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Abstract

Robot and multi-robot systems are inherently complex systems, for which de-
signing the programs to control their behaviours proves complicated. More-
over, control programs that have been successfully designed for a particular
environment and task can become useless if either of these change. It is for
this reason that this thesis investigates the use of machine learning within
robot and multi-robot systems. It explores an architecture for machine learn-
ing, applied to autonomous mobile robots based on dividing the learning task
into two individual but interleaved sub-tasks.

The first sub-task consists of finding an appropriate representation on
which to base behaviour learning. The thesis explores the viability of using
multidimensional classification techniques to generalise the original sensor
and motor representations into abstract hierarchies of ‘concepts’. To con-
struct concepts the research used standard classification techniques, and ex-
perimented with a novel method of multidimensional data classification based
on ‘Q-analysis’. Results suggest that this may be a powertul new approach
to concept learning.

The second sub-task consists of using the previously acquired concepts
as the representation for behaviour learning. The thesis explores whether it
is possible to learn robotic behaviours represented using concepts. Results
show that is possible to learn low-level behaviours such as navigation and
higher-level ones such as ball passing in robot football.

The thesis concludes that the proposed architecture is viable for robotic
behaviour learning and control, and that incorporating Q-analysis based clas-
sification results in a promising new approach to the control of robot and
multi-robot systems.
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Chapter 1

Introduction

T'his thesis is concerned with the design of autonomous robotic systems.
Robotics systems are complex, in the sense that many loosely coupled parts
Interact to produce the system’s final behaviour. For example, in mobile
robots the effect of motors, sensors, noise, friction, inertia, mechanical com-
ponents, changing environments, etc. play a role in the current and future
state of the system. In such a context, and because the system can not be
easily modularised, modelling, prediction and control of such systems prove
to be complex.

This complexity manifests itself in various manners. For example, in the
combinatorial nature of the control of robot systems which, like in chess, it
proves impossible to plan moves into the distant future. Moreover, robot
systems are also chaotic in the technical sense: start a robot from exactly
the same state and give it exactly the same command, and its trajectories
will deviate from previous observations.

This complexity means that it is impossible for the designer to foresee all

the possible eflects of the interactions between the robot, the task and the



environment. This poses serious difficulties in trying to program robots a

priort and means that robots must learn from experience.

1.1 Motivation

We are interested in designing robotic agents which are capable of solving
tasks and achieving goals autonomously, where autonomy is the capability
of acting independently, as further explained in Section 2.1.1.

Although there is no single accepted definition in the literature of what an
agent is, here it is defined as a physical or simulated entity which is capable ot
acting in an environment autonomously. A more detailed definition ot agent
is also given in Section 2.1.1. In this thesis we sometimes use the term agent
to mean a robot, when we want to emphasise its more abstract properties.

Many issues arise in the design of fully autonomous agents. This the-
sis focuses on one of them, namely adaptation, which is the capability by
which an agent can transform its ‘way of acting’ according to changes 1n its
environment. For example, if a mobile robot is encountering problems in a
navigation task (e.g. bumping into obstacles), then if by changing some of
its properties (e.g. motion speed) it achieves a desired behaviour, we say
that the agent has adapted to the environment. An agent with adaptive

capabilities will be easier to design, as unforseen situations can be dealt by

the agent itself.

As will be discussed later, adaption capabilities can be achieved by hav-
ing agents that learn from experience. Learning is a mechanism by which

the agent adapts to undesired characteristics, such as the one mentioned

previously.



Finally, the main focus in this thesis is learning in artificial robotic sys-
tems, and as it will be seen in the next chapter, for learning methods to be

practically applicable they require generalisation of experience and ‘knowl-

edge’.

1.2 Research question

The main research question addressed in this thesis is:

l Can artificial robotic agents learn generalised entities, known as

| concepts, using raw sensory-motor data and their interaction with |
the environment? If so, is it possible to integrate such concepts in

a multilevel architecture which allows for behaviour learning and

robot control?

More precisely, this question can be decomposed into the following parts:

o (Question Q1: Is it possible to use robotic sensor and motor data to

learn abstract entities called concepts”

e Question Q2: Is it possible to use such concepts as the representation
for learning robotic behaviours? Do such concepts provide any ben-
efits for behaviour learning? In particular, how do they address the

generalisation problems faced in machine learning?

e Question Q3: Is it possible to control autonomous mobile robots using

this notion of concept?



e Question Q4: Is it possible to integrate the notion of concept within
a, multilevel architecture which exploits the definition ot concepts for

learning and control?

