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ABSTRACT 

Three experiments investigated the effect of long-chain polyunsaturated fatty acid (PUFA) 

and vitamin E supplementation of ewes upon lamb vigour and performance. In 

Experiment One, four diets were fed to 48 ewes in a two-by-two factorial design. Each 

diet contained either fish oil (high in C20:5n-3 and C22:6n-3) or Megalac® (control fat, 

CI6:0) and a basal (50 mglkg) or supranutritional (500 mglkg) concentration of vitamin E. 

Fish oil supplementation significantly increased ewe gestation length, deposition of 

C22:6n-3 in lamb brain tissue and neonatal lamb vigour. It also had significant detrimental 

effects upon milk composition and lamb growth. Vitamin E supplementation of the ewe 

increased the concentration of the vitamin in lamb brain and muscle tissue, and improved 

lamb birthweight. Within Experiment Two, three treatment diets based on algae (high in 

C22:6n-3), linseed (high in CI8:3n-3) or Megalac® were fed to sixty pregnant ewes. After 

parturiti.on, thirty ewes were changed onto diets containing either linseed or Megalac®. 

Gestation length and brain C22:6n-3 content were unaffected by diet, although lamb vigour 

was improved by maternal PUF A supplementation. The use of strategic supplementation 

abrogated the effects of PUFA supplementation upon lamb growth rate. Nevertheless, 

significant effects of algal supplementation were observed upon milk composition after a 

28-day change-over period. Experiment Three employed three diets, each containing 

either fish oil or Megalac® plus basal or supranutritional vitamin E, followed by Megalac® 

supplementation during lactation. Gestation length and lamb behaviour were unaffected by 

treatment diet. Differences in milk composition were observed 28 days after the diet 

change. Long-chain PUF A supplementation of the pregnant ewe appears to improve 

neonatal lamb vigour, although effects upon milk composition cannot be negated by 

changing the dietary fat source during lactation. The vitamin E status of the neonatal lamb 

may be manipulated by maternal supplementation. 
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1. LITERATURE REVIEW 

1.1 INTRODUCTION 

Four million lambs are estimated to die during the neonatal period on hill and upland farms 

each year in the UK, representing a substantial financial loss to the sheep industry (Merrell, 

1998). A major factor contributing to this high mortality rate is hypothermia due to 

delayed suckling and exhaustion of brown fat reserves (Slee, 1981; Singer, 1998). Both 

neonatal birthweight and vigour are positively correlated to a reduced rate of neonatal 

mortality (Jean and Chiang, 1999; Tuchsherer et al., 2000). Standing and suckling as soon 

as possible after birth is therefore imperative to facilitate the ingestion of colostrum and 

ensure maximal lamb survival (O'Connor and Lawrence, 1992). 

Mammalian brain and nervous tissue contains high concentrations of the long-chain 

polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (C22:6n-3) and arachidonic 

acid (C20:4n-6; Uauy et al., 2000). An optimum supply of C22:6n-3 is essential for the 

correct formation and development of brain tissue in the foetal and neonatal animal, 

deficiencies being associated with impaired cognitive development and visual acuity 

(Koletzko, 1992). However, there is no preformed source of either C20:4n-6 or C22:6n-3 

within normal commercial ewe diets, and these fatty acids must be endogenously 

synthesised from their precursors (linoleic acid: CI8:2n-6; and a-linolenic acid: CI8:3n-3). 

This process of elongation and desaturation has been demonstrated in several species 

(Arbuckle and Innis, 1992; Su et al., 1999; Uauy et al., 2000), although the efficiency of 

this mechanism in the ruminant has been debated by Voigt and Hagemeister (2001). The 

conversion of dietary CI8:3n-3 to C22:6n-3 has been reported in ruminants by Wachira et 

al. (2002). However, given the increased demand for deposition into foetal tissues during 

pregnancy, it is not known whether this mechanism is effective in the pregnant ewe. It 
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may therefore be suggested that the diminished neonatal lamb vigour and increased levels 

of lamb mortality observed in extensive livestock systems may result from sub-clinical 

PUF A deficiency in the ewe. 

Vitamin E (a-tocopherol) plays an essential role as a cellular antioxidant preventing the 

peroxidation of unsaturated fatty acids and scavenging free radicals within the cell (Wang 

and Quinn, 1999). Studies by Merrell (1998) and Kott et al. (1983) have indicated that 

feeding supranutritional dietary concentrations of vitamin E to ewes is associated with 

improved neonatal vigour or reduced lamb mortality. Work published by Mino and 

Nishino (1973), Njeru et al. (1994), and Leger et al. (1998) concentrated on the 

relationship between maternal and neonatal plasma concentrations as the principal 

indicator of vitamin E status and concluded that low plasma concentrations in the neonate 

are indicative of negligible placental transfer. Consequently it is suggested that pregnant 

ewes may be being fed sub-optimal levels of vitamin E and that neonatal ruminants are 

deficient in the vitamin as a result of low placental transfer from dam to offspring. 

The objectives of the current study were to investigate the effects of long-chain PUF A and 

vitamin E supplementation of ewes on lamb vigour and performance. 
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1.2. FATTY ACIDS 

1.2.1. Fatty acid nomenclature and classification 

1.2.1.1. Definitions of lipids and fatty acids 

Lipids are organic compounds that are insoluble in water but generally soluble in organic 

solvents (Fennema, 1996; Figure 1.1). This definition encompasses many compounds, 

including tocopherols, carotenoids and steroids; however, in this review it will serve to 

refer to fatty acids and their associated derivatives. The IUPAC-IUB Commission on 

Biochemical Nomenclature (1976) defines a fatty acid as an aliphatic monocarboxylic acid 

that can be liberated by hydrolysis from naturally occurring fats and oils. A fatty acid 

therefore consists of a hydrocarbon chain with a carboxylic acid group at one end. Fatty 

acids may also contain other functional groups, including hydroxy, keto, or epoxy groups 

or cyclopropane rings (Brondz, 2002). 

1.2.1.2. Nomenclature of fatty acids 

Fatty acids may be classified by four different systems: trivial names (e.g. linoleic acid), 

IUPAC names (e.g. 9,12-octadecanoic acid), carboxyl-reference names (e.g. CI8:2L\9,12) 

and omega-reference names (e.g. C18:2n-6; Mead et ai., 1986). The latter two 

classification methods make use of formulas differentiating fatty acids according to the 

number of carbon atoms in the acyl chain and the number and position of their double 

bonds (Koletzko, 1992). Within the omega-reference system, the number after the "C" and 

before the colon represents the number of carbon atoms in the acyl chain and the number 

after the colon indicates the number of double bonds (Calder, 2001; Broadhurst et ai., 

2002). The position of the terminal double bond (the bond closest to the methyl end) in 

unsaturated fatty acids is denoted by the number after the "n-", the number of carbon atoms 

between the terminal double bond and the omega carbon atom (Koletzko, 1992). For 
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example, CI8:3n-3 has 18 carbon atoms in the acyl chain (CI8), three double bonds 

(CI8:3) and is an omega-3 fatty acid (n-3). 

1.2.1.3. Fatty acid isomerism 

Modifications in the structure of the hydrocarbon chain give rise to fatty acid isomers with 

distinctly different properties despite their identical shorthand classification. Positional 

isomerism occurs when two fatty acids have the same number of carbon atoms and double 

bonds, but the double bonds are located on different carbon atoms, e.g. the double bond of 

oleic acid (C 18: 1 n-9) is located on a different carbon from that of trans-vaccenic acid 

(C 18: In-7; I.S.E.O, 2002). Geometric isomerism arises from a change in the configuration 

of the hydrogen atoms within double bonds (I.S.E.O., 2002). Most fatty acids found in 

humans and animals have cis double bonds: the cis configuration occurring when the 

hydrogen atoms at either side of the double bond are located on the same side of the 

molecule (Fennema, 1996). Trans double bonds occur when the hydrogen atoms are on 

opposite sides of the acyl chain; these fatty acids are commonly found in bacterial lipids 

(Chesworth et al., 1998). 

1.2.1.4. Fatty acid classification 

Saturated fatty acids contain no double bonds in the carbon chain (e.g. CI8:0, stearic acid), 

whereas unsaturated fatty acids have one or more double bonds (e.g. CI8:3n-3; Calder, 

2001). Fatty acids with one double bond (e.g. CI8:1n-9) are termed monoenoic; fatty 

acids with more than one double bond are polyenoic (e.g. C20:5n-3, eicosapentaenoic acid; 

Berg Schmidt et al., 2001; Calder, 2001; Table 1.1). Branched-chain, hydroxy- and cyclic 

fatty acids also occur in many microorganisms and some plant lipids (Chesworth et al., 

1998). 
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1.2.1.5. Saturated fatty acids 

Saturated fatty acids have the chemical formula H(CH2)n-COOH, where n denotes the 

number of carbons in the acyl chain, ranging from 0-40 (Brondz, 2002). Most saturated 

fatty acids have an even number of carbon atoms in the acyl chain (Abayasekara and 

Wathes, 1999). A characteristic feature of saturated fatty acids is the absence of double 

bonds, all carbon-carbon bonds in the acyl chain are single bonds, therefore the molecule 

has a straight chain structure. Most saturated fatty acids are solid at room temperature 

(Calder, 200 I), the melting point increasing with each increment of chain length (Enser, 

1984). The most abundant saturated fatty acid in plant tissues is C16:0 (palmitic acid), this 

fatty acid being contained in many oils and fats as a glyceryl ester (Brondz, 2002). It is 

therefore the predominant fatty acid in ruminant diets (Christie, 2002) and is commonly 

found in animal tissues (Christie, 2003). 

1.2.1.6. Unsaturated fatty acids 

Unsaturated fatty acids may be further differentiated into three principal groups: n-3, n-6 

and n-9, which differ in the position of their terminal double bond (Koletzko, 1992). Fatty 

acids termed n-7, n-ll and n-12 also occur in small quantities within plant and mammalian 

tissues. Monoenoic fatty acids contain a single double bond, often situated at the n-9 

position, and between 10 and 30 carbon atoms (Christie, 2003). The most common 

monoenoic fatty acid is C 18: 1 n-9, found in significant amounts in seed oils including 

sunflower, safflower, olive and canola oil (Leifert et al., 1999) and in animal lipids 

(Chesworth et al., 1998). A significant number of positional isomers of monoenoic fatty 

acids may be found within a single lipid source, for example, C 18: 1 n-12 is found within 

seed oils whereas CI8:1n-7 is ubiquitous within animal and plant lipids (Christie, 2003). 

Monoenoic fatty acids containing less than 18 carbon atoms are liquid at room temperature 

and are more vulnerable to oxidation than saturated fatty acids due to the presence of a 

double bond (Christie, 2003). 
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Table 1.1. Nomenclature and sources offatty acids (Enser, 1984; Calder, 2001 and Brondz, 2002) 
Systemic name Trivial name and notation Sources 

Methanoic 
Ethanoic 
Propanoic 
Butanoic 
Hexanoic 
Octanoic 
Decanoic 
Dodecanoic 
Tetradecanoic 
Cis-9-tetradecenoic 
Hexadecanoic 
9-Hexadecanoic 
Heptadecanoic 
Octadecanoic 
Cis-9-0ctadecanoic 
Trans-9-0ctadecanoic 
Trans-II-Octadecanoic 
9,12-0ctadecadienoic 
9, 12, 15-0ctadecatrienoic 
6,9,12-0ctadecatrienoic 
Eicosanoic 
5,8,II-Eicosatrienoic 
5,8,1 1, 14-Eicosatetraenoic 
5,8, II ,14,17-Eicosapentaenoic 
Docosanoic 
7,10,13,16,I9-Docosapentaenoic 
4,7, 10,13,16, 19-Docosahexaenoic 

Formic (CI:O) 
Acetic (C2:0) 
Propionic (C3:0) 
Butyric (C4:0) 
Caproic (C6:0) 
Caprylic (C8:0) 
Capric (CI0:0) 
Lauric (CI2:0) 
Myristic (CI4:0) 
Myristioleic (14:1) 
Palmitic (CI6:0) 
Palmitoleic (CI6:ln-7) 
Margaric (CI7:0) 
Stearic (CI8:0) 
Oleic (CI8:1n-9) 
Eladic (CI8:1n-9) 
Vaccenic (CI8:1n-7) 
Linoleic (CI8:2n-6) 
a-Linolenic (CI8:3n-3) 
y-Linolenic (CI8:3n-6) 
Arachidic (C20:0) 
Mead (C20:3n-9) 
Arachidonic (C20:4n-6) 
Timnodonic (C20:5n-3) 
Behenic (C22:0) 

De novo synthesis 
De novo synthesis 
De novo synthesis 
De novo synthesis 
De novo synthesis 
De novo synthesis, coconut oil 
De novo synthesis, coconut oil 
De novo synthesis, milk 
De novo synthesis, milk 
De novo synthesis, milk, animal fats, palm oil, fish oil 
Desaturation of palmitic acid, fish oil 
De novo synthesis 
De novo synthesis, milk, animal fats 
Desaturation of stearic acid, milk, animal fat, vegetable oils 

Ruminal biohydrogenation 
Milk, animal fats, vegetable and oilseed oils, green leaves 
Green leaves, vegetable and oilseed oils 
Synthesised from linoleic acid, borage and evening primrose oils 

Synthesised from oleic acid 
Synthesised from linoleic acid, some fish oils 
Synthesised from a-linolenic acid, fish oils, marine algae 

Clupanodonic (C22:5n-3) Synthesised from a-linolenic acid, fish oils, marine algae 
Cervonic (C22:6n-3) Synthesised from a-linolenic acid, fisjI_oils,marine algae 



Polyenoic fatty acids usually contain between 18-24 carbon atoms in the acyl chain and are 

predominantly found in cell membrane phosphatidylglycerols, esterified onto a 

phosphatidylglycerol backbone (Leifert et at., 1999). 

1.2.1.7. Essential fatty acids 

The two 18-carbon unsaturated fatty acids CI8:2n-6 and CI8:3n-3 were identified by Burr 

and Burr (1929) as being essential for growth and normal reproduction in the rat. These 

fatty acids are classified as essential fatty acids (EFAs): endogenous synthesis of these 

fatty acids requires not only an acyl carbon chain containing 18 carbon atoms but also a 

specific desaturase enzyme which is lacking in humans and animals (Knipp et al., 1999; 

Innis, 2000). Consequently, a preformed source of these fatty acids must be included in 

the ruminant diet (Leifert et al., 1999; Czaudema et at., 2001; Ikemoto et at., 2001). The 

EFAs CI8:2n-6 and CI8:3n-3 are precursors for conditionally essential long-chain PUFAs 

C20:4n-6, C20:5n-3 and C22:6n-3 (Koletzko, 1992). 

Considerable quantities of CI8:2n-6 are stored in adipose tissue and may be mobilised in 

times of restricted dietary supply in the ruminant (Homstra et al., 1995). Conversely, 

CI8:3n-3 and its derived long-chain PUFAs are not stored in significant amounts in body 

fat under normal dietary conditions (Homstra et al., 1995), therefore it is not possible to 

supplement a sub-optimal dietary supply by mobilization of adipose tissue. However, it is 

possible to supplement the concentrations of CI8:3n-3, C20:5n-3 and C22:6n-3 in adipose 

tissue of ruminants by feeding high concentrations of linseed or fish oil (Wachira et al., 

2002). Symptoms of CI8:2n-6 deficiency include scaly dry skin lesions and growth 

retardation (Makrides et al., 1996). A deficiency in CI8:3n-3 is manifested in mammals as 

alopecia, loss of visual acuity and neurologic problems (Makrides et al., 1996). Both 

syndromes are reversible given appropriate supplementation (Makrides et al., 1996). 
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A sub-optimal EF A supply will eventually result in endogenous synthesis of surrogate fatty 

acids that are not present under normal conditions (Homstra et al., 1995). The 

biosynthesis of mead acid (C20:3n-9) from CI8:1n-9 is inhibited by endogenously derived 

long-chain PUF As (Homstra et al., 1995). Therefore increased concentrations of this fatty 

acid indicate that animals are deficient in both essential and derived long-chain PUF As 

(Leifert et al., 1999). Neonatal lambs often have relatively high concentrations of C20:3n-

9 within plasma, thought to indicate a low transfer rate of EFAs across the placenta (Noble 

et al., 1982). 

1.2.1.8. Conjugated fatty acids 

Possibly the most important conjugated fatty acid is conjugated linoleic acid (CLA), a term 

used to describe a mixture of positional and geometric isomers of C 18:2n-6 (Chouinard et 

al., 1999; Bessa et al., 2000; Donovan et al., 2000). These fatty acids were first identified 

by Kepler et al. (1966) as intermediates in the biohydrogenation of C 18:2n-6 and are found 

mainly in ruminant body fluids and tissues (Chouinard et al., 1999; Clegg et al., 2001; 

Voigt and Hagemeister, 2001). In contrast to unsaturated fatty acids which have one or 

more methyl groups between each double bond (methylene-interrupted double bond 

system), conjugated fatty acids (e.g. cis-9, trans-II CI8:2) have double bonds separated by 

a single carbon-carbon bond (Bessa et al., 2000). The predominant and most biologically 

active isomer ofCLA is cis-9, trans-II C18:2 (Bessa et al., 2000; Sergeil et al., 2001). A 

significant dietary role for CLA has been discovered in the prevention of human diseases 

including atherosclerosis, cancer, diabetes and cardiovascular conditions (Clegg et al., 

2001; Czaudema et al., 2001; Sergeil et al., 2001). Consequently, a significant amount of 

research has been directed at increasing the CLA content of ruminant products for human 

consumption (Voigt and Hagemeister, 200 I). 
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1.2.1.9. Lipid Compounds 

The predominant lipid compounds in animal and plant tissues are the triacylglycerols and 

phosphatidylglycerols (Enser, 1984). Triacylglycerol molecules consist of a glycerol 

molecule with fatty acids esterified onto each of the three hydroxyl groups (Christie, 

2002). These are classified as simple lipids yielding two hydrolysis products: glycerol and 

fatty acids (Bruss, 1997). Within ruminant tissues, triacylglycerols account for up to 95 

g/kg of the lipids present (Enser, 1984). Different fatty acids may be esterified onto each 

of the three hydroxyl groups in ruminant triacylglycerols (sn-l, -2 and -3), subject to 

alteration by the organ of synthesis and the enzyme catalysing the esterification (Enser, 

1984). 

Most phosphatidylglycerols comprise one glycerol molecule in conjunction with two 

esterified fatty acids and one phosphate group (Enser, 1984). A substituent group (e.g. 

choline, serine or ethanolamine) may be further linked to the phosphate of 

phosphatidylglycerols (Chesworth et aI., 1998). Consequently they are classified as 

complex lipids, producing three or more compounds under hydrolysis (Christie, 2002). 

Phosphatidylglycerols comprise approximately 0.5-3.0 % (w/w) of ruminant tissue (Enser, 

1984). The predominant phosphatidylglycerol compounds within animal tissue are 

phosphatidylcholine (lecithin) and phosphatidylethanolamine (cephalin; Enser, 1984). 

These compounds are present as vital components of cell membranes (Chesworth et al., 

1998). Again, the fatty acid composition of phosphatidylglycerols varies and has 

significant effects on lipid function. For example, phosphatidylethanolamine is high in 

C20:4n-6 and is a principal fatty acid found within lipid bilayers in cell membranes, 

whereas CI8:2n-6 predominates in phosphatidylcholine, which plays an essential role in 

nerve cell signal transduction (Enser, 1984). In contrast to triacylglycerols, specific fatty 

acid types are found at each sn position with principally saturated fatty acids in the sn-l 

10 



position and unsaturated fatty acids on sn-2 (Enser, 1984). Certain fatty acid pairs are also 

found in phosphatidylglycerols, e.g. C 16:0/C 18:2n-6 and C 18:0/C20:4n-6 (Enser, 1984). 

1.2.2. Fatty acid sources within the ruminant diet 

The diet of domesticated ruminants usually contains approximately 30 glkg lipid 

(Chilliard, 1993), the fatty acids supplied to animal tissues originating from either 

exogenous dietary sources or endogenous synthesis. Dietary fatty acid sources may be of 

plant or animal origin: many plants contain high concentrations of fatty acids within the 

seed, grain or leaves, and animal by-products provide both essential and non-essential fatty 

acids (Palmquist, 1984). 

1.2.2.1. Forages 

Grass is the most significant fatty acid source in the diet of the grazing ruminant. Fresh 

grass contains 3-4 % fatty acids (Ashes et al., 1992), which are concentrated in the 

chloroplasts at 22 g lipid! 1 00 g tissue (Sargent, 1997). The predominant fatty acid in grass 

is CI8:3n-3 (Moore and Christie 1984). At 55-65 % of total fatty acids (w/w), this fatty 

acid is predominantly found in chloroplast membranes (Sinclair et al., 2002) with highest 

concentrations being observed during spring and autumn (Dewhurst and Scollan, 1997; 

Chilliard et al., 2001b). Relatively high quantities ofCI8:2n-6 are also found in grass, in 

conjunction with small amounts of CI8:1n-9 (Ashes et al., 1992; Homstra et al., 1995; 

Leifert et al., 1999). There are small differences in fatty acid composition between grass 

species (Table 1.2), processing grasses to produce hay or silage may also have appreciable 

effects on their fatty acid composition (Dewhurst and Scollan, 1997). 

1.2.2.2. Oilseeds 

Plant seeds such as maize, canola, safflower, sunflower and cottonseed contain high 

concentrations of unsaturated fatty acids within triacylglycerols (Demeyer and Van Nevel, 
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1995). Indeed, plant seed oils are the principal fatty acid source in ruminants fed 

concentrate-based diets. This may be via the inclusion of whole or crushed oilseeds as an 

energy or protein source, or by the inclusion of plant oils specifically to increase the 

dietary fat or energy content. The majority of seed oils contain a significant proportion of 

CI8:2n-6 (Ashes et at., 1992; Leifert et at., 1999; Calder, 2001; Table l.3). By contrast, 

C 18:3n-3 is only found in appreciable quantities in canola and rapeseed oils, where it is 

present in combination with C 18:2n-6, and in linseed (Sargent, 1997). Linseed is the only 

oilseed in which CI8:3n-3 predominates, with an oil content of 400 glkg DM, of which up 

to 50 % of total fatty acids is CI8:3n-3 (Calder, 2001; Voigt and Hagemeister, 2001). 

Cereal grains are not significant sources of fatty acids at approximately 40 g lipid/kg DM 

(AFRC, 1993). However, CI8:2n-6 is the main fatty acid found in cereal grain, and 

animals fed on grain-based diets tend to have increased deposition of n-6 fatty acids in 

body tissues (Enser et at., 1998a). Long-chain PUFAs such as C22:6n-3, C20:5n-3 and 

C20:4n-6 are not found in noteworthy quantities within terrestrial plants, therefore they 

must either be supplied by endogenous synthesis from their EFA precursors, or from 

dietary sources such as marine plants or fish oils. 

1.2.2.3. Marine plants 

Marine algae contain between 10-700 glkg DM lipid (Borowitzka, 1988), including high 

concentrations of n-3 fatty acids (Kitessa et at., 2001d; Broadhurst et at., 2002). Indeed, 

many of the long-chain n-3 PUF As found in fish oils originate from de novo biosynthesis 

within phytoplankton (Sargent and Henderson, 1995). As in the terrestrial plants, lipids are 

stored within the chloroplasts, contributing 10-20 % of the cell weight and being 

influenced by species and season (Sargent and Henderson, 1995). Diatomic and 

eustigmatophytic phytoplankton have high C20:5n-3 contents and low C22:6n-3 
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Table 1.2. Fatty acid com/!..osition of 1(rasses (glkg[atty acids; Dewhurst and Scol/an, 19971 
C16:0 C18:0 C18:1n-9 C18:2n-6 C18:3n-3 Saturates Unsaturates Total fatty acids (g) 

Lolium perenne 209 44 51 132 516 273 709 22.5 
Lolium multiflorum 217 46 53 137 503 282 702 20.8 
Lolium hybrids 212 43 51 143 509 273 710 23.2 
Lotium-Fescue hybrids 200 39 51 135 532 258 725 23.0 
Fescue 201 50 41 116 551 272 713 2l.9 
Cocksfoot 209 31 26 152 532 260 720 19.1 
Timothy 190 43 43 164 513 251 726 2l.8 

Table 1.3. Fatty acid coml!..osition of vegetable oils (g/kg lil!..id; KennellfJ 1996; Chesworth et ai., 1998) 
C16:0 C18:0 C18:1n-9 C18:2n-6 C18:3n-3 Saturates Unsaturates 

Coconut 89 44 56 22 NA 830 70 
Cottonseed 250 30 170 540 NA 290 710 
Linseed 50 30 200 160 550 90 910 

- Maize 126 18 300 543 5 NA NA 
VJ Olive 143 20 653 164 NA NA NA 

Palm Kernal 82 21 133 21 NA NA NA 
Palm 480 40 380 90 NA NA NA 
Rapeseed (high erucic) 30 10 160 140 100 NA NA 
Rapeseed (low erucic) 40 20 560 260 100 NA NA 
Safflower 70 20 90 800 <10 100 900 
Soyabean 80 30 240 580 80 100 900 
Sunflower 60 40 200 660 <10 120 880 

NA = Data not available 



concentrations; conversely, dinoflagellates are high in C22:6n-3 and contain negligible 

amounts of C20:5n-3 (Givens, 1997). The main species of interest with reference to 

animal nutrition, the microalgae Schizochytrium sp., contains up to 250 glkg C22:6n-3 and 

250 glkg docosapentaenoic acid (DPA; C22:5n-6), but only 10 glkg C20:5n-3 (Chilliard et 

al.,200Ia). Algal oils used in animal feed manufacture derive from large-scale microalgae 

production, the algal biomass (whole algal cells which encapsulate long-chain PUFAs) 

containing high concentrations of both n-3 fatty acids and antioxidants (Hind, 1997). 

Research to date has concentrated on the use of algal biomass to enrich meat, milk and 

eggs produced for human consumption with long-chain n-3 PUF As in an attempt to 

address their perceived health benefits (Hind, 1997). 

1.2.2.4. Animal fats and fish oils 

As a corollary of the ban on feeding both tallow and proteins of animal origin (DEFRA, 

2002), fish oil is the principal animal fat source within ruminant diets. Consumer concerns 

exist regarding the potential effects of feeding animal fats to ruminants and the 

sustainability of fish oil production. It is therefore possible that this source will be banned 

from animal diets in the future (Hind, 1997). 

Fish lipids differ from those found in animal tissues due to their high concentration of 

long-chain PUF As, specifically those of the n-3 family, with a total lipid content varying 

from I % (cod) to 24 % (mackerel; Opstvedt, 1984). Fish are classified as "oily" or "non

oily" according to their fatty acid storage organ (Sargent, 1997). Oily fish have a high 

fatty acid content in the muscle tissues (up to 20 % of tissue weight; e.g. mackerel, herring) 

whereas non-oily fish (cod, founder) accumulate fatty acids in the liver (Calder, 2001). 

Furthermore, oily fish tend to feed on zooplankton, whilst larger, non-oily fish consume 

small, zooplanktonivorous fish (Sargent and Henderson, 1995). 
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A manne food-chain hierarchy exists In which zooplanktonivorous fish consume 

zooplankton crustaceans, and in tum these feed upon zooplankton (Sargent, 1997). Given 

the monogastric nature of fish digestion, it is logical to conclude that the high PUF A 

concentrations found within fish lipids originate from marine algae and seaweeds. 

However, variation in fish fatty acid composition compared to that within marine plants 

arises as a result of the ability of zooplankton to synthesise long-chain PUF As not supplied 

by the phytoplankton diet (Sargent, 1997). The distribution of fatty acids within 

zooplankton has a major impact on the PUFA composition of fish species: fish consuming 

zooplankton containing high concentrations of wax esters tend to have increased 

concentrations of C20: 1 n-9 and C22: 1 n-l1, and reduced concentrations of n-3 fatty acids 

(Table 1.4). By contrast, C20:5n-3 and C22:6n-3 are increased and both C20: In-9 and 

C22:ln-ll are reduced in zooplankton containing an appreciable concentration of 

triacylglycerols (Sargent, 1997). The high concentrations of long-chain PUF As within fish 

oil are suggested by Sargent and Henderson (1995) to function to maintain the fluidity of 

cell membrane bilayers irrespective of fluctuations in environmental temperature and 

pressure. 

The fatty acid composition of fish oil is further influenced by the concentration of oil 

within the body, dependent on sexual maturity and stage of development (Sargent and 

Henderson, 1995). Although fish can synthesise saturated and monounsaturated fatty acids 

(Ackman, 1982), marine fish appear to have lost the ability to elongate C18 fatty acids to 

C20 and C22 PUFAs although this biological mechanism remains active in freshwater fish 

(Sargent, 1997). Therefore, the catfish Anarchichas lupus has a high C20:5n-3 content 

compared to the cod Gadus morhua (Ackman, 1982). 
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Table 1.4. Fatty acid coml!.osition ofJJ..sh oils (gikg/atty acidsl -- ~- - -

C18:0 C18:1n-9 C18:2n-6 C18:3n-3 C20:5n-3 C22:6n-3 Saturates MODOUDsaturates n-3PUFA 

Salmon flesh (wildt 30 190 10 10 70 100 200 520 240 
Salmon flesh (fannedt 30 130 30 20 70 120 240 430 280 
Tunaoilb 160 140 10 10 60 220 390 200 290 
Herring oil a 10 100 10 10 60 60 210 530 160 
Capelin oil C 10 130 10 10 90 50 170 530 190 
Anchovy oW 40 120 10 10 170 90 280 230 310 
Pilchard oU- 170 90 80 160 
Menhaden oild 29 128 9 6 177 62 270 259 
Atlantic Mackerel oild 12 lIS 151 284 
Commercial fish oil" 30 160 20 20 80 110 230 440 220 

• Sargent (1997) 
b Kitessa et al. (2001) 
C Brybni et al. (2002) 
d Givens (1997) 
" Keady and Mayne (1999b) 

-0'1 



Functions of fatty acids 

Saturated fatty acids have a significant role to playas an energy store within adipose tissue 

(Demeyer and Doreau, 1999; section 1.2.4.10.). By contrast, long-chain PUFAs have a 

number of other significant functions within ruminant tissues. 

1.2.3.1. Role of fatty acids within cell membranes 

The n-3 and n-6 fatty acids are vital for the maintenance and function of cell structural 

membranes (Craig-Schmidt et al., 1996; Ikemoto et al., 2001). The fatty acid composition 

of the phosphatidylglycerols in the lipid bilayer determines the physical and chemical 

properties of the membrane (Innis, 2000). There is a preferential incorporation of long

chain PUF As into phosphatidylglycerols, the level of incorporation having a significant 

effect upon membrane fluidity, metabolite permeability and enzyme activity (Koletzko, 

1992; Sawosz et al., 2001). Membrane fluidity is increased by the degree of fatty acid 

unsaturation and the concentrations of short-chain and cis-fatty acids present (Conn et al. 

1987). The incorporation of long-chain PUF As into retinal and neural cell membranes 

increases membrane fluidity but predisposes the membranes to oxidative damage by 

reactive oxygen and nitrogen species (McMurray and Rice, 1982). 

1.2.3.2. Role of fatty acids within nervous tissue 

The promotion of optimal membrane fluidity conferred by long-chain PUF As is essential 

in mammalian nervous and visual organs. Consequently, a significant proportion of 

ruminant neural tissue dry matter (DM) consists of endogenously elongated and 

de saturated or preformed dietary long-chain PUFAs (Goustard-Langelier et al., 1999; 

Uauy et al., 2000; Williard et al., 2001). These fatty acids are concentrated in 

synaptosomal membranes and retinal photoreceptors (Koletzko, 1992). Indeed, the brain 

and retina are unique in their specificity for long-chain PUF A deposition in cell 

membranes (Crawford et al., 1997). Brain development in the foetal ruminant consis 
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neuronal multiplication, formation of synaptosomal contacts between individual neurones 

and myelinisation of nerve cells (Salvati et al., 1999). The two preliminary processes 

require significant amounts of long-chain PUF A for membrane deposition (Arbuckle and 

Innis, 1992). Long-chain PUF As are also involved in the synthesis of myelin (Christie, 

1978) required for optimal nerve and brain function, and with compounds such as 

gangliosides and sphingolipids which are related to cognitive function (Knipp et al., 1999). 

The principal fatty acid contained in synaptic end sites is C22:6n-3, leading Rooke et al. 

(2001a; 2001b) to suggest that it may be essential for synaptosome formation. Long-chain 

PUF A deficiency originating from an absence of fatty acid precursors is manifested as 

hypomyelination, by contrast, increasing the fatty acid supply up-regulates genes 

responsible for myelin production (Salvati et al., 1999). Consequently, fatty acid supply 

may have regulatory effects on cerebral and visual development, and deficiencies act as 

limiting factors in brain function (Koletzko, 1992). 

Photoreceptor cells within the ruminant retina are responsible for transforming signals 

from absorbed light into electrical messages via stacks of flattened disks, each containing 

an excitable, fluid membrane (Koletzko, 1992). The fluidity of this membrane is 

maintained by high concentrations of phosphatidylglycerols (Koletzko, 1992), each 

rhodopsin molecule surrounded by 60 phosphatidylglycerols enriched with C22:6n-3 at up 

to 60 % of total fatty acids (Weisinger et al., 1996; Crawford et al., 1997). The high 

concentrations of C22:6n-3 in photoreceptors require specific mechanisms for C22:6n-3 

deposition, which are significantly affected by deficiencies in long-chain PUF As 

(Koletzko, 1992). Alterations in electroretinograms as a result of EF A deficiency have 

been observed before the onset of clinical deficiency symptoms in rats, and these 

symptoms rapidly reversed by fatty acid supplementation (Koletzko, 1992). 
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1.2.3.3. Fatty acids and prostaglandin synthesis 

Within the ruminant, the long-chain PUFAs CI8:2n-6, CI8:3n-3, dihomo-y-CI8:2n-6, 

C20:4n-6 and C20:5n-3 are direct or indirect precursors for the bioactive eicosanoid 

molecules known as prostaglandins, thromboxanes and leukotrienes (Figure 1.2; Lands, 

1982). Broadly similar to hormones, eicosanoids may exert effects upon any cell 

possessing the appropriate receptor (O'Neil, 1994). Although they are primarily autocrine 

or paracrine in action and primarily exert local effects, they may also elicit an endocrine 

effect via the circulation or lymph system (Mead et al., 1986). Prostaglandins are 

responsible for the regulation of many cellular functions (Wainwright, 2002), including the 

duration and intensity of inflammatory and immune responses (Calder, 2001). They are 

also associated with pregnancy, gastrointestinal and kidney function and inflammation 

(James and Cleland, 2000). Structurally, they consist of fatty acid molecules containing a 

cyclopentane ring (prostaglandins) or tetrahydropyran system (thromboxanes) within the 

acyl chain (Brondz, 2002). 

Bioactive dienoic prostaglandins, including thromboxane A2, prostaglandin E2 (PGE2) and 

four different leukotrienes (leukotrienes B4, C4, D4 and E4) are synthesised from the 

principal eicosanoid precursor, C20:4n-6 (Abayasekara and Wathes, 1999). The rate

limiting release of C20:4n-6 from the sn-2 position of phosphatidyglycerols is regulated by 

an C20:4n-6-selective acyl-CoA synthase and achieved via cytosolic phospholipase A2 

(O'Neill, 1994) and specific lipases (Hansen et al., 1999). Free C20:4n-6 is then converted 

to prostaglandin G2 (PGG2) by cyclooxygenase (also known as PGH synthase), which 

reacts with hydroperoxides to produce the endoperoxide intermediates PGG2 and 

prostaglandin H2 (PGH2; Hansen et al., 1997). Prostaglandin synthetase enzymes catalyse 

the formation of the n-6-derived prostaglandins and thromboxanes from PGH2 (O'Neil, 

1994). Leukotrienes are produced via the reaction of C20:4n-6 with lipoxygenase 

(O'Neill, 1994). 
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Prostaglandins derived from n-6 fatty acids act as cardio-agonists, promoting blood vessel 

constriction and cholesterol accumulation (Hind, 1997). Prostaglandin E2 is pro

inflammatory in action, augmenting pain and oedema by promoting phagocytosis at the 

site of injury (Lands, 1982). Moreover, the stimulatory eicosanoids contained in amniotic 

fluid and associated with muscle contraction at parturition (prostaglandin F 2a, PGE2, 13,14-

dihydro-15-ketoprostaglandin F2a (PGFM) and thromboxane A2) are produced, directly or 

indirectly, from C20:4n-6 (Hansen and Olsen, 1988; Olsen et al., 1990; Hansen et al., 

1999). 

Eicosanoids produced from the n-3 series fatty acids tend to be less biologically active than 

those produced by C20:4n-6 (Abayasekara and Wathes, 1999), and include the inhibitory 

and thrombolytic 3-series prostanoids prostaglandin E3, thromboxane A3 and leukotrienes 

Bs, Cs, Ds and Es (Homstra et al., 1995; Calder, 2001). Prostacyclins, specifically 

prostaglandin 12 and prostaglandin 13 are also produced from C20:5n-3 (Olsen et al., 1992). 

Dietary supplementation with C20:5n-3 reduces the concentration of C20:4n-6 within 

cellular membranes via competitive inhibition, therefore reducing the amount of substrate 

available for prostaglandin synthesis (Calder, 2001). Moreover, it is suggested that 

cyclooxygenase has an equal or greater affinity for n-3 than for n-6 series fatty acids; 

therefore, similar concentrations of C20:5n-3 and C20:4n-6 in the cell will effectively 

inhibit the synthesis of C20:4n-6-derived prostaglandins (Lands, 1982; Hansen and Olsen, 

1988; Fahey et al., 2002). Eicosanoids are not produced directly from C22:6n-3, however, 

Huang and Craig-Schmidt (1996) noted inhibition of n-6 derived prostaglandin synthesis 

with dietary C22:6n-3 supplementation of neonatal piglets. It is suggested that this may 

occur via retroconversion of C22:6n-3 to C20:5n-3, a mechanism which has been 

demonstrated in ruminants by Wachira (1999). 
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Petit et al. (2002) demonstrated that the production of PGFM (13,14-dihydro-15-keto

PGF2a) in dairy cattle was reduced by feeding whole linseed or infusing linseed oil. This 

concurs with the theory that dienoic prostaglandin synthesis is inhibited by n-3 fatty acids. 

Nonetheless, it was hypothesised that this effect was caused by a reduction in the n-6:n-3 

ratio rather than an effect of C20:5n-3 or C22:6n-3 per se. Hansen and Olsen (1988) also 

reported a decrease in C20:4n-6-derived prostaglandins and increase in prostaglandins 

derived from C20:5n-3 in humans fed a diet rich in n-3 fatty acids. 

1.2.4. Digestion, absorption and metabolism of fatty acids in the ruminant 

1.2.4.1. Fatty acid digestion within the rumen 

Ruminal lipid digestion occurs via hydrolysis of lipid compounds followed by 

biohydrogenation of unsaturated fatty acids (Mackie et al., 1991; Figure 1.3). Upon 

entering the rumen, ester bonds within dietary lipids are rapidly hydrolysed by lipase, 

galactosidase and phospholipase enzymes produced by ruminal microorganisms, to their 

constituent free fatty acids and associated compounds (Doreau and Chilliard, 1997a; 

Doreau et ai., 1997; Demeyer and Doreau, 1999). The extent of ruminallipid hydrolysis is 

dependent on a combination of microfloral activity and rumen pH (Doreau and Ferlay, 

1994). Ruminal bacteria are unable to hydrolyse all ester linkages, for example, the 

predominant hydrolysing bacteria Anaerovibrio lipolytica (Doreau et ai., 1997) specifically 

hydrolyses triacylglycerols containing medium or long-chain fatty acids via lipase and 

esterase enzymes (Moore and Christie, 1984). Furthennore, Jenkins (1993) suggest that 

bacteria with non-specific esterase activity may not be able to hydrolyse the ester linkages 

of long-chain PUF As. It has also been suggested that dietary plant lipases may have a 

significant role to play in the hydrolysis of ester bonds (Moore and Christie, 1984). 

however, their activity may be negligible in ruminants (Doreau et ai., 1997). Doreau et ai. 

(1997) reported that lipids are hydrolysed at an efficiency of 85-90 %, of which 30 % is 

executed by protozoa and the remainder via bacteria. 
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1.2.4.2. Biohydrogenation of unsaturated fatty acids 

Following hydrolysis, unesterified fatty acids are adsorbed onto feed particles and 

unsaturated fatty acids biohydrogenated to fonn fatty acids that have a lower degree of 

unsaturation or are saturated (Kennelly, 1996; Demeyer and Doreau, 1999). 

Biohydrogenation may only occur if the fatty acid contains a free carboxyl group, therefore 

lipolysis is a prerequisite for this fonn of digestion (Jenkins, 1993). Biohydrogenation was 

first demonstrated by Reiser (1951) using a mixture of rumina I microorganisms and long

chain fatty acids. The metabolic reason for the conversion of unsaturated fatty acids to 

their saturated derivatives is unknown, but it is suggested to be a protective mechanism 

against the toxic effects of unsaturated fatty acids on rumen microflora (Palmquist, 1984). 

During biohydrogenation, the cis-12 double bonds of CI8:3n-3 and CI8:2n-6 are 

converted to a trans-II unsaturated bond by an isomerisation reaction. The cis-9 bond and 

trans-II bonds are then hydrogenated via reductase enzymes to produce trans-II C 18: I 

and finally, CI8:0, the primary product of rumina I biohydrogenation (Figure 1.4; Kennelly, 

1996; Doreau and Chilliard, 1997a; Gulati et ai., 1999). Two groups of hydrogenating 

bacteria exist in the rumen: group A act upon CI8:2n-6 and CI8:3n-3 to fonn trans-II 

C18:1 and cis-vaccenic acid (cis-II CI8:1) as previously explained. Group B bacteria then 

hydrogenate CI8:I (cis and trans) to C18:0 (Demeyer and Doreau, 1999). 

Biohydrogenation of unsaturated fatty acids is almost complete, with between 70-90 % of 

dietary PUFAs being reduced or saturated (Chilliard, 1993). Therefore, some unsaturated 

fatty acids escape hydrogenation and are presented to the duodenum in their original fonn 

(Jenkins, 1993; Enser et al., I998a; Kitessa et ai., 200Ic). Incomplete hydrogenation of 

CI8:3n-3 and C18:2n-6 results in the production of cis and trans isomers of the CI8 fatty 

acids (Doreau and Chilliard, I997a). Trans-II CI8:I are the predominant isomers of 

C 18: 1 found in the rumen (Demeyer and Doreau, 1999). Conjugated fatty acids are also 
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produced from incomplete biohydrogenation of PUF As (Baumgard et al., 2000). The two 

predominant CLA isomers produced by incomplete biohydrogenation of C 18 :2n-6 are cis-

9,trans-ll CI8:1 and trans-lO,cis-12 C18:1 (Demeyer and Doreau, 1999). 

Biohydrogenation of C18:2n-6 ranges from 70-95 % with values for CI8:3n-3 ranging 

from 85-100 % (Chilliard et al., 2000). Biohydrogenation of C18:2n-6 increases with 

dietary concentration (Cieslak et al., 2001), therefore the proportion that escapes 

hydrogenation remains constant, however, there are no results to indicate that a similar 

relationship exists between C 18:3n-3 intake and hydrogenation (Doreau and Ferlay, 1994). 

Conflicting evidence exists as to whether C20 and C22 fatty acids (specifically C20:5n-3 

and C22:6n-3) are biohydrogenated within the rumen (Doreau et al., 1997; Gulati et al., 

1999; Kitessa et al., 200 1 c). Ashes et al. (1992) hypothesised that a lack of specific 

enzymes prevented the hydrogenation of C20 and C22 fatty acids. Furthermore, Gulati et 

al. (1999) proposed that C20:5n-3 and C22:6n-3 are hydrogenated to a lesser extent than 

CI8:2n-6 and CI8:3n-3, at approximately 10 % hydrogenation with the isomerisation and 

saturation of C20:5n-3 occurring at a greater rate than that of C22:6n-3. In vivo work by 

Cooper et al. (2002) appears to contradict this hypothesis: values ranging from 62-86 % 

and 61-80 % were reported for the biohydrogenation of C20:5n-3 and C22:6n-3 

respectively. Furthermore, extensive biohydrogenation of C20:5n-3 and C22:6n-3 within 

dietary fish oil was reported in sheep by Chikunya et al. (2004) and in cattle by Scollan et 

al. (2001). 

The work of Doreau and Chilliard (1997b) confirmed that long-chain unsaturated oils have 

a significant effect on rumen fermentation with a decrease in cellulolytic and methanogenic 

bacteria, decrease in acetate and increase in propionate production. However, it has been 

hypothesised that the hydrogenation of C20:5n-3 and C22:6n-3 may, in part, be affected by 

the duration of long-chain fatty acid supplementation (Chilliard et al., 2001b). The 
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ruminal ecosystem is subject to long-term adaptive change which may result in an 

increased biohydrogenation of fatty acids derived from dietary fish oils or algae after 

microbial adaptation (Chilliard et al., 2001b). 

Although the diet of the grazing ruminant is relatively high in unsaturated fatty acids, 

ruminant milk and meat products have relatively low PUF A contents as a result of 

biohydrogenation (Gulati et al., 1999; Kitessa et al., 200lc). To significantly increase the 

long-chain PUF A composition of digesta at the duodenum and promote the absorption of 

the fatty acids in their original form, it is therefore necessary to protect them from ruminal 

biohydrogenation (Kennelly, 1996). The development of ruminally inert lipids makes the 

inclusion of high concentrations of unsaturated fatty acids in ruminant diets feasible 

without affecting either the microbial ecosystem or the process of ruminal fermentation 

(Wu et al., 1991; Borsting et al., 1992; Kitessa et al., 2001c). Methods of lipid protection 

include encapsulating the lipid within a protein carrier protected from degradation (Ashes 

et al., 1992); saponifying the fatty acids within a calcium soap (Kennelly, 1996); 

crystallisation of dietary lipids (Chilliard, 1993) or adsorbing fatty acids onto a carrier 

material such as vermiculite (Cooper et al., 2002). Currently, the most effective method of 

protecting fatty acids against rumina I biohydrogenation is the encapsulation of oils within a 

formaldehyde-treated protein coat (Doreau and Chilliard, 1997a). The protein passes 

through the rumen unchanged, thereby protecting the lipid from biohydrogenation, but is 

digested in the abomasum and presents the unsaturated fatty acids for absorption within the 

small intestine (Doreau and Chilliard, 1997a). 

1.2.4.3. Disappearance of fatty acids from the rumen 

A proportion of ingested short-chain fatty acids have been shown to be lost between 

digesta entering the rumen and arriving at the small intestine (Wu and Palmquist, 1991). 

Some disappearance of long-chain PUFAs has also been reported by Wu et al. (1991), the 
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rate of this loss accelerating with increasing dietary fat intake (Doreau and Ferlay, 1994). 

Evidence suggests that short-chain fatty acids may be degraded to volatile fatty acids 

within the rumen, however Jenkins (1993) concluded that long-chain fatty acids were 

unaffected by this mechanism. It is interesting to note that protecting fatty acids from 

rumen degradation does not affect the rate of fatty acid disappearance in the rumen 

(Doreau and Ferley, 1994). Digesta leaving the rumen commonly contains approximately 

100-200 mg lipid/g DM; including 2-20 mg PUFAs, 5-15 mg trans-18:1 fatty acids and 

15-30 mg microbial lipids per 100 mg fatty acids (Doreau et al., 1997; Demeyer and 

Doreau, 1999). 

1.2.4.4. Abomasal fatty acid digestion 

The fatty acid composition of digesta remains relatively constant after passage through the 

omasum and abomasum, the only notable change being the release of fatty acids from 

bacterial and protozoal cells (Moore and Christie, 1984). Fats saponified with calcium 

salts may also disassociate in the abomasum, releasing free fatty acids (Doreau and Ferlay, 

1994). Consequently, a significant increase in the proportion of unsaturated fatty acids in 

digesta is exhibited when animals are fed saponified fat sources (Moore and Christie, 

1984). 

1.2.4.5. Intestinal fatty acid digestion 

The lipid component of digesta entering the small intestine at the duodenum contains a 

high proportion of unesterified saturated fatty acids (Kennelly, 1996) with a variable 

proportion of unsaturated fatty acids originating from microbial cell contents and protected 

fats (Moore and Christie, 1984). These fatty acids are adsorbed onto feed particles 

(Bauchart, 1993), endothelial cells and microbial cells within digesta (Doreau and Ferlay, 

1994). The small intestine is the principal site of fatty acid absorption in ruminants 
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(Jenkins, 1993). The following equation was derived by Doreau and Chilliard (1997a) 

predicting the relationship between duodenal fatty acid flow and fatty acid intake. 

FAD = 0.801 FA! + 9.29 

FAD = Fatty acid flow at duodenum (glkg OM intake) and FAI = Fatty acid intake (glkg 

DM intake). 

When fatty acid intakes exceed 47 glkg DM intake, the duodenal flow of fatty acids is 

lower than the dietary fatty acid intake. Low-fat diets therefore enhance duodenal fatty 

acid flow relative to dietary intake (Demeyer and Doreau, 1999). The proportion of 

unsaturated fatty acids in duodenal digesta may further be increased by the activity of 

intestinal desaturase enzymes (Enser, 1984). This was demonstrated by Kennelly (1996), 

who reported that the ratio of saturated to unsaturated C 18 fatty acids was lower in 

intestinal digesta than in rumen liquor. Moreover, pancreatic lipase enzymes and bile salts 

confer a degree of hydrolytic activity within the small intestine (Bt>rgstrom, 1977; Moore 

and Christie, 1984). Phosphatidylglycerols may also be degraded in the jejunum 

(Bt>rgstrom, 1977), with specific enzymes hydrolysing the ester bonds at position one to 

release saturated fatty acids and at position two to release unsaturated fatty acids (Moore 

and Christie, 1984). 

As fatty acids pass through the small intestine, they are transformed from an insoluble 

particulate phase to a soluble micellar form (Bauchart, 1993; Doreau and Ferlay, 1994). 

The presence of bile and pancreatic acids are essential for optimal fatty acid absorption 

(Moore and Christie, 1984). Bile salts facilitate the interaction between fatty acids, bile 

phosphatidylg1ycerols and water, forming a crystalline lipid solution (Bauchart, 1993). 

Moreover, they inhibit further lipid hydrolysis by preventing lipase enzymes from bin 
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to their substrate (Borgstrom, 1977). Fatty acids are converted into type III amphiphiles, 

polar molecules containing a hydrophilic and hydrophobic component (Brindley, 1984). 

The hydrophobic sections of the amphiphiles cluster together, forming a circular or oblong 

molecule with a hydrophilic surface: a micelle (Brindley, 1984). Fatty acids are thus 

absorbed within a micellar emulsification throughout the jejunum (Doreau and Chilliard, 

1997a; Demeyer and Doreau, 1999). 

1.2.4.6. Intestinal fatty acid absorption 

Approximately 20 % of total fatty acids are absorbed in the upper jejunum into muscosal 

cells (Bauchart, 1993). Lipid compounds absorbed here principally consist of dietary 

unesterified saturated fatty acids and phosphatidylcholine (Moore and Christie, 1984). A 

mixture of dietary unesterified saturated fatty acids, bile acids, phosphatidylcholine, 

lysophosphatidylcholine and endogenous unsaturated fatty acids comprising 60 % of total 

lipid digesta is then absorbed in the middle and lower jejunum, and the remainder absorbed 

before the digesta reaches the ileum (Moore and Christie, 1984; Bauchart, 1993). 

Ruminants fed significant quantities of unsaturated fatty acids via "protected" lipid 

supplements exhibit intestinal lipid digestion similar to that of the monogastric (Enser, 

1984). Moore and Christie (1984) report that the digestive disperal of fatty acids among 

feed particles in the ruminant leads to a more efficient lipid absorption when compared to 

the monogastric. This may also confer increased solubility of fatty acids in conjunction 

with bile salts and the promotion of micelle formation by the acidic environment of the 

duodenum and jejunum (Bauchart, 1993). 

1.2.4.7. Fatty acid digestibility 

Digestibility is influenced by the fatty acid composition (Borsting et al., 1992) and 

physical characteristics of the diet (Bauchart, 1993) and also by the efficiency of ruminal 
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biohydrogenation (Chilliard, 1993). Wu et al. (1991) suggested that true fatty acid 

digestibility may increase with moderate fat intake, but decrease with further augmentation 

of the dietary lipid content. Furthennore, Bauchart (1993) hypothesised that a ceiling 

might exist for the efficiency of pancreatic lipase and bile salts in the ruminant, which 

would limit digestion in animals fed fat-supplemented diets. 

