMDA receptors in rats (Gould et al., 

1992; Cameron et aI., 1998b), adult shrews (Gould et al., 1997) and monkeys (Gould et al., 

1998). Stress does not affect the survival of newly formed neurones, but rather alters the 

survival of mature neurones (Cameron and Gould, 1996; Gould et aI., 1999b). 

Dehydroepiandrosterone (DHEA) has been demonstrated to antagonise corticosterone 

and enhance cell proliferation and neuronal differentiation (Karishma and Herbert, 2002). 

Corticosteroid removal increases apoptosis of mature neurones (Sloviter et al., 1993a; 

Cameron and Gould, 1996). Administration of dexamethasone reduced neurogenesis but also 

LTP in CAl and the dentate gyrus (Yu et aI., 2003). These authors support the idea that since 

there is no neurogenesis in CAl, synaptic plasticity may not be related to neurogenesis. 

Recent studies have also shown that psychosocial stress reduces new born cells and 

neurogenesis (Thomas et al., 2003), unlike chronic mild stress which does not alter cell 

proliferation and survival of granule cells (Kim et aI., 2003). 

Ageing reduces hippocampal neurogenesis probably through high levels of 

corticosterone that can kill or damage dividing cells (Anderson et aI., 2002; Harman et aI., 

2003) although recent studies contradict this hypothesis (Heine et aI., 2004). Aged rats show 

decreased hippocampal volume (Heine et aI., 2004), possibly due to reduction in the 

population of granule cells. At the same time, mature neurones have higher action potentials 

than younger granule cells, indicating that hyperactivity due to lack of young cells might be 
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causing damage to CA3 and downregulation in CAl (Cameron and McKay, 1999). Other 

studies imply that the decrease of neurogenesis in aged rats may be caused by attenuation of 

proliferative activity of precursor cells which are located in the sub granular layer, inhibition of 

migration or increased apoptosis. It has been demonstrated that in aged rats the population of 

dividing cells is diminished and that reduction of neurogenesis affects only granule cell 

precursors (Kuhn et at, 1996). 

Nonetheless, the effects of ageing can be altered if the animals are housed in an 

enriched environment, experience social interaction and physical activity (Kempermann et a1., 

1998). Additionally, after water maze training, aged animals that have performed better during 

the task illustrate higher numbers of BrdU positive cells, indicating also that proper 

performance for a task may require a baseline ofneurogenesis (Drapeau et a1., 2003a). 

As mentioned earlier, neurogenesis persists in adulthood in the avian brain. Goldman 

and Nottebohm (1983) have reported a production rate of new neurones between 0.9% and 2% 

per day in the RVe of adult canaries. Other studies in the avian hippocampus have shown a 

similar production rate of between 2.3% to 3.9% (Patel et a1., 1997). Neurogenesis was 

thought to be a developmental process, until demonstration that it was affected by estrogens 

(Burek et a1., 1994, 1995), by singing (Nottebohm, 1989; Nordeen and Nordeen, 1990; 

Alvarez-Buylla et al., 1992; Alvarez-Buylla and Kim, 1997; Brainard and Doupe, 2002), by 

spatial learning (Patel et a1., 1997; Lee et al., 1998a),by photoperiod (Krebs et a1., 1995), by 

seasonal changes accompanied with learning (Bamea and Nottebohm, 1994; Smulders et al., 

2000), and by passive avoidance learning (Dermon et al., 2002). 

Cells are born in the ventricular zone (VZ) of the lateral ventricle and migrate with the 

help of radial glia; the richer an area is in radial glia, the faster neurones migrate to their target 

areas (Alvarez-Buylla and Nottebohm, 1988). It has been suggested that radial glia fibres 

decrease significantly 2-3 mm away from the lateral ventricle (Alvarez-Buylla et al., 1988a). 
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Cells elongate as they migrate into the telencephalon and differentiate when they reach their 

final destination (Alvarez-Buylla and Nottebohm, 1988). The more cells migrate outside to the 

telencephalon, less labelled cells are present in the ventricular zone (Alvarez-Buylla and 

Nottebohm, 1988). Radial glia are important, because they guide and accelerate migration 

during the first postnatal week. Furthermore, gliogenesis in birds takes place before 

neurogenesis (Nottebohm, 1985). 'Hot spots' (places on the ventricular zone were newborn 

cells are mainly gathered) have been observed in the avian brain which are located in the VZ 

and undergo cell division resulting in the production of new neurones (Alvarez-Buylla et at, 

1990). As in the mammalian brain, again it has been suggested that glial cells may be 

generating neurones (Alvarez-Buylla et at, 1990). 

Additionally, neurogenesis decreases with age (Alvarez-Buylla et at, 1994; Wang et 

at, 2002). As newborn cells migrate outside the VZ and branching occurs, the parenchyma 

grows and finally it supersedes the VZ resulting in a minuscule VZ in adult birds (Alvarez

Buylla, 1990a). Many newborn cells die during migration or as they begin to differentiate, 

because more cells are actually born in the brain than needed. Another possibility is that old 

cells die in order to create space for the new cells to incorporate into a functional circuit 

(Alvarez-Buylla and Nottebohm, 1988). 

Recent studies (Dermon et aI., 2002) have shown that one-trial passive avoidance 

learning enhances cell proliferation in the mesopallium intermediomediale (IMM), striatum 

mediale (StM) and tuberculum olfactorium (TuO) 24h and 9 days post BrdU injection. 

Neurogenesis has been identified also in hippocampus after food storing processes (Clayton 

and Krebs, 1994), after spatial learning (Patel et at, 1997) and can be affected by seasonal 

changes (Barnea and Nottebohm, 1994). However, the effects of passive avoidance training on 

cell proliferation in hippocampus and other areas of the limbic system have yet to be 

examined. 
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Studies from our group, extensively described in Chapter 3, have demonstrated synaptic 

remodelling 6 and 24 hours after passive avoidance training in the chick dorsal and ventral 

hippocampus. Therefore, in the present study it was decided to study the effects of PAL on 

structures of the limbic system 24h and 9 days after BrdU injection. This was a follow up to 

the study of Dermon and collaborators (2002) since the limbic association area is related to 

emotions and memory storage (Kluver and Bucy, 1997). Additionally, Richard and Davies 

(2000) have suggested a strong link between limbic structures participating in PAL (e.g. 

mesopallium, arcopallium) and BO. 
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4.2 RESULTS 

4.2.1 CELL PROLIFERATION 

Cell proliferation was determined in the ventral and dorsal hippocampus (vHP and 

dHP), area parahippocampalis (APH) intermediate and dorsal arcopallium (AI and AD), 

nucleus taeniae of the amygdala (TnA) and olfactory bulb (BO) after passive avoidance 

learning (PAL) at day P2 post hatching, and P9. The locations of these regions are shown in 

the schematic drawing of the coronal sections in Figure 4.1. An example of BrdU labelling in 

the dorsal and ventral Hp ofP2 animals is shown in Figure 4.2. 

A7.S A 7.0 A 6.4 

A 14.2 A 13.8 

Fig. 4.1. Coronal sections of the chick brain representing some of the different levels where 
BrdU labelled cells were counted. (A-C) Location of the ventral and dorsal 
hippocampus (vHp and dHp), area parahippocampalis (APH), nucleus taeniae of amygdala 
(TnA), intermediate and dorsal arcopallium (AI and AD respectively). (D, E) Location of the 
bulbus olfactorius in the chick brain. M: mesopallium N: nidopllium, CPi: Cortex piriformis, 
HA: Hyperpallium apicale, HD: Hyperstriatum densocellulare, HI: Hyperpallium intercalatum 
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Fig. 4.2.Ventral hippocampus of a control (a) and MeA trained (b) 2 day old chicks. 
Ventricular zone of the dorsal Hp of a control (c) and a MeA trained animal (d). It is clear that 
the control animals at P2 have more BrdU labelled cells (arrows) in relation to MeA trained 
animals (e) dorsal Hp of P9 control animal. There is an obvious reduction in BrdU labelled 
cells in relation to (c). Scale bars=50 J,1m. 
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4.2.1.1 Hippocampus (Hp) 

Data from the number of BrdU labelled cells in Hp at P2 and P9 in control, water and 

MeA trained groups are shown in Fig. 4.3 A and B. 
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Fig. 4.3. Quantitative analysis for the number of BrdU labelled cells/mm2 at P2 and P9. A. 
The dorsal hippocampus of the control animals (n=6) shows more BrdU+ cells compared to 
the MeA trained (n=6) group (**)(P=O.0075). In the APH of the water (n=7) and the MeA 
trained group there are fewer BrdU positive cells in comparison to controls (P=O.019 (*) and 
P<O.OOOI (***) respectively). The MeA trained group shows further reduction in cell 
proliferation in relation to the water trained group (t) (P=O.017). No differences occur 
between the groups at 9 (control n=5, water n=5, MeA n=5) days post training. All areas of the 
control and water trained animals show significant reduction in cell proliferation 9 days post 
training. Columns are means of data and vertical bars indicate standard error means (S.E.M) 
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There are obvious reductions in BrdU labelling in the dorsal Hp and APH of the MeA 

trained group at P2 and that was confirmed by ANDV A analysis. A three way ANDV A test 

showed that there are statistical differences concerning the age of the animals (F1•7S= 85.35, 

P<O.OOO 1), the training group (F2,78= 4.245, P=O.O 18), the area of the brain-ventral, dorsal Hp, 

or APH-(F2•78=17.93 , P<O.OOOl) as well as the interaction between age and training group 

(F2.78= 1 0.7, P<O.OOO 1). Data for labelling levels in the brain regions examined are shown in 

Figs. 4.3, 4.4, 4.5, 4.6 and tables 4.1 and 4.2. These results indicate that there is a significant 

reduction in the number of BrdU labelled cells 24 hours post training in the dorsal chick 

hippocampus (LSD post hoc analysis, P=0.0075) in the MeA trained group in relation to 

control animals. The vHP of the MeA trained group shows reduced cell proliferation, but it is 

not significant (P= 0.073). The APH of water and MeA trained animals shows considerably 

fewer labelled cells in contrast to controls (P=O.O 19 and P<O.OOO 1 respectively). However, the 

MeA trained group shows a further reduction in newborn cells in relation to the water trained 

group (P=O.O 17) (Fig. 4.3a). At 9 days post training there are no differences between the 

groups examined (Fig.4.3b). The control and water trained group show reduced labelling in all 

areas in relation to animals of control and water trained group of P2 (vHP control P=0.0004, 

vHP water P= 0.012, dHP P=0.0005 and P= 0.01 correspondingly, APH P<O.OOOI and 

P=0.00012). 