1.3 Arguments of the thesis

In order to answer the question in the previous section, this thesis makes the

following arguments:

Question Q1:

e Argument Al: In general, autonomous robots gather information from
the environment using their sensors. The information that robotic sen-
sors provide is characterised by being highly dimensional, noisy and
only partially observable. For example, a mobile robot could use a
wide variety of sensor devices, such as, a sonar, infrared light sensors,
cameras, bumpers, encoders, etc. resulting in a high dimensional sen-
sory input. Also, the measurements could be inaccurate as different
material surfaces, light conditions, frictions, etc. change the response
of sensors. Finally, sensors provide only partial information, i.e. local

and incomplete information about the environment.

It will be demonstrated that, using this type of data and the robot’s in-
teraction with the environment, it is possible to acquire general entities

or concepts, by applying different classification techniques.
Question Q2:

e Argument A2: It will be demonstrated that it is possible to develop a

learning mechanism that exploits concepts as basic representations for

O



learning robotic behaviours.

e Argument A3: It will be shown that behaviour learning using con-
cepts addresses some of the problems related to continuous and high-

dimensional input spaces.
Question Q3:

e Argument A4: It will be argued that concepts can be used for con-
trolling autonomous robots in a variety of different contexts, including

physical or simulated, single or multi-robot.
(Question Q4:

o Argument AbH: It will be argued that a multilevel representation is
needed for solving complex robot tasks such as in multi-robot soccer,

with concepts existing at different levels of description.

e Argument A6: It will be demonstrated that it is possible to replicate

the multilevel architecture for learning behaviours of different complex-
1ty.

The concluding chapter of this thesis explains how these arguments an-

swer the research question.

1.4 Thesis structure

Following is a brief description of the contents in each of the chapters that

appear in this thesis.



Chapter 2 introduces the background work related to this thesis. that is:

robotic architectures and machine learning approaches.

Chapter 3 defines ‘concepts’ as classifications of particular multidimen-
sional observations, and reviews some of the existent methods and
techniques to classify multidimensional data. It introduces the method-
ology of (Q-analysis that will be used, in a novel manner, to define a

new type of concept, known as relational concept.

Chapter 4 integrates the work presented in the previous chapters into a
multilevel architecture for behaviour learning and robot control based

on concept generation.

Chapter 5 experimentally analyses the proposed architecture applied to the
learning and control of a robot in a low-level navigation task. In this

chapter, the architecture exploits the usage ot ‘generalisation’ concepts.

Chapter 6 gives some experimental results of applying the architecture to
a higher-level strategic ball-passing behaviour. In this chapter, the

architecture exploits the usage of ‘relational’ concepts.

Chapter 7 states the conclusions and the contributions of the research. The

chapter also discusses a number of open questions raised by the re-

search, suggesting various issues for further research.



Chapter 2

Robotics: Architectures and

Learning

This chapter presents a critical review of the literature related to this disser-
tation, identifying some open questions. Some of these are the focus of our
research, and are addressed in the following chapters.

Section 2.1 presents a general introduction to the field of intelligent agents
and robots. From this it is identified that adaptability and learning are key
characteristics for building flexible and autonomous agents.

Section 2.2 presents the most common robotic architectures, then dis-
cusses their limitations, benefits and suitability for supporting adaptability
and learning.

Section 2.3 presents the literature related to learning and adaptability
in artificial systems. It presents reinforcement learning in greater detail as
this is the context for the learning architecture presented in the following

chapters.

Section 2.4 discusses issues that complicate the practical application of

3



machine learning techniques on robotic systems.

Section 2.5 presents some conclusions drawn from the literature review.

stating the issues identified for research in this thesis.

2.1 Intelligent agents and robots

T'his section providing a general definition of autonomous robots or agents,

and describes their most important characteristics.

