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based on Concept Generation 

by 

Pejman Iravani 

Abstract 

Robot and multi-robot systems are inherently complex systems, for which de- 
signing the programs to control their behaviours proves complicated. More- 
over, control programs that have been successfully designed for a particular 
environment and task can become useless if either of these change. It is for 
this reason that this thesis investigates the use of machine learning within 
robot and multi-robot systems. It explores an architecture for machine learn- 
ing, applied to autonomous mobile robots based on dividing the learning task 
into two individual but interleaved sub-tasks. 

The first sub-task consists of finding an appropriate representation on 
which to base behaviour learning. The thesis explores the viability of using 
multidimensional classification techniques to generalise the original sensor 
and motor representations into abstract hierarchies of `concepts'. To con- 
struct concepts the research used standard classification techniques, and ex- 
perimented with a novel method of multidimensional data classification based 

on `Q-analysis'. Results suggest that this may be a powerful new approach 
to concept learning. 

The second sub-task consists of using the previously acquired concepts 
as the representation for behaviour learning. The thesis explores whether it 
is possible to learn robotic behaviours represented using concepts. Results 

show that is possible to learn low-level behaviours such as navigation and 
higher-level ones such as ball passing in robot football. 

The thesis concludes that the proposed architecture is viable for robotic 
behaviour learning and control, and that incorporating Q-analysis based clas- 
sification results in a promising new approach to the control of robot and 
multi-robot systems. 



ALL MISSING PAGES ARE BLANK 

IN 

ORIGINAL 



Contents 

Acknowledgements 
........................... 

1 

1 Introduction 2 

1.1 Motivation ................... .......... 
3 

1.2 Research question ............... .......... 
4 

1.3 Arguments of the thesis ........... .......... 
5 

1.4 Thesis structure ................ .......... 6 

2 Robotics: Architectures and Learning 8 

2.1 Intelligent agents and robots ................... 
9 

2.1.1 Basic definitions 
...................... 

9 

2.1.2 Characteristics of robotic systems ............ 
11 

2.2 Robot architectures ........................ 
13 

2.2.1 Deliberative or symbolic architectures .......... 14 

2.2.2 Reactive or behaviour-based architectures ....... 18 

2.2.3 Hybrid architectures ................... 
24 

2.2.4 Discussion 
......................... 

28 

2.3 Learning and reinforcement learning 
............... 

31 

2.3.1 Introduction 
........................ 

31 

2.3.2 Reinforcement learning 
.................. 

34 

1V 



2.3.3 Solving reinforcement learning problems ........ 
37 

2.4 Practical reinforcement learning 
................. 

41 

2.4.1 Dimensionality problems in learning ........... 
42 

2.4.2 Generalisation in reinforcement learning 
........ 

44 

2.5 Summary 
............................. 

51 

3 Concepts and 

Concept Generation 53 

3.1 Fundamental aspects ................... .... 54 

3.1.1 What are concepts? ................ .... 54 

3.1.2 Sets versus relational structures 

in classification .................. .... 57 

3.1.3 Multidimensional data 
.............. .... 58 

3.2 Multidimensional data classification ........... .... 62 

3.2.1 Introduction 
.................... .... 63 

3.2.2 Distance based clustering ............. .... 65 

3.2.3 Self-organising methods ............. .... 67 

3.2.4 Artificial neural networks ............. .... 69 

3.2.5 Incremental concept formation methods .... .... 71 

3.3 Limitations in multidimensional data 

classification ........................ .... 73 

3.3.1 Similarity metrics ................. .... 73 

3.3.2 Feature selection problem ............ .... 75 

3.3.3 Interpretability of hypothesis .......... .... 77 

3.4 Q-analysis and relational concepts ............ .... 78 

3.4.1 Introduction to Q-analysis 
............ .... 79 

V 



3.4.2 An incidence matrix representation ....... .... 81 

3.4.3 Simplex ...................... .... 82 

3.4.4 Hierarchical decomposition of simplices ..... .... 
84 

3.4.5 q-nearness, q-connectivity and structural 

similarity ..................... .... 85 

3.4.6 Hubs and stars .................. .... 88 

3.4.7 Classification using classifier hubs 
........ .... 89 

3.5 Finding classifier hubs 
.................. .... 90 

3.5.1 Star-hub analysis ................. .... 90 

3.5.2 Heuristic selection of classifier hubs 
....... .... 93 

3.6 Variable or feature selection by Q-analysis 
....... .... 94 

3.6.1 Simplex representation of the iris variables ... .... 96 

3.6.2 Star-hub analysis and classifier hubs 
...... .... 96 

3.6.3 Classification using classifier hubs 
........ .... 97 

3.6.4 Study of variable relevance ............ .... 
98 

3.7 Summary 
......................... .... 100 

4A Multilevel Architecture based on Concept Generation 103 

4.1 Introduction 
......................... ... 

104 

4.2 Arguments for a new architecture ............. ... 106 

4.2.1 Why not use other generalisation methods? ... ... 107 

4.2.2 Why this architecture? ............... ... 109 

4.3 Architecture overview .................... ... 
110 

4.3.1 Hierarchical lattice classification and concepts .. ... 113 

4.3.2 Relations between primitives in classification ... ... 116 

4.3.3 A unified view of concepts ............. ... 118 

vi 



4.4 The concept generation component ............... 119 

4.4.1 Hierarchical action classification ............. 120 

4.4.2 Hierarchical state classification ............. 122 

4.5 The behaviour learning and control 

component ............................. 125 

4.5.1 Behaviour learning 
.................... 125 

4.5.2 Robot control ....................... 127 

4.6 Summary 
............................. 128 

5 Experimental Results: Generalisation Concepts in Low-Level 

Behaviour Learning 130 

5.1 Experimental test-bed ................. ..... 131 

5.2 Generalisation state and action concepts ....... ..... 132 

5.2.1 Clustering states and actions .......... ..... 135 

5.3 Learning the navigation behaviour 
........... ..... 141 

5.4 Navigation behaviour for control ............ ..... 142 

5.5 The sensory-motor coordination effect ......... ..... 145 

5.6 Adaptive concept definition 
.............. ..... 149 

5.6.1 Adapting action and state concepts ...... ..... 151 

5.6.2 Incremental tree-structured K-means 
..... ..... 154 

5.7 Summary 
........................ ..... 158 

6 Experimental Results: Relational Concepts for Strategic Be- 

haviour Learning 160 

6.1 Experimental test-bed ...................... 161 

6.1.1 RoboCup simulation league 
............... 161 

vii 



6.1.2 Ball-passing behaviour 
.................. 

162 

6.1.3 Pass data gathering .................... 
162 

6.2 State in the ball-passing behaviour ............... 163 

6.2.1 State variables ...................... 
164 

6.2.2 Incidence matrix representation of the state ...... 168 

6.2.3 Simplex representation of the state ........... 
169 

6.3 Relational concepts in the ball-passing 

behaviour 
............................. 

169 

6.3.1 Structural differences between receivers and 

non-receivers ....................... 170 

6.3.2 Study of the effect of neighbouring players ....... 171 

6.4 Summary 
............................. 175 

7 Conclusions 178 

7.1 Answers to the research question ................ 178 

7.2 Thesis contributions ....................... 182 

7.3 Further work ........................... 186 

7.3.1 Towards goal-directed behaviour using relational con- 

cepts ............................ 186 

7.3.2 Extension to behaviour learning with concepts ..... 189 

7.3.3 Emergence and evolution of grounded 

communication ...................... 
191 

A Glossary 193 

References ................................ 195 

viii 



List of Figures 

2- 1 General configuration of a deliberative architecture ... ... 14 

2- 2 Reactive architecture .................... ... 
19 

2-3 Configuration of a generic hybrid architecture ......... 
24 

2 -4 Elements of the reinforcement learning framework 
.... ... 34 

2 -5 Discrete dynamics of state, action and reward ...... ... 35 

2 -6 Exponential growth of the state space size ........ ... 
42 

2 -7 CMAC feature selector ................... ... 
47 

2 -8 Generic multi-grid representation ........... ..... 49 

2 -9 Generic variable resolution representation ....... ..... 50 

3-1 An example of a hypothesis in concept learning 
........ 

55 

3-2 A two-dimensional space representing primitives and some 

concepts .............................. 
56 

3-3 Set versus relational classification ................ 
57 

3-4 General process of classification ................. 
65 

3- 5 A self organising map ................ ....... 68 

3- 6 Artificial neuron and neural network ....... ....... 
69 

3-7 Example of conceptual clustering ................ 71 

1X 



3-8 Mobile robots in different configurations and their similarity 

based on Euclidean distance 
................... 

74 

3-9 Tetrahedra representing the characteristics of two robots ... 
80 

3-10 A robot sensing different environmental states ......... 
81 

3-11 Example of simplices ....................... 
83 

3-12 Simplices representing the robot's sensory state ........ 84 

3-13 q-nearness of two simplices .................... 85 

3-14 Example of chains of q-connected simplices ........... 86 

3- 15 Some simplices and their hub 
........... ....... 88 

3- 16 Iris data 
....................... ....... 95 

3- 17 Neural networks used for validation ........ ....... 98 

3-18 Neural network classification error ................ 99 

4-1 A structural description of the proposed architecture ..... 105 

4-2 Atomic states and actions .................... 111 

4-3 A generic mobile robot ...................... 112 

4-4 State and action spaces for the generic robot .......... 112 

4-5 Classification of a set of primitives into a concept ....... 114 

4-6 Example of a multilevel lattice hierarchy 
............ 115 

4-7 A set classified with different relations ............. 116 

4-8 Physically different robots .................... 117 

4-9 Example of a generalisation versus a relational concept .... 118 

4-10 Robot trajectories and groups of `similar' trajectories ..... 120 

4-11 Hierarchical classification of action concepts .......... 122 

4-12 Atomic state ............................ 123 

4-13 Soccer players in the same positions but in different situations 124 

X 



4-14 Soccer players in similar situations discriminated by a temper- 

ature variable ........................... 125 

4-15 Behaviour function mapping state concepts into action concepts 126 

5-1 Test-bed 
.............................. 131 

5-2 Paths, perceived states and executed actions .......... 136 

5-3 Clustered state and action spaces ................ 137 

5-4 Concept indifferent to angle ................... 138 

5- 5 Clustered weighted state and action spaces ...... ..... 140 

5- 6 Concept dependent on distance and angle. ...... ..... 140 

5- 7 Hand coded vs concept behaviour control ....... ..... 143 

5- 8 Active state concept when robot is `near ' the target ... ... 144 

5- 9 Sensory-motor space and resulting state concepts .... ... 146 

5-10 Hand coded vs concept behaviour control after SMC 
..... 148 

5- 11 Representation with unique state and action concepts .. ... 151 

5- 12 Specialised state and action concepts ........... ... 152 

5- 13 A tree of state concepts .................. ... 153 

6-1 A passing scene and the data related to it ........... 163 

6-2 State representation ........................ 165 

6 -3 Neighbouring relations .................. .... 173 

6 -4 `Risky' pass ........................ .... 175 

7- 1 Example of generalisation and relational concepts ... .... 185 

7- 2 State concept representation of navigation history 
... .... 187 

7- 3 Robot controlled at different description levels 
..... .... 188 

7-4 Extension to the architecture .................. 190 

xi 



List of Tables 

2.1 Architecture characteristics ................... 
28 

2.2 Value function representation .................. 
38 

3.1 Incidence matrix M........................ 82 

3.2 Sub-simplex hierarchy 
...................... 

84 

3.3 Shared face matrix corresponding to M in Table 3.1 
...... 

86 

3.4 CorrAL data-set 
.......................... 

91 

3.5 A selection of hubs from the CorrAL data-set 
......... 

92 

3.6 Classifier hubs for the iris data 
.................. 

96 

3.7 Classification results ....................... 
97 

5.1 K-means parameters .............. ......... 137 

5.2 K-means parameters .............. ......... 139 

5.3 Concept representatives ............ ......... 141 

5.4 Behaviour function ............... ......... 142 

5.5 Behaviour function after SMC 
......... ......... 147 

5.6 Navigation accuracy .............. ......... 149 

6.1 Summary of the state variables ................. 167 

6.2 Incidence matrix representation of a team-mate player .... 168 

xii 



6.3 A selection of hubs for the pass data 
.............. 170 

6.4 Neighbour player relation ..................... 172 

xiii 



Acknowledgements 

Although PhD research is considered mostly to be the work of an individual, 

this often happens in the context of a team. Part of my team were my 

supervisors, Jeffrey Johnson and Lucia Rapanotti, who contributed to this 

thesis providing me guidance in the research process and many technical 

comments related to this thesis. I thank them for their help and continuous 

encouragement. 

I would also like to thank Marian Petre for organising and running the 

postgraduate research forums at the Computing Department. These forums 

helped me understanding what a PhD is about. Also to Tony Hirst who 

proofread this thesis and provided many useful comments. 

More personally, during these last four years I've shared many experiences 

with many good friends. Firstly, I would like to thank the people who shared 

the Atisha house, specially to Juanjo, Manoj, Tawanda, Narcis, Quentin, 

Miquel, Enrico, Tim, Jirka, Niall and Luis for all dinners, parties, political 

discussions and midnight pasta shared during this time. 

I would also like to thank all the students at the Open University, specially 

Jose Luis, Manuel, Joan, lestin, Sumit, Avik, Katerina, and Jonathan who 

in one way or another always had a word of advise and encouragement. 

Finally, I thank Aurelle, my parents Rosa and Bahman, my sister Jasmin 

and my brother Shayan for always being the strongest support I always had 

and still have. 

Pejman Iravani 

March 24,2005 

1 



Chapter 1 

Introduction 

This thesis is concerned with the design of autonomous robotic systems. 

Robotics systems are complex, in the sense that many loosely coupled parts 

interact to produce the system's final behaviour. For example, in mobile 

robots the effect of motors, sensors, noise, friction, inertia, mechanical com- 

ponents, changing environments, etc. play a role in the current and future 

state of the system. In such a context, and because the system can not be 

easily modularised, modelling, prediction and control of such systems prove 

to be complex. 

This complexity manifests itself in various manners. For example, in the 

combinatorial nature of the control of robot systems which, like in chess, it 

proves impossible to plan moves into the distant future. Moreover, robot 

systems are also chaotic in the technical sense: start a robot from exactly 

the same state and give it exactly the same command, and its trajectories 

will deviate from previous observations. 

This complexity means that it is impossible for the designer to foresee all 

the possible effects of the interactions between the robot, the task and the 
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environment. This poses serious difficulties in trying to program robots a 

priori and means that robots must learn from experience. 

1.1 Motivation 

We are interested in designing robotic agents which are capable of solving 

tasks and achieving goals autonomously, where autonomy is the capability 

of acting independently, as further explained in Section 2.1.1. 

Although there is no single accepted definition in the literature of what an 

agent is, here it is defined as a physical or simulated entity which is capable of 

acting in an environment autonomously. A more detailed definition of agent 

is also given in Section 2.1.1. In this thesis we sometimes use the term agent 

to mean a robot, when we want to emphasise its more abstract properties. 

Many issues arise in the design of fully autonomous agents. This the- 

sis focuses on one of them, namely adaptation, which is the capability by 

which an agent can transform its `way of acting' according to changes in its 

environment. For example, if a mobile robot is encountering problems in a 

navigation task (e. g. bumping into obstacles), then if by changing some of 

its properties (e. g. motion speed) it achieves a desired behaviour, we say 

that the agent has adapted to the environment. An agent with adaptive 

capabilities will be easier to design, as unforseen situations can be dealt by 

the agent itself. 

As will be discussed later, adaption capabilities can be achieved by hav- 

ing agents that learn from experience. Learning is a mechanism by which 

the agent adapts to undesired characteristics, such as the one mentioned 

previously. 
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Finally, the main focus in this thesis is learning in artificial robotic sys- 

tems, and as it will be seen in the next chapter, for learning methods to be 

practically applicable they require generalisation of experience and `knowl- 

edge'. 

1.2 Research question 

The main research question addressed in this thesis is: 

Can artificial robotic agents learn generalised entities, known as 

concepts, using raw sensory-motor data and their interaction with 

the environment? If so, is it possible to integrate such concepts in 

a multilevel architecture which allows for behaviour learning and 

robot control? 

More precisely, this question can be decomposed into the following parts: 

" Question Q1: Is it possible to use robotic sensor and motor data to 

learn abstract entities called concepts? 

" Question Q2: Is it possible to use such concepts as the representation 

for learning robotic behaviours? Do such concepts provide any ben- 

efits for behaviour learning? In particular, how do they address the 

generalisation problems faced in machine learning? 

" Question Q3: Is it possible to control autonomous mobile robots using 

this notion of concept? 
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" Question Q4: Is it possible to integrate the notion of concept within 

a multilevel architecture which exploits the definition of concepts for 

learning and control? 

1.3 Arguments of the thesis 

In order to answer the question in the previous section, this thesis makes the 

following arguments: 

Question Q l: 

" Argument Al: In general, autonomous robots gather information from 

the environment using their sensors. The information that robotic sen- 

sors provide is characterised by being highly dimensional, noisy and 

only partially observable. For example, a mobile robot could use a 

wide variety of sensor devices, such as, a sonar, infrared light sensors, 

cameras, bumpers, encoders, etc. resulting in a high dimensional sen- 

sory input. Also, the measurements could be inaccurate as different 

material surfaces, light conditions, frictions, etc. change the response 

of sensors. Finally, sensors provide only partial information, i. e. local 

and incomplete information about the environment. 

It will be demonstrated that, using this type of data and the robot's in- 

teraction with the environment, it is possible to acquire general entities 

or concepts, by applying different classification techniques. 

Question Q2: 

" Argument A2: It will be demonstrated that it is possible to develop a 

learning mechanism that exploits concepts as basic representations for 
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learning robotic behaviours. 

" Argument A3: It will be shown that behaviour learning using con- 

cepts addresses some of the problems related to continuous and high- 

dimensional input spaces. 

Question Q3: 

" Argument A4: It will be argued that concepts can be used for con- 

trolling autonomous robots in a variety of different contexts, including 

physical or simulated, single or multi-robot. 

Question Q4: 

9 Argument A5: It will be argued that a multilevel representation is 

needed for solving complex robot tasks such as in multi-robot soccer, 

with concepts existing at different levels of description. 

" Argument A6: It will be demonstrated that it is possible to replicate 

the multilevel architecture for learning behaviours of different complex- 

ity. 

The concluding chapter of this thesis explains how these arguments an- 

swer the research question. 

1.4 Thesis structure 

Following is a brief description of the contents in each of the chapters that 

appear in this thesis. 
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Chapter 2 introduces the background work related to this thesis, that is: 

robotic architectures and machine learning approaches. 

Chapter 3 defines `concepts' as classifications of particular multidimen- 

sional observations, and reviews some of the existent methods and 

techniques to classify multidimensional data. It introduces the method- 

ology of Q-analysis that will be used, in a novel manner, to define a 

new type of concept, known as relational concept. 

Chapter 4 integrates the work presented in the previous chapters into a 

multilevel architecture for behaviour learning and robot control based 

on concept generation. 

Chapter 5 experimentally analyses the proposed architecture applied to the 

learning and control of a robot in a low-level navigation task. In this 

chapter, the architecture exploits the usage of `generalisation' concepts. 

Chapter 6 gives some experimental results of applying the architecture to 

a higher-level strategic ball-passing behaviour. In this chapter, the 

architecture exploits the usage of `relational' concepts. 

Chapter 7 states the conclusions and the contributions of the research. The 

chapter also discusses a number of open questions raised by the re- 

search, suggesting various issues for further research. 
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Chapter 2 

Robotics: Architectures and 

Learning 

This chapter presents a critical review of the literature related to this disser- 

tation, identifying some open questions. Some of these are the focus of our 

research, and are addressed in the following chapters. 

Section 2.1 presents a general introduction to the field of intelligent agents 

and robots. From this it is identified that adaptability and learning are key 

characteristics for building flexible and autonomous agents. 

Section 2.2 presents the most common robotic architectures, then dis- 

cusses their limitations, benefits and suitability for supporting adaptability 

and learning. 

Section 2.3 presents the literature related to learning and adaptability 

in artificial systems. It presents reinforcement learning in greater detail as 

this is the context for the learning architecture presented in the following 

chapters. 

Section 2.4 discusses issues that complicate the practical application of 
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machine learning techniques on robotic systems. 

Section 2.5 presents some conclusions drawn from the literature review. 

stating the issues identified for research in this thesis. 

2.1 Intelligent agents and robots 

This section providing a general definition of autonomous robots or agents, 

and describes their most important characteristics. 

2.1.1 Basic definitions 

This thesis defines an agent following the definitions in [Jennings et al., 1998, 

Wooldridge and Jennings, 1995] as an artificial entity, which possesses char- 

acteristics such as: autonomy, social ability, pro-activity and real-time actu- 

ation. To this general definition of agent, we add the characteristic of embod- 

iment [Chrisley and Ziemke, 2002, Steels, 1995c] to define what we consider 

to be an autonomous robot. Thus, an autonomous robot is an embodied 

agent. 

Before further describing the characteristics that define autonomous robots, 

it is necessary to remark that, many of the definitions such as autonomy, em- 

bodiment, and agency are not `universal', and different authors define them 

differently. We have used the descriptions that best suit the purposes of this 

thesis, which are following: 

" Autonomy [Steels, 1995b, Steels, 1995a] describe intelligent and au- 

tonomous agents from a biological perspective. From this perspective, 

it is possible to differentiate between automaticity (acting as a stand- 
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alone system, automatic) and autonomy (capability of forming and 

adapting its principles of behaviour, autonomous). For example, an 

automatic system would be one capable of flying a plane, given a prior 

control strategy (how to fly) and the necessary information to apply the 

given control (flying path). An autonomous plane would be one capa- 

ble of changing its prior knowledge in order achieve some internal goals 

(e. g. changing its flying path or even its flying strategy). As we can 

see from this example, there are situations in which autonomy needs to 

be constrained in order to maintain the necessary safety requirements. 

This thesis supports the view, in which an agent is autonomous if it can 

adapt its behaviours so that it satisfies some goals. For this definition 

of autonomy, adaptive behaviour is a key element. 

" Social ability an agent is said to have social abilities if it is capa- 

ble of interacting with other agents or humans, so that, the result of 

this interaction is to maximise collective benefit rather than individual 

benefit. Social ability has been studied in the context of Multi-Agent 

Systems (MAS) [Weiss, 1999, Jennings et al., 1998], in which multiple 

agents must cooperate, coordinate and negotiate in order to achieve 

and maximise collective benefit. In [Cao et al., 1997] a comprehensive 

critical review of cooperative mobile robotics is presented, revealing the 

main issues related to cooperative or team action. 

" Real time actuation an agent acts in real-time if its actuation achieves 

control of its behaviour in a timely manner. That is, the agent is capa- 

ble of reacting to changes in the environment as fast as these happen. 

For example, a robot with a real-time vision system would be one that 
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is capable of sensing the movements and changes that occur in its en- 

vironment. 

" Pro-activeness an agent is pro-active if it exhibits goal directed be- 

haviour, rather than purely reacting to the stimuli perceived from the 

environment [Wooldridge and Jennings, 1995]. This characteristic is 

present in agents that possess deliberative capabilities (i. e. for plan- 

ning and predicting future situations), and use them to actively select 

the appropriate actions to take, without need for any environmental 

stimulus to occur. 

" Embodied embodiment makes reference to robots which have some 

hardware implementation (physical bodies) or some software simula- 

tions of it, and that are situated in an environment with which they 

interact. Embodied robotics, embodied artificial intelligence and sit- 

uated cognition have emphasised that intelligence is not an indepen- 

dent capability of the agent, but that it is related to the interaction 

between the agent and the environment [Chrisley and Ziemke, 2002, 

Pfeifer and Scheier, 2001, Steels, 1995c]. This view of intelligence high- 

lights the role that the `body' and the sensory-motor capabilities of the 

intelligent agent play in cognition. 

2.1.2 Characteristics of robotic systems 

The following are some of the characteristics of robotic systems that com- 

plicate their control, and which must be taken into account when design- 

ing robots. These characteristics are described in any introductory text on 

robotics, such as [Nehmzow, 2003]. 
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" Sensor and motor noise sensors and motors are subjected to certain 

amount of inaccuracy or error in their readings or actuation due to 

noise. Simulations of physical robots and environments usually add 

random noise to make simulations more realistic. 

9 Stochastic environments environments are stochastic. Unlike in the 

game of Chess, where every action changes the board configuration in 

a deterministic manner, the effects of a robot's actions are stochastic 

and depend on the robot-environment interaction. 

" Dynamic environments environments have dynamic properties, i. e., 

even if the agent does not perform any action, the environment may 

change. Changes can be caused by other agents sharing the same envi- 

ronment. For example, in a soccer game, if a player does not act, the 

game keeps changing as other players keep acting. 

9 Partial observability robots can only perceive the environment par- 

tially, there are areas in the environment which their sensors can not 

access, usually due to sensor-range constrains. For example, a robot 

soccer player may not perceive where the ball is, as it may be obscured 

by another player in the field. 

These characteristics complicate robotic control, and as will be shown 

in the next section, robotic architectures need to take them into account in 

order to produce their control regimes. 
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2.2 Robot architectures 

The selection of an appropriate architecture is an important factor in the 

design of robotic systems as it provides the system's structure and style 

[Coste-Maniere and Simmons, 2000]. Structure refers to how the system can 

be divided into sub-systems and how these interact. Structure is usually 

represented by some graphical architectural description, where sub-systems 

are represented by boxes and arrows between them to indicate their inter- 

action. The style refers to the computational concepts that underlie each 

sub-system, for example detailing how each sub-system operates. This sec- 

tion provides a review of some architectures used to design robots, focusing 

on their structure and style characteristics. 

Three main architectures have been developed for the design of intel- 

ligent robots, namely, deliberative, reactive or behaviour-based and hybrid, 

which are described in sections: 2.2.1 to 2.2.3. These sections present the 

main characteristics of each architectures, focusing on the following: (i) data 

representation, i. e. the way the architecture represents the information it 

processes. (ii) Action selection mechanism, i. e. the mechanisms used for 

choosing among the possible actions. (iii) Real-time actuation, i. e. whether 

the architecture is capable of real-time actuation in dynamic environments 

such as robotic environments. (iv) Goal-directed behaviour, i. e. whether the 

actions selected are purely stimulus-response or selected to achieve a spec- 

ified goal. (v) Architectural structure, i. e., how the architecture is decom- 

posed into sub-systems. (vi) Usage of the agent-environment interaction, i. e. 

whether the interaction with the environment is exploited in the control of 

the agent. (vii) Applicability of learning, i. e. how learning is applicable to 
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each architecture. 

Section 2.2.4 provides a general discussion of the weaknesses and strengths 

of each of the architectures, based on their characteristics. 

2.2.1 Deliberative or symbolic architectures 

Deliberative architectures, such as IRMA [Bratman et al., 1988] sometimes 

known also as symbolic, are based on the classic symbolic AI approach, in 

which the agent operates sequentially according to three steps, namely sense, 

plan and act. 

I; 
CD 

z t. 

Symbol Symbol Action 
Generation Manipulation Generation 

Figure 2-1: General configuration of a deliberative architecture 

Figure 2-1 illustrates the general configuration of a deliberative architec- 

ture. The three blocks labelled sense, plan and act are described following. 

1. Sense the agent observes its environment, and computes a set of sym- 

bols and expressions that represent the state of the environment (e. g. 

a set of objects in the environment and their positions) and some of 

the agent's internal variables (e. g. the task to carry out). 
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2. Plan the agent uses the previous expressions and a priori defined mod- 

els, which provide information of the robot-environment interaction, to 

compute plans for achieving the task's goal. 

3. Act the agent executes the plan. 

Deliberative approaches are based on the generation and manipulation 

of symbols and expressions, as captured by the Physical Symbol System 

Hypothesis [Newell and Simon, 1976]. The hypothesis states: 

"The Physical Symbol System Hypothesis: A physical symbol sys- 

tem has the necessary and sufficient means for general intelligent 

action ". 

This hypothesis says that `general intelligent action' can be obtained by 

using physical symbol systems. These systems comprise collections of three 

elements, namely symbols, expressions and processes. Symbols are represen- 

tations of physical patterns that obey physical laws and can be engineered 

e. g. `some physical objects'. Some of these symbols can be instantiated e. g. 

`physical objects observable at a particular point in time'. Instantiated sym- 

bols form expressions that indicate the relation between these symbols, e. g. 

`physical objects being near to each other'. Processes are operations that 

create, modify, reproduce and destroy expressions. Then, a physical symbol 

system is a machine that creates and modifies expressions through time. 

General purpose computers and robots are examples of physical symbol 

systems. Robots can compute symbolic expressions which represent, for ex- 

ample, the state of the environment they are observing at a point in time. 
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Then, they can use planners (explained below) to modify these expressions, 

so that they achieve a desired state known as the goal state. 

Planning [Georgeff, 1987] is the main mechanism used to reason in the de- 

liberative approaches. Planners like STRIPS [Fikes and Nilson, 1971], take 

a symbolic description of the world and of the desired goal state, and they 

possess a set of action descriptions (operators), expressed as pre- and post- 

conditions, which they use to compute plans, using some kind of heuristics; 

for example, means-ends analysis, which evaluates post-conditions of actions 

(what will happen after the action is executed) against the goal. 

Data representation 

Deliberative architectures are characterised by the usage of symbolic expres- 

sions that represent the environment, the robot's actions and the interactions 

among these two. In order to generate this kind of representations the agent 

must incorporate the means to transform its sensory information into ab- 

stract symbolic expressions. Usually, the symbolic expressions used by the 

agent are pre-defined by the designer. Defining abstract symbols in this man- 

ner incurs in the well known problem of symbol grounding [Hamad, 1990], 

which refers to how the agent can relate the defined abstract symbols to the 

concrete information it possesses. In other words, given the defined symbols, 

how can these be instantiated using sensor information? 

Action selection mechanism 

Deliberative architectures use planning techniques as their action selection 

mechanism. Planning is used to operate on the symbolic expressions and 

16 



elaborate plans, which will dictate the agent's behaviour. 