4.2.1.2 N nelens taeniae of amygdala (TnA) 

Data for BrdU labelling in TnA in control, water and MeA trained birds are shown in 

Fig. 4.4 A and B. TnA does not appear to be affected by avoidance training. A multiple way 

ANDVA showed statistical differences only for the factor of age (F1•31 =18.7, P=0.00015). At 

P2 there a slight reduction of cells in the MeA trained group, but this is not significant 

(P=0.2). No differences appear between the groups at P9. However, there is a significant 
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reduction 9 days after BrdU injection in the control and water trained group in respect to these 

groups 24 h post training (P=O.OOI and P=O.0075 respectively). 
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Fig 4.4. Data for the effects of PAL on BrdU labelling in control (n=6), water (n=8) and MeA 
(n=8) birds. No differences appear between the groups at 24h or 9 days (control n=5, water 
n=5, MeA n=5) post BrdU injection. 9 days post training there is a significant reduction in the 
number of BrdU labelled cells in the control and water trained groups in comparison with 24h 
after training. Columns represent means of data and vertical bars indicate standard error means 
(S.E.M) 
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4.2.1.3 Intermediate and dorsal arcopallium (AI and AD) 

Data for BrdU labelling in Al and AD in control, water and MeA trained birds at P2 

and P9 are shown in Fig. 4.5 A and B. Studies in the arcopallium showed that there are 

di fferences between the chicks tested at the different ages (F\ ,54= 136.48, P<O.OOO I), and in the 

areas examined, intermediate and dorsal arcopallium (F\ ,54= 10.74, P=O.OO 18). In addition, 

differences occur due to the interaction of age and brain area (F\ ,54=4.75 , P=0.034). There is 

variation between labelling of the MeA trained group in the intermediate and the dorsal 

arcopallium, with the latter having fewer labelled cells (P= 0.0046). All of the groups 

demonstrate fewer BrdU labelled cells at P9 in relation to P2 in both nuclei tested (control Al 

P<O.OOOI , AD P=0.00046, water Al P<O.OOOI , AD P=0.00017, MeA Al P<O.OOOI, AD 

P=0.0003). 

4.2.1.4 Olfactory bulb (DO) 

Data for BrdU labelling in BO in control, water and MeA trained birds at P2 and P9 are 

shown in Fig. 4.6 A and B. Three way ANOV A in the BO shows statistical differences 

between age (F\ ,24= 16.12, P=0.00051) and training group (F2,24=IO.33 , P=O.00058). The 

MeA trained group shows more newborn cells at P2 and P9 in relation to controls (P=O.0087 

and P=O.013) and the water trained group (P=0.015 and P=O.009). At P9 only the water and 

the MeA trained group show fewer cells in contrast to P2 groups (P=0.OI5 and P=O.024 

respectively). 
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Fig. 4.5. Means of data for BrdU labelled cells in the intermediate and dorsal arcopallium at 
P2 (control n=6, water n=6, MeA n=6) and P9 (control n=5, water n=5, MeA n=5). In graph A 
the MeA trained group shows significantly more BrdU labelled cells in the AI in relation to 
the AD (P=O.0037). No differences arise between animals sacrificed 9 days post BrdU 
injection. Again after 9 days, the control and water trained groups show reduced BrdU 
labelling in relation to 24h post training. Columns represent means of data and vertical bars 
indicate standard error means (S.E.M) 
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Fig 4.6. Means of data for BrdU labelled cells in the olfactory bulb. The BO of the MeA 
trained (n=6) animals has more BrdU+ cells in relation to the control (n=6) and water trained 
(n=6) group 24h (P=0.0087(t) and P=O.OI5(**)) and 9 days (controls n=5, water n=5, MeA 
n=5) post BrdU injection (P=O.013 (*) and P= 0.009 (U)). Nine days post training the water 
and MeA trained groups show reduced BrdU labelling in relation to 24h. Columns indicate 
means of data and vertical bars indicate standard error means (S.E.M). 
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Table 4.1. Summary of cell profile density (BrdU+ cells/mm2) for each area of interest at P2. 
The control group refers to developmental control animals. 

AREA Control Water trained MeA trained 

Ventral Hp 24.85±3.8 20±3.28 17.48±2.84 

Dorsal Hp 23.95±3.07 17.57±1.59 l2.S(**)±1 .32 

APH 40.l26±6.2l 30.7(*)±2.46 21.6(***)±1. 79 

AI 9.O±O.67 9.3±1.l5 1O.O±1.97 

AD 6.39±O.54 6.79±O.7 6.27(**)±O.S8 

TnA lO.8±lO.79 11.4±l.O26 8.285±1 .52 

BO 18.5±3.57 21.0±3.79 36.0(**)±4.75 

Means of cell profiles ± S.E.M (control n=6, water n=7, MeA n=6-S). Asterisks (*) indicate 
differences between groups, italics between subdivisions of the same area 

Table 4.2. Summary of profile density (BrdU+ cells/mm2) for each area of interest at P9. The 
control rou refers to develo mental control animals. 

AREA 1 ~ __ c_o_n_tro_ I_---..J=----w_ a_te_r_t_ra_in_ed_ ....... L-_M_e_A_t~ra_in_ed_ .... 
Ventral Hp 1'-----__ 9_.2_5_±_1_.3_8 ___ 

L 

____ 5_.9_±_1._3 __ ____' ___ 1 O_._16_2_±_l _. 8_----' 

Dorsal Hp 1 ___ 8_._63_±_1_.5_9 __ --.J ___ 6._4_4±_1_.O_7_5_ -1 _ __ 
9
_._

82
_±_2_.6 __ __..._J 

APH 1 11.2±2.46 13.7±3.12 18.48±2.48 

!:---_----'J-------l- --------
AI 1.94±O.72 2.2±0.35 1 1.6S±O.32 

~ ________ ~~--_----~--------~---------...-J 

AD 1.43±O.58 1.15±O.24 1 1.45±O.17 

~ ________ ~---_----~~------~----------...-J 

I 2.75±O.67 TnA 5.43±2.13 6.36±2.03 

~--------~'-----------~-------------'-------~ 

6.19±1.4 5.36±1.17 22.2(*)±6.89 BO I 
L--_~ _ _ - _- ------->--------l--------l 

Means of cell profiles ± S.E.M (control n=5, water n=5, MeA n=5). Asterisk (*) indicates 
differences between groups. Underlined numbers show significant reduction in comparison 
with P2. 
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4.2.1.5 Volume estimation 

Data for volume estimation (mm3
) 10 vHP, dHP, APH, AI, AD, TnA and BO in 

control, water and MeA trained birds at P2 and P9 are shown in Figs. 4.7 A, B, C, D and E. 

Three way ANOV A for TnA, BO, AD, AI, Hp showed no differences in volume between the 

groups. However, in the hippocampus, three way ANOV A showed differences between age 

(Fl .96= 61.079, P<O.OOOI) and the interaction of age and group (F2•96=7.45, P=0.00098). Fisher 

LSD post hoc comparisons demonstrated that there is an increase in volume at P9 in the 

ventral Hp (43% increase) and APH (55% increase) of control birds in relation to P2 (P=0.017 

and P=0.028 respectively). Additionally, all of the areas of the water trained group showed 

sigrIificant volumes increases at P9 in comparison with P2 (vHp 53% increase P<O.OOOl, dHp 

84% increase P<O.OOOI, APH 108% increase P=0.0027). 

volume TnA volume 80 
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Fig. 4.7. Data representing the volume of TnA, BO, AD, AI and Hp at P2 and P9 in control, 
water and MeA trained birds. Columns indicate means of data ±standard error means (S.E.M). 
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4.2.2 DOUBLE LABELLING IMMUNOFLUORESCENCE 

Double immunolabelling at 24 hours and 9 days post BrdU injection showed 

colocalisation of NeuN and BrdU (Fig. 4.8.a-c), and for GFAP and BrdU (Fig.4.9. a-c). Blue 

stained cells (Alexa Fluor 647) are newborn cells labelled with BrdU, whilst in Fig 4.8 green 

labelled cells are mature neurones labelled with NeuN, which is a nuclear neuronal marker 

(Mullen et al., 1992). In Fig 4.9 and 4.1 0 green fibres are glial cells labelled with glial 

fibrillary acidic protein (GFAP), which labels mature astrocytes (Eng et al., 2000). 