Fatty acid digestibility has been shown to decrease with increasing chain length (Doreau 

and Chilliard, 1997a). This may have a significant impact on the efficacy of diets that 

increase the dietary long-chain PUF A supply in an attempt to increase their concentrations 

in tissues (Borsting et ai., 1992). Borsting et al. (1992) stated that C16:0 has a higher 

digestibility than CI8:0, by contrast, experimental work by Doreau and Chilliard (1997a) 

suggested that no differences in saturated fatty acid digestibility exist with increasing chain 

length or intake. Fatty acid digestibility has been suggested by Wu et al. (1991) to increase 

with unsaturation, an unsaturated octadecanoic acid being more digestible than a saturated 

acid. This is partly due to the greater hydrophobicity of unsaturated fatty acids which 

interact at a higher level with bile salts and enhance micelle fonnation with subsequent 

increases in absorption efficiency (Wu et ai., 1991). 

1.2.4.8. Fatty acid absorption within the large intestine 

Doreau and Ferlay (1994) report that the extent of fatty acid absorption in the ruminant 

large intestine is relatively insignificant although a degree of microbial fatty acid synthesis 

occurs and therefore the faecal fatty acid content is higher than that of the digesta. If the 

ruminal digestion of fibrous feedstuffs is disrupted by long-chain PUF A supplementation 

of the ruminant, digestion is shifted to the large intestine thus increasing the proportion of 

ingested fatty acids eliminated in faeces (Doreau and Ferlay, 1994). 
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1.2.4.9. Cellular fatty acid metabolism 

Unesterified fatty acids and lysophosphatidylglycerols penetrate the rumen enterocyte via 

the microvilli (Bauchart, 1993) and are transported from the cell surface to the smooth 

endoplasmic reticulum by a fatty acid binding protein (Campbell et al., 1998). Acyl-co

synthetase then enzymatically converts the fatty acids to their CoA derivatives, the reaction 

being catalysed by CoA and ATP (Brindley, 1984; Moore and Christie, 1984): 

A desaturase enzyme is also present within intestinal mucosa which converts 

approximately 10 % of total C18:0 to C18:1 (Enser, 1984; Moore and Christie, 1984; 

Chilliard, 1993). The fatty acid CoA derivatives are esterified and react with mono- and 

diacylglycerol molecules to form di- and triacylglycerols via transferase enzymes (Conn et 

al., 1987). Phosphatidylglycerols may also be formed by acylation of lysophospholipids 

(Moore and Christie, 1984). These lipid compounds are deposited as lipoproteins into lipid 

vesicles by smooth endoplasmic reticulum (Brindley, 1984). Within each lipoprotein 

molecule, amphiphilic molecules surround the lipid component thus permitting transport 

within the aqueous medium (Brindley, 1984). Lipoproteins consist of a central 

hydrophobic core containing high proportions of triacylglycerols and cholesterol esters and 

a hydrophilic surface layer containing phosphatidylglycerols, apoproteins and cholesterol 

(Moore and Christie, 1984; Bauchart, 1993). 

Five types of lipoproteins are synthesised, classified according to their lipid:protein ratio: 

chylomicrons, very low density lipoproteins (VLDL), intermediate density lipoproteins 

(lDL), low density lipoproteins (LDL) and high density lipoproteins (HDL; Bauchart, 

1993). The two predominant lipoproteins synthesised post-absorption are the 

chylomicrons and VLDL (Christie, 1978). A continuous range of lipoprotein sizes from 

chylomicrons to VLDL exists in the sheep, their principal role being to transport fatty acids 

from plasma to tissues (Clegg et al., 2001). The size and type of lipoprotein produced is 
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dependent on the rate of synthesis and the fatty acid composition of digesta (Brindley, 

1984). 

Lipoproteins are transported in golgi vesicles to the cell surface and exocytosed into the 

intercellular space (Brindley, 1984; Moore and Christie, 1984). Chylomicrons and VLOL 

migrate to the lymphatic lacteals and into the blood via the thoracic and intestinal lymph 

ducts (Conn et at., 1987; Ooreau and Chilliard, 1997a). This is the principal route for the 

entry of long-chain esterified fatty acids, however, short-chain non-esterified fatty acids 

and some long-chain fatty acids bind to albumin in the portal blood (Brindley, 1984; 

Chilliard, 1993; Enjalbert, 1995). 

Within plasma, lipoproteins acquire the apoproteins apo-E and apo-C from HDL in the 

liver (Moore and Christie, 1984). These molecules divert fatty acid catabolism away from 

the liver towards metabolism sites including muscle, adipose tissue and the mammary 

gland (Moore and Christie, 1984). As the lipoproteins are transported through these sites 

they are bound onto capillary endothelium by lipoprotein lipase (LPL; Brindley, 1984). 

This, the rate-limiting step of core triacylglycerol hydrolysis, produces fatty acids, IOL and 

acylglycerols (Bauchart, 1993; Clegg et at., 2001). Fatty acids in the sn-l position are 

preferentially hydrolysed by LPL, hence the high concentration ofC16 and C18 fatty acids 

(palmitate, stearate, oleate) in adipose and mammary lipids (Clegg et at., 2001). Fatty 

acids then diffuse through the cells underlying the capillary wall and are metabolised 

within the tissue (Brinkley, 1984; Moore and Christie, 1984). If the rate of hydrolysis 

exceeds the cellular capacity for diffusion, LPL is inhibited and the chylomicron is 

released, this may happen several times until the chylomicron remnant can no longer be 

hydrolysed efficiently and is metabolised by the liver (Brindley, 1984). 
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The site at which chylomicrons and VLDL are metabolised is dependent on the nutritional 

status of the animal. Under normal isocalorific conditions, fatty acids are diverted to 

adipose tissue for storage, by contrast, during starvation they are utilised by skeletal 

muscles, cardiac muscle and liver as an energy source (Conn et al., 1987). Under the 

control of the hormone prolactin, the mammary gland is the primary site of fatty acid 

metabolism for milk lipid synthesis (Conn et al., 1987). The activity of LPL in adipose 

and mammary tissues is regulated by plasma insulin; high concentrations of insulin 

stimulate LPL activity and vice versa (Enser, 1984; Barber et al., 1997). 

1.2.4.10. Fatty acid metabolism within adipose tissue 

Fatty acids are principally stored as triacylglycerols within subcutaneous, intramuscular, 

intermuscular and abdominal adipose tissue in the ruminant (Demeyer and Doreau, 1999). 

A small proportion of fatty acids are also stored as phosphatidylglycerols within 

intramuscular lipids (Demeyer and Doreau, 1999). The potential lipid storage capacity is 

dependent upon the age and breed of the sheep (Demeyer and Doreau, 1999). For 

example, the fat content of the carcass increases with age, and is lower in breeds selected 

for lean, muscular carcasses (e.g. Texel sheep) compared to those selected for hardiness 

(e.g. Welsh Mountain sheep; Carson et al., 1999). Furthermore, individual muscles differ 

in their fatty acid composition. Enser et al. (1998a) reported increased concentrations of 

unsaturated fatty acids in muscle high in phosphatidylglycerols, i.e., red oxidative muscle 

fibres compared to white muscle fibres. Despite having significant effects on liveweight 

gain and carcass composition (NUmb erg et al., 1998), sex appears to have little effect on 

intramuscular fatty acid composition (Enser et al., 1998a). 

Fatty acid storage in adipose tissue is controlled by a balance of uptake, synthesis, 

esterification, lipolysis and re-esterification (Chilliard, 1993). Post-hydrolysis by LPL, 

fatty acids are absorbed into adipose cells, converted to triacylglycerols (Demeyer and 
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Doreau, 1999) and stored within large triacylglycerol droplets surrounded by cytoplasm 

(Conn et a/., 1987). Saturated fatty acids account for a major proportion of stored lipid in 

adipose tissue, the predominant fatty acids being CI6:0, C18:0 and cis CI8:1, with smaller 

quantities of C14:0, cis C16:1, C17:0 and trans CI8:1 (Chilliard et a/., 2001a). Adipose 

and muscle lipids are predominantly saturated due to biohydrogenation (Demeyer and 

Doreau, 1999). However, as the fat content of the carcass increases, the concentration of 

monoenoic fatty acids in tissues is augmented as a consequence of ~-9 desaturase activity 

producing C18:1n-9 from C18:0 (Enser et a/., 1998b; Velasco et a/., 2001). 

Under normal dietary conditions, ruminant adipose tissues do not contain considerable 

quantities of C22:6n-3, although CI8:3n-3 is found in relatively high concentrations 

(Poumes-Ballihaut et a/., 2001). Instead, PUF As are found in high quantities in the 

phosphatidylglycerols, the fatty acid composition reflecting their role in the maintenance of 

cell membrane fluidity (Curtis-Prior, 1988). The minor amounts of long-chain n-3 PUF As 

stored in adipose tissue are suggested to act as a reservoir for release during sub-optimal 

supply (Poumes-Ballihaut et a/., 2001). Nevertheless, the extent to which n-3 fatty acids 

may be mobilised from adipose tissue is yet to be confirmed. 

Catabolism of adipose tissue involves the hydrolysis of triacylglycerols by hormone

sensitive lipase (HSL) to produce free fatty acids and glycerol (Conn et ai., 1987; Demeyer 

and Doreau, 1999). Regulated by adenaline and glucagon (stimulatory) or insulin 

(inhibitory; Demeyer and Doreau, 1999; Raclot et a/., 2001), the release of fatty acids by 

HSL is thought to be the rate-limiting step. This mobilisation is selective for fatty acid 

chain length, being reduced by increasing chain length at a specific level of unsaturation 

(RacIot et a/., 2001). Non-esterified fatty acids combine with albumin within the blood, 

forming stable, soluble fatty acid-albumin complexes (Conn et a/., 1987). These 

complexes are metabolised in the liver (Conn et ai., 1987) or transported to tissues as a 
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source of oxidative energy (Demeyer and Doreau, 1999). Short-term feed deprivation 

leads to the non-specific mobilisation of fatty acids from triacylglycerols; however, after 

prolonged starvation, fatty acids may be selectively mobilised according to cellular 

requirements (Enser, 1984). 

Adipose tissue is the primary site of de novo fatty acid synthesis in non-lactating ruminants 

(Christie, 1978; Demeyer and Doreau, 1999) as hepatic synthesis is negligible due to low 

acetyl-CoA carboxylase activity (Kennelly and Glimm, 1998). Fatty acids are produced 

within the adipose cell via the following reaction (Enser, 1984): 

8 Acetyl CoA + 7 Malonyl CoA + 
NADPH + 14H+ 

Palmitate + 8 CoA + 7 CO2 + 
14 NADP+ + 6H20 

Acetate is the predominant fatty acid precursor via de novo synthesis in the ruminant 

(Conn et al., 1987; Clegg et al., 2001). Malonyl CoA undergoes a condensation reaction 

catalysed by the enzyme p-ketoacyl synthetase to form fatty acids and carbon dioxide, 

(Enser, 1984). The cellular enzyme system reduces both the ketoacyl group and double 

bond, and dehydrogenates the hydroxyacyl group to produce a saturated fatty acid, two 

carbons longer than the original precursor (Enser, 1984). This sequence is repeated using 

malonyl CoA until the required fatty acid is synthesised. Odd-numbered fatty acids may 

be produced when a three-carbon propionate precursor is substituted for acetate (Enser, 

1984). 

De novo fatty acid synthesis within adipose tissue is regulated by metabolic, hormonal and 

dietary effects on acetyl-CoA carboxylase activity (Enser, 1984). Synthesis is inhibited 

during lipolysis and starvation and increased during replenishment of dietary precursors 
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(Enser, 1984). Acetyl CoA activity in adipose tissue is reduced during lactation with fatty 

acids being partitioned towards mammary tissues (Clegg et al., 2001). 

1.2.4.11. Metabolism of fatty acids within mammary tissue 

Triacy1g1ycerols are the principal lipid compounds contained within milk fat, the remainder 

consisting of diacylglycerols, phosphatidylglycerols, unesterified fatty acids, cholesterol 

and cholesterol esters (Barber et al., 1997; Bauman and Griinari, 200 I). The fatty acid 

composition of milk lipids is dependent on the energy status of the animal and the balance 

of fatty acids supplied from endogenous and exogenous sources (Kennelly, 1996; 

Wijesundera et al., 2001). Short and medium-chain fatty acids make up approximately 500 

glkg of total milk fatty acids, with long-chain fatty acids accounting for 450 glkg 

(predominantly C18:0 and CI8:1) and PUFAs for 20-30 glkg (Demeyer and Doreau, 

1999). De novo synthesis accounts for almost all short-chain, and half of medium-chain 

fatty acids secreted into milk lipids (Demeyer and Doreau, 1999). 

During early lactation, ruminants are habitually in a negative energy balance (Potanski et 

al., 2001) and milk fat production is maintained by the lipolysis of adipose tissue from 

body reserves (Barber et al., 1997). Consequently, the activity of LPL and fatty acid 

synthase within adipose tissue are significantly reduced during early lactation. As lactation 

progresses, the reliance on stored fatty acids declines and endogenous fatty acid synthesis 

in adipose tissue increases, restoring lipid reserves (Barber et al., 1997). 

Short and medium-chain fatty acids (C4-C16) are synthesised in the mammary epithelial 

cells via a modification of the fatty acid synthase system (Barber et al., 1997; Figure l.5). 

Acetyl and butyryl CoA are converted to malonyl CoA by acetyl-CoA carboxylase 

(Chilliard et al., 2000; Wright et al., 2002) via a condensation reaction with the elimination 

of carbon dioxide as in adipose tissue (Enser, 1984; Barber et al., 1997). This is then 
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reduced via p-carbon to produce a saturated acyl chain, extended by 2 carbons (Barber et 

ai., 1997). A further six condensation and reduction reactions result in the formation of 

C16:0 (Barber et al., 1997). In lactating animals, the acyl chain may be terminated at 8-10 

carbons by a CoA ester removal system and these fatty acids added to the developing milk 

fat globule (Barber et al., 1997). De novo synthesis is tenninated in a significant 

proportion of the fatty acids produced in mammary tissue, hence the high short and 

medium-chain fatty acid concentration of milk fat (Enser, 1984). 

Most endogenously synthesised fatty acids are saturated as the 6-9 desaturase enzyme has 

little specificity for fatty acids with less than 18 carbons in the acyl chain (Chilliard et al., 

2000). A significant proportion of the saturated fats supplied to the mammary gland are 

de saturated to monoenoic fatty acids via L\-9 desaturase (Palmquist, 1984), particularly 

when de novo synthesis is inhibited (Agenas et al., 2002). This enzyme is particularly 

active in the conversion of C18:0 to C18: In-9 and of trans-vaccenic acid to cis-9, trans-ll 

CLA (Chilliard et al., 2001a). The mechanisms which regulate 6-9 desaturase activity are, 

as yet unknown. Agenas et al. (2002) suggested that the activity of this enzyme may be a 

means by which the fluidity of milk fat is maintained, hence its inhibition by long-chain 

PUF As which directly contribute to membrane fluidity. De novo synthesis of fatty acids 

within the mammary gland is most significantly inhibited by dietary PUF As, followed by 

monounsaturated and saturated fatty acids (Barber et al., 1997). Consequently, the 

proportions of various fatty acids in milk fat reflect the varying contributions of 

endogenous de novo synthesis and exogenous dietary supply (Barber et al., 1997; Agenas 

et al., 2002). The deposition of exogenous fatty acids into milk fat is dependent upon their 

supply from lipoproteins and consequent hydrolysis by LPL. 
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Figure 1.5. Milk/at synthesis and secretion (Chi/liard et al., 2000) 
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Triacylglycerols are formed within mammary tissue by the action of trans acylase enzymes 

upon glycerol and fatty acids (Enser, 1984) with specific fatty acids are esterified onto the 

three different sn positions of glycerol. Short and medium-chain fatty acids found in milk 

are esterified at positions sn-l and sn-3 (Christie, 1978). Cis and trans isomers of 

individual fatty acids are also found at positions sn-2 and sn-3 respectively on the 

triacylglycerol (Demeyer and Doreau, 1999). Thus the rate of triacylglycerol synthesis is 

partly regulated by the ability of the exogenous fatty acid supply to provide long-chain 

fatty acids suitable for esterification at position sn-l (Demeyer and Doreau, 1999). 

Triacylglycerols and phosphatidylglycerols formed within the mammary gland are 

contained within a membrane and exocytosed from the surface of alveolar epithelial cells 

to the minor and major ducts leading to the teat cistern (Christie, 1978). Milk lipid 

contains small droplets ranging in size from 0.1-20J.lm which consist of a triacylglycerol 

core surrounded by a plasma membrane (Briard et al., 2003). The small quantities of 

phosphatidylglycerols found in milk are situated within this membrane (Christie, 1978). 

1.2.5. Fatty acid synthesis via desaturation and elongation 

The EFAs CI8:2n-6 and CI8:3n-3 are the precursors for endogenous synthesis of the long

chain fatty acids C20:4n-6, C20:5n-3 and C22:6n-3 (Hornstra et al., 1995; Marin and 

Alaniz, 1998; Hempenius et al., 2000). Synthesis of long-chain PUFAs ensures that their 

neural and visual functions are maintained in the animal, even under conditions of 

suboptimal dietary supply (Enser, 1984). It has been postulated that this mechanism 

evolved in humans due to a change from a diet rich in n-3 and n-6 PUFAs in which there 

was no need for endogenous synthesis; to one rich in saturated fats with negligible n-3 and 

n-6 fatty acid intakes (Homstra et al., 1995). However, this hypothesis does not fully 

explain the existence of the system in other animals, specifically ruminants. 
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1.2.5.1. Mechanisms of desaturation and elongation of fatty acids 

The mechanisms by which EF As are desaturated and elongated into C20:4n-6, C20:5n-3 

and C22:6n-3 within cells are presented in Figures l.6 and l.7. In n-6 fatty acids, CI8:2n-

6 is desaturated to form C18:3n-6, then elongated to form C20:3n-6; before further 

desaturation to produce C20:4n-6 (Sprecher, 2000). Desaturation is achieved by single 

desaturase enzymes specific to a position on the acyl chain, however, the elongase system 

is more complex and involves a group of four enzymes (~-ketoacyl CoA synthase, ~

ketoacyl CoA reductase, ~-hydroxyacyl CoA dehydrase and trans-2-enoyl CoA reductase; 

Leonard et al. 2004). 

Fatty acids of the n-3 series have a similar progression from CI8:3n-3 to C20:5n-3 and an 

extra elongation and desaturation step to form C22:6n-3. Although it was originally 

suggested that C22:6n-3 was formed from C20:5n-3 via a ~-4 desaturase, the existence of 

the ~-4 desaturase enzyme has not been verified (Ferdinandusse et al., 2001). Sprecher 

(2000) proposed pathways for two enzyme steps and a ~-oxidation reduction within the 

peroxisome by which C22:6n-3 may be formed from C20:5n-3. Further supporting 

evidence for this pathway was found in humans suffering from Zellweger syndrome who 

have impaired peroxisome function (Ferdinandusse et al., 200 I). These humans 

metabolised CI8:3n-3 to C24:5n-3 and C24:6n-3 but were unable to perform successful 

retroconversion of C24:6n-3 to C22:6n-3. By contrast, healthy humans were able to 

produce C22:6n-3 from labelled C24:5n-3 and C24:6n-3. During the ~-oxidation step 

proposed by Sprecher (2000), long-chain PUF As are oxidised by straight-chain acyl-CoA 

oxidase. They are then hydrated and dehydrogenated by D-bifunctional protein and 

thiolytically cleaved by 3-ketoacyl-CoA thiolase and sterol carrier protein X 

(Ferdinandusse et al., 2001). 
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1.2.5.2. Factors affecting the efficiency of desaturation and elongation 

The synthesis of long-chain PUF As from precursor EF As is dependent on the relative 

specificities of the desaturase enzymes (~-4, ~-5, and ~-6) and upon competition between 

individual fatty acids for these enzymes (Enser, 1984). The mechanisms for elongation of 

CI8:3n-3 to C22:6n-3 and C20:5n-3 and CI8:2n-6 to C20:4n-6 involve two common steps: 

desaturation by ~-6 desaturase and ~-5 desaturase enzymes. 

Desaturation by ~-6 desaturase is thought to be the rate-limiting step where C18: In-9, 

CI8:2n-6 and C18:3n-3 compete for the binding site in the microsomal enzyme system 

(Williard et al., 2001). This enzyme has the highest specificity for CI8:3n-3, followed by 

CI8:2n-6 and C18: In-9 (Koletzko, 1992). Consequently, increased cellular concentrations 

of long-chain n-3 compared to n-6 fatty acids are exhibited after desaturation and 

elongation of equivalent concentrations of their precursor fatty acids (Calder, 200 I). This 

specificity also explains the high plasma concentrations of C20:3n-9 produced from 

desaturation of CI8:1n-9 in the absence of CI8:2n-6 and CI8:3n-3 (Koletzko, 1992; 

Leifert et ai, 1999). 

Sprecher (2000) hypothesised that separate ~-6 desaturase enzymes exist which are 

specific for fatty acids of different chain lengths, but their existence has not yet been 

proven. If the ~-6 desaturase is non-specific for chain-length, it has important 

consequences for the elongation and desaturation of both n-3 and n-6 fatty acids, as five 

fatty acids (CI8:0, CI8:2n-6, CI8:3n-3, C24:5n-6 and C24:6n-3) compete for the 

enzyme's binding site (Sprecher, 2000). 

1.2.5.3. Inhibition of the desaturation and elongation of fatty acids 

High concentrations of CI8:2n-6, CI8:3n-3 and their long-chain PUFA derivatives within 

tissues inhibit the synthesis of long-chain PUF As by ~-desaturase enzymes (Sargent, 1997; 
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BougIe et al., 1999; Poumes-Ballihaut et al., 200 I). Consequently, desaturation and 

elongation of CI8:3n-3 to C22:6n-3 is relatively low in humans, as the high CI8:2n-6 

intake negates the specificity of the ~-6 desaturase enzyme for CI8:3n-3 (Voigt and 

Hagemeister, 2001). The ratios of C20:3n-6:C18:2n-6 and C20:4n-6:C20:3n-6 provide 

indications of the efficiency of ~-5 and ~-6 desaturase activity. A decrease in either ratio 

suggests inhibition of the respective enzyme (Poumes-Ballihaut et al., 2001). Within the 

n-6 pathway, the formation of C20:3n-6 is limited by ~-6 desaturase, however, once the 

mechanism has progressed past this stage, a significant proportion of C20:3n-6 is 

converted to C20:4n-6 (Uauyet al., 2000). Desaturation and elongation ofr-linolenic acid 

(CI8:3n-6) from borage oils may also produce C20:4n-6, a mechanism that is not as 

susceptible to inhibition via ~-6 desaturase. However, Makrides et al. (1995) 

demonstrated that supplementing infants with preformed CI8:3n-6 and C22:6n-3 did not 

result in an appreciable increase in C20:4n-6 concentrations. 

1.2.5.4. Desaturation and elongation of fatty acids within neural tissue 

The liver, brain and placenta have been suggested to be significant areas of endogenous 

synthesis ofC22:6n-3 in humans, rats and ruminants (Noble et al., 1985; Koletzko, 1992; 

Williard et al., 2001). Hepatic desaturation and elongation is beyond the scope of this 

review and placental desaturation is discussed in section 1.2.6.3.2., therefore, this section 

concentrates on neural synthesis. 

Williard et al. (2001) reported that C22:6n-3 may be synthesised in the brain from CI8:3n-

3. The synthesis ofC22:6n-3 demonstrably increases during long-chain PUFA deficiency, 

suggesting that a mechanism exists to maintain the concentration of this fatty acid in neural 

tissue and that this mechanism is regulated by dietary supply. This synthesis occurs within 

astrocytes, which incorporate C22:6n-3 into cell lipids and release it as a free fatty acid 

(Williard et al., 2001). The amount of C22:6n-3 produced within astrocytes is dependent 
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on preformed dietary supply (Williard et al., 200 I) as the brain and retina appear to have a 

preferential uptake mechanism for preformed C22:6n-3. 

1.2.5.4.1. Evidence of de novo synthesis of long-chain PUF As in humans 

Uauy et al. (2000) demonstrated that human infants are able to desaturate and elongate 

EFAs to their long-chain PUFA derivatives. However, Koletzo et al. (1996) reported that 

infants were unable to synthesise C20:4n-6 or C22:6n-3 in quantities similar to those 

supplied preformed by maternal milk. Several studies have demonstrated that feeding 

dietary formulae enriched with EFAs or with a high CI8:3n-3:CI8:2n-6 ratio do not 

increase the concentrations of C22:6n-3 in liver and brain phosphatidylglycerols to those 

found in breast-fed infants (Poumes-Ballihaut et al., 2001). Furthermore, research in 

bottle-fed human infants has shown that a preformed C22:6n-3 dietary supply is 

significantly more effective at maintaining plasma phosphatidylglycerol C22:6n-3 

concentrations than increasing the concentration of CI8:3n-3 in the diet (Goustard

Langelier et al., 1999). Similar findings have led to the labelling of long-chain PUFAs as 

conditionally essential, in that they can be synthesised endogenously from their precursor 

fatty acids, but the synthesis is ineffective at meeting requirements (Uauy et ai., 2000). 

1.2.5.4.2. Evidence of de novo synthesis of long-chain PUFAs in animals 

Arbuckle and Innis (1992) fed neonatal piglets with sows' milk or one of two fatty acid 

supplemented formulae: a low-CI8:2n-6, high-CI8:3n-3 or high-C18:2n-6, low-18:3n-3 

formula, and reported similar concentrations of C22:6n-3 in brains and retinas from the 

milk and high-CI8:3n-3 formula-fed animals. However, the synthesis of C22:6n-3 from 

CI8:3n-3 within brain tissue was reported by Arbuckle and Innis (1992) to be only 24 % as 

effective as supplying preformed dietary C22:6n-3 to pigs. A significant amount of 

C22:5n-6 was found in nervous tissues from piglets fed the low-C18:3n-3 diet whilst low 

C22:6n-3 concentrations were also reported, suggesting that this level of dietary CI8:3n-3 
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was insufficient for C22:6n-3 deposition. The low ratio of C22:6n-3 to C22:5n-3 in these 

animals also suggested n-3 fatty acid deficiency (Arbuckle and Innis, 1992). 

Furthermore, Su et al. (1999) reported a bioequivalence of 7: I for CI8:3n-3 compared to 

preformed C22:6n-3 for brain, and 12:1 for retinal tissue. Inhibition ofC22:6n-3 synthesis 

via competition for ~-desaturase enzymes may also have significant effects on long-chain 

PUF A accretion in the brain: Craig-Schmidt et al. (1996) suggested that a dietary ratio of 

9:1 CI8:3n-3:CI8:2n-6 plus 1 % preformed C22:6n-3 may be sufficient for optimal 

deposition of C22:6n-3 in piglet nervous tissue. 

1.2.6. Ruminant requirements for long-chain PUFAs 

The ruminant dietary requirements for EF As and long-chain PUF As have not been 

investigated in any significant depth. It was previously assumed that the long-chain PUF A 

requirements of humans and animals were met by synthesis from EF A precursors. 

However, research into the requirements of neonatal animals, specifically humans, has 

shown that they may require a source of exogenous long-chain fatty acids for optimal brain 

and nervous system development (Su et aI., 1999; Ikemoto et al., 2001; Broadhurst et al., 

2002). 

These findings may be extrapolated to other neonatal animals that have similar 

characteristics, i.e. insufficient production of long-chain PUF As from precursors and an 

absence of preformed PUF As in the diet (Craig-Schmidt, 1996; Bondia-Martinez et aJ., 

1998; Poumes-Ballihaut et aJ., 2001). Adequate synthesis from precursor EFAs has been 

demonstrated in adult animals (Craig-Schmidt et al., 1996). Given that the major period of 

brain and nervous system development occurs during the pre and postnatal period, the 

increased requirement for preformed long-chain fatty acids by pregnant and lactating 

mammals may exceed the endogenous supply (Homstra et al., 1995). 
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1.2.6.3. Fatty acid supply to the foetal ruminant 

There is a high positive correlation between maternal and neonatal long-chain PUF A status 

in humans, suggesting that PUF A status of offspring may be manipulated successfully by 

supplementing pregnant or lactating women (Hornstra et al., 1995). However, the 

epitheliochorial placenta of ruminants is less permeable than the haemochorial placenta of 

humans, leading to low fat accumulation in the neonate (Pere, 2003). Indeed, Noble et al. 

(1985) reported that the concentrations of non-esterified fatty acids are low in the foetus 

and suggested that there is a low transfer rate of unesterified fatty acids across the placenta. 

Rooke et al. (1998) also postulated that the relatively minor increases observed in C22:6n-

3 deposition in the foetal pig compared to those supplied by the maternal diet were due to 

limited placental transfer of long-chain PUF As. 

Hempenius et al. (2000) suggested that preformed long-chain PUF As may be transferred 

across the rodent placenta from the dam to the foetus. Furthermore, an in vitro study by 

Campbell et al. (1998) described a human placental fatty acid-binding protein which 

preferentially bound C20:4n-6 and C22:6n-3 compared to CI8:2n-6 and CI8:0. This 

selective transfer of long-chain PUF As from maternal plasma has been termed 

"biomagnification" by Broadhurst et al. (2002), a group of researchers who also reported 

that de saturation and elongation do not occur in the placenta. Zakhariv and Yanovich 

(1992) also suggested that C20:4n-6 present in the foetal ruminant is derived from 

maternal circulation and that low concentrations in the foetus are a result of negligible 

placental transfer. By contrast, Noble et al. (1985) reported that the high concentrations of 

C20 and C22 fatty acids found in foetal ruminants resulted from elongation and 

desaturation of saturated fatty acids due to a low maternal EF A and PUF A supply. 

Consequently, Noble et al. (1985) suggested that the placenta has a significant role in the 

provision of long-chain PUF As to the foetus via desaturation and elongation of EF As. 
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Shand et al. (1978) observed that the desaturase activity of neonatal ruminant liver is 

stimulated by nutrient ingestion and is not active in foetal lambs. Neonatal plasma 

contains low concentrations ofEFAs (Shand et al., 1978), with CI8:1n-9 accounting for a 

significant proportion of the fatty acids available for desaturation and elongation (Noble et 

al., 1985). This gives rise to an increase in the concentration of C20:3n-9 in neonatal 

plasma compared to maternal plasma (Noble et al., 1985). Essentially, the foetal and 

neonatal ruminant is dependent on a supply of long-chain PUF As from the dam, whether 

by an adequate EF A supply at the placenta (Hornstra et at., 1995) or prefonned supply 

from dam plasma and colostrum. 

1.2.7. Effects oflong-chain PUFA supplementation upon performance parameters 

1.2.7.1. Effects of long-chain PUF As upon dry matter intake 

Diets containing high total fat or long-chain PUF A concentrations are known to disrupt 

mechanisms of ruminal fennentation (Chilliard, 1993; Velasco et al., 2001) thereby 

inhibiting forage digestion and reducing DM intake (Doreau and Chilliard, 1997b; 

Donovan et al., 2000). Both Palmquist (1984) and Cant et al. (1997) suggested that the 

observed reductions in forage digestion are related to dietary fats coating fibre particles 

and protecting fibrous material from microbial degradation. By contrast, Szumacher

Strabel et al. (2001 a; 2001 b) proposed that dietary fatty acids have an antimicrobial effect 

within the rumen, reducing fibre digestion by retarding the metabolism and growth of 

protozoal and cellulolytic bacterial species. 

Donovan et al. (2000) suggested that the reduction in DM intake of dairy cattle observed 

with increasing fish oil intake resulted from inhibition of microbial respiration, and 

consequent lysis of bacterial cells, by PUF As. These results concur with those of Chilliard 

and Doreau (1997) who demonstrated that adding fish oil to the diets of lactating cattle 

reduced DM intake by 1.6 kg/day. Similarly, Lacasse and Ahnadi (1998) induced a 25 % 
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reduction in feed intake of lactating cattle via supplementation with unprotected fish oils. 

Infusing fish oil directly into the duodenum increased DM intake in the study published by 

Doreau and Chilliard (1997b), this adds weight to the hypothesis that reductions in OM 

intake occur as a result of ruminal disruption. Alterations in the microbial population 

would also clarify the reduction in acetate and increase in propionate production exhibited 

by ruminants supplemented with PUFAs (Chilliard, 1993; Doreau and Chilliard, 1997a; 

Doreau and Chilliard, 1997b). 

1.2.7.2. Effects of long-chain PUF As on milk yield 

Postnatal lamb growth is affected by myriad factors, including breed, genetic potential and 

environmental parameters, but the major contributing factor is maternal milk yield and 

composition (Louveau et al., 2000). Colostrum and milk provide essential nutrients for the 

neonatal and growing lamb in addition to compounds such as immunoglobulins, hormones, 

enzymes and growth factors (Louveau et al., 2000). Predictably, a high positive 

correlation between milk intake and pre-weaning growth has been demonstrated in 

ruminants (Penning et al., 1980). 

The principal effects of PUF A supplementation upon milk yield and composition are 

summarised in Table 1.5. Regarding yield, lactose is the primary determinant of milk 

osmotic potential and is positively correlated to milk yield (Ploumi et al., 1998; Agenas et 

al., 2002). An increase in milk lactose production results in a homeostatic increase in 

water uptake by the mammary gland in an attempt to maintain osmotic pressure (Kennelly 

and Glimm, 1998; Agenas et al., 2003). A reduction in fibre digestion in the rumen as a 

consequence of long-chain PUF A supplementation has been demonstrated to increase the 

ruminal production of propionate (Chilliard, 1993). As propionate is the precursor of 

lactose, it is logical to suggest that long-chain PUF A supplementation may increase milk 

yield. This theory concurs with the results of Chilliard and Doreau (1997) and Keady et al. 
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Table 1.5. Effects of different dietary lat sources ueon ruminant milk rield and comeosition 
Effect of fat source upon milk composition 

S~ecies 
Cattle 

Cattle 

Cattle 

Goats 

Cattle 

Cattle 

Cattle 

Treatment 
Control (grass silage, concentrate) 
Control + 250 g fish oil 

Control (maize silage, alfalfa silage, concentrate) 
Control + fish oil at 1 % ofDMI 
Control + fish oil at 2 % ofDMI 
Control + fish oil at 3 % ofDMI 

Control (grass silage, concentrate) 
Control + ISO g fish oil 
Control + 300 g fish oil 
Control + 300 g fish oil premix 
Control + 4S0 g fish oil 

Control (Lucerne, grain pellets) 
Control + protected tuna oil 
Control + unprotected tuna oil 

Control (maize silage, concentrate) 
Control + 300 m1 fish oil 
Control + 20 g methionine 
Control + 300 m1 fish oil + 20 g methionine 

Control (grass silage, alfalfa hay, concentrate) 
Control + fish oil at 2 % ofDMI 
Control + monensin (14.S mg/kg DM) 
Control + fish oil + monensin 

Control (alfalfa hay, maize silage, concentrate) 
Control + protected marine algae 
Control + unprotected tnal"ine_ algae 

DMI = dry matter intake 

Yield {~day) 
17.3 
14.1* 

31.7·· 
34.2·· 
29.2·· 
30.1·· 

22.S··· 
25.0··· 
2S.2··· 
2S.7··· 
2S.7"·· 

1.88 
1.35 
1.77 

26.5'· 
28.0'· 
2S.8·· 
28.2" 

22.3 
21.1 
21.7 
20.2 

23.9 
23.2 
24.0 

Fat {2fk2} 
46.0 
42.8 

29.7·· 
27.9"· 
23.7·· 
23.0·· 

42.3··· 
40.4··· 
36.6'·· 
32.5·'· 
27.3·'· 

41.5 
43.3 
40.7 

38.6·' 
2S.3·· 
38.S·· 
2S.5·· 

39.0·' 
27.4·· 
36.1·· 
2S.3·' 

37.0· 
29.5· 
29.5' 

Protein {2fkg} 
39.4 
39.6 

31.7 
31.9 
32.1 
31.7 

32.7*·· 
32.0··' 
30.1··' 
28.S··· 
28.9··· 

32.0 
35.5 
33.3 

28.8·· 
27.9·· 
30.7·· 
29 ... • 

30.6 
28.3 
29.3 
28.4 

31.4 
30.2 
29.8 

Lactose {2fk2} 
48.4 
46.8 

49.7 
49.9 
49.5 
48.9 

49.3··· 
49.9'" 
SO.S··· 
SO.6··· 
SO.4··· 

48.l 
47.6 
47.6 
47.4 

4S.1 
44.6 
4S.S 
45.S 

Reference 
Shingfield et al. (2003) 

Donovan et al. (2000) 

Keady et af. (2000) 

Kitessa et al. (2001b) 

Chilliard and Doreau (1997) 

Cant et al. (1997) 

Franklin et al. (1999) 

• = treatment means are significantly different at the p<0.05 level; .* = treatment means are significantly different at the p<0.01 level; *** = treatment means are 
significantly different at the p<0.001 level 
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Table 1.5. Effects o[ different dietary [at sources ul!.0n ruminant milk J'..ield and coml!.osition (continuedl 

S~ecies 

Sheep 

Cattle 

Cattle 

Cattle 

Cattle 

Cattle 

Treatment 

Control (alfalfa hay, concentrate) 
Control + 23.5 g marine algae 
Control + 47 g marine algae 
Control + 94 g marine algae 

Control (grass silage, concentrate) + Megalac 
Control + formaldehyde-treated whole linseed 
Control + fish oil + formaldehyde-treated whole linseed 

Control (grass and maize silage, concentrate) + Megalac 
Control + whole linseed 
Control + micronised soyabeans 

Control (grass silage, concentrate) + sunflower seed 
Control + formaldehyde-treated sunflower seed 
Control + whole linseed 
Control + formaldehyde-treated whole linseed 

Control (grass silage, concentrates) 
Control + linseed oil calcium salts at 3 % ofDMI 
Control + linseed oil calcium salts at 6 % ofDMI 
Control + linseed oil calcium salts at 9 % ofDMI 

Control (maize silage, alfalfa hay, concentrate) 
Control + fishoil at 2 % ofDMI 
Control + extruded soyabeans at 2 % ofDMI 
Control + fish oil (1 %) + extruded s~abeans (l %) 

DMI = dry matter intake 

Effect of fat source upou milk composition 

Yield {keldaX} 

1.15··· 
1.00··· 
0.93··· 
1.11··· 

22.1 
21.7 
22.2 

33.5 
35.7 
34.4 

23.0· 
25.8* 
22.4· 
24.9· 

25.0· 
23.7* 
22.9" 
23.6" 

32.1 
29.1 
34.6 
31.1 

Fat (Wkg} 

43.3··· 
43.2··· 
43.9··· 
49.0··· 

41.2· 
39.7· 
31.1· 

41.4· 
38.1· 
37.0· 

44.4 
43.9 
42.3 
43.3 

38.9 
41.7 
42.3 
40.6 

35.1"* 
27.9·· 
32.7** 
31.4·· 

Protein {Wkg} 

52.4'· 
54.6·· 
55.9·· 
55.8·· 

32.5· 
32.8· 
30.8" 

28.6· 
29.8" 
28.7" 

32.5· 
31.7· 
34.1· 
33.4" 

32.8" 
31.9" 
30.8· 
31.2· 

33.8 
33.8 
33.0 
32.8 

Lactose (gIkg) 

54.8··' 
55. ( •• 
54.0··· 
51.0··· 

45.9· 
46.3· 
46.1· 

45.7· 
47.1· 
47.0· 

44.6 
45.6 
43.6 
44.9 

50.6 
51.9 
51.7 
51.3 

49.0 
48.2 
49.0 
48.7 

Reference 

Papadopoulos et al. (2002) 

Petit et af. (2002a) 

Petit (2002) 

Petit (2003) 

Brzoska et al. (1999) 

Whitlock et al. (2002) 

• = treatment means are significantly different at the p<0.05Ievel; •• = treatment means are significantly different at the p<O.Ollevel; ••• = treatment means are 
significantly different at the p<O.OOllevel 



(2000). However, the conflicting effects of fatty acids on milk yield between the 

aforementioned studies and those of Cant et al. (1997), Donovan et ai. (2000) and 

Shingfield et ai. (2003) suggest that effects of PUFAs on lactose production are not 

consistent. Furthermore, supplementation with protected fatty acids should eliminate the 

effect of long-chain PUFAs on milk yield (Kitessa et ai., 200Id). However, this 

suggestion is challenged by the results of Brzoska et al. (1999), Kitessa et at. (200 I b) and 

Petit (2003). 

1.2.7.3. Effects of long-chain PUF As on milk fat concentration 

The majority of data in Table 1.5. imply that ruminant milk fat concentration is depressed 

by long-chain PUF A supplementation of the lactating animal. Modifications to rumen 

function that alter the balance of ruminal VF A production have a significant effect on the 

level of milk fat production as they reduce the production of acetate (Komprda et al., 

2001). This fatty acid is the precursor for de novo synthesis of short and medium-chain 

fatty acids within the mammary gland (Chilliard et ai., 2000). 

The production of trans octadecanoic fatty acids via incomplete ruminal biohydrogenation 

of PUF As has also been suggested to directly inhibit milk fat synthesis (Romo et al., 1996; 

Brzoska et al., 1999; Bauman and Oriinari, 2001). Increasing PUF A intake is positively 

correlated with increased trans fatty acid production (Davis and Brown, 1970; Bauman and 

Oriinari, 2001; Precht et al., 2001), the highest trans C18:1 concentrations being found in 

milk from ruminants fed fish oils (Demeyer and Doreau, 1999). Both Hagemeister et al. 

(1991) and Bauman and Oriinari (2001) reported that milk fat concentrations were 

maintained when long-chain fatty acids were infused directly into the duodenum although 

the same fatty acids depressed milk fat when fed in the diet. This supports the theory that 

milk fat synthesis is inhibited by trans fatty acids produced during biohydrogenation of 

PUFAs. Trans-lO, C18:1 and the trans-1O,cis-12 isomer ofCLA appear to have the most 
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significant inhibiting effect upon de novo fatty acid synthesis (Baumgard et aI., 2000; 

Chilliard et at., 2000; Chilliard et at., 2001b). 

Chilliard et at. (2001b) suggested that extensive ruminal biohydrogenation of dietary 

C20:5n-3 may occur, leading to the production of metabolites that inhibit de novo fatty 

acid synthesis. Indeed, addition of fish oils to the diet has been shown to increase the 

concentrations of trans octadecanoic fatty acids in milk, despite the low C 18:2n-6 and 

CI8:3n-3 concentrations in marine oils (Bessa et at., 2000). However, supplementation 

with marine algae has been shown to have similar effects to fish oil on CLA and trans 18:1 

production and milk fatty acid concentrations, regardless of its negligible C20:5n-3 content 

(Chilliard et at., 2001 b). Therefore the biohydrogenation of C20:5n-3 alone is unlikely to 

confer these effects. 

Chilliard et at. (2001 b) reported that long-chain PUF As may prevent the last step of 

biohydrogenation, reducing the amount of C 18:0 in the rumen via the inhibition of group B 

bacteria and increasing concentrations of trans C 18: 1 fatty acids. The high C20:5n-3 

content of fish oils may inhibit the gene expression of d-desaturase enzymes as exhibited 

in rodent models (Chilliard et at., 2001b). Alternatively, PUFAs may affect the 

thioesterase (Chilliard et at., 2001b) or LPL enzymes involved in fatty acid synthesis and 

metabolism (Cant et at., 1997). Direct inhibition of mammary acetyl CoA carboxylase 

(ACC) has also been suggested as a mechanism involved in the inhibition of de novo fatty 

acid synthesis by PUF As (Brzoska et at., 1999; Baumgard et at., 2000; Wright et at., 

2002). 

In an attempt to identify the enzymes inhibited by long-chain PUF As, Ahnadi et at. (1998) 

examined gene expression in the mammary gland. Dietary supplementation of lactating 

cattle with protected fish oil reduced ACC, fatty acid synthase (FASt), LPL and stearoyl-
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CoA desaturase (SCD) whereas unprotected fish oil only significantly reduced LPL. 

Reductions in short and medium-chain fatty acid synthesis were highly correlated with 

ACC and FASt activity (Ahnadi et at., 1998). Moreover, Barber et at. (1997) described the 

inhibition of SCD and FASt, and a reduction in the total amount of ACC within the 

mammary gland conferred by dietary PUF A supplementation. The effect of fish oils on 

LPL activity have also been recounted by other researchers (Chilliard and Doreau, 1997; 

Keady and Mayne, 1999b; Chilliard et al., 200 1 b). It is clear that unsaturated fatty acids 

have inhibitory effects on a range of enzymes involved in de novo fatty acid synthesis. 

Unsaturated fatty acids successfully protected from ruminal biohydrogenation do not affect 

milk fat secretion, as confirmed by Brzoska et al. (1999). However, the extent to which 

protection is successful is extremely variable between methods and studies. Some studies 

showed similar effects of "protected" and "unprotected" fish oils on milk production and 

composition (Chilliard et at., 2001 b; Lacasse and Ahnadi, 1998). 

1.2.7.4. Effects of long-chain PUFAs on milk fat composition 

Changes in milk fat concentration as a result of dietary manipulation notably affect the 

fatty acid composition of milk lipids. De novo fatty acid synthesis is reduced by 

unsaturated fatty acid supplementation with a shift in milk triacylglycerol composition 

away from short and medium-chain fatty acids towards long-chain fatty acids (Barber et 

at., 1997; Donovan et at., 2000; Bauman and Griinari, 200 I). 

The addition of oilseeds to the diet increases the CI8:2n-6 and CI8:3n-3 concentration of 

milk fat (Petit, 2002; 2003; Table 1.6). Gulati et at. (1997 ; 2002) and Petit et at. (2002) 

described increased transfers of C18:3n-3 into milk by feeding protected oilseeds or 

infusing seed oils into the duodenum. By contrast, Hagemeister et al. (1991) reported a 

transfer efficiency for C 18:3n-3 of only 1 % when linseed oil was fed to lactating cattle. 
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Table 1.6. Effects oldi/Ierent dietaryJ!lt sources coml!.ared to controllats ueon ruminant milk[attyacid comeosition 
Effect of rat source upon milk composition 

Species Type of fat supplement Saturated C18:1 CI8:3n-3 C20:4n-6 C20:Sn-3 C22:6n-3 Reference 
fatty acids trans 

Cattle Fish oil Variable Increased Unchanged Increased Increased Increased Shingfield et al. (2003) 

Cattle Fish oil Reduced Increased Unchanged Increased Increased Increased Donovan et al. (2000) 

Cattle Fish oil Reduced Increased Unchanged Increased Increased Unchanged Keady et al. (2000) 

Cattle Protected fish oil Reduced Increased Unchanged Increased Increased Lacasse et al. (2002) 
Unprotected fish oil Reduced Increased Increased Increased Increased 

Cattle Fish oil Unchanged Unchanged Increased Increased Cant et al. (1997) 

Cattle Fish oil Reduced Increased Unchanged Increased Increased Whitlock et al. (2002) 
Fish oil + extruded soyabeans Reduced Increased Unchanged Unchanged Increased 

VI Cattle Protected marine algae Reduced Increased Unchanged Unchanged Increased Franklin et al. (1999) 
01 

Unprotected marine algae Reduced Increased Reduced Unchanged Increased 

Sheep Marine algae Variable Increased Reduced Increased Increased Increased Papadopoulos et al. (2002) 

Cattle Whole linseed Increased Unchanged Increased Unchanged Unchanged Petit (2002) 
Micronised soyabeans Increased Unchanged Increased Unchanged Unchanged 

Cattle Whole linseed Increased Reduced Increased Unchanged Increased Petit (2003) 
Formaldehyde-treated whole linseed Increased Reduced Increased Unchanged Increased 

Cattle Calcium salts of linseed oil Reduced Increased Unchanged Unchanged Unchanged Brzoska et al. (1999) 

Goats Canola oil Variable Unchanged Mir et al. (1999) 



Minor increases in C20:5n-3 have also been observed when linseed oil was fed as a result 

of endogenous fatty acid desaturation and elongation (Hagemeister et al., 1991). However, 

the study of Brzoska et al. (1999) showed that feeding protected linseed did not increase 

the proportions ofC20:5n-3 or C22:6n-3 in milk. 

The proportions of CI6:0, CI8:0 and CI8: In-9 within milk lipid are significantly reduced 

and increases in CLA (specifically cis-9, trans-II CLA), trans CI8:1 fatty acids, long-

chain PUFAs (C22:6n-3, C20:5n-3, C20:4n-6) have been observed by Lacasse et al. 

(1998), Keady et al. (2000) and Chilliard et al. (200Ib) as a result of fish oil 

supplementation. Most studies have reported slight increases in C22:6n-3 and C20:5n-3 

content of milk as a consequence of fish oil supplementation, but this often amounts to a 

difference of less than 0.15 % when data are expressed as a proportion of total fatty acids 

(Chilliard et al., 200Ib; Ramaswamy et al., 2001). This low concentration may be 

attributed to the presence of C22:6n-3 and C20:5n-3 in cholesterol esters and 

phosphatidylglycerols rather than triacylglycerols (Chilliard et al., 2000). 

Table 1. 7. Transfer efficiencies for C20: 5n-3 and C22:6n-3 /rom fish oil to ruminant milk fat 
Efficiency of transfer into milk fat 

Species C20:5n-3 C22:6n-3 Reference 

Goats 
Cattle 
Cattle 
Cattle 
Cattle 

5-6 % 
24% 
20% 
61 % 
9% 

7-8% Gulati et al. (1999) 
14% Gulati et al. (2002) 
8% Donovan et al. (2000) 
19% Keady et al. (2000) 
16% Cant et al. (1997) 

Transfer efficiencies from dietary fish oil to milk vary considerably between studies, from 

5-6 % for C20:5n-3 and 7-8 % for C22:6n-3 (Gulati et al., 1999) to 9 % and 16 % for 

C20:5n-3 and C22:6n-3 respectively (Cant et al., 1997; Table 1.7). Marine algae 

significantly increases the proportions of C20:4n-6, C22:5n-6 and C22:6n-3 in milk lipids, 

but does not tend to considerably increase C20:5n-3 concentrations (Chilliard et al., 

2001b). 
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1.2.7.5. Effects oflong-chain PUFAs on milk protein concentration 

Long-chain PUF A supplementation of lactating ruminants tends to reduce milk protein 

concentrations (Donovan et al., 2000; Cant et al., 1997 and Petit et al., 2002). Gulati et al. 

(2002) reported that increasing the unsaturated fatty acid intake reduces microbial protein 

synthesis in ruminants, which may reduce milk protein concentrations. It has also been 

postulated that protein concentration may be concurrently depressed by a dilution effect 

where fish oil increases milk yield without a concurrent increase in protein synthesis, or by 

a reduction in casein synthesis (Chilliard and Doreau, 1997; Doreau and Chilliard, 1997a; 

Keady et ai., 2000). 

Protein yield may also be reduced by a combination of effects of PUF As on milk yield and 

protein concentration (Kennelly, 1996). Lacasse and Ahnadi (1998) reported a reduction 

in milk protein yield with both unprotected and protected fish oils. These observations are 

in agreement with the work by Keady et al. (2000), which described declining protein 

concentration with increasing dietary fish oil intake. However, reductions in milk protein 

yield between studies may be due to a decline in milk yield conferred by PUF A 

supplementation without differences in constituent composition, as reported by Donovan et 

al. (2000). 

1.2.7.6. Effect of 10ng-chain PUF As on neural tissue development 

The majority of long-chain PUF A deposition in nervous tissues occurs during pre- and 

postnatal brain growth (Ward et al., 1996; Poumes-Ballihaut et al., 2001), the extent of 

development within each period varying between species. Foetal fatty acid deposition is 

significantly increased during late pregnancy (Campbell et al., 1998; Morley, 1998), 

C22:6n-3 being preferentially incorporated and retained within the phosphatidylglycerols 

of brain and retinal tissues (Ward et al., 1996; Rooke et al., 1998; Broadhurst et al., 2002). 
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Supplementation of pregnant humans with long-chain n-3 PUF As has been reported to 

increase concentrations of C20:5n-3 and C22:6n-3 in neonatal tissues (Matorras et al., 

1999); with similar results in pigs as reported by Rooke et al. (1998; 1999; 2000; 200 I a; 

200Ib). It has been hypothesised that C20:5n-3 and C22:6n-3 may be essential for optimal 

visual and cognitive function in neonatal animals and human infants (Weisinger et al., 

1996; Campbell et al., 1998; Goustard-Langelier et al., 1999) and optimal brain and retinal 

function in adults (Williard et al., 2001). Indeed, Dijck-Brouwer et al. (2005) reported that 

the classification of infants as neurologically abnormal at birth was negatively correlated 

with the EF A and C22:6n-3 status of the child. Moreover, Suzuki et al. (1998) 

investigated maze-learning ability in second-generation n-3 PUFA supplemented mice and 

observed that fish oil-supplemented mice were significantly less likely to stray from the 

path of a maze than those fed palm oil. Brain phosphatidylglycerols from fish oil

supplemented mice contained significantly more C22:6n-3 and less C20:4n-6 when 

compared to palm-oil supplemented mice. These increases were highly positively 

correlated with the enhancement of synaptic membrane fluidity. As the synaptic 

membrane has a significant role to play in learning and memory, Suzuki et al. (1998) 

concluded that these functions might be improved by increased membrane fluidity. 