Real-time actuation 

Planning is a computationally-intensive, hence a time-consuming task; there- 

fore it proves inappropriate for real-time actuation where actions must be 

selected rapidly. Moreover, the dynamics and uncertainty of robotic environ- 

ments pose greater difficulties, as plans need to be constantly updated and 

re-evaluated to remain sound with the current state of the environment. 

Goal-directed behaviour 

Deliberative architectures are goal-directed, as the plans are computed for 

the goal to be achieved. Moreover, these architectures do not need stimuli 

to produce actions. 

Architectural structure 

Deliberative architectures are decomposed functionally: this means that their 

structure follows from the functional decomposition of, first sensing, then 

planning and finally acting (see Figure 2-1). This functional decomposition 

does not allow the implementation of different parallel processes to solve the 

task as the sequential order of sense, plan and act must be retained. 

Usage of the agent-environment interaction 

Deliberative architectures are provided with a priori models of the agent 

interaction with the environment and use these models to predict the out- 

come of actions in the future. This is the reason why uncertainty becomes a 
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problem for the deliberative approach as it can not be modelled a priori. 

Applicability of learning 

Learning has been exploited in deliberative architectures, for example in 

learning plans from experience [Carbonell, 1983] or refining planning opera- 

tors [Carbonell and Gil, 1990]. 

2.2.2 Reactive or behaviour-based architectures 

Reactive architectures, such as: subsumption [Brooks, 1985], situated au- 

tomata [Rosenschein and Kaelbling, 1995, Kaelbling and Rosenschein, 1990, 

Rosenschein and Kaelbling, 1986], motor schemas [Arkin, 1989, Arkin, 1987], 

also known as stimulus-response, embodied or behaviour-based architectures 

were introduced to overcome the difficulties of applying deliberative archi- 

tectures in dynamic, complex and uncertain systems, such as robots in their 

environment. 

For deliberative architectures, symbolic expressions are essential for in- 

telligent actuation; in the reactive approach, symbolic representations are 

eliminated. Reactive architectures are usually defined using a collection of 

behaviours or behaviour network as basic representation elements. Stimuli 

sensed from the environment are directly introduced into the behaviour net- 

work which produce a set of actions that are executed in the environment. 

Figure 2.2(a) illustrates the general configuration of a reactive architecture. 

A behaviour [Arkin, 1998] is defined as a partial mapping between stimuli 

and responses. Stimuli usually relate to the robot's sensory information, 

while responses relate to the robot's actions. For example, detecting an ob- 
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stacle is a stimulus, while the corresponding response could be turning to 

avoid it. Stimulus-response mappings are usually implemented using if-then 

rules. Out of all the collection of behaviours, at any point in time only a 

sub-set of them are selected for actuation. The mechanism for selecting the 

appropriate sub-set of behaviours is known as behaviour arbitration. Reac- 

tive architectures are also known as embodied architectures as the robot's 

behaviour is the result of the interaction between the robot and the environ- 

ment [Pfeifer and Scheier, 2001, Steels, 1995c]. 

Behaviour 
network 

sense act 

Environment 

(a) Configuration of a reactive architecture 

robot 
control 

" 
" 

map 
building 

indoor 

Sensors obstacle Actuators 
avoidance 

(b) Brooks' Subsumption architecture 

Figure 2-2: Reactive architecture 

One of the first robots based on the reactive architecture was introduced 

by Grey Walter [Walter, 1953]; the "Machina speculatrix" was a simple au- 

tonomous mobile robot, which used a hardware electronic circuit for its con- 

trol. Light-following, battery-recharging and object-avoidance, were some of 

its possible behaviours. One of the most interesting characteristics of this 

architecture was that the robots did not create, store or compute any explicit 

symbolic representation, and actions were not planned. Instead, the robot's 

resulting actions were an emergent property of the interaction between the 

robot, its environment and the stimulus-response behaviours. 
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Braitenberg's [Braitenberg, 1986] vehicles (autonomous mobile robots) 

use either direct coupling between sensors and actuators, or simple neu- 

ral networks, to achieve behaviours such as object-attraction/repulsion, and 

even capabilities of learning and memorising. Again, these vehicles, did not 

create, store or compute any symbolic representations. 

Brooks [Brooks, 1990, Brooks, 1985] presented the subsumption architec- 

Lure, one of the best-known reactive architectures. The subsumption ar- 

chitecture is a layered architecture, in which each layer corresponds to a 

stimulus-response behaviour. Simple behaviours are at the lower-end of the 

architecture, while more complex are at higher-levels (see Figure 2.2(b)). 

Behaviours do not use any kind of symbolic representation, and do not use 

planning to decide which actions to select. In this architecture, the robot's 

global behaviour emerges from interaction between the robot, the network 

of behaviours and the environment. The subsumption architecture takes its 

name from the mechanism used for behaviour arbitration. Subsumption al- 

lows active complex behaviours to subsume simpler ones. Because of the 

layered ordering of behaviours, the subsumption architecture allows for in- 

cremental development, that is, after building and successfully testing some 

behaviours, more complex ones can be developed on top of the "working" sys- 

tem. Some authors [Brooks, 1991] have taken the view that this architecture 

is capable of attaining general intelligence. 

Data representation 

Reactive architectures do not use symbolic representations; instead they use 

the input information directly from sensors, alleviating one of the difficulties 

20 



of the deliberative approaches, i. e. there is no symbol grounding problem as 

no symbols are used by this architecture. 

Reactive architectures use only implicit representation by allowing be- 

haviours to store and use state representations [Mataric, 2001, Mataric, 1999, 

Mataric, 1997]. For example, in [Michaud and Mataric, 1999] a tree-like 

representation is used to store the history of behaviour transitions; this 

tree is then used to learn and select the most adequate sequence of be- 

haviours. In [Goldberg and Mataric, 1999] augmented Markov models are 

presented and used for modelling the dynamics of the robot-environment in- 

teraction. These models are essentially Markov chains with added statistical 

measures for state transitions. A hierarchical behaviour-based architecture 

is presented in [Nicolescu and Mataric, 2002]; this architecture introduces 

abstract behaviours as explicit representations of the behaviours' pre- and 

post-conditions. Then, networks of abstract behaviours are used to specify 

plans. In [Mataric, 1992, Steels, 1995c] a subsumption architecture is used 

for the navigation of a mobile robot, detecting landmarks and build maps 

which are a representation of the environment. 

Action selection mechanism 

Action selection is tightly coupled to the sensory information through the 

stimulus-response behaviour. That is, a sensory stimulus is received and is 

mapped, using the behaviour network, onto motor outputs. 
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Real-time actuation 

The stimulus-response mechanism produces a fast and computationally in- 

expensive actuation. This makes reactive approaches suitable for acting in 

real-time. 

Goal-directed behaviour 

Most reactive architectures need stimuli to produce motor-outputs, thus the 

robot's actions are the result of the interaction between the sensory input 

and the robot's behaviour network. This approach needs sensory stimuli 

to produce actions, thus it is considered purely reactive. Some alternatives 

to the necessity of stimuli to produce actions have also been studied. For 

instance, Maes [Maes, 1989, Maes, 1990] developed a network of behaviour- 

like elements known as behaviour networks, where each behaviour in the net- 

work has associated pre- and post- conditions from and to other behaviours. 

These networks represent the goals for the agent, and by spreading activation 

through the network, the agent achieves some planning-like capabilities. Us- 

ing of these types of networks results in reactive architectures being capable 

of achieving goal-directed behaviour. 

Architectural structure 

Reactive architectures are behaviourally decomposed (see Figure 2-2) into 

layeres or modules, each corresponding to an independent and complete be- 

haviour. Here, independent means that the behaviour can work in isolation 

of other behaviours, and completeness refers to the behaviour taking sensory 

inputs and producing motor outputs (from input to output). These charac- 
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teristics of behaviours facilitate their implementation as parallel processes, 

as each process can be implemented by a behaviour. Moreover, modularity 

and incremental implementation are also possible using behaviours. 

Usage of the agent-environment interaction 

The interaction between the agent and the environment is essential in reac- 

tive approaches as it drives the agent towards the desired goal. This means 

that without any environmental stimulus the agent would not be capable 

of performing any task, as stimuli are necessary for the responses to be ac- 

tivated. Reactive architectures encode the solution to the task within the 

structure of the architecture, which makes it difficult to achieve flexible goal 

selection, although some mechanisms can be used to achieve goal-directed 

behaviour [Maes, 1989, Maes, 1990]. 

Applicability of learning 

Learning has been applied extensively to these architectures. Reactive ar- 

chitectures approach learning by using behaviours as substrate elements for 

learning [Mataric, 2001]. This means, that the agent must learn which is 

the appropriate behaviour to execute at any given time. For example, in 

[Mahadevan and Conell, 1991] a box-pushing task is learned by associating 

different stimulus-response behaviours to the state observed by the robot. 

Similarly, in [Maes and Brooks, 1990] a walking task is acquired by learning 

to coordinate different behaviours. 
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2.2.3 Hybrid architectures 

Hybrid architectures are mostly layered architectures that combine aspects 

of the, previously seen, reactive and deliberative architectures [Gat, 1998]. 

Hybrid architectures try to benefit from the fast and computationally cheap 

response of reactive systems for situations in which there is no time for de- 

liberation, while they can also benefit from deliberation to plan long-term 

strategies. Figure 2-3 illustrates a generic configuration of a hybrid architec- 

ture. 

Deliberative Layer 

Mediator Layer 

Reactive Layer 

Environment 

Figure 2-3: Configuration of a generic hybrid architecture 

Hybrid architectures have their functionality divided into layers, i. e. a 

layer for reactive control, a layer for deliberative control and an intermediate 

layer. Each layer is explained as follows. 

The reactive layer is in charge of time-critical behaviours. Time-critical 

behaviours are those that need to be executed in real-time (see Section 2.1.1). 

For example, in robotics these behaviours could include object avoidance or 
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goal-keeping which must be executed in real-time in order to avoid collisions 

or letting in a goal. In order to achieve real-time actuation, hybrid archi- 

tectures use mainly stimulus-response behaviours in their reactive layer. For 

instance, SSS [Connell, 1992] uses PID controllers, which are functions that 

map sensed input values into an output control value. 

The deliberative layer deals with the behaviours that need planning, i. e. 

deliberative behaviours. Deliberative behaviours are used to solve the agent's 

long-term goals. These could include strategic decision making, such as the 

strategies used by the robots in a football team to choose the appropriate 

actions to score goals. The deliberative layers are usually implemented using 

planning techniques similar to those used for deliberative architectures. For 

example, TouringMachines [Ferguson, 1992] uses a hierarchical planner. 

The mediator layer has the task of mediating among the reactive and the 

deliberative layers. Mediating among layers means that, as the agent uses its 

reactive layer to react to the environment's stimulus, it must also act towards 

satisfying the plan produced by the deliberative layer. The mediator must 

be designed taking into account whether plans are first elaborated and then 

sent to the mediator to be executed such as in 3T [Bonasso et al., 1997], or 

whether the mediator requests a plan from the deliberative layer such as in 

ATLANTIS [Gat, 1992]. 

Other examples of hybrid architectures include: Procedural Reasoning 

System [Georgeff and Lansky, 1987, Ingrand et al., 1992], and Chella's archi- 

tecture [Chella et al., 1998, Chella et al., 1997b, Chella et al., 1997a] based 

on the lingmstic, conceptual and sub-conceptual components. 
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Data representation 

Hybrid architectures exploit both symbolic representations, and raw sensor 

and motor information. This is achieved by dedicated layers which deal with 

the different types of information. The low levels or reactive layers use raw 

sensor and motor data just like reactive architectures, while the deliberative 

layer usually deals with symbolic representations, as in the deliberative ap- 

proach. In hybrid architectures the symbol grounding problem is addressed 

by the mediator layer, which must translate the deliberative's layer symbolic 

information into information understandable by the reactive layer and vice 

versa. 

Action selection mechanism 

Action selection in hybrid architectures is more complicated than in reactive 

architectures, as it needs to take into account the actions selected by the 

reactive and deliberative layers. The mediator layer is usually in charge of 

mediating between the two layers, and therefore, coordinating the action 

selection process. 

Real-time actuation 

Real-time actuation is achieved in hybrid architectures through the reactive 

layer, although the actuation of this layer could be slower than in the reactive 

architecture, given the possible conflicts between reactive and deliberative 

layers. 
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Goal-directed behaviour 

Hybrid architectures achieve goal-directed behaviour by following the plans 

generated by the deliberative layer. 

Architectural structure 

Hybrid architectures are composed of three vertical layers. Each layer of 

the architecture has different functionality associated with it, namely: react, 

mediate or deliberate. This layered configuration allows the execution in 

parallel of the functions of each layer. For example, the reactive layer can be 

executing low-level navigational behaviours such as object avoidance while 

the deliberative layer could be path planning. 

Usage of the agent-environment interaction 

The interactions with the environment need to be carefully studied, as each 

layer of the architecture will respond to them in a different manner. The 

global outcome of the agent decisions will therefore need to be a coordinated 

response to these interactions. 

Applicability of learning 

Hybrid architectures have been applied in combination with learning meth- 

ods. For example, [Benson and Nilsson, 1995] uses a hybrid architecture to 

learn models (effects) of the actions of an agent. In [Hu and Cu, 2005] a hy- 

brid architecture which uses reinforcement learning to learn fuzzy rules and 

genetic algorithms to tune its parameters is presented. 
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2.2.4 Discussion 

The previous sections have described the characteristics of the different ar- 

chitectures, these are now summarised in Table 2.1. 

Table 2.1: Architecture characteristics 

Deliberative Reactive Hybrid 

Representation symbolic implicit symbolic 

Action selection planning stimulus-response planning + stimulus-response 

Real-time action no yes yes 

Goal-directed yes yes yes 

Structure functional behavioural functional-behavioural 

Embodied no yes yes 

Learning yes yes yes 

In robotics, the characteristic of real-time actuation is of central impor- 

tance. As illustrated in Table 2.1, reactive or behaviour-based and hybrid 

architectures are capable of real-time actuation, this is because they use re- 

active action selection mechanisms such as stimulus-response. Contrarily, 

planning methods are not well suited for dynamic and uncertain environ- 

ments such as those observed in robotics. The architecture proposed in this 

thesis uses reactive action selection mechanisms, thus being capable of real- 

time actuation. 

Table 2.1, shows that all of the architectures are goal-directed, i. e., all 

drive the robot towards achieving a goal. Deliberative approaches do so by 

computing plans that satisfy the goal, whereas reactive approaches `encode' 

the goal-directed behaviour in the hierarchy or network of behaviours. That 

is, the interactions between the robot, the environment and the behaviours, 

drive the robot towards achieving the goal of the task. This approach re- 
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suits in a more `hard-wired' goal-directed behaviour, as changing the goal 

means having to change the way behaviours are chosen (behaviour arbitra- 

tion mechanism). Contrarily, planning is more flexible for changing goals, as 

only the plan needs to be changed. As will be discussed in this thesis, the 

proposed architecture yields new insights into goal-directed behaviour within 

the reactive action selection approach. 

The structure of any architecture conditions its processing. For example, 

the functional composition of the deliberative approach conditions it to a se- 

quential processing, i. e. sense, plan and act. Contrarily, reactive and hybrid 

architectures have a behavioural structure, i. e. hierarchies of networks of in- 

terconnected behaviours. This structure allows the important aspect of paral- 

lel processing. Parallel processing is essential in the robotics domain in order 

to achieve real-time actuation [Hu and Brady, 1995, Hu and Brady, 1996]. 

Behaviourally structured approaches allow behaviours to be implemented in 

concurrent and distributed modules. 

As can be seen from Table 2.1, reactive and hybrid architectures are 

the most suitable architectures to be applied in robotics as they share the 

characteristics of real-time actuation, goal-directed behaviour, behavioural 

decomposition, embodiment and applicability of learning. Although these 

architectures, are suitable for robotic control, they also have some shortcom- 

ings. For instance, hybrid approaches need to have high-level and low-level 

behaviours coordinated by the mediator layer, which often proves difficult 

to design. An issue with behaviour-based architectures is whether they can 

extend to higher-level behaviours such as communication in natural language 

or episodic memory. It has been argued that, for achieving these behaviours, 
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explicit representations are necessary [Steels and Baillie, 2003]. Deliberative 

architectures use explicit representations (symbols), but this approach has 

failed due to the difficulty of grounding the meaning of a priori defined sym- 

bols with a robot's sensor and motor data. In this context, an architecture 

which generates representations in a bottom-up fashion is desirable, that is, 

an architecture that uses sensor-motor data and the robot-environment inter- 

action to drive the generation of explicit representations. This thesis develops 

an architecture for robots based on the bottom-up generation of explicit and 

grounded representations known as concepts. 

In conclusion, a robotic architecture must be: (i) reactive, (ii) flexible 

at defining goal-directed behaviours, (iii) behaviourally structured, and (iv) 

capable of generating grounded representations. This thesis proposes an 

architecture based on the reactive and behaviour-based approaches, which 

generates grounded representations known as concepts, and uses these to 

learn control behaviours. As will be explained later in the thesis, concepts 

have a two-fold function: 

" Generalisation. 

" Intermediate representation. 

In this thesis, generalisation is in order to represent a large number of 

elements using a smaller representation, and creating intermediate represen- 

tations is in order to bootstrap low-level sensor-motor data into abstract 

representations with emergent properties. 
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2.3 Learning and reinforcement learning 

As introduced in Section 2.1.1 adaptability is a key factor for achieving au- 

tonomy in artificial systems. Moreover, the ability of robots to learn provides 

them with means for adapting to changing circumstances in their environ- 

ment [Brooks and Mataric, 1993]. Let us exemplify these characteristics of 

learning systems with the following example. A robot soccer player has been 

programmed to successfully (performance measure is high) score-goals (task) 

using its shooting device. Let us assume that during a football game, this 

device has been deformed, and therefore its success has been affected (perfor- 

mance measure decreases). It would be useful if this robot had the capability 

of using the experience with this new shooting device (deformed) to learn a 

new `way' of shooting, such that scoring becomes again successful (perfor- 

mance measure increases). In this example both of the previous character- 

istics of learning systems are represented, namely, the agent autonomously 

aims at satisfying its goals (i. e. scoring) and the agent adapts to a changing 

circumstance of the environment (deformation in shooting device). 

This section provides a review on the literature related to robotic learning 

and adaptability. It emphasises especially the reinforcement learning frame- 

work, as this sets the context for the learning architecture developed in this 

thesis. 

2.3.1 Introduction 

The general definition of an agent that learns from experience is as follows: 

an agent is said to learn from experience with respect to some tasks or per- 

formance measure, if its performance measure for the tasks improves with 
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experience [Michell, 19971. 

In general, any artificial learning system is composed of the following 

parts. 

" Training experience this is the data used by the learner to improve 

its performance at the given task. Depending on the type of data 

provided, the learner can be classified as a supervised or unsupervised 

learner. A supervised learner needs to be presented with the training 

data and its `correct' relationship to the task. For example, the train- 

ing data presented to a neural-network trained using backpropagation 

is supervised, as the network is presented with the desired output (cor- 

rect output) for each input [Michell, 1997]. Unsupervised learners do 

not need to be given the relationship between the data and the task. 

For example, training a robot to navigate using rewards is an unsu- 

pervised learning task, as the rewards can indicate that some actions 

are bad (e. g. actions that lead to bumping into obstacles) and others 

are good (e. g. actions that lead to the goal position), but does not 

indicate which is the appropriate action for the robot to take; it only 

provides an evaluation measurement (reward). As will be shown later, 

reinforcement learning is an instance of unsupervised learning. 

" Target function the target function is the function the learner must 

acquire, i. e. what must be learned. For example, in the previous navi- 

gation task, the target function is to navigate to a destination without 

colliding with obstacles. 

" Representation of the target function the agent can encode inter- 

nally the target function using different representations. For example, 
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a target function could be represented by the weights, thresholds and 

connections of a neural network, or more simply, in a table representing 

the output corresponding to each input. 

" Function approximation algorithm in order to learn the target 

function, the agent must approximate its representation of the target 

function towards the desired target function, in other words, to manip- 

ulate the representation of the target function so that it approximates 

to the target function. This process depends on how the target function 

is represented and the algorithm used to approximate it. For example, 

if the target function is represented using a neural network, the most 

likely parameters to be learned are the weights associated with each 

neuron, and these could be learned using an approximation algorithm 

such as backpropagation. 

In robotics it would be desirable to indicate only the goal to be achieved, 

and for the robot to learn how to achieve it. In some sense, this resembles 

unsupervised learning, where goals can be defined in terms of rewards, and 

where the learner can use trial-and-error techniques to gain the highest re- 

ward. Moreover, unsupervised learners are more autonomous as they can 

continually learn by interacting with their environment. Learning in this 

fashion is the central aim of reinforcement learning, where the learning agent 

learns through being driven by rewards and trial-and-error. The following 

section gives a review of the characteristics of reinforcement learning most 

related to the thesis. 
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2.3.2 Reinforcement learning 

Reinforcement Learning (RL) is the problem faced by an agent that learns, 

using only the interaction with the environment as training experience, which 

are the actions to take in order to maximise a performance measure known 

as reward [Ribeiro, 2002, Sutton and Barto, 1998, Kaelbling et al., 1996]. 

The framework to solve the RL problem is defined by the following ele- 

ments [Kaelbling et al., 1996]: 

9A discrete set of environmental states, S. 

9A discrete set of actions available to the agent, A. 

9A set of scalar reinforcement signals (rewards), R. 

In robotics, any state, scS, is defined by the combination of the robot's 

sensors. For example, if x1, X2). .. xn are n sensors, then the state is defined 

as: s= {xl, x27 ... xn}. Each of the sensors composing the state are known 

as state variables. Each action, aEA, is a possible command that the robot 

can execute, for example, by setting the speed of its motors. Finally, rER, 

is a reward value. Figure 2-4 illustrates the interaction of these elements 

under the RL framework. 

Figure 2-4: Elements of the reinforcement learning framework 
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Assuming a discrete definition of time, states, actions and rewards can be 

sequentially ordered to describe the dynamics of any discrete-time system. 
For example, Figure 2-5 illustrates the dynamics of an agent interacting 

with its environment. In these dynamics, si represents the environmental 

state observed at time i, a2 is the action executed after observing the state. 
The effect of the action makes the state change from s2 to si+l. This state 
transition is rewarded by ri+l. 

at aý+ý CaDt+2 
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® 
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Figure 2-5: Discrete dynamics of state, action and reward 

In the RL framework, the agent learns the target function by sequentially 

and iteratively interacting with the environment as following: 

" The agent observes the state of the environment at time t that is, st. 

" Given st, the agent can select and execute an action, at. 

" After at is executed, the agent receives the immediate reward Tt+l, for 

the state transition from st to st+l. 

s Finally, the agent uses the training experience represented by the tuple, 

(st, at, rt+l, st+l), to learn the target function. 

As can be seen in the above, the RL learner only receives rewards from the 

environment as feedback. This feedback, in the form of rewards, is known as 
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evaluative feedback [Sutton and Barto, 1998]. Evaluative feedback provides 

numerical information of how `good' each state transition was, and thus it 

does not indicate which was the correct action to execute. Therefore, in 

order to discover the most appropriate action to execute at any state, the 

agent will have to iteratively select different actions and learn their outcome 

through trial and error. From the definitions in Section 2.3.1, it can be said 

that RL is an unsupervised type of learning, which uses evaluative feedback 

and interaction with the environment to learn the target function. 

As will be seen later, there are various ways to represent the target func- 

tion. In RL the representation of the target function is commonly known 

as policy. More precisely, a policy is a function that takes the state of the 

environment, s, as input, and indicates the probability of executing any of 

the agent's actions a. 

RL assumes that the target function is learned when the policy maximises 

the rewards received over extended periods of time. In other words, an agent 

is considered to have learned if its policy maximises the reward received over 

time. Policies that maximise reward over time are known as optimal policies. 

As seen above, optimal policies are defined using the rewards received 

over extended periods of time. The reason for using extended periods of 

time, rather than using the immediate reward is explained in the following 

example. In a game of chess, taking an opponent's piece could have a high 

immediate reward, as it has short term advantage to take those pieces. But 

professional chess-players do not limit themselves to taking the opponent's 

pieces, as setting the board in an advantageous configuration (long term 

advantage) can be more important to win the game. A similar reasoning is 
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carried out when defining optimal policies over extended periods of time, i. e. 

maximising the immediate reward does not necessarily maximise the reward 

in the long term. In RL a common formal definition of the reward is the 

following infinite discounted reward sum: 

00 

zt ° yk rt+ = 7, t ý- 'y l rt+l + -y2 rt+2 + ... 
(2.1) 

k-o 

where, 0<y<1, is the discount factor. If 'y <1 then the importance of the 

rewards received in the future are discounted by a factor of -yk, where k is 

the step number. Using discounting is equivalent to giving more importance 

to the rewards the agent can achieve in the near future rather than in the 

distant future. 

The next section reviews some of the algorithms and techniques applied 

to solve RL problems, i. e. algorithms that maximise the reward represented 

in Equation 2.1. 

2.3.3 Solving reinforcement learning problems 

This section reviews some of the popular techniques and algorithms used 

to solve RL problems. Firstly, value functions are introduced as means to 

evaluate the performance of a policy. Secondly, the relationship between 

optimal value functions and optimal policies is shown. Finally, some of the 

methods to find optimal policies using value functions are described. 

Value functions 

A value function is a function that measures how much reward an agent can 

gain when it acts following a policy, 7. In other words, a value function 
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measures the `goodness', in terms of reward, of a policy. 

The techniques to solve RL problems evaluate policies using mainly two 

types of value functions, namely state-value functions (V'r) and action-value 

functions (Q'r). The following expressions define these value functions: 

00 

Vu(s) = E{zt° I St = s} = E7r{E ykrt+l+k I St = s} (2.2) 

k=O 
00 

Q' (s, a) = EE{zt° I st = s, at = a} = E. 
7r 

{ý7 ykrt+l+k ( st = s, at = a} 

k=0 
(2.3) 

The V" function measures the infinite expected reward (Equation 2.1), E, r{}, 

of an agent following policy 71, and currently being at state, st. Similarly, 

Q'r, measures the infinite expected reward of an agent following policy 7r, and 

currently being at state st, and having selected action at. 

Table 2.2: Value function representation 

s V'r(s) 

Si V'r(sl) 

S2 V7r (s2) 

S3 V7r (S3) 

Q'' (s, a) al a2 a3 

Si Q7(si, al) Q7(s1, a2) Q7r (sl, a3) 

S2 Q7r (s2, a1) Q7r (s2, a2) Q7` (s2, a3) 

S3 Q7r (s3, al) Q1(S3, a2) Q7r (s3, a3) 

A simple way to store value functions is by using tables. These tables 

have one entry for each state s, or state-action pair (s, a), and one output 

corresponding to the expected reward value of the entry. Table 2.2 illustrates 

both a state and an action value tables. 
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Optimal value functions and optimal policies 

As stated earlier in Section 2.3.2, RL agents search for an optimal policy. 

such that it maximises the reward in Equation 2.1. Let us denote an optimal 

policy by 7r*. 

An optimal policy can be defined as a policy where its value function 

is maximum for all the possible states and actions when compared with 

any other policy 7; in other words: V"* (s) > V" (s) for all sES and 

Q'r* (s, a) > Q7 (s, a) for all sES and aEA. The value function of an 

optimal policy is known as optimal value function. 

By definition, finding optimal value functions implies finding optimal poli- 

cies, thus an agent can learn optimal policies by searching for the optimal 

value functions, i. e. functions that maximise long term reward. The follow- 

ing sections review how to learn optimal policies by computing optimal value 

functions. 

Finding optimal policies using dynamic programming 

Dynamic programming techniques, such as policy iteration and value iter- 

ation [Bellman, 1957] are methods that exploit Markov Decision Processes 

(MDP) and the recursive Bellman optimality equations to calculate optimal 

policies. 

Bellman's recursive optimality equations are defined using what is known 

as the agent-environment models. These models are: the one step transi- 

tion probability Pa,, and the expected immediate reward, Ras,. The one step 

transition probability indicates the probability of observing state s', given 

that the current state is s and the agent performs action a. In other words, 
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the model indicates, in a probabilistic manner, the future state when an 

agent chooses an action, in a given state. Having this model is equivalent 

of knowing a priori the dynamics of the agent-environment interaction. The 

expected immediate reward model indicates the reward expected for selecting 

action a, at state s, given that the future state will be s'. Having this model 

is equivalent to knowing the rewards the agent will receive in the interaction 

with the environment. 

The requirement of these models to compute optimal policies restricts the 

usage of dynamic programming techniques in robotics, as most of the times, 

models are not available a priori. Moreover, these techniques are compu- 

tationally expensive, which makes them inappropriate for robotics, where 

limited computational power is a constraint. For these reasons, dynamic 

programming techniques are not discussed in this thesis any further. 

Finding optimal policies using temporal difference learning 

Given the shortcomings of dynamic programming techniques, temporal dif- 

ference methods are introduced. Temporal difference methods [Sutton, 1988] 

are capable of solving the RL problem without relying on world models 

(Pa, and Ras, ); instead these techniques use the agent-environment inter- 

action to acquire all the necessary information. Temporal difference meth- 

ods rely on what is known as bootstrapping to update the value functions 

[Sutton and Barto, 1998]. 

One of the best known temporal difference method is Watkins' Q-learning 

algorithm [Wactkins and Dayan, 1992, Wactkins, 1989]. The reason for its 

popularity relies in its conceptual and implementation simplicity. 
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Q-learning learns optimal policies by finding optimal q-value functions. 

The optimal q-value function is found by iteratively applying the following 

update rule: 

Q(st, at) - Q(st, at) +a [rt+l + -y maxaQ(st+1, a) - Q(st, at)] 

where st is the active state, at is the selected action, oz and -y are learning 

parameters, rt+l is the reward received for the transition between st and new 

state st+l, and Q(st, at) is the q-value function. 

Finally, after learning the q-value function, finding the optimal policy 7r* 

is achieved by finding the action that maximises the q-value function at the 

given state, as follows: 

7r* (8)= arg maxaQ (s, a) 

where arg maxa denotes the value of a at which the expression that follows 

is maximised. 