Fig. 4.8. Confocal images of BrdU labelled cells (blue, arrows) and NeuN positive cells 
(green). A double labelled cell is pointed with an arrow for BrdU and NeuN 24h post BrdU 
injection (c). The BrdU positive cell on the top of image b is not double labelled for BrdU and 
NeuN. Scale bars=50~m 
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Fig. 4.9. Confocal images of BrdU labelled cells (blue, arrows) and GF AP (green). 
Representation of double labelled cell for BrdU and GF AP at the dHp close to the pial zone 24 
hours after BrdU injection (c, arrow). A cell that migrates to the inner parts of the brain is also 
visible (not double labelled, arrowhead). Image d shows the BrdU labelled cell of image c 
which is pointed with the arrow in high power (x2.2 times) where the fibres that derive from it 
can be clearly seen. Scale bars= 50J,lm 
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Fig. 4.10. Confocal images of BrdU labelled cells (blue) and GFAP (green). (a)Ventral 
hippocampus where it is apparent that none of the BrdU positive cells on the ventricular zone 
are double labelled for GF AP. It is also clear that the ventricular zone does not have an intense 
glial fibrillary network as occurs close to the pial zone. (b) Two newborn cells (see white 
square) which may be migrating to other areas of the brain, most likely following the glial 
fibres. (c) Representation of the olfactory bulb of a 9 days old chick. It can be seen that the 
majority of cells are not double labelled for BrdU and GFAP. Glial fibres are concentrated on 
the top of the ventricular zone from where probably cells migrate to other brain nuclei . Scale 
bars=50 !lm 
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Four way ANOV A revealed statistical differences for the parameter cell type (neurones 

or glial cells) (F\ ,83=52.2, P<O.OOOI). The percentages of double labelled cells of either 

neuronal or glial type do not change significantly between short term and long survival 

studies. Interestingly we found differences in the percentages of NeuN/BrdU positive cells in 

the vHP and dHP between the control and the MeA trained group. In the vHP the MeA trained 

group shows almost double the number of cells labelled for NeuN/BrdU, in comparison to 

controls (45% increase, P=0.03) (Fig. 4.l1a). In contrast, the dHP of the MeA trained group 

shows fewer NeuN/BrdU cells in comparison to controls (41% reduction, P=0.04) (Fig. 

4.l1a). Additionally, control animals show more NeuN/BrdU positive cells in the dHP in 

relation to vHP (53.7% increase, P=0.013) (Fig. 4.l1a). At P2, there are more neuronal than 

glial cells in the dHP of water trained and the vHP of MeA trained animals (67% increase, P= 

0.049 and 96% increase, P=0.0028 respectively). At 9 days post training the vHP of all groups 

shows significant differences in the percentage of neuronal to glial cells (controls 109% 

increased NeuN positive cells, P=0.025, water trained 164% increase, P=O.O 12, MeA trained 

121 % increase, P=0.0036). Only the water and MeA trained groups demonstrate more 

neuronal cells in the dHP 9 days post training (79.5% more NeuN labelled cells, P=O.O 18, 

65% increase in NeuN+ cells, P=0.04 respectively) with respect to glial cells. In arcopallium 

(intermediate and dorsal), nucleus taeniae of the amygdala and olfactory bulb (Fig. 4.1 0 c) the 

majority of newborn cells are of neuronal type (labelling with NeuN), since only a small 

percentage are double labelled for GFAP and BrdU (data not shown). 
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Fig. 4.11. Means of data showing the percentage of double labelled cells for NeuN and BrdU 
(control n=7, water n=7, MeA n=6) at P2 and P9 (control n=5, water n=5, MeA n=5). A. In 
the ventral hippocampus the MeA trained group shows more double labelled cells for 
BrdUlNeuN in relation to controls (P=O.03). The dorsal hippocampus shows reduced 
percentage of NeuN/BrdU + cells in the MeA trained group in relation to controls (P=O.04). t 
indicates larger percentage of NeuNlBrdU + cells in the dorsal in relation to ventral Hp. 
Columns indicate means of data and vertical bars indicate standard error means (S.E.M). 

157 



A GFAP-BrdU 24h 

35 • control • water trained D MeA trained 

.!!! 
Q) 30 (,) 

+ 
:J 25 "C ... 
m -0.. 20 < 
LL 
(!) 15 -0 
Q) 
C) 10 co -c: 
Q) 

5 (,) ... 
Q) 
c. 

0 
ventral Hp dorsal Hp 

B GFAP-BrdU 9 days 

35 • control • water trained D MeA trained 
.!!! 
Q) 30 (,) 

+ 
:J 

25 "C ... 
m -0.. 20 < 
LL 
(!) 15 -0 
Q) 

10 C) 

J! 
c: 
Q) 5 (,) ... 
Q) 
c. 0 

ventral Hp dorsal Hp 

Fig. 4.12. Means of data for the percentage of GFAP/BrdU labelled cells in the dorsal and 
ventral hippocampus (control n=6, water n=6, MeA n=7) at P2 and P9. No significant 
differences occur in the percentage of glial cells between the 3 chick groups 24h or 9 days post 
BrdU injection. Columns represent means of data and vertical bars indicate standard error 
means (S.E.M). 
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4.3 DISCUSSION 

These data indicate a reduction in cell proliferation 24 hours post BrdU injection in the 

dorsal hippocampus of the MeA trained animals in relation to controls, whilst no changes were 

observed in hippocampal volume between the three groups. This finding on cell proliferation 

was unexpected, because it appears to contradict the results of previous studies on cell 

proliferation following training, though different behaviour regions were examined, as in the 

case of Dermon et al. (2002), which indicated an increase in proliferation in the intermediate 

medial mesopallium (IMM). Although the explanation for the reduction in proliferation is 

unclear, there are two possible hypotheses that could elucidate this discovery. 

Firstly, one may assume that cells undergo a higher rate of apoptosis in the MeA 

trained animals in comparison with control birds in the regions examined. However, apoptotic 

studies 24h and 9 days after BrdU administration did not reveal any differences in the number 

of apoptotic cells although it is possible that apoptosis occurs over a different time scales than 

those which have been examined here (data not shown). Apoptotic death may show a transient 

peak soon after training and therefore is not present 24h later. 

A second explanation may be that passive avoidance training is a stressful condition 

which particularly affects cells in the hippocampus as occurs in mammals after similar types 

of aversive experiences. Previous studies (Sandi and Rose, 1997) indicate that the levels of 

plasma corticosterone are significantly higher in the 100% MeA trained group than in 

controls. Corticosterone is associated with stress in the rat hippocampus (de Kloet, 2000) and 

the effects of this stress may be expressed in terms of a reduced proliferative rate (Gould et al., 

1998; Gould and Tanapat, 1999), especially in the dentate gyrus which is equivalent to the 

dorsal hippocampus of chicks. Furthermore, serotonergic fibres have been identified in the 

dorsomedial hippocampus (Metzger et aI., 2002), which are known to be involved in stress 

responses (Gruss and Braun, 1997). Here, the double labelling studies with BrdU and NeuN 
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(nuclear neuronal marker) showed reduced NeuN positive cells in the dorsal hippocampus 

with respect to control animals. This finding may suggest that stress in the chick brain reduces 

neurogenesis, whilst it does not affect the number of glial cells (GFAP studies). In contrast, in 

the ventral hippocampus there is an increase in neurogenesis in the MeA trained group. It is 

apparent that the two subdivisions of the hippocampus react differently to PAL. This finding 

was not unexpected, since many studies have shown that in chicks the ventral hippocampus, in 

relation to the dorsal part, shows different cytoarchitecture (Karten and Hodos, 1967), 

electrophysiological properties (Siegel et aI., 2002) and connectivity (Casini et aI., 1986; 

Szekely and Krebs, 1996; Szekely, 1999; Hough et aI., 2002; Kahn et aI., 2003). 

Furthermore, in mammals many studies have described the diverse roles of the dorsal 

and the ventral hippocampus; in particular, lesions of the dorsal hippocampus have resulted in 

impairments in learning the water maze training (Moser et aI., 1993; Olsen et aI., 1994), 

spatial tasks (Sinnamon et aI., 1978; Moser and Moser, 1998) and fear conditioning (Maren et 

aI., 1997), whilst biochemical alterations after water maze training have been found in the 

dorsal but not the ventral hippocampus of rats (Blum et aI., 1999). In rats, the ventral 

hippocampus has been implicated in emotional and social actions (Moser and Moser, 1998). It 

should be mentioned, however, that the ventral and dorsal Hp differ in mammals and birds 

since in rats the ventral Hp refers to posterior parts of the brain unlike the case in the avian 

brain. 