These findings agree with the work of Ikemoto et al. (200 I) who supplemented rats with 

perilla oil (n-3 sufficient) or safflower oil (n-3 deficient) during the principal period of 

brain growth and found that perilla-fed rats produced more correct answers in a brightness

discrimination learning test. Moreover, changing from the safflower to the perilla diet 

post-weaning restored brain C22:6n-3 concentrations and, to a certain extent, learning 

behaviours, indicating that the effects of this deficiency on the CNS are reversible. It was 

suggested that mechanisms by which learning behaviour is altered by n-3 fatty acid 

deficiency may be a result of changes in neurotransmission, brain protein synthesis, 
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reduced brain phosphatidylglycerol synthesis or changes m melatonin concentrations 

(Ikemoto et al., 2001). 

Infants fed maternal milk tend to have higher long-chain PUF A concentrations in neural 

tissues (BougIe et ai., 1999), long-chain PUFA supplementation of formulae also results in 

an increase in the C22:6n-3 content of brain tissues (Bondia-Martinez et al., 1998). This 

may further be manifested as improvements of scores on tests of visual acuity (Morale et 

al., 2005). In humans, the effects of n-3 fatty acids on the CNS and retina are thought to 

be quantitatively more important in pre-term infants given the exponential rate of brain 

development and PUF A accretion during late pregnancy. This finding may be extrapolated 

to all mammalian species. In full-term infants, Bougie et al. (1999) reported few 

differences in CNS maturation, fatty acid composition or visual acuity, regardless of the 

long-chain PUF A supply of the diet. This is in contrast to the results of Hornstra et al. 

(1995) who reported that C22:6n-3 supplementation of infant formulae improved indices 

of motor and mental development (Bayleys test) attributed to increased brain C22:6n-3 

concentrations. Makrides et al. (1995) also reported that C22:6n-3 accretion in brain was 

augmented by breast-feeding with concurrent improvements in visual evoked potentials at 

4-5 months of age. Changing from a fatty acid-deficient formula to one supplemented with 

0.36 % C22:6n-3 also enhanced indices of development, although there was no 

compensational deposition of C22:6n-3 into tissues (Makrides et ai., 1995). Indices of 

mental and motor development appeared to increase with C22:6n-3 supplementation in a 

dose-dependent manner (Morley, 1998), but many of these differences disappeared later in 

the experiment. By contrast, Hoffman et al. (2004) reported that supplementing infants 

with dietary C22:6n-3 during the first year of life improved visual acuity. The long-term 

effects of n-3 fatty acid supplementation during the postnatal period still remain unclear, 

nevertheless, it is assumed that neonatal nutrition may have long-term effects on the neural 

pathways responsible for visual acuity (Carlson and Werkman, 1996). 
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Goustard-Langelier et al. (1999) demonstrated that piglets fed formulae supplemented with 

fish oil had augmented C22:6n-3 concentrations in specific areas of the brain when 

compared to a standard formula, deficient in n-3 fatty acids. The deposition of C22:6n-3 

was particularly high in the temporal lobe, known to be involved in both sensory output 

and visual and auditory information processing (Goustard-Langelier et al., 1999). Rooke 

et al. (1998) reported increased C22:6n-3 concentrations of brain and other tissues 

conferred by tuna oil supplementation of pregnant sows compared to soyabean oil 

supplementation. Similar results were also described in experiments using targeted tuna 

oil supplementation of pregnant sows (Rooke et al., 2001a) and in piglets born to sows fed 

salmon oil during pregnancy (Rooke et al., 2001 b). However, the results of the various 

studies published by Rooke et al. (1998; 2000; 2001a; 2001b) suggested that retinal 

C22:6n-3 concentrations were relatively inflexible and not altered by dietary 

supplementation. 

Dietary supplementation with n-3 fatty acids may have undesirable effects on the growing 

animal. Arbuckle and Innis (1992); Koletzko (1992) and Su et al. (1999) reported that the 

relatively high concentrations of C20:5n-3 in fish oils compete with C20:4n-6 within 

mammalian tissue. The concentrations of C20:4n-6 in phosphatidylglycerols are reduced, 

thus inhibiting eicosanoid production, affecting membrane fluidity, reducing growth rate 

and inducing immunosuppression. Neural tissues contain high concentrations ofC20:4n-6, 

which should be regarded as a conditionally essential fatty acid, especially given its role as 

an eicosanoid precursor (Huang and Craig-Schmidt, 1996). 

1.2.7.7. Effects of long -chain PUFAs upon behaviour 

Further to the work of Homstra et al. (1995), Makrides et al. (1995) and BougIe et al. 

(1999) in human infants, research has begun into the possibility of improving neonatal 

61 



animal vigour by the supplementation of diets with long-chain PUF As during pregnancy. 

Rooke et al. (2001a) reported that piglets from sows supplemented with tuna oil from day 

91 of pregnancy made contact with the udder and found a teat significantly quicker than 

piglets from sows fed a control diet. These behavioural measurements are thought to 

indicate enhanced neonatal vigour and improved visual acuity. Piglets born to sows fed 

tuna oil in late pregnancy were also heavier at birth (Rooke et al., 2001a). Piglet 

birthweight has been implicated as a possible indicator of vigour and is a reliable predictor 

of mortality in that low birthweight piglets are less likely to survive than moderate or 

heavy-weight offspring (Jean and Chiang, 1999). Behavioural parameters or measures of 

viability were not reported for the study of Rooke et al. (2001 b). However, piglet 

liveweight was increased by the addition of salmon oil to maternal diets, which could be 

suggested to enhance vigour. By contrast, a study by Rooke et al. (1998) reported that 

vigour scores of piglets from sows fed different fat sources were significantly higher when 

sows were supplemented with soyabean oil compared to tuna oil, despite increases in 

C20:5n-3 and C22:6n-3 in tissues of piglets on the tuna oil treatment. 

Supplementing the diets of piglets from birth to between 18 and 30 days of age with high 

dietary concentrations of long-chain n-3 PUF As resulted in significantly more correct 

maze entries when compared to supplementation with a low-n-3-PUFA diet, and a lesser 

tendency to perform stereotypic behaviours in the study of Ng and Innis (2003). 

Furthermore, these alterations in behaviour were associated with increased 

phosphatidylglycerol C22:6n-3 within the frontal cortex. However, the effect of long

chain n-3 PUF A supplementation upon ruminant behaviour is yet to be explored. 

1.2.7.8. Effects of long-chain PUFAs upon neonatal mortality 

Approximately four million neonatal lambs die each year in the UK, a significant 

proportion of these deaths occurring in extensive farming systems on hill and upland 
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fanns, at a potential loss of £120 million to the UK sheep industry (Fitt and Packington, 

1998; Merrell, 1998). The principal cause of this high mortality rate is hypothennia and 

starvation caused by a combination of placental insufficiency, a lack of colostrum, hypoxia 

during birth and failure of the interaction between ewe and lamb behaviours (Dwyer and 

Lawrence, 1998; Fitt and Packington, 1998). 

Colostrum intake is positively correlated with lamb survival (Nowak, 1996) as lambs with 

negligible or sub-optimal intakes during the first twelve hours of life have an increased 

mortality rate. The main functions of colostrum are to provide an energy source; generate 

the production of heat from non-shivering thennogenesis, enhance the immune status by 

immunoglobulin ingestion and facilitate expulsion of the meconium (Tuchsherer et al., 

2000). Neonatal lambs that are able to maintain their body temperature via a combination 

of ewe grooming behaviour and endogenous heat production, despite the heat loss resulting 

from evaporation of placental fluids, are significantly more likely to survive (O'Connor 

and Lawrence, 1992; Tuchsherer et al., 2000). This assumption is supported by the results 

of Tuchsherer et al. (2000) who demonstrated that piglets which survived had higher 

birthweights, suckled earlier and had a lower drop in body temperature at one hour post 

partum compared to piglets subsequently that died during the first 10 days of life. 

It is suggested that neonatal mortality may be reduced by maternal long-chain PUF A 

supplementation, due to improved nervous tissue development impacting upon vigour, 

colostrum intake and enhanced thermogenesis. Jean and Chiang (1999) concluded that 

supplementing pregnant sows with medium-chain triacylglycerols would improve piglet 

survival. However, this conclusion was based on the assumption that increased energy in 

the form of fat would improve vigour and reduce mortality resulting from energy 

insufficiency. Studies using pre-term human infants have also reported an improved 

prognosis as a consequence of long-chain PUF A supplementation (Homstra et al., 1995). 
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Neonatal animals with a high surface area:volume ratio are particularly vulnerable to heat 

loss, therefore, thermogenesis is essential to improve maintain body temperature (Herpin et 

ai., 2002). The influence of long-chain PUF As on enhancement of neonatal lamb vigour 

may be augmented by their role in the facilitation of non-shivering thermogenesis (NST), a 

mechanism by which heat is generated without muscular contraction (Herpin et at., 2002). 

Heat conservation is promoted by piloerection, shivering and constriction of blood vessels 

close to the skin in response to an acute drop in environmental temperature before NST is 

stimulated by the sympathetic nervous system (N edergaard et at., 2001; Subramanian and 

Vollmer, 2001). This mechanism occurs exclusively in brown adipose tissue (BAT; 

Takahsahi et at., 2000; Margareto et at., 2001) under the control of iodothyronine 5'

deiodinase (Trayhum et at., 1993), uncoupling protein-l (UCP-I) (Takahsahi et al., 2000) 

and the thyroid hormones thyronine (TH), thyroxine (T4) and 3,3',5:triiodothyronine (T3; 

Louveau et at., 2000). 

The inert T4 is converted to the biologically active T3 by iodothyronine 5'-deiodinase 

within BAT (Trayhum et at., 1993). This is required for the optimum function ofUCP-l 

(Liu et at., 1998), so-called due to its ability to uncouple oxidative phosphorylation by 

allowing protons to re-enter the mitochondrial matrix with a concurrent release of heat 

energy (Nedergaard et al., 2001; Figure 1.8). During thermogenesis, a cAMP and protein 

kinase cascade is activated which in tum, stimulates HSL to hydrolyse stored 

triacylglycerols and release free fatty acids (Klaus, 2001). Fatty acids are oxidised, and the 

resulting proton enters the respiratory chain. Synthesis of ATP is bypassed via the 

uncoupling of this process by UCP-I and the resulting energy is released as heat (Klaus, 

2001). The total amount of UCP in the neonatal animal determines its potential for NST 

(Nedergaard et ai., 2001). However, the exact mechanism by which T3 is essential for 

UCP-I function is as yet, undetermined (Nedergaard et at., 2001). 
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In the immediate post-parturient period, the neonate experiences a surge in T 3 and T 4 

concentrations in plasma, in addition to an increase in iodothyronine 5' -deiodinase activity 

(Louveau et al., 2000). There is a high concentration of UCP-l within BAT at birth, which 

is gradually reduced over the first few days or weeks of life (Trayhum et al., 1993). This 

suggests that the potential for thermogenesis via BAT is lower in the suckling animal 

compared to the neonate (Trayhum et al., 1993). 
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1.3. VITAMIN E 

1.3.1. Chemical classification of vitamin E 

1.3.1.1. Background and chemical structure of vitamin E 

In 1922, Evans and Bishop induced a deficiency syndrome In a pregnant rat by 

supplementing the diet with rancid fat. This condition led to reabsorption of the foetus. 

Adding fresh salad leaves to the diet revoked this symptom and it was concluded that a 

specific compound within the plants was responsible for this reversal (Evans and Bishop, 

1922). In 1924, Sure suggested that this compound be named "vitamin E". 

Two compounds isolated by Evans et al. (1936) from wheat germ oil were shown to have 

the properties ascribed to the vitamin and were characterised as (l- and ~-tocopherols, 

tocopherol from the Greek "tokos" meaning "childbirth" and "phorein", "to bring forth". 

Subsequently, two additional tocopherols were identified and classified as 'Y- and 0-

tocopherol, and the tocotrienols were discovered in plant oils (Azzi and Stocker, 2000). 

Therefore, vitamin E is the collective name for a group of fat-soluble tocol molecules 

classified into two groups: the tocopherols and the tocotrienols (Rice and McMurray, 

1982). Both tocopherols and tocotrienols consist of a 16-carbon isoprenoid side chain 

attached to a 2-methyl, 6-chromanol aromatic ring (Putnam and Comben, 1987; Figure 

1.9.). The carbon chain is wholly saturated in the tocopherols, and contains three double 

bonds in the tocotrienols (McMurray and Rice, 1982). 

A methyl group may be substituted for a carbon atom on one or more of the three positions 

of the chromanol ring (carbons five, seven and eight) of tocopherols and tocotrienols, 

resulting in a possible eight different compounds in each tocol family (Azzi and Stocker, 

2000). However, only the four tocopherol compounds, designated (l, ~, 'Y and 0 have been 

isolated in nature, of which (l and 'Y predominate (Dutta-Roy, 1999). 
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to C otrienol 

alpha-tocopherol 

Figure 1.9. Structure of tocopherol, tocotrienol and alpha-tocopherol (Putnam and Comben, 
1987 and Aui and Stocker, 2000) 

Chiral centres exist at each methyl branch point and a further eight optical isomers of each 

tocopherol and two of each tocotrienol are possible (Putnam and Comben, 1987). 

Consequently, a significant number of compounds exist with activity similar to that of 

vitamin E. Nonetheless, they are not all of equal biological strength to the most potent 

vitamin E compound, a-tocopherol (Morrissey et al., 1993; Table 1.8). 
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Table 1.8. Chemical structure of the tocol group of compounds (Putnam and Comben, 1987) 
-Tocopherol -Tocotrienol R, atom Rl atom R3 atom 

a 
p 
'Y 
o 

5,7,8-trimethyl-
5,8-dimethyl 
7,8-dimethyl-

8-methyl-

1.3.1.2. Biological activity of vitamin E 

Putnam and Comben (1987) postulated that tocol molecules are inserted into the 

membranes of mitochondria, microsomes and lysosomes of individual cells leaving the 

isoprenoid chains unbound. A different methylation structure on the chromanol ring 

results in a molecule that does not correspond to the space into which the molecule must fit 

for maximum activity (Putnam and Comben, 1987). Consequently, changes in ring methyl 

groups, stereochemistry of the chiral centres or unsaturation of the isoprenoid chain have 

significant effects on the biological activity of vitamin E isomers (Azzi and Stocker, 2000). 

Studies in pigs and cattle have demonstrated that only a-tocopherol is absorbed and utilised 

(McMurray and Rice, 1982). Other studies employing the rat foetal gestation-resorption 

assay have indicated that ~-tocopherol has up to 57 %, 'Y-tocopherol up to 31 % and 0-

tocopherol up to 1.4 % of the activity of a-tocopherol (Yang, 2003). 

Naturally occurring vitamin E found in grains and forages has the stereo-conformation 

RRR (Yang, 2003) whereas synthetic (all-rae) vitamin E used for feed supplementation is a 

racemic mixture of the eight stereo-isomers (RRR, RRS, RSR, RSS, SSS, SRS, SSR and SRR; 

Yang, 2003). It has been concluded that, in humans, RRR-a-tocopherol has up to three-

fold higher biological activity than all-rac-a-tocopherol (Azzi and Stocker, 2000). By 

contrast, Putnam and Comben (1987) stated that a synergism between the stereoisomers in 

all-rae-a-tocopherol results in an vitamin E source more potent than the form occurring 

naturally in forages. However, a selection pressure against all-rae-a-tocopherol in favour 

of RRR-a-tocopherol appears to exist post-absorption (Traber et al., 1996). It is assumed 
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that the tissue distribution of the tocols is related to the relative requirements of individual 

tissues for specific molecules. For example, the human brain contains a substantial amount 

of a-tocopherol and no tocotrienols (Azzi and Stocker, 2000), by contrast, 'V-tocopherol 

comprises over 50 % of total tocopherols in human skin (Yang, 2003). 

1.3.2. Sources of vitamin E within the ruminant diet 

1.3.2.1. Forages 

Ruminants are unable to synthesise a-tocopherol or convert other tocopherol isomers into 

the a-configuration and are therefore dependent on an adequate dietary supply (Putnam 

and Comben, 1987). Green forage is the main vitamin E source in the diet of grazing 

ruminants: cattle grazing fresh pasture may ingest up to 1,675 mg vitamin E/day (Herdt 

and Stowe, 1991). Plants produce appreciable quantities of tocols, with a-tocopherol being 

found within the chloroplast and the p-, y- and 0- isomers found in other cellular locations 

within seeds and leaves (Yang, 2003). The mixture of the different tocol isomers and 

species changes according to the specific tissue and maturity of the plant (Putnam and 

Comben, 1987). Evidence also suggests that the proportions of different tocols may 

change after harvest, especially if plants or grains are processed before feeding (Putnam 

and Comben, 1987). Dried forages such as hay are relatively high in tocopherols, although 

vitamin E content declines with maturity and is affected by harvest time and technique 

(Maas et al., 1984; Herdt and Stowe, 1991). Green forages and grass silages contain 

approximately 50 mg a-tocopherollkg DM, whereas dried forages such as hay may contain 

less than 10 mglkg if exposed to UV light and heat (Putnam and Comben, 1987). 

1.3.2.2. Oilseeds and cereals 

Vitamin E is found in the highest concentrations in plant latex lipids, followed by edible 

plant oils from oilseeds such as sunflower, linseed and rapeseed (Visioli and Galli, 2001; 

Table 1.9). Predictably, given vitamin E's antioxidant properties, oilseeds containing high 
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concentrations of unsaturated fatty acids have concurrent concentrations of vitamin E 

(Azzi and Stocker, 2000). Cereal grains and protein sources such as soyabean meal (after 

oil removal) contain approximately 8 mg vitamin E/kg DM (McMurray and Rice, 1982). 

However, preservation of "moist" cereals by the addition of propionic acid or caustic soda 

results in significant a-tocopherol loss and concentrations of <1 mg/kg have been reported 

due to the additive effect of moisture and acid (McMurray and Rice, 1982; Putnam and 

Comben, 1987). 

Table 1.9. Vitamin E contents of selected fee dstuffs 
Feedstuff a-tocopherol p-tocopherol 

(mglkg) (mglkg) 

Wheatgerm oil 
Sunflower oil 
Safflower oil 
Palm oil 
Olive oil 
Rapeseed oil 
Peanut oil 
Maize oil 
Soya bean oil 
Sesame oil 
NA = data not available 

1210b 

600b 

390b 

280b 

200b 

170b 

l30b 

110b 
100b 

lOb 

NO = not detectable «0.5mglI00g) 
aAzzi and Stocker, 2000 
bYang, 2003 

1.3.3. Antioxidant functions of vitamin E 

650 
20 
10 

NO 
NO 
170 
NO 
110 
100 
10 

'Y-tocopherol 
(mglkg) 

240 
10 
170 
320 
10 

350 
220 
600 
800 
240 

a-tocopherol 
(mglkg) 

250 
10 

240 
70 
ND 
10 
20 
20 

300 
30 

Vitamin E has a vital role as a lipid-soluble antioxidant within animal cells (Morrissey et 

al., 1993; Asadian and Mezes, 1996; Gonzalez-Corbella et al., 1998). An antioxidant is a 

substance that prevents the formation and propagation of free radicals, reducing the 

adverse effects of reactive oxygen and nitrogen species on mammalian physiological 

function (Wiseman, 1996; Leifert et al., 1999). Vitamin E is the most potent chain-

breaking antioxidant acting against the peroxidation of lipids and lipoproteins in cell 

membranes (Skomial et al., 2001). This is of particular importance in neural cells where, 

as a consequence of the high PUF A concentrations, membranes are inherently unstable and 

vulnerable to oxidation (Putnam and Comben, 1987). 
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1.3.3.1. Free radicals 

Free radicals are highly reactive molecules containing one or more unpaired electrons 

(Wiseman, 1996; Edwards et al., 2001). Whilst some free radicals are essential for normal 

cell function (e.g. the free radicals produced by the metabolism/elongation of C20:4n-6), 

most are highly damaging to cell lipids and proteins (McMurray and Rice, 1982; 

Vatassery, 1998; Edwards et al., 2001). Conventional cell metabolism leads to the 

reduction of oxygen and formation of peroxides and superoxides, which are a significant 

source of free radicals (Vatassery, 1998). 

1.3.3.2. Lipid peroxidation 

Lipid peroxidation is the inevitable consequence of a chain reaction initiated by the action 

of hydroxyl radicals (OHO) on polyunsaturated fatty acids, leading to oxidative damage to 

membrane lipoproteins and fatty acids (Figure 1.10.). Peroxidation occurs when a 

polyunsaturated fatty acid is attacked by a free radical, with the consequent removal of an 

electron from the fatty acid and the formation of a lipid radical (Lo; Conn et al., 1987). 

With the addition of oxygen, the reaction continues to produce a highly potent lipid 

peroxyl radical (LOOo) (Herdt and Stowe, 1991). The lipid peroxyl radical attacks a 

further PUF A molecule and continues the chain reaction (Herdt and Stowe, 1991). 

1.3.3.3. Vitamin E's mode of action against peroxidation 

Vitamin E may prevent the peroxidation of unsaturated fatty acids by donating a hydrogen 

atom from its chromanol ring to the lipid radical and reforming the reduced lipid molecule 

(LH; Ehrenkranz, 1980). 
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Figure 1.10. Lipid peroxidation (Conn et al., 1987) 

Alternatively it may donate a hydrogen atom to the lipid peroxyl, reSUlting in the formation 

of a lipid hydroperoxide (LOOH) (Wiseman, 1996; Chaudiere and Ferrari-Iliou, 1999). 

Although an a-tocopherol radical is formed, this radical is non-reactive and does not 

further propagate the chain reaction (Herdt and Stowe, 1991). Furthermore, a-tocopherol 
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is able to scavenge the peroxyl radical approximately 10 times faster than the lipids react 

with PUF As (Herdt and Stowe, 1991). The antioxidant potency of vitamin E is dependent 

upon the differing rates of the reactions that form lipid peroxyl radicals, and those which 

scavenge the peroxyl radical (Niki, 1996). 

The resonance-stabilised a-tocopherol radical may then be "recycled" by the donation of 

an electron from ascorbic acid (Halpner et al., 1998). Putnam and Comben (1987) 

therefore postulated that an adequate ascorbic acid supply may reduce the basal vitamin E 

requirement and that symptoms of vitamin E deficiency may be exacerbated by low 

cellular concentrations of ascorbic acid. It is also suggested that the coenzyme ubiquinol 

may perform a similar role to ascorbic acid (Wiseman, 1996; Chaudiere and Ferrari-Iliou, 

1999). Alternatively, the a-tocopherol radical may scavenge a second lipid-peroxyl radical 

and decompose to a-tocopherol-quinone (Halpner et al., 1998; Figure 1.11). 

1.3.3.4. The vulnerability of cellular membranes to lipid peroxidation 

The prevention of lipid peroxidation by a-tocopherol depends on the relative quantities of 

a-tocopherol, polyunsaturated fatty acids and other reactive oxidative species within the 

cell. 

Deposition of a-tocopherol primarily occurs at cellular sites where free radicals are 

produced in high quantities, i.e. within the membranes of the mitochondria and 

endoplasmic reticulum (Dutta-Roy, 1999), and in membranes with high PUF A contents 

(Herdt and Stowe, 1991). The susceptibility of individual cell membranes to lipid 

peroxidation increases with the concentration of unsaturated fatty acids within the 

membrane, and the level of unsaturation of those molecules (McMurray and Rice, 1982). 

Therefore, a membrane containing a high proportion of unsaturated fatty acids is more 

susceptible to peroxidation than one with a low unsaturated fatty acid content. 
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alpha-to copherol 

alpha-to copherol quinone 

Figure 1.11. Conversion of alpha-tocopherol to alpha-tocopherol quinone (Chaudiere and 
Ferrari-Iliou,1999) 

Vitamin E acts as a structural component within cell membranes by introducing methyl 

groups of the chromanol ring within non-aqueous compartments of the membrane (Putnam 

and Comben, 1987; Wiseman, 1996). The structure of vitamin E resembles that of the 

membrane lipids, thus the molecule binds within a chemical complex of PUF As and 

75 



membrane proteins, improving membrane stability via a reduction in membrane fluidity 

(Ehrenkranz, 1980). 

1.3.3.5. Vitamin E and its interaction with glutathione peroxidase 

Vitamin E acts synergistically with other biochemical compounds to prevent lipid 

peroxidation and specifically with the selenoprotein enzyme glutathione peroxidase (GPx). 

This enzyme interacts with a-tocopherol, removing peroxides within the cell by reducing 

them to their alcohol forms (Maas et al., 1984; Putnam and Comben, 1987; Bourre et al., 

2000; Daun et al., 2001). Increased concentrations of GPx in tissues are often correlated 

with Iowa-tocopherol concentrations, suggesting that GPx and vitamin E may have a 

complex, possibly compensational, relationship in the defence against lipid peroxidation 

(Daun, 2001). Nonetheless, although the actions of these two antioxidants complement 

each other, an excess of one does not compensate for a deficiency of the other. 

Furthermore, tissue GPx activity is a reliable indication of the selenium status of the 

animal. 

1.3.4. Vitamin E and selenium deficiency 

Vitamin E and selenium deficiency diseases may occur in all domesticated farm animals, 

but are manifested as various conditions and non-specific syndromes (McDowell et al., 

1996). In ruminants, deficiencies in vitamin E and selenium relative to the dietary 

peroxidation challenge leads to nutritional myopathy, also called nutritional muscular 

dystrophy, stiff-lamb disease or white muscle disease (Saez et al., 1996; EI-Neweehy et 

al., 2000). The disease may be a result of metabolic factors triggering intracellular damage 

which is exacerbated by vitamin E or selenium deficiency, or may be a secondary disease 

resulting from a primary deficiency syndrome (McMurray and Rice, 1982). 
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1.3.4.1. Underlying causes of vitamin E and selenium deficiency 

Nutritional myopathy was first identified in the UK in 1953 in young beef calves (Rice and 

McMurray, 1982). It mainly occurs in growing animals at turnout to pasture, especially 

after a prolonged period of housing on a diet low in vitamin E and selenium «10 mglkg of 

a-tocopherol and 0.2 mg/kg of selenium; Pehrson et ai., 1986; Hakkarainen et at., 1987). 

It may also occur in animals supplemented with feedstuffs grown in selenium-deficient 

areas (Walsh et ai., 1993). Alternatively, it may be identified at birth as congenital 

nutritional myopathy in neonates born to dams deficient in selenium or vitamin E (Bostedt 

and Schramel, 1990). It has been demonstrated that cattle on low-fat diets do not develop 

nutritional myopathy, even when fed very low levels of vitamin E (Herdt and Stowe, 

1991). Vitamin E and selenium deficiency does not inevitably lead to disease (Putnam and 

Comben, 1987) and mild or subclinical deficiencies are relatively common (Rice and 

McMurray, 1982; Topps and Thompson, 1984). 

1.3.4.2. Symptoms of vitamin E and selenium deficiency 

Symptoms of vitamin E and selenium deficiency vary according to species and severity of 

the disease (Table 1.10). The acute form of nutritional myopathy is manifested as sudden 

death from cardiac failure in young animals, with few preceding symptoms as a result of 

lesions within the cardiac muscle (Kennedy and Rice, 1992). By contrast, the first 

symptom of the moderately acute syndrome is gait stiffness, followed by an unwillingness 

or inability to stand with muscle tremors, laboured abdominal-type respiration and finally 

death due to cardiac arrest (Steele et ai., 1980). Sub-clinical or chronic nutritional 

myopathy may present itself as infertility in ewes and retarded growth in young animals 

(Saez et ai., 1996). Blood samples taken from diseased lambs show low levels of plasma 

a-tocopherol «1.0 J.1g/ml), plasma selenium «0.04 mg/kg) and erythrocyte GPx «35 IU/g 

Hb) in conjunction with high levels of serum enzymes creatine kinase (CK), lactic 

dehydrogenase, aspartate transaminase and glutamic oxalacetic transaminase (Maas et ai., 
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Table 1.10. Symptoms ()Lvi~allJin Band selen~um_d!!fi£ie_ncy 
Species Symptoms 

Sheep 

Sheep 

Sheep 

Sheep 

Sheep 

Sheep 

Sheep 

Cattle 

Cattle 

Cattle 

Weakness, staggering gait, frothing at mucous membranes, inability to stand 

Low blood selenium concentrations, inability to walk or extend limbs fully, rigid skeletal muscles, mottled pale 
muscles at necropsy, swollen muscle fibres, blood and fluid accumulation in liver and kidney 

Reduced GSHPx activity, reduced selenoproteins, suppressed immunity 

Locomotive disorders, joint stiffuess, ataxic movement, muscle tremors, dyspnea 

Cardiac and skeletal muscle lesions, respiratory muscle lesions, pneumonia, inability to stand or suckle, still
birth 

Reduced levels of a-tocopherol and GSHPx, increased level of serum creatine kinase 

Infertility in ewes (subclinical) and reduced growth in lambs 

Skeletal and cardiac myonecrosis, lameness, sudden death 

Inability to stand, stiff gait, increased serum aspartame aminotransferase and creatine kinase 

Cardiac lesions, reduced a-tocopherol, GSHPx and haemoglobin levels, muscular dystrophy 

Reference 

(Steele et al., 1980) 

(Maas et al., 1984) 

(Rock et al., 200 I) 

(EI-Neweehy et aI., 2000) 

(Fitt and Packington, 1998) 

(Rice and McMurray, 1982) 

(Saez et al., 1996) 

(Walsh et al., 1993) 

(Pehrson et al., 1986) 

(McMurray and Rice, 1982) 



1984; Pehrson et al., 1986; EI-Neweehy et al., 2000). At necropsy, bilateral lesions may 

be seen in skeletal and cardiac muscles and tissues appear pale and swollen due to both 

deposition of calcium in necrosed areas, and oedema (McMurray and Rice, 1982). 

1.3.4.3. Prevention and cure of vitamin E and selenium deficiencies 

Nutritional myopathy may be prevented by the provision of adequate dietary vitamin E and 

selenium relative to the dietary PUF A intake. Indeed, EI-Neweehy et al. (2000) reported 

that the provision of vitamin E and selenium to affected Nadji lambs successfully reduced 

clinical symptoms. Oral vitamin E supplementation has also been reported to prevent 

nutritional myopathy induced by selenium deficiency (Steele et al., 1980). Moreover, 

Walsh et al. (1993) successfully induced nutritional myopathy in calves by the provision of 

dietary PUF As, but were unable to stimulate similar symptoms in lambs supplemented 

with vitamin E and selenium. 

An injection of 1-2 mg selenium and 46 mg of a-tocopherol was confirmed by Maas et al. 

(1984) to return blood parameters of clinically affected lambs to normal levels within 21 

days, though the response was relatively slow and was dependent on the severity of the 

initial symptoms. In view of their complementary, yet separate roles within the cell, 

supplementation with vitamin E may not resolve disease symptoms caused by selenium 

deficiency and vice versa (Maas et al., 1984). It is difficult to determine whether an 

individual case of nutritional myopathy will respond to a-tocopherol or selenium, 

therefore, treatment with a combination of the two nutrients is advised (EI-Neweehy et al., 

2000). 

1.3.5. Vitamin E and its role in the immune system 

Although the primary role of vitamin E is as a cellular antioxidant, it has a number of other 

functions within the animal (Putnam and Comben, 1987). Arguably the most significant 
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non-antioxidant function of vitamin E is the essential role it plays in immune system 

function. It has been demonstrated that vitamin E supplementation stimulates T -helper 

cells, thereby enhancing the animal's immune response (Putnam and Comben, 1987; Azzi 

and Stocker, 2000). Furthermore, in neonatal animals, supplementation of the dam with 

vitamin E increases the transfer of immunoglobulins from the dam to offspring via 

colostrum (Sikka et ai., 2002). Vitamin E also appears to reduce the production of both 

immunosuppressive glucocorticoids, and the inflammatory products of C20:4n-6 

metabolism (Hidiroglou et ai., 1992). 

1.3.6. Ruminant digestion of vitamin E 

1.3.6.1. Degradation of vitamin E within the rumen 

There is conflicting evidence as to whether, in ruminants, the majority of ingested vitamin 

E is absorbed through the small intestine, or if it is subject to ruminal degradation. Dietary 

vitamin E loss before the duodenum has been shown to increase from 8-42 % in sheep as 

the concentrate proportion of the diet increases from 20-80 % (Leedle et ai., 1993). 

Therefore, Leedle et ai. (1993) suggested that only a proportion of dietary vitamin E is 

absorbed at the small intestine and that the amount degraded in the rumen has a high 

positive correlation with the concentrate content of the diet. Nonetheless, Chikunya et al. 

(2004) reported a flow of vitamin E equal to 90 % of dietary intake at the small intestine in 

supplemented sheep, a flow which was unaffected by the concentration of PUF As within 

the diet. The characteristics of the rumen microorganism population change significantly 

when diet high in concentrates is fed, therefore it is possible that this change may favour a 

microbial strain that has a higher propensity for a-tocopherol degradation. 

Leedle et al. (1993) investigated the supposition that vitamin E was degraded by rumen 

microorganisms using fistulated cattle fed a diet with a high concentrate:forage ratio. 

Concentrations of a-tocopherol acetate equivalent to 450 mg/animal/day were added to 

80 



rumen contents and the amount remaining after a 24 hour incubation period was recorded. 

Results suggested that rumen microorganisms do not degrade vitamin E and ruminal 

esterase enzymes are not biologically active upon a-tocopherol acetate. The double bonds 

of a-tocopherol are located within the aromatic ring and consequently are not easily 

biohydrogenated or anaerobically degraded. It is therefore logical to hypothesise that the 

potential for ruminal degradation is negligible. This is in contrast to the results published 

by Chikunya et al. (2004) who reported ruminallosses of9 % for high vitamin E and 21 % 

for low vitamin E diets fed to sheep. It was suggested that a-tocopherol acetate is more 

stable in the rumen than RRR-a-tocopherol due to inherent biochemical differences; 

however, this hypothesis was disproved by Han and Owens (1999). 

1.3.6.2. Small intestinal digestion and absorption of vitamin E 

During lipid digestion, vitamin E is emulsified with fat globules within the small intestine 

and is incorporated into a water-soluble micellular solution of fatty acids and bile salts 

(Hollander et al., 1975; Hollander, 1981; Borel et al., 2001). Micelles are then transported 

through the un stirred water layer towards the membrane of the microvilli (the rate-limiting 

step in fat-soluble vitamin absorption) and vitamin E passively diffuses across the brush 

border of the upper small intestine (Figure 1.12; Hollander et al., 1975; Hollander, 1981). 

As vitamin E is absorbed with the fatty acid component of the diet, any disruption or 

inefficiency in lipid digestion affects the absorption of vitamin E (Herdt and Stowe, 1991). 

Hollander (1981) reported that, although medium-chain fatty acids promote vitamin E 

absorption in the small intestine, PUF As inhibit the rate of absorption. A higher rate of 

inhibition was also observed with increasing PUF A concentration within the diet 

(Hollander, 1981). This may result from increased micelle size or the enhanced negative 

surface charge of micelles containing concentrations of high vitamin E (Hollander, 1981). 

Apparent losses of vitamin E between ingestion and incorporation into plasma may 

81 



Small intestine 

GOLGIBODY 

MICELLULAR 
SOLUTION 

Microvillus membrane 

Mucosal cell 

Lymph I 
Plasma 

Extrahepatic 
tissues 

Hepatocyte 

Figure 1.12. Vitamin E absorption and transport (Aui and Stocker, 2000) 
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therefore be attributed to reduced intestinal absorption. Indeed, the study of Wachira 

(1999) indicated that the absorption of vitamin E in growing lambs fed on concentrate

based diets was particularly low. This was attributed to an interaction between dietary 

vitamin E and PUF A supplementation. 

1.3.6.3. Post absorption metabolism of vitamin E 

Following absorption, chylomicrons are exocytosed to the lymphatic system and released 

into the blood (Ehrenkranz, 1980). The liver then assimilates Vitamin E during 

chylomicron metabolism (Herdt and Stowe, 1991; Azzi and Stocker, 2000). A transfer 

protein specific to a-tocopherol (a-TTP) is responsible for the uptake of a-tocopherol from 

hepatic cells into very low-density lipoproteins (Schelling et al., 1995). The specificity of 

this protein may explain the preponderance of a-tocopherol in plasma and tissues 

compared to the other tocopherol isomers (Schelling et al., 1995). The plasma 

phosphatidylglycerol transfer protein (PL TP) facilitates the exchange of a-tocopherol 

between HDL and LDL fractions, and these lipoproteins deliver the vitamin to target cells 

(Azzi and Stocker, 2000). Azzi and Stocker (2000) also described a tocopherol-binding 

protein (TAP: tocopherol-associated protein) found in liver, prostate and brain, which is 

hypothesised to be responsible for the regulation of a-tocopherol concentrations in these 

tissues. Some discrimination has also been observed between RRR-a-tocopherol and all

rac-a-tocopherol within human and animal tissues, suggested to be due to a specific 

transfer protein (Hidiroglou et al., 1992; Traber, 1996). At high supplemental doses, this 

discrimination is not apparent, possibly due to saturation of receptor sites (Behrens and 

Madere, 1991). 

1.3.6.4. Vitamin E storage within animal tissue 

The majority of absorbed vitamin E is stored within fat droplets of adipose tissue and 

muscle with a small amount present in liver (Herdt and Stowe, 1991; Traber, 1996). 
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Adipose tissue vitamin E turnover is extremely slow and analysis may give an indication of 

long-term vitamin E status. By contrast, liver and muscle provide both a labile source of 

vitamin E and a site for prolonged storage (Morrissey et al., 1993). 

1.3.7. The ruminant vitamin E requirement 

The Agricultural Research Council (1980) do not prescribe an official vitamin E 

requirement for ewes or lambs save for a suggestion that 10-15 mg/kg DM is the minimal 

concentration required in the diet. However, it is logical to suggest that the dietary supply 

should be related to the minimum basal requirement for antioxidant vitamins. 

Furthermore, Thakur and Srivastava (1996) proposed that the additional vitamin E 

requirement conferred by dietary nutrients that increase the peroxide challenge to the 

animal (e.g. PUFAs) should also be considered when proposing a dietary allowance for 

vitamin E. Moreover, the status of the animal in terms of other antioxidant compounds and 

possible compensational interrelationships should be considered. 

1.3.7.1. Quantification of the ruminant vitamin E requirement 

To define the ruminant's requirement for a specific nutrient, it is essential to quantify the 

threshold of dietary supply below which clinically-detectable deficiency symptoms occur 

(Hyldgaard-Jensen, 1977; Putnam and Comben, 1987), and to manipulate tissue 

concentrations of that nutrient until appropriate end-points are reached (Ward et al., 1996). 

However, the vitamin E requirement of ewes may be further confounded by the 

composition of the diet (Putnam and Comben, 1987; Farnworth et al., 1995). It has been 

postulated that the vitamin E requirement should be correlated with the PDF A intake, 

assuming that an adequate dietary supply of selenium is provided (Herdt and Stowe, 1991; 

Farnworth et al., 1995). Putnam and Comb en (1987) suggested that optimum ruminant 

allowances might be better expressed as requirements according to liveweight and 

production level, for example, 1 mg vitamin E/day/kg liveweight plus 5 mg vitamin E/kg 
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milk production and 3 mg vitamin E/g dietary PUFAs. Furthermore, Pehrson et a/. (1986) 

recommend a supplementary level of 1 mg a-tocopherol per 0.6 g supplementary dietary 

PUF As. Plasma vitamin E concentrations are correlated both with the amount stored in 

liver and dietary intake, and may be a suitable indicator of vitamin E status in mature 

animals (Hidiroglou et a/., 1992). The index proposed by Hidiroglou et ai. (1992) for use 

in cattle may therefore be used to evaluate the adequacy of nutritional supplementation 

upon plasma vitamin E concentrations (Table 1.11). 

Table 1.11. Adequacy ofplasma vitamin E concentrations in ruminants (Hidirog/ou et a/., 1992) 
Vitamin E status Plasma a-tocopherol (mg/kg) Plasma a-tocopherol (pmol/l) 

Deficient 
Marginal 
Minimal 
Adequate 

<2.0 
2.0-3.0 
3.0-4.0 
>4.0 

<4.65 
4.65-6.97 
6.97-9.30 

> 9.30 

1.3.7.2. Vitamin E requirements of the pregnant ewe and neonatal lamb 

The vitamin E requirements of pregnant ruminants are further complicated in that the 

foetal requirement must be estimated (Farnworth et ai., 1995). Plasma vitamin E 

concentrations are negligible in neonatal animals (Martin and Hurley, 1977; Agricultural 

Research Council, 1980; Van Saun et al., 1989) and this has led to the supposition that 

neonatal lambs are deficient in vitamin E as a result of low placental transfer (Mahan and 

Vallet, 1997; Fitt and Packington, 1998). Cuesta et al. (1995) suggested that this 

correlation between maternal and foetal bovine serum vitamin E indicates that placental 

transfer is insufficient, despite increased plasma vitamin E concentrations being observed 

in lambs born to supplemented ewes. The placenta also appears to be able to discriminate 

between transfer of RRR-a-tocopherol and all-rac-a-tocopherol to the foetal lamb, 

resulting in lower levels of the latter isomer within foetal plasma (Acuff et al., 1998). 

Merrell (1998) reported that vitamin E supplementation of pregnant ewes increased plasma 
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concentrations of this vitamin in neonatal lambs. However, as plasma samples were taken 

at 24-36 hours of age they would have been confounded by colostrum consumption. It is 

not clear whether plasma vitamin E is a reliable indicator of vitamin E status, especially in 

neonatal animals at risk of deficiency (Vatassery et al., 1988). 

Vitamin E is efficiently transported across mammary tissue, resulting in relatively high 

concentrations in colostrum and suckling lamb plasma (Kott et al., 1998; Merrell, 1998). 

Consequently, some researchers consider that the foetal vitamin E requirement is 

impossible to satisfy via maternal supplementation during gestation, and that providing a 

high vitamin E supply via colostrum is sufficient to meet neonatal lamb requirements 

(Mahan and Vallet, 1997; Fitt and Packington, 1999). An adequate vitamin E supply is 

vital for the formation and maintenance of cell membranes during rapid postnatal growth 

in the neonatal lamb. As the diet of the neonate consists solely of milk for the first few 

weeks of life, the only mechanism by which the neonatal lamb vitamin E supply may be 

manipulated is via the diet of the lactating ewe (Maas et al., 1984). A specific 

requirement, other than the increase in requirements with an increase in unsaturated fatty 

acids, is therefore yet to be established. 

1.3.8. Effect of supplemental vitamin E upon neonatal lamb vigour and mortality 

Both Merrell (1998) and Kott et al. (1998) demonstrated improvements in lamb vigour 

when ewes were supplemented with vitamin E during pregnancy. Consequently, the 

hypothesis that vitamin E does not cross the placenta in any appreciable amount may be 

appropriate for further investigation. It has been postulated that vitamin E has an effect on 

the vigour and survival of neonatal lambs, especially in adverse environmental conditions, 

due to the correction of sub-clinical maternal deficiencies by supplementation (Merrell, 

1998). Kott et al. (1998) supplemented pregnant ewes with either basal (30 mg/day) or 

high (250 mg/day) levels of vitamin E and detected a significant reduction in lamb 

86 



mortality during the early lambing season. Consequently, the total weight of lambs 

weaned per ewe was significantly greater for ewes supplemented with high levels of 

vitamin E. Kott et al. (1983) also reported reduced pre-weaning mortality of lambs 

produced by ewes supplemented with 122 mg a-tocopherol acetate compared to control 

ewes. In a similar study by Merrell (1998), ewes were supplemented with 33 IU or 133 

IU/day of vitamin E during pregnancy, but supranutritional vitamin E supplementation had 

no effect on lamb mortality. This result may have been confounded by favourable weather 

conditions that reduced the typical lamb mortality figure by 50 %. Nevertheless, Merrell 

(1998) observed that lambs from ewes supplemented with high levels of vitamin E were 

more vigorous immediately after birth and ingested colostrum approximately three minutes 

earlier than unsupplemented lambs. Williamson et al. (1995) also reported that maternal 

vitamin E supplementation (804 mg IU at two weeks pre-partum) improved lamb vigour 

score but that lamb supplementation (404 mg injection at birth) did not affect lamb 

behaviour. The biochemical mechanism by which vitamin E crosses the placenta and 

affects lamb behaviour has yet to be defined. 

1.3.9. Effect of supplemental vitamin E upon birthweight and growth rate 

Kott et al. (1998) observed that birthweights and growth rates of lambs from ewes 

supplemented with vitamin E were similar to those of unsupplemented ewes. Furthermore, 

Martin and Hurley (1977) fed up to 500 mg vitamin E/day to pregnant rats and reported no 

effect of supplementation on litterweight. The latter study is in contrast to the results of 

Gentry et al. (1992) who reported an increase in the birthweight of lambs produced by 

ewes injected with 1005 mg of a-tocopherol at 21 days pre-parIum. 

Gentry et al. (1992) also reported that lamb liveweight gain was increased by vitamin E 

supplementation of the ewe and lamb. This study agrees with the report of Norton and 

McCarthy (1986) who recorded significantly higher liveweight gains in ram lambs from 
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ewes supplemented with vitamin E. Williamson et al. (1995) reported an increase in lamb 

liveweight gain resulting from maternal vitamin E supplementation, but no significant 

effect of direct supplementation of the lamb. This suggests that the observed effect may 

have been due either to differences in milk production or composition; or a difference in 

vitamin E utilisation between intramuscular injections and dietary sources. Macit et al. 

(2003a) found that food conversion efficiency was significantly improved by the vitamin E 

supplementation of growing lambs, and in a similar study, showed that lamb 

supplementation significantly increased daily liveweight gain (Macit et al., 2003b). Gentry 

et al. (1992) suggest that these improvements in liveweight gain and FCR in growing 

animals may be attributed to an enhanced immune status. It is not possible to conclude 

with any certainty whether the performance response to supplementation is due simply to 

an improvement in vitamin E status, or to the mitigation of reduced performance resulting 

from sub-clinical deficiency, especially when significant responses are seen at relatively 

low supplementation levels. 

1.4. CONCLUSION 

Research in human infants and pigs suggests that supplementation of pregnant ruminants 

with long-chain PUF As may improve neonatal lamb vigour and performance. This may 

results from increased deposition of DHA into neural tissue. However, given the 

hydrogenating effect of the rumen upon PUF As, further research is needed to elucidate 

whether it is possible to improve lamb vigour via maternal dietary supplementation. 

Supplementation of ruminants with vitamin E appears to have significant effects upon 

neonatal lamb behaviour. Nevertheless, the majority of evidence suggests that vitamin E 

cannot cross the placenta from the dam to the foetus. Consequently, the mechanisms by 

which the effects on vigour are mediated warrant further investigation. 
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2. GENERAL MATERIALS AND METHODS 

2.1. Routine Experimental Procedures 

2.1.1. Animals 

Ewes belonging to the Harper Adams University College early-lambing flock (Edgmond, 

Newport, Shropshire, UK), containing 160 Suffolk x North of England Mule, Friesland x 

Lleyn and Charollais x Lleyn ewes, were oestrus synchronized in July of 2000 and August 

of 2001 and 2002. Progestagen-impregnated sponges (Chronogest; Intervet UK Ltd, 

Cambridge, UK) were inserted into the vagina of ewes, removed after 14 days and the 

ewes injected with the appropriate amount of pregnant mare serum gonadotrophin (PMSG; 

Table 2.1) via the intramuscular route. Within Experiments One and Three, ewes were 

served by Charollais rams during the first oestrus after sponge removal. In Experiment 

Two, laparoscopic artificial insemination was performed upon ewes using semen from 

Charollais rams as a consequence of the foot and mouth outbreak in the UK. Rams were 

subsequently grazed with the ewes for a 30 day period. Raddle crayons were attached to 

rams 21 days after they were first allowed access to ewes and crayon marks used to 

identify ewes that had not conceived to the first service. At 84 days of gestation, ewes 

were ultrasonically scanned to determine the number of foetuses carried. 

Table 2.1. Dosage of pregnant mare serum gonadotrophin 
Experiments One, Two, and Three 

Experiment Breed 
1 Charollais X LJeyn 

LJeyn X Friesland 
Suffolk X North of England Mule 

2 Lleyn X Friesland 
Suffolk X North of England Mule 

3 Suffolk X North of England Mule 
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PMSG dosage (IU) 
350 
350 
500 
400 
400 
400 



2.1.2. Straw intake 

Daily straw intake for ewes in Experiments One and Two was calculated by feeding a set 

amount of straw at the start of the experiment, weighing back the refused straw three times 

per week (Monday, Wednesday and Friday) at 07.30 and increasing the amount of straw 

fed the day after each weigh-back by a factor of 1.25. Daily intakes were then calculated 

from the weekly data. During Experiment Three, straw intake was fed at a flat rate during 

pregnancy, calculated according to data collected in Experiments One and Two, and the 

refused material weighed back once per week (Tuesdays at 07.30). The straw intake was 

then stepped from weeks + 1 to +4 of lactation and the same method of intake calculation 

applied. 

2.1.3. Ewe liveweight and condition score 

The liveweight and condition score of ewes in all three experiments was measured at 14.00 

on Wednesday of each week during the trial. Ewes were weighed using an EziWeigh 

apparatus in Experiments One and Two (Tru-Test Ltd, Auckland, New Zealand) and an 

I.A.E scales system (Industrial and Agricultural Engineers, Riverside Works, Macclesfield 

Road, Leek, UK) in Experiment Three. All scales were calibrated using standard weights. 

Immediately post-weighing, ewe condition score was assessed, by the same technician 

over the three experiments, using the method described by Russel et al. (1969). 

2.1.4. Lamb liveweight 

Lambs were weighed at + 12 hours post-lambing in Experiments One and Two and at three 

hours post partum in Experiment Three to give an indication of birthweight without 

confounding maternal and neonatal behavioural measurements. Subsequently, lambs were 

weighed at 10.00 at 7, 14, 21 and 28 days of age using FG-60K scales (A and D Co., 

Japan) calibrated using standard weights. 
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2.1.5. Colostrum and milk 

Milk yield was measured and colostrum and milk samples obtained using a method 

adapted from Doney et al. (1979). At + 12 hours post partum lambs were confined behind 

a wire mesh barrier within the pen, providing visual, olfactory and limited tactile contact 

with the ewe but preventing suckling. A 1 ml intramuscular injection of oxytocin 

(Oxytocin Leo, LEO Animal Health, Buckinghamshire, UK) was then administered to the 

ewe and the ewe hand milked until the udder was empty. Colostrum was fed to the lambs 

via a stomach tube if required. At +4 hours from the end of the first milking, another 1 ml 

intramuscular injection of oxytocin was administered and the ewe fully hand milked before 

the lambs were returned to the ewe. The time interval between the end of the first and 

second milkings and the volume of colostrum produced during this interval was recorded 

and 4 x 50 ml sub-samples were taken and stored at -20°C until analysis. The same 

method was repeated at 21 (Experiment One) or 28 (Experiments Two and Three) days 

post partum to obtain milk samples and a measure of yield. Milk and colostrum secretion 

rate (mllhour) were calculated according to the following equation: 

Yield (ml)/[Time interval between the end of the first and second milkings (hours)] 

2.2. Parturient measurements 

2.2.1. Lambing routine 

The duration of lambing was recorded as the time from the appearance of the first lamb at 

the vulva to the expUlsion of the final (second or third) lamb. To avoid confounding 

maternal and behavioural observations, assistance was only provided to ewes during 

parturition if the lamb was not seen one hour after fluids appeared at the vulva; if a lamb 

was present at the vulva for two hours without further progress or if contractions occurred 

for two hours without the appearance of parturient fluids or a lamb. Assistance given was 

minimal and consisted of correcting lamb presentation unless the ewe was considered to be 
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unable to continue without further intervention. Assistance was recorded by the codes 

shown in Table 2.2. Assistance beyond the correction of presentation was used as a co-

variate when analysing behavioural measurements as this was reported by Cagnetta et al. 

(1995) to influence neonatal behaviour. In Experiments One and Two, stillborn lambs 

were replaced by lambs that were fostered on from a group pen of surplus ewes to balance 

post partum data. 