2.1.1 Basic definitions

This thesis defines an agent following the definitions in [Jennings et al., 1998,
Wooldridge and Jennings, 1995] as an artificial entity, which possesses char-
acteristics such as: autonomy, social ability, pro-activity and real-time actu-
atton. To this general definition of agent, we add the characteristic of embod-
iment |Chrisley and Ziemke, 2002, Steels, 1995¢| to define what we consider
to be an autonomous robot. Thus, an autonomous robot i1s an embodied
agent.
Before further describing the characteristics that define autonomous robots,

it is necessary to remark that, many of the definitions such as autonomy, em-

bodiment, and agency are not ‘universal’, and different authors define them

differently. We have used the descriptions that best suit the purposes of this

thesis, which are following:

e Autonomy [Steels, 1995b, Steels, 1995a] describe intelligent and au-

tonomous agents from a biological perspective. From this perspective,

it is possible to differentiate between automaticity (acting as a stand-



alone system, automatic) and autonomy (capability of forming and
adapting its principles of behaviour, autonomous). For example, an
automatic system would be one capable of flying a plane, given a prior
control strategy (how to fly) and the necessary information to apply the
given control (flying path). An autonomous plane would be one capa-
ble of changing its prior knowledge in order achieve some internal goals
(e.g. changing its flying path or even its flying strategy). As we can
see from this example, there are situations in which autonomy needs to
be constrained in order to maintain the necessary safety requirements.
This thesis supports the view, in which an agent is autonomous if it can
adapt its behaviours so that it satisfies some goals. For this definition

of autonomy, adaptive behaviour is a key element.

Social ability an agent is said to have social abilities if it is capa-
ble of interacting with other agents or humans, so that, the result ot
this interaction i1s to maximise collective benefit rather than individual

benefit. Social ability has been studied in the context of Multi-Agent
Systems (MAS) [Weiss, 1999, Jennings et al., 1998|, in which multiple

agents must cooperate, coordinate and negotiate in order to achieve
and maximise collective benefit. In [Cao et al., 1997] a comprehensive
critical review of cooperative mobile robotics is presented, revealing the

main issues related to cooperative or team action.

Real time actuation an agent acts in real-time if its actuation achieves
control of its behaviour in a timely manner. That is, the agent is capa-
ble of reacting to changes in the environment as fast as these happen.

For example, a robot with a real-time vision system would be one that

10



1s capable of sensing the movements and changes that occur in its en-

vironment.

e Pro-activeness an agent is pro-active if it exhibits goal directed be-
haviour, rather than purely reacting to the stimuli perceived from the
environment [Wooldridge and Jennings, 1995]. This characteristic is
present in agents that possess deliberative capabilities (i.e. for plan-
ning and predicting future situations), and use them to actively select

the appropriate actions to take, without need for any environmental

stimulus to occur.

e Embodied embodiment makes reference to robots which have some
hardware implementation (physical bodies) or some software simula-
tions of it, and that are situated in an environment with which they
interact. Embodied robotics, embodied artificial intelligence and sut-
uated cognition have emphasised that intelligence is not an indepen-

dent capability of the agent, but that it is related to the interaction
between the agent and the environment [Chrisley and Ziemke, 2002,
Pfeifer and Scheier, 2001, Steels, 1995¢|. This view of intelligence high-
lights the role that the ‘body’ and the sensory-motor capabilities of the

intelligent agent play in cognition.

2.1.2 Characteristics of robotic systems

The following are some of the characteristics of robotic systems that com-
plicate their control, and which must be taken into account when design-

ing robots. These characteristics are described in any introductory text on

robotics, such as [Nehmzow, 2003].

11



¢ Sensor and motor noise sensors and motors are subjected to certain
amount of inaccuracy or error in their readings or actuation due to
noise. Simulations of physical robots and environments usually add

random noise to make simulations more realistic.

e Stochastic environments environments are stochastic. Unlike in the
game of Chess, where every action changes the board configuration in
a deterministic manner, the effects of a robot’s actions are stochastic

and depend on the robot-environment interaction.

¢ Dynamic environments environments have dynamic properties, i.e.,
even if the agent does not perform any action, the environment may
change. Changes can be caused by other agents sharing the same envi-
ronment. For example, in a soccer game, if a player does not act, the

game keeps changing as other players keep acting.

e Partial observability robots can only perceive the environment par-
tially, there are areas in the environment which their sensors can not
access, usually due to sensor-range constrains. For example, a robot
soccer player may not perceive where the ball is, as it may be obscured

by another player in the field.