At 9 days post training in chicks the MeA trained group shows no further reduction in 

BrdU labelling in contrast to control and water trained animals. This might suggest that there 

are two main effects. Cell proliferation is reduced immediately after training in the MeA 

trained group, possibly due to the action of corticosterone. On the other hand, after the effects 

of stress have passed, cell death may be prevented by learning whilst cell survival may be 

enhanced as happens after learning in rats (Kempermann et aI., 1998; Gould et aI., 2000; 
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Leuner et aI., 2004). Moreover, these newborn cells which mostly become neurones, migrate 

with the help of radial glia (Alvarez-Buylla and Nottebohm, 1988; Alvarez-Buylla, 1990b) 

and reach their final destination where they differentiate and stop dividing (Alvarez-Buylla 

and Nottebohm, 1988). 

It is interesting to mention, though, that the control and water trained groups show 

significantly increased hippocampal volume at P9 in comparison with P2, unlike the MeA 

trained group, which only demonstrates 38% volume increase in the ventral Hp between 24h 

and 9 days post training, however statistical analysis showed that this increase is not 

significant, indicating possibly an effect of stress on hippocampal volume. 

In the APH there is a significant reduction in cell proliferation in the water trained 

group compared to controls at P2. One explanation may be that the presentation of a novel 

object (bead) causes alterations in cell proliferation. Connectivity studies have demonstrated 

that the APH receives afferents from the HIIHD (Shimizu et aI., 1995) which are major parts 

of the visual Wulst in the avian brain (Pasternak and Hodos, 1977; Watanabe, 2003). These 

projections may render APH sensitive to visual cues, causing synaptic modifications after 

visual experiences. Although reduction in cell proliferation occurs in the water trained group, 

double labelled studies for neuronal markers could shed some light on the events taking place 

in APH during the passive avoidance training. The fact that in the water trained group there 

are significantly more BrdU labelled cells in contrast to MeA trained animals might further 

support the idea that methylanthranilate can possibly invoke stress responses in some regions 

of the chick brain. 

It is worth mentioning that after 9 days, the MeA trained group does not show 

significant reduction in cell proliferation in the APH. One explanation for this finding could be 

that cell survival is promoted by PAL after the possible effects of stress have passed or that 

cell proliferation is induced after the levels of corticosterone have gone back to basal levels. 
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However, we cannot exclude the possibility that both are simultaneously happening with the 

stronger effect having more influence on cell proliferation. Another hypothesis could be that 

the MeA trained group does not show reduced newborn cell density, because the volume of 

APH does not increase in P9 animals in contrast to the other groups. 

Cell proliferation is increased in the AI (intermediate arcopallium, Reiner et aI, 2004, 

previously called ventral intermediate archistriatum) of the MeA trained group in relation to 

the AD (dorsal arcopallium). AI has been suggested to show homology to the mammalian 

amygdala (Zeier and Karten, 1971). Since AI is sensitive to fear, it would also likely be 

affected by stress and respond to fearful conditions, by influencing avoidance behaviour which 

is translated into a refusal to peck the dry bead after PAL, because of the previous unpleasant 

experience. Lesions of the intermediate arcopallium have been shown to cause memory 

impairments for passive avoidance training (Lowndes and Davies, 1994) and filial imprinting 

(Lowndes et aI., 1994). Although these studies have not distinguished between dorsal and 

ventral parts of the intermediate arcopallium, other data have suggested that the limbic part is 

the intermediate arcopallium, previously termed as ventral intermediate archistriatum, whilst 

the "dorsal intermediate archistriatum (dorsal arcopallium) is involved in somatosensory 

system regulation (Zeier and Karten, 1971; Davies et aI., 1997). 

The amygdala in mammals is activated by high stress and learning (Akirav et aI., 2001), 

so there may be similar effects in the avian brain. The effects of passive avoidance training are 

expressed differently in the arcopallium and the hippocampus as occurs in mammals (Akirav 

et aI., 200 I). One possibility for the present result may be related to differential responses to 

stress and fear following the avoidance training experience. The AI, additionally, has been 

proposed to be part of a circuitry that connects the mesopallium intermediomediale and the 

striatum mediale and therefore it is strongly affected by PAL (Csillag, 1999), probably 

provoking avoidance behaviour. 
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An interesting point is that the AI receives afferents from the dorsal nidopallium (Nd) 

(Wild et al., 1993; Metzger et al., 1998), an area which has been shown to receive inputs from 

field L (Bonke et al., 1979) and nucleus ovoidalis (Wild et al., 1993), which are auditory 

areas, indicating possibly that the distress calls that chicks emit during PAL could further 

affect the AI. This might even affect control animals that hear the voices since all of the 

groups are at the same room, provoking activation of AI. In this case, cell proliferation may be 

also affected in the AI of control animals in a lesser extend, though this would be difficult to 

quantify without much further experiments. The AD in contrast is not affected by PAL, 

probably because it does not belong to the limbic system and for that reason it shows no 

differences among the groups, whilst it demonstrates reduced BrdU labelling in contrast to AI. 

Interestingly, though, serotonergic fibres were found in the AD and TnA (Metzger et al., 

2002). Serotonin has been suggested to participate in stressful conditions such as social 

separation and 5HT+ fibres have been found in mesopallium after auditory filial imprinting 

(Gruss and Braun, 1997). Although the presence of serotonin in AD and TnA may not agree 

with the hypothesis that AD is part of the somatosensory system, and serotonin inhibition 

(Stephenson and Andrew, 1994) is associated with memory impairments in passive avoidance 

training in chicks, previous studies have not directly associated the AD with passive avoidance 

training. Rather they focus on intermediate arcopalliallesions (Lowndes and Davies, 1994) in 

general or the involvement of AI in a circuitry that mediates the passage of information from 

the IMM to StM (Csillag, 1999). Therefore, since serotonin is also involved in aggression and 

anxiety behaviour (Lucki, 1998) its presence in AD and TnA may imply social and emotional 

features, which would agree with studies in TnA and its involvement in male sexual anxiety in 

the presence of females and mating (Thompson et al., 1998). 

Future double labelling studies could clarify if there are any disparities in neurogenesis 

between MeA trained and control groups in the AI. Although no variations in cell proliferation 
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are apparent, there might be alterations in the number of proliferative cells that develop into 

neurones. No volume changes were observed in AI and AD either between the groups or the 

diverse time points examined. 

No differences in volume or newborn cell density are shown in the nucleus taeniae 

between the different groups. Although recent studies in the medial nucleus of the amygdala 

(homologue to the nucleus taeniae of the amygdala) of adult rats demonstrate a reduction in 

PSA-NCAM immunohistochemistry after chronic stress in the rat (Cordero-Campafta et aI., 

2004), here the reduction in cell proliferation is not significant. This might be explained by the 

fact that one day old chicks are not sexually mature, so they may display different activation 

of the nucleus taeniae of amygdala (TnA, Reiner et aI., 2004). 

Another possibility is that TnA may not be affected by PAL; studies have shown that it 

is involved in male sexual behaviour (Thompson et aI., 1998; Absil et aI., 2002), but there are 

no studies to indicate its participation in PAL. However, TnA receives afferents from the 

dorsolateral hippocampus (Casini et aI., 1986; Szekely and Krebs, 1996; Atoji et a!., 2002), 

and the olfactory bulb (Reiner and Karten, 1985), whilst it sends efferents to the APH (Cheng 

et aI., 1999), the dorsal hippocampus (Atoji et al., 2002) and the StM and IMM (Cheng et aI., 

1999), areas that have been shown to be directly implicated in PAL. 

It is noteworthy that at 9 days post training the MeA trained group is the only one that 

does not show significant reduction in cell labelling in relation to 24h after BrdU injection. 

This finding may indicate that TnA shows a slower response to PAL in respect to the other 

areas so far examined. Thus, in this nucleus there may be cell proliferation between 24h and 9 

days, or cell survival may be enhanced after PAL. 

No studies have been conducted in the chick brain to test cell proliferation or 

neurogenesis in the olfactory bulb after PAL. Although the olfactory bulb in rats has proven to 

be one of the areas where neurogenesis persists in adulthood (Kaplan and Hinds, 1977; Bayer, 
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1983; Luskin, 1993; Suhonen et al., 1996; Winner et al., 2002) no evidence exist for postnatal 

neurogenesis in the adult chick. Our studies indicate that neurogenesis continues in the 

olfactory bulb of chicks after they hatch. Double labelling experiments demonstrated that the 

majority of newborn cells become neurones, since only a very small percentage of BrdU 

labelled cells showed double labelling for GFAP and BrdU. 

The BO of MeA trained animals especially shows significantly elevated cell 

proliferation with regard to controls and water trained animals. It is known that chicks react to 

smell (Wenzel and Sieck, 1972; McKeegan, 2002; McKeegan et al., 2002) so an increase in 

cell proliferation was not unexpected. An interesting point for behavioural studies is that 

chicks can smell methyl anthranilate (MeA) and react aversively to it (Marples and Roper, 

1997). It has been suggested that MeA may playa role in memory consolidation (Burne and 

Rogers, 1997). Other bitter but odourless substances (e.g. denatonium benzoate, quinine, 

Bourne et at, 1991; Marples and Roper, 1997) do not seem to be strongly aversive stimuli for 

chicks and have a weaker ability as aversive memory stimulants in PAL, suggesting a strong 

between limbic structures participating in PAL (e.g. mesopallium, arcopallium) and BO 

(Richard and Davies, 2000). 