Table 2.2. Codings used for assisted lambing 
Assistance (1) Assistance (2) 
Corrected I leg back 
Presentation 2 legs back 

Head back 

Pulled 

Corrected 
Presentation 

Caesarian 

I leg + head back 
Breech 
<2min 
> 2 and < 5 min 
>5 min 
I leg back 
2 legs back 
Head back 
I leg + head back 
Breech 

2.2.2. Maternal behaviour 

Pulled < 2 min 
> 2 and < 5 min 
>5 min 

Code 
CI 
C2 
C3 
C4 
B 
PI 
P2 
P3 
CI P1/2/3 
C2 PI/2/3 
C3 PI/2/3 
C4 P1I2/3 
B PII2/3 
CAE 

Ewes were focal sampled after birth until both lambs had successfully suckled, and the 

performance of specific behaviours recorded. Two maternal behaviour scores were 

calculated for each ewe (one per lamb) and combined to give a total maternal behaviour 

score according to the method described in Table 2.3. In addition, in Experiments Two 

and Three, the latencies of three specific maternal behaviours were recorded (time taken 

from expulsion of the lamb to the ewe standing; making contact with the lamb and 

vocalising). Definitions of maternal behaviours were adapted from Dwyer and Lawence 

(1999) and are shown in Table 2.4. 
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Table 2.3. Maternal behaviour scoring system 
Behaviour 
Ewe gets up within 1 minute of lamb expulsion 
Ewe gets up within 3 minutes of lamb expulsion 
Ewe gets up within 5 minutes of lamb expulsion 
Ewe does not get up 
Ewe initiates close contact with lamb 
Ewe approaches lamb but does not initiate physical contact 
Ewe does not approach lamb 
Ewe withdraws from lamb (desertion) 
Ewe vigorously grooms lamb 
Ewe grooms lamb but is easily distracted/loses interest 
Ewe makes sniffs/noses lamb 
Ewe does not groom lamb 
Frequent low-pitched vocalisation (1 bleats/min) by ewe 
Occasional vocalisation by ewe (0.3 bleats/min) 
Ewe does not vocalize 
Ewe stands and facilitates suckling 
Ewe stands allowing lamb to suck 
Ewe circles when lamb attempts to suck 
Ewe moves forwardslbackwards when lamb attempts to suck 
Ewe kickslbutts lamb and will not allow lamb to suck 

Table 2.4. Definitions o/maternal and neonatal behavioursll 

Animal Behaviour Definition 

Score 
15 
10 
5 
o 
25 
15 
5 
o 

50 
30 
10 
o 
20 
10 
o 

40 
30 
20 
10 
o 

Ewe Grooming Licking and nibbling movements directed towards the lamb 

Ewe Sniffing/nosing 

Ewe Withdrawing 

Ewe Facilitates sucking 

Ewe Circling 
(in response to sucking) 

Ewe Moving backwards 
Ewe Moving forwards 

Ewe Butting 

Ewe Abandonment/rejection 

Lamb Standing successfully 

Lamb Seeking the udder 
Lamb Successful suck 

a adapted from Dwyer and Lawrence, 1999 

2.2.3. Neonatal behaviour 

Ewes touches the lamb with her nose with no evidence of 
grooming 
Ewe moves back directly from away from the lamb at her 
head (2+ steps) 
Ewe crouches and turns one hindleg out to aid lamb 
sucking 
Ewe moves hindquarters away from lamb and attempts to 
maintain contact at head 
Ewe moves backwards away from lamb 
Ewe steps forwards over the top oflamb 
Ewe pushes lamb down or away with downwards, sideways 
or forwards movements of her head 
Ewe does not lick lamb, butts lamb ifit approaches 
Lamb supports itself on all four feet for at least 5 seconds 

Lamb has head under ewe in udder region 
Lamb has teat in its mouth, appears to suck for> 5 seconds 

Neonatal lambs were focal-sampled from expulsion until successful suckling and the 

latencies of standing, searching for the udder and successful suckling were recorded 

according to the definitions in Table 2.4. 
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2.2.4. Slaughter procedure 

The second-born triplet lamb from each triplet-bearing ewe was removed from the ewe 

immediately after expulsion and weighed using FG-60K scales (A and D Co., Japan) 

calibrated with standard weights. The lamb was then removed to a separate room and 

euthanased by an intravenous injection of sodium pentobarbitone (200mglml, Pentoject, 

Animalcare Ltd, Common Road, Dunnington, York, UK) into the jugular vein at a dosage 

of 0.8 ml/kg bodyweight. Cessation of the heartbeat was then confirmed by stethoscope. 

Blood samples were obtained by cardiac puncture and collected in evacuated tubes 

containing lithium heparin as an anticoagulant. Plasma was produced from the sample as 

described in section 2.3.4.1. The brain was then removed according to the procedure 

documented by the USDA Plant and Animal Health Inspection Service (2001) and the 

semimembranosis muscle was dissected out from the right hind leg. Tissue and plasma 

samples were stored at -20°C prior to analysis for fatty acids and vitamin E. 

2.3 Analytical procedures 

2.3.1. Feed analysis 

2.3.1.1. Dry matter 

Samples were analysed for DM according to the method described in MAFF (1986). A 

sub-sample of feed was weighed into a foil tray, dried in an oven at 80°C for 24 hours and 

then re-weighed at hourly intervals until a constant weight was achieved. The dry matter 

content of the sample was calculated according to the following equation: 

DM (g/kg) = [Dry sample weight (g)/Fresh sample weight (g)] x 1000 

Following dry matter determination, feed samples were ground using a 1 mm mill (Retsch 

zm- 1000) and further analysis was performed on the ground sample. 
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2.3.1.2. Ash 

Dried, ground sample (2 g) was accurately weighed into a porcelain crucible and the total 

weight recorded. The sample was then ashed at 550°C in a muffle furnace (Gallenkamp 

Muffle Furnace size 3,SanyoGallenkamp PLC, Monarch Way, Loughborough, UK) and 

cooled within a dessicator vessel. The residual weight of feedstuff remaining within the 

crucible after cooling was considered to be the ash content and was calculated via the 

equation below: 

Ash (glkg DM) = [Ashed sample weight (g)/Original sample weight (g)] x 1000 

2.3.1.3. Crude protein (CP) 

The crude protein content of feedstuffs was calculated via the kjeldahl digestion method. 

Dried, ground feed (0.5 g) was weighed in duplicate into nitrogen-free filter papers folded 

to form an envelope and added to digestion tubes containing two kjeldahl tablets (catalyst). 

Concentrated sulphuric acid (16 ml) was added to each tube, which were then digested at 

450°C for 45 minutes, allowed to cool and 75 ml deionised water added. Samples were 

then analysed using a Tecator 1035 autoanalyser (Foss UK Ltd., Parkway House, Station 

Road, Didcot, Oxon, UK) using hydrochloric acid (0.2 M) within a titration reaction. 

2.3.1.4. Neutral detergent fibre (NDF) 

The neutral detergent fibre content of feedstuffs was determined according to according to 

the method detailed by Van Soest et al. (1991). Dried, ground feed (0.5 g) was weighed 

into a crucible and digested within a fibretec apparatus (Tecator 1020, Foss UK Ltd., 

Parkway House, Station Road, Didcot, Oxon, UK) with 25 ml of neutral detergent solution 

(93 g disodium ethylene diamine tetra-acetate dihydrate (EDTA), 34 g sodium borate, 150 

g sodium lauryl sulphate, 50 ml 2-ethoxy ethanol and 22.8 g anhydrous disodium 
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phosphate made up to 5 litres with distilled water) plus 0.5 ml octanol acting as an anti

foaming agent. After 30 minutes digestion, the sample was washed and filtered three times 

with 20 ml of deionised water at 80°C. Exactly 2 ml of a-amylase solution (2.2 g of a

amylase E.C.3.2.1.1. from bacillus sbtilis) was dissolved in 99 ml of distilled water, 

filtered, and 11 ml of 2-ethoxy ethanol added. The resulting solution was mixed with the 

samples and boiled for 30 minutes, before washing three times with deionised water at 80 

°C and once with 20 ml of 100 % acetone. Crucibles and digested samples were removed 

to an oven and dried at 100°C overnight. They were then cooled in a dessicator, weighed 

and ashed at 550°C for 4 hours. The resulting residue was cooled and weighed, the NDF 

content of the feedstuff being calculated as: 

NDF (glkg DM) = 

[(Residue weight (g) - Ash content (g»/Original sample weight (g)] x 1000 

2.3.2. Colostrum analysis 

2.3.2.1. Colostrum protein 

Colostrum protein content was determined by the kjeldahl digestion method. Samples 

were defrosted and heated to 40°C in a circulating water bath before 2 ml colostrum was 

weighed in duplicate into digestion tubes containing two kjeldahl tablets (catalyst). 

Concentrated sulphuric acid (16 ml) was added to the tubes, which were then digested at 

450°C for 45 minutes, allowed to cool and 75 ml deionised water added. Samples were 

then analysed using a Tecator 1035 autoanalyser (Foss UK Ltd., Parkway House, Station 

Road, Didcot, Oxon, UK) using hydrochloric acid (0.2 M) within a titration reaction. 

2.3.2.2. Colostrum fat 

The concentration of fat within colostrum samples was determined by the Gerber method 

described in MAFF (1986). Samples were defrosted and heated to 40°C in a circulating 
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water bath, a 10 ml colostrum sample was then diluted to 1 in 3 with distilled water. 

Sulphuric acid (10 ml) was added to Gerber butyrometer tubes followed by 10.94 ml of 

diluted colostrum, repeated in duplicate. Mixing of sulphuric acid and colostrum was 

achieved by the use of a milk pipette for colostrum addition, tilted at an angle of 

approximately 30° to the top of the tube. Amyl alcohol (1 ml) was added to the tube, 

resulting in a third distinct layer, a lock stopper was then inserted into the neck and each 

tube was shaken in a protected stand. Samples were shaken until all white particles within 

the mixture had disappeared, the butyrometer was then centrifuged at 311 g for 5 minutes 

prior to immersion in a water bath at 65°C for between three and ten minutes. The fat 

content of the colostrum was read from the graduated scale on the butyrometer until a 

constant reading was achieved and the difference between duplicate readings was 0.05 %. 

The total fat content (glkg) was calculated by multiplication of the mean of the two 

duplicate readings by a dilution factor of 30. 

2.3.3. Milk analysis 

The protein, fat, lactose and solids-not-fat content of milk samples were determined using 

a Dairylab 2 infrared milk analyser. Samples were defrosted and heated to 40°C in a 

circulating water bath before thorough mixing and a 1 ml subsample introduced into the 

analyser via a metal probe. The analysis was then repeated and the mean composition of 

the two duplicates recorded. The analyser was calibrated for the analysis of ewe milk 

using standards of known concentrations of fat (Quality Management, Trenslo House, Tile 

Street, Bury, Lancashire, UK), ranging from 30-260 glkg. 

2.3.4. Blood analysis 

Samples were collected in evacuated "Vacutainer" (BD Vacutainer Systems, Preanalytical 

solutions, Belliver Industrial Estate, Plymouth, UK) tubes containing the anticoagulants 
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lithium heparin or potassium oxalate for the production of plasma or whole blood; or into 

plain tubes containing no additive to produce serum. 

2.3.4.1. Initial preparation 

Samples for plasma production were immediately centrifuged at 2290 g in a Beckman 

A vanti 30 centrifuge (Beckman Coulter UK Ltd, Kingsmead Business Park, London Road, 

High Wycombe, Buckinghamshire, UK), the plasma removed and stored in 1.5 ml micro

centrifuge tubes at -20°C before analysis. Plasma samples from tubes containing 

potassium oxalate were analysed for urea, ~-hydroxybutyrate (~HB) and non-esterified 

fatty acids (NEF A; Experiment One only). Heparinised plasma was analysed for vitamin E 

and fatty acids. Blood samples for serum production were stored at 4 °C for four hours 

after sampling before centrifugation at 2290 g in a Beckman Avanti 30 centrifuge. The 

serum was then removed and stored in 1.5 ml micro-centrifuge tubes at -20°C before 

analysis for CK. 

Whole blood samples from tubes containing lithium heparin were aliquotted into micro

centrifuge tubes and stored at -20°C before analysis for GPx. Prior to storage, a sub

sample of whole blood was taken and packed cell volume calculation applied according to 

the method described in Kerr (2002). Briefly, blood was mixed thoroughly, a capillary 

tube was filled to approximately three-quarters of its length with the sample and the end 

sealed with a clay sealant (Cristaseal, Biochrom Ltd, Cambridge Science Park, Milton 

Road, Cambridge, UK). The tube was then centrifuged for 5 minutes (1000 g), removed 

from the apparatus and the packed cell volume determined using a microhaematocrit 

reader. 
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2.3.4.2. Analysis 

Urea, PHB and NEF A were determined in plasma samples by photometric analysis using 

Bayer (Urea; kit number TOI-1819-85, Bayer Diagnostics, Newbury, UK) Randox (PHB; 

kit number RBlO07, Randox, County Antrim, UK) and Wako (NEFA; NEFA C Test, 

Wako chemicals, USA) methods and reagents. Concentrations of CK in serum were 

analysed by a enzymatic method using the TO 1-1882-85 kit from Bayer; GPx 

concentrations were analysed by an enzymatic procedure using the RS504 kit 

manufactured by Randox. All analyses were performed on a Bayer Technicon Ra-lOOO 

autoanalyser (Bayer PIc, Strawberry Hill, Newbury, Berkshire, UK). 

2.3.5. Fatty acid analysis 

2.3.5.1. Feed samples 

Feed fatty acid extraction was performed according to the method described by Wachira et 

al. (2002), derived from Folch et al. (1957). Approximately 300 mg of ground, thawed 

feed was weighed into a 30 ml Pyrex screw-top tube and the exact sample weight recorded. 

To this sample was added 6 ml saponification mixture (140.3 g potassium hydroxide 

dissolved in 250 ml distilled water plus 0.5 g quinol dissolved in 260 ml methanol) and 

100 ).11 internal C21 standard (150 mg heneicosanoic acid dissolved in 10 ml chloroform). 

This mixture was then saponified in a circulating water bath at 60°C for three hours, 

shaking every 15 minutes. The mixture was then cooled, 3 ml ION H2S04 was added and 

the tube returned to the water bath for a further hour of saponification at 60°C. The 

mixture was then refrigerated overnight. The following day, 12 ml distilled water and 5 ml 

of 40-60 °C petroleum ether was added and the sample shaken vigorously for one minute. 

The water and petrol layers in the tube were separated by centrifugation at 220 g for five 

minutes and the top (petrol) layer removed into a clean tube. This was repeated twice 

more until there were three petrol layers in the tube (approximately 15 ml petrol). A small 

spatula of sodium hydrogen carbonate was then added to neutralise any acidity and a large 
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spatula of anhydrous sodium sulphate to remove any remaining water and the sample was 

shaken for approximately one minute. After centrifugation at 220 g for five minutes, the 

petrol was decanted into a clean tube, flushed with nitrogen and stored at -20 °e until 

methylation. 

2.3.5.2. Brain samples 

Brain fatty acid extraction was performed according a method modified from that 

described by Wachira et al. (2002), derived from Folch et al. (1957). Approximately 0.50 

g of thawed, homogenised brain tissue was weighed into a 30 ml Pyrex screw-top tube and 

the exact weight recorded. To this samples was added 6 ml saponification mixture (140.3 

g potassium hydroxide dissolved in 250 ml distilled water plus 0.5 g quinol dissolved in 

260 ml methanol) and 100 JlI internal e21 standard (150 mg heneicosanoic acid dissolved 

in 10 ml chloroform). This mixture was saponified in a circulating water bath at 60 °e for 

three hours, shaking every 15 minutes. The mixture was then cooled, 3 ml ION H2S04 was 

added and the tube returned to the water bath for a further hour of saponification at 60 °e. 

The mixture was then refrigerated overnight. The following day, 12 ml distilled water and 

5 ml of 40-60 °e petroleum ether was added and the sample shaken vigorously for one 

minute. The water and petrol layers in the tube were separated by centrifugation at 220 g 

for five minutes, 5 drops of absolute ethanol added and the mixture again centrifuged at 

400 g for 10 minutes. The top (petrol) layer was then removed into a clean tube. This was 

repeated twice more until there were three petrol layers in the tube (approximately 15 ml in 

total). A small spatula of sodium hydrogen carbonate was then added to neutralise any 

acidity and a large spatula of anhydrous sodium sulphate to remove any remaining water 

and the sample was shaken for approximately one minute. After centrifugation at 220 g for 

five minutes, the petrol was decanted into a clean tube, flushed with nitrogen and stored at 

-20 °e until methylation. 

100 



2.3.5.3. Plasma 

Plasma fatty acids were analysed according to the method described in Enser et al. (1996), 

derived from Fo1ch et al. (1957). Thawed plasma samples were briefly mixed using a 

vortex mixer, and 1 ml of plasma transferred into a 15 ml Pyrex screw-top tube using a 

calibrated pipette. Exactly 2.5 ml quinol in methanol (0.5 g quinol dissolved in 500 ml 

methanol), 0.8 milO M KOH (140.3 g potassium hydroxide dissolved in 250 ml distilled 

water) and 40 ~l internal C21 standard (75 mg heneicosanoic acid dissolved in 10 ml 

chloroform) were added and the mixture was saponified in a circulating water bath at 60°C 

for two hours, shaking every 15 minutes. The mixture was then cooled and refrigerated 

overnight. The following day, 5 ml distilled water and 3 ml of 40-60 °C petroleum ether 

was added and the sample shaken vigorously for one minute. The water and petrol layers 

in the tube were separated by centrifugation at 220 g for five minutes, two drops of 

absolute ethanol were added to removed the gel formed by centrifugation and the top 

(petrol) layer was removed into a clean tube. This was repeated twice more until there 

were three petrol layers in the tube. A small spatula of sodium hydrogen carbonate was 

then added to neutralise any acidity and a large spatula of anhydrous sodium sulphate to 

remove any remaining water and the sample was shaken for approximately one minute. 

After centrifugation at 220 g for five minutes, the petrol was decanted into a clean tube, 

flushed with nitrogen and stored at -20°C until methylation. 

2.3.5.4. Methylation of feed, tissues and plasma 

Feed, plasma and tissue sample fatty acids extracted into petroleum ether were dried under 

nitrogen in a 60°C circulating water bath and 0.5 ml petroleum ether added to the residue. 

Approximately 12 drops of diazomethane were then added to the samples which were left 

in a fume cupboard for any residual diazomethane to evaporate. Subsequently, samples 

were dried under nitrogen and a suitable amount of petroleum ether added (0.7 ml for 
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plasma samples, 1.5 ml for feed samples) before the methylated samples were transferred 

into vials and run on a gas chromatograph. 

2.3.5.5. Colostrum and milk 

Fatty acid analysis of colostrum and milk samples was carried out according to a method 

modified from Folch et al. (1957) and Christie (1982). Exactly 1 ml of colostrum or milk 

was weighed into a 30 ml pyrex screw-top tube, to which 100 III of internal (C21) standard 

(200 mg heneicosanoic acid (C21 :0) dissolved in 10 ml chloroform) 10 ml methanol and 5 

ml chloroform were added. The mixture was then homogenised at the highest speed for 

approximately 20 seconds and filtered through an 11 cm Whatman No. 54 filter paper into 

a clean 30 ml pyrex screw-top tube. Exactly 10 ml of chloroform was added to the original 

sample tube and this was again homogenised for 20 seconds before being used to rinse the 

filter paper. The homogenised probe was rinsed with a chloroform wash between samples. 

5 ml of 0.88 % KCI (8.8 g KCI in 1 litre distilled water) was added, the sample capped and 

shaken vigorously for 2 minutes before overnight storage in the dark. 

The following day, the top layer was aspirated using a water vacuum pump. Precisely 5 ml 

of 2: 1 chloroform:methanol mixture and 5 ml methanol were then added to the sample, 

which was transferred to a 100 ml flask and dried via rotary evaporation. The extracted 

lipid was removed from 100 ml flasks using three 2.5 ml chloroform washes into a 10 ml 

volumetric flask and the sample made up to 10 ml with chloroform. Sample were then 

transferred to 10 ml Pyrex screw-topped tubes and flushed with nitrogen before storage at 

_20°C until methylation. 

2.3.5.6. Methylation of colostrum and milk samples 

Samples were allowed to reach room temperature before 4 ml of extracted lipid in 

chloroform was transferred to a 15 ml Pyrex screw-top tube and dried under nitrogen in a 
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50°C circulating water bath. 2.5 ml hexane was added to the resulting lipid and the 

sample vortex mixed before the addition of 100 ,.Ll of sodium methoxide. The tubes were 

capped tightly and shaken gently for 5 minutes before the addition of 5 ,.Ll acetic acid. One 

gram of anhydrous calcium chloride was added, the mixture shaken gently for five minutes 

and allowed to stand for one hour before centrifugation at 2000 g for five minutes. A vial 

of the supernatant was then taken for analysis via gas chromatography. 

2.3.5.7. Gas chromatography of methylated samples 

Fatty acids were analysed on a PerkinElmer 8500 gas chromatograph (GC; PerkinElmer 

Life and Analytical Sciences Ltd, Boston, MA, USA). The GC was fitted with a 50 m x 

0.22 mm i.d x 0.25 J.1m film thickness wall coated open tubular (WCOT) fused silica 

capillary column manufactured for fatty acid methyl ester analysis, with Bis

cyanopropylsiloxane as the stationary phase (SGE International Pty Ltd). It also had 

attached an PerkinElmer AS 8300 autosampler (SGE International Pty Ltd, Ringwood, 

VIC. 3134, Australia), a flame ionisation detector and utilised helium as the carrier gas, 

split at 70: 1. Samples were injected at 250°C with a detector temperature of 280 °C. The 

oven temperature was increased from 70°C initially to 175°C at a ramp rate of 25 

°C/minute followed by increases of 1.5 °C/minute to 200°C; 1 °C/minute to 210 °C and a 

final increase at 30 °C/minute to 240°C which was maintained until the end of the 

analysis. Individual peaks were identified by the retention times of a fatty acid methyl 

ester standard (Sigma-Aldrich, Poole, UK) and the linearity of response confirmed using a 

two reference fatty acid mixtures; a standard manufactured by Restek (Bellefonte, P A 

16823-8812) for all samples plus an additional standard from Larodan Fine Chemicals AB 

(S-216 16 Malmo, Sweden) for colostrum and milk. Total and individual fatty acid 

concentrations were quantified according to the internal standard added (heneicosanoic 

acid, Greyhound Chromatography and Allied Chemicals, 88 Grange Road West, 

Birkenhead, Wirral, Cheshire, CH43 4XF) according to the equation overleaf. 
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Total fatty acid concentration (mg/sample weight) = 

{[(100/std%)x(C2l area)]-(C2l area)} x(C2l added/C2l area) 

Samples were adjusted for the amount of sample used; the concentrations of individual 

fatty acids calculated according to a similar equation: 

Individual fatty acid concentration (mg/sample weight) = 

Individual fatty acid area x (C2l added/C2l area) 

2.3.6. Vitamin E analysis 

2.3.6.1. Feed 

Feed samples were analysed for vitamin E using a modification of the method described by 

Manz and Philipp (1981). Samples and solvents were protected from sunlight using 

amber-stained glassware and all solvents used were analytical or HPLC grade. Exactly 10 

g of thawed, ground feed sample was mixed thoroughly and transferred into a 250 ml 

round bottomed flask containing 50 ml of methanol-ascorbic acid solution (0.5 g 

crystallised ascorbic acid dissolved in 4 ml warm distilled water mixed with 20 ml ethanol 

and made up to 100 ml with methanol). The mixture was then put in a water bath and 

brought up to boiling point under nitrogen gas. Precisely 5 ml of potassium hydroxide 

solution (1 kg KOH pellets dissolved in 1 litre distilled water) was added and the mixture 

saponified under reflux for twenty minutes, shaking periodically. The flask was then 

rinsed three times with 30 ml water and the rinse placed in a 500 ml separating funnel. 

Exactly 120 ml of ether was used to further rinse the flask, and the process repeated twice. 

The combined ether phases were washed with distilled water until a neutral pH was 

reached before transferring to a 500 ml Erlenmyer flask containing 30 g sodium sulphate. 

The mixture was allowed to dry for 30 minutes before filtering through cotton wool into a 
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500 ml flask and washing the sodium sulphate three times with 20 ml ether. An aliquot 

containing 0.1 mg alpha-tocopherol (calculated according to the predicted vitamin E 

concentration of the sample) was then evaporated to dryness on a rotary evaporator under 

partial vacuum at 50°C and the residue dissolved in 10 ml petroleum ether for HPLC 

analysis. 

The HPLC system was fitted with a normal phase Prodigy ODS-2 analytical column of 4.6 

mm i.d. x 150 mm length packed with silica (Phenomenex, UK). The mobile phase 

consisted of 98 % methanol and 2 % deionised water. Fluorescence detection was at an 

excitation of 293 nm and emission of 326 nm. 

2.3.6.2. Plasma 

Plasma samples were analysed for vitamin E using a modification of the method described 

by McMurray and Blanchflower (1979). Samples and solvents were protected from 

sunlight using amber-stained glassware and all solvents used were analytical or HPLC 

grade. Plasma samples were thawed and mixed thoroughly before a 0.5 ml sample was 

transferred into a 15 ml polypropylene tube screw-capped tube. Exactly 1 ml ethanol was 

added and the sample immediately vortex mixed to precipitate the plasma protein 

component. During mixing, 2.0 ml n-hexane was added and the sample shaken for three 

minutes at a speed of 1400 on a Vibrax shaker (Ika-Works Inc, USA). Following 

centrifugation at 1500 g for 10 minutes at 4°C, 1.0 ml of the supernatant hexane layer was 

extracted and transferred to HPLC vials. 

The HPLC was calibrated using three standard solutions containing known concentrations 

of a-tocopherol at 2.0, 4.0 and 8.0 Ilg/ml. The HPLC system comprised a Krontron HPLC 

with autosampler, a programmable fluorescence detector and an integrator. The system 

was fitted with an injector valve consisting of a 50111 loop and a normal phase Bondapak 
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CI8 analytical column of 3.9 mm Ld. x 150 mm length packed with Bondapak (Waters, 

USA). The mobile phase consisted of 97 % methanol and 3 % deionised water. 

Fluorescence detection was at an excitation of 295 nm and emission of 330 nm; a -

tocopherol being detected at approximately 5.5 minutes. 

The concentration of a-tocopherol in the sample was calculated according to the following 

formula: 

Integrated value (Jlg/ml) x 9.2 = Jlmolll vitamin E 

2.3.6.3. Colostrum and milk 

A modification of the method described by Burton et al. (1985) was used to determine the 

vitamin E concentrations of colostrum and milk samples. All reagents used were analytical 

grade. Colostrum and milk samples were thawed and allowed to reach room temperature. 

Samples were mixed thoroughly and I ml of sample was transferred into a 15 ml Pyrex test 

tube. Exactly 2 ml of ethanol was added to precipitate the protein contained within the 

sample before vortex mixing. Precisely I ml of sodium dodecyl sulphate (0.08 M for milk 

and 0.12 M for colostrum, dissolved in distilled water) solution was then added and the 

mixture was vortex mixed for a second time. Subsequently, 1 ml of hexane containing 

0.05 % butylated hydroxytoluene (BHT) as an antioxidant and 60 Jll of rae dimethyltocol 

(5 % w/v distilled in n-hexane) as an internal standard was added and the resulting mixture 

vortex mixed for one minute before centrifugation at 1000 g for two minutes to separate 

the organic and aqueous phases. The organic layer containing tocopherol in hexane was 

removed to a clean Pyrex 15 ml test tube and the extraction procedure repeated twice more 

upon the residue. The three extracts were then combined and dried under nitrogen in a 60 

°C water bath. Immediately after drying, the residue was re-suspended in I ml of HPLC 
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grade n-hexane and transferred into an amber HPLC vial and stored at -20°C until 

analysis. Reagent blanks and standards of rae 5.7-dimethyltocol diluted in n-hexane were 

used to quantify results and were prepared using the procedure outlined above. 

2.3.6.4. Tissues 

Entire hind legs were allowed to thaw overnight at 4 °c before samples were allowed to 

reach room temperature and the m. semimemebranosus muscle dissected out. Visible 

adipose and connective tissue were removed, the muscle chopped into small cubes and 

minced using a domestic food processor. The muscle was then thoroughly mixed and 1 g 

± 0.05 g weighed into a Pyrex 30 ml test tube with the exact weight recorded. Exactly 2 

ml of ethanolic BHT solution (0.1 % w/v in ethanol) was added to denature the protein 

component and to act as an antioxidant, and the mixture homogenised via vortex mixing. 

Subsequently, 2.8 ml of ascorbic acid solution (8.8% w/v in distilled water) was added and 

the mixture again vortexed. Hydrolysis of the sample lipids was then achieved by the 

addition of 2.5 ml KOH (14.52% w/v in 4: 1 mixture of ethanol and distilled water) and the 

mixture was vortexed before placing in a shaking water bath at 80°C for 15 minutes. 

Tubes were then cooled in ice and 4 ml of hexane plus 60 J.l.1 internal standard (5% w/v 

distilled in n-hexane) added before vortex mixing. The organic and aqueous phases were 

then separated by centrifugation for two minutes at 2000 g. The organic phase containing 

alpha-tocopherol in hexane was transferred to a clean 15 ml Pyrex tube and dried under 

nitrogen in a 60°C water bath. Immediately after drying, the residue was re-suspended in 

1 ml of HPLC grade n-hexane and transferred into an amber HPLC vial and stored at -20 

°c until analysis. Reagent blanks (containing approximately 0.75 ml distilled water to 

approximate the water content of the muscle samples) and standards of rae 5,7-

dimethyltocol were used to quantify results and were prepared using the procedure outlined 

above. 
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Brain samples were thawed at 4 °c before removal of the brain stem and cerebellum and 

performance of the analysis as outlined above, the only difference being saponification of 

the brain lipids for 30 minutes at 70°C. 

The HPLC employed for the analysis of colostrum, milk, muscle and brain samples was 

calibrated using nine standard solutions containing known concentrations of a-tocopherol 

ranging from 0.01-5.0 J.lg. The HPLC system comprised a Gilson isocratic HPLC with 

autosampler, an AB! 980 programmable fluorescence detector and a Kontron data system 

integrator. The system was fitted with an injector valve consisting of a 100 J.lI loop and a 

HPLC Technology Techsphere column of 4.6 mm Ld. x 250 mm length packed with 

Techsphere silica 5J.l (HPLC Technology). The mobile phase consisted of 96% n-hexane 

methanol and 4% 1,4-dioxane. Fluorescence detection was at an excitation of 297 nm and 

emission of 330 nm; a-tocopherol being detected at approximately 4.95 minutes with a 

runtime of eight minutes. 

The concentration of a-tocopherol in the sample was calculated according to the peak 

height for a-tocopherol compared to known concentrations of internal and external 

standards. Vitamin E concentrations were adjusted to account for percentage recovery (94 

% for colostrum, 93 % for milk, 86 % for muscle, 95 % for brain). Recoveries were 

calculated by spiking samples with a-tocopherol before subjecting them to the vitamin E 

analysis procedure. Concentrations of a-tocopherol were calculated as shown below: 

ColostrumlMilk a-tocopherol (J.lglml) = 

[(Peak height of sample x J.lglml standard)lPeak height of standard] 

MuscleIBrain a-tocopherol (J.lglg) = 

[(Peak height of sample x J.lg/ml standard)/Peak height of standard]/[sample weight (g)] 
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3. FISH OIL AND VITAMIN E SUPPLEMENTATION OF PREGNANT AND 

LACTATING EWES: EFFECTS UPON EWE AND LAMB PERFORMANCE 

3.1. Introduction 

The long-chain PUFAs C20:4n-6 and C22:6n-3 have a crucial role to play in the 

development of mammalian foetal brain and nervous tissue (Koletzko, 1992) and therefore 

may influence foetal development and neonatal vigour. Studies conducted in pigs have 

reported that increasing the dietary supply of long-chain PUF As during pregnancy and 

lactation improves neonatal vigour and viability (Rooke et al., 1998). Furthermore, n-3 

PUF A supplementation has been shown to have a significant impact on cognitive 

development and learning ability in humans (Morley, 1998). There is no preformed source 

of C22:6n-3 in the commercial ruminant diet and requirements must be met by endogenous 

synthesis from CI8:3n-3 (Voigt and Hagemeister, 2001). However, the extent of this 

synthesis is thought to be negligible (Voigt and Hagemeister, 2001), particularly during 

pregnancy when PUF As must be synthesised for deposition into the foetal nervous tissue. 

Fish oils may be included within the diet of the pregnant ewe to increase the dietary long

chain PUF A supply, thus increasing the supply to the foetal lamb. Nevertheless, studies by 

Wachira et al. (2000) and Chikunya et al. (2004) suggested that ruminal biohydrogenation 

of unprotected PUF As may reduce the amount available for absorption and metabolism by 

the animal. Therefore, for long-chain PUF As to be absorbed in their original form, a 

mechanism must be employed to protect the fatty acids from biohydrogenation. 

Research published by McDowell et al. (1998) and Merrell (1998) reported that feeding 

supranutritional concentrations of vitamin E to ruminants confers improvements in 

immune competence and neonatal vigour. Nonetheless, studies in both animals (Njeru et 

ai., 1994) and humans (Mino and Nishino, 1973; Leger et al., 1998) have concluded that 

the negligible concentrations of vitamin E in the plasma of neonatal animals result from 
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low placental transfer from dam to offspring. Consequently, the mechanism by which 

neonatal vigour may be improved by maternal supplementation warrants further 

investigation. 

3.2. Objectives 

1) To investigate the effects of supplementing pregnant and lactating ewes with long-chain 

n-3 PUF As in the form of fish oil upon ewe and lamb behaviour and performance. 

2) To investigate the effects of supplementing pregnant and lactating ewes with 

supranutritional dietary concentrations of vitamin E upon ewe and lamb behaviour and 

performance. 

3.3. Materials and methods 

3.3.1. Experimental animals and housing 

Thirty six twin-bearing and twelve triplet-bearing ewes with a mean age of 3.2 years (s.d. 

1.86), a mean liveweight of 76.6 kg (s.d. 6.14) and a mean condition score of 3.3 units (s.d. 

0.51) were selected from the Harper Adams University College early lambing flock 

(Edgmond, Newport, Shropshire, UK). Breeds used included the Suffolk x North of 

England Mule (n = 24), Friesland x Lleyn (n = 20) and Charollais x LJeyn (n = 4). Ewes 

were housed, individually penned and bedded on sawdust from week 15 of pregnancy 

(designated week -6) until week 4 (week +4) of lactation. Ewes were blocked according to 

litter size, breed, age, condition score and liveweight and randomly allocated to one of four 

treatment diets within a two x two factorial design. Ewes were fed the allocated diet 

throughout the duration of the experiment. An additional six ewes were housed in a group

pen, fed the control diet (MB) and bedded on straw to provide foster lambs for any ewes 

that did not bear two or three live lambs. The building was continually lit and all ewes had 

free access to fresh water supplies. 
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3.3.2. Experimental diets 

A basal ration was formulated containing barley, sugar beet pulp, soyabean meal, 

sopralinTM (Trouw UK Ltd, Northwich, UK), rapeseed meal, urea and molasses (Table 

3.1). To this diet was added 120 glkg of a long-chain PUFA or control fat premix and 30 

glkg of vitamin/mineral supplement containing a basal (50 mg/kg) or supranutritional (500 

mg/kg) concentration of vitamin E (Roche UK Ltd, Heanor, Derbyshire, UK). The PUFA 

premix comprised a mixture of crude unrefined Scandinavian fish oil mixed at a ratio of 

0.75:0.25 with Incromega®, a by-product of omega-3 fatty acid production for the human 

market, high in C22:6n-3 (Trouw Nutrition UK, Northwich, UK). Butylated 

hydroxytoluene was added at a rate of 500 mg/kg to the fish oil to prevent oxidation of the 

component fatty acids. Both the fish oil and Incromega® were combined with a 

vermiculite carrier (Trouw Nutrition UK, Northwich, UK). Vermiculite was selected as a 

carrier material due to its highly adsorbent nature; it was also shown by Cooper et al. 

(2002) to provide a degree of protection against the ruminal biohydrogenation of 

unsaturated fatty acids. The control fat source consisted of a commercial saturated fat 

source (Megalac®, a calcium soap of C16:0) mixed with straw pellets. The two premixes 

were formulated to provide equal concentrations of fat (60 g/kg freshweight) within the 

concentrates. The resulting concentrates were isoenergetic and isonitrogenous with a 

metabolisable energy content of 13.1 MJ/kg DM, crude protein content of 212 glkg DM 

and fatty acid content of 80.6 glkg DM. 

The treatment diets were therefore: 

MB: Megalac® plus basal vitamin E 

MS: Megalac® plus supranutritional vitamin E 

FB: Fish oil/Incromega® plus basal vitamin E 

FS: Fish oil/Incromega® plus supranutritional vitamin E 
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Ewes were fed a stepped concentrate ration (Table 3.2) in two equal meals at 08.00 and 

16.00 daily during pregnancy, and at a flat-rate of 1.7 kg/day in three meals (at 08:00, 

12:00 and 16:00) during lactation. Barley straw was initially offered at 0.80 kg/day and 

subsequently fed at intake levels calculated according to the method described in Chapter 

Two. The complete diet was formulated to fulfil the requirements of pregnant and 

lactating ewes as detailed by AFRC (1993). 

Table 3.1. Raw material and chemical composition ofthe/our treatment concentrates 
MB MS FB FS 

Raw material composition (g/kg) 
Barley 457 457 523 523 
Sugar beet pulp 100 100 100 100 
Soyabean meal 100 100 100 100 
Rapeseed meal 50 50 50 50 
Sopralin 8 8 12 12 
Megalac® 52 52 

Straw 68 68 
Straw pellets 70 70 
Fish oil 45 45 
Incromega 15 15 
Vermiculite 60 60 
Molasses 50 50 50 50 
Urea 15 15 15 15 
Vi taminslMinerals 30 30 30 30 

Predictecf1 chemical composition (g/kg DM) 
DM (g/kg) 864 864 871 871 
CP 206 206 210 210 
ERDP· 131 131 135 135 
Dup· 78 78 79 79 
EE (ether extract) 81 81 81 81 
NDF 226 226 183 183 
Ash 86 86 71 71 
Vitamin E (mg/kg) 50 500 50 500 

ME (metabolisableenergy; MJlkgDM) 13.2 13.2 13.1 13.1 
FME (fermentable ME; MJlkg DM) 9.9 9.9 10.2 10.2 
ERDP:FME Ratio 13.2 13.2 13.2 13.2 
VitaminlMineral supplement (Hac Ewe 25, Roche Products Limited, Heanor, Derbyshire) supplied per kg of 
diet: Calcium 7.06 g; Sodium 2.67 g; Phosphorus 1.65 g; Selenium 0.36 mg; Vitamin A 14,400 IV; Vitamin 
D 30,000 IV; Vitamin E 50 mg (basal); or 500 mg (supranutritional). 
, (AFRC, 1993) 
• calculated according to AFRC (1993) at a rumen outflow rate of 0.08 mllhour 

Table 3.2. Daily concentrate allowance [or twin- and triplet-bearing ewes 
Day of gestation 110 117 124 131 138 
Concentrate allowance (kg/day): 
Twin-bearing ewes 
Triplet-bearing ewes 

0.7 
0.8 

0.8 
0.9 

112 

0.9 
1.0 

1.0 
1.1 

1.0 
1.1 

145 

1.2 
1.3 

Lactation 

1.7 
1.7 



3.3.3. Experimental procedure 

Concentrate and straw samples were taken weekly and stored in airtight bags at -20°C 

until analysis. Ewe liveweight, body condition score, straw intake, maternal and neonatal 

behaviour, colostrum and milk production, lamb birthweight and liveweight were 

measured as described in Chapter Two. 

3.3.3.1. Blood sampling 

Blood samples were obtained from all ewes by jugular venepuncture at 11.00 at six weeks 

(day 103 of gestation, before the experimental concentrates were fed), four weeks (day 

117) and two weeks (day 131) pre-partum; at 12 hours post partum and at two and four 

weeks into lactation. Blood and tissue samples were taken from neonatal lambs 

immediately after cessation of the heartbeat as described in section 2.2.4., and blood 

samples taken by jugular venepuncture from growing lambs at 11.00 at 14 and 28 days of 

age. Plasma and tissue samples were prepared as described in Chapter Two. 

3.3.4. Sample analysis 

Concentrate and straw samples were analysed for DM, ash, CP and NDF. In addition, 

concentrate samples were analysed for vitamin E and fatty acid composition. Ewe blood 

samples were analysed for urea, PHB, NEF A, CK and GPx at all time points and for 

vitamin E and fatty acids at 103 and 131 days of gestation and at 14 days post partum. 

Neonatal lamb blood and brain samples were analysed for vitamin E and fatty acids, 

neonatal lamb muscle samples were analysed for vitamin E. Plasma samples taken from 

growing lambs were analysed for CK and GPx at all time points and for vitamin E and 

fatty acids at 14 days of age. All analyses are described in Chapter Two. 
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3.3.5. Statistical analysis 

Data were analysed as a two x two factorial design with main effects of fat source (fat) and 

vitamin E (v it E) concentration within the treatment concentrate and their interaction (F x 

Y). Plotting lamb liveweight against time revealed linear growth rates, therefore overall 

growth rates were calculated using linear regression. The analysis of variance (ANOY A) 

function within Genstat 6 version 6.2 (Lawes Agricultural Trust, 2002) was used for all 

statistical analyses. 
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3.4. Results 

Data from eight ewes were excluded from the analysis. Two ewes aborted at 131 days of 

gestation (treatments FB and MS); a further five ewes reared single lambs (one from 

treatments MB, MS and FS, two from treatment FB) and one ewe (treatment MB) suffered 

from chronic mastitis. Two ewes (treatments MB and MS) bore one live and one stillborn 

lamb and adopted a lamb of the same breed from the six group-housed ewes. The 

replacement lambs were introduced immediately after expulsion of the dead lamb. Data 

for these ewes was included, however, records relating to the adopted lambs were not 

included in the statistical analysis. One bottle-fed lamb and five lambs reared singly were 

also excluded from the analysis. Consequently, data from 46 ewes was utilised pre-parIum 

and from 40 ewes and 86 lambs post partum. 

Table 3.3. Chemical composition o/the [our treatment concentrates plus the straw 
Concentrate Straw 

MB MS FB FS 

Ory matter (g/kg) 859 865 865 863 881 
Crude protein (g/kg OM) 186 181 172 176 37.3 
Organic matter (g/kg OM) 923 931 895 884 954 
Ash (g/kg OM) 77.0 68.9 105 116 46.2 
Neutral detergent fibre (g/kg OM) 199 223 128 145 807 
Vitamin E (mg/kg OM) 57.3 503 64.4 541 
Total fatty acids (g/kg OM) 102 97.4 93.0 81.0 
MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB - Fish oil + 50 mg/kg 
vitamin E; FS :: Fish oil + 500 mg/kg vitamin E 

3.4.1. Diet composition 

The chemical composition of the four treatment concentrates and straw is presented in 

Table 3.3. The DM and CP content were similar between treatments, although the fatty 

acid content of concentrate FS was lower than the other three treatment diets. The ash 

content of concentrates containing fish oil was augmented by the inclusion of vermiculite, 

the addition of straw pellets to the Megalac concentrates increased the NDF fraction. 

Vitamin E concentrations were similar to those predicted when formulating the diets. 
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Table 3.4. Fatty acid composition o/the four treatment concentrates 
Concentrate 

Fatty acid (glkg DM) MB MS FB FS 

C16:0 41.0 39.0 IS.2 17.3 
CI6:1n-7 0.29 0.31 3.58 3.02 
C18:0 3.39 3.13 3.00 2.82 
CIS:I trans 1.09 0.83 2.31 2.01 
CIS:ln-9 cis 30.9 28.8 11.1 10.0 
CIS:2n-6 cis 19.9 19.7 15.1 13.1 
C1S:3n-3 cis 1.75 1.83 2.44 1.90 
C20:4n-6 0.15 0.14 0.74 0.76 
C20:5n-3 NO NO 4.21 2.54 
C22:6n-3 NO NO 4.45 2.62 

RFA8 3.85 3.77 36.6 29.3 
MB = Megalac + 50 mglkg vitamin E; MS = MegaJac + 500 mglkg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mglkg vitamin E 
a RF A = All remaining fatty acids; NO = not detected 

Concentrates containing Megalac (MB, MS) had the highest concentrations of C16:0, 

C18:1n-9 and C18:2n-6, but the long-chain PUFAs C20:5n-3 and C22:6n-3 were not 

detectable (Table 3.4). By contrast, the inclusion of fish oil plus Incromega as the 

principal fatty acid sources in concentrates FB and FS resulted in increased concentrations 

of C20:4n-6, C20:5n-3 and C22:6n-3. 

3.4.2. Ewe performance parameters 

3.4.2.1. Straw intake 

Daily straw intakes declined from six weeks pre-parIum to one week pre-parium for all 

treatments with average daily intakes of 0.68 kg DM at week -6 and 0.55 kg DM at week -

1 (Figure 3.1). The mean daily straw intake increased steadily during lactation with 

average intakes of 0.55 kg DM at week 0 and 1.07 kg DM at week +3. There was no 

significant effect of dietary treatment on straw intakes, except at week -6 when ewes fed 

diet MB had higher intakes than those offered diets MS or FB (P=0.025; Table 3.5). 
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Table 3.5. Effect o[ PUFA ami vitamin E supplementation o[ ewes on t1aj~v straw intake 
Diet P 

MB MS FB FS s.e.d. Fat Vit E FxV 

Meall (Iaily ill take (kg DM): 

6 weeks' pre-parium 0.75b 0.648 0.648 0.68Db 0.047 0.306 0.268 0.025 
1 week t pre-parium 0.57 0.50 0.53 0.50 0.055 0.505 0.2\6 0.586 
Pre-parium intake (kg/day) 0.60 0.54 0.5\ 0.53 0.050 0. \80 0.685 0.215 

o weeks' posl partum 0.62 0.52 0.54 0.51 0.076 0.346 0.235 0.540 
3 weeks' post parium 1.24 0.96 1.04 1.02 0.140 0.480 0.145 0.2 14 
Post partum intake (kg/day) 0.92 0.73 0.81 0.77 0.101 0.598 0.122 0.291 

MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
Means without common superscripts are significantly different at the P<O.05 level 
, 6 weeks pre-partum = mean straw intake on days 103-110 of gestation; I week pre-parIum = mean straw 
intake on days 138-145 of gestation; 0 weeks post partum = mean straw intake on days 0 - 7 of lactation, 3 
weeks pOSI parium = mean straw intake on days 2\ - 28 of lactation 

3.4.2.2. Liveweight and condition score 

A bias existed at the start of the experiment in that ewes fed supranutritional concentrations 

of vitamin E were heavier than ewes offered basal vitamin E concentrations (80.4 kg vs. 

75.6 kg respectively, P=0.019); however, the pre-parIum liveweight change was not 

significantly affected by dietary treatment (Table 3.6). No significant effect of fat source 
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or supranutritional vitamin E supplementation was observed upon body condition score 

change pre-partum. 

Table 3.6. Effect of PUFA and vitamin E supplementation of ewes on liveweight and body 
condition score (CSl chang,e 

Diet P 
MB MS FB FS s.e.d. Fat VitE FxV 

Pre-partum weight (kg): 
6 weeks' pre-partum 77.3 81.3 73.8 80.4 2.77 0.194 0.019 0.637 
I week' pre-partum 87.1 89.4 82.7 88.3 2.46 0.123 0.030 0.357 
Pre-partum change 9.73 7.56 8.88 8.67 1.135 0.869 0.147 0.233 

Pre-partum CS: 
6 weeks' pre-partum 3.04 3.10 3.14 3.15 0.136 0.455 0.748 0.748 
1 week' pre-parIum 2.88 2.79 2.92 2.81 0.084 0.564 0.112 0.908 
Pre-partum change -0.17 -0.33 -0.23 -0.33 0.129 0.706 0.158 0.763 

Post partum weight (kg): 
1 week' fost parium 75.7 76.0 71.2 77.5 2.16 0.339 0.041 0.063 
4 weeks posl parium 72.1 71.6 69.3 75.6 2.48 0.737 0.106 0.062 
Post parium change -3.57 -4.37 -1.94 -1.83 1.059 0.010 0.647 0.553 

Post partum CS: 
1 week'foslpartum 2.82 2.71 2.90 2.75 0.083 0.305 0.032 0.772 
4 weeks POSI parium 2.55 2.24 2.64 2.36 0.103 0.155 <0.001 0.837 
Post e.artum chan~e -0.28 -0.46 -0.26 -0.39 0.074 0.391 0.006 0.536 

MB = Megalac + 50 mg/kg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mglkg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, 6 weeks pre-parIum = day 103 of gestation; 1 week pre-parium = day 138 of gestation; 1 week posl parium 
= day 7 of lactation; 4 weeks post partum = day 28 of lactation 

Mean individual ewe liveweight post-partum was not significantly affected by dietary 

treatment; however, liveweight loss during lactation was reduced by the addition of fish oil 

to the experimental diets (1.88 kg vs. 3.97 kg for diets containing fish oil and Megalac 

respectively, P=O.OlO). Main effects of vitamin E concentration on individual body 

condition score were observed at one week post partum (2.86 units for ewes fed diets 

containing basal concentrations of vitamin E compared to 2.73 units in those offered 

supranutritional concentrates, P=0.032) and four weeks post partum (2.60 units for diets 

MB + FB, 2.30 units for diets MS + FS, P<O.OOI). Furthermore, more condition was lost 

by ewes offered supranutritional dietary concentrations of vitamin E during pregnancy and 

lactation with mean losses of 0.43 units compared to a loss of 0.27 units in ewes fed diets 

supplemented with basal vitamin E concentrations (P=0.006). 
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3.4.2.3. Metabolic profiles 

Feeding fish oil compared to Megalac reduced mean plasma PHB concentrations both pre-

(0.59 mmol/l vs. 0.74 mmol/l respectively, P=0.034) and post partum (0.53 mmol/l vs. 

0.85 mmolll respectively, P<O.OOI; Table 3.7). There was no significant effect of vitamin 

E supplementation level on mean pre- and post partum pHB concentrations. 

Table 3.7. Effect of PUFA and vitamin E supplementation of ewes on plasma P-
hJ!.dro~bur1.rate~ urea and non-esteriJl.ed £a!!J!. acid concentrations 

Diet P 
MB MS FB FS s.e.d. Fat Vit E FxV 

Pre-partum concentration (mmol/l): 
Mean' plasma ~HB 0.70 0.78 0.51 0.66 0.096 0.034 0.103 0.574 
Mean' plasma urea 7.13a 7.58ab 7.85b 7.25ab 0.336 0.419 0.759 0.033 

Post partum concentration (mmol/l): 
Mean' plasma ~HB 0.77 0.94 0.53 0.53 0.096 <0.001 0.207 0.218 
Mean' plasma urea 7.69 7.68 7.58 8.13 0.383 0.529 0.334 0.307 

NEFA concentration (mmol/l): 
6 weeks§ pre-partum 0.90 0.97 0.90 0.94 0.103 0.876 0.412 0.855 
12 hours postpartum 0.65 0.73 0.39 0.53 0.081 <0.001 0.069 0.610 
4 weeks§ post parIum 0.60 0.63 0.51 0.52 0.085 0.127 0.768 0.864 

MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
Means without common superscripts are significantly different at the P<0.05 level 
• Mean value = average of all measured values pre-parium 
, Mean value = average of all measured values post parIum 
§ 6 weeks pre-partum = day 103 of gestation; 4 weeks post partum = day 28 of lactation 

No significant main effect of ewe diet was recorded upon mean pre-partum plasma urea 

concentrations. However, a significant interaction effect between fat source and vitamin E 

concentration was observed, with basal dietary concentrations of vitamin E increasing 

plasma urea levels in ewes fed diets containing fish oil but reducing them when fed in 

combination with Megalac (P=0.033). 

At 12 hours post partum, NEF A concentrations in ewes supplemented with long-chain 

PUF As were lower than those exhibited by ewes fed diets containing Megalac (0.46 

mmol/l compared to 0.69 mmo}/1 respectively, P<O.OO 1). By contrast, PUF A 
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supplementation of the ewe had no significant effect upon plasma NEF A concentrations at 

four weeks post partum. Furthermore, no significant effect of dietary vitamin E 

concentration nor any significant interaction effect between fat source and dietary vitamin 

E concentration was observed upon plasma NEF A concentrations. 

3.4.2.4. Antioxidant status 

Ewes allocated to the fish oil diets had lower plasma vitamin E concentrations at the start 

of the experiment compared to those allocated to the Megalac treatments (4.76 !lmol/l vs. 

5.32 !lmol/l respectively, P=O.016; Table 3.8). Maternal plasma vitamin E concentrations 

at two weeks pre-parIum were increased by supranutritional dietary vitamin E supply (6.61 

!lmol/l) compared to basal dietary concentrations (3.57 !lmolll; P<O.OOI). Long-chain 

PUFA supplementation had an abrogating effect on maternal plasma vitamin E 

concentrations at two weeks pre-partum with means of 3.75 !lmolll in ewes supplemented 

with fish oil and 6.42 J.1Il101/1 in ewes offered diets containing Megalac (P<O.OOI). Plasma 

vitamin E concentrations declined in lactation for all treatments apart from FS, with main 

effects of dietary vitamin E concentration (6.75 !lmolll in ewes given supranutritional 

vitamin E supplementation compared to 2.35 !lmolll in those offered basal supplementation 

ewes, P<O.OOI) and fatty acid source (means of3.75 !lmol/l for ewes fed fish oil compared 

to 5.34 !lmol/l in ewes offered Megalac, P<O.OOI) being observed. 