Other temporal difference methods to solve the RL problem include Actor- 

critic methods [Barto et al., 1983], TD(B) [Sutton, 1988], Dyna [Sutton, 1991, 

Sutton, 1990], Prioritized Sweeping [Moore and Atkeson, 1993] and Queue- 

Dyna [Peng and Williams, 19931. 

2.4 Practical reinforcement learning 

The previous section has reviewed reinforcement learning from a theoreti- 

cal viewpoint. This section reviews the issues that emerge when applying 

reinforcement learning in robotics. 

41 



2.4.1 Dimensionality problems in learning 

The dimensionality problem relates to the size of the robot's state and ac- 

tion spaces, represented as IS I and A. Let us describe the dimensionality 

problem with the following example. 

(a) One sensor JSý =2 

(c) Three sensors ISI =8 

(b) Two sensors BSI =4 

(d) n sensors = 2n 

Figure 2-6: Exponential growth of the state space size 

Figure 2.6(a) illustrates a mobile robot with a single bumper sensor, x1. 

The robot's state space, S, is determined by the values of sensor x1, that is: 

S= {x1}. The size of the state space is S=2, as xl only has two states, 

i. e. s(xi) =1 (pressed) or s(xi) =0 (released). Figure 2.6(b) illustrates the 

same robot with an added sensor 82. In this case, the state space is formed 

by the combination of the two sensors S= {x1i x2}. The size of the state 

space composed by two sensors is ISI = 4, i. e. the following states: s= (0,0), 

s= (0,1), s= (1,0) and s= (1,1). The size of S for the robot in Figure 

2.6(c) is SI = 8. As can be seen, the size of a state space grows exponentially 
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with the number of sensors, in this particular example, of the order of 2'' for 

n binary state sensors as illustrated in Figure 2.6(d). 

The exponential growth of a hyperspace (e. g. the state space above) as a 

function of its dimensions (e. g. robot sensors ) is known as the curse of di- 

mensionality [Sutton and Barto, 1998, Kaelbling et al., 1996, Bellman, 1957, 

Barto and Mahadevan, 2003]. That is, any system operating on such a hy- 

perspace will need its computational resources to grow exponentially in order 

to cope with the demands imposed by the hyperspace. For example, if a robot 

is using Q-learning to solve an RL problem, it will need a memory of size 

Sx JAI to store the q-value function. As IS grows exponentially with the 

number of sensors (dimensions), so do the memory demands. Moreover, the 

experience necessary to update a q-value function also grows exponentially. 

Another issue that aggravates the dimensionality problem in robotic sys- 

tems is related to the nature of sensors and actuators, i. e. because these pro- 

vide continuous responses [Sutton, 1996, Smart and Kaelbling, 2002]. For 

example, if the bumpers in Figure 2-6 are replaced by luminosity sensors, 

which are assumed to return a value in the range of 0 to 255 proportional 

to the environmental light conditions, then the size of state space becomes 

ISI = 255n, for n luminosity sensors. In general, the size of a state space of a 

robot can be determined by, IS= [21 p2, where n is the number of sensors 

and p2 is the range of values of the i-th sensor. 

In order to deal with the problems that arise from the dimensionality of 

large state and action spaces, algorithms to solve RL problems incorporate 

what is known as generalisation methods. The following section reviews some 

of these methods. 
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2.4.2 Generalisation in reinforcement learning 

One of the elements of any learner system is the target function represen- 

tation (see Section 2.3.1), which in RL is known as a policy. In Section 

2.3.3) we showed how policies can be defined using value functions ("(s) 

and Q" (s, a)) which are computed and stored in table-like structures (see 

Table 2.2). 

Tabular representations of value functions and thus definition of policies 

are not practical when state and action spaces are large, e. g. containing 

thousands or maybe millions of state-action pairs. The impracticality lies in 

the memory requirements and the inefficient usage of training experience to 

update these functions. To overcome these impracticalities, generalisation 

methods are applied to solve RL problems. 

Generalisation in RL aims at: (i) representing the value functions as com- 

pactly as possible and (ii) using past experience to infer information about 

unseen situations. In some sense, this is equivalent to `making the most' 

of the information gathered previously. This section reviews two different 

methods used to generalise value functions, namely, function approximation 

and variable resolution. Following is a review of these two methods. 

Generalisation using function approximation 

Function approximation techniques are an instance of inductive learning, 

which hypothesises that any function found to approximate a target func- 

tion over a large set of training points will also approximate unobserved 

instances of the target function [Michell, 19971. In other words, gathering 

partial information of a function's values can be used to guess the remaining 

44 



values of the same function. Function approximation techniques can be used 

to generalise the value functions used in RL. 

In general, function approximators operate as illustrated in the following 

example. Let V (s) be a value function to approximate depending on the state 

s. Let g(p, s) be the approximator, where p is a set of adjustable parameters; 

g is also dependent on s. Then, the approximator operates according to the 

following steps: 

1. Observation of an instance of the state, e. g. s=x. 

2. Prediction of the value of V (x) using g(p, x); let the value of the pre- 

diction be v. 

3. Observation of the real value of V (x); let this value be v. 

4. Parameter update towards minimising the error between v and v. 

After the approximator's parameters have been updated for a sufficient 

number of instances, the approximator can be used to predict the value of any 

instance of state, seen or unseen, known as a query point. There are various 

methods for function approximation, using different types of parameters and 

techniques to adjust parameters. In general, these can be classified into two 

groups, namely, parametric and non-parametric approximators. 

Given a set of n parameters, P= {pl, p2, ..., pn}, a non-parametric func- 

tion approximator uses a subset pEP, to calculate the value of the approx- 

imation. The subset of parameters is selected according to the Euclidean 

distance between the query point and the function's parameters. Similarly, 

only the subset of near parameters is updated. The update is achieved by 

changing the values of the subset of parameters towards the observed value. 
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If the subset of parameters is not sufficiently near the query point, then 

new parameters can be added. Non-parametric methods include: nearest 

neighbour which chooses only the closest parameter to the query point for 

the prediction, distance weighted averaging and locally weighted regression 

which assign higher relevance to the parameters closer to the query point, 

according to their distance [Schaal and Atkeson, 1994, Atkeson et al., 1997b, 

Atkeson et al., 1997a, Stefan et al., 2000, Smart and Kaelbling, 2000]. 

Parametric function approximators use the complete set of available pa- 

rameters to approximate the target functions; these being represented as a 

vector, P= (pl) p2, ..., pn). Parametric approximators include: linear ap- 

proximators, and non-linear approximators, such as multilayer neural net- 

works. Linear approximators are probably the generalisation method most 

commonly used in combination with RL as some theoretical work exists that 

predicts the effects of incorporating function approximation and RL algo- 

rithms [Tsitsiklis and Van Roy, 1996]. A linear approximator tries to predict 

the outcome of the function to approximate, as a linear combination of some 

weighted features as shown in the following expression: 

n 

v= 9(P) 41ý) = P101 + P202 + ... + pnOn = 
EPA (2.4) 
i=1 

where v is the predicted value, g() is the function approximator, P are the 

parameters of the approximator and 4D are some features extracted from the 

input. Feature are selected by functions known as feature selectors; some 

of these include: CMAC [Albus, 1975], tile coding [Sutton and Barto, 1998, 

Sutton, 1996, Stone and Sutton, 2001, Kuvayev and Sutton, 1997], radial ba- 

sis functions and kanerva coding [Kostiadis and Hu, 20011. CMAC, tile cod- 
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ing and radial basis functions, use similar methods to select features. In 

general, and as illustrated in Figure 2-7, these methods divide the environ- 

mental state into regularly distributed overlapping areas or features, which 

become active (i. e. selected for the approximation) if the observed state falls 

inside their area. Figure 2-7 illustrates a two-dimensional state space (rep- 

resented in thick black) and two sets of overlapping features (represented in 

grey scales). The total number of features and parameters in linear approxi- 

mators is always smaller than the size of the state space, but still proportional 

to it. 

state 
observed 

ures 

Figure 2-7: CMAC feature selector 

Although these function approximators have been successful in reducing 

the dimensionality of some RL problems, they still have serious limitations. 

For instance, non-parametric function approximators need a number of pa- 

rameters proportional to the input's size, thus the curse of dimensionality 

remains a problem as large state spaces will result in a large number of pa- 

rameters. Similarly, as parametric approximators use sets of features that are 

proportional to the dimension of the state space, these will also grow with the 

size of the state space. Some methods exist to reduce the number of necessary 

features, for example [Santamaria et al., 1998] uses CMAC with a variable 

47 

state space 



resolution which assigns higher resolution in important regions of the state 

space. Another possibility is to use kanerva coding [Kostiadis and Hu, 2001] 

which provides features based on the function to approximate rather than 

based on the input state. 

In summary, it can be said that parametric and non-parametric approx- 

imation methods produce a generalisation of the value function based on 

fitting parameters, the combination of which approximates to the value func- 

tion. We refer to this type of generalisation as implicit generalisation as the 

approximation is implicit in the parameters of the approximator. There exist 

other methods which are not based on fitting parameters, and which produce 

explicit generalisations. These are reviewed in the following section. 

Generalisation using variable resolution methods 

Variable resolution methods represent value functions similarly to multi-grid 

methods [Chow and Tsitsiklis, 1991, Vollbrecht, 1999]. Multi-grid represen- 

tations partition the state space into layered grids of uniform resolution. 

High-level layers are of coarser resolution than lower layers. This layered 

representation allows one to re-use the value functions learned at high-level 

layers (coarse resolution) in the lower-level layers (fine resolution). 

Figure 2-8 illustrates a generic multi-grid state space representation, where 

state space is a two-dimensional plane and the states are the grids on the 

plane; the arrows illustrate that the information learned at high layers is 

transmitted to lower ones. Although multi-grid representations allow faster 

learning, as they bootstrap the value function information from high layers 

to lower layers, they still suffer from the dimensionality problem, as grids 
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are regularly distributed, thus proportional to the size of the state space. 

Moreover, having to define the number of layers a priori, implies having 

to find experimentally how many layers (equivalent to the resolution of the 

representation) are necessary to achieve a desired performance. 

coarse state 
representation 

fine st,, 
representation 

Figure 2-8: Generic multi-grid representation 

In order to alleviate these problems, variable resolution methods only 

represent the areas of the state space that are considered interesting. This 

results in a method that can deal with dimensionality, as only a portion of 

the total states are represented. 

Variable Resolution Methods [Reynolds, 2000, Munos and Moore, 1999, 

Moore and Atkeson, 1995, Moore, 1991, Chapman and Kaelbling, 1991] and 

[Simons et al., 1982] start by representing the state space using a coarse 

representation, which is partitioned into finer-grained representation during 

learning. As the representation is acquired on the fly, unlike multi-grid meth- 

ods, no a priori assessment of the necessary resolution must be made. In 

order to partition only the interesting areas of the coarse state representation, 

the learner must have the metrics for assessing the interest of the different 

states, known as partition metrics. Different partitioning metrics can be used, 
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for example, [Reynolds, 2000] uses a partition metric based on the difference 

between policies, i. e. if the policy changes within the same area of the state 

space, this area is partitioned. [Simons et al., 1982] uses a measure of the 

local reward received to partition areas of the state space which receive low re- 

ward values. The parti-game algorithm [Moore and Atkeson, 1995] assigns a 

different label to the states which can and can not reach the goal state, then 

neighbouring states of different class are separated. Others use statistical 

measures. For instance the G-tree method [Chapman and Kaelbling, 1991] 

uses a T-test to measure the confidence that two areas of the state represen- 

tation have different reward distributions. 

Figure 2-9 illustrates a generic state representation obtained by a variable 

resolution method. As can be observed, the distribution of states is not 

uniform through the state space; the arrows indicate that the information 

of the coarser representations can be bootstrapped into the more refined 

representations. 

initial coarse state 
representation 

refines 
representation 

Figure 2-9: Generic variable resolution representation 
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2.5 Summary 

As stated in Chapter 1, this thesis is concerned with designing autonomous 

robotic agents. 

The chapter starts by defining the main characteristics of such agents. 

Section 2.1.1 shows that adaptability is a main requirement for autonomy. 

Adaptability can be achieved by adding learning techniques to autonomous 

agents (see Section 2.3). Thus, designing agents which are capable of learning 

became the main motivation of this research. 

In order to design any system, including autonomous learning agents, 

there is a need to select an architecture which meets its requirements. To 

that end, Section 2.2 reviews the main architectures used for the design of 

autonomous robotic systems. As shown in Section 2.2.4, all of the architec- 

tures reviewed can be used in a combination of learning techniques, and the 

main differences between architectures lies in how suitable they are for op- 

erating in robotic environments. The review of robotic architectures shows 

that behaviour-based and hybrid architectures are the architectures that have 

achieved most success in robotic environments. This success is related to the 

fact that these architectures are capable of achieving real-time actuation and 

flexible goal-directed behaviour. 

Section 2.3 reviews the literature related to the problem of autonomous 

agents learning from rewards in their environments, namely the reinforce- 

ment learning problem. The conclusion from that section is that there are 

theoretical proofs that indicate that the reinforcement learning problem can 

be solved using a range of techniques. 

Section 2.4 reviews the practical issues that emerge when applying tech- 
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niques to solve reinforcement learning problems. Of great importance are 

issues related to dimensionality (see Section 2.4.1). In order to deal with 

these issues, Section 2.4.2 introduces generalisation methods. From there 

it is possible to conclude that function approximators and variable resolu- 

tion methods do not address the dimensionality problem directly. The main 

reason is that such methods do not aim to eliminate the irrelevant state vari- 

ables, but only to construct a compact representation of, possibly irrelevant, 

state variables. 

Hierarchical approaches have been introduced to deal with the irrele- 

vant state variables [Andre and Russell, 2002, Barto and Mahadevan, 2003, 

Dietterich, 1998]. These methods rely on the designer to determine which 

are the relevant state variables for each task or sub-task and ignore the non- 

relevant variables. 

This thesis explores a novel method to address the dimensionality prob- 

lems that arise in RL. Firstly, an architecture for learning and control is 

proposed that exploits explicit generalisation. Secondly, it is shown how the 

methodology of Q-analysis could be used to detect and remove irrelevant 

state variables. 
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Chapter 3 

Concepts and 

Concept Generation 

The previous chapter introduced robotic architectures and reinforcement 

learning. An important conclusion from that chapter was that a learner 

with large state and action spaces requires generalisation methods for: 

9 Representing the target function in a practical manner. 

9 Using training experience in an efficient manner, i. e. reducing learning 

time and generalising to `unseen' situations. 

" Alleviating problems related to the curse of dimensionality. 

As seen earlier (Section 2.4.2), generalisation techniques define compact 

representations of the target function (value function in RL) and use training 

experience to update large portions of the target function. 

This chapter defines concepts as general classes of primitives. Thus, by 

definition, concepts are a generalisation of the primitives that compose them. 
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From this definition, it is conceivable to see concepts as generalisers for ma- 

chine learning problems. This idea of generalisation using concepts is central 

to this thesis and in the next chapters it will be shown how to define and use 

concepts to this end. 

3.1 Fundamental aspects 

3.1.1 What are concepts? 

The idea of concept is central to this thesis, since the learning architecture 

developed in the next chapter uses concepts to learn and to represent the 

target function. Moreover, concepts will also be used for robot control. 

A general definition of a concept by the Merriam-Webster Online Dictio- 

nary is as follows: (1) Something conceived in the mind. (2) An abstract or 

generic idea generalised from particular instances [Merriam-Webster, 2004]. 

The first defines concepts as artifacts built and used in human minds, in- 

cluding those used in natural language communication as words. This thesis 

does not discuss the concepts used by humans; it only focuses on concepts 

from an AI perspective, as they apply in robotics. In the second definition, 

concepts are a generalisation of particular entities or primitives, for example, 

the concept transport-vehicle could be a generalisation of primitives such as, 

bicycle, car, bus, train, plane, etc. 

Machine learning approaches include concept learning as a particular in- 

stance of inductive learning [Rendell, 1986, Michell, 1997]. In brief, concept 

learning is the task of finding general descriptors, known as hypotheses, which 

associate primitives with general concepts. This task can also be seen as one 
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of classification [Chandrasekaran and Goel, 1988], where primitives need to 

be assigned to general classes. The task of pattern recognition can also be 

seen as a task of finding concepts, as primitives sharing the same pattern are 

considered as belonging to the same class [Jain et al., 2000]. 

In this thesis, concepts are the result of the classification of primitives 

into general classes. As concepts are formed by a set of primitives, any con- 

cept needs to be associated with a representative. For example, in robotics a 

concept such as `moving forward' could be composed of all the primitive ac- 

tions that drive the robot forward. To execute the `moving forward' concept, 

one of the many possible primitives needs to be selected and sent to the mo- 

tors; we call this primitive the representative. Concept representatives will 

be defined differently depending on the method used to classify primitives. 

For example, if one is using a clustering technique, then the centres of the 

clusters can be the representatives of the cluster or concept. 

Shape Colour Material 
ball, round red plastic 

chair, non-uniform black plastic 
balle round blue leather 
chair, non-uniform gray metal 
balla round back&white plastic 

BALL 
ball, 
ballt 

Hypothesis 
ba113 

'-HAIR 
chair, 
chairZ 

Figure 3-1: An example of a hypothesis in concept learning 

The primitives to classify are usually described by means of properties 

here known as variables. Then, hypotheses try to classify these primitives, 

according to their variables, as a corresponding concept. For example, Figure 

3-1 illustrates the desired behaviour of a hypothesis, which classifies each 
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of the primitives, chair,, chair2, ball,, balle, balla, into the corresponding 

concepts CHAIR and BALL. In this example, the variables used to describe 

the primitives are shape, colour and material. Many other different variables 

could be selected to describe primitives, for example the size and weight could 

have also been added to the description. In general it is desirable to select 

the variables that provide the most discrimination between primitives that 

belong to different concepts, and the less discrimination between primitives 

belonging to the same concept. 

Hypotheses can be defined and represented in various ways. For example, 

Figure 3-2 illustrates a two-dimensional variable space representing some 

primitives y. A hypothesis could be used to define regions in the variable 

space. That is, the hypothesis would indicate that a primitive yn is classified 

as belonging to a concept cn, if the primitive's variables are within the region 

that belongs to cm. 

C4 

variable space 

Figure 3-2: A two-dimensional space representing primitives and some con- 

cepts 

This thesis uses two different methods to represent primitives and hy- 

pothesis, one based on distance-based clustering and the other based on 
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classification using Q-analysis. This chapter describes these different meth- 

ods. Chapters 5 and 6 present the experimental results of the classification 

using the two different methods. 

The method based on Q-analysis, which is a novel contribution of this 

thesis, is based on representing primitives as simplices and uses their struc- 

tural properties to define similarity and thus the hypothesis. The following 

section describes the fundamental differences that emerge in concepts when 

these are generated using the two different methods. 

3.1.2 Sets versus relational structures 

in classification 

During the research reported in this thesis, a major distinction emerged be- 

tween concepts that represent a class of primitives and concepts that combine 

primitives. 

chairs 

chair, 
chair, 

chair, (irl 

(a) Set classification. 

sit-shell 

chair 

I 
111 legs 

(b) Relational classification. 

Figure 3-3: Set versus relational classification 

For example, suppose that one observed three different chairs chairs, 

chair2 and chair3i then the concept that describes these could be chairs. 

This can be illustrated as in Figure 3.3(a). In this illustration, primitives 
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constitute the base of a cone, and the concept is the vertex of the cone. 

A characteristic of this type of concept is that an individual primitive is 

sufficient to be classified as part of the concept. 

On the other hand, the concept chair, illustrated in Figure 3.3(b), relates 

to the set of primitives: sit-shell, back-shell and legs. In this case, all the 

primitives are necessary for them to be part of the concept chair, that is, to 

have a concept chair you need to have a sit-shell, a back-shell and legs, i. e. 

the relationship between the three primitives is required. 

Clearly, these concepts are different. In the first, any primitive is suffi- 

cient, in the second all the primitives are necessary to be classified as the 

concept. In this thesis the first type of concepts are known as generalisa- 

tion concepts, as a set of primitives are generalised into a more compact 

concept. The second type of concepts are known as relational concepts, as 

they require a relational structure between their primitives, i. e. having the 

legs under the sit-shell and the back-shell perpendicular to the sit-shell. Else- 

where [Johnson, 1983], generalisation concepts are defined as being the result 

of an OR-aggregation, and relational concepts as being the result of an AND- 

aggregation. In Section 4.3 it will be shown how these two types of concepts 

can be integrated on a multilevel architecture. 

3.1.3 Multidimensional data 

Multidimensional or multivariable data represent the fact that things are 

described, related and reasoned about with various dimensions or variables. 

For example, in order to describe a physical object, the following variables 

could be used: size, colour, shape, texture, material composition, odour, etc. 
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In diagnosing a patient's disease, one could use the variables age, sex, tem- 

perature, blood pressure, bacterial presence, etc. to relate the patient to any 

particular disease. To reason whether to take an umbrella, one could be 

looking at the variables cloudy sky, weather forecast, season, etc to predict 

if it will rain or not. 

Robots also use multidimensional data to describe and reason about their 

environment. For example, a mobile robot could use the information pro- 

vided by sonars, thermometers, cameras, bumpers, encoders, compasses, etc. 

to describe their surroundings and decide where to navigate to. Different sen- 

sors provide different kinds of information depending on their physical char- 

acteristics. For example, sonar sensors can be used to measure the distance 

to walls and objects, thus they provide a continuous range of measurement. 

Bumper sensors provide binary information, either bumped or not, when hit- 

ting an obstacle. Compass sensors could provide the direction of the robot 

based on the polar coordinates, i. e degrees with respect to the north, south, 

etc. As different types of sensors are added to a robot, it becomes more 

difficult to interpret the meaning of what they describe. For example, how 

can the observation of two different sensors be compared? Is a change of one 

meter in distance the same as one degree centigrade change in temperature? 

These questions don't have a simple answer. In order to clarify some of the 

implications of using combinations of different variables or sensors, the next 

section presents some of the main characteristics of variables and discusses 

some of the wrong assumptions. 
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Types of variables 

As stated in the previous section, various types of variables exist depending 

on what and how they represent information. In general, variables can be of 

the following standard types: 

" Nominal: this type represents values using discrete states or labels 

which have no clear ordering. For example the variable colour could be 

either blue, red, yellow, etc. which have no clear order with respect to 

each other. 

" Ordinal: this type represents values states or labels that follow some 

order. For example a discrete ordinal variable such as blood pressure 

could be either low, medium, high where the states can be ordered 

from small to big (low to high). A continuous ordinal variable has 

ordered continuous measurements, but the scale is not known, it could 

be exponential, logarithmic, etc. 

" Interval: this type represents values on a linear scale which has positive 

and negative values. This type of variable allows ranking order between 

measures and also comparison of magnitudes. For example using the 

variable temperature, it can be said that 30° is less than 40° and that 

10° is their difference. 

" Ratio: this type represents values in a positive, continuous and non- 

linear scale. Ratio variables have defined an absolute zero. An example 

of a ratio variable is the speed of a mobile robot, in which case, one 

could say that the speed of 1 m/s is as twice as fast as 0.5 m/s. 
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As mentioned previously, hypotheses assess whether a primitive belongs 

to a concept based on its descriptive variables. Given that variables can be of 

the above types, an important issue is to know how variables of different types 

affect the behaviour of hypotheses. In other words, what are the implications 

in classification when using nominal, ordinal, interval or ratio variables in 

the description of primitives? 

If the primitive to be classified is described by nominal variables, one 

can only decide whether these variables are related or not to some target 

value. That is, if the variable describing the colour of an object is green 

and is compared with a target colour red, then it can be concluded that 

these two are not related; nothing else can be decided. Similarly, if ordinal 

variables are used to describe primitives, then one can establish the previous 

relationship, and it can also say something about ordering. That is, if the 

variable describing blood pressure of a patient is low, then it can be decided 

that the variable is not related to the target value medium, and it can also be 

decided the following relation low < medium, i. e. low is below than medium; 

but not how much below it is, as their scales are not known. Interval variables 

take the ordering one step forward; in this case, a primitive described using 

interval variables can be related to a target value and it is possible to assess 

its order and measure the difference from the target. That is, a temperature 

variable being 20 °C can be compared with a target value of 40 °C. We can 

decide that variable and the target are not related; we can also establish 

the ordering relation 20 °C < 40 °C, and finally we could say that target 

value and the variable value are separated by 20 °C. This last information 

can be extracted as interval variables are defined over a known linear scale. 
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Finally, if the primitive is described using ratio variables, one could decide 

their relation to a target, their order, but not their degree of similarity- 

dissimilarity as their scales are, in principle, non-linear. If the scale of these 

variables is known, then different transformations of scale could be carried 

out in order to have a linear representation. In this case, as ratio variables 

have an absolute zero, it is possible to assess the proportion between the 

variables. 

The implications of describing primitives with different types of variables 

are significant for the classification task; it is therefore imperative to have 

a clear description of what each variable represents and what information 

can be meaningfully extracted from the representation. The view of map- 

ping primitives into multidimensional coordinate spaces and assuming their 

distance to be a measure of their similarity can only be done if the prop- 

erties of the coordinate space and its dimensions are known. For example, 

the distance-temperature coordinate space can define a meaningful similarity 

between primitives, if and only if the equivalence between a unit of temper- 

ature and a unit in distance in relation to the classification are known; and 

the scales of their dimensions are also known. 

3.2 Multidimensional data classification 

As explained in the previous subsection, a robot's sensors and actions span 

multidimensional data spaces. Generally, these spaces are very large and 

exactly the same combination of measurements is hardly ever observed. 

For example a simple robot with a distance, a temperature and two light 

sensors, each having a 256 values, result in a sensor space of 232 possible state 
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combinations. The combination (130,197,4,83) could occur on one occa- 

sion, and a different combination, (133,195,5,90) might occur on another. 

Although these are different, for many purposes, they could be considered 

equivalent. This section introduces some of the existing techniques that aim 

at finding classes of primitives which can be considered as equivalent. The 

section concludes by stating the limitations of the reviewed methods, and sets 

the context for the introduction of a novel approach based on Q-analysis. 

3.2.1 Introduction 

The body of work in analysis of systems with multiple dimensions or variables 

is extremely large, including aspects such as: structural simplification, clas- 

sification, grouping variables, analysis of dependence and interdependence, 

hypothesis construction and testing [Kendall, 1980, Feinstein, 1996]. This 

section focuses mainly on the methods used for the classification of mul- 

tidimensional data. In general terms, classification is the task of grouping 

elements of usually large sets, known as exemplars or instances, into a smaller 

set known as classes [Chandrasekaran and Goel, 1988, Rendell, 1986], in our 

terms, grouping primitives into concepts. When classifying multidimensional 

spaces, a guiding principle is that points that are close are more similar than 

points that are further apart; thus classes of similar or near points can be 

formed. In the example above, the two combinations are closer to each other 

when compared with e. g. the combination (12,43,221,191). 

However this idea of similarity depends on the mathematical properties 

of the multidimensional space that defines each combination. In the first 

instance, it is conceivable to see the space as an n-dimensional Euclidean 
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space R, with the Pythagorean metric that measures the distances between 

points (xl, x2) ..., xn) and (xi, x2, ..., x'n) as 2 (xi 
- X)2. However in 

non-homogeneous multidimensional spaces, how can one be sure that, for 

instance, a unit of temperature means the same thing as a unit of a light 

sensor? In other words the scales used and their normalisation have a sig- 

nificant effect on any computation of distances, as is further explained and 

exemplified in Section 3.3.1. 

In a multidimensional context, each primitive, yEY, to be classified can 

be described by a set of n variables (see Section 3.1.3). Let us refer to these 

as descriptive variables and denote them by x= {x1i x2, ..., xn}. A subset of 

only the relevant variables is selected in order to inform the classification (see 

Feature Selection Problem in Section 3.3.2). Let us refer to the subset of rel- 

evant descriptive variables chosen for classification as classificatory variables, 

and denote them by {xl, x2, 
..., 

xm}, where m<n. Then, classification 

methods relate the primitives to be classified to their corresponding classes 

by defining a special configurations of the classificatory variables known as 

hypotheses. In other words, the classifier's task is to find hypotheses that 

best fit the class-structure observed in the data [Gordon, 1999]. At the core 

of each hypothesis is a metric that evaluates the similarity between the prim- 

itives to classify and the resulting concepts; let us refer to this metric as a 

similarity metric. 

Figure 3-4 illustrates the general steps undertaken in a classification task, 

where, Y, is the space of primitives to classify and, y4, is a particular prim- 

itive in that space. The first step of the task consists of measuring the 

variables that describe y4, represented as the set, x= {x1, x2i ..., xn}, which 
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could represent the measures from n sensors applied on y4. The second step 

consists of selecting the variables that are considered relevant, denoted by 

x= {x1, x2, 
..., xm}. In most cases this step is implicit in the first step, as 

it is assumed that all the sensors used for measuring the properties of y4 are 

relevant. The final step takes as input the classificatory variables and relates 

them to the corresponding concept cEC. 

Y 

Yý0 
Y>> Y9 Yi 

Y8 Y, 
Y5 Y6 Y3 

Y4 YZ 

Description of 
entity to classify 

X=1X1, X2 ,..., X. } 

Feature 
selection 

Classification 

X={RIS2,..., 7 ) 

C 

Cä 

C3 

Figure 3-4: General process of classification 

The following sections describe some of the existing techniques for multi- 

dimensional data classification, followed by a description of their limitations 

and the introduction of a new metric for classification based on Q-analysis, 

which addresses some of those limitations. 

3.2.2 Distance based clustering 

Clustering techniques are unsupervised classification methods which define 

classes or clusters of unlabelled data by exploiting some perceived regularity 
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or patterns of occurrence [Jain et al., 1999, Gordon, 1999]. In order to find 

these regularities, clustering techniques commonly use classification metrics 

related to the geometry of the data represented in a multidimensional coor- 

dinate space. 