These characteristics complicate robotic control, and as will be shown
in the next section, robotic architectures need to take them into account in

order to produce their control regimes.
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2.2 Robot architectures

The selection of an appropriate architecture is an important factor in the
design of robotic systems as it provides the system’s structure and style
(Coste-Maniere and Simmons, 2000]. Structure refers to how the system can
be divided into sub-systems and how these interact. Structure is usually
represented by some graphical architectural description, where sub-systems
are represented by boxes and arrows between them to indicate their inter-
action. The style refers to the computational concepts that underlie each
sub-system, for example detailing how each sub-system operates. 1his sec-
tion provides a review of some architectures used to design robots, focusing

on their structure and style characteristics.

Three main architectures have been developed for the design of intel-

ligent robots, namely, deliberative, reactive or behaviour-based and hybrid,

which are described in sections: 2.2.1 to 2.2.3. These sections present the

main characteristics of each architectures, focusing on the following: (i) data

representation, i.e. the way the architecture represents the information it
processes. (ii) Action selection mechanism, i.e. the mechanisms used for
choosing among the possible actions. (iii) Real-time actuation, i.e. whether
the architecture is capable of real-time actuation in dynamic environments
such as robotic environments. (iv) Goal-directed behaviour, i.e. whether the
actions selected are purely stimulus-response or selected to achieve a spec-
ified goal. (v) Architectural structure, i.e., how the architecture is decom-
posed into sub-systems. (vi) Usage of the agent-environment interaction, 1.e.
whether the interaction with the environment is exploited in the control of

the agent. (vii) Applicability of learning, i.e. how learning is applicable to
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each architecture.

Section 2.2.4 provides a general discussion of the weaknesses and strengths

of each of the architectures, based on their characteristics.

2.2.1 Deliberative or symbolic architectures

Deliberative architectures, such as IRMA |[Bratman et al., 1988] sometimes
known also as symbolic, are based on the classic symbolic Al approach, in
which the agent operates sequentially according to three steps, namely sense,

plan and act.

Environment

ASUS
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10V

Symbol Symbol Action
Generation Manipulation Generation

Figure 2-1: General configuration of a deliberative architecture

Figure 2-1 illustrates the general configuration of a deliberative architec-

ture. The three blocks labelled sense, plan and act are described following.

1. Sense the agent observes its environment, and computes a set of sym-
bols and expressions that represent the state of the environment (e.g.
a set of objects in the environment and their positions) and some of

the agent’s internal variables (e.g. the task to carry out).
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2. Plan the agent uses the previous expressions and a prior: defined mod-

els, which provide information of the robot-environment interaction. to

compute plans for achieving the task’s goal.

3. Act the agent executes the plan.

Deliberative approaches are based on the generation and manipulation
of symbols and expressions, as captured by the Physical Symbol System
Hypothesis [Newell and Simon, 1976]. The hypothesis states:

“The Physical Symbol System Hypothesis: A physical symbol sys-

tem has the necessary and sufficient means for general intelligent

action”.

This hypothesis says that ‘general intelligent action’ can be obtained by
using physical symbol systems. These systems comprise collections of three
elements, namely symbols, expressions and processes. Symbols are represen-
tations of physical patterns that obey physical laws and can be engineered
e.g. ‘some physical objects’. Some of these symbols can be instantiated e.g.
‘physical objects observable at a particular point in time’. Instantiated sym-
bols form ezpressions that indicate the relation between these symbols, e.g.
‘Physical objects being near to each other’. Processes are operations that
create, modity, reproduce and destroy expressions. Then, a physical symbol
system is a machine that creates and modifies expressions through time.

General purpose computers and robots are examples of physical symbol
systems. Robots can compute symbolic expressions which represent, for ex-

ample, the state of the environment they are observing at a point in time.
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Then, they can use planners (explained below) to modity these expressions,
so that they achieve a desired state known as the goal state.

Planning |Georgeff, 1987] is the main mechanism used to reason in the de-
liberative approaches. Planners like STRIPS [Fikes and Nilson, 1971], take
a symbolic description of the world and of the desired goal state, and they
possess a set of action descriptions (operators), expressed as pre- and post-
conditions, which they use to compute plans, using some kind of heuristics;
for example, means-ends analysis, which evaluates post-conditions of actions

(what will happen after the action is executed) against the goal.