Table 3.B. Effect of PUFA and vitamin E supplementation of ewes on plasma vitamin E 
concentrations 

Plasma vitamin E 
concentration (IlmoVl): 

MB 
Diet 

MS FB FS 
p 

s.e.d. Fat Vit E FIV 

6 weeks' pre-parium 5.61 5.04 4.64 4.88 0.302 0.016 0.463 0.073 
2 weeks' pre-parium 4.58 8.27 2.55 4.96 0.509 <0.001 <0.001 0.092 
2 weeks' postpartum 2.87 7.81 1.82 5.69 0.527 <0.001 <0.001 0.166 

MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB - Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, 6 weeks pre-parium = day 103 of gestation; 2 weeks pre-partum = day 131 of gestation; 2 weeks post 
partum = day 14 ofiactation 
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Table 3.9. Effect of PUFA and vitamin E supplementation of ewes on indicators of selenium 
status and cellular damage 

Diet P 
MB MS FB FS s.e.d. Fat Vit E FxV 

Pre-parlum: 
Mean" erythrocyte GPx activity 171 164 109 130 13.8 <0.001 0.485 0.166 
(Vlml PCV) 
Mean" serum CK activity (U/I) 259 209 393 179 143.1 0.612 0.202 0.425 

Post l'arlum: 
Mean' erythrocyte GPx activity 185 185 160 147 14.1 0.006 0.510 0.492 
(U/m! PCV) 
Mean' serum CK activity (U/I) 135 165 188 261 55.0 0.066 0.1960.585 

MB = Megalac + 50 mglkg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mglkg 
vitamin E; FS = Fish oil + 500 mglkg vitamin E 
" Mean value = average of all measured values pre-parIum 
, Mean value = average of all measured values posl parIum 

Supplementing ewes with long-chain PUFAs reduced mean pre-parIum GPx activities 

when compared to ewes fed diets containing Megalac (120 Vlml PCV vs. 168 Vlml PCV 

respectively, P<O.OOl; Table 3.9). A similar pattern was observed in mean GPx activities 

during lactation with lowest values recorded in ewes offered diets containing fish oil (154 

Vlml PCV) in contrast to ewes fed Megalac (185 D/ml PCV; P=0.006). No significant 

main or interaction effects of dietary treatment were observed on ewe serum CK 

concentrations at any time point, although ewes supplemented with long-chain PVF As 

tended to have higher concentrations post parIum (P=0.06) compared to ewes fed Megalac. 

3.4.2.5. Plasma fatty acids (six weeks pre-partum) 

No significant differences in the proportions of individual fatty acids within plasma were 

observed at six weekspre-partum (Table 3.10). 
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Table 3.10. Effect of PUFA and vitamin E supplementation of ewes on the proportions of fatty 
acids in ewe e.lasma same.les collected at six weeks' e.re-e.artum (ere-treatmentl 

Diet P 
Fatty acid (gllOO g fatty acid) MB MS FB FS s.e.d. Fat Vit E FxV 

C16:0 15.9 15.2 16.3 15.5 1.07 0.640 0.307 0.969 
CI6:1n-7 0.85 0.83 1.08 0.82 0.136 0.268 0.176 0.218 
C18:0 25.2 23.3 23.8 23.9 1.80 0.740 0.493 0.449 
C18:1 trans 5.46 5.24 5.76 5.16 0.600 0.795 0.346 0.659 
CI8:1n-9 cis 20.3 20.2 21.4 19.6 1.45 0.800 0.365 0.441 
CI8:2n-6 cis 5.57 4.95 5.72 5.38 0.497 0.414 0.190 0.691 
CLA (cis-9.trans-ll) 0.61 0.50 0.59 0.32 0.151 0.359 0.089 0.487 
CI8:3n-3 cis 3.82 3.20 3.46 3.18 0.346 0.447 0.080 0.501 
C20:4n-6 2.12 1.82 2.28 2.14 0.303 0.274 0.319 0.726 
C20:5n-3 2.52 2.21 2.58 2.33 0.281 0.664 0.172 0.890 
C22:6n-3 1.71 1.45 1.32 1.55 0.217 0.362 0.90S 0.131 

RFA§ 15.9 21.2 15.7 20.1 5.53 0.879 0.232 0.916 

Total fat~ acids (m~ml) 1.19 1.20 1.05 1.14 0.073 0.072 0.394 0.442 
MB = Mega1ac + 50 mg/kg vitamin E; MS = Mega1ac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
§ RF A = All remaining fatty acids 
1J six weeks pre-partum = day 103 of gestation 

Table 3.11. Effect of PUFA and vitamin E supplementation of ewes on the proportions offatty 
acids in ewe e.lasma same.les collected at two weeks' e.re-e.artum 

Diet P 
Fattl: acid {g{100 g fattl: acid} MB MS FB FS s.e.d. Fat VItE FxV 

C16:0 23.9" 22.6b 16.2" 16.7" 0.47 <0.001 0.231 0.017 
CI6:1n-7 0.52 0.75 1.69 1.35 0.223 <0.001 0.742 0.083 
C18:0 20.6 21.2 14.1 15.4 0.67 <0.001 0.065 0.456 
C18:1 trans 2.15 2.45 9.14 S.36 0.401 <0.001 0.405 0.070 
CI8:1n-9 cis 15.S 17.0 8.07 9.25 0.461 <0.001 0.001 0.920 
CI8:2n-6 cis 20.0 18.8 10.2 9.66 0.62 <0.001 0.055 0.454 
CLA (cis-9.trans-l1) 0.22 0.36 2.00 2.18 0.348 <0.001 0.526 0.948 

CI8:3n-3 cis 1.30 1.23 2.38 2.32 0.273 <0.001 0.739 0.986 
C20:4n-6 2.59 2.85 2.90 2.93 0.194 0.176 0.303 0.430 
C20:5n-3 1.40 I.S6 8.04 7.71 0.285 <0.001 0.751 0.062 
C22:6n-3 1.32 1.72 5.17 5.16 0.178 <0.001 0.131 0.121 

RFA§ 10.2 9.18 20.1 19.0 0.640 <0.001 0.033 0.999 

Total fatty acids (mg/ml) 1.27" 1.10b 0.6498 0.716" 0.0547 <0.001 0.235 0.008 
MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB - Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, two weeks pre-partum = day 131 of gestation 
§ RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 

3.4.2.6. Plasma fatty acids (two weeks pre-partum) 

With regard to the total concentration of fatty acids within plasma, there existed a 

significant main effect of fat source with means of 0.68 mg/mt for ewes fed fish oil 
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compared to 1.19 mglml for ewes fed Megalac (Table 3.11). Offering diets containing 

fish oil compared to Megalac reduced the proportions of both C16:0 (16.5 glI00 g fatty 

acids vs. 23.2 gllOO g fatty acids respectively, P<O.OOI) and C18:0 (14.7 gllOO g fatty 

acids vs. 20.9 gllOO g fatty acids respectively, P<O.OO 1) within ewe plasma lipids. 

Supplementing ewes with fish oil compared to Megalac increased the proportions of 

CI6:1n-7 (1.52 gllOO g fatty acids in contrast to 0.64 gllOO g fatty acids respectively, 

P<O.OOI) within plasma. In addition, feeding fish oil during pregnancy reduced the 

proportions ofCI8:1n-9 cis within plasma lipids, with mean values of 8.66 gllOO g fatty 

acids in ewes fed fish oil compared to 16.4 gllOO g fatty acids in those fed Megalac 

(P<O.OOI). Supranutritional vitamin E supplementation also increased the proportion of 

CI8:1n-9 cis within plasma, with mean values of 13.1 gllOO g fatty acids compared to 11.9 

gllOO g fatty acids in ewes fed basal concentrations of vitamin E (P=O.OOI). Ewes fed fish 

oil also had significantly higher proportions of C 18: I trans within plasma lipids when 

compared to those fed Megalac (8.75 gllOO g fatty acids vs. 2.30 gllOO g fatty acids). 

The proportion of CLA within ewe plasma was increased by the addition of long-chain 

PUFAs to the diet with means of 2.09 gllOO g fatty acids for those fed fish oil in contrast to 

0.29 gllOO g fatty acids for those offered Megalac (P<O.OOI). There was no effect of 

vitamin E supplementation upon the proportional contribution of CLA to plasma fatty 

acids. 

The most important contributor to the decrease in total n-6 fatty acids seen with fish oil 

supplementation was CI8:2n-6 cis, found at half the concentration in ewes fed fish oil 

(9.94 gllOO g fatty acids) compared to those fed Megalac (19.4 gllOO g fatty acids, 

p<O.OOI). However, the proportion of C20:4n-6 within plasma was unaffected by either 

dietary fat source or vitamin E concentration. 
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Feeding diets containing fish oil to pregnant ewes increased the proportion of C 18:3n-3 

within plasma (2.35 gil 00 g fatty acids for ewes supplemented with fish oil compared to 

1.26 gllOO g fatty acid for ewes fed Megalac, P<O.OO I). Moreover, C20:5n-3 was 

increased in plasma samples by fish oil supplementation, at 7.87 gI 100 g fatty acids 

compared with 1.63 gllOO g fatty acids for ewes fed Megalac (P<O.OO I). The proportion 

of C22:6n-3 within plasma was increased three-fold in ewes fed diets containing fish oil 

with means of 5.16 gllOO g fatty acids and 1.52 gllOO g fatty acids for those ewes offered 

fish oil and Megalac diets respectively (P<O.OO I). There was no significant effect of 

vitamin E supplementation on plasma n-3 fatty acids. 
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3.4.2.7. Gestation length 

- , 

Ewe gestation length was significantly increased by the addition of fish oil to the diet with 

mean values of 148 days compared with 146 days for ewes fed diets containing Mega\ac 

(P<O.OOI; Figure 3.2). There was no main effect of dietary vitamin E concentration upon 

gestation length, and no interactions between fat source and vitamin E concentration were 

observed upon this parameter. 
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Table 3.12. Ef1!ct o£PUFA and vitamin E sue.e.lementation o£ewes on colostrum e.arameters 
Diet P 

MB MS FB FS s.e.d. Fat Vit E FIV 

Secretion rate (ml/hour) 94.7 119 77.3 72.1 15.17 0.005 0.383 0.179 
Yield (l/day) 2.27 2.85 1.86 1.73 0.364 0.005 0.383 0.179 

Fat concentration (glkg) 123 135 101 104 8.7 <0.001 0.225 0.475 
Fat yield (g/hour) 12.7 16.2 7.63 7.66 2.245 <0.001 0.274 0.282 

Protein concentration (g/kg) 85.1 85.7 74.2 71.6 9.59 0.076 0.888 0.813 
Protein yield (g/hour) 8.69 10.7 5.61 5.00 1.635 <0.001 0.548 0.264 

Vitamin E concentration 8.238 27.4b 6.938 9.261 1.814 <0.001 <0.001 <0.001 
(mg/kg) 
VitaminEyield(mg/hour) 0.958 2.85b 0.91" 1.061 0.187 <0.001 <0.001 <0.001 

MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
Means without common superscripts are significantly different at the P<0.05 level 

3.4.2.8. Colostrum production 

Colostrum secretion rate was reduced in ewes offered diets containing fish oil compared to 

Megalac, with mean values of 74.7 mllhour compared to 107 mllhour respectively 

(P=0.005; Table 3.12). Furthermore, colostrum yield was lower in ewes supplemented 

with long-chain PUFAs during pregnancy (1.79 litres/day compared to 2.56 litres/day for 

fish oil and Megalac diets respectively, P=0.005). No significant effect of vitamin E 

supplementation level was evident upon colostrum secretion rate or yield. 

Fish oil supplementation of pregnant ewes had highly significant main effects on colostrum 

fat concentration and yield with means of 103 glkg compared to 129 glkg for fat 

concentration and fat yields of 7.65 glhour compared to 14.46 glhour, for fish oil and 

Megalac diets respectively. Although slight numerical differences in fat concentration and 

yield occurred as a result of supranutritional vitamin E supplementation, these differences 

were not statistically significant. Long-chain PUF A supplementation tended to reduce 

colostrum protein concentrations (72.9 glkg compared to 85.4 glkg for fish oil and 

Megalac respectively, P=0.076) and significantly reduced protein yield (5.30 glhour for 

fish oil diets, 9.71 glhour for Megalac diets, P<O.OOI). Vitamin E supplementation level 

had no significant effect on colostrum protein parameters. 
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Supranutritional vitamin E supplementation during pregnancy had highly significant main 

and interaction effects upon the colostral vitamin E concentration and yield. A main effect 

of vitamin E supplementation was evident with ewes fed concentrates containing 

supranutritional concentrations of vitamin E having higher concentrations (18.3 mg/kg 

compared to 7.58 mg/kg, P<O.OOl) and yields (1.95 mglhour compared to 0.93 mg/hour, 

P<O.OO 1) of the vitamin in colostrum. In addition, fish oil supplementation reduced the 

concentration (8.10 mg/kg) and yield (0.99 mg/hour) of colostral vitamin E compared to 

supplementation with Megalac (17.8 mg/kg and 1.90 mglhour). A highly significant 

interaction between fat source and dietary vitamin E concentration was observed for 

vitamin E concentration and yield; ewes fed diet MS had significantly higher values for 

both parameters than ewes fed the other three treatment diets. 

3.4.2.9. Colostrum fatty acids 

The total concentration of fatty acids within ewe colostrum was not significantly altered by 

dietary treatment (Table 3.13). The proportions of all short-chain saturated fatty acids 

apart from C4:0 within colostrum were significantly increased by long-chain PUFA 

supplementation of the ewe. A diminishing effect of supranutritional vitamin E 

supplementation was observed upon the proportions of C12:0 in colostrum (1.65 g/100 g 

fatty acids for ewes fed supranutritional concentrations vs. 2.13 gllOO g fatty acids for 

those fed basal concentrations, P=O.005). A similar effect was observed upon C14:0 

within colostrum with means of 6.83 gllOO g fatty acids in contrast to 8.59 gllOO g fatty 

acids for supranutritional and basal diets respectively (P<O.OO 1). Furthermore, a 

significant interaction between dietary vitamin E concentration and fat source was 

observed upon the proportion of C12:0 in colostral fat, the highest values being found in 

colostrum from ewes offered diet FB. 
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Table 3.13. Effect of PUFA and vitamin E supplementation of ewes on the proportions of fatty 
acids in colostrum 

Diet P 
Fatty acid (glIOO g fatty acid) MB MS FB FS s.e.d. Fat Vlt E FxV 

C4:0 4.07 4.05 3.60 4.12 0.384 0.475 0.370 0.338 
C6:0 1.24 1.31 1.87 1.81 0.212 0.001 0.977 0.665 
C8:0 0.73 0.72 1.29 1.17 0.142 <0.001 0.562 0.602 
CI0:0 1.70 1.63 3.31 2.80 0.346 <0.001 0.252 0.381 
C12:0 1.60· 1.47· 2.66b 1.838 0.214 <0.001 0.005 0.034 
C14:0 6.77 5.77 10.4 7.89 0.629 <0.001 <0.001 0.107 
C16:0 27.5 23.9 25.2 23.6 1.32 0.181 0.012 0.288 
C16:1n-7 0.92 0.93 1.30 1.26 0.077 <0.001 0.758 0.697 
C18:0 8.26 8.38 5.23 6.54 0.781 <0.001 0.209 0.296 
C18:1 trans 2.91 2.99 4.36 4.78 0.282 <0.001 0.219 0.411 
CI8:1n-9 cis 31.0 29.2 19.9 23.3 2.12 <0.001 0.599 0.098 
C18:2n-6 cis 2.72 2.21 1.96 1.87 0.202 0.001 0.053 0.159 
CLA (cis-9.trans-ll) 1.92 1.92 2.84 2.86 0.174 <0.001 0.951 0.969 
CI8:3n-3 cis 0.48 0.45 0.56 0.65 0.053 0.001 0.397 0.096 
C20:4n-6 0.14 0.13 0.09 0.18 0.045 0.899 0.221 0.147 
C20:5n-3 0.14 0.11 0.54 0.45 0.083 <0.001 0.299 0.609 
C22:6n-3 0.09 0.00 0.54 0.51 0.084 <0.001 0.255 0.611 

RFA' 7.90 14.9 14.4 14.4 4.200 0.322 0.251 0.250 

Total fa~ acids ~m~mll 90.8 72.1 76.2 71.1 11.90 0.366 0.172 0.428 
MB = Megalac + 50 mg/kg vitamin E; MS - Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 

The proportion of the medium-chain fatty acid C16:0 within colostral fat was reduced by 

the addition of supranutritional amounts of vitamin E to the diet of the ewe, with mean 

values of 23.7 g/100 g fatty acids compared to 26.3 g/100 g fatty acids for ewes fed basal 

concentrations of vitamin E (P=0.012). Although unaffected by dietary vitamin E 

concentration, the amount of C18:0 present in colostrum was reduced by the addition of 

long-chain PUFAs to ewe diets (5.88 g/IOO g fatty acids vs. 8.32 g/100 g fatty acids for 

fish oil and Megalac diets respectively, P<O.OO 1). 

The proportion of C16:1n-7 within colostrum fat was significantly increased by fish oil 

supplementation at 1.28 g/100 g fatty acids in contrast to 0.93 gl100 g fatty acids resulting 

from Megalac supplementation. Supplementation of ewes with fish oil during pregnancy 

also reduced the proportions of C18:1n-9 cis within colostrum, with mean values of 21.6 

gl100 g fatty acids in ewes fed fish oil compared to 30.1 gl100 g fatty acids in those fed 
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Megalac (P<O.OO 1). The proportion of C 18: 1 trans isomers in colostrum fat were 

increased in ewes fed fish oil compared to Megalac (4.57 g/100 g fatty acids compared to 

2.95 g/100 g fatty acids respectively, P<O.OOI). There were no significant main effects of 

vitamin E supplementation or interactions between dietary fat source and vitamin E 

concentration upon the proportions of monoenoic fatty acids in colostrum. 

The concentration of CLA within colostrum was increased by the addition of fish oil to 

ewe diets with means of 2.85 g/100 g fatty acids for ewes fed fish oil compared to 1.92 

g/100 g fatty acids for those supplemented with Megalac (P<O.OOI). No significant effect 

of vitamin E supplementation was observed upon this parameter. 

The predominant n-6 fatty acid observed in ewe colostrum samples was CI8:2n-6 cis. A 

reduction in the proportion of this fatty acid within colostral fat was exhibited by ewes fed 

diets containing fish oil (FB or FS) compared to Megalac (1.91 g/100 g fatty acids vs. 2.47 

gllOO g fatty acids, P=O.OOI), however, there was no significant effect of dietary vitamin E 

upon this parameter. Neither dietary fat source or vitamin E supplementation had any 

significant effect upon the proportional contribution of C20:4n-6 to colostrum fat. 

The proportion of C 18:3n-3 in colostral fat was increased in ewes offered a long-chain 

PUFAs during pregnancy with mean values of 0.60 gllOO g fatty acids compared to 0.46 

gllOO g fatty acids for fish oil and Megalac diets respectively (P=O.OOl). Long-chain 

PUF A supplementation of the pregnant ewe also conferred increases in the proportions of 

C20:5n-3 in colostrum with means of 0.49 gllOO g fatty acids in ewes fed fish oil 

compared to 0.13 gllOO g fatty acids in ewes offered Megalac (P<O.OOI). Similarly, 

proportions of C22:6n-3 within colostrum fat were higher in ewes supplemented with fish 

oil (0.52 gllOO g fatty acids) compared to Megalac (0.04 g/100 g fatty acids, P<O.OOI). 
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The amount of dietary vitamin E offered to pregnant ewes had no significant main or 

interaction effect upon the proportions of individual n-3 fatty acids within ewe colostrum. 

3.4.2.10. Plasma fatty acids (two weeks post partum) 

Dietary treatment had no significant effect upon the total concentration of fatty acids in 

ewe plasma at two weeks post partum (Table 3.14). Fish oil supplementation of ewes 

conferred a reduction in the proportion of C 16:0 within plasma when compared to Megalac 

(17.4 glI00 g fatty acids compared to 21.1 gllOO g fatty acids respectively, P<O.OOI), 

however, there was no significant difference between treatments on the proportion of 

C18:0 in plasma. 

Table 3.14. Effect of PUFA and vitamin E supplementation of ewes on the proportions of fatty 
acids in ewe e.'asma same.ies collected at two weeks' e.ost e.artum 

Diet P 
Fatty acid (gllOO g fatty acid) MB MS FB FS s.e.d. Fat Vlt E FxV 

C16:0 21.1 21.2 17.1 17.7 0.56 <0.001 0.409 0.455 
CI6:ln-7 1.11 1.49 2.02 1.54 0.485 0.177 0.885 0.227 
C18:0 19.9 19.8 19.1 18.4 0.85 0.067 0.497 0.610 
C18:1 trans 3.06 2.80 4.64 5.01 0.289 <0.001 0.789 0.139 
C18:1n-9 cis 19.4 19.6 15.5 14.0 1.15 <0.001 0.465 0.300 
CI8:2n-6 cis 19.2 20.0 11.6 12.6 0.95 <0.001 0.194 0.969 
CLA (cis-9.trans-ll) 0.12 0.10 1.84 0.78 0.402 <0.001 0.075 0.082 
CI8:3n-3 cis 1.78 1.20 2.68 3.40 0.691 0.005 0.890 0.199 
C20:4n-6 2.84 2.82 2.34 2.21 0.380 0.051 0.781 0.837 
C20:5n-3 1.99 2.11 6.96 7.64 0.445 <0.001 0.216 0.383 
C22:6n-3 0.26 0.15 3.13 3.82 0.421 <0.001 0.341 0.194 

RFAf 9.25 8.67 13.12 12.96 1.478 <0.001 0.725 0.845 

Total fatty acids (mg/ml) 1.44 1.30 1.12 1.18 0.187 0.110 0.754 0.443 
MB = Megalac + SO mg/kg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + SO mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, two weeks post partum = day 14 of lactation 
§ RF A = All remaining fatty acids 

Small numerical increases in the amount of CI6:ln-7 in plasma as a result of fish oil 

supplementation were not statistically significant. Ewes fed fish oil had lower proportions 

of CI8:ln-9 cis in plasma than ewes offered Megalac (14.7 gllOO g fatty acids vs. 19.5 

gllOO g fatty acids respectively, P<O.OOI). By contrast, the proportion of C18: 1 trans 

isomers within ewe plasma lipid was increased by the provision of fish oil (4.84 gllOO g 
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fatty acids) when compared to Megalac (2.93 glI00 g fatty acids, P<O.OOI). Offering diets 

containing fish oil to pregnant and lactating ewes had an augmenting effect upon the 

proportion of CLA within ewe plasma (1.31 gllOO g fatty acids for ewes offered diets 

containing fish oil compared to 0.11 gllOO g fatty acids for those fed diets based on 

Megalac, P<O.OOI). There were no significant effects of dietary vitamin E supply upon 

individual polyenoic fatty acid proportions. 

Ewe offered fish oil as the main fat source had lower proportions ofCI8:2n-6 cis in plasma 

than those fed diets containing Megalac (12.1 gllOO g fatty acids compared to 19.6 g/IOO g 

fatty acids, P<O.OOI). By contrast, the proportion of C20:4n-6 within plasma was 

unaffected by dietary treatment, although ewes supplemented with fish oil tended to have 

higher concentrations of this fatty acid in plasma compared to ewes fed Megalac 

(P=0.051). 

A two-fold increase in CI8:3n-3 was observed in ewe plasma lipid as a result of fish oil 

supplementation (3.04 gllOO g fatty acids) when compared to Megalac supplementation 

(1.49 g/IOO g fatty acids, P=0.005). The proportion of C20:5n-3 in ewe plasma was 

increased by a factor of 3.5 by fish oil supplementation of ewes (7.30 gllOO g fatty acids) 

when contrasted with Megalac (2.05 gllOO g fatty acids, P<O.OOI). A highly significant 

increase in the proportional contribution of C22:6n-3 to plasma fatty acids was conferred 

by fish oil supplementation with means of 3.47 gllOO g fatty acids in ewes offered diets 

containing fish oil compared to 0.21 g/100 g fatty acids for ewes fed Megalac. 

3.4.2.11. Milk production 

There was no significant effect of dietary fat source or vitamin E concentration observed 

upon milk secretion rate or yield (Table 3.15). Offering fish oil to pregnant and lactating 

ewes conferred a increase in the fat concentration of milk samples (96.8 glkg for diets FB 
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+ FS compared to 74.6 glkg for diets MB + MS, P=O.031). Moreover, a tendency for ewes 

fed diet FB to have a higher milk fat content than those offered diet MB (P=O.053) was 

observed. Milk fat yields were higher in ewes fed diets containing long-chain PUF As, 

however, the differences were not significantly different. There was no significant main 

effect of dietary vitamin E concentration upon milk fat concentration or yield. 

Table 3.15. Ell!ct 0lPUFA and vitamin E sUl!J!.lementation olewes on milk e.arameters 
Diet P 

MB MS FB FS s.e.d. Fat Vlt E FxV 

Secretion rate (mVhour) 96.7 82.9 91.8 102 11.13 0.382 0.817 0.143 
Yield (l/day) 2.32 1.99 2.20 2.44 0.267 0.382 0.817 0.143 

Fat concentration (g/kg) 62.2 87.0 104 89.5 13.76 0.031 0.604 0.053 
Fat yield (glhour) 5.35 7.31 8.51 8.00 1.464 0.075 0.492 0.244 

Protein concentration (glkg) 31.2" 40.lb 40.9b 38.S"b 3.59 0.122 0.211 0.034 
Protein yield (g/hour) 2.41" 3.S2ab 4.2Sb 3.39ab 0.585 0.048 0.764 0.02 

Lactose concentration (g/kg) 39.9 47.7 46.6 48.6 4.28 0.222 0.118 0.348 
Lactose yield (g/hour) 1.52 1.91 1.89 1.83 0.167 0.232 0.169 0.072 

Vitamin E concentration 0.95" 3.44c 0.65" 1.96b 0.329 0.001 <0.001 0.020 
(mg/kg) 

0.11 0.20 0.06 0.22 0.046 0.756 <0.001 0.334 Vitamin E ~ield ~m~ourl 
MB = Megalac + 50 mglkg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB :: Fish oil + 50 mg/kg 
vitamin E; FS :: Fish oil + 500 mg/kg vitamin E 
Means without common superscripts are significantly different at the P<O.OS level 

Milk protein concentrations and yields were lower in ewes fed diet MB compared to the 

other three treatment diets (P=0.034). No significant main effects of fat source or dietary 

vitamin E concentration were observed upon milk protein concentration, however, protein 

yield (glhour) was increased by the addition of long-chain PUFAs to the ewes' diet (3.82 

glhour vs. 2.96 glhour for fish oil and Megalac diets respectively, P=O.048). There was no 

significant effect of dietary treatment upon milk lactose concentration or yield. 

The concentration of vitamin E within milk was significantly increased by supplementing 

the ewe with a supranutritionallevel of vitamin E (2.70 mglkg) compared to a basal dietary 

concentration (0.80 mglkg). However, long-chain PUFA supplementation had an 

antagonistic effect upon milk vitamin E concentrations, with means of 1.30 mg/kg in milk 
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from ewes fed fish oil compared to 2.20 mg/kg in milk from those fed Megalac (P=O.OOI). 

A significant interaction between dietary fat source and vitamin E concentration was 

observed with ewes fed diet MS having higher milk vitamin E concentration than ewes fed 

any of the other treatment diets. By contrast, fat source had no significant effect on 

vitamin E yield although this was increased by the addition of supranutritional 

concentrations of vitamin E to the diet (0.21 mg/hour for diets MS + FS compared to 0.09 

mglhour for diets MB + FB, P<O.OOl). 

Table 3.16. Effect of PUF A and vitamin E supplementation of ewes on the proportions of fatty 
acids in milk 

Diet P 
Fatty acid (glIOO g fatty acid) MB MS FB FS s.e.d. Fat Vlt E FxV 

C4:0 4.78 4.70 3.93 3.86 0.237 <0.001 0.638 0.970 
C6:0 2.04 1.93 2.12 1.94 0.217 0.800 0.356 0.823 
C8:0 1.37 1.24 1.63 1.45 0.194 0.111 0.273 0.869 
CI0:0 3.18 2.95 3.80 3.32 0.489 0.170 0.317 0.721 
C12:0 1.79 1.61 2.40 2.03 0.231 0.002 0.066 0.493 
C14:0 5.69 5.21 7.05 6.70 0.341 <0.001 0.103 0.792 
C16:0 25.9 25.9 21.4 21.5 1.30 <0.001 0.910 0.947 
CI6:1n-7 1.10 1.18 1.45 1.71 0.208 0.007 0.270 0.536 
C18:0 12.9 14.1 8.78 9.36 0.722 <0.001 0.089 0.526 
C18:1 trans 3.43 3.28 5.04 5.54 0.680 0.002 0.892 0.411 
C18:1n-9 cis 26.3 27.5 21.9 22.8 0.946 <0.001 0.130 0.797 
CI8:2n-6 cis 1.49 1.10 1.35 1.69 0.333 0.336 0.922 0.140 
CLA (cis-9,trans-ll) 1.09 0.90 1.48 1.16 0.264 0.098 0.175 0.734 
CI8:3n-3 cis 0.32 0.31 0.45 0.41 0.076 0.044 0.608 0.750 
C20:4n-6 0.08 0.10 0.19 0.19 0.097 0.172 0.868 0.884 
C20:5n-3 0.05 0.00 0.29 0.13 0.073 0.002 0.049 0.283 
C22:6n-3 0.03 0.00 0.46 0.62 0.162 <0.001 0.572 0.435 

RFA'I 8.29 7.89 16.3 15.7 1.95 <0.001 0.699 0.920 

Total fat~ acids !m~mll 86.9 96.6 68.0 66.5 9.56 0.002 0.550 0.414 
MB = Megalac + 50 mglkg vitamin E; MS - Megalac + 500 mglkg vitamin E; FB "" Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mglkg vitamin E 
, RF A = All remaining fatty acids 

3.4.2.12. Milk fatty acids 

The total concentration of fatty acids within ewe milk at three weeks post partum was 

reduced by the provision of long-chain PUFAs to pregnant and lactating ewes (67.3 mg/ml 

in ewes fed fish oil compared to 91.7 mg/ml in those offered Megalac, P=0.002; Table 

3.16). Vitamin E supplementation had no significant main or interaction effect upon this 

parameter. 
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Long-chain PUFA supplementation of ewes reduced the proportion of C4:0 in ewe milk fat 

(3.89 glI00 g fatty acids for diets FB + FS compared to 4.74 glI00 g fatty acids for diets 

MB + MS, P<O.OOI). Dietary fat source had no significant effect upon the proportion of 

C6:0, C8:0 or ClO:O within milk fat. However, the proportions of C12:0 (2.22 gllOO g 

fatty acids vs. 1.70 glI00 g fatty acids, P=0.002) and C14:0 (6.88 gllOO g fatty acids vs. 

5.45 gllOO g fatty acids, P<O.OOI) in milk fat were increased by the addition of long-chain 

PUF As to the ewe diet when compared to Megalac supplementation. There was no 

significant effect of the amount of vitamin E offered to ewes upon the proportions of the 

saturated fatty acids C4:0 - C14:0 within milk. The predominant saturated fatty acid in 

milk fat, CI6:0, was lower in ewes fed diets containing long-chain PUFAs compared to 

those fed Megalac (21.4 gllOO g fatty acids compared to 25.9 gllOO g fatty acids 

respectively, P<O.OOI), however, there was no significant main or interaction effect of 

dietary vitamin E concentration. Similar effects of dietary treatment were observed upon 

the proportion of C18:0 in ewe milk with mean values of 9.07 gllOO g fatty acids in ewes 

offered diets containing fish oil compared to 13.5 gllOO g fatty acids in those fed Megalac 

(P<O.OOI). 

The addition of long-chain PUFAs to the ewe diet increased the proportion of C 16: 1 n-7 

(1.58 gllOO g fatty acids for ewes fed fish oil compared to 1.13 glI00 g fatty acids in those 

fed Megalac, P=O.007) and CI8:I trans (5.28 g/IOO g compared to 3.36 glI00 g fatty acids 

for fish oil and Megalac diets respectively, P=O.002) in milk fat. The proportion of 

CI8:1n-9 cis within milk fat was lower (22.3 glI00 g fatty acids vs. 26.9 glI00 g fatty 

acids, P<O.OOI) in ewes offered diets containing fish oil compared to those fed Megalac. 

Dietary vitamin E concentration had no effect upon the amount of C 18: 1 n-9 cis in milk. 

Neither dietary fat source nor vitamin E concentration conferred any significant change 

upon proportions of milk CLA, although ewes fed fish oil tended to have higher 

proportions of this fatty acid in milk fat (P=0.098). 
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No significant main or interaction treatment effects were observed upon the proportions of 

CI8:2n-6 or C20:4n-6 in milk. By contrast, a significant difference in the proportion of 

C 18:3n-3 within milk lipids was evident, with ewes offered fish oil (0.43 gllOO g fatty 

acids) having higher values for CI8:3n-3 than those fed Megalac (0.32 gllOO g fatty acids). 

Furthermore, the proportion of C20:5n-3 within milk was enhanced by the addition of 

long-chain PUFAs to the ewe diet with means of 0.21 gllOO g fatty acids compared to 0.02 

g/IOO g fatty acids in ewes fed diets containing Megalac (P=0.002). The proportion of 

C22:6n-6 within milk was also increased by long-chain PUF A supplementation of the ewe 

when contrasted with supplementation with Megalac (0.54 gllOO g fatty acids compared to 

0.01 gllOO g fatty acids, P<O.OOI). There was no significant effect of dietary vitamin E 

concentration upon the amounts of n-3 PUFAs in milk, save for a reduction in the 

concentration of C20:5n-3 effected by supranutritional supplementation (0.170 mg/ml for 

diets MS + FS compared to 0.130 mg/ml for diets MB + FB, P=0.049). 

3.4.3. Lamb performance 

3.4.3.1. Neonatal lamb behaviour 

Ewe and lamb behavioural parameters are presented in Table 3.17. Maternal behaviour 

scores were similar for all treatments, regardless of dietary fat source or vitamin E 

concentration. An interaction effect was observed between fat source and dietary vitamin 

E concentration upon the latency of standing in neonatal lambs: supranutritional vitamin E 

supplementation reduced the time taken to stand in lambs from ewes fed fish oil (diet FS) 

but increased the latency of standing in lambs borne by ewes offered Megalac (diet MS; 

P=0.048). In addition, maternal fish oil supplementation tended to reduce the time taken to 

stand with mean values of 16.3 minutes compared to 20.3 minutes resulting from Megalac 

supplementation (P=0.082). 
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Table 3.17. Effect of PUFA and vitamin E supplementation of ewes on maternal behaviour 
scores and latencies of neonatal lamb behaviours 
______________________ ~----~D~i=e~t~------- P 

MB MS FB FS s.e.d. Fat Vlt E FIV 

Maternal measurements: 
Maternal behaviour score 134 132 135 129 4.9 0.882 0.302 0.552 

Neonatal measurements: 
Latency of standing (min) 
Latency of searching for the 
udder (min) 

17.0"b 
24.7 

23.6b 

26.0 

Latency of successful suckling 38.2 48.7 
(min) 

17.6"b 
24.3 

33.6 

14.9" 
19.8 

34.5 

3.23 
4.01 

4.92 

0.082 
0.253 

0.009 

0.388 
0.580 

0.105 

0.048 
0.316 

0.171 

MB = Megalac + 50 mg/kg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
Means without common superscripts are significantly different at the P<0.05 level 

No significant main effects of fat source or vitamin E concentration were observed on the 

time taken by lambs to search for the udder. Nevertheless, lambs produced by ewes fed 

diets containing fish oil suckled significantly faster at 34.0 minutes when compared with 

lambs from ewes fed Megalac diets at 43.4 minutes. No significant main or interaction 

effect of dietary vitamin E concentration was observed upon this parameter. 

3.4.3.2. Neonatal lamb plasma vitamin E 

Vitamin E concentrations in neonatal plasma were only detectable in three out of twelve 

plasma samples, the measurable values being in lambs from treatment MS (2 samples) and 

FS (1 sample). 

Table 3.18. Effect of PUFA and vitamin E supplementation of ewes on vitamin E 
concentrations in neonatal lamb tissues 

Diet p 

MB MS FB FS s.e.d. Fat Vlt E FIV 

Brain vitamin E (mg/kg) 1.59 2.85 1.57 2.11 0.389 0.216 0.017 0.238 
Muscle vitamin E (mg/kg) 0.69 U8 0.57 0.95 0.128 0.099 0.003 0.573 

MB = Megalac + 50 mg/kg vitamin E; Megalac + 500 mg/kg vitamin E; FB - Fish oil + 50 mg/kg vitamin 
E; FS = Fish oil + 500 mg/kg vitamin E 

3.4.3.3. Neonatal lamb tissue vitamin E 

Supranutritional vitamin E supplementation of the pregnant ewe significantly increased the 

concentration of vitamin E within neonatal brain tissue with mean values of 2.48 mglkg for 
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supranutritional diets compared to 1.58 mglkg for ewes offered basal diets (Table 3.18). 

Although a numerical reduction in brain vitamin E concentration existed in lambs from 

ewes fed fish oil compared to Megalac (1.84 mg/kg compared to 2.22 mg/kg respectively), 

this difference was not statistically significant. 

Vitamin E concentrations in neonatal muscle tissue were also increased by the provision of 

supranutritional dietary concentrations of vitamin E to the ewe during pregnancy at 1.06 

mg/kg in contrast to 0.63 mg/kg for ewes offered basal dietary concentrations of vitamin E 

(P=0.003). Furthermore, a tendency for maternal long-chain PUFA supplementation to 

reduce neonatal muscle vitamin E concentrations was in evidence; lambs from ewes fed 

fish oil had a mean vitamin E concentration of 0.76 mg/kg compared to 0.93 mg/kg for 

ewes fed Megalac (P=0.099). No significant interaction between fat source and maternal 

dietary vitamin E concentration was observed upon neonatal muscle vitamin E 

concentrations. 

3.4.3.4. Neonatal lamb plasma fatty acids 

The total concentration of fatty acids within neonatal lamb plasma was reduced by fish oil 

supplementation with means of 0.280 mg/ml compared to 0.413 mg/ml for Megalac 

supplementation (P=0.041; Table 3.19). Maternal dietary vitamin E concentration had no 

significant effect upon total fatty acid concentrations within neonatal lamb plasma. No 

significant effect of dietary treatment was observed upon the proportions of individual 

saturated fatty acids within plasma. The only monoenoic fatty acids of significance 

detected in neonatal plasma were C16:1n-7 and C18:1n-9 cis, however, neither fatty acid 

was subject to manipulation by maternal diet. The proportion of CLA within neonatal 

lamb plasma was not altered by dietary supplementation of ewes with long-chain PUF As, 

vitamin E, or their combination. 
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Table 3.19. Effect ofPUFA and vitamin E supplementation of ewes on the proportions of/atty 
acids in neonatal lamb e.'asma 

Diet P 
Fatty acid (gllOO g fatty MB MS FB FS s.e.d. Fat Vlt E FxV 
acid) 

C16:0 21.3 21.1 22.6 21.2 1.93 0.624 0.559 0.671 
C16:1n-7 6.02 5.83 8.06 5.50 1.763 0.518 0.313 0.377 
C18:0 9.89 9.37 10.20 10.50 0.821 0.262 0.849 0.507 
C18:1 trans ND 0.44 ND ND 0.157 
CI8:ln-9 cis 34.2 40.6 33.0 32.3 5.67 0.280 0.503 0.407 
CI8:2n-6 cis 3.23 3.25 5.60 3.57 0.768 0.046 0.118 0.104 
CLA (cis-9.trans-ll) 1.66 0.47 0.68 1.49 0.960 0.979 0.792 0.190 
CI8:3n-3 cis 1.63 2.20 1.03 4.54 2.180 0.592 0.234 0.378 
C20:4n-6 2.81 2.40 1.57 1.99 0.828 0.209 0.993 0.506 
C20:5n-3 1.85 0.42 1.80 2.64 0.692 0.069 0.573 0.059 
C22:6n-3 0.00 1.03 2.62 3.64 0.981 0.009 0.192 0.992 

RFA' 17.4 12.9 12.8 12.7 1.80 0.104 0.116 0.133 

Total fa~ acids ~m~mQ 0.352 0.474 0.271 0.289 0.0726 0.041 0.221 0.347 
MB = Megalac + 50 mg/kg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, RF A = All remaining fatty acids; ND = not detected 

The proportional contribution of C 18 :2n-6 to total fatty acids within plasma was increased 

by the addition of fish oil to the maternal diet with mean values of 4.59 gllOO g fatty acids 

in contrast to 3.23 g/lOO g fatty acids for Megalac diets (P=O.046). There was no effect of 

maternal vitamin E supplementation upon the proportion of C 18:2n-6 within neonatal lamb 

plasma. Numerical differences existed between the proportion of C20:4n-6 in plasma for 

fish oil compared to Megalac, however, these differences did not reach statistical 

significance. 

No significant main or interaction treatment effects were observed upon the proportions of 

the fatty acids CI8:3n-3 within plasma lipid. By contrast, the proportional contribution of 

C20:5n-3 to plasma fatty acids tended to be higher in lambs borne by ewes fed fish oil 

(2.22 g/lOO g fatty acids) when compared to those produced by ewes fed Megalac (1.14 

g/IOO g fatty acids; P=O.069). Furthermore, ewes fed diet FS tended to bear lambs with 

higher proportions of this fatty acid within plasma when compared to those fed diet MS. 

An increase in C22:6n-3 was exhibited by lambs borne by ewes offered fish oil diets when 
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compared to ewes fed Megalac (3.13 gllOO g fatty acids vs. 0.51 glI00 g fatty acids 

respectively, P=0.009). 

Table 3.20. Effect of PUF A and vitamin E supplementation of ewes on the proportions of fatty 
acids in neonatal lamb brain 

Diet P 
Fatty acid (gllOO g fatty acid) MB MS FB FS s.e.d. Fat Vlt E FIV 

C16:0 19.2 20.0 18.3 18.9 0.72 0.095 0.202 0.917 
CI6:ln-7 0.75 0.80 0.78 0.78 0.062 0.979 0.538 0.599 
C18:0 15.3 15.2 14.6 15.2 0.48 0.366 0.453 0.375 
C18:1 trans 0.10 0.13 0.14 0.08 0.046 0.940 0.692 0.209 
C18: In-9 cis 14.6 14.4 13.5 15.0 1.44 0.815 0.538 0.408 
CI8:2n-6 cis 0.24 0.30 0.27 0.23 0.105 0.748 0.896 0.526 
CLA (cis-9,trans-ll) 1.11 0.94 1.05 0.99 0.241 0.947 0.530 0.759 
CI8:3n-3 cis 0.19 0.41 0.65 0.43 0.181 0.111 0.955 0.141 
C20:4n-6 4.33 2.98 2.20 3.13 1.045 0.228 0.788 0.174 
C20:5n-3 0.27 0.00 0.94 0.67 0.167 0.011 0.104 0.011 
C22:6n-3 10.4 10.5 11.8 11.3 0.62 0.055 0.631 0.533 

RFA' 33.5 34.4 36.8 33.6 1.77 0.347 0.375 0.148 

Total fat~ acids ~mu) 26.1 25.5 26.6 25.0 1.29 0.986 0.282 0.654 
MB = Megalac + SO mg/kg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + SO mg/kg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
'I RF A = All remaining fatty acids; NO = not detected 

3.4.3.5. Neonatal lamb brain fatty acids 

The total fatty acid concentration of neonatal lamb brain tissue was equivalent between 

treatments (Table 3.20). Fish oil supplementation of the ewe tended (P=0.095) to reduce 

the proportional contribution of C16:0 to total lamb brain fatty acids, however, there was 

no significant effect of dietary vitamin E supply to the ewe. The proportions of C 18:0 

within neonatal brain tissue were similar between treatments with no significant effect of 

dietary treatment. The proportions of all recorded monoenoic fatty acids (C 16: I n-7, C 18: 1 

trans and CI8:ln-9 cis) were equivalent between treatments, with no significant effect of 

maternal dietary fat source or vitamin E concentration. The cis-9,trans-11 CLA isomer 

was found in concentrations approximately equal to 1 % of brain fatty acids within each 

sample, with no statistically significant effects of either maternal dietary fat source or 

vitamin E concentration. 
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The proportion of CI8:2n-6 within brain tissue lipids was equivalent between treatments 

with no significant effect of maternal dietary fat source or vitamin E concentration. 

Feeding fish oil to pregnant ewes appeared to confer a decrease in the proportion of 

C20:4n-6 within neonatal lamb brains when compared to those offered Megalac, however, 

this difference was not statistically significant. 

The mean proportion ofCI8:3n-3 within neonatal brain fatty acids varied from 0.19 gllOO 

g fatty acids (diet MB) to 0.65 gllOO g fatty acids (diet FB), however, these differences did 

not reach statistical significance. Fish oil supplementation of the ewe conferred a 

significant increase in the proportion of C20:5n-3 within neonatal lamb brain tissue with 

mean values of 0.81 mg/IOO g fatty acids compared to 0.14 mg/IOO g fatty acids in 

samples from lambs produced by ewes fed Megalac. Lambs born to ewes offered diets 

containing fish oil tended to have increased proportions of C22:6n-3 within brain tissue 

with mean values of 11.50 gllOO g fatty acids compared to 10.5 gllOO g fatty acids in 

lambs borne by ewes fed Megalac, a difference that approached significance at P=0.055. 

3.4.3.2. Lamb liveweight 

No significant effect of long-chain PUF A supplementation was observed upon lamb 

birthweight or liveweight (Table 3.21). However, ewes fed fish oil during pregnancy and 

lactation tended to have lower individual lamb growth rates than those fed Megalac (0.253 

kg/day compared to 0.270 kg/day respectively, P=0.054). Individual lamb birthweights 

were increased by supranutritional vitamin E supplementation of pregnant ewes (Table 

3.21), with mean values of 4.17 kg for lambs compared to 3.86 kg for lambs from ewes 

offered diets containing a basal concentration of vitamin E (P=0.023). This difference 

persisted as a significant main effect of vitamin E supplementation until three weeks of 

age, after which there was no significant effect of dietary vitamin E concentration on lamb 

liveweight. 
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Table 3.21. Effect of PUFA and vitamin E supplementation of ewes on lamb birthweights (kg) 
and lamb and litter growth rates (kg/day) 

Diet P 
---------------------=----~~~--~~ MB MS FB FS s.e.d. Fat Vlt E FxV 

Lamb Iiveweight: 
At birth 3.87 4.01 3.85 4.33 0.190 0.268 0.023 0.215 
At 1 week of age 5.70 5.95 5.50 6.17 0.262 0.960 0.015 0.264 
At 2 weeks of age 7.58 8.09 7.64 8.23 0.309 0.646 0.014 0.832 
At 3 weeks of age 9.41 9.90 9.44 9.93 0.391 0.909 0.082 0.991 
At 4 weeks of age 11.0 11.6 11.1 11.6 0.48 0.824 0.117 0.869 

Lamb growth rate 0.26 0.28 0.25 0.25 0.012 0.054 0.270 0.333 
Litter growth rate 0.51 0.56 0.50 0.48 0.026 0.013 0.374 0.074 

MB = Megalac + 50 mg/kg vitamin E; Megalac + 500 mglkg vitamin E; FB = Fish oil + 50 mg/kg vitamin 
E; FS = Fish oil + 500 mg/kg vitamin E 

Litter growth rates from birth until four weeks of age were reduced in lambs suckling ewes 

fed fish oil (mean of 0.487 kg/day) compared to those feeding from ewes offered Megalac 

(0.536 kg/day, P=O.013). Supranutritional vitamin E supplementation of the ewe also 

tended to reduce litter growth rates when fed in combination with long-chain PUF As (diet 

FS) in contrast to Megalac (diet MS; P=0.074). 

3.4.3.3. Suckling lamb antioxidant status 

At two weeks of age, long-chain PUF A supplementation of the ewe had an antagonistic 

effect upon lamb plasma vitamin E concentrations with concentrations of 2.82 mmol/l 

(diets FB + FS) compared to 4.97 mmolll (diets MB + MS, P=O.OOl; Table 3.22). Lambs 

borne by ewes offered supranutritional concentrations of vitamin E had higher plasma 

vitamin E concentrations (5.75 mmolll) compared to those suckling ewes fed diets 

containing a basal vitamin E concentration (2.04 mmolll, P<O.OO 1), An interaction 

between fat source and maternal dietary vitamin E concentration was also in evidence 

(P=0.036) with supranutritional dietary concentrations of vitamin E resulting in a greater 

increase in plasma vitamin E in lambs suckling ewes fed Megalac (diet MS) compared to 

fish oil (diet FS). 
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Table 3.22. Effect 0/ PUFA and vitamin E supplementation 0/ ewes on indicators o/vitamin E 
and selenium status and 0/ cellular damage in lambs at two weeks 0/ age 
____________________ ~=_--~;D~ie~t~----~- P 

MB MS FB FS s.e.d. Fat Vit E FxV 

Plasma vitamin E (mmoVI) 2.47· 7.48c 1.60· 4.02b 0.816 0.001 <0.001 0.036 
Erythrocyte GPx (U/ml PCV) 289 308 273 277 16.3 0.049 0.336 0.514 
Serum CK (U/I) 194 143 456 421 162.7 0.022 0.709 0.944 

MB = Megalac + SO mglkg vitamin E; Megalac + 500 mglkg vitamin E; FB = Fish oil + SO mglkg vitamin 
E; FS = Fish oil + 500 mglkg vitamin E 
Means without common superscripts are significantly different at the P<O.OS level 

Lambs suckling ewes fed long-chain PVF As had significantly lower activities of GPx in 

erythrocytes than feeding from ewes fed Megalac (275 Vlml pev compared to 299 Vlml 

PCV respectively, P=0.049). By contrast, Vitamin E supplementation of the ewe had no 

effect upon the activity of GPx in lamb erythrocytes. Maternal fish oil supplementation 

conferred an increase in the serum CK concentrations in lambs at two weeks of age at 439 

VII compared to 168 VII resulting from Megalac supplementation (P=0.022). Vitamin E 

supplementation of the ewe had no significant effect upon CK concentrations in lamb 

serum. 

3.4.3.4. Suckling lamb plasma fatty acids 

Offering fish oil to pregnant and lactating ewes reduced the total fatty acid concentration in 

lamb plasma at two weeks of age (1.85 mg/ml for diets FB + FS, 2.42 mg/ml for diets MB 

+ MS, P=0.003; Table 3.23). However, there was no significant effect of maternal vitamin 

E supplementation upon this parameter. Maternal long-chain PVF A supplementation 

reduced the proportions ofC16:0 (20.7 g/IOO g fatty acids compared to 22.6 g/IOO g fatty 

acids, P=0.002) and C18:0 (12.9 g/IOO g fatty acids compared to 15.8 g/IOO g fatty acids, 

P<O.OO 1) within lamb plasma lipid when compared to supplementation with Megalac. No 

significant effect of vitamin E supplementation of the ewe was in evidence upon these 

parameters. 
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Table 3.23. Effect of PUF A and vitamin E supplementation of ewes on the proportions of fatty 
acids in lamb e.lasma same.les collected at two weeks 0l aG.,e 

Diet P 
Fatty acid (gllOO g fatty MB MS FB FS s.e.d. Fat Vlt E FxV 
acid) 

C16:0 23.3 21.9 20.3 21.0 0.79 0.002 0.499 0.068 
CI6:1n-7 0.96 1.32 1.50 1.59 0.311 0.081 0.322 0.549 

C18:0 15.6 16.0 13.4 12.3 0.71 <0.001 0.473 0.135 
C18:1 trans 2.80 2.76 4.33 4.44 0.212 <0.001 0.823 0.599 

CI8:1n-9 cis 25.1 25.8 20.4 21.0 1.11 <0.001 0.398 0.964 

CI8:2n-6 cis 12.6 12.6 10.1 9.07 0.856 <0.001 0.416 0.401 
CLA (cis-9,trans-ll) 0.19 0.14 0.78 1.43 0.283 <0.001 0.153 0.095 

CI8:3n-3 cis 1.16 1.08 2.05 1.96 0.273 <0.001 0.664 0.963 
C20:4n-6 3.09 3.50 2.15 1.94 0.299 <0.001 0.639 0.165 
C20:5n-3 1.068 1.138 5.20" 4.16b 0.304 <0.001 0.036 0.018 

C22:6n-3 0.668 1.64b 2.57c 2.32c 0.329 <0.001 0.129 0.015 

RFA' 13.4 12.1 17.2 18.8 1.20 <0.001 0.888 0.105 

2.60 2.23 1.84 1.86 0.240 0.003 0.296 0.270 Total fa~ acids ~m~mQ 
MB = Megalac + 50 mg/kg vitamin E; MS = Megalac + 500 mg/kg vitamin E; FB = Fish oil + 50 mglkg 
vitamin E; FS = Fish oil + 500 mg/kg vitamin E 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 

Dietary treatment had no significant main or interaction effect upon the proportion of 

CI6:ln-7 in plasma at two weeks of age. The proportion ofC18:1n-9 was lower in lambs 

borne by ewes offered diets containing fish oil (20.7 gllOO g fatty acids) when compared to 

those containing Megalac (25.4 gllOO g fatty acids, P<O.OOl). By contrast, adding fish oil 

to the diets of ewes during pregnancy and lactation significantly increased the proportional 

contribution ofC18:1 trans to lamb plasma fatty acids (4.38 gllOO g fatty acids for fish oil 

treatments vs. 2.78 gllOO g fatty acids for Megalac treatments). A significant increase in 

the proportion of CLA was observed within lamb plasma as a consequence of 

supplementing maternal diets with long-chain PUFAs (1.10 glI00 g fatty acids compared 

to 0.17 gllOO g fatty acids for fish oil and Megalac diets respectively). 