Geometric metrics represent the primitives to classify as points in a mul- 

tidimensional coordinate space. Then, a metric is defined to assess the sim- 

ilarity between points. A commonly used metric is the Weighted Euclidean 

Distance (WED). The WED is an instance of the Euclidean distance in 

which distances on the different coordinate axes are given a relevance value 

or weight. Then, the larger the weighted distance between primitives, the 

larger is their dissimilarity. WED can be calculated by applying following 

expression: 

p 
d2j _ 

EWk( 
jk - ßk)2 

k=1 

where d2j is the dissimilarity value between primitives i and j, xik and xj k 

are the k-th classificatory variables of primitive i and j out of a total of p, 

and Wk is the weight assigned to each classificatory variable. Similarly to 

WED the City block dissimilarity metric is calculated by: 

p 
dij -E ZUk l xik 

- xjk 

k=1 

where the variables in the expression have the same meaning as in WED. 

Once a classification metric has been selected, clustering techniques clas- 

sify or partition the data in such a way to reduce some error measure. 

For example, one could try to minimise the Sum of Squared Error (SSE). 

This is calculated as follows. Let us assume that C is a set of clusters, 
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C= {cl, c2i ..., Ck}. Let m(ci) be the mean of the point of the cluster c2, 

this point is also known as the representative of the cluster. Assuming that 

{pil, Pie, ... , Pin} are the points contained in c2; the representative of this 

cluster is calculated by, m(c2) = (>j' 
1 p2j)/n. Then the SSE of the set of 

clusters C is defined as: 

kn 

Ec = 
1: 1: Il pij - m(ci) II2 

i=1 j=1 

In other words, for a cluster c2, rn(ci) is the best representative of its elements, 

in the sense that it minimises the sum of squared error. The value of Ec 

depends on how the points are grouped under each cluster c. Thus an optimal 

clustering can be defined as the one that minimises Ec. 

3.2.3 Self-organising methods 

Self-organising methods are unsupervised classification techniques which de- 

fine emergent classes by allowing the hypothesis to emerge through self- 

organisation. A good example of a self-organising classifier is the Self Or- 

ganising Map (SOM) also known as Kohonen map [Kohonen, 1995]. 

Figure 3-5 illustrates the basic architecture of a SOM. This consists of 

M neurons usually arranged in a low-dimensional grid (two dimensional in 

Figure 3-5). Each neuron mi has associated a p-dimensional weight vector 

wi = [w21, w22, ..., wjp] with the same dimension as the input x. An input x is 

compared to the weight vector of each of the neurons, and the neuron with 

the weight vector most similar to the input is considered the winning neuron 

(firing neuron). In a SOM the similarity between the input and the weight 

vector of neuron i is measured by their distance, that is: lx - will. 
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Figure 3-5: A self organising map 

The SOM learns hypotheses competitively, i. e. the winning neuron is up- 

dated in such a way that its updated weights improve the previous matching 

(minimising the error between x and w2). 

Because of the spatial ordering of the neurons in the lattice, allowing 

the winner's neighbouring neurons to be also updated towards the input x, 

the result is an ordered map of the input vectors observable on the surface 

topological map. In Figure 3-5 the surface of the map displays five areas 

designated by cl, c2, ..., C5; the firing of the neurons that lie within the same 

area indicates that the inputs are somehow similar. Thus, classification in the 

SOM is the task of defining areas on the surface map and relating them with 

input vectors, so that when an input vector fires a neuron within an area, 

the input is considered to be of a class related to that area. Some examples 

of using the SOM for classification include [Vesanto and Alhoniemi, 2000, 

Wu and Chow, 2004]. 
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3.2.4 Artificial neural networks 

Artificial Neural Networks (ANN) are one of the most popular methods used 

in classification and pattern recognition [Bishop, 1995], mainly because of 

their conceptual simplicity of use, i. e. ANN learn simply by observing la- 

belled examples of the primitives to classify. ANN are also popular because 

they can be applied to the classification of numeric or discrete functions, 

providing a broad range of applications. For example ANN could be applied 

to learn the motor actions of a mobile robot depending on the input sen- 

sors (numeric function) [Hesselroth et al., 1994] or they could be applied to 

learn where to move a checkers piece given the board configuration (discrete 

function) [Kumar and Fogel, 1999]. 

The basic element used in ANN is a neuron or perceptron. A neuron is 

composed of a set of inputs and output links which connect the neuron to 

other neurons of a network. 
Y 

x� 

Output layer 

Hidden layer 

Input layer 

(a) Artificial neuron (b) Multilayer perceptron 

Figure 3-6: Artificial neuron and neural network 

Figure 3.6(a) illustrates a neuron N, with n inputs {x1, x2, ... xn}, and 

one output link o. Each input link xi, has a weight w2, associated with it. 
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A neuron's general operation is as follows: 

n 

o=f (E xzwi) 
i=o 

where the output o is a function of the linear combination of the inputs, xi, 

multiplied by their corresponding weights, w2. The simplest function is a 

threshold, i. e., if the sum of weighted inputs is higher than the threshold the 

output is active (1), otherwise inactive (0). Another of the common functions 

used is the sigmoid function which is explained below. 

Neurons are structured in networks, a common architecture used is the 

multilayer network or multilayer perceptron illustrated in Figure 3.6(b). This 

multilayer architecture is generally composed of three layers of neurons, an 

input layer, hidden layer and output layer, where s are input neurons, h are 

hidden neurons, z are output neurons. w2j is the weight connecting neuron i 

(hidden layer) and j (input layer), ok is the output of the k-th hidden neuron, 

x are inputs and y the output. 

Each element of the input vector is introduced to each of the neurons 

in the input layer. Neurons of the input layer are simply used to connect 

the input to the neurons of the hidden layer. Neurons at the hidden layer 

apply the previously described function. For example, sigmoid units output 

a continuous value between 0 and 1. In particular, a sigmoid unit performs 

the function: 

_I Ohl (l + eE, ==o Zixi ) 

where 0hti is the output value of neuron h2, wig is the weight value connecting 

the neuron j of the input layer and neuron i of the hidden layer, xj is the 
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value of the input neuron j, and n is the total number of input neurons. As 

can be seen, the sigmoidal function depends on, Eý 
o w2jxj, which is the 

linear combination of inputs and weights of the neuron. 

ANN learn and represent hypotheses by adjusting the weights of the neu- 

rons in a network. When used in a supervised manner, ANN are presented 

with labelled training examples and use algorithms such as backpropagation 

to update their weights. 

3.2.5 Incremental concept formation methods 

Concept formation methods originate from ideas introduced by conceptual 

clustering [Michalski, 1980, Michalski and Stepp, 1983]. In conceptual clus- 

tering, the similarity between the primitives to cluster is not only based on 

their individual properties (e. g. their distance), but also takes into account 

a set of predefined concepts that describe the classes. 

" A' 
.1. 

"B 
. 

Figure 3-7: Example of conceptual clustering 

Figure 3-7 illustrates two points, A and B, which would be clustered 

together by taking into account only their distance as a dissimilarity measure. 

However if the concepts of square and circle are known to the classifier, then 

the points would be clustered with their corresponding concepts rather than 

together. In conceptual clustering, the primitives to cluster are represented 

71 



by finite and discrete variables, and concepts are predefined in variable valued 

logic calculus [Michalski, 1980]. 

Incremental concept formation methods are unsupervised classification 

methods that similarly to conceptual clustering, classify observed primitives 

by taking into account a set of concepts [Gennari et al., 1989, Fisher, 1987]. 

The differences from concept clustering are that (i) concepts are not prede- 

fined, but acquired incrementally, and (ii) concepts are ordered by generality 

in a hierarchy. The hierarchy of concepts is known as a concept hierarchy, 

and is used to encode the system's knowledge. 

Concept hierarchies represent concepts in a tree-like structure, where 

nodes contain concepts represented as attribute-value pairs. The links of 

the tree are used to perform tests on the attributes of the primitives to 

classify. Starting from the top concept, if the attributes of the primitives 

correspond to those associated with one of the links, then the primitive is 

sorted through that link. This process is repeated until the primitive reaches 

an end concept, at which point the primitive is classified as part of this end 

concept. 

An important aspect of concept formation methods is that the concept 

hierarchy is not provided a priori, but created incrementally and dynami- 

cally as the system classifies new primitives. Examples of incremental con- 

cept formation methods include CLASSIT [Gennari et al., 1989], COBWEB 

[Fisher, 1987] and UNIMEN [Lebowitz, 1987]. 
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3.3 Limitations in multidimensional data 

classification 

The previous section introduced multidimensional spaces and presented some 

methods for defining classes. This section provides a review of those methods 

by indicating their strength and weaknesses. This review focuses on the fol- 

lowing characteristics of multidimensional classification methods: similarity 

metrics, feature selection problem and interpretability of hypothesis. 

3.3.1 Similarity metrics 

All of the previous classification methods assume a metric to evaluate the 

similarity or dissimilarity between data points, known as a similarity metric. 

One of the commonly used similarity metrics is based on representing 

data-points in a multidimensional coordinate space, and measuring some 

of their geometric properties such as the Euclidean distance between them. 

This means that the information of a set of classificatory variables is sub- 

sumed in a set of distances, thus it is of critical importance that these dis- 

tances reflect accurately the relevant relations in the data [Gordon, 1999, 

Duda and Hart, 1973]. 

To exemplify this criticality, let us consider the following example. Figure 

3.8(a) illustrates three robots (RI, R2, R3) in different configurations with 

respect to a goal. Each configuration is represented by two different variables, 

namely, a distance to goal d, and an angle to goal a. Each configuration can 

be represented as a point in a two-dimensional coordinate space, as illustrated 

in Figure 3.8(b) where two possible representations are given. In the first 
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coordinate space, the d variable is more relevant, as a change of one unit in 

d incurs in a larger Euclidean distance between points in relation to a unit 

change of a. In this coordinate space, robots RI and R3 are in more similar 

situations than R2. In the second coordinate space, the variable angle to goal 

(a) has been scaled differently, i. e. `stretched' or given more relevance than 

d. As an effect of this, R1 and R2 are now in a more similar configuration 

than R3. 

Rl 0-4oGoal, 
a, 

R 

Tºo Goalz 
a2 

R3 d 
Goab -----ýf- 

d 

C13 

C( ;ý3 
R2 

-RI ' 
d 

a 

d 

(a) Mobile robots (b) Similarity based on Euclidean distance 

Figure 3-8: Mobile robots in different configurations and their similarity 

based on Euclidean distance 

This type of coordinate space is known as isotropic that is, irrelevant 

to translations and rotations but not to linear transformations such as sim- 

ple scalings [Duda and Hart, 1973]. This example shows the importance of 

finding a distance value that accurately represents similarity among the par- 

ticular configurations. This issue is sometimes known as the chalk and cheese 

problem [Johnson and Picton, 1990] : what is the meaning of measuring the 

chalkiness in relation to measuring the cheesiness of an object? In other 

words, how can different variables be compared? 

------ -- }Z2 
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As seen previously, clustering techniques (Section 3.2.2) and SOMs (Sec- 

tion 3.2.3) exploit Euclidean distance as their similarity metric. Clustering 

techniques use this distance metric explicitly by defining classes or clusters 

based on it. SOMs use this distance metric implicitly by using it to find 

which of the neurons is most similar to the input. Thus both methods are 

prone to the issue of defining a correct distance metric. 

3.3.2 Feature selection problem 

As seen in Section 3.1.3 multidimensional spaces are commonly used to de- 

scribe the primitives to classify. For example in Figure 3-8 the variables 

distance d, and angle cx, construct a two-dimensional space used to represent 

the position of a robot relative to a goal. In a more complex environment such 

as robot football, one could use many more variables to describe the state, 

including the following: relative position of all players, speed of players, rela- 

tive positions of all landmarks, position of the ball, speed of the ball, current 

player with ball, score, time left, etc. In this complex situation, choosing 

the relevant set of variables for a particular task (e. g. decision making) is 

not trivial. Usually, this selection depends on the expertise of the system's 

designer. 

In the previous context, it would be tempting to have a robot with ex- 

tensive sensing capabilities (including all of the variables a designer could 

think of) and searching for different combinations of relevance; but this ap- 

proach soon becomes impractical, as adding dimensions or variables in the 

representation of state incurs on the curse of dimensionality problem (see 

Section 2.4.1). The issue then becomes whether: (i) to add only the relevant 
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variables to the description or (ii) to add all variables and filter the irrelevant 

ones. In most practical cases, the first option is chosen, in which the designer 

provides a description of the state which is relevant to the task. Once an 

appropriate description is chosen, generalisation methods can be applied to 

the relevant variables if these are still too large (see Section 2.4.2). 

Automating this process of discovering relevant variables or features is 

known in the literature as feature selection. The main task of feature se- 

lection is: given a set of n features describing some entities, selecting a 

subset of m relevant features, where m<n, such that, the subset pro- 

vides the same or similar information about the entities [Dash and Liu, 1997, 

John et al., 1994]. Usually, the relevance of a feature is measured in the con- 

text of classification, where relevant features are those which provide useful 

information for discriminating between entities of different classes. 

Statistical techniques exist for reducing dimensions in high dimensional 

spaces. For example, principal component analysis (PCA) [Kendall, 1980] is 

a method by which high dimensional spaces are reduced and represented by 

their principal components or simply, components. Principal components are 

new dimensions defined as linear combinations of the original dimensions. In 

other words, the descriptive variables are linearly combined into new vari- 

ables. Principal components are defined by the decreasing variance of the 

data they represent, i. e. the first component represents the dimension in 

which the data has the highest variance, the second component represents 

the dimension with the second highest variance, and so on. An important 

characteristic of components is that they are orthogonal to each other. The 

final aim of PCA is to represent a large percentage of the data total variance 
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with few components (2 or 3). Although this method reduces the number of 

dimensions, the resulting components or relevant dimensions are still linear 

combinations of possibly irrelevant dimensions. This implies that in search- 

ing for the components the method must also search along the irrelevant 

dimensions. Moreover, as PCA is based on the data total variance, and this 

depends on the variance of each of the dimensions, it will also be necessary 

that each dimension is appropriately normalised. 

None of the previous classification methods has the capability of filtering 

irrelevant dimensions or variables of their input representation, i. e., they 

generate classes based on the combination of all the given variables, even if 

these are irrelevant in relation to the classes. 

3.3.3 Interpretability of hypothesis 

Having systems that are easy to inspect facilitates their analysis and the 

discovery of errors. For example, if a classifier is consistently misclassifying 

some inputs, then being able to inspect the system and understand the reason 

for such an anomaly is a desirable characteristic. 

As seen above, different classification methods represent hypotheses in 

different ways. For example, clustering techniques represent hypotheses as 

a set of clusters, C= {cl, c2i ..., cn}. A particular primitive is then either 

part of the cluster (concept) or not, according to the similarity metric used. 

How could one interpret the meaning of these clusters or concepts? In low 

dimensional spaces (up to three dimensions) one could say that the concept 

is related to different areas of the multidimensional space, by looking at a 

plot of their geometrical location. Higher order dimensions would require 
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other visualisation methods. 

ANNs represent hypotheses implicitly in the weights and thresholds as- 

sociated with each neuron of the network. From this viewpoint, ANNs are 

black boxes which classify primitives but don't allow the inspection of the 

hypothesis used to do so. 

Concept formation methods represent concepts and the primitives to be 

classified using the conjunction of attribute-value pairs. For example, the 

concept of a `bird' could be expressed by the following attribute-value pairs: 

(nature = animal) A (locomotion = wings) A (size = small). This type 

of representation can be inspected with relative ease, and is similar to the 

hypothesis used by the method presented in the following section. 

3.4 Q-analysis and relational concepts 

The previous sections of this chapter have introduced concepts as general- 

isations of primitives described by multidimensional data; they have also 

reviewed some of the existing methods used in classification and concept 

learning, discussing their strengths and limitations. 

This section presents the necessary theory for the development of a new 

classification method based on the well established methodology of Q-analysis 

[Atkin, 1977, Atkin, 1981]. This novel method addresses some of the limi- 

tations identified in current classification methods. That is, (i) given the 

limitations of geometric models based on distance similarity metrics, the 

methodology of Q-analysis offers new insights to the concept of similarity. 

(ii) Q-analysis allows the possibility of finding relevant or irrelevant dimen- 

sions or variables, thus addressing the feature selection problem and the curse 

78 



of dimensionality. (iii) The Q-analysis methodology uses relatively simple 

representations of multidimensional data and its operators. This results in 

hypotheses that are easily interpretable, i. e. easy to analyse without any 

black boxes. 

As Q-analysis methodology considers the relational structure and multi- 

dimensional connectivity of a set of elements, we refer to concepts or classes 

generated following this methodology as relational concepts. 

3.4.1 Introduction to Q-analysis 

Q-analysis is a multidimensional generalisation of network theory introduced 

by Atkin [Atkin, 1977, Atkin, 1981], which is able to model general n-ary 

relations between the variables describing some primitives or elements of 

a multidimensional set. This analysis is especially suited for discovering 

relational structures in multidimensional data. 

In Q-analysis, the similarity between primitives is no longer defined as a 

distance, but is based on structural ideas of connectivity between the primi- 

Lives. This is in marked contrast to methods of classification that map objects 

into multidimensional data spaces, and cluster them into components based 

on distance similarity metrics. Through its notion of `q-connection' it pro- 

vides a graded method of classification according to shared dimensions or 

variables. 

As an example, consider a robot with the characteristics: robot, = (biped, 

battery, camera, PC) and another with the characteristics: robot2 = (wheeled, 

solar, camera, PC). These robots are similar through sharing the character- 

istics (camera, PC). Each characteristic can be considered to be a vertex in 
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a multidimensional space. Then, robot, can be represented by a tetrahedron 

(3-dimensional polyhedron) with vertices: biped, battery, camera and PC. 

Similarly, robote can be represented by another tetrahedron with vertices: 

wheeled, solar, camera and PC. These polyhedra are illustrated in Fig- 

ure 3-9, which also shows the shared characteristics with vertices: camera 

and PC. In this case the shared characteristics form a line (1-dimensional) 

and the tetrahedra are said to be 1-connected. In general the more highly 

connected these polyhedra are through their shared characteristics, the more 

similar they are. Thus the polyhedra can be clustered into classes according 

to their similarity as measured by their connectivity. 

robot, 

biped wheeled 

battery solar 

PC 

robot, 

camera 

Figure 3-9: Tetrahedra representing the characteristics of two robots 

As will be explained, the concepts or classes resulting from a Q-analysis 

classification are called relational concepts, as these are based on the n-ary 

relations between the variables describing the primitives. 

The following sections describe the basic notions and techniques used in 

the Q-analysis methodology. 
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3.4.2 An incidence matrix representation 

Relational data can be represented using an incidence matrix, as follows. 

Let us assume that a robot's sensory input is composed of six binary touch 

sensors {xl, x2, ... , x6}, as illustrated in Figure 3-10. The state of the robot 

at any time will be defined as the combination of the states of the individual 

sensors, xi, and denoted by s. Figures 3.10(a) to 3.10(d) illustrate a robot 

sensing four different states. 

(a) Sensing sl 

(c) Sensing 83 

(b) Sensing s2 

(d) Sensing s4 

Figure 3-10: A robot sensing different environmental states 

If the off/on states of the sensors are represented as 0/1 values, each of 

the previous states can be represented as a row in the matrix, M (Table 

3.1) . 
This is called an incidence matrix because it shows the incidence of 

the relationship between the states (rows) and the sensors (columns). In the 

81 



incidence matrix a value of 1 in row i and column j indicates that sensor j 

is activated in state i. The value 0 means that the sensor is not activated for 

that state. 

Table 3.1: Incidence matrix M 

X1 X2 X3 X4 X5 X6 

sl 0 0 0 0 0 0 

82 0 1 1 1 1 0 

S3 0 1 1 1 0 0 

S4 1 1 0 0 1 1 

Although typical robotic sensors provide their responses in continuous 

ranges (e. g. a luminosity sensor may provide a response from 0 to 255 pro- 

portional to the luminosity it receives), the assumption of binary sensors 

can be generalised to continuous variables, as will be shown in the following 

chapters. 

3.4.3 Simplex 

In general, a relation between two sets can determine a new object called 

simplex. For example let S be a set of states and Xa set of sensors. Then s2 

is related to xj if xj is activated for that state (as seen in the previous section). 

Let si be related to the active sensors xo, x1, ..., xn, then the object denoted 

by (x0, xl, ..., xn) is called an n-dimensional simplex. This terminology comes 

from algebraic topology, in which an n-dimensional polyhedron has (n + 1) 

vertices [Johnson, 1981]. 
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For example, a simplex with one vertex is a 0-dimensional point (Figure 

3.11(a) ), a simplex with two vertices is a 1-dimensional line (Figure 3.11(b)) 
. 

a simplex with three vertices is 2-dimensional triangle (Figure 3.11(c)), a 

simplex with four vertices is a 3-dimensional tetrahedron (Figure 3.11(d)), a 

simplex with five vertices is 4-dimensional a 5-hedron (Figure 3.11(e)), and 

so on. 

(a) Point (b) Line (c) Triangle 

(d) Tetrahedron (e) 5-hedron 

Figure 3-11: Example of simplices 

Each row of an incidence matrix can determine a simplex, with vertices 

corresponding to those columns to which it is related. For example, let 

a(s4) be the simplex associated with state 84 in Figure 3.10(d). Then we 

can write g(84) _ (x1) x2, x5, x6), which is a tetrahedron. Similarly, 9(s2) _ 

(x2, x3, x4, x5) and o-(s3) _ (x2, x3, x4)" In this example, state sl is associated 

with no sensors being activated. Thus s1 is associated with the null simplex, 

denoted a_l, which has no vertices. In summary, this notation allows us 

to represent the state observed by a robot as a simplex or polyhedra in 
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multidimensional spaces. Figure 3-12 illustrates the simplices and polyhedra 

related to the states observed by the robot in Figure 3-10. 

X4 

X3 

XS 

XZ 

X 
X4 

2 

X3 

Xi 

Xz 
XS 

X6 

(a) a(s1) (b) O(52) (C) 0(s3) (d) a(34) 

Figure 3-12: Simplices representing the robot's sensory state 

3.4.4 Hierarchical decomposition of simplices 

An important idea in Q-analysis is that high dimensional simplices can be 

decomposed into their lower order simplices called their faces. For example, 

the simplex representing cr(s2) _ (x2, x3, x4, x5) is a tetrahedron which is 

composed of the following faces: four triangles, six lines, and four vertices as 

shown in Table 3.2. 

Table 3.2: Sub-simplex hierarchy 

q-dimension face simplices 

3 0'(S2) _ (x2) x3, x4, x5) 

2 (X2, x3, X4) (X2, x3, X5) (X2, x4, X5) (x3, x4, X5) 

1 (X2, x3) (X2, x4) (x2, x5) (X3, X4) (X3, X5) (X4, X5) 

0 (X2) (X3) (X4) (X5) 

As will be shown in the following sections, this idea of hierarchical de- 

composition allows one to study the relations among simplices, and thus 

the multidimensional data they represent, at different q-dimensional levels. 
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This means, that simplices can be considered connected at different levels of 

connectivity. 

3.4.5 q-nearness, q-connectivity and structural 

similarity 

Let the intersection of two simplices be defined as their largest shared face. 

For example, U(s2) na(S4) (x2, x3, x4, x5) n (x1, x2, x5, x6) _ 
(x2) x5). The 

shared face is illustrated in bold in Figure 3-13. As the shared face of these 

simplices has a dimension of 1 (line), a(s2) and O7(84) are said to be 1-near. 

) 

X 

X5 

r 
ý4 

X3 

Figure 3-13: q-nearness of two simplices 

Two simplices a and a' are said to be q-connected if there is a chain of 

pairwise p-near simplices between them, such that, p>q. For example, 

Figure 3.14(a) illustrates a chain of four 1-simplices (lines), each of them 

0-near (through a point) to their neighbouring simplex, thus the set of four 

1-simplices are 0-connected. Figure 3.14(b) illustrates a chain of four 2- 

simplices (triangles), each of them 1-near (through a line). Figure 3.14(c) 

illustrates a chain of four 3-simplices (tetrahedrons), each of them 2-near 

(through a triangle). 
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6 63 
6Z 64 

vI 

(a) 0-connected (b) 1-connected (c) 2-connected 

Figure 3-14: Example of chains of q-connected simplices 

When the simplices are represented on an incidence matrix, such as, M, 

their q-nearness can be simply calculated as, MMT - 1, where, MT 
, is the 

transpose of M and 1 is a matrix with all elements equal to 1. The result of 

this operation on the incidence matrix in Table 3.1 is illustrated in Table 3.3 

and is known as a shared face matrix . 

Table 3.3: Shared face matrix corresponding to M in Table 3.1 

Si S2 83 84 

Sl 

MMT-1= s2 

83 

84 

ý -I -1 -1 -1 
1 

-1 321 

1 
-1 220 

1 
-1 103 

The shared face matrix represents the direct connectivity of the simplices 

based on their shared vertices. Every p-simplex is p-near to itself, and this 

is shown in the diagonal of the matrix, e. g. a(s2) and Q(s4) are 3-simplices, 

0'(s3) is a 2-simplex and a(sl) is a null simplex. Looking out from the di- 

agonal, the shared face matrix represents the connectivity between pairs of 

86 



simplices. For instance, in this case a(s2) is 2-near to a(s3), a(s4) and g(82) 

are 1-near, 0'(s3) and a(s4) are 0-near and a(sl) is not connected to any of 

the other rows of the incidence matrix, M. 

The q-nearness of two simplices is a fundamental measure of their struc- 

tural similarity, that is, the higher the dimension of their shared face, the 

higher their structural similarity. In the extreme case, when two simplices 

share all their faces, they are identical with respect to their descriptive di- 

mensions. 

As described earlier, the aim of a classification task is to relate a set 

of primitives to their corresponding classes. A similarity measure based on 

q-nearness provides the relation of a pair of simplices, thus an important 

issue is to extend the idea of q-nearness to a similarity measure applicable 

to a set of simplices. One could think of q-connectivity as a measure of 

similarity between a set of q-near simplices, but due to its pairwise definition, 

this measure is not well suited for classification. For example, any of the 

simplices illustrated in Figure 3-14 have the same q-connectivity value, but 

taking a1 and a4 of any of the chains, illustrates how these simplices do not 

share any vertex, but are still q-connected. This is an effect of q-nearness 

being pairwise transmitted along the chain. Thus, using q-connectivity as 

a classification metric for a set of simplices would consider as similar two 

possibly unconnected simplices. 

To extend the previous idea of q-nearness as structural similarity to 

a set of simplices, and avoiding the problem of pairwise transmission of 

q-connectivity, the following section introduces another element of the Q- 

analysis methodology known as a hub. 
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3.4.6 Hubs and stars 

Given any set of simplices, a1 i Q2, ... , o'n, their hub is the largest shared 

face of them all [Johnson, 1986]. Thus, hub (a1, a2, ... , ten) = n=jai. Figure 

3.15(a) illustrates five 3-simplices: Q1 = (x1, x2, x3) x4), a2 = (x1, x2, x3. x5); 

93 = (x1, X2, X3, x6), 94 = (x1, x2) x3, x7) and Q5 = (x1, x2, x3, x8)" The hub of 

these simplices is: (xl, x2, x3) = hub(a,, a2,073, a4) 95), illustrated in Figure 

3.15(b) as a greyed triangle. All of the possible simplices that share a same 

hub are known as the hub's star [Johnson, 1986] . 

x, Xl 

XZ x3 X2 x 3 

9, 
(; 2 a 

xs 
X8 

X6 x X] x7x 

x "K7 x2 X3 x1 X3 3 
63 64 65 

(a) Simplices Ql, 172,0-3, o, 4 and 075 

x8 

x4 

x7 

x5 

(b) hub(a1, o2, os, o4, Q5) 

Figure 3-15: Some simplices and their hub 

Hubs and stars allow us to define a novel method for the classification of 

instances, based on the idea of hubs being used as the defining structure or 

core of a class, i. e., the necessary and sufficient conditions for primitives to 

belong to a class. In this thesis, hubs used for classification are known as 

classifier hubs. The classification is based on the idea of representing classes 

as hubs, and primitives belonging to a class as the stars of a hub. This novel 

method for classification is further explained in the following sections. 
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3.4.7 Classification using classifier hubs 

The idea behind classification using classifier hubs is that a set of simplices 

sharing a hub, i. e. the hub's star, can be considered similar, thus being 

part of the same class, if their hub is relevant for the given class. Relevant 

hubs are here known as classifier hubs. For example, a class bird described 

by the simplex: (alive, wings, non-mammal, vetebrate, multicolour, small, 

fisher, hunter, nocturnal, feathers) could have the following classifier hub: 

(alive, wings, non-mammal, vertebrate), thus any animal sharing this essen- 

tial characteristics would be classified as a bird, irrespective of the value of 

the other variables. This last remark is important in the sense that the faces 

which are not contained in the classifier hub are in some sense irrelevant 

for that particular class. Classifier hubs represent the core structure of a 

concept, and thus are considered the representatives of the concept. 

The classification task can now be seen as the task of finding a set of 

classifier hubs, whose combination results in the desired hypothesis. In our 

terms, classifier hubs are referred to as relational concepts as they provide 

the relational structure of the concept or class they represent. 

The following sections exemplify how to use the Q-analysis methodology 

for classification. The examples are based on supervised classification using 

two different data-sets. These examples illustrate some heuristics to identify 

classifier hubs, and demonstrate how classifier hubs filter irrelevant variables 

or features. 
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3.5 Finding classifier hubs 

In this example, the CorrAL data-set has been used [Dash and Liu, 1997]. 

This is a synthetic data-set that contains one target concept (C = 1), and 

uses six binary variables to describe each primitive, namely (A0, Al, BO, 

B1, I, K). A primitive is defined as belonging to the target concept (C=1) 

if the following expression is evaluated as true: (AO A Al) V (BO A BI). Thus 

(A0, Al, BO, B1) are relevant variables with respect to the concept; I, is 

an irrelevant variable, and K is a variable correlated to the target concept 

75% of the time. In total, the data-set contains 40 primitives, 20 of which 

belong to the target concept. This data-set is illustrated in Table 3.4, where 

the first 20 primitives do not belong to the target concept (C = 0). 