The BO shows connectivity with the hippocampus, especially the APH via the piriform 

cortex (Reiner and Karten, 1985; Bingman et a1., 1994), TnA (Reiner and Karten, 1985) and 

IMM and StM (Rieke and Wenzel, 1978), all these areas potentially involved in avoidance 

learning. Furthermore, gene expression studies for vasoactive intestinal polypeptide (VIP) 

have revealed that the BO, along with the hippocampal complex, the piriform cortex, the 

mesopallium, hyperpallium densocellulare, hyperpallium intercalatum and medial and 

intermediate arcopallium demonstrated high levels of VIP mRNA, suggesting that they could 

be part of the visceral system, indicating possibly further connections between these areas 

(Kuenzel et al., 1997). 
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At 9 days post BrdU injection all of the areas of the control and water trained groups 

show reduced cell proliferation in comparison with animals sacrificed 24 hours after BrdU 

injection. The likelihood that this is due to migration of cells has yet to be proven. Another 

possibility is that BrdU is diluted due to continued cell divisions until the cells become 

postmitotic. Studies have shown (Dayer et aI., 2003) that BrdU is diluted between 24h and 4 

days post BrdU injection. Finally, newborn cells could undergo apoptosis as a process of 

plasticity in order for the brain to keep balance in incorporation of new cells and total neuronal 

density. 

Interestingly, the only area where there are differences in cell proliferation 9 days after 

BrdU injection between the groups is the olfactory bulb (BO). In this nucleus, the MeA trained 

group continues to show increased BrdU labelling even 9 days post training, but this 

dissimilarity may be due to migration of cells from other highly proliferative areas such as the 

ventricular zone of StM, StM or tuberculum olfactorium (TuO) (Dermon et aI., 2002), the 

latter having olfactory functions. Another explanation could be that the olfactory receptor 

neurones possess the ability to regenerate throughout adult life (Barber, 1982). Even so, there 

is a significant reduction in the number of BrdU labelled cells between 24h and 9 days in this 

group. It is interesting that the BO volume does not change between 24h and 9 days post 

training. 

It is noteworthy that unlike the rat dentate gyrus where newborn cells require three 

weeks to mature (Cameron et aI., 1993; Kuhn et al., 1996), in the chick Hp we found double 

labelled cells for NeuN and BrdU 24 hours after bromodeoxyuridine injection. The percentage 

of new neurones did not appear to alter between short and long term survival times of 

newborn cells. One explanation may be that the cells can express the proteins of mature 

neurones at an early stage after genesis although they are not fully mature. On the other hand, 

surprisingly, none of the cells that resided on the ventricular zone co-expressed NeuN and 
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BrdU, even 9 days after birth. These cells may be immature neurones since there were not 

labelled for GFAP. Thus 2 days old chicks have a less developed glial fibre network in 

comparison to 10 days old animals, which has been also shown from other studies (Kalman et 

al., 1998). In the hippocampus, labelling for GFAP is mainly localised at PI in the pial surface 

and less intensely in the ventricular zone, where the fibres are shorter and less closely packed. 

However, the chick brain expresses GFAP (labels astrocytes) from the first day post hatching 

(Kalman et al., 1998), indicating rapid maturity of the chick brain from the early stages of life. 

Further studies are necessary in order to clarify precisely the events which occur in the 

chick hippocampus after passive avoidance learning. Studies concerning corticotrophin

releasing factor (CRF), which is involved in stress and anxiety responses, have shown an 

extensive network of fibres containing CRF in the hippocampus, the arcopallium, the nucleus 

taeniae of the amygdala and other areas (Richard et aI., 2004). If the chick hippocampus is 

similarly affected by stress, as in mammals, then the chick model may be additionally 

exploited to study stress and neurodegeneration. 
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5.1 INTRODUCTION 

Stress is a condition that can cause morphological changes to the brain (Fuchs et at, 

2001) and may also incite pathological conditions such as memory impairment (Liu et at, 

2003; Sauro et at, 2003; Shors and Leuner, 2003). Excess glucocorticoids can cause synaptic 

remodelling in pyramidal neurones of CA3 in the rat hippocampus (Woolley et at, 1990), 

restraint stress can decrease branching and dendritic length (Watanabe et aI., 1992; Magarinos 

and McEwen, 1995; Sandi et at, 2003), effects similar to psychosocial stress (Magarinos et 

at, 1996). In contrast, restraint stress has been demonstrated to increase branching in the 

amygdala, indicating the fear causing character of the training (Vyas et aI., 2002). Recent 

studies have also shown reduced dendritic branching in CA 1 and dentate gyrus (Sousa et al., 

2000). 

Neurogenesis can be affected by high levels of corticosterone (Gould and Tanapat, 

1999; Harman et at, 2003; King et at, 2004). Corticosterone injections during the first 

postnatal week caused deprivation of granule cell precursors in the dentate gyrus of the rat 

(Gould et al., 1991 b). Other studies have shown that adrenal hormones can reduce cell 

proliferation in the dentate gyrus (Gould et aI., 1992). Adrenalectomy, on the other hand, has 

been shown to increase neurogenesis (Gould et at, 1992; Cameron and Gould, 1994) 

indicating the likelihood that adrenal steroids create a natural boundary for cell death and 

neurogenesis or gliogenesis. Neuronal loss is determined also by the type of the stressor, for 

instance, acute stress such as the odour of a predator inhibits neurogenesis (Tanapat et at, 

1998), albeit acute restraint stress does not suppress neurogenesis (Pharo et at, 2003). These 

authors have demonstrated that repeated restraint stress although reducing neurogenesis, also 

causes a concomitant increase in the expression of polysialic acid neural cell adhesion 

molecule (PSA-NCAM), which agrees with recent light and electron microscopy studies 

(Cordero et al., 2003). 
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Although moderate levels of corticosterone has been demonstrated to enhance memory 

formation (Sandi et al., 1997), high levels of the above mentioned hormone can impair 

memory facilitation and learning (Diamond et al., 1999). Stress can affect learning by a U 

form of corticosterone concentrations; very low or extremely high levels of CORT 

(Anderson, 1976) do not improve memory. In the chick brain corticosteroid receptors 

blockage causes amnesia to one day old chicks (Sandi and Rose, 1994b), whilst corticosterone 

enhances memory formation for the weal passive avoidance task (Sandi and Rose, 1994a), 

implying that a moderate amount of stress is necessary for memory formation (Sandi and 

Rose, 1997). These authors have demonstrated that high levels of corticosterone did not help 

the animals remember the training task and have also shown an increase in the levels of 

plasma corticosterone 5 min post passive avoidance training (Sandi and Rose, 1997). 

Corticosterone has been shown to be the dominant stress steroid present in the chick 

brain (Nagra et al., 1960; Urist and Deutsch, 1960; Kalliecharan and Hall, 1976). Quantitative 

studies in the chick brain have demonstrated that at 2 day old chicks except from 

corticosterone, other steroids circulate also in the plasma, and cortisol comes second in 

concentration after corticosterone (8.75nglml and 17.20nglml). Adrenal steroids including 

progesterone and cortisone are also present, but in lower concentrations (Kalliecharan and 

Hall, 1974). Other studies have shown that the levels of circulating cortisol are much lower in 

the chick brain; in particular it has been suggested that the levels of cortisol in the plasma 

decline after hatching, in the 17th day of embryonic life being 1.7nglml, reaching 0.8 and 

0.3nglml by 3rd and 7th day post hatching to disappear at 14 day old chicks (Nakamura et al., 

1978). Nonetheless, cortisol is present in young chicks and indicates the existence of 17a

hydroxylase which is necessary for cortisol formation, unlike rats and mice which lack the 

enzyme (McEwen et al., 1976). It is interesting to mention that cortisol is the dominant steroid 

in the human brain (Underwood and Williams, 1972; West et al., 1973). 
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Data here from cell proliferation, neurogenesis and synapse formation studies indicate 

a reduction in the MeA trained group in relation to controls, especially in the dorsal 

hippocampus. However, data from apoptotic studies (chapter 5) did not resolve the question 

about the reason for cell loss present in the MeA trained group. Passive avoidance learning has 

been claimed to be a stressful experience due to the elevation of plasma corticosterone in the 

chick brain (Sandi and Rose, 1997). Based on the experiments of the latter authors, the levels 

of cortisol were examined in the present in chick brain tissue 5 and 20 minutes after passive 

avoidance training. Studies focused on the hippocampus, the striatum mediale, an area 

strongly associated with learning (Stewart and Rusakov, 1995; Csillag, 1999; Dermon et aI., 

2002) and arcopallium. 

The purpose of this study was to investigate the effects of PAL on cortisol levels that 

may demonstrate if PAL is a stressful paradigm which could explain the synapse density and 

cell proliferation reduction observed in the hippocampus. 