The proportion of CI8:2n-6 in lamb plasma at two weeks of age was reduced by long-

chain PUFA supplementation of the dam with means of9.58 gllOO g fatty acids compared 

to 12.6 gllOO g fatty acids (P<O.OOI) for maternal diets containing fish oil and Megalac 

respectively. The proportion of C20:4n-6 within plasma lipids was lower in lambs 

produced by ewes supplemented with long-chain PUFAs when compared to those suckling 
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ewes offered Megalac (2.05 gllOO g fatty acids vs. 3.30 gllOO g fatty acids, P<O.OOI). 

However, no significant effect of vitamin E supplementation of the dam was observed 

upon the proportions of individual n-6 fatty acids within plasma. 

Proportions of C18:3n-3 were increased from 1.12 gllOO g fatty acids in lambs suckling 

ewes fed Megalac to 2.00 gllOO g fatty acids in those suckling ewes offered fish oil 

(P<O.OO 1). In addition the proportion of C20:5n-3 within suckling lamb plasma lipid was 

increased from 1.09 gllOO g fatty acids (diets MB + MS) to 4.68 gllOO g fatty acids (diets 

FB + FS; P<O.OOl). The proportion of C20:5n-3 was also lower in lambs produced by 

ewes fed supranutritionallevels of vitamin E (2.64 gllOO g fatty acids) compared to those 

fed diets containing basal vitamin E concentrations (3.13 gllOO g fatty acids, P=0.036). 

Lambs suckling ewes fed diet FB had higher proportions of C20:5n-3 than those feeding 

from ewes fed diets MB or MS (P=0.018). The proportion of C22:6n-3 within suckling 

lamb plasma was significantly augmented from 1.15 gllOO g fatty acids in lambs suckling 

ewes fed Megalac to 2.45 gllOO g fatty acids in those suckling ewes offered diets 

containing fish oil (P<O.OOl). Furthermore, the highest proportions of C22:6n-3 were 

observed in lambs produced by ewes fed diets FB or FS compared to diet MB (P=0.015). 

143 



3.5. Discussion 

3.5.1. Ewe parameters 

3.5.1.1. Straw Intake 

Within the current study, neither dietary fat source nor vitamin E concentration had any 

significant effect upon the daily straw intake of pregnant and lactating ewes. This is in 

direct contrast to the results of Donovan et al. (2000), Keady and Mayne (2000) and 

Annett et al. (2004) who demonstrated significant decreases in dry matter intake as a result 

of supplementing ruminants with fish oil. Szumacher-Strabel et al. (200 I a; 200 I b) 

concluded that this effect may be a consequence of the toxic effects of long-chain PUF As 

upon rumen microflora with subsequent reductions in fibre digestibility. However, 

supplementing ruminant diets with fatty acids protected from ruminal biohydrogenation 

may reduce or eliminate the adverse effects of long-chain PUFAs upon DM intake. 

Kitessa et al. (200Ia; 2001b) supplemented lactating ewes and goats with either protected 

or unprotected tuna oil and reported no significant effect of protected oil on DM intake 

although intake was reduced in animals offered unprotected oil. Moreover, Sanz 

Sampelayo et al. (2002) demonstrated that the DM intake of goats was unaffected by 

protected PUF A supplementation when compared to a control concentrate. It is postulated 

that the adsorbent nature of the vermiculite carrier included in the treatment concentrate 

may have rendered the long-chain PUF As unavailable to rumen micro flora, thereby 

negating the effects observed in studies employing unprotected fish oils. 

3.5.1.2. Nutritional status 

Supplementing pregnant sows with salmon oil or tuna oil had no significant effect upon 

liveweight or backfat thickness in the studies of Rooke et al. (2000) and Rooke et al. 

(200 I b) respectively. Similarly, adding fish oil to the diet of pregnant and lactating ewes 

had no effect upon ewe body condition score in the current study. However, the extent of 

liveweight loss post partum was significantly lower in ewes supplemented with long-chain 
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PUF As. Furthermore, plasma ~HB and NEF A, metabolic indicators of adipose tissue 

mobilisation, were significantly lower in ewes supplemented with fish oil. These results 

are in agreement with those reported by Ahnadi et al. (2002) as a result of feeding 

protected fish oil to dairy cattle. Annett et al. (2004) also observed reduced liveweight 

change pre-partum in ewes supplemented with fish oil, however, both Keady et al. (2000) 

and Lacasse and Anhadi (1998) described increased liveweight loss in lactating cattle 

supplemented with fish oil. In the aforementioned studies (Annett et al., 2004; Keady et 

al., 2000; Lacasse and Anhadi, 1998), dry matter intake was significantly reduced by 

PUF A supplementation with consequent effects upon total energy intake, an effect which 

was not observed in the current experiment. By contrast, Chilliard and Doreau (1997) and 

Whitlock et al. (2002) described no significant effect of fish oil supplementation on the 

liveweight or body condition score of lactating cows, despite decreases in feed intake. The 

lower rate of liveweight loss observed in fish-oil supplemented ewes within the current 

experiment may be attributed to the reduced colostrum and milk production and 

consequent improvement in energy balance post partum. 

Supplementing ewes with supranutritional dietary concentrations of vitamin E increased 

body condition score loss during pregnancy, a difference that became significant during 

lactation. As vitamin E acts as an antioxidant within cells (Gonzalez-Corbella et al., 

1998), the increase in oxidative challenge to the ruminant resulting from mobilisation of 

adipose tissue to meet requirements for milk production may increase the dietary vitamin E 

requirement (Allison and Laven, 2000). However, this result does not concur with the 

effects of vitamin E supplementation reported by both Kott et al. (1998), and Merrell 

(1998) who observed no significant influence of vitamin E on ewe body condition score. 
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3.5.1.3. Ewe antioxidant status 

Within the current study, supranutritional supplementation of the pregnant and lactating 

ewe resulted in a significant increase in plasma vitamin E concentrations. Vitamin E 

concentrations in maternal plasma have been shown to increase with dietary 

supplementation of ewes (Hidiroglou et al., 1969; Njeru et al., 1994; Gabryszuk and 

Klewiec, 2002), pigs (Hidiroglou et al., 1993a; Farnworth et al., 1995; Lauridsen et al., 

2002), rats (Martin and Hurley, 1977) and humans (Mino and Nishino, 1973; Leger et al., 

1998). The magnitude of the differences in plasma vitamin E concentration between ewes 

offered supranutritional and basal supplementation were demonstrably higher during 

pregnancy than during lactation. Similar results were reported by Hidiroglou et al. (1993a) 

who supplemented pregnant and lactating sows with dietary vitamin E and attributed the 

lower plasma vitamin E concentrations found in lactation to the partitioning of vitamin E 

into colostrum and milk. By contrast, Mahan (1991) reported an increase in serum vitamin 

E as lactation progressed, in sows supplemented with either 22 or 44 mg dietary vitamin 

E/kg diet. The total daily supply of vitamin E during lactation was considerably higher 

than that fed during pregnancy and it is therefore probable that the lower concentrations 

observed in plasma are due to an increased requirement during lactation as a consequence 

of milk production. The index proposed by Hidiroglou et al. (1992b) to indicate 

satisfactory plasma concentrations in ruminants suggests that ewes supplemented with 

supranutritional concentrations of vitamin E had minimal or marginal concentrations of 

vitamin E in plasma throughout. By contrast, ewes fed concentrates formulated to satisfy 

the basal vitamin E requirement were classified as deficient. 

The animals' requirement for vitamin E is positively correlated with the oxidative 

challenge posed to the animal as a result of the unsaturated fatty acid supply (Farnworth et 

al., 1995). Wang et al. (1996), McGuire and Fritsche (1997) and Chikunya et al. (2004) 

have described the abrogating effect of dietary long-chain PUFAs upon the vitamin E 
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status of various animals. The reduced plasma vitamin E concentrations observed in ewes 

fed fish oil within the current study concur with these results. By contrast, Rochester and 

Caravaggi (1971) reported no significant effect of fish oil supplementation upon serum 

vitamin E concentrations in lambs. 

The plasma vitamin E concentration also has a complex interrelationship with the selenium 

status of the animal, specifically with the enzyme glutathione peroxidase, which acts to 

prevent the oxidation of unsaturated fatty acids within the cell (VanMetre and Callan, 

2001). Suarez et al. (1999) reported that supplementing rats with dietary vitamin E 

reduced the total amount of GPx present in liver and brain and attributed this reduction to a 

sparing effect of vitamin E upon the synthesis of GPx; supplemental vitamin E increasing 

the antioxidant status of the cell and thereby reducing the requirement for GPx. By 

contrast, within the current study, no effect of vitamin E supplementation was observed 

upon the activity of GPx in ewes although this activity was significantly reduced in ewes 

offered fish oil. Increasing the peroxidative challenge to the animal by the addition of 

long-chain PUF As to the diet has a concurrent effect upon the cellular requirement for 

antioxidants. Consequently, it is logical to attribute the reduction in GPx activity in ewes 

supplemented with fish oil, to a higher rate of GPx oxidation within the cell and 

corresponding reduction in active enzyme availability. Indeed, Smith et al. (1994) 

reported reduced GPx activity in erythrocytes of sheep supplemented with protected 

PUFAs. 

Specific cellular metabolites are released when tissues are damaged as a result of long

chain PUFA peroxidation (Lefebvre et al., 1996). The enzyme CK is a reliable indicator of 

tissue damage (Vojtic, 2000) and it may be postulated that adding long-chain PUFAs to the 

ruminant diet would increase the concentration of CK within serum. Dietary 

supplementation with PUF As increased the concentration of ewe serum CK in the current 
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study, however, this result did not reach statistical significance. Furthennore, no effect of 

vitamin E supplementation was observed, despite the potential differences in peroxidation 

challenge and dietary antioxidant supply provided by the four treatment diets. Reference 

values for CK in sheep serum proposed by Bostedt and Schramel (1990) suggested that the 

extent of tissue damage induced by long-chain PUFA supplementation was low, with 

values exceeding 2000 lUll suggesting sub-clinical nutritional myopathy. 

3.5.1.4. Plasma fatty acids 

As ewes were supplemented with the same diet, albeit in differing quantities, during both 

pregnancy and lactation, the pre- and post partum fatty acid results are discussed together. 

Ewe plasma fatty acid concentrations may be manipulated by dietary fatty acid supply, 

although bound by the constraints imposed by ruminal biohydrogenation and differences in 

digestion and absorption of individual fatty acids. However, changes in ewe plasma fatty 

acids largely reflect the fatty acid composition of the dietary treatments fed within the 

current study. 

The total fatty acid concentration within ewe plasma during pregnancy was significantly 

reduced by supplementation with long-chain PUFAs. As the total daily fatty acid supply 

was constant between experimental diets and straw intake was unaffected by dietary fat 

source, it can be suggested that the differences in total plasma fatty acid concentration may 

be as a result of differences in endogenous fatty acid synthesis. Indeed, long-chain PUF A 

supplementation has been shown to reduce the endogenous synthesis of short and medium

chain fatty acids for deposition into milk via direct inhibiting effects of metabolites 

produced by ruminal biohydrogenation of PUF As (Romo et al., 1996; Brz6ska et al., 1999; 

Bauman and Griinari, 2001). The results of Ahnadi et al. (1998) who reported that feeding 

fish oil to lactating cattle reduced the expression of enzymes responsible for fatty acid 

synthesis in the mammary gland concur with this hypothesis, however, it is not known 
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whether similar inhibition mechanisms occur in cells other than those of the mammary 

gland. 

The replacement of Megalac by fish oil in the diets of pregnant and lactating ewes 

conferred a significant reduction in the amount of C16:0 within plasma. The predominant 

fatty acid contained within the Megalac diets was a protected form of C 16:0 at 

concentrations approximately double those found in the fish oil diets, and proportional to 

those observed in ewe plasma. A depression in endogenous fatty acid synthesis may 

reduce concentrations of C 16:0 in body fluids and tissues, however, this di fference may be 

attributed to a combination of low dietary supply and endogenous synthesis. The increased 

amounts of C16:0 observed in plasma of ewes offered Megalac concur with research 

published by Petit (2002) who found higher amounts of C 16:0 in plasma of dairy cows fed 

Megalac compared to linseed or soya beans. Moreover, according to Ashes et al. (1992), 

supplementing sheep with protected fish oil reduced the total amount of C 16:0 in serum 

lipids. 

Offer et al. (2001) reported lower concentrations of C18:0 in plasma lipid fractions of 

lactating cattle offered fish oil when compared to those fed a control diet, results which 

concur with those observed in pregnant ewes within the current study. Furthermore, values 

quoted by Ashes et al. (1992) for C18:0 are in agreement with the concentrations observed 

in the current study. The dietary supply of C 18:0 was similar between treatment 

concentrates, consequently, the differences observed between plasma concentrations in 

pregnant ewes fed fish oil and Megalac may be a result of changes in the efficiency of 

ruminal biohydrogenation induced by feeding PUF As. Long-chain PUF As are reported to 

have cytotoxic effects upon ruminal microorganisms responsible for biohydrogenation 

(Donovan et al., 2000), the addition of fish oil to ewe diets may have reduced the ability of 

the ruminal microorganism population to biohydrogenate fatty acids and thereby resulted 
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in lower amounts ofC18:0 in plasma. However, the total daily supply of fatty acids which 

would be biohydrogenated to form C18:0 (CI8: I cis, CI8:2n-6, CI8:3n-3) also tended to 

be lower from diets containing fish oil, which may have depressed concentrations of C 18:0 

within plasma. 

Addition of fish oil to the ruminant diet has been shown to increase the amount of both 

C 18: 1 trans isomers and CLA produced by the incomplete biohydrogenation of 

unsaturated fatty acids within the rumen (Baumgard et al., 2000; Wachira et al., 2000; 

Chikunya et al., 2004). Furthermore, these fatty acids may be deposited into milk as a 

consequence of PUFA supplementation (Donovan et al., 2000; Keady et al., 2002 and 

Gulati et al., 2003). The results of the aforementioned studies concur with the higher 

quantities of C18:1 trans and CLA isomers observed in plasma of both pregnant and 

lactating ewes during the current study. 

The dietary supply ofCI8:ln-9 cis was lower in concentrates containing fish oil than those 

which included Megalac as the principal fatty acid source. Similarly, ewes supplemented 

with fish oil during pregnancy and lactation had lower proportions of C 18: I n-9 cis within 

plasma than those offered diets containing Megalac. This is in direct contrast to the results 

of Ashes et al. (1992) who observed an increase in plasma C 18: 1 n-9 cis concentrations in 

sheep supplemented with protected or unprotected fish oils. However, results similar to 

those observed in the current study were reported by Fritsche et al. (1993). 

The diminishing effect of fish oil supplementation upon ewe plasma concentrations of 

C 18:2n-6 within the current study concurs with the results published by Ashes et al. (1992) 

and Offer et al. (2001) and cannot simply be explained by differences in dietary supply. 

Although concentrations of this fatty acid were lower in experimental diets containing fish 

oil compared to Megalac, proportionally, the reduction in plasma concentrations was 
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significantly higher, suggesting significant disappearance of this fatty acid between 

ingestion and transport in plasma. Ruminal biohydrogenation ofC18:2n-6 ranges from 70-

95%, depending on the fat content of the diet (Chilliard et al., 2000; Wachira et al., 2000; 

Chikunya et al., 2004). Thus, although the rate of biohydrogenation increases with 

increasing C18:2n-6 content of the diet, the proportion that resists hydrogenation tends to 

remain constant (Cieslak et al., 2001). Consequently, it would be logical to predict a 

higher rate ofbiohydrogenation ofC18:2n-6 in ewes offered Megalac compared to fish oil, 

a theory which does not entirely concur with the results of the current study. The lower 

proportions of C 18:2n-6 within plasma could also be attributed to changes in the rate of 

endogenous synthesis of long-chain n-6 fatty acids between treatments. Despite the 

increased concentrations of C20:4n-6 in treatment diets containing fish oil, plasma 

concentrations of this fatty acid were similar between treatments. If appreciable quantities 

of C18:2n-6 were utilised by ewes fed Megalac to synthesise C20:4n-6, the relative 

concentration of C18:2n-6 would be expected to be increased within plasma of ewes fed 

fish oil. 

Ewes supplemented with fish oil during pregnancy and lactation had higher C20:4n-6 

intakes, although the amount of this fatty acid in plasma was similar between treatments. 

This is in contrast to the results of Kitessa et al. (2001a) who observed higher C20:4n-6 

concentrations in plasma of cannulated sheep supplemented with fish oil. Kitessa et al. 

(200Ic) reported that the biohydrogenation of long-chain PUFAs was increased by the 

provision of fish oil within the diet, therefore this difference may be due to an increased 

rate of biohydrogenation of C20:4n-6 in ewes offered diets FB and FS. Alternatively, 

Koletzko (1996) states that the ~-desaturase enzymes responsible for the endogenous 

production of long-chain PUFAs have a higher specificity for C18:3n-3 than for C18:2n-6. 

Therefore, given equal amounts of precursor fatty acid, more C20:5n-3 will be produced 

than C20:4n-6. However, possibly as a consequence of the increased intake ofC18:2n-6 in 
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Megalac-supplemented ewes, proportions of C20:4n-6 in plasma were higher than those of 

C20:5n-3. 

The four experimental diets provided similar daily intakes of CI8:3n-3; however, higher 

plasma concentrations were conferred by long-chain PUFA supplementation. This is in 

contrast to the results observed by Offer et al. (2001) as a result of adding fish oil to the 

diets of lactating cattle, Ashes et al. (1992) in sheep and Rooke et al. (2001 b; 2000; 1998) 

in pregnant sows. The long-chain PUFAs C20:5n-3 and C22:6n-3 may be endogenously 

synthesised from CI8:3n-3 (Koletzko, 1992); a mechanism which is significantly less 

effective in animals supplemented with a preformed dietary source of long-chain PUF As 

(Sargent, 1997). Consequently, it can be postulated that the proportion of plasma fatty 

acids contributed by CI8:3n-3 was lower in ewes supplemented with Megalac as a 

consequence of this fatty acid being utilised as an endogenous PUFA precursor. Voigt and 

Hagemeister (2001) suggest that the endogenous synthesis of long-chain PUF As via 

elongation and desaturation in ruminants is negligible. However, this is not borne out by 

the results of the current study in which ewes supplemented with Megalac had proportions 

of C20:5n-3 at approximately half those found in fish oil-supplemented ewes, and C22:6n-

3 proportions at about one-third of those found in ewes fed fish oil. The significant 

increase in amounts of C20:5n-3 and C22:6n-3 in plasma of ewes offered diets containing 

fish oil is a direct result of the increased dietary supply of preformed long-chain PUF As. 

However, if, as suggested, endogenous synthesis of these fatty acids via elongation and 

desaturation is negligible in the ruminant, it would be predicted that they would be 

undetectable in plasma of ewes offered Megalac. These results also concur with those of 

both Wachira et al. (2002) and Chikunya et al. (2004), both studies reporting the presence 

of C20:5n-3 and C22:6n-3 within either muscle or plasma fatty acids of sheep 

supplemented with Megalac. Logically, a mechanism must exist to synthesise or mobilise 

long-chain PUF As within the pregnant ewe to ensure the development of brain and 

nervous tissue in the foetal lamb. Consequently, the major source of C20:5n-3 and 
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C22:6n-3 within plasma of ewes fed Megalac and the reason for reduced C18:3n-3 

concentrations in these ewes is likely to have been from endogenous desaturation and 

elongation of EF As. 

Dietary supplementation of ruminants and other animals with preformed dietary long-chain 

PUFAs has been demonstrated by several authors to increase the amounts ofC20:5n-3 and 

C22:6n-3 within the plasma lipid fraction (Ashes et al., 1992; Otto et al., 2000; Chikunya 

et al., 2004). However, despite significant increases in the amounts of both C20:5n-3 and 

C22:6n-3 in plasma as a response to fish oil supplementation, the increase was 

proportionally higher for C20:5n-3 than C22:6n-3 despite similar dietary intakes. 

Although several researchers have debated the extent to which C20:5n-3 and C22:6n-3 are 

biohydrogenated within the rumen, it appears that a greater proportion of C20:5n-3 may be 

saturated and isomerised when compared to a similar intake of C22:6n-3 (Gulati et a/., 

1999; Wachira et al., 2000; Cooper et a/., 2002). Furthermore, Doreau and Chilliard 

(1997a) suggested that increasing chain length may decrease fatty acid digestibility, this 

hypothesis concurs with the results observed in the current study, however, it is also 

postulated that absorption may increase with unsaturation, thereby an increased 

concentration of C22:6n-3 compared to C20:5n-3 would be predicted. The elongation and 

desaturation of CI8:3n-3 produces C20:5n-3, a proportion of which is further elongated 

and desaturated to produce C22:6n-3 (Sprecher, 2000). Increased amounts of C20:5n-3 

compared to C22:6n-3 in plasma could therefore be attributed to endogenous synthesis of 

long-chain PUFAs via elongation and desaturation, however, this synthesis has been 

demonstrated to be inhibited by supplementation with dietary long-chain PUFAs (Williard 

et ai., 2001). An alternative explanation is that C22:6n-3 may have been retro-converted to 

C20:5n-3 within the ewes, thereby increasing the relative proportion of this fatty acid 

within plasma (Cooper et a/., 2004). In addition, the quantities of C22:6n-3 needed for 

neural cell function and deposition into either the foetal lamb or milk may result in a higher 
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requirement for this fatty acid compared to C20:5n-3, therefore lower quantities of this 

fatty acid found in plasma may be the result of increased cellular uptake of C22 :6n-3. 

3.5.1.5. Gestation length 

The estimates of gestation length within the current study include a large random 

component due to the uncertainty about the exact time of mating as, although oestrus was 

synchronized, the ewes and rams were kept together for 21 days. However, as ewes were 

allocated randomly to the treatment groups, there should be no bias in the comparison. A 

significant increase in the duration of gestation was demonstrated as a result of fish oil 

supplementation of ewes. Long-chain polyunsaturated fatty acids have long been 

implicated as a factor in the prolongation of gestation length (Olsen et al., 1986). 

Observational studies found that women living in Sweden and the Faroe Islands who 

habitually consumed large amounts of fish, had increased gestation length and increased 

birthweights compared to women with low fish consumption (Olsen et al., 1990; 1992). 

This has important implications for human health, as premature birth is a major factor in 

infant survival and viability (Wen et al., 2004) and may also have implications for animal 

production, specifically neonatal vigour and mortality. 

Olsen et al. (1992), supplemented pregnant women with fish oil, olive oil or no 

supplementary oil source and found that both gestation length and birthweight were 

significantly higher in the group supplemented with fish oil, with both effects strongest in 

women with a low habitual fish intake. Furthermore, the work of Rooke et al. (2001c) 

demonstrated increased gestation lengths in sows supplemented with salmon oil during 

pregnancy. The consumption of fish products leads to a concomitant increase in the daily 

intake of n-3 fatty acids, specifically C20:5n-3, and it is postulated that an augmented 

dietary supply of C20:5n-3 was the causative factor behind the increased gestation length 

in the current study. Both C20:4n-6 and C20:5n-3 act as prostaglandin precursors within 
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the ruminant, the bioactive dienoic prostaglandins PGE2 and PGF2a being synthesised from 

C20:4n-6 whereas prostaglandin PGE3 is produced from C20:5n-3 (Calder, 2001). These 

two fatty acids compete within the cell for the activity of 6-6 desaturase; for incorporation 

into phosphatidylglycerols and for the enzyme prostaglandin-H-synthetase (PGHS; Olsen 

et al., 1986). Dietary n-3 PUFAs have been reported to attenuate the production of 

prostaglandins formed from n-6 fatty acids (Li et al., 1994). Furthermore, an increase in 

the ratio of C20:5n-3:C20:4n-6 available to the animal, whether from dietary or 

endogenous synthesis, results in a shift in prostaglandin production from bioactive dienoic 

prostaglandins which have an established role in the induction of parturition (Hansen and 

Olsen, 1988), towards less active trienoic prostaglandins (Olsen et al., 1986). Olsen et al. 

(1992) suggested that this effect may be dose-responsive until a saturation point is reached 

at which the initiation of parturition is delayed. 

This hypothesis concurs with the work of Baguma-Nibasheka et al. (1998; 1999) and 

Hong-Ma et al. (2000) who demonstrated delays in the initiation of glucocorticoid-induced 

parturition in ewes supplemented with fish oil with concurrent reductions in maternal 

oestradiol and prostaglandin-H-synthetase-2, these chemicals are thought to initiate and 

maintain myometrial contraction during parturition (Liggins et al., 1972). Galli et al. 

(1980) also reported decreased excretion of PGF2a and PGE2 in rats fed high 

concentrations of dietary PUF As, these prostaglandins being associated with uterine 

contraction during parturition (Lye, 1996). Replacement of PGF2a and PGE2 with trienoic 

prostaglandins formed from the n-3 series fatty acids does not specifically inhibit 

parturition, rather, it is suggested that the trienoic prostaglandins are not biologically active 

enough to induce myometrial contractions (Abayasekara and Wathes, 1999). 

The study of Smuts et al. (2003) reported increased gestation length in pregnant women 

supplemented with C22:6n-3, however this fatty acid is not a direct prostaglandin 
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precursor. The C20:5n-3 content of the supplements in the aforementioned study was not 

reported, however, the authors suggested that retroconversion of C22:6n-3 to C20:5n-3 

could increase the proportion of n-3 prostaglandins produced or that n-6 prostaglandin 

formation may have been disrupted by C22:6n-3 deposition in membrane 

phosphatidylglycerols. The effects observed upon gestation length in the current study 

may therefore be due, in part, to the supplementation with both C20:5n-3 and C22:6n-3 in 

the form of fish oil. 

3.5.1.6. Colostrum 

Colostrum is produced in the mammary gland during the weeks immediately prior to 

parturition (Barrington et al., 200 I), the yield being governed by several factors including 

genetic influences and endocrine parameters (O'Doherty and Crosby, 1996). Colostrum 

composition differs from milk produced during an established lactation due to the high 

concentrations of nutritional and non-nutritional factors essential for the provision of 

energy and passive immunity to the neonate (Blum and Hammon, 2000). However, little 

research has been devoted to the effects of long-chain PUF A and vitamin E 

supplementation upon ruminant colostrum production, therefore, the results of the current 

study are discussed with reference to studies involving animals in established lactation. 

Various effects of PUFA supplementation of lactating ruminants upon milk yield have 

been reported; many researchers described no effect of dietary fat type, regardless of 

whether fish oil (Cant et al., 1997; Lacasse and Ahnadi, 1998; Kitessa et al., 2003), 

vegetable oil (Benson et al., 2001), whole oilseeds (Petit et al., 2002a) or saturated fats 

(Grum et al., 1996) were employed. By contrast, both Chilliard and Doreau (1997) and 

Keady et al. (2000) offered fish oil to lactating dairy cows and observed a consequent 

increase in milk yield. Furthermore, Chikunya et al. (2002) observed an increase in the 

milk yield of dairy ewes supplemented with either a prilled mixture of linseed and fish oil, 
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or with Incromega™. The results of Keady et al. (2000) also indicate that increasing the 

level of fish oil in the diet of dairy cows confers an increase in milk yield. Ewes within the 

current study exhibited significantly lower colostrum yields when supplemented with fish 

oil, results which concur with those of Donovan et al. (2000) and Whitlock et al. (2001). 

Furthermore, Annett et al. (2004) reported a significant decrease in colostrum yield as a 

result of fish oil supplementation of pregnant ewes. Colostrum production is associated 

with an increase in the basal energy and protein requirements of the ewe; reductions in 

colostrum yield may be attributed to lower forage intakes, as exhibited by animals in many 

studies involving fish oil supplementation (Chilliard and Doreau, 1997; Donovan et al., 

2000). However, as previously discussed, no significant effect of PUF A supplementation 

was observed upon straw intake in the current study. Donovan et al. (2000) suggested that 

the milk yield response to fish oil supplementation may be dependant on the amount fed, as 

yields were similar in cattle with zero or 2 % fish oil added to the diet, but lower at a 3 % 

inclusion rate. In the current study, the concentration of fish oil in diets of ewes at two 

weeks pre-partum was approximately 4.2 % which, if the hypothesis of Donovan et al. 

(2000) is correct, would induce a reduction in colostrum yield. The supplementation of 

dairy cattle with saturated fatty acids has been demonstrated by Dhiman et al. (2001) and 

Fahey et al. (2002) to increase milk yield. In consequence, the results observed in the 

current study may not be a direct result of fish oil lowering colostrum yield, but an increase 

conferred by Megalac supplementation in control diets. 

Ruminant milk composition is plastic and inherently vulnerable to manipulation via the 

diet (Bauman and Griinari, 2001). Successful protection of PUF As from rumina I 

biohydrogenation results in minimal disruption to the rumen environment, in consequence, 

milk fat concentrations should be unaffected (Kitessa et al., 2003). Both the colostrum fat 

concentration and yield of ewes supplemented with fish oil were significantly reduced 

when compared to ewes fed Megalac. The significant impact of fish oil supplementation 
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upon milk fat concentrations in the current study implies that absorption into vermiculite 

was not a suitable mechanism to protect all PUF As contained within fish oil from 

biohydrogenation. This concurs with the results of Cooper et al. (2004) who demonstrated 

that vermiculite provided partial protection against ruminal biohydrogenation of PUF As 

contained within linseed oil. 

The mechanism by which milk fat concentration is reduced by PUFA supplementation has 

been debated for some time. Current theories include a decrease in synthesis from acetate 

as a result of decreased fibre digestion (Palmquist, 1984), the inhibition of synthesis by 

trans-1O,cis-12 CLA produced by ruminal biohydrogenation (Romo et al., 1996) or 

specific long-chain PUF As retarding the activity of enzymes involved in endogenous fat 

synthesis (Viswanadha et ai., 2003). 

Straw intake was unaffected by dietary fat source in the current study and the concentration 

of individual short-chain fatty acids within colostrum was not significantly influenced by 

fish oil supplementation. Indeed, the proportion of short-chain fatty acids within milk fat 

was increased by the provision of fish oil within the ewe diet. Consequently, the 

hypothesis that milk fat concentration has been depressed as a result of reductions in 

acetate production or de novo acetate synthesis appears unfounded, although no direct 

measurements of ruminal acetate production were made. Interestingly, despite the 

decreased dietary and plasma concentrations of C 16:0 in ewes offered fish oil, no 

difference in colostrum C 16:0 concentrations was observed as a result of dietary fat source. 

As the principal endogenously synthesised fatty acid found within colostral fat, this adds 

weight to the argument that fatty acid synthesis was not significantly affected by fish oil 

supplementation. 
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Reduced concentrations of C18:0 are described in ewe milk by Kitessa et al. (2003) as a 

consequence of adding tuna oil to the diet. Furthermore, Keady et al. (2000) reported 

lower concentrations of C 18:0 in milk from cattle supplemented with fish oil, a result in 

accordance with those reported by Cant et al. (1997) and Donovan et al. (2000). However, 

the concentrations of CI8:1n-9 cis and CI8:2n-6 within milk vary between the 

aforementioned studies, with no consistent effect of long-chain PUF A supplementation. 

The results observed in the current study reflect the plasma fatty acid concentrations at two 

weeks pre-partum, with lower concentrations of CI8:0, CI8:1n-9 cis and CI8:2n-6 in 

colostrum of ewes fed diets containing fish oil. Within colostrum fat, these fatty acids are 

principally supplied by the diet or from mobilisation of adipose tissue, hence the similarity 

between concentrations in plasma and colostrum. 

Examination of plasma samples taken at two weeks pre-partum reveals increased 

concentrations of trans C 18: 1 fatty acids. These fatty acids are considered by Keady et al. 

(2000) to inhibit the synthesis of fatty acids within the mammary gland, possibly as a result 

of reduced uptake by lipoprotein lipase. The increased concentration and proportion of 

trans C18:1 fatty acids within colostrum fat, in combination with the reduced total fat 

concentration concur with this hypothesis. Furthermore, the presence of higher 

concentrations and proportions of C20:5n-3, both in plasma and colostrum of ewes offered 

diets containing fish oil may lend weight to the suggestion by Chilliard et al. (2001b) that 

C20:5n-3 may inhibit fatty acid synthesis. However, this may be a result of increased 

trans fatty acid production from the biohydrogenation of C20:5n-3, rather than a direct 

effect of this long-chain fatty acid. 

As with trans C18:1 fatty acids, fish oil supplementation of lactating ruminants has been 

reported to increase the concentration of CLA isomers within milk fat, a phenomenon 

described by Ramaswamy et al. (2001), Whitlock et al. (2002) and Gulati et al. (2003). 
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CLA have been associated with milk fat depression, specifically with inducing changes in 

endogenous milk fat synthesis, acting via a similar mechanism to trans C 18: 1 fatty acids 

(Chouinard et al., 1999; Baumgard et al., 2000). Only one CLA isomer was identifiable by 

the experimental method utilised in this study (cis-9,trans-ll CLA) which is produced 

within the mammary gland rather than as a product of ruminal biohydrogenation. 

However, as increased concentrations of CLA were also observed in plasma within the 

current study, the theory that CLA depresses milk fat concentrations should not be 

dismissed. 

It is well established that supplementation of ruminants with long-chain PUF As increases 

the concentrations of these fatty acids within milk fat (Palmquist, 1984). Ewes fed 

Megalac had very low concentrations of C20:5n-3 and C22:6n-3 within colostrum fat, 

therefore it can be assumed that the small increase in the concentrations of these fatty acids 

within colostrum of ewes fed fish oil was a result of dietary supplementation. Similar 

results have been reported by Kitessa et al. (2003) in sheep and Donovan et al. (2000), 

Ramaswamy et al. (2001), and Gulati et al. (2003) in cattle. 

The majority of research involving the prOViSion of long-chain PUF As to lactating 

ruminants has concluded that dietary supplementation reduces milk protein concentrations. 

This is true of the results reported by Cant et al. (1997), Lacasse and Ahnadi (1998), and 

Petit et al. (2002a), although Kitessa et al. (2003) observed no significant effect of 

protected tuna oil upon ewe milk protein concentrations. The decrease in colostrum 

protein concentration observed in the current study concurs with the results of the 

aforementioned authors; furthermore, protein yield was significantly reduced as a 

consequence of reductions in both protein concentration and colostrum yield induced by 

fish oil supplementation. Dietary supplementation of lactating ruminants with long-chain 

PUF As reduces acetate and increases propionate production within the rumen as a result of 
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changes in microbial populations (Fievez et al., 2003). This increase in propionate 

production may lead to an increase in lactose synthesis with concurrent increase in 

colostrum yield, whereby the protein concentration is reduced. However, Wilkinson et al. 

(2000) demonstrated that, although milk yield was depressed by long-chain PUF A 

supplementation of milking ewes, protein concentration was increased. This is in contrast 

to the result observed within the current study, as both colostrum yield and protein 

concentration, and therefore protein yield, were reduced by long-chain PUF A 

supplementation of the ewe. No measure of the relative proportions of different colostrum 

proteins were made within the current study, therefore it is not possible to conclude 

whether the depression was a consequence of a decrease in casein synthesis due to PUF A 

supplementation, as purported by Chilliard and Doreau (1997). Furthermore, the 

hypothesis proposed by Demeyer and Doreau (1999), namely that trans fatty acids may 

cause changes in fatty acid uptake by the mammary gland, inducing insulin resistance and 

inhibiting milk protein synthesis may be the most suitable explanation for the lower 

colostrum protein concentrations observed in ewes fed fish oil, but cannot be verified. 

The colostral vitamin E concentration mirrors the values observed in plasma at two weeks 

pre-partum, with significantly higher concentrations observed as a result of 

supranutritional supplementation. High concentrations of vitamin E in colostrum have 

been reported by Gentry et al. (1992), Hidiroglou et al. (1992) and Njeru et al. (1994) as a 

result of supplementation, although concentrations for ewes fed diet MS were considerably 

higher in the current study than values reported by other authors. This is in part due to the 

high concentrations fed via diets FS and MS in the current study, the maximum dietary 

supplemental amount used in previous studies being 150 mg/day. The supranutritional 

dietary vitamin E concentration combined with the low oxidative challenge induced by 

Megalac resulted in the highest colostrum vitamin E concentrations being found in ewes 

fed diet MS. This result was not unexpected, given the effects of an increased oxidative 

161 



challenge upon vitamin E concentrations as shown by the differences between diets MS 

and FS. 

3.5.1.7. Milk 

Adding fish oil to the diets of lactating ewes had no significant effect upon milk yield, 

although numerically yields were higher (P>0.05). Cant et al. (1997) suggested that an 

increase in lactose production may have explained the increased milk yields observed in 

cattle fed fish oil compared to an unsupplemented diet. The lack of an observed effect of 

dietary treatment upon milk lactose production within the current study may elucidate the 

reasons behind the similarity in milk yield between treatments. 

It is generally agreed that feeding long-chain PUF As in the form of fish oils to lactating 

ruminants reduces milk fat concentration, as reported by Cant et al. (1997), Chilliard and 

Doreau (1997) and Whitlock et al. (2002). However, the study of Kitessa et al. (2004) 

reported no significant effect of feeding protected fish oil to dairy cattle upon milk 

composition. By contrast, the fat concentration of milk produced by ewes supplemented 

with fish oil in the current study was increased when compared to ewes offered Megalac. 

This is in direct contrast to the results obtained by Chikunya et al. (2002) and was an 

unexpected result. Although it was not identified within milk or plasma samples and 

therefore cannot be substantiated, it is possible that a lack of the trans-IO,cis-12 CLA 

isomer may have lessened the reducing effects of long-chain PUF As upon milk fat 

concentration. However, the total milk fatty acid content, as measured by gas 

chromatography, was significantly lower in samples from ewes given diets containing fish 

oil, this is in direct contrast to the results obtained by near-infra-red spectrophotometry to 

estimate milk fat content. It is therefore possible that errors in sampling or analysis may 

have given rise to this anomalous result. 
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In contrast to the results previously discussed for colostrum fatty acid composition, 

changes in the concentration and proportion of C16:0 within milk fat as a result of long

chain PUF A supplementation can be attributed to the considerable decrease in the amount 

of this fatty acid fed via the treatment diets containing fish oil. A reduction in the efficacy 

of endogenous fatty acid synthesis would also confer a decrease in the secretion of this 

fatty acid into milk fat, however, there was little evidence of other medium- or short-chain 

fatty acids being reduced by fish oil supplementation. 

Lower concentrations of C18:0 within milk fat as a result of fish oil supplementation of 

ewes concurs with the reduced amount of this fatty acid in plasma and with results reported 

by Donovan et al. (2000), Kitessa et al. (200Ib) and Gulati et al. (2003). The 

augmentation of trans C 18: I fatty acids in milk fat as a consequence of long-chain PUFA 

supplementation of ruminants has been discussed by Donovan et al. (2000), Keady et al. 

(2002) and Gulati et al. (2003) and was exhibited by ewes fed fish oil in the current study. 

Concentrations of CIS: In-9 cis in treatment concentrates containing fish oil were 

approximately one-third of those based on Megalac, and were reflected by changes in ewe 

plasma and milk fatty acid composition; a result in agreement with those of Cant et al. 

(1997) and Kitessa et al. (2003). 

As exhibited by the colostral fat results, the proportion of C 18: 1 trans fatty acids was 

higher both in plasma and milk of lactating ewes fed fish oil, this result would be expected 

to indicate a reduction in the total milk fat content as a result of inhibition of endogenous 

milk fat synthesis caused by these fatty acids. By contrast, although plasma CLA 

concentrations were increased by fish oil supplementation, the amount of this fatty acid in 

milk was similar between treatments. 
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A high proportion of plasma fatty acids was contributed by C 18:2n-6, whereas this fatty 

acid was found in only small amounts in milk fat, furthennore, a six-fold decrease in 

CI8:3n-3 in milk compared to plasma was observed. As both CI8:2n-6 and CI8:3n-3 are 

essential for the endogenous synthesis of C20:4n-6, C20:5n-3, C22:6n-3 and 

prostaglandins, the requirement for these fatty acids in metabolic processes may explain 

their low deposition into milk fat. Moreover, CI8:2n-6 and CI8:3n-3 tend to be present in 

the phosphatidylglycerol fraction rather than being incorporated into triacylglycerols. The 

low phosphatidylglycerol content of milk may therefore reduce the secretion of these fatty 

acids into milk fat. 

Considerable research has been devoted to increasing the concentration of C20:5n-3 and 

C22:6n-3 within milk products. The study of Gulati et al. (2003) indicated that C20:5n-3 

and C22:6n-3 may be transferred into milk at a rate between 6.8% and 8.1 % of dietary 

intake. Given the duration of dietary supplementation in the current study and the probable 

incorporation of both fatty acids into body reserves that could later be mobilised, it is 

impossible to directly measure the transfer of these fatty acids from the diet into milk. 

However, the amounts of C20:5n-3 and C22:6n-3 were significantly higher in milk fat 

from ewes fed fish oil compared to Megalac-fed ewes where they were almost 

undetectable. These results are in agreement with those observed by Ramaswamy et al. 

(2001), Gulati et al. (2002), and Kitessa et al. (2003) as a result of fish oil supplementation 

of lactating ruminants. 

Milk protein concentration and yield were significantly lower in ewes offered diet MB 

compared to the other three treatments. Decreases in milk protein concentrations are 

commonly observed when fish oil is added to the diet of lactating ruminants (Cant et al., 

1997; Lacasse and Ahnadi, 1998; Petit et al., 2002a). Furthennore, the combination of low 

protein concentrations and a non-significant decrease in milk yield in ewes offered 
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Megalac led to a significant decrease in milk protein yields. The mechanism by which 

PUF A supplementation increased milk protein concentration is unclear: plasma urea 

concentrations were higher at two and four weeks post partum in ewes offered diets 

containing fish oil, although the difference was not statistically significant. This may 

indicate that these animals had a better protein status during lactation, leading to increased 

casein secretion into milk, however, neither plasma albumin or total protein concentrations 

were affected by treatment diet (data not shown). 

Milk vitamin E concentrations were strongly positively correlated with plasma 

concentrations at two weeks post partum (r = 0.894) with lower values observed in ewes 

supplemented with fish oil. Results relating to the increase observed with dietary 

supranutritional vitamin E supplementation in the current study are in agreement with 

those of Charmley et al. (1993), Hidiroglou et al. (1993a) and Njeru et al. (1994). 

However, the abrogating effect of long-chain PUF A supplementation upon milk vitamin E 

concentrations observed within the current study is in contrast to the results published by 

Hidiroglou et al. (1993a) in which fat source (tallow, fish oil or no added fat) had no 

significant effect upon the vitamin E concentration of sows milk. The lower 

concentrations of vitamin E in milk compared to colostrum for all treatments are in 

agreement with the results of Hidiroglou et al. (1993a) and Njeru et al. (1994) who 

observed a three-fold increase in colostral vitamin E compared to that of milk. However, 

Csap6 et al. (1995) reported that vitamin E concentrations in colostrum and milk were 

similar in unsupplemented mares. Mahan (1991) suggested that increased concentrations 

in colostrum compared to milk may be as a result of enhanced dietary supply to the labile 

tissue pool during pregnancy before exhaustion of this source for colostrum production 

with consequent reliance on dietary vitamin E for deposition in milk. Furthermore, the 

increased colostral fat concentration may have increased the requirement for antioxidant 

deposition into colostrum compared to milk. 
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3.5.2. Lamb parameters 

3.5.2.1. Maternal and neonatal behaviour 

Survival of the lamb past the immediate neonatal period is dependent upon the fonnation 

of an exclusive bond with the dam, facilitating the ingestion of nutrients in the fonn of 

colostrum (Dwyer and Lawrence, 1998). The fonnation of this bond relies on the 

performance of specific behaviours by the ewe and lamb. Failure to fonn a secure ewe

lamb attachment often leads to mis-mothering, rejection and increased lamb mortality rates 

(O'Connor and Lawrence, 1992; Nowak, 1996). 

The maternal behaviour score used in the current study was a modified version of that 

described by O'Connor and Lawrence (1992), based upon behaviours nonnally exhibited 

by the ewe at parturition. Other researchers have assessed maternal behaviour using a 

score based on the readiness of the ewe to approach a human handler (O'Connor et a/., 

1985), or upon the effect of a human approaching the ewe on lamb desertion (Wassmuth et 

al., 2001). Within the current study, these tests were not practicable due to space 

restrictions and were only appropriate for use after the initial neonatal period. 

Furthermore, interruption of neonatal lamb behaviours by a human handler would 

significantly bias results. 

Maternal behaviours directed towards the lamb before suckling are thought to be hard

wired and relatively inflexible, being similar between several species (Fraser and Broom, 

1997). These behaviours are mainly influenced by the hormonal status of the ewe and may 

be induced in the non-pregnant ewe by the administration of hormones together with 

physical manipulation of the cervix (Caba et al., 1995). Therefore, although studies have 

reported differences in maternal behaviour as a consequence of age (Lawrence and Dwyer, 

1997) or breed (Dwyer and Lawrence, 1998), diet was not predicted to have a significant 

effect, a hypothesis borne out by the results observed in the current study. 
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The success of lamb suckling is directly influenced by both maternal and neonatal factors, 

ewes maintain grooming behaviours until signals from the lamb stimulate the facilitation of 

suckling. Indeed, inexperienced ewes often attempt to maintain grooming behaviour and 

circle when lambs attempt to suck (Dwyer and Lawrence, 1998). Although differences 

were observed in the time taken for lambs to suckle successfully, these were uninfluenced 

by maternal responses to suckling. Dwyer et al. (1999) suggested that neonatal lamb 

behaviours are unaffected by maternal behaviour, however, this may be debated, as 

extreme behaviours such as withdrawal and aggression have palpable effects upon the 

ability of the lamb to seek and obtain colostrum. 

After birth, lambs first raise and shake the head, before making attempts to stand, standing 

successfully on all four legs, searching for the udder and finally, suckling from the ewe 

(Vince, 1993). The latencies of neonatal behaviours observed in the current study agree 

with those reported by Alexander and Williams (1966), Wassmuth et al. (2001) and Cloete 

et al. (2002). Addition of fish oil to the maternal diet significantly reduced the latencies of 

successful suckling in neonatal lambs. This result concurs with those reported by Rooke et 

al. (200Ia) in which neonatal piglets from sows supplemented with tuna oil during late 

pregnancy tended to make contact with the udder and teats more quickly than control 

piglets. By contrast, piglet viability scores based on heart rate and latencies of breathing 

and standing were reduced in piglets borne by sows fed tuna oil (Rooke et al., 1998). 

O'Connor and Lawrence (1992) postulated that delays in suckling may, in part, be due to 

myopia reducing the ability of the lamb to successfully locate the udder. Brain and retinal 

tissues contain a high proportion of lipid including particularly high concentrations of 

C20:4n-6 and C22:6n-3 within membrane phosphatidylglycerols (Lauritzen et al., 200 I). 

Studies of long-chain PUF A supplementation in various mammals have demonstrated that 

retinal function is adversely affected in animals deprived of n-3 fatty acids. Furthermore, 
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research published by Birch et al. (2000; 2002) and Bouwstra et al. (2003) using human 

infants have related improved visual acuity, cognitive development and motor skills during 

infancy to the intake of n-3 PUF As, specifically C22:6n-3, before weaning, suggesting that 

supplementation with these fatty acids improves neural development. However, neither 

Gibson et al. (1997), Jensen et al. (1999) nor Lucas et al. (1999) reported any significant 

effect ofC22:6n-3 supplementation upon visual acuity in human infants. 

Higher concentrations of C22:6n-3 were observed within brain tissue of lambs produced by 

ewes fed fish oil within the current study when compared to ewes fed Megalac. This 

concurs with the results published by Bouwstra et al. (2003) in a study involving human 

infants, and suggests that the selective accumulation of this fatty acid within brain tissue 

may have led to measurable differences in motor development. Learning behaviour is 

improved in rats (Yamamoto et al., 1987; Bourre et al., 1993; Ikemoto et al., 2001) and 

pigs (Ng and Innis, 2003) by n-3 fatty acid supplementation. As successfully locating and 

returning to the teat involves an aspect of learning behaviour on the part of the neonatal 

lamb, the reduced time taken to successfully suckle in those lambs borne by ewes 

supplemented with fish oil may have been a consequence of differences in cognitive 

development between treatments. 

The majority of C22:6n-3 accumulation in the brain occurs during the brain growth spurt 

(Green and Yavin, 1998; Lauritzen et at., 2001), which, in the lamb, occurs in utero. Both 

the total amount and concentration of C22:6n-3 within brain tissue increases during the 

growth spurt, concurring with synaptogenesis - the formation of synapses essential for 

conducting nerve impulses (Lauritzen et at., 2001). Indeed, Ahmad et al. (2002) suggested 

that C22:6n-3 deficiency reduces neuron size which may be linked to loss of optimal nerve 

function. If lambs produced by ewes offered diets containing Megalac were deficient in 
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C22:6n-3, this decrease in neuron size might have a significant impact on neonatal lamb 

behaviour. 

Despite tissue vitamin E concentrations indicating that placental transfer was increased by 

supranutritional supplementation, any effect of vitamin E supplementation upon vigour 

may have been confounded by the addition of long-chain PUF As to the diet. Indeed, a 

significant interaction between vitamin E and PUF As was observed for the latency of lamb 

standing: supranutritional vitamin E supplementation had no effect when fed with a control 

fat, however, reduced this latency when fed in combination with long-chain PUF As. 

Merrell (1998) reported that lambs borne by ewes supplemented with vitamin E during 

pregnancy tended to stand and suckle faster than those from control ewes. Williamson et 

al. (1995) also recorded increased vigour scores in neonatal lambs as a result of maternal 

vitamin E supplementation. The supranutritional vitamin E concentration used in the 

current study was higher than those employed in the aforementioned experiments although 

no significant main effect of vitamin E supplementation upon lamb vigour was observed. 

Dwyer et al. (2003) described reduced latencies of standing and suckling in lambs that 

were heavier at birth. The increase in birthweight conferred by vitamin E supplementation 

within the current study may therefore have been expected to enhance lamb behaviour. 

3.5.2.2. Antioxidant status of the neonate 

The majority of research conducted to date has suggested that the transfer of vitamin E 

across the placenta to the foetus or neonate is low and that adequate tissue and plasma 

concentrations are only obtained after the ingestion of colostrum (Njeru et al., 1994). 

Lauridsen et al. (2002) concluded that low tissue concentrations of vitamin E in neonatal 

piglets provided evidence of inefficient placental transfer, and suggested that neonatal 

vitamin E status could not be manipulated by maternal supplementation. The high ratio 

between maternal and neonatal plasma vitamin E concentrations and the lack of a 
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treatment effect on foetal blood concentrations also lead to the conclusion that porcine 

placental transfer is inefficient in the study of Farnworth et al. (1995). 

By contrast, Hidiroglou et al. (l993a) reported that although vitamin E concentrations in 

neonatal piglets were low, piglets born to supplemented sows tended to have increased 

plasma concentrations. Similar results in lambs have been published by Pehrson et al. 

(1990). Mahan (1991) demonstrated that increasing the amount of supplementary vitamin 

E available to the pregnant sow from 0 mglkg to 44 mglkg tended to increase the vitamin E 

concentration in piglet serum and liver before nursing. Equivalent concentrations of 

vitamin E in maternal and neonatal rat plasma were also described by Wei Cheng et al. 

(1961). 

Significant transfer of radio-labelled a-tocopherol across the guinea pig placenta has been 

described by Hidiroglou et al. (2003) with plasma concentrations similar to or higher than 

those of the dams. However, it was suggested that these animals are unique in their ability 

to conserve dietary vitamin E for deposition into the foetus whilst Kelly et al. (1992) 

suggested that the foetal liver may act as a labile source of vitamin E and that plasma 

concentrations may not be a reliable indicator of neonatal vitamin E status. 

Results from the current study support the hypothesis that placental transfer of vitamin E 

may be manipulated by maternal supplementation in ruminants. Although neonatal plasma 

vitamin E concentrations were low or undetectable in agreement with the findings of 

Hidiroglou et al. (1995), brain and semimembranosis concentrations were significantly 

increased by maternal supranutritional supplementation. It is debatable as to whether the 

low vitamin E concentrations observed in neonatal plasma are a reliable indicator of 

deficiency status or a measure of the increased rate of uptake from plasma in an attempt to 

maintain satisfactory tissue concentrations. Vatassery et al. (1988) hypothesised that the 
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rodent brain may be resistant to vitamin E depletion even when a vitamin E-deficient diet 

is supplied for a period of four months, therefore, it seems logical that organs with an 

increased requirement for antioxidant vitamins may have an enhanced capacity for uptake 

in times of diminished availability. 