The method to find the relational concepts consists of the following steps: 

1. Find the hubs in the data using the star-hub analysis. 

2. From the total set of hubs encountered, select a sub-set of classifier 

hubs. 

The first step in the method identifies all of the hubs that exist in the 

data. The second step selects a sub-set of relevant hubs and defines them as 

relational concepts (classifier hubs). These two steps are explained in more 

detail in the following. 

3.5.1 Star-hub analysis 

The star-hub analysis takes each of the data primitives, represented as sim- 

plices, and searches for their shared hubs. Broadly speaking, this is done 

by intersecting the simplices and finding their shared faces. The star-hub 
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analysis used in this thesis associates each hub with two statistical measure- 

ments that indicate the number of simplices of each class sharing the same 

hub. These statistics are named specificity and broadness and are further 

explained below. Table 3.4 illustrates the data-set and in bold is represented 

the hub most shared in the data-set, i. e. (Al). 

Table 3.4: CorrAL data-set 

AO Al BO B1 I K C 

0 0 0 0 0 0 0 

0 0 0 1 1 0 0 

0 0 1 0 0 1 0 

0 1 0 0 0 0 0 

0 1 0 1 1 0 0 

0 1 1 0 1 1 0 

1 0 0 0 0 0 0 

1 0 0 1 1 0 0 

1 0 1 0 0 1 0 

0 1 1 0 1 0 0 

0 0 0 0 0 0 0 

0 0 0 1 1 1 0 

0 0 1 0 0 0 0 

0 1 0 0 0 0 0 

0 1 0 1 1 1 0 

0 1 1 0 1 0 0 

1 0 0 0 0 0 0 

1 0 0 1 1 0 0 

1 0 1 0 0 0 0 

0 1 1 0 1 0 0 

AO Al BO B1 I K C 

0 0 1 1 0 1 1 

0 1 1 1 0 1 1 

1 0 1 1 1 1 1 

1 1 0 0 0 0 1 

1 1 0 1 0 1 1 

1 1 1 0 1 1 1 

1 1 1 1 0 0 1 

1 1 0 1 0 1 1 

0 1 1 0 1 1 1 

0 1 1 1 0 1 1 

0 0 1 1 1 0 1 

0 1 1 1 0 1 1 

1 0 1 1 0 1 1 

1 1 0 0 1 1 1 

1 1 0 1 0 0 1 

1 1 1 0 1 1 1 

1 1 1 1 0 0 1 

1 1 0 1 0 1 1 

0 1 1 0 1 1 1 

0 1 1 1 0 1 1 

Table 3.5 illustrates a selection of hubs from the CorrAL data-set, ordered 

by their probability of occurrence or broadness. For example, hub (Al) is the 

hub with highest probability of occurrence: it contains 24 simplices out of 
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the total 40. The table also illustrates the two statistic measures, specificity 

and broadness. The specificity of a hub is the maximum class conditional 

probability given a hub, i. e., the maximum probability of any simplex being of 

class C when it shares hub H, that is P(CIH). For example, the probability 

of a simplex being of the target class, given the hub (Al), is 16/24, because 

the hub is shared by 24 hubs from which 16 are of the target class. 

Table 3.5: A selection of hubs from the CorrAL data-set 

hub #target #-target total specificity broadness 

(Al) 16 8 24 16/24 24/40 

(C) 15 5 20 15/20 20/40 

(AO) 12 6 18 12/18 18/40 

(I) 7 10 17 10/17 17/40 

(A0, Al) 10 0 10 10/10 10/40 

(B0, B1) 10 0 10 10/10 10/40 

(Al, BO, C) 8 1 9 8/9 9/40 

(A0, A1, I, C) 3 0 3 3/3 3/40 

There are three important observations we can make from Table 3.5. (i) 

In general, hubs of higher q-dimension are shared by fewer simplices than 

hubs with lower dimension. As high dimension hubs pose more requirements 

(number of vertices) to be satisfied, fewer simplices satisfy them. (ii) Some 

hubs contain only simplices related to a unique class (specificity = 1). For 

example, hub (A0, Al) is shared by 10 simplices, and all of them are of 

the target class. In principle, such hubs are good for classification, as a 

simplex sharing this hub has a high probability of belonging to the target 

class. (iii) Hubs with few vertices and low specificity, e. g. (Al) has a speci- 

ficity of 16/24 ti 0.66; when taken in combination with other vertices can 

become more specific, e. g., Al, taken in combination with, A0, (AO, Al), 
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has a specificity of 1. This means that a vertex could be a `weak' classifier 

(low specificity) when taken individually, but become a `strong' classifier in 

combination with other vertices. 

3.5.2 Heuristic selection of classifier hubs 

The total number of hubs found in a data-set is potentially very large, e. g. the 

small CorrAL data-set contains approximately 60 different hubs. Moreover, 

not all of these hubs are interesting for classification, as many represent 

the connection of different classes through irrelevant or noisy variables, for 

example, the hub composed of the irrelevant variable (I) is shared by the 7 

target and 10 no-target concepts. This means that 7 target simplices become 

connected to 10 no-target simplices through the irrelevant vertex. 

Ideally, a small set of classifier hubs must be selected from the total set 

of hubs. To this end, the two previously introduced statistical measures 

are used. The heuristic method to select classifier hubs operates as follows: 

(i) hubs are ordered by their broadness, that is, starting from the hubs with 

higher probability of occurrence to the ones with lower probability; (ii) start- 

ing from the broadest hub, a hub is selected as a classifier if its specificity 

is higher than a threshold, and if it is shared by a minimum number of sim- 

plices. The threshold and the minimum number of simplices necessaries are 

selected manually, and require experimental tests to identify the appropriate 

values. For this data-set the specificity threshold is set to 1; this means that 

only classifier hubs with a 100% class-conditional probability can be selected. 

Following this heuristic, only two classifier hubs are selected to represent 

the target concept; these are (AO, Al) and (BO, Bl). These two classifiers 
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represent the correct target function, (AO A Al) V (BO A BI), as any sim- 

plex will be considered to be of the target concept if it shares any of the 

two classifiers, (A0, Al) or (BO, BI). It is important to observe that these 

classifiers do not contain any of the irrelevant or correlated variables (I, K) 

initially present in the data-set. These have been filtered as "irrelevant" by 

the heuristic method. This idea of considering vertices that are not part of 

classifier hubs as irrelevant for the classification seems very powerful for iden- 

tifying irrelevant variables in the data and is further studied in the following 

section. 

3.6 Variable or feature selection by Q-analysis 

As discussed in Section 3.3.2 the feature selection problem is that of identify- 

ing a sub-set of features or variables that provide discrimination information 

in relation to a classification task. 

The previous section described how to use Q-analysis to find classifier 

hubs or relational concepts. As defined in Section 3.4.7, the vertices that are 

not shared by any of the classifier hubs describing the data, are considered 

irrelevant for the given classification. In the experiment above, variables 

I and K were not contained in any of the classifier hubs, and thus were 

irrelevant. To extend the results obtained in the previous experiment, a new 

experiment, based on the iris data-set collected by Anderson and published 

by Fisher [Fisher, 1936], is proposed in this section. 

The iris data-set is composed of the measurement of four variables, namely, 

sepal width, sepal length, petal width and petal length of three different types 

of plant, `setosa', `versicolor' and `virginica'. The complete data-set contains 
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50 instances of each plant having four measurements. The task consists of 

classifying each plant on the basis of their sepal and petal sizes. Figure 3-16 

illustrates the iris data-set, where the vertical axis represents the sepal and 

petal sizes in centimeters, and the horizontal axis represents the plant in- 

stances ordered as follows. From 1 to 50 `setosa', from 51 to 100 `versicolor', 

and from 101 to 150 `virginica'. 

8 
+ petal width 
- petal length 

sepal width 
7 sepal length 

6 

5 

E 
U 

u 

cl) 4 
N 

(I) 

0ý 
0 'setosa' 50 'versicolor 100 'virginica' 150 

Plant Type 

Figure 3-16: Iris data 

Before classification, the complete iris data-set is divided into training 

and test data-sets. Each data-set contains half of the complete data, i. e., 75 

instances of plants, 25 of each class. The experiment was conducted in three 

steps: (i) finding the classifier hubs for the training data-set, (ii) measuring 

the classifier's accuracy when classifying unseen plants from the test data-set, 

and (iii) studying the relevance of the classifier's vertices. 
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3.6.1 Simplex representation of the iris variables 

In order to represent the continuous variables (see Figure 3-16) using binary 

values, each variable has been first normalised to a0 to 1 range and then 

segmented into 10 equal intervals. This segmentation results in each contin- 

uous variable having 10 possible binary values. Let us refer to each of these 

binary values as: swi (sepal width), sl2 (sepal length), pw2 (petal width) and 

pl2 (petal length); each with i=1,2, ... 10. Of the total of 40 binary values, 

only four at a time will be related to any given plant. In other words, each 

plant will be represented by a 3-simplex. 

3.6.2 Star-hub analysis and classifier hubs 

The star-hub analysis was used on the iris training data to discover its hubs. 

A total of 526 different hubs were found. The heuristic method presented in 

Section 3.5.2 was applied to the 526 hubs to find a set of classifier hubs that 

could explain the training data. In this case, the specificity threshold was 

also set to 1, thus only the hubs related to a unique class were considered as 

possible classifiers. Table 3.6 illustrates the resulting classifier hubs. 

Table 3.6: Classifier hubs for the iris data 

setosa vesicolor virginica 

classifier hub spec broad classifier hub spec broad classifier hub spec broad 

(pll) 20/20 20/75 (pl5) 8/8 8/75 (pW8) 7/7 7/75 

(pwl) 19/19 19/75 (pw5) 4/4 4/75 (pw9) 6/6 6/75 

(pw2) 6/6 6/75 (p14) 4/4 4/75 (p19) 6/6 6/75 

(s15) p16) 6/6 6/75 (pll0 6/6 6/75 

(813, pl8) 5/5 5/75 
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From the 526 hubs, the heuristic method selected only 12 classifier hubs. 

The relational concepts for the iris data-set were as follows: 

(pll) V (pw1) V (pw2) -f setosa. 
(ply) V (pw5) V (pl4) V (S15)pl6) 

-* versicolor. 

(pws) V (pw9) V (pl9) V (pllo) V (s13, pl8) -f virginica. 

The following section discusses how these relational concepts were used 

to classify the test data-set. 

3.6.3 Classification using classifier hubs 

The test data-set was used to measure the classification accuracy of the 

classifier hubs of Table 3.6. A plant is of a certain class if it shares a classifier 

hub related to that class. 

Table 3.7: Classification results 

%correct % unclassified % misclassified 

setosa 100 0 0 

versicolor 80 20 0 

virginica 80 20 0 

By applying the previous classifiers to the iris test data, we produced 

the results shown in Table 3.7, in which %correct, indicates the percentage 

of correctly classified primitives; %unclassified, indicates the percentage of 

unclassified primitives, i. e. primitives are considered unclassified if they do 

not share any of the classifier hubs; %misclassified, indicates the misclassified 

primitives, i. e. plants of a given class which share the hub of a different class. 
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The results in Table 3.7 indicate that a small number of classifier hubs, 12 

in total, can be used to classify real-world data. 

3.6.4 Study of variable relevance 

In the experiment presented in Section 3.5 it was easy to validate whether the 

variables composing the classifier hubs were relevant or not, as the CorrAL 

data-set itself defines which variables are relevant, irrelevant or correlated. 

In the iris data-set there is no straightforward definition of which variables 

are relevant and which are not, thus in order to study their relevance the 

following experiment was conducted. 

Two multilayer neural networks were used to classify the iris data, one 

using the complete set of variables (Figure 3.17(a)) and the other using only 

the variables that compose the classifier hubs of Table 3.6 (Figure 3.17(b)), 

both networks are illustrated in Figure 3-17. 
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(a) Network with 40 inputs (b) Network with 14 inputs 

Figure 3-17: Neural networks used for validation 

The first network (Figure 3.17(a)) took as input the 40 variables described 

in Section 3.6.1. The second network (Figure 3.17(b))used only 14 variables 
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that appear in the classifiers hubs of Table 3.6, that is: (813, sly pwl, pw2. 

pw5, pW8 pw9, P11, p14, p15, p16, p18, p19, pllo). Both networks had 3 hidden 

neurons, 3 outputs, and were trained using backpropagation with 10 training 

examples of each class of plant. 

The trained networks were tested five times against the remaining plants, 

and the average of their classification error was measured. The results of the 

classification are summarised in Figure 3-18. 
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(a) Misclassification error (b) Unclassified error 

Figure 3-18: Neural network classification error 

In black is the result for the 40-input network; in white is the result of the 

14-input network. Figure 3.18(a) illustrates the misclassification error and 

Figure 3.18(b) illustrates the unclassified error. These show that the 14-input 

network results in a slightly better classification accuracy. Although this 

accuracy is not significant to decide that the 14-input network outperforms 

the 40-input network, it can be said that both networks have similar accuracy. 

Thus, removing what the method considered as irrelevant variables does not 

decrease the network's prediction accuracy; this seems to indicates that those 
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variables were irrelevant in the first place. 

It is also interesting to observe that most of the relevant variables in the 

classifier hubs are related to the pl and pw measurements. Only 2 out of 

14 vertices correspond to the sl measurement and none correspond to the 

sw measurement. Thus, in some sense, the pl and pw measurements are 

more relevant than the sl and sw ones. If one looks at the plot of these 

measurements in Figure 3-16, the pl and pw measurements are more differ- 

entiated between plants than the sl and sw measurements. This indicates 

that the pl and pw are more relevant for differentiating between plants, which 

is consistent with the results of the experiment in this section. 

3.7 Summary 

This chapter developed the idea of a concept as the result of a classification 

process, in which specific primitives described in multidimensional spaces 

are mapped into general concepts or classes. The aim of building concepts 

in this thesis is one of creating a generalised and hierarchical representation 

of primitives. 

Existent multidimensional data classification methods have been discussed, 

showing their strengths and limitations. It has been discussed that similarity 

metrics based on Euclidean distance can only be used if the mathematical 

properties of the multidimensional spaces are well-known. The feature selec- 

tion problem has also been discussed, concluding that existing classification 

methods assume that it is the designer who identifies the relevant variables. 

Finally, the interpretability of hypotheses has also been described as a limi- 

Cation of black-box classifiers, such as ANN, as it is difficult to analyse their 
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functionality. 

In order to address these limitations, the theoretical methodology of Q- 

analysis has been presented, and a new technique for classification proposed, 

based on the idea of classification hubs. In order to demonstrate these tech- 

nique two examples have been developed, one based on the synthetic CorrAL 

data-set, and the other on Fisher's Iris data-set. The experiments were based 

on supervised classification, that is, each primitive was labelled with its corre- 

sponding class. The aim in the experiments was to discover a set of classifier 

hubs (hypotheses) that appropriately classify the data-sets. 

In the examples, it was shown first how the star-hub analysis could be 

used to find all the existing hubs in a set of data represented using simplices. 

Secondly, it was shown that a heuristic method could be used for selecting 

a subset of hubs and defining them as relational concepts. The heuristic 

method was based on selecting hubs that contained large number of simplices 

(hubs with high broadness) of a unique class (hubs with high specificity), until 

the subset of classifiers categorised the data with a sufficient accuracy. This 

approach proved applicable to the two data-sets, namely CorrAL and Iris. 

Classifier hubs, or relational concepts in our approach, have been shown 

to be able to filter irrelevant variables used to describe primitives. That is, 

in the CorrAL data-set two variables, an irrelevant (I) and a correlated (K), 

were eliminated from the description of the target concept. In the Iris data- 

set, the vertices that appeared in the relational concepts were used as inputs 

to a multilayer neural network, which was compared with one using all the 

variables. The two neural networks had the same structure (except for the 

input units) and were trained with the same data. The results showed that 
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the network using only the filtered inputs, slightly outperformed in classifying 

unseen primitives with the network using all the variables. Thus, the method 

based on Q-analysis was again shown capable of filtering irrelevant variables 

in the data. 

In summary, the novel classification method described here has the fol- 

lowing characteristics: 

" Similarity metric: In Q-analysis similarity is based on the structural 

relations of the data, i. e. in the q-nearness of simplices. As this sim- 

ilarity measure does not subsume the information in the data into a 

distance metric, the problem of comparing incomparable dimensions is 

alleviated. 

9 Feature selection: As it was shown, the classification method based on 

Q-analysis is very sensitive to the addition of variables or dimensions, 

this characteristic has been shown useful to detect irrelevant variables, 

and thus addressing the feature selection problem. 

" Interpretability of hypothesis: As is was shown, and will be further seen 

in Chapter 6, because Q-analysis represents multidimensional data and 

their relations as binary value-attribute pairs, the resulting hypotheses 

are easy to interpret. This allows the designer to interact continually 

with the data and refine the methods and techniques being developed. 
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Chapter 4 

A Multilevel Architecture 

based on Concept Generation 

As seen in Chapter 2, the autonomy, robustness and flexibility of artificial 

agents can be improved by allowing them to adapt to their environment. 

Machine learning techniques can be used to provide flexibility and adaptive 

capabilities to autonomous systems. 

A crucial aspect for the success of machine learning frameworks, such as 

reinforcement learning (RL), is that of the representation used to encode the 

target function. As seen in Section 2.4.2 applications with large state and 

action spaces require the representation to be general. 

Chapter 3 introduced concepts as generalisations of primitives, showed 

some techniques for generating concepts, discussed their limitations and in- 

troduced the methodology of Q-analysis, and exemplified how a new classi- 

fication technique based on Q-analysis addresses some of the limitations of 

previous classification techniques. 

This chapter develops an architecture that allows the combination of ma- 

103 



chine learning frameworks, such as RL, with the idea of concepts. The un- 

derlying principle of this architecture is to generate concepts and use them 

as the representation upon which to base behaviour learning. 

As seen in Section 2.2 architectures have two essential characteristics, 

namely their structure and style. This chapter presents the structural char- 

acteristics of the architecture, i. e. how the system is divided into sub-systems 

and their interaction. Some insights into the architecture's style are also given 

in this chapter, but Chapter 5 and Chapter 6, give more details about the 

computational processes underlying each sub-system. 

4.1 Introduction 

A major difficulty that arises in behaviour learning in multidimensional 

spaces is that of coping with high dimensionality of state and action spaces 

(see Section 2.4.1). This dimensionality makes the tabular representation of 

behaviour impractical in complex systems, such as robotic domains. In or- 

der to overcome these difficulties, `generalised' representations of the target 

function or behaviour are necessary. 

Concepts are, by definition, generalised classes composed of primitives 

(see Section 3.1.1); it is therefore conceivable, that in order to alleviate prob- 

lems with dimensionality, one can divide behaviour learning into the following 

steps: 

1. Generate concept representations. 

2. Use concepts to learn behaviours or target functions. 
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The first step is one of learning a concept representation of states and 

actions, for subsequent learning of the target function based on the new 

representation. This thesis proposes to generate two types of concepts by: 

(i) taking the original state and action spaces, and generalising them by 

clustering primitives into concepts (in Chapter 5), and (ii) by generating 

relational concepts using Q-analysis (in Chapter 6). 

The second step is a behaviour learning task, with the fundamental dif- 

ference that behaviours are learned using concepts as representation instead 

of the original spaces. 

These two steps are realised by two components of the architecture, 

namely, concept generation and behaviour learning and control. A structural 

description of the proposed architecture and its components is illustrated in 

Figure 4-1. 

Concept 
generation 

'0 m 
Behaviour 

learning and 
1) I control 

Figure 4-1: A structural description of the proposed architecture 

The architecture has three main components: 

9 The sensor and motor apparatus component integrates all of the robot's 

sensors and motors, which directly interact with the environment. Sen- 

sors provide the state information from the environment, and motors 

provide the actions available to the robot. 
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" The concept generation component takes the state and action informa- 

Lion from the sensor and motor apparatus component. This information 

is used to generate concepts relating to states and actions, namely, state 

concepts and action concepts. Different methods can be used to gener- 

ate different types of concepts; Section 4.4 gives a detailed explanation 

of this component. 

" The behaviour learning and control component takes the concepts formed 

by the concept generation and the information from the sensor and mo- 

tor apparatus, and uses them to learn behaviours which are also used 

for controlling the robot. Section 4.5 gives a detailed explanation of 

this component. 

The rest of this chapter develops one such learning architecture, where 

concepts are acquired and used as representations for behaviour learning. 

Learning can then exploit the generalisation and structuring that concepts 

impose on the original state-action spaces. 

4.2 Arguments for a new architecture 

The proposed architecture addresses the issue of developing a generalised 

representation which reduces the dimensionality problems of learning robotic 

behaviours. We first discuss why the existing methods to reduce dimension- 

ality problems are not suitable for our purposes. We then discuss what are 

the novel characteristics of the proposed architecture. 
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4.2.1 Why not use other generalisation methods? 

As reviewed in Section 2.4.2, some techniques based on generalisation exist 

to reduce the problems related to the dimensionality in behaviour learning. 

Generally, these methods are function approximators and multi-grid meth- 

ods, and are aimed at representing a target function in a compact manner. 

For example, linear function approximators are used in combination with RL 

to represent the value function used for policy learning. 

The reasons for not using any of those methods are the following: 

" Function approximation methods do not generate a new and generalised 

representation of the robot's input space (state and action space), but 

generate a compact representation of the target function learned using 

those spaces. This has at least two implications: 

1. The approximations of functions using function approximators are 

`flat' in the sense that, the approximator takes some inputs and 

approximates the output of the function without the usage of any 

explicit intermediate representations. This approach is successful 

for approximating simple functions, but would prove difficult at 

approximating complex ones. For example, having to learn the 

approximation of a value function corresponding to `playing soc- 

cer' would be extremely difficult, as such value functions would 

depend on many sensory inputs or dimensions (player positions, 

player directions, player speeds, opponent strategy, team strategy, 

etc) and many actions (passing the ball to a particular player, 

dribbling to a particular position, getting in a particular strategic 
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configuration, shooting to goal in a particular direction, etc). In 

complex situations, it is helpful to generate multilevel representa- 

tions from which complex representations can be achieved as the 

combinations of simpler ones. 

2. The approximated functions are usually task dependent. For ex- 

ample, a common approach is to approximate the value function 

of an RL problem. As value functions are task dependent, the 

learned approximation can not be re-used in new tasks. 

" Function approximation methods take some input variables or some 

features from these, and generate the approximation as combinations 

of the inputs and some internal parameters. For example, a robot 

could be approximating a value function as a linear combination of 

its sensory inputs, the actions selected in the environment, and some 

internal weights. The sensory information and the selected actions 

could also be input into a ANN where the combination of the input and 

the network's weights would approximate the function. This approach 

assumes that all of the robot's sensory inputs are relevant for the value 

function to approximate, thus the combinations of all the inputs is used 

to generate the output. In some situations, not all sensory inputs are 

relevant for the function to approximate. Thus, function approximators 

could be spending time and resources to approximate functions from 

irrelevant information. In extreme situations, many irrelevant variables 

could cause the approximator not to converge to the desired output. 

" As function approximation methods are not capable of identifying and 

eliminating irrelevant variables or dimensions from the approximation, 
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they are prone to the curse of dimensionality. That is, the exponential 

growth of the resulting hyperspace of a function with many dimensions, 

even if some of these are irrelevant, will pose high computational re- 

quirements on the approximation method to learn the approximation. 

" Multi-grid and variable resolution methods could, in principle, be used 

to develop explicit and general representations of the state or action 

spaces. These methods divide the state/action spaces or a value func- 

tion into discrete hypercube regions. Each region represents a gener- 

alised region of the hyperspace. A drawback of multi-grid methods 

is that hypercubes are defined over all the dimensions (axes) of the 

hyperspace, even if these dimensions are not relevant. 

4.2.2 Why this architecture? 

The architecture developed in this thesis has the following characteristics: 

" It can use different classification techniques to construct explicit and 

generalised representations, known as concepts, of the state and action 

spaces. These concepts are then used as generalisations for behaviour 

learning. Thus, the architecture is capable of learning in large state or 

action spaces, representing the target function in a generalised manner. 

" Concepts are defined within a multilevel hierarchical representation, 

that is, concepts at lower-level descriptions can be treated as primitives 

and used to define concepts at higher-level description. Thus, it is 

possible to learn concepts from low-level sensor and motor data and 

scale up to complex representations. 
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" Concepts are defined as hypercubes in multidimensional hyperspaces. 

Although this is similar to the representations used by multi-grid meth- 

ods, it is possible to define hypercubes which ignore irrelevant dimen- 

sions or axes of the hyperspace. 

"A classification method based on Q-analysis, is presented within the 

architecture which is capable of identifying irrelevant dimensions in 

relation to a concept, thus eliminating unnecessary dimensions and 

reducing the problems related to the curse of dimensionality. 

" Concepts are grounded in sensory and motor data. Thus, symbol 

grounding problems are alleviated. 

This section motivated the need for a new architecture for behaviour 

learning by presenting the main shortcomings of using function approxima- 

Lion methods as generalisations. It also presented the main characteristics 

of the proposed architecture. The next section gives an overview of this 

architecture. 

4.3 Architecture overview 

Similar to the RL framework (Section 2.3.2), the architecture presented here 

is based on the definition of a set of observable environmental states S, and 

a set of possible actions A. Time is assumed to be discrete and to increment 

in constant intervals. 

The state of the environment is perceived through the robot's sensors. 

Thus, the environmental state space S is equivalent to the robot's sensor 

space. An action is defined as the combination of all the possible commands 
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that can be sent to the robot's motors. Thus, the action space A is equivalent 

to the robot's motor space. 

As the architecture presented here develops a multilevel representation of 

S and A, let us refer to the states and actions defined at the lowest possible 

description-level as atomic. That is, atomic states and actions are those 

formed directly from the robot's sensor and motor values, respectively. Figure 

4.2(a) illustrates a robot's sensory apparatus, and how the atomic state space 

is formed by it. Figure 4.2(b) illustrates a robot's motor apparatus, and the 

atomic action space related to it. This characteristic of defining atomic states 

and actions directly from the robot's sensor and motor data, will allow the 

multilevel representation to ground concepts on sensor and motor data. 

camera-c motor, -m, 

sonar-s 
m mº 

motor2-mZ 

in /'-///Atomic c/ Atomic m2 1I 

s state g action gripper- 

space space 

(a) Atomic states (b) Atomic actions 

Figure 4-2: Atomic states and actions 

To describe the architecture let us use the robot in Figure 4-3 as an 

example. The robot has two motors, ml and m2, connected to the right and 

left wheels, and two sensors xl and X2, which measure the distance d and 

angle a with respect to an object. Let us assume that the response of sensor 

xl is r(xl) E 0... 100 cm and that r(x2) E 0... 360°. Furthermore, let us 

also assume that the activation of motor ml is a(m1) E 0... 100% and that 

a(m2) E 0... 100%. 
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m, 

Figure 4-3: A generic mobile robot 

The combination of the responses of the two sensors constitutes the 

atomic state space for the robot. Figure 4.4(a) illustrates this state space 

(sensor space) as a two-dimensional coordinate space, where the axes rep- 

resent the response of the sensors. Atomic states are represented by dots. 

In a similar manner, the combination of motor activations constitutes the 

robot's atomic actions space. Figure 4.4(b) illustrates this action space (mo- 

tor space). The axes represent the activation value for each motor. Atomic 

actions are represented by dots. 

d 
100 

0 

(a) State space 

V(m) 
loo 

a V(m) 
360 0 100 

(b) Action space 

Figure 4-4: State and action spaces for the generic robot 

Using this common definition of state and action spaces, the architecture 

defines a hierarchy of state and action concepts. Concepts are, as defined in 
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Section 3.1.1, general classes composed by primitives, thus, state concepts 

are general classes of primitive states, and action concepts are general classes 

of primitive actions. 

The following section describes the idea of hierarchical classification which 

is used in this architecture to represent concepts at different levels of de- 

scription. The motivation for introducing hierarchical classification is the 

following. Learning a complex robotic behaviour, such as playing soccer, 

represented by using atomic states and actions, would be a difficult task 

given the many possible state and action combinations. As a matter of com- 

parison, it would be like teaching a young child to play soccer in terms of the 

length, direction, speed of its steps and the distances and angles to objects 

such as the ball, opponents and goal. In this case, decomposing the complex 

behaviour into a hierarchy of simpler sub-behaviours can facilitate learning 

[Stone, 1998, Dietterich, 1998, Barto and Mahadevan, 2003]. For example, 

the playing soccer behaviour can be decomposed into sub-behaviours, such as 

dribbling, ball passing, pass selection, etc. Then learning the playing soccer 

behaviour as a combination of the sub-behaviours is simpler [Stone, 1998]. 

4.3.1 Hierarchical lattice classification and concepts 

Let us introduce the idea of hierarchical classification using lattice hierarchies 

by following a simple example. Figure 4.5 (a) illustrates a space of blocks, from 

which the Euler ellipse selects the set of blocks: {bl, b2, b3}. The parts of this 

set can be arranged in a spatial configuration, such as the one illustrated 

in Figure 4.5(b). As previously used in classification, let us refer to the 

parts forming configurations as primitives and the resulting configurations as 
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concepts, this leads to a hierarchical notation where primitives are considered 

to be at description level Level N and concepts at level Level N+1. This 

notation is illustrated in Figure 4.5(c). The resulting concept in Figure 4.5(b) 

follows a special relation of its primitives, namely, Rarch. That is, blocks b2 

and b3 are horizontally placed at a certain distance from each other, and bl 

is vertically placed on top of b2 and b3. 

/ 11/ 

_, -- 

ýý -b 

/ 

(a) Space of possible blocks 

b, b, 

arch 

b, 
b/, / 

(b) Blocks classified into an arch 

Level N+1 

Level N 

(c) Hierarchical notation 

Figure 4-5: Classification of a set of primitives into a concept 

An important aspect of classifying parts into wholes is that the resulting 

concepts may have emergent properties. For example, the arch in Figure 

4.5(b) has the emergent property of allowing other objects to pass through 
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it, which is not a property of any of its individual parts. If the resulting 

concept has interesting properties, it can be given a name, such as arch. 