171 



5.2 RESULTS 

5.2.1 Five minutes after training 

Data for ng of cortisol/g of brain area are presented in Fig 6.1 and table 6.1. Three way 

ANOV A indicated significantly statistical differences for the area (F2,14=5.3 , P=O.O 19) of 

study, the minutes after training (F1,14=145.94, P<O.OOOI), the training group (F2,14=33.87, 

P<O.OOOI) and the interaction between area and group (F4,14=23.l4, P<O.OOOI), between 

minutes after training and group (F2•14=20.82, P<O.OOOI) and between area, minutes and 

training group (F4,14=30.43, P<O.OOOI). 
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Cortisol concentration in brain tissue 5 min after PAL 
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Arcopallium striatum mediale Hippocampus 

Fig. 5.1. Means of data showing the concentration of cortisol in ng per g of brain tissue (ng/g) 
in the arcopallium, the striatum mediale and the hippocampus of control, water trained and 
MeA trained group 5 (developmental control n=12, water trained n=14, MeA trained n=14) 
minutes after PAL. Five minutes after PAL in the water trained group the striatum mediale 
and the hippocampus shows higher concentration in relation to control and MeA trained birds. 
In the arcopallium the control and water trained groups show lower levels of cortisol in 
comparison with controls. Columns represent means of data and vertical bars indicate standard 
error means (S.E.M). 

In the arcopallium, the MeA trained group shows increased cortisol concentration in 

relation to control and water trained birds. In particular, the MeA trained animals demonstrate 

a 72% (P= 0.00037) and 107% (P<O.OOOI) increase in comparison with the control and water 

trained group respectively. The arcopallium of the control group shows increased cortisol 
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levels (47 times higher) in relation to the striatum mediale (P<O.OOOI). In contrast, the water 

trained group demonstrates higher levels of cortisol in the striatum mediale (207% increase, 

P<O.OOO I) and Hp (89% increase, P=O.OO 15) in comparison with the arcopallium. The MeA 

trained group demonstrates higher levels of cortisol in the arcopallium in relation to Hp (124% 

increase, P=0.00018). In the striatum mediale, the control group shows 55 times lower levels 

of cortisol in comparison with the Hp (P<O.OOO 1). The water trained group shows significantly 

higher levels of cortisol in relation to control (120 times higher, P<O.OOOI) and MeA trained 

birds (46% increase, P=0.00074) in the striatum mediale, whilst the MeA trained group is 82 

times higher than the control group (P<O.OOOI). The water trained and the MeA trained groups 

of the striatum mediale show 62% and 127% increased levels of cortisol in relation to Hp 

(P=0.00014, P=0.0005 respectively). Finally, in the hippocampus, the water trained group 

shows a 35% and 105% increase in comparison with the control (P=0.048) and MeA trained 

(P=0.00075) groups. 

5.2.2 Twenty minutes after training 

Data for ng of cortisollg of brain area are presented in Fig 6.2 and table 6.2. Twenty 

minutes after PAL, the arcopallium shows reduction in cortisol concentration in all groups in 

relation to results conducted 5 minutes post training. The control group shows a 64% decrease 

at 20 minutes in comparison with 5 minutes (P<0.0009), the water trained group shows 42% 

reduction (P=0.039), whilst the MeA trained group shows the most considerable reduction 

(67%, P<O.OOOI) in relation to the MeA trained group sacrificed 5 minutes after training. The 

levels of cortisol in the MeA trained group in the arcopallium 20 minutes after training are 

lower (39% decrease, P=0.035) in comparison with the Hp. In the striatum mediale data show 

a contrasting pattern; the control group shows 26 times increase 20 minutes after training in 

relation to the results from 5 minutes (P=0.0044), whilst the water and the MeA trained group 
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show a 79% (P<O.OOOI) and 53% (P=0.0002) decrease respectively. Although the MeA 

trained group in the striatum mediale shows a 46% and 49.5% increase in relation to the 

control and water trained groups, these differences are not significant (P=O.I and P=O.l2 

respectively). In the hippocampus, the control group shows reduction in relation to five 

minutes training (59% decrease, P=0.0028). Most importantly, the MeA trained group shows 

increased cortisol levels in comparison with the control (91 % increase, p=o.o 13) and water 

trained (85.5% increase, P=0.016) birds. 

Cortisol concentration in brain tissue 20 min after PAL 
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Fig. 5.2. Group mean values showing the concentration of cortisol in ng per g of brain tissue 
(ng/g) in the arcopallium, the striatum mediale and the hippocampus of control, water trained 
and MeA trained group 20 minutes (developmental control n=12, water trained n=14, MeA 
trained n=14) Twenty minutes after training, only in the hippocampus the MeA trained group 
shows significantly higher cortisol levels in relation to control and water trained groups. 
Columns indicate means of data and vertical bars indicate standard error means (S.E.M). 
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Table 5.1 Data from cortisol radioimmunoassay demonstrating the levels of cortisol in brain 
tissue (ng/g) ± S.E.M 5 minutes after passive avoidance learning. Control animals are 
developmental controls 

CONTROL WATER TRAINED MeA TRAINED 

ArcopaJlium 4.73±O.65(**) 3.93±O.27(***) 8.12±O.73 

Striatum mediale O.105±O.OOl(***) 12.05±1 .35 8.23±O.008(**) 

Hippocampus 5.49±O.02(**) 7.43±O.03 3.63±O.05(**) 

Asterisks (*) indicate significant differences between the groups in the area of study. 
Underlined numbers demonstrate differences between the different areas in the same training 
group. 

Table 5.2 Data from cortisol radioimmunoassay demonstrating the levels of cortisol in brain 
tissue (ng/g) ± S.E.M 20 minutes after passive avoidance learning. Control animals are 
developmental controls 

I 
CONTROL J WATER TRAINED 1 MeA TRAINED -1 

I 
-

I I 
Arcopallium 1.7±O.O5 2.28±O.12 2.64±O.17 

Striatum mediale I 2.56±O.OI 

I 
2.63±O.41 

I 
3.84±O.77 

Hippocampus J 2.27±O.12(*) 

I 
2.34±O.13(*) 

I 
4.34±O.O9 

Asterisks (*) indicate significant differences between the groups in the area of study. 
Underlined numbers demonstrate differences between the different areas in the same training 
group 

I 

I 

I 
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5.3 DISCUSSION 

The data presented in this chapter indicate that after passive avoidance training there is 

an increase in the levels of cortisol in the arcopallium, the striatum mediale and hippocampus, 

all areas being closely influenced by PAL (Sandi et al., 1992; Hunter and Stewart, 1993; 

Lowndes and Davies, 1994; Csillag. 1999; Dermon et al., 2002). Cortisol has been suggested 

to be the main adrenal steroid in the primate brain (Uno et al.. 1994; Magarinos et al., 1996; 

Karssen et al.. 2001), whilst it has been shown to be one of the major steroids in the chick 

brain during embryonic and early postnatal life (Kalliecharan and Hall. 1974, 1976; Nakamura 

et al., 1978). In primates, it has been exhibited that high levels of cortisol are excreted after 

stressful conditions and in subjects suffering from depressive diseases (Swigar et al., 1979; 

Lupien et al., 1999; Ng et al.. 2003; Pico-Alfonso et al.. 2004; Ritsner et aI., 2004). 

Stress has been shown to have a severe impact on synaptic plasticity (Magarinos and 

McEwen, 1995; Sandi et al., 2001; Sandi et al., 2003). whilst it has been also demonstrated to 

reduce neurogenesis (Lemaire et al., 2000; Pham et aI., 2003). However. although high levels 

of stress impair memory (Bodnoff et aI., 1995; Sousa et aI., 2000), moderate amounts of stress 

are needed during learning procedures to enhance acquisition of the task (Sandi and Rose. 

1994a; Sandi et al., 1995; Loscertales et al., 1997; Sandi et al., 1997). 

Earlier studies have demonstrated that PAL can be a stressful experience; in particular, 

Sandi and Rose (1997) have shown that the levels of circulating plasma corticosterone are 

higher in the MeA trained group in relation to controls 5 minutes after passive avoidance 

training. implying the possibility of a stress-related memory impairment in the MeA trained 

group after methylanthranilate administration (usually .... 30% of the MeA trained birds cannot 

remember the task in comparison with the water trained group which show lower percentages 

of inability to recall the task). 
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Stress has been closely associated with the limbic system (Vermes and Telegdy, 1977; 

Sapolsky et al., 1985a; Cook, 2002; Sapolsky, 2003). In mammals, the limbic association area 

is related to emotions and memory storage (Sapolsky et al., 1985a). 

In monkeys, it has been suggested that the limbic system is also closely associated to 

imprinting (Mishkin, 1982), a memory task that has been extensively used for studies in the 

chick brain (Hom et al., 1985; Hom, 1998). Lesions in the arcopallium has been demonstrated 

to impair the acquisition of imprinting (Lowndes et al., 1994), whilst the arcopallium has been 

suggested to be equivalent to the mammalian amygdala (Zeier and Karten, 1971; Davies et al., 

1997), which implies that it is affected by stress and emotions as in mammals (LeDoux et al., 

1990b; LeDoux, 1995) indicating a strong link between functions of the mammalian and the 

avian limbic system. The nucleus taeniae of the amygdala is an area which plays an important 

role in male sexual behaviour (Thompson et al., 1998) and is homologous to the medial 

amygdala, an area that has been also associated with stress responses (Cordero et al., 2004). 

Finally, the limbic system is involved in learning, stress (Sapolsky, 2003) and movement 

strategy, functions that both in mammalian and avian species are regulated by the 

hippocampus (Moser et al., 1993; Olsen et al., 1994; Gould et a1.. 1999b; Sandi et al., 2001; 

Shiflett et al.. 2004; Suge and McCabe. 2004). 