Supranutritional vitamin E supplementation of ewes within the current study resulted in 

neonatal lamb muscle concentrations similar to those reported for unsupplemented growing 

lambs by Ochoa et al. (1992). However, Hidiroglou and Batra (1996) observed a mean 

value of 2.70 mglkg in hip muscle of lambs with no supplemental vitamin E added to the 

diet. This suggests that, although supplementation increased the concentration of vitamin 

E in neonatal tissues within the current study, these animals may still have been sub

clinically deficient in vitamin E. Furthermore, brain concentrations observed in neonatal 

lambs within the current study were significantly lower than values reported by Vatassery 

et al. (1988) for rats fed vitamin E-deficient diets. Although it may be suggested that the 

liver acts as a reservoir for vitamin E (Kelly et al., 1992), this does not concur with the 

results of Lauridsen et al. (2002) who found higher vitamin E concentrations in brain tissue 

compared to liver in neonatal piglets. Differences between treatment diets as a result of fat 

source in the current study with fish oil supplementation abrogating the neonatal tissue 

vitamin E concentration concur with the results of Hidiroglou et al. (1970), Farnworth et 

al. (1995) and Wang et al. (1996) and with patterns observed in ewe plasma and colostrum. 

3.5.2.3. Plasma fatty acids in the neonate 

Elphick et al. (1979) described reduced plasma fatty acid concentrations in the foetal lamb 

compared to the dam, a result which concurs with that observed in the current study, in 

which neonatal plasma fatty acid concentrations were approximately one-third of those 

found in the ewe. These results also support the hypothesis proposed by Leat and Harrison 

(1980), namely that placental fatty acid transfer may be limited in the ruminant. However, 
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the total fatty acid concentration within neonatal lamb plasma was proportional to that 

within maternal plasma at two weeks pre-partum indicating that the extent of fatty acid 

transfer may be affected by maternal plasma fatty acid concentration and consequently, by 

treatment diet. 

Feeding fish oil to pregnant ewes reduced the amount of C16:0 and CI8:1n-9 cis in ewe 

plasma; however, proportions of these fatty acids in neonatal plasma samples were 

equivalent between treatments. Transfer of radio-labelled C 16:0 across the ovine placenta 

has been demonstrated to be low (Elphick et al., 1979; Leat and Harrison, 1980), leading 

the latter authors to conclude that the placenta is impermeable to medium-chain fatty acids. 

However, the high proportional contributions of these fatty acids to neonatal lamb plasma 

within the current study appear to disprove this hypothesis. 

A considerable amount of research has been devoted to the examination of EF A 

concentrations within the neonate. Both CI8:2n-6 and CI8:3n-3 have been reported by 

Leat and Harrison (1980) to be present in very small quantities within neonatal lamb 

plasma. This result is in agreement with those of Elphick et al. (1979), who considered 

that the low concentrations of C 18 :2n-6 within plasma may be the result of elongation and 

desaturation of this fatty acid to produce C20:4n-6. Elphick et al. (1979) suggested that 

only free fatty acids present in maternal plasma may cross from maternal to foetal 

circulation, and that those incorporated into triacylglycerols and phosphatidylglycerols are 

unable to transverse the placenta. By contrast, Ramsay et al. (1991) suggested that, in the 

pig, fatty acids are absorbed from maternal plasma and released into foetal circulation as 

free fatty acids. The proportion of CI8:2n-6 in plasma of lambs produced by ewes 

supplemented with fish oil during the current study was approximately half the equivalent 

measurement made in ewe plasma at two week pre-partum. Noble et al. (1982) described 

higher concentrations of C20:4n-6 within plasma of the foetus compared to the pregnant 

172 



ewe and concur that this increase is due to elongation and desaturation of C 18:2n-6 to 

C20:4n-6 by the placenta. However, the results of the current study do not concur with this 

hypothesis, as proportions of C20:4n-6 were lower in the neonate than those observed in 

ewes. 

A mechanism selecting against C18:2n-6 may exist within the placenta as although the 

EFA C18:3n-3 was also found in low quantities in neonatal lamb plasma, as a proportion 

of total fatty acids, it was similar to maternal concentrations. The high requirement for 

C20:5n-3 and C22:6n-3 within the neonate and the potential for production of these fatty 

acids via elongation and desaturation within the placenta may induce a selection pressure 

for the precursor n-3 fatty acid. This has been suggested by Payne (1978) as the reason 

behind the relatively high concentrations of C18:3n-3 and its metabolic derivatives in 

neonatal plasma. 

Maternal plasma concentrations of C20:5n-3 and C22:6n-3 were significantly higher as a 

consequence of fish oil supplementation. However, the proportion of C20:5n-3 within 

plasma was similar for ewes fed Megalac and their offspring, whilst a four-fold decrease in 

C20:5n-3 proportion was seen in lambs borne by ewes offered fish oil when compared to 

their dams. The reason for this decrease is unclear, although it may be related to a down

regulation of C20:5n-3 production from CI8:3n-3 within the placenta as a consequence of 

increased maternal dietary supply. 

Notional placental supply of C22:6n-3 to the lamb was increased in ewes fed long-chain 

PUF As, resulting in higher concentrations of this fatty acid in neonatal plasma. Although 

the research conducted by Elphick et al. (1979) and Leat and Harrison (1980) suggested 

that the placental is impermeable to long-chain PUF As, Knipp et al. (1999) reported that 

fatty acid binding proteins facilitate the directional transport of fatty acids across the 

173 



placenta from maternal circulation to the foetus. Furthermore, Campbell et al. (1998) 

described a human placental protein which preferentially binds C22:6n-3 compared to 

C18:0 or C18:3n-3. If such a protein exists within the ruminant placenta, this could 

elucidate the mechanism behind the transfer of C22:6n-3 to foetal lambs, even when 

dietary supply or maternal endogenous synthesis is low. However, this does not explain 

why C22:6n-3 was not detected in samples from lambs borne to ewes fed treatment MB, 

despite the presence of this fatty acid in plasma of ewes fed this diet. Furthermore, this 

casts doubt on the hypothesis of Noble et al. (1985) that the placenta may elongate and 

desaturate C18:3n-3 to form C22:6n-3, as the concentration of CI8:3n-3 in lambs from 

treatment MB was similar to those of the other treatments. Sinclair et al. (2002) suggested 

that plasma C22:6n-3 may not be an accurate indicator of tissue C22:6n-3 status due to the 

biosynthetic capacities of brain and retina. This concurs with results within the current 

study, as brain C22:6n-3 concentrations tended to be higher in lambs produced by ewes fed 

fish oil, although the magnitude of the difference was far less than the differences in 

plasma C22:6n-3 between treatments. 

3.5.2.4. Neonatal brain fatty acids 

Brain tissue contains a significant lipid component, of which more than one-third of fatty 

acids are polyunsaturated, functioning to modulate the structure, fluidity and function of 

neural cellular membranes (Bourre et al., 1993). Total fatty acid concentrations within 

neonatal brain tissue were equivalent between treatments at approximately 26 mg/g fresh 

tissue. It may be suggested that the total brain fatty acid concentration is relatively 

inflexible given its pivotal role within the animal, hence the lack of a treatment effect upon 

this parameter. 

The fatty acid composition of lamb brain tissue appears to mirror that of plasma, with no 

differences in concentrations of individual fatty acids save for C16:0, C20:5n-3 and 
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C22:6n-3. The amount of C16:0 within maternal body fluids (plasma, colostrum) was 

reduced by fish oil supplementation of the ewe within the current study. As previously 

discussed, this may be attributed to a lower rate of cellular fatty acid synthesis induced by 

either the lack of a 2-carbon precursor or by the inhibitory effect of long-chain PUF As 

upon enzymes necessary for synthesis to occur. It is possible that the tendency for the 

amount of C 16:0 within neonatal lamb brain to be reduced by fish oil supplementation of 

the ewe may be a result of either mechanism. Plasma C 16:0 concentrations were similar 

between treatments in the neonatal lamb, however, as suggested by Sinclair et al. (2002), 

plasma fatty acid concentrations may not accurately reflect tissue concentrations, 

especially in an animal vulnerable to fatty acid deficiency. 

Given the low dietary, and therefore placental, supply of long-chain PUF As to the lamb in 

ewes fed conventional diets, it is logical to suggest that a mechanism for the synthesis of 

these fatty acids must be present within brain or other tissues. Indeed, Williard et al. 

(2001) demonstrated that astrocytes within rat brain tissue are capable of synthesising 

C22:6n-3 from CI8:3n-3. Furthermore, studies in rats (Green and Yavin, 1993; Pawlosky 

et al., 1996), humans (Salem et al., 1996) and primates (Sheaff Greiner et al., 1997; Su et 

al., 1999; 2001) have reported that long-chain PUFAs are biosynthesised within the foetus 

and neonate. In consequence, a concentration gradient would be expected to exist between 

plasma and brain tissue with lower concentrations of C18:2n-6 and C18:3n-3 and higher 

concentrations of long-chain PUF As within brain tissue compared to plasma. This concurs 

with the research of Berlin et al. (1998) who observed that whole brain fatty acid 

composition is not significantly correlated with erythrocyte fatty acid composition. 

The proportion of C18:2n-6 was reduced approximately ten-fold in brain tissue across all 

treatments when compared to plasma with a corresponding, but lower (approximately two

fold) increase in C20:4n-6 concentration. Although theoretically one molecule of C 18:2n-
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6 would be converted into one molecule of C20:4n-6, the efficiency of the desaturation and 

elongation process and competition between individual fatty acids for desaturase and 

elongase enzymes reduces the amount ofC20:4n-6 formed per molecule ofC18:2n-6. The 

augmented concentration of C20:4n-6 within brain tissue compared to plasma may also be 

facilitated by preferential uptake and incorporation of this fatty acid at times when the 

placental or dietary supply is low. 

Salem et al. (1996) suggested that the conversion of n-6 fatty acids to their long-chain 

derivatives may be more efficient than the conversion of n-3 fatty acids despite the 

accumulation of higher concentrations of n-3 fatty acids in plasma of human infants. 

However, within the current study, the magnitude of the difference between concentrations 

ofC18:3n-3 in plasma and brain tissue was lower than that ofCI8:2n-6 despite the four- or 

five-fold increase in C22:6n-3 concentrations in brain compared to plasma. Although 

CI8:3n-3 is the principal precursor of C22:6n-3, C20:5n-3 is produced as an intermediate 

during desaturation and elongation (Sprecher, 2000). Dietary C20:5n-3 (as compared to 

endogenously produced C20:5n-3) may therefore be utilised for the production of C22:6n-

3, which would explain the low concentrations of this fatty acid within brain tissue 

compared to plasma. 

The range of C20:5n-3 concentrations within brain tissue across treatments concur with 

those reported by Rooke et al. (1999; 2000; 2001a; 2001b; 2001c) in various studies. 

Furthermore, in Rooke's aforementioned studies, C20:5n-3 was found in very low 

concentrations in brain tissue compared to C20:4n-6 and C22:6n-3. Concentrations of 

C20:5n-3 within plasma tended to be higher in lambs borne to ewes fed fish oil and the 

amount of this fatty acid in brain tissue was significantly increased by fish oil 

supplementation of the ewe. The low concentrations of C20:5n-3 observed in brain tissue 

of lambs produced by ewes fed Megalac compared to fish oil may therefore have resulted 
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from a combination of low dietary supply and endogenous conversion to longer chain fatty 

acids. However, although fatty acids of the n-3 series are known to be important for the 

correct development and function of nervous tissue, C20:5n-3 is not generally found in 

high concentrations within brain tissue (Joshi et al., 2004). Therefore, the low C20:5n-3 

concentrations may simply be a result of the low cellular demand for this fatty acid within 

the brain. 

Published values for C22:6n-3 concentrations within mammalian brain tissue vary from 11 

glI00g fatty acids (Joshi et al., 2004) to 22 gllOOg fatty acids (Rooke et al., 2001a). The 

proportional contribution of C22:6n-3 to brain fatty acids within the current study concur 

with values those reported by Lauritzen et al. (2001). However, Rooke et al. (2001c) 

observed significantly higher proportion ofC22:6n-3 within brain tissue (approx 20 gllOOg 

fatty acids) in piglets borne by ewes fed salmon oil than those seen within the current 

study. Similar results were observed by Rooke et al. (2001a) as a consequence of tuna oil 

supplementation of the pregnant sow. By contrast, previous studies conducted by Rooke et 

al. (1999) demonstrated that either salmon or tuna oil supplementation of the pregnant sow 

resulted in brain C22:6n-3 concentrations only marginally higher than those observed 

within the current study. Variation between these studies may be due to differences in 

fatty acid supply and the duration of supplementation. Goustard-Langelier et al. (1999) 

reported higher C22:6n-3 concentrations in brain tissue of suckling piglets than those 

observed within the current study, the concentration of C22:6n-3 varying between brain 

compartments (192 gllOOg fatty acids in cortex, 153 glI00g fatty acids in cerebellum). 

Palowsky et al. (1996) concluded that separate areas of the brain differed both in growth 

rate and ability to synthesise or absorb C22:6n-3, which would further explain variation in 

C22:6n-3 concentrations between the current study, in which the entire brain was 

homogenised and analysed for fatty acids, and that of Goustard-Langelier et al. (1999). 
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It is interesting to note that in humans, brain C22:6n-3 accretion tapers off at 

approximately 2 years of age at a concentration of 3 mglg freshweight (Lauritzen et al., 

2001). The proportion of C22:6n-3 (expressed as gllOOg fatty acids) within lamb brain 

tissue was similar to that of neonatal human brain tissue (Lauritzen et al., 2001). However, 

lambs within the current study had a C22:6n-3 concentration of approximately 3 mglg of 

brain tissue (freshweight) at birth, underlining the difference in neural development, 

precocity and motor coordination in neonatal lambs when compared to human infants. 

Maternal dietary vitamin E concentration had no significant effect upon the deposition of 

fatty acids into brain tissue within the current study, although it could be hypothesised that 

increasing the antioxidant supply would retard oxidation and promote the incorporation of 

long-chain PUFAs into cellular membranes. Celik et al. (1999) demonstrated increased 

concentrations of all fatty acids in brain tissue of growing lambs (eight to nine months of 

age) as a result of dietary supplementation with vitamin E, selenium or a combination of 

the two antioxidants. However, the elevated fatty acid requirement of the neonatal lamb 

in relation to the supply of fatty acids from placental transfer may have negated any effects 

of maternal vitamin E supply. 

3.5.2.5. Lamb growth rate 

Several studies have reported that long-chain PUFA supplementation of the dam increases 

birthweights in human and animal neonates (Olsen et al., 1992; Crawford et al., 1997; 

Smuts et al., 2003). However, Annett et al. (2004) observed no significant effect of fish 

oil supplementation of ewes upon lamb birthweight, whilst Rooke et al. (200Ic) described 

a decrease in piglet birthweight as a result of salmon oil supplementation of the pregnant 

sow. Mean lamb birthweights were numerically higher as a result of fish oil 

supplementation of the ewe in the current study although these results did not reach 

statistical significance. This increase may be ascribed to the increase in gestational age in 
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these lambs: as foetal growth follows an exponential curve during late pregnancy, an 

increase in the duration of gestation would be expected to increase neonatal birthweight 

(Agricultural Research Council, 1980). 

An increase in lamb birthweight was conferred by maternal vitamin E supplementation in 

the current study. This concurs with research conducted by Merrell (1998) and Kott et al. 

(1996) who suggested that supranutritional vitamin E supplementation of pregnant ewes 

may improve lamb survival and growth rate. Gentry et al. (1992) reported that lambs from 

vitamin E-supplemented ewes tended to have higher birthweights and increased pre

weaning liveweight gains. Moreover Bass et al. (2001) described higher average weaning 

weights in beef cattle as a result of maternal vitamin E supplementation during gestation. 

Conversely, neither Williamson et al. (1995) or Kott et al. (1998) observed any effect of 

vitamin E supplementation of the ewe on lamb liveweight or growth rate. 

The mechanism by which birthweight may be increased by vitamin E supplementation has 

not been investigated; however, it may, in part, be due to the effects of antioxidant 

vitamins upon the immune system, as reviewed by McDowell et al. (1996). Vitamin E has 

been reported to augment immune status and reduce the incidence and symptoms of 

disease in ruminant animals (Reddy et al., 1986). Consequently, improving the maternal 

immune status during pregnancy may promote the partitioning of additional nutrients 

towards the growing foetus, thereby increasing growth in utero. 

Milk composition and yield are important regulators of pre-weaning lamb growth rate, as 

milk is the only source of energy and protein in the diet of the suckling lamb. The effect of 

long-chain PUF A supplementation of the ewe upon lamb growth rate in the current study 

may be attributed to reduced energy intakes as a consequence of decreased milk fat 

concentrations. By contrast, Rooke et al. (2001c) fed salmon oil to sows during pregnancy 
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and lactation, but observed no effect of this supplementation upon piglet weaning weight. 

Similar results are described by Rooke et al. (2000) as a consequence of feeding tuna oil 

during pregnancy and lactation. 

Koletzko (1992) reviewed the effect of long-chain PUF A supplementation upon human 

infants and described a retarded growth syndrome induced by C20:4n-6 deficiency. 

Differences in milk C20:4n-6 concentrations between treatments were non-significant, 

nonetheless, plasma concentrations of this fatty acid in lambs suckling ewes fed fish oil 

were half those of the Megalac group. However, these differences were biologically 

insignificant and this explanation is unlikely to account for changes in growth rate 

observed within the current study. 

3.5.2.6. Lamb antioxidant status 

Significant increases in the concentration of plasma vitamin E observed in lambs as a 

consequence of maternal supranutritional supplementation reflect the differences observed 

in maternal plasma and milk. Indeed, ewe and lamb plasma vitamin E concentrations were 

similar at two weeks post partum. Similar results were described by Njeru et al. (1994) as 

a a consequence of supplementing pregnant and lactating ewes with various concentrations 

of dietary vitamin E. 

Adding 1000 LV. of d-a-tocopherol to the daily diet of three-month old lambs increased 

plasma vitamin E concentrations from 0.65 J!glml to 1.90 J!glml in the study of Hidiroglou 

and Batra (1996), values consistent with the lowest concentrations observed in lambs 

within the current study. The concentrations within the current study were within the 

range of plasma values reported by Doncon and Steele (1988), HAkansson et al. (2001) and 

Hatfield et al. (2002). However, offering diets containing Megalac and supranutritional 

dietary vitamin E to ewes within the current study resulted in significantly higher values 
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being detected. This may be due to differences in vitamin E absorption between 

experiments; the high fat content of ewe milk promoting micellular absorption in lambs 

compared to absorption from an intramuscular injection. Nonetheless, lambs from 

treatments MB, FB and FS were clinically deficient in vitamin E according to the index of 

Hidiroglou et al. (1992b) with only those borne by ewes fed diet MS achieving minimal 

vitamin E status. 

Erythrocyte GPx activity is a reliable indicator of the selenium status of the animal 

(Carlstrom et al., 1990). GPx activities were approximately doubled in lamb erythrocytes 

at two weeks of age when compared to ewe erythrocyte activities. Placental transfer of 

selenium appears to be limited in the ewe (Jacobsson and Oksanen, 1966; Bostedt and 

Schramel, 1990) although it can be increased by maternal supplementation (Van Metre and 

Callan, 2001). However, there appears to be no barrier to mammary transfer, which may 

explain the higher concentrations in suckling lambs compared to ewes. The activity of 

GPx in lamb erythrocytes was reduced by maternal long-chain PUF A supplementation, 

concurring with patterns observed in maternal plasma during lactation. Increasing the 

cellular oxidative challenge by augmentation of the diet with unsaturated fatty acids 

confers an increase in the antioxidant requirement of the cell and may reduce GPx activity 

(Smith and Isopenko, 1997). Milk total unsaturated fatty acid concentrations were similar 

between treatments, although proportional increases in long-chain PUF A supply to the 

lamb may have further increased the antioxidant requirement. 

Serum CK concentrations observed in lambs at two weeks of age concur with the results of 

maternal plasma taken at two weeks into lactation, in that the concentrations of this 

enzyme were significantly augmented by long-chain PUF A supplementation of the ewe. 

EI-Neweehy et al. (2000) reported low concentrations of CK in animals free of nutritional 

myopathy (37 lUll); sub-clinically affected animals had concentrations ranging from 1186-
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3740 lUll with detectable symptoms being seen at a mean CK concentration of 4291 lUll. 

By these criteria, although lambs suckling from ewes fed fish oil were potentially more 

susceptible to nutritional myopathy, clinical disease was unlikely to be present. As plasma 

vitamin E concentrations were within reported ranges, the differences in CK concentrations 

may be a result of reduced activities of other antioxidants including GPx or vitamin C. 

3.5.2.7. Plasma fatty acids In the suckling lamb 

The lamb diet at two weeks of age consisted solely of ewe milk, consequently the fatty 

acid composition of lamb plasma would be expected to mirror that of milk. The milk fatty 

acid yield, calculated from milk yield and fatty acid content suggest that dietary fatty acid 

supply was reduced in lambs suckling ewes fed fish oil. This concurs with the observed 

results, in which lambs suckling from ewes offered fish oil had lower concentrations of 

total fatty acids in plasma. 

As previously discussed, the concentration of C16:0 within milk fat was decreased by 

long-chain PUF A supplementation, this result being attributed both to changes in dietary 

C16:0 intake between treatments and to suppression of endogenous fatty acid synthesis. 

Proportions of plasma C16:0 were reduced in lambs suckling ewes supplemented with fish 

oil, a result which may therefore be attributed to the significantly lower dietary intake. 

Rumen function in the lamb is stimulated by ingestion of dietary fibre with complete 

rumen function usually being achieved as a consequence of weaning (McDonald et a/., 

1988). Suckling lambs are therefore effectively monogastrics and differences in C18:0 are 

unlikely to be a result of changes in ruminal biohydrogenation. The same theory applies to 

the concentrations of C 18: 1 trans and CLA within lamb plasma. In the adult ruminant, 

these fatty acids derive from ruminal modification of dietary unsaturated fatty acids and 

may have been transferred to lamb plasma via milk. 
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Modification of ewe plasma and milk C18:1n-9 cis concentrations in the current study was 

achieved by addition of long-chain PUF As to treatment concentrates. These differences 

were further reflected in the concentration of this fatty acid within lamb plasma, as a 

consequence of reduced dietary intakes from milk fat. By contrast, although a positive 

relationship exists between ewe and lamb plasma concentrations of CI8:2n-6 between 

treatments, this difference in fatty acid composition was not observed in milk fat. The 

proportions of individual fatty acids were similar between ewe milk and lamb plasma for 

CI6:0, CI8:0, CI8:I trans and C18:1n-9 cis although the proportion of C18:2n-6 was 

approximately eight-fold higher in lamb plasma than in milk fat. Payne (1978) described 

the transfer ofEFAs to the foetal lamb, suggesting that the neonate is deficient in C18:2n-6 

but that this deficiency is rectified after three days of milk consumption. By contrast, 

Rajion et al. (1985) postulated that the quantities of EFA metabolites within plasma signify 

that suckling lambs are not deficient in EF As. The consensus view appears to be that 

EFAs are not transferred across the placenta in any appreciable quantity, therefore, the 

presence of this fatty acid in plasma is unlikely to result from mobilisation of stored 

reserves. When the EF A supply is low, Noble et al. (1971) suggested a preferential 

utilisation of C18:2n-6 rather than C18:3n-3 for plasma phosphatidylglycerol synthesis, 

which may explain the higher concentrations seen in the current study. 

The reduction in plasma C20:4n-6 exhibited by lambs suckling ewes fed fish oil does not 

appear to be related to plasma and milk concentrations, but may result from reduced 

endogenous synthesis within the lamb. Competition between C18:2n-6 and C18:3n-3 for 

the enzymes involved in the L\-6-desaturase enzyme occurs, which is further complicated 

by the inhibiting effect of preformed dietary C20:5n-3 and C22:6n-3. Therefore, the 

increased dietary supply of long-chain n-3 PUF As in lambs suckling ewes offered fish oil 

diets may have reduced the synthesis of the n-6 series PUFAs with concurrent effects upon 

labile C20:4n-6 supply. 
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Variation in the proportion of C18:3n-3 within lamb plasma between treatments may be 

ascribed to differences in dietary fatty acid intakes, as the results concur with ewe plasma 

and milk concentrations of this fatty acid. Throughout the current study, addition of fish 

oil to the diet of pregnant and lactating ewes has increased the amount of C20:5n-3 and 

C22:6n-3 within plasma. Again, lamb plasma concentrations concur with these results, 

with approximately double the amount of C20:5n-3 within plasma compared to C22:6n-3. 

As observed with CI8:2n-6, the proportions ofC20:5n-3 and C22:6n-3 within lamb plasma 

were higher than those within milk fat. Given the conditional essentiality of these fatty 

acids for the development and function of neural tissues, a mechanism by which they may 

be conserved and preferentially utilised must exist, especially in animals with a low dietary 

supply. Payne (1978) suggested that placental transfer of long-chain PUF As was minimal. 

Nonetheless, the increased concentration of C22:6n-3 within neonatal lamb plasma and 

brain tissue observed during the current study indicates that this transfer may be significant 

in the maintenance of a satisfactory long-chain PUF A status in the neonate. The increased 

concentrations of C20:5n-3 and C22:6n-3 observed in plasma compared to milk may 

therefore, in part, be conferred by transfer of these fatty acids during foetal development. 
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3.6. Conclusion 

Long-chain PUF A supplementation of pregnant ewes increased gestation length and 

augmented the deposition of C22:6n-3 into lamb brain tissue with a concomitant 

improvement in neonatal lamb vigour. However, milk fat concentration and yield were 

significantly reduced by PUF A supplementation, with concurrent effects upon lamb 

growth rate. The next logical step would be to replace dietary PUF As with a saturated 

fatty acid source during lactation, in an attempt to negate the effect observed on lamb 

growth rate, whilst maintaining effects upon gestation length and lamb behaviour. 

Neonatal lamb behaviour was unaffected by maternal dietary vitamin E concentration, 

although supranutritional supplementation increased lamb birthweight. In contrast to 

previously published research, it appears that the vitamin E status of the neonatal lamb 

may be manipulated via the maternal diet. Furthermore, lamb plasma vitamin E 

concentrations are not reliable indicators of the deposition of this vitamin in tissue. 
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4. SUPPLEMENTATION OF PREGNANT AND LACTATING EWES WITH 

VARIOUS FAT SOURCES: EFFECTS UPON EWE AND LAMB PERFORMANCE 

4.1. Introduction 

Since the BSE crisis of 1996, considerable consumer concern has existed regarding feeding 

sources of animal protein to ruminants (Verbeke, 2001). Both meat and bone meal and 

fishmeal have been banned in ruminant diets in the EU (Matthews and Cooke, 2003) and it 

is not unreasonable to suggest that feeding fish oil to ruminants may also be prohibited in 

future. Marine algae is an alternative dietary source of preformed long-chain n-3 PUF As 

that may be included in ruminant diets (Papadopoulos et al., 2002). However, the exact 

proportions of C20:4n-6, C20:5n-3 and C22:6n-3 within algae vary according to species 

(Sargent and Henderson, 1995). Using an algal species that provides a high dietary supply 

of C22:6n-3 in combination with a low C20:5n-3 supply may elucidate the biochemical 

mechanisms behind the effects of long-chain PUF A supplementation upon gestation length 

and lamb behaviour observed in Experiment One. Both C20:5n-3 and C22:6n-3 may be 

endogenously synthesised within the ruminant via elongation and desaturation of dietary 

CI8:3n-3 (Voigt and Hagemeister, 2001). Linseed (Linum usitatissimum) contains high 

concentrations of C 18:3n-3 and is suitable for use in ruminant diets; moreover, its protein

based seed coat may act as a barrier against the ruminal biohydrogenation of long-chain 

PUFAs (Doreau and Ferlay, 1994; Szumacher-Strabel et al., 2001a). Studies in primates 

and human infants have attempted to quantify the synthesis of C22:6n-3 from CI8:3n-3 

(Koletzo et al., 1996; Crawford et al., 1997; Su et al., 1999). However, there is no 

conclusive evidence as to whether endogenous synthesis of these fatty acids by pregnant 

ewes provides sufficient C22:6n-3 for optimal deposition in neonatal brain and nervous 

tissues. 
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The first experiment demonstrated that long-chain PUF A supplementation of pregnant 

ewes had a beneficial effect on neonatal lamb vigour although milk composition and lamb 

growth rate were adversely affected by PUFA supplementation during lactation. Feeding a 

saturated fat source during lactation may negate the changes in milk composition resulting 

from long-chain PUF A supplementation during pregnancy, thereby improving lamb 

growth rate. 

4.2. Objective 

The objective of the current experiment was to investigate the targeted supplementation of 

pregnant and lactating ewes with various fat sources, upon ewe and lamb behaviour and 

performance. 

4.3. Materials and methods 

4.3.1. Experimental animals and housing 

Forty two twin-bearing and eighteen triplet-bearing ewes from the Harper Adams early 

lambing flock (Edgmond, Newport, Shropshire, UK) with a mean age of 4.6 years (s.d. 

1.80), mean liveweight of 76.6 kg (s.d. 8.60 kg) and mean condition score of 3.1 units (s.d. 

0.50) were used in a six-treatment randomised block design. Ewes were either Friesland x 

Lleyn (n = 36) or Suffolk x North of England Mule (n = 24). Ewes were housed, 

individually penned and bedded on sawdust from week 15 (designated week -6) of 

pregnancy until week 4 (week +4) of lactation. An additional eight ewes were housed in a 

group-pen and bedded on straw to provide foster lambs for any ewes that did not bear two 

or three live lambs. The building was continually lit and all ewes had free access to fresh 

water. 
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4.3.2. Experimental diets 

A basal diet was formulated containing barley, sugar beet pulp, soyabean meal, SopralinTM, 

rapeseed meal, urea and molasses (Table 4.1). To this diet was added 177 glkg of a long

chain PUFA (algae; A), precursor (linseed; L) or control saturated fat (Megalac®; M) 

premix. The PUFA premix comprised marine algae (Chance and Hunt Nutrition, Runcom, 

Cheshire, UK) as the principal source of C22:6n-3, combined with Megalac® (Volac UK 

Ltd, Royston House, Royston, UK), soyabean meal, rapeseed meal and straw pellets. This 

premix was formulated to provide 6.32 g C22:6n-3/kg concentrate (36 g marine algae/kg 

concentrate). Using the figure of 43% published for ruminal biohydrogenation of C22:6n-

3 by Cooper et al. (2002), this would provide 3.60 g C22:6n-3/kg concentrate to the 

pregnant animal, as recommended by Rooke et al. (2001b). The linseed premix contained 

only whole linseed, the premix inclusion rate was calculated to provide a dietary 

concentration of CI8:3n-3 between seven and eight-fold higher than that of C22:6n-3 

within the algal premix. According to the results of Su et al. (1999; 2001) this would 

deposit equivalent concentrations of C22:6n-3 into neonatal tissues, via the elongation and 

desaturation of CI8:3n-3, as the algae premix. The control fat premix was made up of 

Megalac® as the principal fat source, plus soyabean meal, rapeseed meal and straw pellets. 

The latter components (soyabean meal, rapeseed meal and straw pellets) within the algae 

and Megalac® premixes balanced the protein component supplied by whole linseed in the 

precursor premix. The three premixes were formulated to provide equal concentrations of 

fat (62.2 glkg freshweight) and protein (34.6 glkg freshweight), and similar ME 

concentrations (averaged as 3.28 MJ ME/kg freshweight) within the concentrates. All 

concentrates also contained a vitamin and mineral premix (30 glkg) providing 500 mglkg 

vitamin E. The resulting concentrates were formulated to be isoenergetic and 

isonitrogenous with a predicted nutrient content of 14.0 MJ/kg DM metabolisable energy, 

213 g/kg DM crude protein and 83.0 glkg DM fatty acids, formulated according to the 

guidelines laid out by AFRC (1993). 
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The treatment concentrates were fed within six dietary strategies in an attempt to reduce 

the detrimental effect of long-chain PUF A supplementation upon milk composition and 

lamb growth rate (Table 4.3). During pregnancy, 30 ewes were fed the algae concentrate, 

20 fed the linseed concentrate and 10 fed the Megalac® concentrate. Twenty of the ewes 

fed algae during pregnancy were then changed to either the linseed (10 ewes) or Megalac® 

(10 ewes) diets at + 12 hours post partum and 10 of the ewes fed linseed during pregnancy 

were changed to the Megalac® diet at + 12 hours post parium. 

Table 4.1. Raw material and chemical composition o[the three treatment concentrates 
Algae Linseed Megalac· 

Raw material composition (glkg) 
Barley 500 500 500 
Sugar beet pulp 100 100 100 
Soyabean meal 121 77 126 
Rapeseed meal 75 48 78 
Sopralin 10 10 10 
Straw pellets 19 29 
Marine algae 36 
Whole linseed 177 
Megalacil> 51 69 
Molasses 50 50 50 
Urea 8 8 8 
VitaminslMinerals 30 30 30 

Predicted chemical composition (glkg DM)' 
OM (g/kg) 868 858 867 
CP 213 215 213 
ERDP· 131 136 132 
Dup· 55 51 54 

EE 82 84 83 

NDF 171 173 172 

Ash 69 70 69 
Vitamin E (mg/kg in premix) 500 500 500 

ME (MJlkg DM) 14.0 13.7 14.0 
FME (MJlkg DM) 10.8 11.1 11.0 
ERDP:FME Ratio 12.1 12.3 12.0 
VitaminlMineral supplement (Hac Ewe 25, Roche Products Limited, Heanor, Derbyshire, UK) supplied per 
kg of diet: Calcium 7.06 g; Sodium 2.67 g; Phosphorus 1.65 g; Selenium 0.36 mg; Vitamin A 14,400 IU; 
Vitamin D 30,000 IV; Vitamin E 500 mg. 
, (AFRC, 1993) 
* calculated according to AFRC (1993) at a rumen outflow rate of 0.08 mllhour 
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Table 4.2. The structure o/the six dietary strategies[ed to ewes 
Strategy Pregnancy diet 

AA 
AL 
AM 
LL 
LM 
MM 

Algae 
Algae 
Algae 

Linseed 
Linseed 

Megalac® 

Lactation diet 

Algae 
Linseed 

Megalac® 
Linseed 

Megalac® 
Megalac® 

Ewes were fed a stepped daily amount of concentrate feed (Table 4.3) in two equal meals 

per day (at 08:00 and 16:00) during pregnancy, and were fed at a flat-rate of 1.7 kg/day in 

three meals per day (at 08:00, 12:00 and 16:00) during lactation. Barley straw was initially 

offered at 0.80 kg/day and subsequently fed ad libitum at intake levels calculated according 

to the method described in Chapter Two. 

Table 4.3. Daily concentrate allowance [or twin- and triplet-bearing ewes 
Day of gestation 110 117 124 131 138 145 Lactation 

Daily concentrate allowance for 0.65 0.75 0.85 0.95 1.05 1.15 1.7 

twin-bearing ewes 
(kg fresh weight) 

Daily concentrate allowance for 0.7 0.8 0.9 1.05 1.15 1.25 1.7 

triplet-bearing ewes 
(kg freshweight) 

4.3.3. Experimental Procedure 

Concentrate and straw samples were taken weekly and stored in airtight bags at -20°C 

until analysis. Ewe liveweight, body condition score, straw intake, maternal and neonatal 

behaviour, lamb birthweight and liveweight, colostrum production and milk production 

were measured as previously described in Chapter Two. 

4.3.3.1. Blood sampling 

Blood samples were obtained from ewes by jugular venepuncture at 11 :00 at six weeks 

(103 days, before the experimental concentrates were fed) and one week (138 days of 

gestation) pre-partum; at 12 hours post partum and at one and three weeks post partum. 
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Blood and tissue samples were taken from neonatal triplet lambs immediately after 

cessation of the heartbeat as described in section 2.2.4. Blood samples were taken by 

jugular venepuncture from growing lambs at + 12 hours of age and again at 11 :00 at one 

and three weeks of age. Plasma and tissue samples were prepared as described in Chapter 

Two. 

4.3.4. Sample analysis 

Concentrate and straw samples were analysed for DM, ash, CP and NDF. In addition, 

concentrate samples were analysed for fatty acid composition and for vitamin E. Ewe 

blood samples were analysed for urea, PHB, CK and GPx at all time points and for fatty 

acids at 103 and 131 days of gestation. Neonatal lamb blood samples were analysed for 

fatty acids; suckling lamb blood samples were analysed for CK and GPx at all time points 

and for fatty acid composition at 21 days of age. All analyses are described in Chapter 

Two. 

4.3.5. Statistical analysis 

Data were analysed as a six-treatment randomised block design by the ANOV A function 

within Genstat 6 version 6.2 (Lawes Agricultural Trust, 2002). Sex was used as a co

variate when analysing lamb birthweight, liveweight and growth rate data. Plotting lamb 

liveweight against time revealed linear growth rates, therefore overall growth rates were 

calculated using linear regression. Orthogonal contrasts were employed upon selected data 

to determine differences between treatment diets fed pre- or posl parIum (Genstat 6 

version 6.2, Lawes Agricultural Trust, 2002). Contrasts employed were "algae versus 

Megalac", "algae versus linseed" and "linseed versus Megalac't, according to the diet fed 

either pre- or post parIum. Data collected pre-parium included 30 samples from ewes fed 

algae, 20 samples from those fed linseed and 10 from those fed algae. The same totals 

were used to calculate the effects of pre-partum diet upon post parIum performance. The 
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effect of post partum diet upon post partum perfonnance was analysed using 10 samples 

from ewes fed algae, 20 from those fed linseed and 30 from those fed algae. Contrasts 

comparing algae with Megalac and algae with linseed were calculated together, the 

analysis was re-run to calculate the effect of linseed compared to Megalac. 
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4.4. Results 

Data from ten ewes were excluded from the analysis: three suffered from mastitis (one 

each from treatments AA, LL and MM), six reared single lambs (one from each of 

treatments AL, LL, MM AM, and two from treatment LM) and one did not rear any lambs 

(treatment MM). Data from lambs reared by excluded ewes were not included in statistical 

analyses. 

4.4.1. Diet composition 

The DM content was lowest for the algae (A) concentrate followed by the linseed (L) and 

Megalac (M) concentrates, whilst the ash fraction was similar between concentrates A and 

M and was lowest in concentrate L (Table 4.4). Crude protein concentrations were similar 

for diets A and M but lower for concentrate L, whilst the NDF content was similar 

amongst all three concentrates. The total fatty acid content of concentrate L was higher 

than that of concentrates A or M. Vitamin E concentrations were similar between 

concentrates A and M and slightly higher in concentrate L. 

Table 4.4. Chemical composition of the three treatment concentrates and the straw 

A 

Ory matter (glkg) 814 
Crude protein (glkg OM) 199 
Organic matter (glkg OM) 925 
Ash (glkg OM) 75 
Neutral detergent fibre (g/kg OM) 169 
Vitamin E (mglkg OM) 563 
Totalfatty acids (g(kg OM) 105 

A= Algae diet; L - Linseed diet; M - MegaJac diet 

Concentrate 
L 

845 
181 
942 
58 
164 
585 
113 

M 

861 
199 
921 
79 
163 
560 
94 

Straw 

872 
54 

921 
79 

756 

The principal fatty acids within concentrate M were C16:0, CI8: In-9 and C18:2n-6 with 

small amounts of CI8:0 and CI8:3n-3 present (Table 4.5). The long-chain n-3 PUFAs 

C20:5n-3 and C22:6n-3 were not detectable within concentrate M. 
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Table 4.5. Fatty acid composition o/the three treatment concentrates 
Concentrate 

Fatty acid (glkg DM) A L 

C16:0 
C16:1n-7 
C18:0 
C18:1 trans 
C18:1n-9 cis 
C 18:2n-6 cis 
CI8:3n-3 cis 
CI8:3n-6 
C20:4n-6 
C20:5n-3 
C22:6n-3 

A= Algae diet; L = Linseed diet; M = Megalac diet 

32.8 
0.46 
2.76 
ND 
21.3 
17.6 
2.53 
0.07 
0.21 
NO 
7.71 

19.2 

, RF A = All remaining fatty acids; NO = not detected 

10.8 
NO 
2.81 
NO 
14.7 
25.7 
54.9 
0.35 
NO 
NO 
NO 

3.94 

M 

39.8 
0.24 
3.07 
NO 
25.6 
18.2 
1.86 
NO 
NO 
NO 
NO 

5.11 

The predominant fatty acid contained within concentrate L was C 18:3n-3, contributing 

0.48 of the total fatty acids. Furthermore, significant amounts of C 18: I n-9 and C 18:2n-6 

were found, although no C20:5n-3 or C22:6n-3 were detected. The major fatty acids 

contained within concentrate A were CI6:0, CI8:ln-9 and CI8:2n-6 with small amounts of 

C18:0 and CI8:3n-3. By contrast, a significant amount of C22:6n-3 was present, 

contributing 0.07 of the total fatty acid content. 

4.4.2. Ewe performance parameters 

4.4.2.1. Straw intake 

The daily straw intake (Tables 4.6 and 4.7, Figure 4.1) of all ewes remained relatively 

constant between the start of the experiment and parturition. When data were analysed as a 

randomised block design with six dietary strategies, there was no significant effect of 

strategy upon pre-partum daily straw intake. Analysis of the contrasts among dietary 

strategies revealed that ewes supplemented with either algae or linseed pre-partum had 

significantly lower daily straw intakes than ewes fed Megalac-based diets at one week pre-

partum. 
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Table 4.6. Effect of supplementing the diets of ewes with various fat sources on daily straw 
intakes 

Diet I.e.d. P 

AA AL AM LL LM MM 

Mean daily intake (kg DM): 
6 weeks' pre-parium 0.57 0.51 0.54 0.59 0.51 0.54 0.056 0.677 
1 week' pre-parium 0.43 0.48 0.44 0.57 0.48 0.69 0.099 0.090 
Pre-parium intake (kg/day) 0.51 0.50 0.53 0.62 0.52 0.63 0.085 0.464 

o weeks' posl parium 0.50ab 0.58b 0.40· 0.55ab 0.481b 0.85" 0.081 <0.00 I 
3 weeks' pOSI parium 1.04 1.14 0.85 0.95 1.04 1.37 0.223 0.294 
Poslparlumintake(kg/day) 0.77 0.84 0.65 0.72 0.73 1.04 0.137 0.104 

AA = Algae diet fed throughout pregnancy and lactation; AL= Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
Means without common superscripts are significantly different at the P<0.05 level 
, 6 weeks pre-parium = mean straw intake on days 103-110 of gestation; 1 week pre-parium = mean straw 
intake on days 138-145 of gestation; 0 weeks pOSI parium = mean straw intake on days 0 - 7 of lactation, 3 
weeks pOSI parium = mean straw intake on days 21 - 28 oflactation 

Table 4. 7. Effect of supplementing the diets of ewes with various fat sources pre- and post 
partum on daily straw intakes 

Diet s.e.d. p 

Algae Linseed Megalac C, Cz Cl 

Mean daily intake (kg DM): 
Effect o/pre-partum diet 
Number per treatment 30 20 10 

6 weeks' pre-partum 0.54 0.55 0.54 0.043 0.902 0.602 0.809 
1 week' pre-parium 0.45 0.52 0.69 0.075 0.004 0.846 0.008 
Pre-partum intake (kg DM/day) 0.51 0.57 0.63 0.065 0.094 0.645 0.147 

o weeks' posl partum 0.67 0.62 0.94 0.078 <0.001 0.207 <0.001 
3 weeks' post -parium 0.99 0.97 1.51 0.205 0.053 0.448 0.040 
Post parium intake (kg/day) 0.74 0.71 1.14 0.127 0.014 0.249 0.008 

Effect 0/ post partum diet 
Number f.er treatment 10 20 30 
o weeks post partum 0.50 0.53 0.57 0.084 0.228 0.866 0.460 
3 weeks' posl -parium 1.07 0.97 1.11 0.198 0.775 0.812 0.712 
Post e.arlum intake ~k~ DMlda~~ 0.79 0.73 0.81 0.125 0.731 0.817 0.685 

C. = Algae vs Megalac; C2 = Algae vs Linseed; C3 - Linseed vs Megalac 
, 6 weeks pre-parium = mean straw intake on days 103-11 0 of gestation; 1 week pre-parIum = mean straw 
intake on days 138-145 of gestation; 0 weeks post parium = mean straw intake on days 0 - 7 of lactation; 3 
weeks post partum = mean straw intake on days 21 - 28 of lactation 

A significant difference was evident during the week in which parturition occurred (week 

0), where ewes offered the dietary strategy AM ate significantly less, and ewes offered the 

strategy MM significantly more, straw per day than ewes from the other four dietary 

strategies. However, daily straw intakes were not significantly different among any of the 

dietary strategies at any other time point post partum. 
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When the contrasts among the three fat sources were analysed as an effect of pre-parIum 

dietary supplementation on post-parIum straw intake, significant differences were 

elucidated between ewes fed algae (AA, Al, AM) and Megalac (MM) pre-parIum at 

weeks 0 and +2 and between ewes fed linseed (ll, lM) and Megalac (MM) at all time 

points post parIum. Furthermore, ewes fed algae or linseed pre-parIum had significantly 

lower mean daily straw intakes post partum (averaged as 0.73 kg/day) than those fed 

Megalac (1.14 kg/day) during pregnancy. No significant effect of dietary fat source fed 

post parIum was observed upon post parIum straw intakes. 

4.4.2.2. Liveweight and condition score 

There were no significant differences in ewe liveweight among the six dietary strategies at 

the start of the experiment, at one week pre-partum or in total pre-parIum liveweight 

change (Table 4.8). However, contrasts within the six strategies showed that ewes fed 

diets containing algae as the main fat source pre-parIum gained significantly less weight 

than those fed Megalac-based diets (Table 4.9) . 
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Table 4.8. Effect of supplementing the diets of ewes with various fat sources on Iiveweight and 
bod,!: condition score chanG.e 

Diet s.e.d. P 

AA AL AM LL LM MM 

Pre-partum weight (kg): 
6 weeks' pre-partum 78.7 77.1 76.7 78.0 74.1 75.0 2.82 0.571 
1 week' pre-partum 88.4 85.3 84.5 88.0 85.0 86.6 3.09 0.733 
Pre-partum change 9.52 8.84 8.96 9.63 11.05 11.10 1.197 0.246 

Pre-partum CS: 
6 weeks' pre-partum 3.23 3.13 3.20 3.15 3.00 3.08 0.114 0.392 
1 week"l pre-partum 3.15 3.00 3.13 3.00 3.00 3.10 0.111 0.557 
Pre-partum change -0.15 -0.00 -0.05 -0.08 -0.03 -0.00 0.095 0.616 

Post partum weight (kg): 
1 week' fost partum 74.7 75.0 73.1 75.3 71.5 78.9 2.44 0.088 
4 weeks post partum 72.4 73.5 70.6 74.8 70.0 78.32 3.08 0.109 
Post partum change -2.75 -1.71 -2.44 -1.60 -1.40 -0.35 1.460 0.647 

Post partum CS: 
1 week'fostpartum 2.70 2.63 2.76 2.72 2.76 2.80 0.073 0.311 
4 weeks postpartum 2.54 2.50 2.56 2.43 2.55 2.61 0.087 0.437 
Postpartum change -0.20 -0.13 -0.19 -0.27 -0.21 -0.19 0.089 0.753 

AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, 6 weeks pre-partum = day 103 of gestation; 1 week pre-partum = day 138 of gestation; 1 week post partum 
= day 7 of lactation; 4 weeks post partum = day 28 of lactation 

Table 4.9. Effect of supplementing the diets of ewes with various fat sources pre- and post 
partum on IiveweiG.ht chanG.e 

Diet s.e.d. p 

Algae Linseed Megalae C1 C2 C] 

Effect o/pre-partum diet (kg) 
Number t.er treatment 30 20 10 
6 weeks pre-partum 77.5 76.0 75.0 2.17 0.294 0.633 0.397 
1 week' pre-partum 86.1 86.5 86.6 2.39 0.843 0.874 0.890 
Pre-partum change 9.10 10.3 11.1 0.920 0.047 0.323 0.111 

1 week' fost partum 74.0 73.8 81.3 2.26 0.025 0.178 0.012 
4 weeks post partum 72.2 72.1 80.4 2.88 0.020 0.501 0.016 
Post parIum change 2.33 1.58 0.90 1.320 0.110 0.732 0.157 

Effect 0/ post partum diet (kg) 
10 20 30 Number per treatment 

1 week' fost partum 74.9 75.0 74.7 2.13 0.932 0.685 0.729 
4 weeks post partum 73.5 73.3 72.9 2.79 0.813 0.432 0.740 
Post e.artum chan~e 2.93 1.64 1.73 1.240 0.264 0.929 0.465 

C. = Algae vs Megalac; C2 - Algae vs Linseed; C3 - Linseed vs Megalac 
, 6 weeks pre-partum = day 103 of gestation; 1 week pre-partum = day 138 of gestation; I week post parium 
= day 7 of lactation; 4 weeks post partum = day 28 of lactation 

Ewes fed strategy MM tended to have higher liveweights at one week post partum than 

ewes offered strategic diet LM. No other differences among dietary strategies were 
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observed on post partum liveweight or liveweight change. By contrast, fat source offered 

pre-partum had a significant effect upon ewe liveweights post-partum: ewes fed algae or 

linseed during pregnancy had significantly lower liveweights at one and four weeks post 

partum than those fed Megalac. However, there was no effect of pre-partum fat source on 

post partum liveweight change. Ewe condition score and condition score change pre

partum and post partum were unaffected by dietary strategy or dietary fat source (data not 

shown). 

4.4.2.3. Metabolic profiles 

Ewes offered dietary strategy MM had the highest mean plasma PHB concentrations pre

partum when compared to strategies AM, LL and LM (Table 4.10). Furthermore, 

significant differences in mean pre-partum PHB concentrations were observed within all 

three contrasts, the lowest concentrations being found in ewes offered diets containing 

linseed and the highest in those fed diets based on Megalac (Table 4.11). Ewes 

supplemented with strategies AA or AM had significantly higher plasma PHB 

concentrations post parium compared to ewes offered strategies LL or LM. Furthermore, 

the mean plasma PHB concentration post partum was lower in ewes fed linseed-based diets 

when compared to those offered algae as the fat source when data were analysed according 

to the fat source fed pre- (P<O.OOI) or post partum (P=0.017). 

Mean pre-partum plasma urea concentration was highest in ewes offered diets containing 

algae during pregnancy, the difference being statistically significant compared to ewes 

offered Megalac. Mean plasma urea concentrations recorded post partum were not 

significantly different. A significant carry-over effect of algal supplementation during 

pregnancy was observed upon mean post partum plasma urea concentrations when 

compared to Megalac supplementation pre-parIum. 
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Table 4.10. Effect of supplementing the diets of ewes with various fat sources on plasma 
concentrations oll!:.hl.dro~but.J:.rate and urea 

Diet s.e.d. P 

AA AL AM LL LM MM 

Pre-parium 
concentration (mmoVl): 

0.79bc o.nab<: 0.67ab 
Mean· plasma PHB 0.58a 0.63ab 0.87c 0.085 0.016 
Mean· plasma urea 6.61 6.94 7.36 6.56 6.95 6.12 0.509 0.249 

Post parium 
concentration (mmoVl): 
Mean' plasma PHB 0.80c 0.66

bc 
0.78

c 
0.41" 0.54

ab 
0.70bc 0.110 0.009 

Mean' plasma urea 8.27 8.14 8.22 7.82 7.16 7.00 0.625 0.186 
AA - Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM - Algae diet fed during pregnancy followed by Megalac diet in lactation; LL "" Linseed 
diet fed throughout pregnancy and lactation; LM - Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
Means without common superscripts are significantly different at the P<0.05 level 
• Mean value - average of all measured values pre-partum 
, Mean value = average of all measured values post partum 

Table 4.11. Effect of supplementing the diets of ewes with various fat sources pre- and post 
e.artum on e.lasma concentrations oll!:.hl.dro~but.J:.rate and urea 

Diet s.e.d. p 

Algae Linseed Megalac C, Cz C] 

Effect of pre-parium diet (mmoVl) 
Number per treatment 30 20 10 
Mean· plasma PHB pre-partum 0.72 0.61 0.87 0.066 0.040 0.004 0.005 
Mean· plasma urea pre-partum 6.97 6.75 6.12 0.394 0.047 0.984 0.059 

Mean' plasma PHB post partum 0.75 0.50 0.74 0.098 0.581 <0.001 0.500 
Mean' plasma urea post partum 8.11 7.31 6.72 0.542 0.023 0.278 0.065 

Effect of post parium diet (mmoVl) 
N 10 20 30 

Mean' plasma PHB post partum 0.80 0.55 0.70 0.096 0.154 0.017 0.459 

Mean' elasma urea eost eartum 8.27 7.93 7.20 0.516 0.121 0.416 0.097 
C. = Algae vs Megalac; C2 - Algae vs Linseed; C] - Linseed vs Megalac 
• Mean value = average of all measured values pre-partum 
, Mean value = average of all measured values post parium 

4.4.2.4. Antioxidant status 

The mean activity of GPx in erythrocytes pre-parium was unaffected by dietary strategy or 

dietary fat source (Table 4.12). Furthermore, there was no effect of dietary strategy or 

dietary fat source upon the mean activity of erythrocyte GPx during lactation. 