Data representation

Deliberative architectures are characterised by the usage of symbolic expres-

sions that represent the environment, the robot’s actions and the interactions
among these two. In order to generate this kind of representations the agent
must incorporate the means to transform its sensory information into ab-
stract symbolic expressions. Usually, the symbolic expressions used by the
agent are pre-defined by the designer. Defining abstract symbols in this man-
ner incurs in the well known problem of symbol grounding |[Harnad, 1990,
which refers to how the agent can relate the defined abstract symbols to the

concrete information it possesses. In other words, given the defined symbols,

how can these be instantiated using sensor information?

Action selection mechanism

Deliberative architectures use planning techniques as their action selection

mechanism. Planning is used to operate on the symbolic expressions and
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elaborate plans, which will dictate the agent’s behaviour.

Real-time actuation

Planning is a computationally-intensive, hence a time-consuming task; there-
fore it proves inappropriate for real-time actuation where actions must be
selected rapidly. Moreover, the dynamics and uncertainty of robotic environ-
ments pose greater difliculties, as plans need to be constantly updated and

re-evaluated to remain sound with the current state of the environment.

Goal-directed behaviour

Deliberative architectures are goal-directed, as the plans are computed for
the goal to be achieved. Moreover, these architectures do not need stimuli

to produce actions.

Architectural structure

Deliberative architectures are decomposed functionally: this means that their
structure follows from the functional decomposition of, first sensing, then
planning and finally acting (see Figure 2-1). This functional decomposition
does not allow the implementation of different parallel processes to solve the

task as the sequential order of sense, plan and act must be retained.

Usage of the agent-environment interaction

Deliberative architectures are provided with a prior: models of the agent
interaction with the environment and use these models to predict the out-

come of actions in the future. This is the reason why uncertainty becomes a
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problem for the deliberative approach as it can not be modelled a prior.

Applicability of learning

Learning has been exploited in deliberative architectures, for example in
learning plans from experience |Carbonell, 1983| or refining planning opera-

tors |[Carbonell and Gil, 1990].

2.2.2 Reactive or behaviour-based architectures

Reactive architectures, such as: subsumption [Brooks, 1985}, situated au-
tomata |Rosenschein and Kaelbling, 1995, Kaelbling and Rosenschein, 1990,
Rosenschein and Kaelbling, 1986|, motor schemas [Arkin, 1989, Arkin, 1987],
also known as stimulus-response, embodied or behaviour-based architectures
were introduced to overcome the difficulties of applying deliberative archi-
tectures in dynamic, complex and uncertain systems, such as robots in their
environment.

For deliberative architectures, symbolic expressions are essential for in-
telligent actuation; in the reactive approach, symbolic representations are
eliminated. Reactive architectures are usually defined using a collection of
behaviours or behaviour network as basic representation elements. Stimuli
sensed from the environment are directly introduced into the behaviour net-
work which produce a set of actions that are executed in the environment.
Figure 2.2(a) illustrates the general configuration of a reactive architecture.
A behaviour |Arkin, 1998| is defined as a partial mapping between stimul
and responses. Stimuli usually relate to the robot’s sensory information,

while responses relate to the robot’s actions. For example, detecting an ob-
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stacle is a stimulus, while the corresponding response could be turning to
avoid it. Stimulus-response mappings are usually implemented using if-then
rules. Out of all the collection of behaviours, at any point in time only a
sub-set of them are selected for actuation. The mechanism for selecting the
appropriate sub-set of behaviours is known as behaviour arbitration. Reac-
tive architectures are also known as embodied architectures as the robot’s

behaviour is the result of the interaction between the robot and the environ-

ment [Pfeifer and Scheier, 2001, Steels, 1995¢|.
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(a) Configuration of a reactive architecture = (b) Brooks’ Subsumption architecture

Figure 2-2: Reactive architecture

One of the first robots based on the reactive architecture was introduced
by Grey Walter {Walter, 1953|; the “Machina speculatrix” was a simple au-
tonomous mobile robot, which used a hardware electronic circuit for its con-
trol. Light-following, battery-recharging and object-avoidance, were some of
its possible behaviours. One of the most inte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>