This process of giving a name is one of making the concept explicit, and does 

not occur in function approximation methods. 

A multilevel representation considers that, if primitives are at description 

level Level N, then the concept is at description level Level N+1 in the hi- 

erarchy, as illustrated in Figure 4.5(c). If N is the lowest-level of description, 

then the primitives at this level are atomic. 
b, 

jVb, )1b, 

6, i1b. 
arch, 3, arch,,, Level N+2 

11 In _7 
b, 

b, b, b, 
"b7 

i arch, arch, arch, Level N+l 

arch, arch, arch, 

-------------- 

b, b, b, b, b5 b, b, b8 Level N 
b, 

#b 

b 

(a) Blocks classified into arches (b) Lattice hierarchy 

Figure 4-6: Example of a multilevel lattice hierarchy 

A characteristic of multilevel hierarchies is that concepts can be recom- 

bined, as if they were primitives, resulting in higher-level concepts. Figure 
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4-6 illustrates a multilevel hierarchy, where blocks at level Level N are com- 

bined to produce arches at level Level N+1, and arches at level Level N+1 

are combined to produce further arches at level Level N+2. When a primi- 

tive is part of more than one concept, for example b2, which is used by arch, 

and arch2, then the hierarchy is known to have a lattice structure or to be a 

lattice hierarchy. 

4.3.2 Relations between primitives in classification 

The relations between primitives have effects on the definition of concepts. 

For example, Figure 4-7 illustrates how a set of blocks can be classified with 

different relations which result in different concepts. 

b, 

b3 b2 
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R' arch 
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-b3AJW 
b 

ý bl / 

Figure 4-7: A set classified with different relations 

This means that it is not just the set of primitives that gives rise to a 

concept, but also the particular relationship. As illustrated in the figure, the 

relation Rarch has supporting blocks vertical, while Rärch has them horizontal. 

When it is desirable to distinguish the relation that defines a simplex, we can 
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make it explicit with the notation (b1, b2, b3; Rarch). It can then be discrimi- 

nated from (b1, b2, b3; Rarch), even though the underlying set of primitives is 

the same for both. 

Relations between primitives can be of various types. For example, in 

robotics the relation could be given by the physical construction of the robot. 

Let Rarray be the relation between the sensors of the robot illustrated in 

Figure 4.8(a) and let Rring be the relation between the sensors of the robot 

illustrated in Figure 4.8(b). 

(a) Robot with Ra, rra, y sensors (b) Robot with Rri, g sensors 

Figure 4-8: Physically different robots 

Both robots in Figure 4-8 have sensors xl and x2 activated. These 

mean different things because the robots are assembled differently. The 

previous notation allows representation of the following: (x1, X2, rarray) 

(x1 
) X2, ring) 

Other relations include temporal relations which indicate that sensor 

states happening in different order have different meaning. For example, 

for the robot in Figure 4.8(a) the activation sequence (x1 -* x2 -* x3 -ý 

X4 x5 -* x6) indicates that an object is moving from left to right, whereas 

the sequence (x6 --ý x5 x4 -+ x3 --f x2 - xi) indicates that the object 
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is going from right to left. Thus, the same primitives x1, x2, ... x6 form two 

different concepts if the temporal relation is taken into account. 

4.3.3 A unified view of concepts 

The relations between primitives have an important role in their classification 

into concepts. As defined in Section 3.1.2 there are two main classes of con- 

cepts: those formed by sets of primitives (generalisation concepts) with null 

relations, and those formed by combination of primitives (relational concepts) 

with non-null relations. For example, Figure 4.9(a) illustrates a generalisa- 

tion concept generated from the three previous blocks, in which the three 

blocks (bl, b2 and b3) are compactly represented by blocks123. On the other 

hand, Figure 4.9(b) illustrates a relational concept, where the triangular re- 

lation Rarch illustrates the relation between primitives. 

Rrtýd! 

(a) Example of a generalisation concept 

Rarch 

(b) Example of a relational concept 

Figure 4-9: Example of a generalisation versus a relational concept 

In the architecture presented in this thesis, both concepts are used. As 

will be shown in the following chapters, generalisation concepts provide the 
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means to generate compact representations of primitives, thus reducing the 

size of the space formed by primitives. Relational concepts can have various 

applications depending on the relation between primitives. For example, a 

relational concept formed by primitives and their temporal relation of oc- 

currence, encodes the history of the transition of primitives. A relational 

concept encoding such a history may be useful for representing behaviours. 

For instance, a sequence of decreasing distances towards a target could be 

encoded as a `getting closer to the target' behaviour. 

Chapter 5 and Chapter 6 of this thesis experimentally validate two differ- 

ent methods for classification. Chapter 5 experiments with a distance based 

clustering technique to generate concepts. These type of concepts are gen- 

eralisation concepts, a unique primitive being sufficient for being associated 

with a cluster. Chapter 6 experiments with a classification method based 

on Q-analysis, where the relation between primitives is necessary to define 

relational concepts. 

4.4 The concept generation component 

The concept generation component is one of the main components of the 

proposed architecture. It uses the information coming from the robot's sensor 

and motor apparatus, and classifies this information into hierarchies of state 

and action concepts. The next sections explain this process. 
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4.4.1 Hierarchical action classification 

Action concepts are classes defined over the atomic actions available to the 

robot (motor space). Let us describe action concepts by means of an ex- 

ample. The robot in Figure 4-3 had the action space illustrated in Figure 

4.4(b). This action space has JA = 100 x 100 = 104 atomic actions. The next 

section illustrates how to generate action concepts given atomic actions. As 

discussed in Section 3.1.2, there exist two main types of concepts, generali- 

sation and relational. The next sections explain how generalisation concepts 

and relational concepts can be acquired from a robot's motor data. 

Generalisation action concepts 

If the robot selects a particular atomic action for a certain period of time, 

the interaction between the robot and the environment results in the robot 

moving, thus describing a trajectory. Figure 4.10(a) illustrates some possible 

trajectories, where each corresponds to an atomic action, ai, being selected 

for a period of time. As the number of atomic actions is large (104), the 

number of resulting trajectories will also be so. 

n a, a4 a5 a, ac, aC2 

8 

a9 

a10 
aC3 
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acs ac4 

(a) Some possible trajectories (b) `Similar' trajectories 

Figure 4-10: Robot trajectories and groups of `similar' trajectories 
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With real robots, the same atomic action will hardly ever result in exactly 

the same trajectory; this is because of the chaotic behaviour of robotic sys- 

tems. Thus, in this context, having precise definitions of trajectories is not 

necessarily useful, as in many cases these will not be attainable. Therefore it 

seems logical to define trajectories in a more relaxed manner. For example, 

atomic actions can be grouped according to the similarity of the trajectories 

they produce. Figure 4.10(b) illustrates this process, where similar trajecto- 

ries are grouped, and the actions that lead to these groupings are defined as 

action concepts, aci. 

Effectively, what is happening in Figure 4-10 is: acl = (al, a2, a3, a4, a5, Rt), 

where R is null. In other words any of the primitives is sufficient to define 

the concept. In Chapter 5, it will be shown how distance based clustering 

techniques can be used to generate generalised action concepts related to 

motor commands. That is, sets of similar motor commands are clustered 

into generalisation concepts of atomic actions. 

Relational action concepts 

Following the multilevel methodology, the actions concepts defined at level 

Level N+1 can be further recombined into action concepts at level Level N+ 

2, and so on. This idea is illustrated in Figure 4-11, where atomic actions are 

at level Level N, and action concepts from level Level N+1 upwards. The 

arrows in the figure represent the trajectories resulting from each action or 

action concept, and as can be observed, higher levels in the hierarchy corre- 

spond to more complex trajectories. From level Level N+1 upwards, action 

concepts are defined with temporal relations. That is, actions are ordered 
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by an execution order. Changing this relation (order of execution) results 

in different trajectories at higher-levels. In our terms, these are relational 

concepts. 

Action concepts generated by taking into account temporal relations are 

similar to plans. That is, a sequence of n ordered atomic actions ordered by 

their time of execution, (al, a2i .... an; R) is a plan of n steps. For example, 

the action concepts at level Level N+3, in Figure 4-11, can be seen as four 

step plans as they are composed of four atomic actions. 

ac . ac, , Level N+3 

R# null relational 
a4 acs ach Level N+2 concepts 

R null 
ac, ace ac3 aQ Level N+1 

R= null 
generalisation 

concepts 

Level N a, a2 a3 a4 a5 a6 a7 a8 a9 a,, a, l a12 al3 

Figure 4-11: Hierarchical classification of action concepts 

4.4.2 Hierarchical state classification 

State concepts are concepts defined over the atomic states that a robot can 

perceive (sensor space), such as the state space of the robot in Figure 4-3 and 

illustrated in Figure 4.4(a). The next section describes how generalisation 

concepts and relational concepts can be generated from the robot's sensor 

data. 
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Generalisation state concepts 

Following the previous example, at any given time the robot perceives an 

atomic state s which is determined by the value of the distance sensor x1, 

and the angle sensor x2. In this case, s= {d, a}. These values are illustrated 

in Figure 4-12. 

O 
Target Object 

d 

aO 

Figure 4-12: Atomic state 

Atomic states can be classified into state concepts at higher description 

levels. If a state concept at level Level N+1 is the result of a state classi- 

fication with a null relation in its primitives, then these state concepts are 

generalisations of their primitives. As stated previously, atomic states can 

be clustered into generalisation concepts. Chapter 5 demonstrates how this 

can be done. 

Relational state concepts 

State concepts can also be classified with non-null relations. For example 

these relations could be based on the simultaneous occurrence of some sensor 

values, xl =a and x2 =b and x3 = c. The relation could be different if one 

of them is missing. 

For example, the players in Figure 4.13(a) and Figure 4.13(b) are in 

the same positions with respect to each other, but the two situations are 

very different. In Figure 4.13(b) the team-mate player is running towards 
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an empty area while in Figure 4.13(a) it is static. Thus, the notion of the 

player's positions in combination with its speed of movement is different 

from when only their positions are measured. Thus it can be said that: 

(positions, speeds) (positions). 

-------------- -- ---------------------- 

(a) Static players (b) Team-mate running to an open area 

Figure 4-13: Soccer players in the same positions but in different situations 

An obvious way of taking all the sensor relations into account is to con- 

sider logical AND operations between them, that is, the combination of 

xl A X2 A x3 ... A xn, can be used to define the relational concepts gener- 

ated by n sensors. This is the approach usually taken when the state of an 

RL robot is described as the AND combination of all its state variables. The 

problem with this approach is that in many cases not all the sensors provide 

relevant information. These irrelevant sensors only increase the number of 

possible combinations. 

For example, Figures 4.14(a) and 4.14(b) illustrate a similar relation- 

ship between soccer players, that is, if the variable temperature is not taken 

into account then both situations would be identical. On the other hand, if 

the temperature variable is taken into account, the two situations become 

different. The issue is then to asses whether the temperature variable af- 

fects the situation enough to be considered as part of the concept describing 

the situation. That is should one use, (positions, speeds, temperature) or 
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(positions, speeds)? 

i 
25'C 

-------------- -- -- ---------------------- 

2sC 

-------------- -- -- ---------------------- 

(a) Situation low temperature (b) Situation higher temperature 

Figure 4-14: Soccer players in similar situations discriminated by a temper- 

ature variable 

Chapter 6 experimentally demonstrates, on robotic data, the classification 

method described in Chapter 3 which defines relational state concepts and 

gives a possible answer to how assessing the relevance of variables. 

4.5 The behaviour learning and control 

component 

The behaviour learning and control component is in charge of learning be- 

haviours represented by concepts, and using these behaviours to control a 

robot. 

4.5.1 Behaviour learning 

In this architecture, as in RL, behaviour learning is based on adapting a 

mapping between state concepts and action concepts, namely the behaviour 

function (or policy in RL), B. In principle, it would be possible to define 

a reward value, and modify some existing RL algorithm to learn behaviour 
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functions that maximise the reward based on the hierarchical description 

of states and actions. For example, if action concepts are defined as an 

ordered set of atomic actions, then it would be necessary to treat the RL 

problem as a semi-Markov decision process, as action would be time extended. 

Moreover, the termination condition of an action concept should be based 

on the satisfaction of state concepts. We believe that an RL framework such 

as the options framework [Sutton et al., 1999] would be a good candidate to 

use within the proposed architecture. 

Although the previous approach seems possible, this thesis exploits a 

method for learning behaviours based on learning by example (supervised 

learning). The reasons for choosing a supervised approach are: (i) simplicity 

of implementation in comparison to RL methods, and (ii) the main focus of 

this thesis is to demonstrate that an architecture based on multilevel rep- 

resentation of concepts can be used for learning behaviours and controlling 

robots, and thus the method used to learn these behaviour is not of central 

relevance. 

Behaviour Function 
B 

ac 

aa 
aa aaa 

Figure 4-15: Behaviour function mapping state concepts into action concepts 
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Assuming that a set of state and action concepts is available (see Section 

4.4), a behaviour function B, must be defined that maps state concepts into 

action concepts as illustrated in Figure 4-15. For any state concept sc, the 

function indicates the probability of selecting an action concept ac. Assuming 

that some examples of the desired behaviour are also available, in the form 

of atomic state and atomic action pairs (s, a), the behaviour function B, can 

be learned as follows: 

1. Observe an atomic state s, from the examples. 

2. Use the hypothesis defined over states to classify s into its correspond- 

ing state concept sc. 

3. Observe the atomic action a, related to s in the examples. 

4. Use the hypothesis to classify a, into its corresponding action concept 

ac. 

5. Update the probability of selection ac, given sc by: 

P(ac sc) = #(ac A sc)/#sc 

where # indicates the number of elements. 

6. Repeat the process for all of the given examples. 

4.5.2 Robot control 

A robot using an architecture defined over atomic states and atomic actions 

can be controlled using a function that maps states into actions. For example, 

an RL robot can be controlled using a policy. That is, at every time-step 
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the robot perceives a state. For this, the policy indicates which is the action 

that should be selected so that the reward is maximised. This action is then 

sent to the robot's actuators. 

In the architecture presented here, a similar approach is taken. That is, 

the previous behaviour function is now used to map state concepts into the 

action concept to execute. Robot control is achieved as follows: 

1. Observe the atomic state s, from the environment using the robot's 

sensors. 

2. Use the hypothesis defined over states to classify s, into its correspond- 

ing state concept sc. 

3. Map sc, into the behaviour function B, and select with the probabilities 

indicated an action concept ac. 

4. Select the representative or representatives of ac and send them to the 

actuators. 

5. Repeat the process. 

This action selection strategy resembles that of a reactive architecture 

(see Section 2.2.2) where actions are selected based on the stimulus received 

from the sensors. 

4.6 Summary 

This chapter has introduced a novel architecture for behaviour learning and 

robotic control. The architecture presented is based on the definition of states 
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and actions. The states describe the environment as perceived by the robot's 

sensors. The actions refer to the combination of motor commands available 

to the robot. 

Motivated by the difficulty of learning complex tasks from low-level state 

and action representations, the architecture introduces the idea of exploit- 

ing intermediate representations, i. e. state and action concepts, based on a 

hierarchical lattice aggregation of their low-level representations. 

The concepts generated can be of two types, concepts with a null rela- 

tion between their primitives as generalisation concepts, and concepts with 

non-null relations as relational concepts. Generalisation concepts simply ag- 

gregate primitives into more compact representations. Relational concepts 

create new relational structures that have emergent properties. 

The architecture learns behaviours in two steps, the first related to con- 

cept generation and second related to behaviour learning. The concept gen- 

eration component classifies atomic states and actions into state and action 

concepts. Depending on the methods used for this classification, generali- 

sation and relational concepts can be defined. The behaviour learning and 

control component uses state and action concepts to learn a probabilistic 

function known as a behaviour function. Learning the probabilities of the be- 

haviour function is achieved by observing examples of the desired behaviour. 

Finally, robot control is achieved by observing the current state and using 

the behaviour function to select an action probabilistically. 
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Chapter 5 

Experimental Results: 

Generalisation Concepts in 

Low-Level Behaviour Learning 

This chapter provides an experimental analysis of the architecture presented 

in the previous chapter. The experiments are based on learning a simple 

navigation task. The aim of this chapter is to demonstrate how generalisation 

concepts can be acquired from robotic sensor and motor data, and to show 

how these concepts can be used for behaviour learning and robot control. 

More precisely, a robot is pre-programmed with a hand-coded navigation 

behaviour, which is used to acquire data about its interaction with the en- 

vironment. The data consists of the states that the robot perceives and the 

actions the hand-coded behaviour triggers. This data is then analysed and 

generalisation concepts for this task are generated. The resulting concepts 

are used for learning the navigation behaviour, by using some of the exam- 
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pies from the hand-coded robot navigation. Tests on the accuracy of the 

hand-coded and the learned behaviour are compared. 

5.1 Experimental test-bed 

The navigation task is based on the RoboCup small-size league test-bed. The 

test-bed for this experiment comprised a mobile robot, a vision system and 

a target object. The mobile robot and the target object are colour labelled, 

so that the vision system is capable of tracking their position. The vision 

system provides positional information at 30 Hertz. Figure 5-1 illustrates 

the test-bed, where rx and ry are the robot's position coordinates, and r6 is 

its orientation; tx and ty are the target's position coordinates. These values 

are obtained from the vision system's coordinates. The vision system has a 

resolution of 640 x 380 pixels. 

rx, ry, rO, tx, ty) 

Figure 5-1: Test-bed 

The behaviour to be learned is one that navigates the robot from its initial 

position towards the target object (a golf-ball in the physical test-bed). In 

this simple example, there are no obstacles involved. 
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The robot's state space is formed by the distance d, and the angle a to 

the target position (see Figure 5-1). These can be easily calculated from the 

vision system's data. Given the vision's resolution of 1cm, and the greatest 

distance between the robot and the target (the diagonal of the vision area), 

which is 120cm, then the distance potentially has 120 different values. The 

angle value ranges between 0° and 360°. In total, the robot's state space is 

formed by 120 x 360 > 432 x 102 atomic states. The robot has two motors, 

one for each wheel. Each motor can be activated by a value from 0 to 100% of 

the total electric power. Thus, the action space has 100 x 100 = 104 possible 

atomic actions. In total the state-action space is 432 x 106. 

As this state-action space is very large, we need to reduce its size. To this 

end, the following section describes how states and actions can be classified 

into generalisation concepts as we reported in [Iravani et al., 2004]. 

5.2 Generalisation state and action concepts 

One of the steps for behaviour learning by the architecture is to generate 

a set of state concepts and action concepts by classifying state and action 

primitives. As seen in Section 3.1.2, two types of concepts can be defined 

according to whether the relation between their primitives is R= null or 

R null. This chapter concentrates on concepts with R= null, i. e. gener- 

alisation concepts. In the experiment, the data acquired by the hand-coded 

robot behaviour is treated as the primitives from which to generate concepts. 

To decide an appropriate classification technique to generate concepts, 

the following domain characteristics are taken into account: 

" Nature of the data. What kinds of variables are used to define each 
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primitive (numeric, discrete) ordinal, binary or combinations)? 

" Supervised/Unspervised learning. Is the primitive labelled with the 

concept it belongs to? 

" Relation among primitives. Are the relations among primitives neces- 

sary? 

Sensor data from the vision system are represented by interval variables 

(Section 3.1.3), i. e. distance d from 0 to 120 and an angle a from 0 to 360. 

These values are characterised by random fluctuations due mainly to noise in 

the vision system. The motor data is also represented by interval variables, 

i. e. each motor can be activated from 0 to 100% of the total power. The 

data acquired by the hand-coded robot is defined by the state observed and 

the action performed. Thus the primitive states are not labelled with their 

corresponding state concepts, nor are the action primitives. Generalisation 

concepts do not require any relation among their primitives; they only require 

primitives to be aggregated into a compact concept. 

These characteristics require the classification methods to be based on un- 

supervised learning, which is capable of dealing with interval variables and 

does not require any relations among primitives. Therefore, distance based 

clustering techniques (Section 3.2.2), such as K-means [Duda and Hart, 1973], 

are good techniques for this application: they are unsupervised classification 

methods, they can deal with interval variables, and the classes or clusters are 

not defined on the basis of any relation between primitives, that is, any of 

the primitives belonging to the concept are sufficient. 

K-means generates k exclusive concepts c1, c2, ..., Ck where the represen- 

tative of each cluster c2 is defined by the mean of the elements it contains. 
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K-means is an off-line clustering algorithm that defines clusters using a dis- 

similarity metric based on Euclidean distance. That is, each primitive to 

cluster is represented by a point in a multidimensional coordinate space; 

points that are near are considered more similar than points that are far 

apart. 

Algorithm 1 illustrates the steps of the K-means clustering technique. 

The parameter k indicates the number of desired clusters, and the weights in 

W are used to adjust the relevance of each of the p variables that describe the 

p-dimensional data. The dissimilarity is measured by the Weighted Euclidean 

Distance between each data point and each cluster centre. The cluster that 

is the most similar to the data point is considered to include the data point. 

When data points are added to a cluster its centre is updated towards the 

mean value of all the data points included. The algorithm takes as input: the 

number of desired clusters k, the data-set to cluster X, and a set of weights 

w. Each element xEX is a p-dimensional point. The algorithm outputs the 

resulting position of the cluster centres after the clustering. 

The algorithm operates as follows. In (1) each of the cluster centres is 

randomly initialised; in (2) the position of the centres are stored; in (3) the 

distance dj between data point i and cluster centre j is measured; in (4) the 

cluster j with minimum distance from the data-point i is stored in mi; in (5) 

each cluster centre is updated towards the mean value of all the data-points 

found to be closest to it. This process is repeated until the update function 

stops changing the cluster centres, i. e. c= c'. 
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Algorithm 1: K-means 

Input: k, number of clusters; 

X, set of data to cluster, where each element, xEX, is p- 

dimensional; 

w= {wl, w2i ..., wp}, a set of p weights; 
Output: C= {cl, c2, ..., Ck}, set of k cluster centres. Where each centre 

is a p-dimensional point; 
for ci EC do 

1 randomly initialise c2; 
end 

2 C'+- C; 

repeat 
for xi eX do 

3 for cj ECdo 
dj = w(xi - cß)2; 

end 
4 for dE dj do 

m2 =mini (dj); 

end 
end 

5C= update (C, X, m); 
until C= C'; 

The following section illustrates the resulting concepts after applying the 

K-means clustering algorithm to the data acquired by the hand-coded robot. 

5.2.1 Clustering states and actions 

The hand-coded robot behaviour is used to acquire data from the naviga- 

tion task. In this experiment 30 paths were generated from different initial 

positions to a target object. Figure 5.2(a) illustrates the 30 paths; for pre- 

sentation purposes, these have been drawn from the same initial position. 

135 



During the execution of these paths, the robot recorded the states encoun- 

tered and the actions selected. Figure 5.2(b) illustrates the atomic states 

perceived, where the distance variable d is represented in centimetres and 

the angle variable oz is represented in radians. Figure 5.2(c) illustrates the 

atomic actions executed, where the motor activations V(ml) and V (m2), are 

represented as the percentage of the total power applicable. The last figure 

illustrates that the hand-coded behaviour always sets the power of one of the 

wheels at 100% and varies the other. This can be seen by the actions which 

always follow the lines of V(ml) = 100 or V (m2) = 100. 
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The K-means algorithm has been applied to the data acquired by the 

robot, using the parameters in Table 5.1, where {WV(ml) 
, WV(m2)} are the 

weight values related to the two-dimensional action space; and {Wd, wa } are 

the weight values related to the two-dimensional state space. In the experi- 

Clustered Action Space 

ment the parameter k= 10 was selected arbitrarily as the experiment is only 

intended to demonstrate the shortcomings of this clustering technique. To 

address this shortcoming, Section 5.6 presents a novel k-means classification 

technique which does not require the a priori definition of k. 

Table 5.1: K-means parameters 

action clustering state clustering 

k 10 10 

weights wv(m1) =1 

wV(m2)=1 

Wd =1 

wa=1 

The results of clustering the previous atomic state and actions are illus- 

trated in Figure 5-3. 
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Figure 5-3: Clustered state and action spaces 
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Figure 5.3(a) illustrates the resulting state concepts while Figure 5.3(b) 

illustrates the resulting action concepts. Each concept is represented by a 

different colour and the representative of the cluster is shown by a circle. 

The parameters in Table 5.1 indicate that the number of clusters or concepts 

is 10 for both spaces, and that all weights are set to 1. These weights imply 

that the Euclidean distance (dissimilarity) between data points is measured 

based on the original units in which the data was given. That is, as Figure 

5.3(a) illustrates, the state concepts defined when the distance d is measured 

in centimetres and the angle a is measured in radians. 

As the range of the angle variable (i. e. 27) is smaller than the distance 

variable (i. e. 120), the distance variable will have predominance over the 

angle. In other words, the distance variable will account for most of the 

dissimilarity in the state space. This effect is observable in Figure 5.3(a) in 

which all clusters are mostly aligned with the distance axis. Thus, clusters 

are independent of the value of the angle. 
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Figure 5-4: Concept indifferent to angle 

This scaling problem will have negative effects when trying to control the 
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robot using concepts. For example, if two different state are indicating that 

the robot is located (i) to the right' or (ii) `to the left' with respect to the 

target, the state concept related to the atomic states will represent them 

indifferently; this is shown in Figure 5-4. A robot using these state concepts 

would not possess the concept representing that: `target is to the right' or 

`target is to the left'. A robot that can't perceive these two states as different 

will not be able to turn in the corresponding direction, thus failing to reach 

the target position. 

This problem can be solved by adjusting the weight values associated 

with each variables. Finding the correct value for the weights relates to 

the chalk and cheese problem described in Section 3.3.1. To alleviate the 

scaling problem, normalisation approaches can be used, where the range of 

all variables is normalised to a0 to 1 range, thus forcing all variables to 

have the same relevance towards the definition of dissimilarity. The weight 

parameters in Table 5.2 are used to normalise the previous variables. 

Table 5.2: K-means parameters 

action clustering state clustering 

k 10 10 

weights WV(,, ,)= 
1/100 

wV(m2) = 1/100 

Wd = 1/120 

wa = 1/27r 

The resulting concepts after normalisation are illustrated in Figure 5-5. 

As it can be seen in Figure 5.5(a) the state concepts are now influenced by 

both the distance and the angle variables, i. e. state concepts are no longer 

aligned with the distance variable. The robot is now able to recognise target 

to the right or target to the left states. For example, the same atomic states 
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used previously: `to the right' and `to the left', now activate two different 

concepts rather than just one (see Figure 5-6). 

Clustered State Space 
0.5 

0.4 
SC 

.8 0.3 
}r 

" L' SC 
0.2 r °": 

10 

-0.2 

°k 
-0.3 9 

-04 
%c4 

-0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 03 09 09 

wd*d 

Clustered Action Space 
ac10 ac9 ac4 acs: 

0.9 

ach 
0.8 ac& 

act 
0.7 

E o. e 
ach 

> 
0.5 

acg 
N 

O. a 

3 
0, ach 

0.1 

(a) Weighted state space 

OA 02 0.9 0.4 0.6 06 07 OA OA 1 

WVIm 1*v(m1) 

(b) Weighted action space 

Figure 5-5: Clustered weighted state and action spaces 
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Figure 5-6: Concept dependent on distance and angle. 

Table 5.3 shows the unscaled (i. e. without being multiplied by the weights) 

position of the representatives for the previous state and action concepts. 
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Table 5.3: Concept representatives 

state 

sc = {d, a} 

action 

ac = {V(ml), V(m2)} 

scl = {56.34,0.51} acl = {100,67.3} 

SC2 = {97.3,1.27} ace = {100,76} 

SC3 = {57.1, -0.60} ac3 = {100,86.4} 

SC4 = {62.4, -2.38} ac4 = {83.5,100} 

sc5 = {18.4,0.08} acs = {94.5,99.6} 

sch = {37.2,0.03} ach = {100,81.6} 

SC7 = {78.8, -0.90} ac7 = {100,28.2} 

SC8 = 174.6,2.551 ac8 = {100,55.1} 

scg = {98.4, -1.57} ac9 = 168.9,1001 

sclo = {75.3,0.89} aclo = {37.3,100} 

5.3 Learning the navigation behaviour 

Given the previous generalisation concepts (Table 5.3), these are now used 

as representations for learning the navigation behaviour. The paths previ- 

ously used are now reused as examples for learning the behaviour, following 

the method presented in Section 4.5.1. Table 5.4 illustrates the resulting 

behaviour function. 

As an example of what this behaviour function represents, let us compare 

the action concepts chosen by scl and sc4. scl is related with a relatively 

high probability to ach (0.51%), while sc4 is highly related to aclo (81%). 

Table 5.3 gives the information for each of these concepts' representatives. 

That is scl = {56.34,0.51}, sc4 = {62.4, -2.38}, ach = {100,81.6} and 

aclo = {37.3,100}. As we observe from the sc1 and sc4 representatives, both 

have similar distances (56.34 : 120) and (62.4: 120) but dissimilar angles 

(0.51 : 71) and (-2.38 : -7). In other words, scl and sc4 `mean' that the 
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robot is at a similar distance from the target, but `slightly to the left' and 

`largely to the right', respectively. It is logical to think that, if the robot is 

observing scl it must `turn slightly to the left', whereas if observing sc4 it 

must `turn hard to the right', and this is exactly what action concepts ach 

and aclo do (see their motor velocities' relations). 