In the present studies. changes in the levels of cortisol were observed both 5 and 20 

minutes post training. The arcopallium, which is homologous to the mammalian amygdala 

(Davies et al., 1997), would be expected to react to stress in a similar way as in rats (Dayas et 

al., 1999; Akirav et aI., 2001; Vyas et al., 2002). Five minutes after PAL. the levels of cortisol 

are elevated in the MeA trained group in relation to control and water trained birds. However, 

this effect is not present 20 minutes post training. The striatum mediale on the other hand, 

shows a gross increase of cortisol in the water trained group in relation to control and MeA 

trained group. The control group particularly shows miniscule levels of cortisol 5 minutes 
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after training, and twenty minutes after training, these effects do not exist anymore. It is 

noteworthy that both areas show a reduction in cortisol levels in all the chick groups 20 

minutes after PAL. The striatum mediale of the MeA trained group shows a 59% reduction 20 

minutes after PAL in relation to levels at 5 minutes, in comparison to the water trained group 

which shows a 79% decrease. As a result, 20 minutes after training, the MeA trained group 

shows higher cortisol levels in the striatum mediale in relation to the water trained birds. In 

contrast, in the arcopallium, where 20 minutes after training the MeA trained group shows a 

67% reduction, the water trained group shows only a 42% decrease. It is interesting to note 

that the levels of cortisol 20 minutes after training in these two groups resemble the levels of 

the control group, indicating possibly a return of cortisol to the basal levels in the arcopallium 

of these groups. 

It is noteworthy that the only area which shows an increase in cortisol levels after 20 

minutes is the hippocampus and specifically the MeA trained group. The control and water 

trained group show a 59% and 68% reduction 20 minutes after training in relation to the levels 

at 5 minutes, whilst the MeA trained birds demonstrate a 8.4% increase in the levels of 

cortisol in the hippocampus. Consequently, 20 minutes after training the MeA trained group 

exhibits 91 % and 85.5% increased cortisol levels in comparison with the control and water 

trained birds respectively. 

This raises a question: does this finding indicate a later onset of changes in the 

hippocampus of the MeA trained group, or does it imply a longer lasting effect in this area? In 

Chapter four, it was demonstrated that the dorsal hippocampus of the MeA trained group 

shows reduced cell proliferation and neurogenesis in relation to control and water trained 

group. Could these two events be connected? Possibly, since it is known that stress reduces 

neurogenesis (Gould et aI., 1997; Lemaire et aI., 2000). If the effects of cortisol in the chick 

hippocampus last longer, then it is possible that reduction in cell proliferation would occur, 
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especially in the dorsal part, which is homologous to the dentate gyrus (Erichsen et a1.. 1991; 

Krebs et aI., 1991; Siegel et aI., 2002), as happens in mammals (Pham et aI., 2003). 

Furthermore, studies in the ventral hippocampus of rats have shown that it is not as heavily 

affected by learning and stress as does the dorsal part (Moser and Moser, 1998; Akirav et aI., 

200 I). Therefore, it might be suggested that the chick ventral hippocampus shows a milder 

reaction to stress resulting in minor cell proliferation reduction in comparison with the ventral 

part. 

Although the arcopallium of the MeA trained group and the striatum mediale of the 

water trained groups and hippocampus show high levels of cortisol five minutes after passive 

avoidance training, cell proliferation is not reduced in these areas, in any group 24h post BrdU 

injection, not as Dermon et al. (2002) have shown, are there any increases in BrdU labelled 

cells in these areas. There is the possibility that at longer time points (e.g. 20 minutes or even 

longer) cortisol changes are required to induce cell proliferation reduction. For this reason, it 

may be that the hippocampus is the only area demonstrating numerical cell density reduction 

24h after training in the MeA training group. Another explanation could be that the 

arcopallium and the striatum mediale are affected by elevated levels of cortisol in a diverse 

way and therefore do not demonstrate the typical characteristics of stress such as reduced 

BrdU labelling. Double labelling studies in the arcopallium could enlighten the present data by 

demonstration of dual labelled cells for BrdU and NeuN, an indication of neurogenesis: 

although cell proliferation may not appear affected, neurogenesis may be. 

The increases in cortisol concentration in the water trained group could indicate that the 

actual presentation of the bead causes a stressful reaction on discrete brain regions. However, 

this assumption cannot be fully supported with the data presented in this thesis. Further 

cortisol studies at earlier time points might be able to enlighten the true facts happening in the 

chick brain after water training. It may also be possible that the water trained group shows an 

179 



earlier response to the training in relation to the MeA training group. Studies ten or fifteen 

minutes after PAL could demonstrate if the MeA trained group shows significantly higher 

cortisol levels in the striatum mediale or the arcopallium. 

It would also be interesting to check the time availability of higher cortisol levels in the 

hippocampus of the MeA trained group. Are twenty minutes of high cortisol levels enough to 

enhance cell birth inhibition? Possibly the effects of cortisol even for only twenty minutes 

may have negative effects on the cell cycle and as a consequence on cell proliferation. 

To sum up, cortisol levels are elevated in a number of the brain areas studied, all parts 

of the training experience, indicating probably a stressful reaction to passive avoidance 

training. Nonetheless, only the hippocampus shows cortisol elevations twenty minutes after 

training, whilst at this time point the arcopallium and the striatum mediale demonstrate a 

significant fall of cortisol levels. It could therefore be assumed that the hippocampus may be 

the only area studied so far that is most strongly affected by stress, since both synapse 

formation and cell proliferation studies have demonstrated reduction in synapse and cell 

genesis respectively in the MeA trained group, in contrast to the striatum mediale (Hunter and 

Stewart, 1993; Dermon et aI., 2002) and intermediate medial mesopallium (Patel and Stewart, 

1988). If this hypothesis is proven, then the chick model could be used for future studies 

regarding neurodegenerative diseases caused by stress. 
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CHAPTER 6 

DISCUSSION 

AND 

FUTURE STUDIES 

181 



-------------------------I 6.1 The main findings of research in this thesis can be summarized as follows: I 
-- • 5 minutes after PAL: increased levels of cortisol in arcopallium of the MeA trained • 

• 

I group in relation to control and water trained birds I 
-- • 20 minutes after PAL: increased levels of cortisol only in the Hp of the MeA trained -• 
I birds in relation to control and water trained groups. I 
- • - 6 hours after training: numerical synaptic density reduction of ax os pi no us synapses in -• 
I the dorsal Hp of the right hemisphere I 
• • -

24 hours after training: numerical synaptic density reduction ofaxodendritic synapses • 
• 

I in the dorsal Hp of the right hemisphere I 
• • • 

24 hours post BrdU injection: cell proliferation and neurogenesis reduction in the MeA _ 

I 
- • -
I 
- • • 

I 
• 
• 

trained group in comparison with control birds in the dorsal Hp 

24 hours and 9 days after PAL: increased cell proliferation in the olfactory bulb of the 

MeA trained group in relation to control and water trained animals 

9 days after training: no increase of hippocampal volume of the MeA trained animals 

in comparison with 24h after training, in contrast to control and water trained groups 

-
I 
--
I 
--
I 
-• 

L.. .---.-----------._------.. 
6.2 STRESS? 

PAL appears to be a stressful experience based on data from Sandi and Rose (1997), 

and from the data presented here after measurements of cortisol in brain tissue. Stress has been 

suggested to reduce cell proliferation (Gould et al., 1991b; Gould et al., 1992; Gould et al., 

1998) and increase cell death (Reagan and McEwen, 1997; Lucassen et al., 2001; Lee et al., 

2002a; Minana et al., 2002). It is unclear whether stress attenuates the cell cycle and therefore 

182 



if cell proliferation is diminished. It has been suggested that stress induces apoptosis which in 

tum does not cause an inflammatory response due to rapid phagocytosis from macrophages 

(Wyllie et at., 1980). If newborn cells die as a result of stress immediately after their birth and 

are phagocytosed, then BrdU will not be detected. However, Roy and Sapolsky (2003), 

claimed that stress causes necrosis rather than apoptosis. Our apoptosis studies did not show 

significant differences between MeA and control groups (data not shown). If the hypothesis of 

Roy and Sapolsky is accepted, then apoptotic death should not be as considerable as necrotic. 

We have not tested necrosis, so we could not tell as certain if our results agree with this idea. 

Nevertheless, it is interesting to mention that other studies have shown that glucocorticoids do 

not lead to DNA cleavage (Masters et al., 1989), indicating that high levels of glucocorticoids 

could reduce cell number either by suppressing the survival of cells or by cell death without 

the characteristic signs of apoptosis. 

Six and twenty four hours after PAL the synapse density was reduced in the dorsal Hp. 

In particular, the axospinal density of the MeA trained group demonstrated a reduction 6h 

after training in relation to control groups, which disappears at 24h after PAL. On the other 

hand, the shaft density of the MeA trained group appears reduced at 24h in respect to controls. 

Preiously, studies have demonstrated that stress causes apical dendrite atrophy in CA3 in rats 

(Magarinos and McEwen, 1995; Magarinos et al., 1996) and branching elimination (Woolley 

et al., 1990). Here, stress may be having similar effects, such as dendritic branching 

eradication and suppression of arborization with consequential synaptic changes. 