Table 5.4: Behaviour function 

aci act ac3 ac4 acs ach ac7 ac8 acg aclo 

scl 0.02 0.12 0.29 0 0 0.51 0 0.06 0 0 

SC2 0.32 0.31 0 0 0 0.26 0 0.10 0 0 

SC3 0 0 0 0.53 0.21 0 0 0 0.24 0.01 

SC4 0 0 0 0 0 0 0 0 0.19 0.81 

sc5 0.04 0.09 0.39 0.06 0.28 0.14 0 0 0 0 

sch 0 0 0.31 0.24 0.27 0.19 0 0 0 0 

SC7 0 0 0 0.72 0.06 0 0 0 0.22 0 

SC8 0 0 0 0 0 0 0.88 0.12 0 0 

8c9 0 0 0 0.37 0 0 0 0 0.52 0.11 

sclo 0.1 0.18 0.13 0 0 0.40 0.01 0.19 0 0 

5.4 Navigation behaviour for control 

Once the probabilities of the behaviour function have been learned, it can be 

used to control a robot. As seen in Section 4.5.2, the behaviour function is 

used to control the agent as follows: by (i) observing the active state of the 

environment st; (ii) relating st to the concept state sct. This is achieved by 

locating the cluster (state concept) closest to st; (iii) selecting an action con- 

cept with the probabilities indicated by the behaviour function; and, finally 

(iv) sending the representative of the action concept selected to the motors. 
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Figure 5-7 illustrates the distance and the angle variables of the robot 

while it navigates towards the target position. The target position is reached 

accurately if the distance and angle at the end of the trajectory are 10 cm 

and 0 radians, respectively. Figure 5-7 represents in blue the trajectories 

of the robot when controlled using the hand-coded program, and in red the 

trajectories when controlled by the learned behaviour function. Figure 5.7(a) 

illustrates the distance variable, as it can be observed: the hand-coded (blue) 

robot outperforms the learned behaviour (red), as the robot's end position 

approximates better to the desired value. Figure 5.7(b) illustrates the angle 

variable; again, the hand-coded robot provides a better convergence towards 

the target of 0 radians. Despite the loss in navigation accuracy, the behaviour 

function is capable of reducing the initial distance and angle towards the 

target, i. e. it is capable of navigating the robot towards the target object. 
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Figure 5-7: Hand coded vs concept behaviour control 

Although these results may look discouraging at first, the following issues 

should be taken into account: 
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" The navigation behaviour is being represented compactly, by using only 

10 state concepts and 10 action concepts, thus 10 x 10 = 100 table 

positions are necessary to store this information, compared to the 432 x 

106, when using the original state and action spaces. 

" The behaviour function drives the robot accurately during the initial 

parts of the trajectory, but starts losing accuracy when approaching 

the target. 

This last observation is illustrated in Figures 5.7(a) and 5.7(b), where 

it can be seen that the distance and angle variables are similar for both 

controllers in the initial stages of the trajectory; but diverge when the angle 

approaches 0 radians. The reason for this divergence, is that when the robot 

is near the target object and the angle is around 0 radians, sch becomes the 

active state, as illustrated in Figure 5-8. 
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Figure 5-8: Active state concept when robot is `near' the target 

Being `near and slightly to the left' or `near and slightly to the right' of 

the target are part of the same state concept sch, thus it is not possible to 
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differentiate two states which require different control actions (turning right 

and turning left). 

The behaviour function (Table 5.4) shows that once in state concept sch, 

the robot has high probabilities (shown in brackets) of choosing ac3 (0.31), 

ac4 (0.24) and acs (0.27) 
. ac3 = {100,86.4} is a `turn slight to the left', 

ac4 = {83.5,100} is a `turn slight to the right' and acs = {94.5,99.6} is 

`forwards'. These probabilities indicate that when the robot is in state sch 

it faces the indecision of whether to turn slightly to the left, slightly to the 

right or going forward. This problem is due to sch being too general and not 

being able to categorise as different classes the `near and slightly to the left' 

and `near and slightly to the right' situations. This problem exemplifies the 

importance of finding a correct representation of state and action concepts. 

The following section shows how the sensory-motor coordination effect can 

be used to create concept representations for the navigation task that is 

designed to achieve higher navigation accuracy. 

5.5 The sensory-motor coordination effect 

The sensory-motor coordination (SMC) effect emphasises the usage of the 

robot-environment interaction in categorisation and classification tasks. An 

important idea in SMC is that sensing is not a passive function carried out 

by the robot's sensors, but it is an active function that requires both sen- 

sors and motors to interact in the environment in order to discover classes 

[Pfeifer and Scheier, 1997, Pfeifer and Scheier, 2001]. SMC has been applied 

mainly to robots controlled by reactive or embodied architectures. In the 

context of these architectures, the coordination between sensors and motors 
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is the result of the interaction between the robot, the behaviours and the 

environment (see Section 2.2.2). The SMC effect simplifies the classification 

task by inducing correlations or patterns between the sensory-motor spaces 

and the classes. For example, in order to discriminate objects on the basis of 

their size, one could program a robot with a simple turn around object be- 

haviour and observe that big objects produce a more distinct sensory-motor 

pattern than small objects [Pfeifer and Scheier, 1997]. 

In order to exploit the SMC effect for defining state and action concepts, 

it is necessary to relate states and actions through the robot's behaviour. 

To do so, the action space has been clustered as in the previous experiment 

(Figure 5.5(b)). Now, rather than clustering the state space independently, 

the action space is mapped onto the state space, i. e., finding the action 

concepts used at each state (SMC space). 
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Figure 5-9: Sensory-motor space and resulting state concepts 
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Figure 5.9(a) illustrates the mapping of actions concepts into states, 

where each colour corresponds to the different action concepts. The resulting 
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distribution shows that action concepts mainly vary along the angle a dimen- 

sion, while stay constant along the distance d dimension. This distribution 

indicates that changes in the angle dimension result in more dissimilar states 

than changes in the distance dimension. 

It is possible to manipulate the weight values in order to achieve a distri- 

bution of the state concepts similar to the one in Figure 5.9(a). In order to 

do so, the dissimilarity in the distance d dimension must be made smaller, 

for instance by reducing the weight value to wd = 1/1080 (previously it 

was wd = 1/120) and by keeping the same weight for the angle dimension, 

wa = 1/27. These new weight parameters (found experimentally) produce 

the clusters or state concepts observed in Figure 5.9(b). The new clusters 

are not exactly the same as those obtained by mapping action concepts in 

the SMC space, but they maintain a certain similarity, i. e. state concepts 

vary according to the angle dimension. 

Table 5.5: Behaviour function after SMC 

ac, act ac3 ac4 acs ach ac7 ac8 ac9 aclo 

scl 0 0 0 0 0 0 0.87 0.13 0 0 

SC2 0 0.02 0.45 0 0 0.52 0 0 0 0 

SC3 0 0 0 0 0 0 0 0 0.12 0.88 

sc4 0.42 0 0 0 0 0 0.12 0.46 0 0 

sc5 0.03 0.07 0.39 0.03 0.37 0.11 0 0 0 0 

sch 0.03 0.28 0.08 0 0 0.59 0 0.02 0 0 

sc7 0.32 0.38 0 0 0 0 0 0.30 0 0 

sc8 0 0 0 0.08 0 0 0 0 0.85 0.08 

sc9 0 0 0 0.81 0 0 0 0 0.19 0 

sclo 0 0 0 0.67 0.32 0 0 0 0.01 0 

147 



The behaviour function must now be re-learned for these new concepts. 

Table 5.5 shows the probability values of the new function. Using this new 

function to control the robot we obtain a slightly worse accuracy than that 

of the hand-coded robot, but a better accuracy when compared with the 

behaviour learned without using the SMC effect. 

Figure 5-10 illustrates the distance and angle variables during naviga- 

tion. Again, blue is used for the hand-coded policy and red for the learned 

behaviour. 
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Figure 5-10: Hand coded vs concept behaviour control after SMC 

Table 5.6 shows the error of each controller in 30 trajectories with sim- 

ilar initial and target positions. Ed and Ea are the absolute accumulated 

errors with respect to the optimal distance value and to the optimal angle 

value. For example, the hand-coded controller accumulates 39.6 cm of error 

in 30 trajectories. This table indicates that the hand-coded controller out- 

performs any of the learned behaviours. It also shows that using SMC to 

define concepts affects positively the performance of the learned behaviour. 
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Table 5.6: Navigation accuracy 

hand-coded learned behaviour learned behaviour + SMC 

Ed [cm] 39.6 187.5 75.3 

Ea [radians] 3.73 14.1 7.48 

5.6 Adaptive concept definition 

The previous experiment demonstrated the feasibility of clustering continu- 

ous state and action spaces into generalisation concepts. It has also shown 

that it is possible to use our learning architecture to learn a simple navigation 

behaviour based on those concepts. 

The experiment has shown the importance of selecting an appropriate 

weight for the (dis)similarity among the dimensions that form the multidi- 

mensional space. It was shown that simply normalising their scales (e. g. 0 

to 1 range) creates a uniform distribution of clusters or concepts along the 

axis of the multidimensional spaces. This distribution is not necessarily ad- 

equate, as was shown by the low accuracy of the first navigation behaviour. 

To address the issue of finding a `good' set of weights, a method based on 

the SMC effect was proposed. The SMC method used interrelated state and 

action spaces through the robot's behaviour. Such a definition of the state- 

action space allowed the designer to observe the pattern of actions taken 

in relation to the state perceived. A set of weights were then found that 

produced a similar pattern state-action pattern. It was shown that the nav- 

igation behaviour based on these new concepts achieved a better accuracy. 

The experiment described above has shown the applicability of the archi- 

Lecture. Some open issues remain, which are described in the following. 
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Firstly, dividing the learning approach into two separate steps implies 

that concept learning must be performed before the resulting concepts can 

be used for behaviour learning. Separating learning in this manner has the 

following limitations: (i) data for learning must be acquired in an off-line 

manner; (ii) it is not clear how much data is necessary to generate state and 

action concepts. 

Secondly, it is clear that the number of state and action concepts will 

directly affect the performance of the learning system. Having defined too 

few concepts will affect the quality of the behaviour function; in extreme 

cases, the desired behaviour will not be achievable. Letting the system use 

too many concepts will provide no generalisation over states and actions, 

and thus the amount of experience and computational requirements will be 

similar to those required by the original spaces. In other words, the selection 

of an appropriate number of state and action concepts is an important issue. 

Thirdly, assuming that a robot is capable of generating an appropriate 

number of states and actions concepts for a certain task and environment, 

we are focusing on the problem of how the robot can maintain a useful 

representation in the face of possibly changing circumstances. 

These issues can be partially addressed by allowing the robot to adapt its 

representation as well as its behaviour. This means that, given a set of state 

and action concepts, agents should be capable of creating and deleting con- 

cepts as necessary. Thus, when too few concepts are defined the agent should 

add concepts to the representation. When there are too many concepts some 

should be eliminated from the representation. We define an approach capable 

of adapting concepts as an adaptive concept definition. 
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The approach is introduced in the following section and exemplified by 

the same navigation behaviour example used previously. Because the state 

and actions have the same characteristics as before, we maintained the same 

clustering technique (K-means). As will be seen, some changes to the basic 

K-means algorithm were made in order to achieve a concept representation 

with adaptive capabilities. 

5.6.1 Adapting action and state concepts 

To implement an adaptive state and action representation we apply a heuris- 

tic based on specialising concepts. Initially, the robot defines a unique state 

and a unique action concept covering the whole of the state and action spaces. 

By definition, any atomic state or action will be a primitive of these concepts. 

Figure 5-11 illustrates these unique concepts, where S and A are the state 

and action spaces, and sc11 and acll the only concepts. 

sc� ac11 

Figure 5-11: Representation with unique state and action concepts 

Most complex systems need more than one state and action concept to 

151 



be represented, thus the number concepts must be increased. The approach 

followed in this thesis is one of specialisation by partitioning concepts. 

A generalisation concept can be specialised simply by dividing the prim- 

itives it generalises into sub-concepts or children concepts. For example, 

following from the above, state concept scll and action concept acll can be 

partitioned into n child concepts. Here we have arbitrarily selected n=2, 

i. e. each concept is specialised into a pair of children concepts. The result of 

the specialisation is illustrated in Figure 5-12, where scll is partitioned into 

sc21 and 8c22, and acll is partitioned into ac21 and ac22. 

Figure 5-12: Specialised state and action concepts 

The concept specialised is known as the parent concept, i. e. scll and ac11 

are parent concepts. An important requirement for the children concepts is 

that together they must generalise the same primitives as the parent concept, 

so that scu = SC21 U SC22 and ac11 = aC21 U aC22. As each children concept 

generalises a smaller portion of primitives compared to their parents, we say 
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that children concepts are more specific than their parents. 

These new state and action spaces can be represented in the form of 

a tree, where the nodes of the tree correspond to concepts and the links 

correspond to the relation between parent concepts and children concepts 

(see Figure 5-13). This example illustrates only one specialisation step, but 

the process can be recursively applied to all of the most specific concepts, 

i. e. the concept in the leaves of the tree known as leaves concepts, resulting 

in a tree-structure of concepts which can be adapted by specialising existing 

concepts. 

SCI, 

SC21 SC22 

C S 

SC41) (SC42 

Figure 5-13: A tree of state concepts 

These new types of concept are generated by modifying the previous 

clustering technique to deal with the notion of adaptive concepts or clusters. 

To do so, we have modified the K-means algorithm into an incremental and 

tree-structured K-means algorithm (ITS-K-means) [Iravani, 2004]. 

There are two main ideas behind the ITS-K-mean algorithm: (i) ITS-K- 

means applies the K-means algorithm (see Algorithm 1) incrementally, that 

is by clustering each primitive as observed by the robot, and (ii) each concept 
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in the tree-structure is represented by a cluster. 

Applying K-means in an incremental manner allows the robot to generate 

concepts and adapt the representation as it interacts with the environment, 

thus there is no need to collect data in an off-line manner. Moreover, it 

makes it possible to interleave the two learning sub-tasks, i. e. behaviours are 

learned at the same as concepts are generated. The following section gives 

the details of the ITS-K-means algorithm. 

5.6.2 Incremental tree-structured K-means 

ITS-K-means extends the standard K-means algorithm (see Algorithm 1) by 

making clustering incremental, and by structuring clusters in a tree-structure. 

The structure is ordered by generality, that is, concepts near the root of the 

tree represent general concepts, whereas concepts near the leaves represent 

more specialised concepts. 

K-means has been extended to a version that incorporates incremental 

clustering, known as Adaptive K-means [Darken and Moody, 1990]. This 

method clusters incoming data incrementally, in relation to previously ex- 

perienced data points. In contrast to K-means, which operates on all the 

primitives and finds a local minimum of the total squared Euclidean dis- 

tances, the adaptive counterpart adaptively determines the cluster positions 

by using different update equations. In this experiment, the following update 

rule was used from [Darken and Moody, 1990] : 

L ci = (primitive2+1 - civ (2 -+') 

where ci is the position of the K-centre closest to the incoming primitive, 
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primitivei+l. Oct is the increment of position that ci must undertake, 

prirnitivei+l is the value of the new primitive, and i is the total number 

of inputs experienced previous to the new primitive. As can be seen, the 

operation of the adaptive version of K-means is simple and computationally 

inexpensive, moreover it only requires storage of the position of the k-centres 

and the number of data-points observed by each k-centre. Summarising, 

adaptive k-means clusters new primitives by (i) finding the closest cluster 

centre to the input primitive and (ii) using an update rule to modify the 

position of this cluster centre. 

ITS-K-means is a novel algorithm that further extends adaptive K-means 

by building tree-structured clusters. The ITS-K-means algorithm is illus- 

trated in Algorithm 2. 

ITS-K-means is called every time a new primitive has to be clustered; x 

is the p-dimensional data-point to cluster. The tree-structure T of clusters 

is also given. Initially, this structure contains a unique cluster or concept, 

thus all primitives will be part of it. Next, the algorithm iterates until a 

leaf concept is found. The closestCentre function finds the cluster centre c, 

closest to primitive x that has the parent cluster parent. When parent = null 

the root concept is selected. The update function applies the update rule 

previously described to modify the position of the cluster centre. At the 

end of the process, the tree-structure can be specialised, by adding children 

nodes or concepts to the representation. The following section describes the 

specialisation heuristic. 

155 



Algorithm 2: ITS-K-means 

Input: x, p-dimensional primitive to cluster; 

T, tree-structure of clusters; 
Output: T, tree-structure of clusters; 
1=0; 
parent = null; 
repeat 

c= closestCentre(x, T, i, parent); 
T= update(c, x); 
parent = c; 

until c= leaf; 
T= specialise( T ); 

Specialisation heuristic 

In order to specialise its representation, the robot must be capable of answer- 

ing at least the following two questions: (i) when should the representation 

be specialised? (ii) which action or state concepts should be specialised? 

It is assumed that the representation should be specialised when the robot 

using the current representation fails to achieve the desired behaviour, thus 

a more specialised representation (more concepts) is needed. The difficulty 

is to establish what causes the behaviour to perform poorly. For example a 

robot could be behaving poorly because: (i) the behaviour function is not yet 

known, (ii) the task may be accomplishable only within a certain probability 

of success, or (iii) the number of state or action concepts could be insufficient 

for solving the task. Only the third reason is related to a deficiency in the 

representation and only in this case should the concept representation be 

specialised. Once the decision to specialise the representation has been made, 

the problem facing the agent is to decide which state or action concept to 
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specialise. 

In the following, an ad-hoc method for the specialisation of the robot's 

state and action representation is described. The main idea behind the 

method is to maintain the representation unchanged, to allow some time 

for the behaviour function to be learned and then specialise the concepts 

that are used most often. 

A leaf concept c is specialised if the following criteria are satisfied: 

I if m, Tn 
split 

if ac >T07 

where n, is the number of primitives that concept c has been updated with, 

a, is the standard deviation of the observed primitives, and finally T, TT are 

threshold parameters. 

The threshold Tn acts as an importance measure, i. e. concepts that are 

updated more often will also be specialised more often. Because concepts 

that are deep in the tree are less visited, T, z ensures that the tree does not 

expand excessively; it also ensures that a minimum number of primitives are 

observed before specialisation, ensuring that the concept is not just noise. T0. 

allows one only to specialise concepts that expand a minimum `area', thus 

stopping the tree from growing when a maximum degree of specialisation is 

achieved. These thresholds may be different for action and state spaces, and 

must be chosen experimentally. 
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5.7 Summary 

This chapter has demonstrated the learning architecture presented in Chap- 

ter 4 on a simple navigational task. The robot used in these experiments had 

large state and action spaces. To reduce the memory necessary to represent 

the atomic states and actions, and to make efficient usage of training data, 

a method based on acquiring generalisation concepts was tested. 

Generalisation concepts were acquired using a distance-based clustering 

technique, namely K-means. This technique creates k, disjoint clusters based 

on the data's distances when mapped onto a multidimensional coordinate 

space. The problem of selecting an appropriate scale on which to base the 

dissimilarity among primitives, was exemplified. To address this problem, a 

method based on the sensory-motor coordination effect was presented. Al- 

though the method proved of some benefit in finding the dissimilarity scales, 

it required the robot to have a behaviour to drive the SMC effect. Moreover, 

as the K-means algorithm requires the complete set of data before clustering, 

a data-gathering stage was necessary. 

In order to make the concept generation method incremental, a novel al- 

gorithm based on K-means was presented. ITS-K-means algorithm clusters 

primitives as they are observed by the robot, thus there is no need to gather 

data in an off-line manner. Moreover, the new algorithm introduced repre- 

sented `generalisation concepts' in a tree-structure, which could be adapted 

to increase the number of state and action concepts. Preliminary results, re- 

ported in [Iravani, 2004] showed that the incremental and adaptive method 

was capable of generating a set of concepts, and that these could be used to 

learn the simple navigation behaviour described in this chapter. 

158 



In conclusion, this chapter has demonstrated the feasibility of acquiring 

generalisation concepts from the sensor and motor data of a robot using 

different clustering-based techniques. It also showed that state and action 

concepts can be used for behaviour learning and robotic control in a simple 

navigation task. 
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Chapter 6 

Experimental Results: 

Relational Concepts for 

Strategic Behaviour Learning 

The learning architecture presented in Chapter 4 bases behaviour learning 

on concepts which represent, in a compact and structured manner, the input 

spaces i. e. state and action spaces. Chapter 5 demonstrated how generali- 

sation concepts can be acquired from a robot's sensor and motor data. This 

chapter demonstrates how relational concepts can be also be acquired from a 

robot's sensor and motor data. The results of this chapter were first reported 

in [Iravani, 2006] 

Relational concepts are defined by sets of primitives that share relations 

among them. For example, in Chapter 4 an arch was introduced as a rela- 

tional concept requiring a set of blocks and a relation among these blocks to 

be defined. This chapter will show how the Q-analysis method presented in 
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Section 3.4 can be used to generate relational concepts. 

6.1 Experimental test-bed 

This section describes the test-bed used for generating relational concepts and 

learning team-strategic behaviours. It is based on the RoboCup simulator 

briefly described in the following. 

6.1.1 RoboCup simulation league 

The RoboCup simulation league is a fully distributed multiagent domain 

in which autonomous agents participate in a cooperative and competitive 

football game [Noda et al., 1998]. 

The environment is a simulated football game with eleven players in a 

team. At any point in time, each agent can choose among three actions, 

these are: dash, turn and kick. The dash and turn actions are mainly used 

for robot navigation, while kick is used to control, pass and shoot the ball. 

By combining these actions and their sensory perception, agents must be 

capable of cooperating with team-mates in order to score more goals than 

the opposition team. 

The simulator has been conceived to be as similar as possible to `real 

world' robot football. For this reason, sensors and actuators have random 

noise, observations are limited in the environment, and agents even get tired. 

These characteristics make the RoboCup simulation league a complex and 

realistic multiagent test-bed. A comprehensive description of the simulator 

and the simulation league can be found in [Stone, 1998, Chen et al., 2002]. 
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6.1.2 Ball-passing behaviour 

At any point in time, the player in possession of the ball must decide whether 

to dribble, pass or shoot the ball. Thus, ball-passing is one of the three most 

important behaviours in robot soccer. If a player decides to pass the ball, it 

must also choose which team-mate player to pass it to. 

In this experiment, the ball-passing behaviour is defined as the behaviour 

that selects a team-mate player to pass the ball to. The passing behaviour 

is considered successful if it selects a player and results in a successful pass, 

otherwise it is considered a failure. 

The main aim of the experiment is to generate a set of relational concepts 
from which the ball-passing behaviour can be learned. In other words, finding 

a set of relational concepts that indicate whether a team-mate player is well 

situated for receiving a pass or not. 

The concepts related to the ball-passing behaviour will be learned from 

historical data, by observing successful passes in games played in the past. 

The next section describes how the data is gathered. 

6.1.3 Pass data gathering 

The simulator server produces log-files of all games played, i. e. it records 

the positions of all players and the ball at all times during a game. In 

this experiment, the log-files of the RoboCup 2003 competitions were used, 

in particular that of the final game between the teams, UvA Trilearn and 

Tsinghuaelous. 

In order to learn the concepts related to the passing behaviour, the log-file 

is pre-processed to extract passing scenes. A passing scene is a static view 
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of the field at the time the robot in possession of the ball is ready to start 

a pass. Each passing scene contains information on the positions of all the 

players, and the receiver of the pass. Figure 6.1(a) illustrates a passing scene, 

where p is the player which must execute the pass, t1, t2, ... t4, are its team- 

mate players, and 0i, 02 ... 05, are players of the opposition team. Figure 

6.1(b) illustrates the format in which the scene information in given, where 

the position of each player is given by their (x, y) coordinates, and receiver 

indicates the team-mate player which received the pass in that scene. For 

clarity, Figure 6-1 illustrates five players per team, rather than the eleven 

players that are used in the RoboCup Simulator. 

ý'I 
('t3 

i. ' p/T\ oe 

'/YI\" ýOS 

(a) An example of a passing scene 

player position receiver 

P1 (Px, py) 0 

tl (tlx, tly) 0 

t2 (t2x, t2y) 0 

t3 (t3x, t3y) 1 

t4 (t4x, t4y) 0 

01 (O1x, 01y) 0 

05 (05x, 05y) 0 

(b) Data of a passing scene 

Figure 6-1: A passing scene and the data related to it 

6.2 State in the ball-passing behaviour 

The navigation behaviour in the previous chapter used a simple state de- 

scription, i. e. the combination of the distance and angle values with respect 

to the target, that two-dimensional state representation proved sufficient for 
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controlling a robot in the navigation task. The ball-passing behaviour is 

more complex, i. e., it depends on many more variables and their interrela- 

tions. For example, to select a team-mate player to pass the ball to, the 

passer must base the choice on the state of all of its team-mates. The state 

of a team-mate can be composed of variables such as: the position of the 

team-mate, the distances from its opponents, its position in the field, its 

area of possession, etc. In principle, there is no obvious best-set of variables 

to describe this state. In this context, the experiment followed the method of 

using a wide range of variables (some of them possibly irrelevant) to describe 

the state, and allowing the concept generation method to generate concepts 

containing only relevant variables, i. e. by feature selection. 

The remainder of this section defines the variables used to describe the 

team-mate players' states, and how these states can be represented using an 

incidence matrix and a simplex representation. 

6.2.1 State variables 

The number of variables that could be used to describe the state in a robot 

soccer game is very large. This section explains the variables, arbitrarily 

selected, needed to describe the state in the ball-passing experiment. 

The state of each of the team-mate players is described by the following 

fifty binary variables: 

" five distances: dl, d2i ... , 
d5 

" one angle: oz 

" four neighbour relations: RN, RN, LN, LN 
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" two relations to the closest opponent: OPP, OPP 

" eight pass directions: d(f, l), ... , 
d(b, l) 

" twelve field positions: p(1,2), ... , P(3,4) 
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(a) A team-mate's area 
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P(3.2) P(3.3) P(3,4) 
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(c) A team-mate's position (d) Team-mate state representation 

Figure 6-2: State representation 

Some of these variables are illustrated in Figure 6-2. For instance, Figure 

6.2(a) illustrates a set of variables related to the players's controlled area. 

This area is defined by the distances dl, 
... , 

d5 and the angle oz between the 

four players seen in the figure. These players are: the passer p, the team-mate 

being described t1, and its two neighbouring players 02 and o5, which in this 

case belong to the opposite team. The distances and the angle are continuous 

variables and have been segmented into four binary intervals: `very-small', 
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`small', 'big', and `very-big', denoted by vs, s, b, vb. The following illustrates 

the arbitrary segmentation thresholds used: 

1, if 0<d<7 1, if 0<a<0.15 
dv5 = avs = - 

0, otherwise 0, otherwise 

1, if 7<d<13 1, if 0.15<a<0.35 
d3= as 

0, otherwise 01 otherwise 

1, if 13<d<19 1, if 0.35<a<0.70 
db= ab= 

0, otherwise 0, otherwise 

1, if d> 19 1, if a>0.70 dvb = avb = 
0, otherwise 0, otherwise 

Figure 6.2(b) illustrates eight directions d(f, l),... , 
d(b, l) in which the team- 

mate player could be located, where the subindices f, b, r and l stand for: 

forward, back, right and left, respectively. These directions are defined from 

the passer's perspective and the attacking direction. Figure 6.2(c) illustrates 

the playing field divided in twelve positions (p(1,2) 
, ... , P(3,4)) , 

in which a 

team-mate player could be located. The subindices relate to the position 

in the field as seen in the figure. These positions are also relative to the 

attacking direction. Figure 6.2(d) illustrates how the variables are measured 

with respect to a team-mate player (in grey). 

The variables not shown in the figure, i. e., RN, RN, LN, LN, OPP 

and OPP, have the following meaning. The value of RN (right neighbour) 

and LN (left neighbour), is 1 if the neighboring players of the player being 

described, are also team-mates. For example, in Figure 6.2(a) RN and LN 

would be 0, as both neighbouring players of and o5, belong to the opposing 

team. The value of opponent closer (OPP) is 1 if a neighbouring players is an 
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opponent, and if it is closer to the ball. In Figure 6.2(a), OPP would be 0, as 
both opponent neighbours are further from the passer than the team-mate. 

The variables, RN, LN and 0 PP, represent the negation of RN. LN 

and OPP. These negated values are known in Q-analysis as anti-vertices. 
Anti-vertices represent the case that two elements are not related. That is, if 

a sensor is not active with respect to a state, then the anti-vertex representing 

that relation will be a1 in the incidence matrix. Representing non-existing 

relations is interesting in some situations. For example, for the ball-passing 

behaviour, the fact that an opponent is not closer to the ball may be of 
interest. 

Table 6.1: Summary of the state variables 

variable description binary values 

di distance passer to team-mate 4 

d2 distance team-mate to right neighbour 4 

d3 distance team-mate to left neighbour 4 

d4 distance passer to right neighbour 4 

d5 distance passer to left neighbour 4 

a angle receivers area 4 

RN right neighbour is team-mate 1 

RN right neighbour is not team-mate 1 

LN left neighbour is team-mate 1 

LN left neighbour is not team-mate 1 

OPP opponent is closer to ball 1 

Opp opponent in not closer to ball 1 

d( f, l)... d(b l) pass direction 1x8 

p(1,2)... p(3,4) pass position 1x 12 

Table 6.1 presents a summary of these variables, and includes a short 

description of each variable with its number of binary values. 
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Some of the variables are mutually exclusive. For example, if dl has value 

vs it can not have any of the remaining three values s, b and vb. Thus, the 

state of each team-mate is described by eleven active binary variables, thus 

each team-mate player can be represented by a 10-simplex, as shown in the 

next section. 

The previous definition of the team-mates' state assumes full observability 

of the game, i. e. the passer can perceive all the information above. This 

assumption does not hold when the players are competing in the game, as 

they only have a partial view of the field depending on the direction they 

are facing. The assumption of full observability is made on the basis that 

most teams have incorporated players architectures which acquire models 

of the whole field. For example, see the player architecture developed in 

[Stone, 1998]. 

6.2.2 Incidence matrix representation of the state 

As introduced in Section 3.4.2, Q-analysis represents multidimensional data 

using an incidence matrix representation. Each of the states of a team-mate 

player can be represented as a row in an incidence matrix. 

Table 6.2: Incidence matrix representation of a team-mate player 
team-mate dl d5 a RN RN 

tl 00101000010001 

LN L -N Opp Opp d(f I) d(b, t) P(1,2) ... P(3,4) 

0 1 1 0 1 0 0 0 
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An example of such an incidence matrix is given in Table 6.2. As described 

above, only eleven of the fifty columns will contain a T. In other words, only 

11 of the variables are related to any team-mate player. 