Many studies have shown that the brain is a very plastic region and synaptic 

remodelling is a very rapid process; Toni et al. (2001) have shown that as soon as half an hour 

after LIP induction there is an increase of perforated synapses, indicating new synapse 

formation through splitting (Toni et aI., 1999). Furthermore, studies in the chick brain have 

demonstrated a 77% increase of spine synapses in the right IMM Ih post training (Doubel1 and 
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Stewart, 1993). Thus, we can assume that 6h is a sufficient time scale to allow synaptic 

remodelling. However here there was a decline in synapse number in the MeA trained group, 

contrasting with previous results obtained from IMM and StM which show a spectacular 

multiplication of synapses and synaptic elements (Doubell and Stewart, 1993; Hunter and 

Stewart, 1993; Stewart and Rusakov, 1995). If PAL is a stressful expcrience, it would be 

expected that it should possibly affect other areas that have been shown to be affected by PAL, 

which in tum should demonstrate a decrease of synaptic density. However. this is not the case; 

our results from the cortisol studies in Hp. StM and arcopallium demonstrated that only the 

hippocampus shows significantly elevated levels of cortisol in the MeA trained group in 

comparison with the control and water trained group. There were no differences between the 

groups in StM and arcopallium. 

The intermediate arcopallium has been suggested to be a limbic area (Zeier and Karten. 

1971; Davies et aI., 1997) and therefore probably affected by stress. since the arcopallium has 

been proposed to be homologous to the mammalian amygdala (Cohen. 1975; Dafters, 1975; 

Puelles et aI., 2000). 

However, because during dissection the whole area of the arcopallium was removed 

(including dorsal and posterior). differences in cortisol concentrations may have been 

counterbalanced between limbic (intermediate) and non limbic (dorsal) arcopallium. 

Nevertheless. cell proliferation studies did not show any differences between the diverse 

groups in the intermediate arcopallium suggesting that PAL may not be a sufficiently stressful 

experience to activate the arcopallium; in rats high stress activates in a diverse mode the 

amygdala and hippocampus. the former showing activation only after high stress accompanied 

by learning (Akirav et aI., 2001). 

Additionally, studies have shown that corticosterone is essential for PAL acquisition 

(Sandi and Rose. 1994a; Sandi et aI., 1995) and water maze training (Sandi et al.. 1997). So. if 
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the levels of corticosterone, and similarly of cortisol, are elevated due to stress, then learning 

is facilitated and the hippocampus experiences the effects of stress by exhibiting reduced cell 

proliferation and synapse genesis as it happens in rats and primates (Gould et aI., 1991b; 

Magarinos and McEwen, 1995; Gould et aI., 1998; Mirescu et aI., 2004). 

Nine days post training there are no effects in cell proliferation between the groups 

possibly because the effects of elevated glucocorticoids have faded away. As Sandi and Rose 

(1997) have shown, 15 minutes after PAL, corticosterone returns to its basal levels. In tissue, 

however, the changes occurring are quite different. Cortisol levels show significant arousal in 

the MeA trained group in relation to controls and water trained 20 minutes after training only 

in the chick hippocampus. Additionally, only the above mentioned group shows higher levels 

of cortisol 20 min after PAL when compared to 5 min. Although the explanation for this 

finding is unclear, it may indicate that adrenal steroids are present in the brain tissue for longer 

than in plasma. Another explanation could be that elevated glucocorticoids first pass into the 

circulation (blood) and then travel into the hippocampus, pointing possibly to a later response 

in the brain in comparison with plasma, meaning that since cortisol needs more time to invade 

the brain, the time points of peak stress steroid concentrations in the brain may appcar latcr in 

relation to the blood. 

The arcopallium and the striatum mediale on the other hand show elevated levels of 

cortisol in the MeA and water trained group respectively 5 minutes after training, however 

these effects are not present twenty minutes after training implying a shorter term exposure to 

cortisol. Furthermore, the water trained group has demonstrated higher levels of cortisol 5 

minutes after training in the chick hippocampus. Although an answer to these data cannot be 

specified, it is important to mention that in none of these chick groups, in the areas studied, is 

there increased cell proliferation 24h after BrdU injection. On the contrary, the striatum 

mediale shows increased levels of cell proliferation in the MeA trained group 9 days post 
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training (Dennon et aI., 2002), whilst data presented in Chapter four indicate a slight reduction 

in the water trained group in the ventral and dorsal Hp 24 after PAL in relation to controls, 

whilst the MeA trained group in the intennediate arcopallium shows no differences in 

comparison with control birds. It may, therefore, be presumed that significant reductions in 

cell proliferation exist mainly after long tenn action of cortisol. 

In conjunction with the results from the volume estimation, it might be suggested that 

the persistence of cortisol in the MeA trained group 20 minutes after training could be 

responsible for the lack of volume increase in this group 9 days post training. In tree shrews 

for example, it has been shown that psychological stress causes a reduction in hippocampal 

volume (Ohl et aI., 2000), whilst in rats chronic restraint stress induces a 5% volume reduction 

in the granule eelliayer (Pham et aI., 2003). 

6.3 FUTURE STUDIES 

The studies described in this thesis indicated that one trial passive avoidance learning 

induces synaptic and neuronal plasticity alterations in discrete areas of the chick brain. 

Additionally, apoptotic and cortisol studies were conducted in order to investigate the 

reductions in synapse and cell genesis observed in the chick hippocampus. Although the latter 

studies suggest that PAL may be a stressful experience for the hippocampus, further studies 

need to be perfonned to elucidate this finding by examining cell proliferation, synapse density 

levels and tissue cortisol levels at different times after training. 

6.3.1 Synaptogenesis studies in the ehiek dorsal and intermediate areopallium 

Electron microscopy studies could reveal if there is synaptic reorganization in the 

arcopallium of the chick brain. It has been suggested that the arcopallium is affected by PAL 

in chicks, whilst studies in rats have shown that the amygdala, is involved in stress and 
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learning. Differences between the distinct groups as well as between the areas (AI and AD) or 

the hemispheres could enlighten the events occurring in the chick brain after PAL. 

6.3.2 Neurogenesis studies in the arcopallium 

Double labelling studies may help investigate possible differences in neurogenesis in 

the two functionally diverse areas of the arcopallium. The data in chapter four showed an 

increase in BrdU labelling in the AI of the MeA trained group in comparison with the AD 24 

hours after training. Is neurogenesis also increased in the AI? Are there any differences in the 

percentage of double labelled cells for BrdU and NeuN between control, water trained and 

MeA trained birds? These questions could be possibly answered by confocal microscope 

imaging. 

6.3.3 Cell proliferation in the Hp 

Cell proliferation studies demonstrated a reduction in BrdU labelled cells in the dorsal 

Hp. Although synaptogenesis data indicate also a decrease ofaxodendritie synapses in the 

dorsal Hp, the two results could be better matched if cell proliferation had been studied 

separately in each hemisphere. No studies so far have examined cell proliferation for 

hemispheric asymmetries, it would be interesting to know if cell birth shows 'hemispheric 

preference' as it occurs during synapse formation. Furthermore, since a decrease in 

axospinous synapses was found 6 hours after training, cell proliferation studies at this time 

point could exhibit possible links between synaptic and neuronal plasticity. 

6.3.4 Neurogenesis studies in the nucleus taeniae and olfactory bulb 

Although double labelling studies have shown that the majority of newborn cells in 

both areas become neurones, a quantitative analysis could clarify the rate of neurogenesis and 
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gliogenesis in these two brain regions. Furthermore, it has been suggested that TnA is a sex 

related area implying possibly sexual dimorphism in cell proliferation between male and 

female birds. 

6.3.5 Apoptoti~ studies 

Earlier studies have shown that stress affects cell survival and death. Apoptotic studies 

one to two hours after PAL could illuminate the effects of PAL in cell survival and cell death. 

Another interesting time point for future studies is twenty minutes after PAL, since 

radioimmunoassay studies showed increased cortisol levels in the MeA trained group of the 

chick IIp. Furthermore, the AI, AD, BO and TnA would be important to be tested for 

differences in cell death which could then give a clearer explanation of the events taking place 

after PAL. Finally, TUNEL studies 5 minutes after PAL could elucidate any possible 

alterations in cell proliferation in arcopallium dorsale and intermediale. 

6.3.6 Cortisol studies 10,30,45 minutes and 1 hour after PAL 

Cortisol levels are decreased 20 minutes in comparison with 5 minutes after passive 

avoidance training in arcopallium and striatum mediale. However, in the Hp, the levels of 

MeA trained group show no changes between 5 and 20 minutes. Additionally, 20 minutes 

after PAL, the MeA trained group demonstrated increased levels of cortisol in relation to 

control and water trained birds. Is this effect long-lasting? And if yes, how long does it last? 

Different time point studies twenty minutes post training would clarify the duration of the 

cortisol effect in the chick hippocampus. If the effects appear to be long lasting, then the 

hypothesis that PAL is a stressful experience will be able to be strongly supported. 

Furthermore, studies 10 minutes after PAL could possibly demonstrate if cortisol shows a 
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similar decline to that observed after 20 minutes, which would possibly clarify the time course 

of cortisol availablility. 

CONCLUSION 

Although the questions remaining to be answered are many, the studies conducted for 

this thesis showed a different aspect of PAL and its effects firstly in the chick hippocampus 

and secondly in other areas of the limbic system. If future studies prove that PAL induces 

stress-related alterations, then the chick model could be possibly further used for the study of 

neurodegenerative diseases. 
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