6.2.3 Simplex representation of the state 

As described in Section 3.4.3, each row of an incidence matrix can be repre- 

sented by a simplex. Since the team-mate state has eleven active variables, 

each row of the matrix will determine a 10-simplex. 

6.3 Relational concepts in the ball-passing 

behaviour 

This section applies the method exemplified in Sections 3.5 and 3.6 to the 

data from the RobCup Simulator. Section 6.1.3 described the passes data- 

set. Section 6.2 defined the state description for each one of the team-mate 

players which are summarised in Table 6.1. There, it was shown that a 

10-simplex represented the state of each team-mate player. In each passing 

scene, there is one team-mate which receives the pass (receiver) and nine 

which don't (non-receiver) (see Figure 6.1(b)) . 
In this experiment, the first question asked is whether any structural dif- 

ference exists between the simplices representing `receivers' team-mates, and 

those representing `non-receivers' team-mates. To investigate this question, 

the star-hub analysis is used to identify which are the hubs that occur most 

in the case of receivers. The resulting hubs will then be contrasted with the 

simplices representing non-receivers. 
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If there exist any structural differences between receivers and non-receivers 

these can be exploited to define concepts related to good and bad passing 

configurations. This is investigated in the next section. 

6.3.1 Structural differences between receivers and 

non-receivers 

The star-hub analysis was first applied to the simplices representing the con- 

figuration of receivers. The RoboCup 2003 Final game, contains 260 passing 

scenes. Of those, 118 correspond to the winning team, i. e. UvA Trilearn. 

The analysis was carried out on these last passing scenes, thus there were 

118 simplices representing receiver team-mates, and 9x 118 = 1062 simplices 

representing non-receiver team-mates. 

The star-hub analysis applied to the receiver simplices produced over 3000 

hubs. From these hubs, some of those with most simplices, i. e. the ones that 

occurred most often, were selected, Table 6.3 illustrates them. 

Table 6.3: A selection of hubs for the pass data 

hub receiver non-receiver 

(OPP) 70% 50% 

(RN, OPP) 43% 24% 

(di (s), LN) 36% 15% 

(RN, LN, OPP) 24% 10% 

(dl (s), RN, LN) 20% 9% 

(di (s), d5 (vb), a(vs), OPP) 15% 4% 

(dl (vs), RN, LN, OPP) 8% 2% 

(d2 (s), d3 (S)) 13% 10% 

(d3(s), d4 (b)) 9% 7% 
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The selected hubs are then used on the non-receiver team-mates data to 

measure their frequency of occurrence. As can be seen in Table 6.3, there 

are some hubs that occur more in relation to receiver players than to non- 

receiver ones. For example, (OPP) occurs with a frequency of 70% in the 

receivers data and 50% in the non-receivers data. This indicates that the 

hub is more related to good passing situations. This result seems plausible, 

as not having an opponent closer (OPP = 1) allows passing with a lower 

risk of ball interception. 

This shows that some structural differences exist between the configura- 

tion of receiver and non-receiver team-mate players. In a similar experiment 

conducted with fewer descriptive variables similar conclusions were reached 
[Iravani et al., 2005]. 

The last two hubs in the table show a similar probability of occurrence 

in both classes (low specificity), thus in principle, if these variables do not 

appear in other relevant hubs (higher specificity), they could be considered as 

irrelevant in relation to the concepts of `receiver' and `non-receiver' players. 

6.3.2 Study of the effect of neighbouring players 

As described in Section 6.2.1 the state of a team-mate player includes the 

relations to its neighbouring players, namely: RN, RN, LN, LN, OPP, OPP 

Table 6.4 illustrates the percentage of `receiver' and `non-receiver' simplices 

that share the hubs related to the previous variables. 

The hubs of dimension q=0 represent the probability of observing each 

of these in the data. That is, 33.1% of the receiver simplices have the hub 

(RN), against 42.2% of the non-receiver. By looking at the first four hubs, 
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we find that (RN) and (LN) have higher probability of occurrence in both 

receiver and non-receiver classes. This means that in the game's passing 

scenes it is more common for team-mates to have opponents as neighbours. 
This is plausible, as in most cases the defending team will be covering the 

players of the attacking team. 

Table 6.4: Neighbour player relation 

hub receiver non-receiver 

(RN) 33.1% 42.2% 

(RN) 66.9% 57.8% 

(LN) 36.4% 41.9% 

(LN) 63.5% 58.1% 

(RN, LN) 9.3% 15.1% 

(RN, LN) 23.7% 26.7% 

(RN, LN) 27.1% 26.4% 

(RN, LN) 39.8% 31.3% 

(RN, LN, OPP) 24.1% 20.9% 

(RN, LN, OPP) 15.7% 10.4% 

The relations represented by the hubs of dimensions q=1 are illustrated 

in Figure 6-3; the percentage of receiver and non-receiver simplices are also 

indicated, in green and red, respectively. Figure 6.3(a) illustrates a situa- 

tion in which the receiver team-mate was surrounded by players of its own 

team. Figures 6.3(b) and Figure 6.3(c) illustrate a situation in which the 

receiver team-mate is surrounded by a team-mate and an opponent. Figure 

6.3(d) illustrates a situation in which the receiver team-mate is surrounded 

by opponents. The hub (RN, LN), (Figure 6.3(a)) seems to describe the 

best state for passing as both neighbours are of the same team, i. e. there 

is low probability of interception by the opponents. But their probability of 
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occurrence tells us the contrary, that is, the passer chooses more often not 

to pass to a team-mate which is in this configuration. Similar information 

is encoded in hub (RN, LN), which indicates that both neighbours of the 

team-mate player are of the opposing team (Figure 6.3(d)). In this case, it 

would appear that it is better not to pass as there are two opposition players 

near (risky pass situation). But the probabilities associates with this hub 

tells us that it is more probable to pass to a team-mate in this situation. 

The probabilities associated with these two hubs seem counter-intuitive. 

15.1% 
Q'ý. 

°26.7%Q . 7°26.4% I"31.3% ý'ý. ý"(a) 

(RN, LN) (b) (RN, L; -N) (c) (RN, LN) (d) (RN, LN) 

Figure 6-3: Neighbouring relations 

Why does a player prefer to pass to a team-mate that has many opponents 

near? Why does the player prefer not to pass in easy-passing situations? 

A possible answer is as follows: easy passing situations, such as the one 

in Figure 6.3(a), happen only in a direction for which the pass is not desired, 

for instance, in passing backwards. To test this hypothesis, the following 

hubs have been tested against the data: 

(RN, LN, d(l, b)) V (RN, LN, d(bl)) V (RN, LN, d(b, r)) V (RN, LN, d(r, b) ) 

Any simplex containing these hubs would represent a simple pass situation 

(RN, LN), towards the back direction (towards its own side of the field). See 
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Figure 6.2(b) for a description of these directions. Applying these hubs on 

the data results in the following: 7.6% out of 9.3% (81.7%) of the receiver 

simplices and 13.4% out of 15.1% (88.2%) of the non-receiver simplices are 

towards the back. This corroborates the hypothesis that easy-passing situa- 

tions are not chosen because they mostly occur (81.7% and 88.2%) towards 

the team's own side of the field. 

To test the counter hypothesis, that is, that risky passes towards the 

opponent's goal are chosen for passing, the following hubs have been tested 

against the data. 

(RN, LN, d(l, f)) V (RN, LN, d(f, l)) V (RN, LN, d(f r)) V (RN, LN, dir f)) 

Simplices satisfying these hubs indicate that both the team-mate's neigh- 

bours are opponents, and that the direction of the pass is towards the oppo- 

nent's goal. Applying these hubs results in: 33% out of 39.8% (82.9%) of the 

receiver simplices having two opponent as neighbours, and the pass directed 

towards the opponent's goal. This indicates that although the pass is risky, 

it is undertaken because it moves the ball in the attacking direction. 18.4% 

out of 31.5% (58.4%) of the non-receiver simplices have this configuration. 

This indicates that fewer non-receiver simplices have this configuration, thus 

the configuration of two neighbouring opponents and a direction towards the 

opponent's goal corresponds more to a better passing situation. Figure 6-4 

illustrates this configurations, together with receiver and non-receiver prob- 

abilities. 
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(a) `Risky' pass going forward 
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(b) `Risky' pass going backward 

Figure 6-4: `Risky' pass 

These results indicate that what seemed counter-intuitive situations, i. e., 

passing to players in risky situations and not passing to players in easy sit- 

uations, could be explained when taking into account the direction of the 

pass. This illustrates how adding vertices into hubs results in concepts hav- 

ing emergent properties. That is, an easy passing situation becomes a non- 

passing situation when the pass is directed towards the team's own goal, 

whereas a risky pass situation becomes a pass when this is directed towards 

the opponent's goal. 

6.4 Summary 

This chapter has shown how to use Q-analysis to generate relational con- 

cepts. Data extracted from the log-files of the RoboCup Simulator were used 

to demonstrate the classification method introduced in Sections 3.5 and 3.6 

on robotic data. The aim of the experiment was to acquire relational concepts 

in the context of a ball-passing behaviour, in other words, generating con- 

cepts that represented when a team-mate player was in a `good situation' to 

receive a pass and when it was not. Good situations for receiving a pass were 
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assumed to be the situations in a log-file in which passes succeeded. Using 

the Q-analysis approach it was shown that is possible to identify structural 

differences between situations in which passing is chosen and those in which 

not-passing is chosen. In this experiment, it was also shown how relational 

concepts acquire emergent properties when their primitives are classified, for 

example, how an apparently easy passing situation can be not selected if the 

direction of the pass is towards the team's own side of the field. 

A complete analysis, including the heuristic method for finding classifier 

hubs, was not applicable in ball-passing. The reasons are the following: 

" Computational intensive process: The star-hub analysis presented in 

this chapter is computationally intensive, that is, finding the hubs in 

the data requires all hubs to intersect with each other. This results in 

a relatively small data-set, containing 118 receiver primitives and 1062 

non-receiver ones, having a huge number of hubs, approximately 58000. 

" Hubs sparsity: In such a large hub space, most hubs are only shared 

by two simplices. Thus, they do not provide the reliable statistics of 

specificity and broadness needed to define classifier hubs. 

" Inconsistency in the data: Some of the team-mates labelled as non- 

receivers share similar variables to those labelled as receivers. This is 

because it is possible for many team-mates to be in a `good passing' 

situation, but only one of them can be the pass receiver. 

In conclusion, we can say that the method presented has promising char- 

acteristics for classification and the generation of relational concepts. The 

following summarises these characteristics: 
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" The structural similarity exploited by this method does not suffer from 

the so-called chalk and cheese problem. As the similarity or dissimilar- 

ity of primitives is not reduced to a distance measure, it is not necessary 

to `scale' the relevance of each dimensions. 

" The heuristic method presented for defining relational concepts or clas- 

sifier hubs shows interesting characteristics in relation to filtering irrel- 

evant variables. That is, irrelevant variables in relation to a class or 

concept can be eliminated, reducing the total number of dimensions, 

and also addressing partially the problem of the curse of dimensionality. 

9 As seen in Section 6.3.2, relational concepts, i. e. classifier hubs can be 

easily interpreted by the designer. That is, any of the hubs studied 

could be easily mapped back onto the original data, and their meaning 

also be easily understood. 

" The heuristic presented for discovering classifier hubs is computation- 

ally expensive and only applicable to small data-sets. In order to apply 

the ideas from the Q-analysis methodology into the classification of 

large data-sets, more efficient heuristics would be needed. 
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Chapter 7 

Conclusions 

Motivated by the challenges of designing `truly' autonomous agents, this the- 

sis addresses two key aspects of autonomy, those of learning and adaptation. 

This chapter states the conclusions that can be drawn from this thesis, and 

also proposes future research directions that emerge from it. 

7.1 Answers to the research question 

The various arguments made through this thesis (summarised in Chapter 1) 

are now revisited, based on the research questions addressed. 

" Question Ql: Is it possible to use robotic sensor and motor 

data to learn abstract entities called concepts? 

The thesis has given an affirmative answer. Chapter 3 introduced con- 

cepts as classes formed by multidimensional primitives. The chapter 

also reviewed some of the existing techniques for multidimensional data 

classification, discussed their main limitations and proposed a novel 
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classification technique based on the methodology of Q-analysis. Two 

examples were conducted to illustrate the functionality of the classifi- 

cation technique, one based on the synthetic CorrAL data-set and the 

other on Fisher's Iris data. 

Later, in Chapter 5 and Chapter 6, experimental evidence was provided 

to show how concepts can be learned by classifying observed sensor and 

motor data into state and action concepts. 

In Chapter 5, data collected from a robot interacting with its envi- 

ronment were used as primitives to generate concepts. More precisely, 

the states and actions observed by the robot were classified using dis- 

tance based clustering techniques; this classification resulted in what 

we called generalisation concepts. 

In Chapter 6, data from the RoboCup Simulation League was used as 

primitives to generate relational concepts. The classification method 

based on Q-analysis was used to classify primitives according to a sim- 

ilarity metric based on relational structures. 

" Question Q2: Is it possible to use such concepts as the repre- 

sentation for learning robotic behaviours? Do such concepts 

provide any benefits for behaviour learning? In particular, 

how do they address the generalisation problems faced in ma- 

chine learning? 

The thesis gives an affirmative answer. In Chapter 5, concepts rep- 

resenting the state-action spaces of a mobile robot were used as the 

representation for learning a navigation behaviour. 
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Behaviour learning was based on finding a function that mapped state 

concepts into action concepts. In that particular example, the state- 

action spaces were two-dimensional spaces, and the number of possible 

states and actions combination was 432 x 106. Using this large state- 

action space a more compact space was defined based on clustering 

primitives into state and action concepts. In the first experiment, 10 

state concepts and 10 action concepts were generated. Their combina- 

tion resulted in 100 state-actions. The behaviour function used to learn 

the navigation behaviour needed only 100 memory positions to be rep- 

resented, in contrast with the 432 x 106 that would have been necessary 

if the original state-action spaces were used. This showed that using 

generalisation concepts to represent the state and the action spaces of 

a robot reduced the memory requirements to represent behaviour func- 

tions. Thus, these types of concepts can be used to represent large 

state-actions spaces in a generalised manner. 

Chapter 6 presented an experiment where relational concepts were gen- 

erated for learning a strategic ball-passing behaviour. The main idea 

in the experiment was to observe successful passes and to generate con- 

cepts representing the situations in which passing would be successful. 

Thus, the robot learned some situations in which passing was success- 

ful. 

" Question Q3: Is it possible to control autonomous mobile robots 

using this notion of concept? 

The thesis gives an affirmative answer. Chapter 5 demonstrated that 

using a navigation behaviour represented by generalisation concepts it 
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is possible to control a robot in a simple navigation task. The control 

was based on observing the state of the environment, classifying this 

state into its corresponding state concepts, then using the behaviour 

function to select an appropriate action concept and use this as the 

control action. 

Chapter 6 showed how a soccer-robot could learn relational concepts 

in relation to a ball-passing behaviour. Assuming that a robot had a 

set of concepts describing good passing situations, then when one of 

these would be observed in a game, the robot would know that a good 

passing option was available. Higher-level decision making could then 

decide whether to pass or execute any other action. This type of control 

was not demonstrated in this thesis, and is a good candidate for future 

investigation. 

" Question Q4: Is it possible to integrate the notion of concept 

within a multilevel architecture which exploits the definition 

of concepts for learning and control? 

The thesis gives an affirmative answer. Chapter 4 presents an archi- 

tecture that generates concepts by hierarchically classifying primitives. 

These concepts are then used as the representation for learning control 

behaviours. The proposed architecture divides the behaviour learning 

task into two inter-related sub-tasks. 

The first sub-task is to learn a representation of the state and action 

spaces based on learning state and action concepts. This sub-task was 

implemented by an architecture's component known as concept gen- 

eration. This component applies different classification techniques to 
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generate a multilevel hierarchy of concepts. In Chapter 5 concepts were 

generated using different clustering techniques, whereas in Chapter 6a 

novel method based on classification using Q-analysis was used. 

The second sub-task is to learn a behaviour function represented using 
the previously generated concepts. This sub-task was implemented by 

the behaviour learning and control component. A supervised learning 

approach was taken to learn behaviour functions. That is, a set of ex- 

amples of the desired behaviour was provided for the robot, which had 

to learn an appropriate behaviour function so that a similar behaviour 

to the one exhibited by the examples is attained. 

The behaviour learning and control component is also used to control 

the robot. Control is done in a reactive manner, where states are clas- 

sified into state concepts and the behaviour function reactively chooses 

the adequate action concept. 

Chapter 5 demonstrated the functionality of the architecture for a sim- 

ple navigation task. Chapter 6 demonstrated the functionality of the 

same architecture in a more complex and strategic ball-passing be- 

haviour. 

7.2 Thesis contributions 

This thesis has made four major contributions in the field of multilevel learn- 

ing and robotic control as follows. 

"A simple multilevel architecture for robots is proposed. The architec- 

ture is based on generating concepts and then using them for learning 
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control behaviours. An unexpected outcome of the research is that 

concepts can be formed by following two different kinds of classification 

methods. In the first, the classification is cluster-based, and essentially 

set theoretic. That is, sets of primitives are classified together as con- 

cepts; these were called generalisation concepts. In the second case, the 

classification is based on relational structures, with primitives classified 

into structured concepts at a higher-level in the hierarchy; these were 

called relational concepts. 

" This thesis demonstrates that it is possible to generate concepts using 

different classification techniques, and that the resulting concepts can 

be used for behaviour learning and robotic control. 

" This thesis has identified that both generalisation and relational con- 

cepts are necessary for building hierarchies of concepts in the robotic 

domain. Generalisation concepts allow us to represent a set of prim- 

itives as a unique concept, thus the number of concepts can be con- 

siderably smaller than the number of possible primitives. As has been 

shown, in robotics, sensors and motors usually provide relatively large 

ranges of possible values. In some cases, taking groups of values as 

equivalent, reduces the total number of possible values, but still allows 

the definition of satisfactory controllers. Thus, the usage of generali- 

sation concepts in the robotics domain allows to compactly represent 

sensor and motor values. Relational concepts are more interesting in 

the sense that they acquire emergent properties when classified using re- 

lational structures. For example, as seen in the ball-passing behaviour, 

an easy passing situation such as having a receiver team-mate sur- 
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rounded by other team-mates has the emergent property of being a 

good passing situation if the direction of the pass is going towards the 

opponent's goal, and a bad passing situation if the direction of the pass 

is going backwards. That is, an easy passing situation in combination 

with a desired passing direction has an emergent property which none 

of its parts have when taken in isolation. Relational concepts allow 

robots to discover and represent structures that capture some of the 

emergent properties that occur in their environments. 

" This thesis reveals that concepts are at a higher descriptive level than 

the primitives they came from. That is, concepts are higher in the hi- 

erarchy than their primitives. However it is important to make the 

distinction in the way generalisation and relational concepts go up 

the hierarchy. That is, generalisation concepts have the same char- 

acteristics as any of their primitives, thus they do not add any new 

information. On the contrary, relational concepts contain emergent 

properties. Hence, generalisation concepts go up the hierarchy by gen- 

eralising primitives, while relational concepts go up the hierarchy by 

creating new properties. For example, several individuals can be classi- 

fied into a generalisation concept such as person (Figure 7.1(a) ), or into 

a relational concept such as soccer team (Figure 7.1(b)). The concept 

person has the same characteristics of any of the individuals, while the 

concept soccer team has emergent characteristics, such as being capa- 

ble of playing soccer. Both of these types of concept are necessary in 

the robotic domain, using generalisation concepts to reduce the total 

number of elements in the space, and relational concepts to abstract 
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and extract new properties from the robot, the environment and their 

interactions. 

person soccer team 

(a) Concept person (b) Concept soccer team 

Figure 7-1: Example of generalisation and relational concepts 

This thesis has also made two contributions to the field of multidimen- 

sional data classification as follows. 

" It presents a novel algorithm that extends the traditional K-means 

clustering algorithm into an iterative and adaptive version, known as 

ITS-K-means. The new algorithm clusters data iteratively, that is, 

inputs are clustered on the fly when they are observed. Moreover, 

the new algorithm does not need to predefine the number of cluster 

centres or k. The number of cluster centres are adaptively acquired by 

specialising existing centres and organising them in a tree structure. 

" It presents a novel classification technique based on the methodology 

of Q-analysis which is used to define a novel similarity metric. Most 

of the existing classification techniques assume that Euclidean distance 
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between data points is equivalent to the similarity between the data 

points. The thesis has argued that this assumption can only be made 

when the mathematical properties of the multidimensional spaces are 

well-known. That is, different dimensions can be compared only if their 

relations are known. The thesis presents a novel similarity metric based 

on the structural connectivity of the multidimensional data points, that 

is, by comparing the shared features that describe the data points. 

The experimental results indicate that the new similarity metric can 

be used for classification. Moreover, the new classification technique 

allows filtering out irrelevant features describing the data inputs. 

7.3 Further work 

In conducting this research many interesting issues emerged which could not 

be addressed because of time limitations. This section describes these issues 

and proposes them as possible future research directions. 

7.3.1 Towards goal-directed behaviour using relational 

concepts 

Section 4.4.2 described how states can be classified into relational concepts. 

There, the relation used to classify primitives was the co-occurrence of sen- 

sors values, i. e. logical AND operations among the sensors' values. Other 

relations could also be exploited, such as temporal relations. 

Temporal relations are based on the ordered sequence of state occurrences. 

If these relations are used to define state concepts, then these represent or- 
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dered histories of primitive states. For example, Figure 7.2(a) illustrates a 

mobile robot navigating towards a target position. Let the states sl, s2, s3 

and s4 be the atomic states perceived by the robot during navigation towards 

the target. The robot's state history from its initial position to the target 

can be represented by the following state concepts: sei = (s1) s2; R1) and 
SC2 = (S31 S4; R2) or sc3 = (scl, sc2; R3), illustrated in Figure 7.2(b). Rela- 

tions R1, R2 and R3 represent the temporal transitions between states, i. e. 
R1 = sl - S2, R2 = s3 -+ S4, R3 = sC1 -* SC2, in Figure 7.2(b). These 

relations are represented by arrows. 
Obstacle 

Target Position 

s1 

S3 

D 

Obstacle 

(a) Robot navigation history 

a 

(b) State concept representation of 

navigation history 

Figure 7-2: State concept representation of navigation history 

Any of the previous state concepts is related to an ordered sequence of 

actions, or an action concept, generated using the temporal relations. As 

seen in Section 4.4.1 these can be regarded as plans. 

Assuming that a robot's current state and its goal state are contained in 

a previously observed state concept, then the action concept related to the 

state concept could be used to control the robot. For example, Figure 7.3(a) 

illustrates a robot's trajectory from an initial position to a target position 
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when controlled using atomic states and atomic actions. The initial state in 

the figure is sl, and the goal state is sgoal. Given this example, the robot could 
have acquired the following relational concepts: sc = (sl, s2, s3, sgoal; Rt) 

and ac = (al, a2, a3, a4; Rt), where Rt indicates that the relation between 

primitives is temporal. Figure 7.3(b) illustrates a new situation, in which 

the robot's current state is s1, and its goal state is Sgoal . 
The previously 

observed sc, is a state concept that includes the initial and goal states for 

the new situation. Thus, action concept ac could be used as a control action. 
Obstacle 

Target Position 
r-D (s� a, ) 

Obstacle 

Obstacle 

Obstacle 

* Target Position 

ac 

(a) Atomic action control (b) Action concept control 

Figure 7-3: Robot controlled at different description levels 

In Figure 7.3(a) the control strategy is similar to the control exerted 

by reactive architectures (see Section 2.2.2), in which a robot reacts to the 

perceived state with an action dictated by a behaviour. Instead, controlling 

a robot using action concepts as illustrated in Figure 7.3(b), is equivalent to 

navigating with extended actions, or using plans. For example, selecting an 

action concept defined by three atomic actions can be seen as using a three- 

step plan. As reviewed in Section 2.2.1, deliberative architectures operate by 

creating and executing plans, although the mechanism used by deliberative 

architectures to construct plans is not based on hierarchical action and state 

aggregation, but on logic and planning techniques. 
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The notion of temporal concepts may produce a way to integrate planning 

and reactive control strategies for robotics. Moreover, as action concepts or 

plans can be learned from experience, this approach may allow robots to be 

designed with simple reactive behaviours and with capabilities of acquiring 

planning dynamically. An obvious difficulty in implementing this approach 

would be that of closed loop control, as long action concepts would mean 

long periods of action without feedback from the environment. To address 

this problem, the atomic states within the state concept could be used as 

sub-goals. 

7.3.2 Extension to behaviour learning with concepts 

In this thesis, behaviours were learned using supervised methods, that is, by 

providing the robot with examples of the desired behaviour. Although this 

approach was used to demonstrate that behaviour learning can be under- 

taken using concepts in a more general context, robots should learn using 

only their own experience. That is, robots should use a framework, such 

as RL, in which a robot learns solely by using its interaction with the en- 

vironment. This approach would result in an architecture similar to the 

one presented in Chapter 4, with the difference that the behaviour learn- 

ing and control component would be replaced by a reinforcement learning 

component, as illustrated in Figure 7-4. As previously in this architecture, 

the concept generation component generates state and action concepts using 

different classification techniques, such as cluster-based or relational-based. 

These concepts are then used by the reinforcement learning component to 

learn control policies. As in the RL approach, the robot would be controlled 
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simultaneously while learning the control policy, thus resulting on an au- 

tonomous, unsupervised learner. 

Sensor & Motors 

Concept Reinforcement 
generation Learning 

Robot 

Figure 7-4: Extension to the architecture 

A direct implication of this approach, is that concepts can be generated on 

the fly while learning policies. Thus, the methods used to generate concepts 

should be adaptive (similarly to the one presented in Section 5.6). With the 

integration of RL, generalisation concepts could be defined using splitting 

criteria similar to the ones used in variable resolution approaches (see Section 

2.4.2). 

Moreover, the introduction of temporally-related concepts, as described 

in the previous section, would allow the RL methods to exploit time-extended 

actions. That is, frameworks such as options [Sutton et al., 1999, Precup, 2000] 

could be implemented for behaviour learning. In the options framework, 

temporally-extended actions or options are defined using three elements, 

(I, 7r, ß), where I is an initialisation state, 7 is the policy of the time-extended 
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action, and ß is a termination condition. If I is satisfied then the option can 

be started. During its execution, the option follows policy 7r, and the exe- 

cution is stopped when ß is satisfied. In our concept-based approach, the 

initialisation state I, would be equivalent to the initial atomic state within a 

state concept. The policy 7r, would be the action concept which indicates the 

atomic actions to select. The termination condition ß, would be associated 

with the last atomic state in the state concept. 

7.3.3 Emergence and evolution of grounded 

communication 

Unlike the research into how language and communication could emerge and 

evolve within a group of autonomous robots is an interesting and new re- 

search field [Steels, 2003, Steels and Baillie, 2003]. This thesis defined con- 

cepts strictly as abstract representations used for behaviour learning and 

robot control, ignoring their semantics and ontological characteristics. That 

is, the meaning of concepts and their relations were not addressed. 

In the research presented in [Steels, 2003, Steels and Baillie, 2003], groups 

of robots are situated in an environment and learn a communication protocol, 

i. e. words and meanings (semantics), by interacting with the environment 

and with the other robots in the group. That is, the meaning of words are 

grounded based on the robot's sensory-motor data, the robot-environment 

interaction and the robot-robot interaction. This way of defining words and 

their meaning is very similar to the way concepts are generated in this thesis. 

Thus, a possible extension of the work presented in this thesis would be that 

of using concepts as communication tools in groups of robotic agents. 
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In the research related to the emergence and evolution of communication. 

robots interact with the environment and with each other by playing language 

games [Steels, 1998, Vogt, 20011. In general, these games are based on hav- 

ing a robot describing an object and another robot trying to guess what is 

the object being described. These games require two processes: (i) object 

discrimination and description (discrimination games [Steels, 1996]), and (ii) 

description communication. The first process must be capable of finding the 

features that `best' describe the object in focus. The second process must be 

capable of transmitting and interpreting features. 

The first process is that of finding relevant features related to a particular 

class. As shown in this thesis, the methods based on Q-analysis can yield 

new insights into the issue of feature or variable selection. Thus, it would be 

interesting to use those methods in an application such as that of emergence 

and evolution of communication. 
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Appendix A 

Glossary 

This thesis uses a number of technical terms which are described in the 

following glossary. 

Action: is a command that an agent can execute, usually related to its 

motor capabilities. An action executed at time t is denoted by at. A 

set of actions is denoted by A. 

Atomic Action: if actions are described at various description levels, then 

atomic actions are the ones at the lowest level of description. In other 

words, atomic actions can not be decomposed into simpler actions. For 

example, the power sent to the motors of a robot constitutes an atomic 

action. 

Atomic State: if states are represented at various levels of description, then 

atomic states are the ones at the lowest level of description. In other 

words, atomic states can not be decomposed into simpler states. For 

example the readings from a robot's sensors describe atomic states. 
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Behaviour: is the observable result of an agent acting in its environment. 

This is usually the emergent result of the interaction of the behaviour 

function, the robot and the environment. 

Behaviour function: is an agent's internal function that maps the per- 

ceived environmental states onto actions, B: S -ý A. 

Concept: a general class formed of primitives. 

Primitive: in the context of classification, the particular elements of the set 

to be classified are called primitives. 

Reward: used in reinforcement learning to indicate the goodness of the 

system's state transition. For example, a mobile robot colliding with 

an obstacle could receive a negative reward as this is an undesirable 

state transition (from not colliding to colliding). The reward received 

at time t is denoted by rt, and is also known as immediate reward. 

State: is a description of the environment as perceived by the agent through 

its sensors (sonar, cameras, encoders, etc). A state observed at time t is 

denoted by st. For example, st = (coordinate-position, relative-speed, 

number_obstacles) could represent the state of the environment ob- 

served by a mobile robot. Each of the variables used to define a state, 

e. g. coordinate -position, relative-speed, and number -obstacles are 

known as state variables. A set of states is denoted by S. 

State transition: given that st is the state observed at time t and st+l is 

the one observed at time t+1, the transition from st to st+l is a state 

transition. 
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