Supplementing ewes with any of the six dietary strategies had no significant effect upon 

the concentration of CK in serum at any time point when data were analysed as a six 

199 



treatment randomised block design (Table 4.12). Moreover, there was no effect of pre-

partum or post partum dietary fat source upon serum CK concentrations. 

Table 4.12. Effect 0/ supplementing the diets 0/ ewes with various fat sources on indicators 0/ 
selenium status and of cellular damage 

Diet s.e.d. p 

AA AL AM LL LM MM 

Pre-partum: 
Mean· erythrocyte GPx 115 113 102 96 88 105 14.4 0.421 
activity (U/ml PCY) 
Mean· serum CK activity 148 123 122 119 138 157 33.9 0.829 
(U/I) 

Post J1.artum: 
Mean'erythrocyteGPx 349 326 273 259 290 2S0 38.4 0.IS7 
activi~ (U/ml PCY) 
Mean serum CK activity 212 197 163 196 172 202 32.9 0.658 
(Un) 

AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
• Mean value = average of all measured values pre-parium 
, Mean value = average of all measured values pOSI parium 

Table 4.13. Effect o/supplementing the diets o/ewes with various/at sources on the proportions 
0l individualla~ acids in e.'asma same.'es collected at six weeks' e.re-e.artum re.re-treatmentl 

Diet s.e.d. P 

Fatty acid AA AL AM LL LM MM 
(gllOO g fatty acids) 

C16:0 18.6 18.3 18.6 IS.4 18.5 17.8 0.51 0.676 

C16:1n-7 1.48 0.84 0.92 0.86 0.88 1.07 0.272 0.174 

CI8:0 24.2 24.5 23.5 24.5 24.0 23.8 0.69 0.662 
CI8:1/rans 3.52 3.70 4.04 3.56 4.12 4.04 0.324 0.261 
C18:1n-9 cis 21.1 20.3 20.7 21.3 20.8 21.1 0.84 0.890 
C18:2n-6 cis 7.92 8.05 8.56 8.06 8.25 8.01 0.564 0.883 
CLA (cis-9.lrans-lI) 0.07 0.03 0.14 0.01 0.12 0.10 0.056 0.178 

CI8:3n-3 cis 2.69 2.79 2.73 2.42 2.55 2.89 0.168 0.096 

C20:4n-6 2.74 3.19 2.67 2.77 2.77 2.68 0.274 0.471 

C20:Sn-3 2.00 2.37 2.24 2.08 1.92 2.23 0.255 0.503 
C22:6n-3 1.81 2.16 1.79 1.84 1.59 1.96 0.269 0.435 

RFAf 13.9 13.8 14.2 14.4 14.5 14.3 0.60 0.804 

Totalfatty acids (mg/ml) 1.04 1.02 1.12 1.07 1.08 1.14 0.075 0.612 
AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, six weeks pre-parium = day 103 of gestation 
§ RF A = All remaining fatty acids 
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3.4.2.5. Plasma fatty acids (six weeks pre-partum) 

No significant differences in the proportions of individual or total fatty acids within plasma 

were seen among any of the six dietary strategies at six weekspre-partum (Table 4.13). 

4.4.2.6. Plasma fatty acids (one week pre-partum) 

The proportional contributions of each fatty acid to 100 g of plasma fatty acids are 

presented in Table 4.14, and the effects of pre- and post partum dietary fat sources upon 

proportions of notable plasma fatty acids within Table 4.15. The total concentration of 

fatty acids within ewe plasma at one week pre-partum was significantly higher in ewes fed 

strategies LL or MM compared to the other four dietary strategies. When data were 

analysed according to the fat source fed pre- partum, ewes fed algae had the lowest total 

fatty acid concentrations within plasma followed by linseed, then Megalac. 

Table 4.14. Effect of supplementing the diets of ewes with various fat sources on the proportions 
o!individualf!.!!1. acids in e.lasma same.les collected at one week' e.re-e.artum 

Diet s.e.d. P 

Fatty acid AA AL AM LL LM MM 
(giIOO g fatty acids) 

C16:0 22.8b 23.3bc 24.6c 12.8" 13.0" 24.4bc 0.85 <0.001 
CI6:1n-7 0.68b O.72b 0.66b 0.56" 0.65" 0.56" 0.043 0.003 
C18:0 13.5" 13.6a 12.5" 30.6c 27S 22.4b 2.12 <0.001 
C18:1 trans 0.90bc 1.0Sc 0.96c 0.S3a 0.68ab 0.578 0.133 <0.001 
CI8:ln-9 cis lO.8"b lOS 9.95" 13S 12.3bc IS.6d 0.81 <0.001 
CI8:2n-6 cis 13.0a 13.2" 13.4a liS 13.4a 19.5b 1.20 <0.001 
CLA (cis-9,trans-ll) NO NO 0.06 0.11 0.06 NO 0.050 0.190 
CI8:3n-3 cis 0.89a 0.90a 0.83· S.l1b 4.56b 0.928 0.751 <0.001 
C20:4n-6 6.28b 6.36b 5.93b 2.14a 2.12" 2.84" 0.421 <0.001 
C20:Sn-3 2.93d 2.74cd 2.7Scd 2.21 b 2.30bc 1.031 0.237 <0.001 
C22:6n-3 S.49c 4.91b 4.78b 1.3 Sa 1.33" 1.06" 0.276 <0.001 

RFA§ 22.8b 22.7b 23.6b 19.6b 22.2b 11.21 2.36 <0.001 

Totalfatty acids (mg/ml) 0.8761 0.9148 0.844a 1.28b 0.951" 1.31 b 0.1027 <0.001 
AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, one week pre-parIum = day 138 of gestation 
§ RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 
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Table 4.15. Effect of supplementing the diets of ewes with various fat sources pre-partum on 
elasma lat2:, acid e.roe.ortions at one week' e.re-e.artum 

Diet s.e.d. p 

Fatty acid (gllOO g fatty 
acids) Algae Linseed Megalac C, C2 Cl 

Number per treatment 30 20 10 
C18:0 13.2 29.0 22.4 1.64 <0.001 <0.001 0.098 
C18: In-9 cis 10.4 12.9 15.6 0.63 <0.001 0.002 <0.001 
CI8:2n-6 cis 13.2 12.4 19.5 0.93 <0.001 0.003 <0.001 
CI8:3n-3 cis 0.87 4.84 0.92 0.564 0.936 <0.001 0.012 
C20:4n-6 6.19 2.13 2.84 0.319 <0.001 <0.001 <0.001 
C20:5n-3 2.81 2.26 1.03 0.179 <0.001 0.472 <0.001 
C22:6n-3 5.06 1.34 1.03 0.227 <0.001 <0.001 <0.001 

Total fa~ acids ~m~ml) 0.878 1.12 1.31 0.087 
C. = Algae vs Megalac; C2 = Algae vs Linseed; C3 - Linseed vs Megalac 

<0.001 0.048 <0.001 

, one week pre-parium = day 138 of gestation 

The proportion of C 16:0 in plasma at one week pre-parIum was significantly reduced in 

ewes fed LL or LM when compared to the other four strategies. One of the principal 

saturated fatty acids found in ewe plasma, CI8:0, was lowest in ewes fed strategies AA, 

AL or AM and highest in ewes offered strategies LL or LM (P<O.OOI). Analysing the 

data according to the fat source fed during pregnancy revealed reduced proportions of 

C18:0 in ewes fed algae compared to linseed (P<O.OOl) or Megalac (P<O.OOl) and in ewes 

offered linseed compared to Megalac (P=0.098). 

The amount of C16:1n-7 in plasma at one week pre-partum was significantly lower in 

ewes supplemented with strategies LL, LM or MM. The predominant monoenoic fatty 

acid found within plasma, C18:ln-9 cis, was significantly reduced by the provision of 

strategies AA, AL or AM to ewes, intermediate in ewes offered strategies LL or LM and 

highest in ewes consuming strategy MM at one week pre-parIum. When data were 

analysed according to the fat source fed pre-parIum, significant differences in the mean 

proportions of C18:ln-9 cis found in plasma were found among treatments in the order 

algae < linseed < Megalac. The proportional contribution of C18:l trans to plasma fatty 

acids was increased in ewes offered strategies containing algae (AA, AL, AM; P<O.OOl) 

compared to the other three dietary strategies. No significant differences in the proportion 

202 



of CLA within plasma fatty acids were observed among dietary strategies at one week pre

parIum. 

The proportion of CI8:2n-6 cis within plasma was similar in ewes fed diets containing 

algae or linseed pre-parIum. By contrast, it was increased in ewes offered the Megalac 

diet, whether data were analysed as a randomised block design (P<O.OOI) or by orthogonal 

contrast (P<O.OOI; P<O.OOI). Ewes offered diets containing algae had higher proportions 

of C20:4n-6 within plasma lipids than ewes fed the other three strategies (P<O.OO 1), 

linseed (P<O.OOI) or Megalac (P<O.OOI) at one week pre-parIum. Moreover, ewes fed 

linseed during pregnancy had a lower proportional contribution of C20:4n-6 to total plasma 

fatty acids than those offered the Megalac diet (P<O.OOI). 

Ewes fed diets containing linseed during pregnancy had significantly higher amounts of 

C 18:3n-3 within plasma at one week pre-parIum compared to those fed diets based on 

algae or Megalac. Regardless of the method of statistical analysis, the proportions of 

C20:5n-3 were similar in plasma from ewes fed diets containing algae or linseed but were 

significantly reduced in ewes fed Megalac. The amount of C22:6n-3 in plasma was 

increased as a consequence of algal supplementation: proportions of this fatty acid were 

significantly higher in ewes fed strategies AA, AL or AM whether data were analysed as a 

randomised block design or orthogonal contrasts employed. Furthermore, feeding linseed 

to the pregnant ewe significantly increased the proportion of DHA within plasma 

compared to feeding Megalac. 
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4.4.2.7. Gestation length 

Dietary fat source had no significant effect upon ewe gestation length, regardless of the 

method by which data were analysed (Figure 4.2). 
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Figure 4.2. Effect of supplementing the diets of ewes wit" vllrioWij fat 
sources OIl gestation length 

Tllble 4.16. Effect of supplementing the diets of ewes with variolls fat sources on colostrllm 
e.arameters 

Dict s.c.d. 

AA AL AM LL LM MM 

Secretion rate (m1/hour) 98.1 104 107 109 112 121 20.4 
Yield (I/day) 2.36 2.48 2.56 2.61 2.68 2.91 0.490 

Fat concentration (glkg) 104 130 124 97.2 117 136 15.0 
Fat yield (glhour) 8.5 14.1 12.0 11.9 14.7 17.8 3.75 

P 

0.909 
0.909 

0.099 
0.244 

Protein concentration (g/kg) 83 .9 88.5 88.5 77.1 83.5 93.0 11.98 0.831 
Protein yield (glhour) 6.25 9.14 8.79 8.70 10.4 12.1 2.5230.329 

AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Lin ccd 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 

204 



Table 4.17. Effect of supplementing the diets of ewes with various fat sources pre-partum on 
colostrum e.arameters 

Diet s.e.d. 
p 

Algae Linseed Megalac C, Cz Cl 

Number per treatment 30 20 10 
Secretion rate (ml/hour) 102 110 120 15.9 0.267 0.814 0.327 
Yield (l/day) 2.45 2.65 2.88 0.381 0.267 0.814 0.327 

Fat concentration (glkg) 119 106 136 12.3 0.174 0.087 0.069 
Fat yield (glhour) 11.6 13.4 17.0 3.09 0.048 0.938 0.063 

Protein concentration (glkg) 89.1 79.1 93.0 9.35 0.540 0.272 0.354 
Protein ;iield ~~our~ 8.4 9.6 12.1 2.06 0.056 0.769 0.083 

C1 = Algae vs Megalac; C2 = Algae vs Linseed; C) = Linseed vs Megalac 

4.4.2.8. Colostrum production 

Dietary strategy had no significant effect upon colostrum yield or secretion rate when data 

were analysed either as a randomised block design (Table 4.16) or according to the fat 

source fed during pregnancy (Table 4.17). Ewes offered strategy LL tended to have the 

lowest fat concentrations in colostrum (P=O.099). However, there was no significant effect 

of maternal dietary strategy upon the yield of colostrum fat. Orthogonal contrasts among 

the three fat sources revealed no significant differences between treatments in colostrum 

fat concentrations although fat yields were significantly lower for ewes fed algae compared 

to those fed Megalac (P=O.048). Ewes supplemented with linseed pre-partum also tended 

to have lower colostrum fat yields than ewes fed Megalac (P=O.063). There was no 

significant effect of dietary strategy or pre-partum maternal dietary fat source upon the 

concentration or yield of colostrum protein. Nonetheless, ewes offered Megalac pre-

partum tended to have higher yields of colostrum protein compared to ewes fed either 

algae (P=O.056) or linseed (P=O.083). 

4.4.2.9. Plasma fatty acids (three weeks post partum) 

The total fatty acid concentration within ewe plasma at three weeks post parIum was not 

significantly altered by dietary strategy or fat source fed either pre- or post partum (Tables 

4.l8 and 4.19). The addition of linseed to lactation diets (AL, LL) significantly reduced 
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the proportion of C16:0 within ewe plasma compared to the other four dietary strategies. 

By contrast, ewes supplemented with linseed during lactation had the highest proportions 

of C18:0 within plasma (P<O.OOI). Furthermore, ewes fed strategy AA had lower 

proportions of C 18:0 within plasma than any of the other five dietary strategies (P<O.OO 1). 

This pattern (algae < Megalac < linseed) was also observed when data were analysed 

according to the fat source fed during lactation. 

Table 4.18. Effect of supplementing the diets of ewes with various {at sources on the proportions 
0l individuallar!J:. acids in elasma sameles collected at three weeks eost eartum 

Diet s.e.d. P 

Fatty acid AA AL AM LL LM MM 
(gtlOO g Cattl: acids) 

C16:0 16.1b 12.0" 19.3" 12.6- 16.4b 16.2b 0.91 <0.001 
C16:1n-7 0.08a 0.38c 0.32be 0.36c 0.23b 0.30be 0.062 <0.001 
C18:0 12.4a 22.6d 19.8c 22.8d 17.3b 17.2b 1.142 <0.001 
CIS: I trans 5.26b 3.67a 2.93a 2.74a 2.51a 2.50· 0.61S 0.001 
CIS:ln-9 cis 9.10" 12.1 b 13.9c 13,4be 13.Sbe 12.9be 0.S06 <0.001 
ClS:2n-6 cis 11.68 11.1 8 16.6b 11.9" 15.5b 15.5b 0.97 <0.001 
CLA (cis-9.trans-ll) 0.01 0.04 0.15 NO NO 0.02 0.050 0.059 
CIS:3n-3 cis 0.S2- 4.04b 1.12- 3,49b 1.19· 1.19· 0.347 <0.001 
C20:4n-6 5,44c 2.83b 2.79b 2.15- 2.s0-b 2.11" 0.292 <0.001 
C20:5n-3 2.84d 2,49cd 1.59ab 2.82d 1.83be 1.04· 0.371 <0.001 
C22:6n-3 3.37c 2.49b 2.00b 0.74- 0.46a 1.06· 0.354 <0.001 

RFAf 33.1 c 26.3ab 19.6- 27.1 be 2S.3be 30.0be 3.27 0.011 

Totalfatty acids (mgig) 1.152 1.176 1.375 1.222 1.200 1.326 0.122 0.413 
AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
'I three weekz post parIum = day 21 of lactation 
§ RF A = All remaining fatty acids; NO = not detected 
Means without common superscripts are significantly different at the P<0.05 level 

The fat source supplied to ewes pre-partum had no significant effect upon the proportion 

of plasma C18:0 at three weeks post partum, although there was a tendency (P=0.055) for 

ewes fed Megalac during pregnancy to have a lower proportion of C18:0 within plasma 

lipids than ewes fed linseed during pregnancy. 

The proportion of C 16: 1 n-7 within plasma lipids was significantly reduced in ewes fed 

strategy AA. By contrast, the proportion of C 18: 1 trans was significantly increased by the 
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supplementation of ewes with strategy AA when compared to the other five dietary 

strategies. The lowest proportional contribution of C 18: I n-9 cis within ewe plasma was 

also conferred by feeding strategy AA (P<O.OOI). Supplementing ewes with algae during 

pregnancy had significant carry-over effects into lactation in that the proportion of C 18: I n-

9 cis within the plasma lipid fraction was reduced in these ewes when compared to those 

fed either linseed (P=O.005) or Megalac (P=O.078) pre-parIum. A similar pattern was 

observed when data were analysed according to the fat source fed during lactation, with 

lowest values observed in ewes fed algae, intermediate for linseed and highest in those fed 

Megalac. Ewes fed either algae (P<O.OOI) or linseed (P=O.020) during lactation had lower 

proportions ofCI8:1n-9 cis in plasma compared to ewes offered Megalac. 

Table 4.19. Effect of supplementing the diets of ewes with various fat sources pre- and post 
e.artum on l!.'asma la!!1. acid l!.rol!.ortions at three weeks 'l!.0st e.artum 

Diet s.e.d. p 

Fatty acid (glIOO g fatty Algae Linseed Megalac C. C1 C3 

acids) 

Effect o/pre-parlum diet 
Number per treatment 30 20 10 
C18:0 18.3 19.8 17.5 2.32 0.268 0.456 0.055 
C18:1n-9 cis 11.8 13.5 13.3 1.13 0.078 0.005 0.454 
C18:2n-6 cis 12.9 13.7 15.1 1.51 0.006 0.971 0.009 
CI8:3n-3 cis 2.02 2.23 0.93 0.802 0.010 0.176 0.002 
C20:4n-6 3.63 2.36 2.18 0.591 <0.001 <0.001 0.351 
C20:5n-3 2.29 2.26 1.21 0.448 <0.001 0.150 <0.001 
C22:6n-3 2.59 0.60 0.85 0.414 <0.001 <0.001 0.110 

Total fatty acids (mg/g) 1.22 1.21 1.27 0.124 0.371 0.542 0.299 

Effect 0/ post parlum diet 
10 20 30 Number per treatment 

C18:0 12.1 22.8 17.9 1.06 <0.001 <0.001 0.092 
C18:1n-9 cis 9.15 12.8 13.7 0.730 <0.001 0.543 0.020 
C18:2n-6 cis 11.3 11.4 15.7 0.86 <0.001 0.785 <0.001 
C18:3n-3 cis 0.80 3.76 1.04 0.307 0.228 <0.001 <0.001 
C20:4n-6 5.40 2.54 2.53 0.283 <0.001 <0.001 0.943 
C20:5n-3 2.88 2.69 1.50 0.337 <0.001 0.656 <0.001 
C22:6n-3 3.37 1.65 1.10 0.472 <0.001 0.002 0.243 

Total fa!!l acids ~m~il 1.12 1.19 1.28 0.108 0.152 0.402 0.112 
C1 = Algae vs Megalac; C2 - Algae vs Linseed; C3 - Linseed vs Megalac 
, three weekz post partum = day 21 of lactation 
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Negligible quantities of CLA (cis-9,trans-ll) were present within ewe plasma at three 

weeks into lactation and was undetectable in samples from ewes fed strategies LL or LM. 

However, of the remaining results, ewes fed strategy AM had the highest proportion of 

CLA in plasma lipids, a difference that tended towards significance (P=O.059). 

Feeding Megalac during lactation increased the proportion of C 18:2n-6 within ewe plasma, 

the highest values being recorded in ewes fed strategies AM, LM or MM compared to 

either the other three dietary strategies. A similar pattern was seen when data were 

analysed according to the fat source fed pre- or post partum with Megalac supplementation 

significantly increasing the proportion of C18:2n-6 within plasma compared to feeding 

either algae or linseed. Ewes fed strategy AA had the highest proportion of C20:4n-6 

within plasma at three weeks post partum when compared to the other five dietary 

strategies (P<O.OOl). Furthermore, ewes supplemented with algae during pregnancy or 

lactation had significantly higher proportions of C20:4n-6 within plasma at three weeks 

post partum than those fed either linseed or Megalac. 

Adding linseed to the lactation diet resulted in a significant increase in the contribution of 

C18:3n-3 to total plasma fatty acids at three weeks post partum when data were analysed 

either as a randomised block design or by orthogonal contrasts. Carry-over effects of algae 

(P=O.OIO) and linseed (P=O.002) supplementation during pregnancy also increased the 

plasma C18:3n-3 at three weeks post partum when compared to supplementation with 

Megalac. The highest proportions ofC20:5n-3 within plasma lipids were observed in ewes 

fed strategies AA, AL or LL at three weeks post partum (P<O.OOl). Feeding either algae 

or linseed pre-partum had a significant carry-over effect upon the proportional contribution 

of C20:5n-3 to plasma fatty acids at three weeks post partum when compared to feeding 

Megalac. Furthermore, the same pattern was observed when data were analysed according 

to the fat source supplied post partum, with highest values seen in ewes fed algae 
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(P<O.OOl) or linseed (P<O.OOl) compared to Megalac. The amount of C22:6n-3 within 

ewe plasma at three weeks into lactation was highest in ewes offered strategy AA, 

followed by strategies AL or AM, and the lowest values found in ewes fed strategies LL, 

LM or MM (P<O.OO 1). Supplementing either the pregnant or lactating ewe with algae 

conferred significantly elevated proportions of C22:6n-3 within plasma lipids at three 

weeks post partum. 

4.4.2.10. Milk production 

Milk secretion rate and yield were increased by the provision of preformed long-chain 

PUF As in the form of algae to the pregnant ewe, with those ewes offered strategies AL or 

AM having significantly higher yields than those fed strategies, LL, LM or MM (P=O.O 18; 

Table 4.20). Increases in milk secretion rate and yield were also observed when ewes 

offered diets containing algae during pregnancy were compared to those fed linseed 

(P=0.015) or Megalac (P=O.OlO; Table 4.21). By contrast, the fat source offered to ewes 

during lactation had no significant effect upon milk secretion rate or yield. 

Table 4.20. Effect of supplementing the diets of ewes with various fat sources on milk 
e.arameters at!!ur weeks' e,ost e,artum 

Diet s.e.d. P 

AA AL AM LL LM MM 

Secretion rate (mVbour) 1098b 120b 126b 92.6- 92.6- 91.3" 12.26 O.ot8 
Yield (Vday) 2.62ab 2.89b 3.03b 2.22' 2.22' 2.19" 0.294 O.otS 

Fat concentration (g/kg) 65.28 99.2cd 92.Sbc 7S.98b 103cd 113d 9.24 <0.001 
Fat yield (glhour) 7.1Sa 11.9b 11.6b 7.35- 9.64"b 10.4lb 1.617 0.021 

Protein concentration (glkg) 35.4 38.6 38.5 37.5 38.8 41.0 2.00 0.173 
Protein yield (glhour) 3.95 4.61 4.S0 3.47 3.61 3.76 0.526 0.083 

Lactose concentration (g/kg) 47.1 48.4 47.7 48.6 47.4 45.5 1.19 0.162 
Lactose yield (g1hour) 5.261b 5.84b 6.06b 4.491 4.50" 4.16" 0.631 0.021 

AA == Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM == Algae diet fed during pregnancy followed by Megalac diet in lactation; LL == Linseed 
diet fed throughout pregnancy and lactation; LM == Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM == Megalac diet fed throughout pregnancy and lactation 
Means without common superscripts are significantly different at the P<0.05 level 
, four weekz post partum == day 28 of lactation 
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The milk fat concentration was lower in ewes fed strategy AA when compared to the other 

five strategies (P<O.OOl). Analysing data according to the fat source offered to the ewe 

elucidated significant reductions in milk fat concentration for ewes fed diets containing 

algae or linseed compared to Megalac during either pregnancy or lactation. Furthermore, 

fat yields were lowest for ewes offered strategies AA or LL but highest in those fed 

strategies AL or AM (P=O.021) when data were analysed as a six-treatment randomised 

block design. No significant effect of fat source fed during pregnancy was observed upon 

milk fat yields, however, ewes offered diets containing algae post partum had lower fat 

yields than those fed diets containing Megalac post partum (P=O.O 17). 

Table 4.21. Effect of supplementing the diets of ewes with various fat sources pre- and post 
e.artum on milk e.arameters at [pur weeks' e.ost e.artum 

Diet I.e.d. P 
Algae Linseed Megalac C, C1 C] 

Effect 0/ pre-parlum diet 
Number per treatment 30 20 10 
Secretion rate (mllhour) 118 94.3 95.1 11.32 0.010 Om5 0.834 
Yield (llday) 2.84 2.26 2.28 0.272 0.010 0.015 0.834 

Fat concentration (glkg) 88.4 89.5 113 10.38 <0.001 0.794 0.001 
Fat yield (g/hour) 10.5 8.5 10.2 1.67 0.907 0.087 0.507 

Protein concentration (glkg) 37.9 38.0 40.1 1.90 0.041 0.849 0.045 
Protein yield (g/hour) 4.48 3.60 3.81 0.495 0.116 0.028 0.427 

Lactose concentration (g/kg) 47.7 48.3 46.1 1.12 0.033 0.255 0.019 
Lactose yield (glhour) 5.71 4.59 4.40 0.586 0.005 0.038 0.365 

Effect o/post parlum diet 
20 30 Number per treatment 10 

Secretion rate (mllhour) 110 106 107 12.0 0.559 0.834 0.575 
Yield (llday) 2.65 2.53 2.57 0.289 0.559 0.834 0.575 

Fat concentration (glkg) 65.2 88.5 99.8 8.96 <0.001 0.005 <0.001 
Fat yield (glhour) 7.8 9.5 10.6 1.57 0.017 0.934 0.074 

Protein concentration (g/kg) 35.9 38.2 39.0 1.78 0.019 0.766 0.060 
Protein yield (g/hour) 4.03 4.02 4.16 0.518 0.811 0.984 0.877 

Lactose concentration (g/kg) 47.2 48.4 47.4 1.08 0.824 0.039 0.102 
Lactose ~ield ~~our~ 5.31 5.11 5.15 0.644 0.499 0.666 0.434 

C, = Algae vs Megalac; Cz = Algae vs Linseed; C3 - Linseed vs Megalac 
, four weekz posl parium = day 28 of lactation 
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No significant effect of dietary strategy was observed upon protein concentrations in milk. 

Milk protein concentrations were lower in ewes offered diets containing algae or linseed 

pre-parIum compared to those fed Megalac (P=O.04l; P=O.045 respectively). Feeding 

diets containing algae post partum also reduced the protein concentration of milk 

(P=O.019). Milk protein yields tended to be higher in ewes fed strategies AL or AM. 

Ewes fed algae pre-parIum had significantly higher protein yields than those fed linseed 

but there was no effect of fat source offered post parIum upon this parameter. Analysing 

data as a six-treatment randomised block design revealed no significant effects of dietary 

strategy upon milk lactose concentrations. By contrast, lactose concentrations were higher 

in ewes offered diets containing algae (P=O.033) or linseed (P=O.O 19) pre-partum 

compared to Megalac. However, ewes fed linseed post partum had significantly higher 

lactose concentrations than those fed algae during lactation. Ewes fed dietary strategies 

AA, AL or AM had the highest mean lactose yields, this difference was significant as a 

difference among both dietary strategies and pre-partum fat sources. Nonetheless, there 

was no significant effect upon milk lactose yields of supplementing ewes with any of the 

three fat sources during lactation. 

Table 4.22. Effect of supplementing the diets of ewes with various fat sources on maternal 
behaviour scores and latencies 0/ maternal and neonatal lamb behaviours 

Diet s.e.d. P 
AA AL AM LL LM MM 

Maternal measurements: 
134b 128ab 

Maternal behaviour score 121 a 1258 122' 121 8 3.9 0.008 
Latency of standing (sec) 119 16.2 99.6 153 33.0 82.8 61.38 0.217 
Latency of vocalization (sec) 161 167 140 94.8 68.4 154 64.02 0.385 
Latency of contact with the lamb (sec) 125 38 143 93.0 69.0 138 58.80 0.562 

Neonatal measurements: 
Latency of standing (min) 19.0 15.5 14.6 17.8 16.5 12.0 2.63 0.123 
Latency of searching for the udder 29.9 21.6 18.0 23.6 23.5 24.7 4.48 0.195 
(min) 
Latency of successful suckling (min) 53.3 44.4 65.9 53.2 52.7 80.6 14.02 0.145 

AA = Algae diet fed throughout pregnancy and lactation; AL Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation' MM = Megalac diet fed throughout pregnancy and lactation 
Means without ~ommon superscripts are significantly different at the P<0.05 level 
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4.4.3. Lamb performance parameters 

4.4.3.1. Neonatal lamb behaviour 

Ewes offered dietary strategy AM had significantly higher maternal behaviour scores 

immediately post partum than those ewes offered any of the other five dietary strategies; 

nevertheless, all other parameters relating to maternal behaviour were similar among 

dietary strategies (Table 4.22). Furthermore, no significant effects of maternal 

supplemental fat source were observed upon maternal behaviours (Table 4.23). 

Table 4.23. Effect of supplementing the diets of ewes with various fat sources pre-partum on 
maternal and neonatal behaviours at and immediatell. al!er e.arturition 

Diet s.e.d. p 

Algae Linseed Megalae C, C2 C] 

Number per treatment 30 20 10 

Maternal measurements: 
Maternal behaviour score 127 124 122 4.0 0.098 0.916 0.124 
Latency of standing (sec) 1.26 1.46 1.26 0.829 0.934 0.717 0.971 
Latency of vocalisation (sec) 2.45 1.52 2.58 0.874 0.382 0.386 0.270 
Latency of contact with the 1.66 1.35 2.40 0.768 0.953 0.062 0.590 
lamb (sec) 

Neonatal measurements: 
Latency of standing (min) 16.3 17.1 12.0 2.09 0.044 0.247 0.023 
Latency of searching for the 23.1 23.6 25.0 3.61 0.682 0.988 0.701 
udder (min) 
Latency of successful suckling 54.9 53.0 80.9 11.36 0.025 0.350 0.016 

~min~ 
C, = Algae vs Megalac; C2 - Algae vs Linseed; C3 - Linseed vs Megalac 

Neonatal lamb behaviours were not significantly affected by maternal dietary strategy. By 

contrast, analysing data according to the fat source offered to the pregnant ewe revealed 

significantly lower latencies of lamb standing for Megalac compared to either algae or 

linseed. There was no significant effect of fat source offered to the dam upon the latency 

of lamb searching behaviour. By contrast, lambs produced by ewes offered diets 

containing algae (P=O.025) or linseed (P=O.016) during pregnancy had a lower latency of 

successful suckling compared to lambs from ewes fed Megalac. 
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4.4.3.2. Neonatal lamb plasma fatty acids 

The total fatty acid concentration in neonatal lamb plasma was approximately two-fold 

higher in lambs from ewes fed strategy LL than any of the other five dietary strategies 

(P<O.05; Table 4.24). Analysing data according to the fat source fed to the ewe during 

pregnancy revealed a significantly higher concentration in lambs produced by ewes fed 

linseed compared to algae (Table 4.25). The contributions made by the individual 

saturated fatty acids C16:0 and C18:0 to total plasma fatty acids were unchanged by both 

dietary strategy and the maternal dietary fat source. 

Table 4.24. Effect of supplementing the diets of ewes with various fat sources on the proportions 
0l individualla!!1. acids in neonatal lamb e.lasma 

Diet s.e.d. P 

Fatty acid AA AL AM LL LM MM 
(gllOO g fatty acids) 

C16:0 27.3 31.0 31.1 26.2 28.4 32.6 1.95 0.051 
C16:1n-7 5.99 7.29 8.12 4.82 9.09 7.02 1.920 0.359 
C18:0 15.6 13.0 12.5 12.5 11.2 12.5 1.70 0.286 
C18:1 trans 3.14 3.16 5.09 3.30 5.27 4.15 1.201 0.332 
CI8:1n-9 cis 33.1 22.9 16.8 33.0 20.0 19.9 15.69 0.163 
CI8:2n-6 cis 0.45 0.62 0.71 2.47 3.35 1.72 1.229 0.194 
CLA (cis-9.trans-ll) NO NO NO NO NO NO 
CI8:3n-3 cis NO NO NO 0.54 1.03 NO 
C20:4n-6 3.57 5.14 4.09 1.65 4.76 3.47 1.760 0.497 
C20:5n-3 2.70 6.03 2.58 1.30 2.43 2.60 1.265 0.055 
C22:6n-3 1.83 2.36 1.81 1.42 1.58 0.62 1.239 0.816 

RFA' 6.40 8.60 16.8 12.8 12.9 15.4 4.430 0.238 

Total fatty acids (mg/ml) 0.3068 0.215· 0.2681 0.578b 0.3341 0.2071 0.0877 0.016 
AA = Algae diet fed throughout pregnancy and lactation; AL= Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, RF A = All remaining fatty acids; NO = not detected 
Means without common superscripts are significantly different at the P<0.05 level 

There was no significant effect of maternal diet upon the proportions of C 16: 1 n-7 or C 18: 1 

trans within neonatal plasma samples, or upon the proportions of C 18: 1 n-9 cis in neonatal 

plasma. Furthermore, the polyenoic fatty acids known collectively as CLA were 

undetectable within neonatal plasma samples. 
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Table 4.25. Effect of supplementing the diets of ewes with various fat sources pre-partum on 
neonatal lamb e.lasma lat.!!. add e.roe.ortions 

Diet s.e.d. 
p 

Fatty acid (gllOO g fatty acids) Algae Linseed Megalac C, C1 C] 

Number per treatment 30 20 10 
C18:0 13.7 11.9 12.5 1.39 0.411 0.179 0.729 
CI8:1n-9 cis 24.3 26.5 19.9 6.58 0.465 0.458 0.358 
CI8:2n-6 cis 0.59 2.91 1.72 0.860 0.288 0.022 0.840 
CI8:3n-3 cis NO 0.78 NO 
C20:4n-6 4.42 3.20 3.47 1.466 0.543 0.409 0.752 
C20:5n-3 3.77 1.87 2.60 1.230 0.284 0.064 0.686 
C22:6n-3 2.00 1.50 0.62 0.855 0.203 0.847 0.247 

Total fat~ acids (miiml) 0.263 0.456 0.207 0.0818 0.450 0.003 0.078 

C, = Algae vs Megalac; C2 = Algae vs Linseed; C3 = Linseed vs Megalac 
NO = not detected 

The proportion of C18:2n-6 in plasma was approximately five-fold higher in lambs 

produced by ewes fed strategies LL or LM; although this difference did not reach statistical 

significance. However, orthogonal contrasts between linseed and algae revealed an 

increase in the proportion (P=0.022) of C18:2n-6 within plasma fatty acids in lambs 

produced by ewes fed diets containing linseed. Varying proportions of C20:4n-6 were 

observed amongst treatments although no significant influence of dietary strategy or 

maternal dietary fat source was observed. 

Alpha-linolenic acid was only detectable in samples from ewes fed pre-partum diets 

containing linseed (LL, LM). There was no significant effect of dietary strategy upon the 

proportions of C20:5n-3 or C22:6n-3 within neonatal plasma although numerical 

differences were present, with the highest concentrations of C22:6n-3 being seen in lambs 

born to ewes fed algae or linseed. 

4.4.3.3. Neonatal lamb brain fatty acids 

The total amount of fatty acids within neonatal lamb brain varied from 20.6 mg/g to 25.5 

mg/g, however, this parameter was unaffected by either maternal dietary strategy (Table 

4.26) or fat source fed pre-partum (Table 4.27). The proportion of C16:0 within lamb 
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brain tissue was not significantly altered by maternal diet fed during pregnancy. 

Furthermore, there was no significant effect of either maternal dietary strategy or fat source 

fed pre-parIum upon the proportional contribution of C18:0 to total neonatal lamb brain 

fatty acids. 

Table 4.26. Effect of supplementing the diets of ewes with various fat sources on the proportions 
0l individuallat.!1. acids in neonatal lamb brain 

Diet I.e.d. P 

Fatty acid (gllOO g fatty acids) AA AL AM LL LM MM 

C16:0 20.0 21.3 19.7 19.5 22.1 21.8 1.14 0.149 
CI6:ln-7 0.92" 0.99"b 0.94" 1.02ab 1.14c 1.08be 0.061 0.035 
C18:0 15.7 16.8 15.7 15.8 17.4 16.7 1.01 0.469 
CIS:I trans l.l5 1.57 2.03 2.41 2.23 0.97 0.704 0.304 
CI8:ln-9 cis 13.5 15.4 14.5 14.2 10.7 15.6 2.63 0.496 
CI8:2n-6 cis 0.25 0.20 0.19 0.23 0.23 0.17 0.041 0.423 
CLA (cis-9,trans-ll) 0.79 1.01 1.12 0.96 1.07 0.95 0.170 0.504 
CI8:3n-3 cis 0.32 0.46 0.39 0.40 0.33 0.36 0.103 0.732 
C20:4n-6 4.20·be 4.55' 3.66ab 3.59a 4.38be 4.87c 0.338 0.022 
C20:5n-3 0.75 0.46 0.36 0.66 0.68 0.34 0.259 0.503 
C22:6n-3 12.1 11.8 12.0 12.5 12.5 12.7 1.03 0.938 

RFA' 30.4 25.5 29.5 28.7 27.2 24.4 3.22 0.444 

Total fa~ acids ~m~~) 23.3 25.5 22.0 22.2 20.6 22.9 1.77 0.221 
AA = Algae diet fed throughout pregnancy and lactation; AL= Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<O.OS level 

Table 4.27. Effect of supplementing the diets of ewes with various fat sources pre-partum on the 
I!.r0l!.0rtions 0l individual /llt.!1. acids in neonatal lamb brain 

Diet I.e.d. p 

Fatty acid (gllOO g fatty acids) Algae Linseed Megalac C, Cz C] 

Number per treatment 
C18:0 16.1 16.6 16.7 0.81 0.463 0.541 0.612 
C18: In-9 cis . 14.5 12.4 15.6 1.99 0.607 0.181 0.360 
CI8:2n-6 cis 0.21 0.23 0.17 0.032 0.276 0.306 0.182 
CI8:3n-3 cis 0.39 0.37 0.36 0.078 0.710 0.774 0.793 
C20:4n-6 4.14 3.99 4.87 0.345 0.025 0.137 0.013 
C20:5n-3 0.52 0.67 0.34 0.197 0.416 0.253 0.262 
C22:6n-3 12.0 12.5 12.7 0.71 0.412 0.572 0.545 

Total fa~ acids ~m~i) 23.6 22.1 22.9 
C. = Algae vs Megalac; C2 = Algae vs Linseed; C3 - Linseed vs Megalac 

1.51 0.646 0.093 0.890 
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The lowest proportional amount of C16:1n-7 within total neonatal lamb brain fatty acids 

was observed in lambs borne by ewes fed strategies AA or AM, and the highest proportion 

in lambs produced by ewes fed strategy LM (P=0.03S). By contrast, maternal dietary 

strategy had no significant effect upon the proportion ofC18:1 trans or CI8:1n-9 nor was 

there a significant effect of maternal dietary fat source. Mean values for the proportion of 

CLA (cis-9.trans-ll) within neonatal lamb brain varied from 0.79 gllOO g fatty acids to 

1.12 gllOO g fatty acids but was not significantly different among dietary strategies. 

The proportional contribution of C18:2n-6 to total neonatal lamb brain fatty acids was 

unaffected by either maternal dietary strategy or fat source supplied to the ewe during 

pregnancy. Lambs borne by ewes fed strategies AL or MM during pregnancy had a higher 

proportion of C20:4n-6 within brain tissue than those produced by ewes fed strategies AM 

or LL (P=0.022). There was also a significant effect of maternal dietary fat source, lambs 

born to ewes supplemented with Megalac during pregnancy having significantly higher 

proportions of C20:4n-6 within brain tissue than those fed algae or linseed. 

The proportion of C18:3n-3 in neonatal lamb brain was similar among treatments. 

Furthermore, although mean values for C20:Sn-3 and C22:6n-3 within lamb brain varied 

among treatments, there was no significant effect of dietary strategy or fat source upon 

either of these parameters. 

4.4.3.2. Lamb liveweight 

Ewes that were fed strategies AA or AM during pregnancy produced lambs that were 

numerically heavier at birth; however, this difference was not statistically significant 

(Table 4.28). No significant effects of maternal diet were observed upon lamb liveweights 

at any time point; although lamb growth rate was lower for ewes fed strategy AA, this 

216 



difference did not reach statistical significance. No significant effect of maternal dietary 

strategy was observed upon litter growth rates. 

Table 4.28. Effect of supplementing the diets of ewes with various fat sources on lamb 
birlhweights (kg) and on lamb and litter growth rates (kg/day) 

Diet I.e.d. P 

AA AL AM LL LM MM 

Lamb Iiveweight: 
At birth 4.24 4.01 4.24 3.98 4.17 3.92 0.213 0.507 
At 1 week of age 6.42 6.33 6.52 5.91 6.25 6.21 0.315 0.498 
At2weeksofage 8.19 8.398.55 7.95 8.13 8.13 0.438 0.789 
At 3 weeks of age 10.1 10.5 10.7 10.5 10.0 9.96 0.486 0.585 
At4weeksofage 11.7 12.4 12.5 12.4 11.9 11.8 0.58 0.515 
Lamb growth rate 0.26 0.29 0.29 0.28 0.28 0.29 0.017 0.504 
Litter growth rate 0.57 0.58 0.57 0.58 0.54 0.54 0.024 0.310 

AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 

Table 4.29. Effect of supplementing the diets of ewes with various fat sources on indicators of 
selenium status and of cellular damage in lambs 

Diet I.e.d. P 

AA AL AM LL LM MM 

Erythrocyte GPx (Ulml PCV): 

12 hours of age 105 102 115 129 95 112 13.0 0.189 
1 week of age 132 154 184 201 211 143 48.3 0.548 
3 weeks of age 294 315 295 286 292 287 21.5 0.790 

Serum CK (Ull): 
12 hours of age 714 696 689 618 708 910 136.7 0.414 
1 week of age 219 163 211 170 210 163 46.9 0.667 

3 weeks of a~e 151 176 152 177 145 185 28.1 0.617 
AA = Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 

4.4.3.3. Suckling lamb antioxidant status 

The selenium status of suckling lambs, as indicated by GPx activity in erythrocytes 

increased between 12 hours and one week of age, and again at three weeks of age across all 

treatments (Table 4.29). However, there was no significant effect of maternal dietary 

strategy upon the activity of GPx in erythrocytes at any time point. Concentrations of CK 
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within plasma declined with increasing age but this parameter was unaffected by dietary 

strategy or fat source at all time points. 

4.4.3.4. Suckling lamb plasma fatty acids (12 hours of age) 

The total amount of fatty acids within lamb plasma at twelve hours of age was equivalent 

among treatments, with no significant effect of maternal dietary strategy (Table 4.30) or 

maternal dietary fat source fed pre-parIum (Table 4.31). The proportional contribution of 

C16:0 to lamb plasma fatty acids at twelve hours of age was significantly lower in lambs 

borne by ewes supplemented with dietary strategies LL or LM compared to the other four 

dietary strategies. By contrast, lambs suckling ewes fed strategies AA, AL or AM had the 

lowest, and those fed strategies LL or LM the highest proportion of C18:0 within plasma 

(P<O.OOI). A similar pattern was observed when data were analysed according to the 

maternal dietary fat source fed pre-parIum, with significant differences among all three 

contrasts analysed. 

Table 4.30. Effect of supplementing the diets of ewes with various fat sources on the proportions 
0[' individual[.at.!J. acids in lamb e.lasma same.les collected at 12 hours 0l a8,.e 

Diet s.e.d. P 

Fatty acid (gllOO g fatty AA AL AM LL LM MM 
acids} 

C16:0 22.3b 21.Sb 21.9b 14.61 IS.O- 23.7b 1.12 <0.001 
CI6:ln-7 0.87 0.76 0.74 0.81 0.8S 0.90 0.083 0.854 
C18:0 12.3ab 12.0a 12.7'b 24.4c 26.7c 14.3b 1.14 <0.001 
C18:1 trans 4.97b 5.03b 4.76b 3.01" 2.8S· 2.64" 0.622 0.007 
CI8:1n-9 cis 19S 21Sb 20.7· 2S.6bc 27.7c 29S 2.10 0.009 
CI8:2n-6 cis 11.2' 10.9a lOS 12.3ab 11.7· IS.4b 1.44 0.012 
CLA (cis-9.trans-ll) 0.46 0.33 0.S7 0.S8 0.41 0.39 0.143 0.674 
C18:3n-3 cis 0.988 1.06- 1.23- 3.27b 3.54b 1.11- 0.798 <0.001 
C20:4n-6 6.02b S.43b S.89b 2.78" 2.56- 2.99" 1.034 <0.001 
C20:Sn-3 2.3Sb 2.32b 2.41b 2.23b 2.11 b 0.86" 0.564 0.009 
C22:6n-3 3.40b 3.57b 3.l7b 1.02· 1.13· 0.63- 0.789 <0.001 

RFA' IS.6b IS.Sb IS.4b 9.44"b 5.471 7.60· 3.67 0.007 

Total fatty acids (mg/ml) 1.65 1.57 1.72 1.76 1.69 1.84 0.158 0.761 
AA == Algae diet fed throughout pregnancy and lactation; AL- Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 
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Table 4.31. Effect o/supplementing the diets o/ewes with various/at sources pre-partum on 
la!!l acid e.r0e.0rtions in lamb e.'asma same.'es collected at 12 hours 0l a&e 

Diet s.e.d. 
p 

Fatty acid (gllOO g fatty 
acids) Algae Linseed Megalac C, Cz C1 

Number per treatment 30 20 10 
C18:0 12.3 25.6 14.3 0.98 0.032 <0.001 <0.001 
C18:1n-9 cis 20.6 26.6 29.5 1.21 <0.001 <0.001 0.006 
C18:2n-6 cis 10.9 12.0 15.4 1.50 <0.001 0.643 0.008 
CI8:3n-3 cis 1.09 3.41 1.11 1.022 0.976 0.003 0.003 
C20:4n-6 5.78 2.67 2.99 1.139 <0.001 <0.001 0.810 
C20:5n-3 2.36 2.17 0.86 0.548 0.003 0.772 0.004 
C22:6n-3 3.38 1.08 0.63 0.876 <0.001 <0.001 0.089 

Total fa~ acids ~m~ml) 1.65 1.73 1.84 0.145 0.611 0.887 0.850 

C. = Algae vs Megalac; C2 = Algae vs Linseed; C3 = Linseed vs Megalac 

Maternal diet had no significant effect upon the proportion of CI6:ln-7 within lamb 

plasma at twelve hours of age. By contrast, the amount of C 18: I trans within plasma was 

significantly higher in lambs suckling ewes fed strategies AA, Al or AM compared to the 

other three strategies. The mean proportion of C 18: 1 n-9 cis within lamb plasma at twelve 

hours of age varied from 19.5 gllOO g fauy acids to 29.5 gllOO g fauy acids, the lowest 

values being observed in lambs borne by ewes fed strategies AA or AM, and the highest in 

lambs produced by ewes fed strategies LM or MM (P=O.006). When data were analysed 

according to the maternal dietary fat source fed during pregnancy, lowest proportions of 

CI8:2n-6 were seen in lambs suckling ewes fed algae, intermediate for linseed and highest 

in lambs suckling ewes fed Megalac. There was no significant effect of maternal diet 

upon the proportion ofClA (cis-9,trans-ll) within lamb plasma at twelve hours of age. 

lambs produced by ewes fed strategy MM had the highest proportion of C 18:2n-6 within 

plasma lipids at twelve hours of age, a mean value that was significantly different from all 

other treatment means save for strategy LL. Analysing the data according to the maternal 

dietary fat source fed during pregnancy revealed that lambs suckling ewes fed Megalac had 

significantly higher proportions of C18:2n-6 within plasma than those suckling ewes fed 

either algae or linseed. Supplementing ewes with strategies AA, Al or AM conferred a 

219 



significant increase in the proportion of C20:4n-6 within lamb plasma at twelve hours of 

age compared to supplementation with strategies LL, LM or MM. Moreover, the same 

pattern was seen when data were analysed by orthogonal contrast, with significant 

differences within contrasts one (algae and Megalac) and two (algae and linseed). 

Adding linseed to the diet of the pregnant ewe (strategies LL and LM) conferred an 

increase in the proportion ofCI8:3n-3 within plasma of lambs at twelve hours of age when 

compared to the other four dietary strategies (P<O.OOI). Moreover, analysing the data 

according to the fat source supplied to the ewe pre-parIum revealed higher proportions of 

CI8:3n-3 in plasma of lambs suckling ewes fed linseed when compared to those fed either 

algae (P=0.003) or Megalac (P=0.003). The amount of C20:5n-3 within the plasma lipid 

fraction of lambs at twelve hours of age was lowest in lambs produced by ewes fed 

strategy MM compared to the other five strategies. There was also a significant effect of 

maternal dietary fat source: plasma proportions of C20:5n-3 were lower in lambs suckling 

ewes fed Megalac during pregnancy when compared to those fed either algae (P=0.003) or 

linseed (P=0.004). The mean proportion of C22:6n-3 within lamb plasma at twelve hours 

of age ranged from 0.63 gllOO g fatty acids for strategy MM to 3.57 gllOO g fatty acid for 

strategy AL. Feeding dietary strategies AA, AL or AM to pregnant ewes conferred a 

highly significant increase in C22:6n-3 within lamb plasma compared to the other three 

dietary strategies. The proportion of C22:6n-3 within plasma was highest in lambs 

suckling ewes that had been supplemented with algae during pregnancy compared to 

linseed (P<O.OOI) or Megalac (P<O.OOI) supplementation. The contrast between linseed 

and Megalac also tended towards significance (P=0.089). 
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Table 4.32. Effect of supplementing the diets of ewes with various fat sources on the proportions 
0l individualla~ acids in lamb e,lasma same,les collected at three weeks 0l aG,e 

Diet s.e.d. P 

Fatty acid AA AL AM LL LM MM 
{w'lOO g Cattl: acids) 

C16:0 24.8b 17.9" 24.8b 17.1" 24.9b 24.7b 0.90 <0.001 
CI6:1n-7 0.94 0.92 0.91 0.92 0.91 0.91 0.065 0.995 
C18:0 11.71 IS.Sc 15.0b 19.6c 14.9b 15.4b 0.94 <0.001 
ClS:l trans 5.49c 3.71b 2.961b 2.561 2.651 2.511 0.470 <0.001 
ClS:ln-9 cis IS.3" 25.4c 22.5b 26.9c 24.4bc 25.3c 1.34 <0.001 
CIS:2n-6 cis 10.5 9.43 11.4 9.72 13.2 11.9 1.867 0.351 
CLA (cis-9.trans-ll) 0.13"bc 0.20be 0.038 0.28c O.OS"b O.OS"b 0.076 0.018 
ClS:3n-3 cis 1.06 2.92 3.05 3.03 1.04 1.07 1.215 0.216 
C20:4n-6 S.38c 2.318 3.23b 1.918 2.51"b 2.57ab 0.414 <0.001 
C20:5n-3 2.27d 1.0gbe 0.901be 1.29c 0.81"b 0.62" 0.193 <0.001 
C22:6n-3 2.l9c 1.121b 1.47b 1.04" 1.02" 1.03" 0.210 <0.001 

RFA' 17.3b 16.Sb 13.81 15.3ab 13.6" 13.8" 1.021 0.004 

Total fatty acids (mglml) 2.56 3.22 2.61 2.85 2.23 2.84 0.528 0.563 
AA = Algae diet fed throughout pregnancy and lactation; AL= Algae diet fed during pregnancy followed by 
Linseed diet; AM = Algae diet fed during pregnancy followed by Megalac diet in lactation; LL = Linseed 
diet fed throughout pregnancy and lactation; LM = Linseed diet fed during pregnancy followed by Megalac 
diet in lactation; MM = Megalac diet fed throughout pregnancy and lactation 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<O.OS level 

4.4.3.5. Suckling lamb plasma fatty acids (three weeks of age) 

The total fatty acid concentration in lamb plasma was similar amongst all dietary strategies 

(Table 4.32) and there was no significant effect of either pre- or post parIum maternal 

dietary fat source upon this parameter (Table 4.33). The proportion of C16:0 within 

plasma was lowest in lambs born to ewes fed strategies AL or LL (P<O.OOI) compared to 

those fed the other four dietary strategies. Dietary strategy had no significant effect upon 

the proportion of C 16: 1 n-7 within lamb plasma at three weeks of age. 

Offering dietary strategies AL or LL to ewes resulted in increased proportions of C 18:0 in 

lamb plasma at three weeks of age compared to strategies AA and MM. Maternal dietary 

supplementation with linseed pre-partum increased the proportion of C18:0 in lamb 

plasma compared to algae supplementation (P=O.OO 1). Furthermore, significant 

differences in the proportion of C18:0 within lamb plasma were observed among maternal 
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post partum dietary fat sources, with the lowest proportions found in those supplemented 

with algae and highest in those fed linseed. 

Table 4.33. Effect of supplementing the diets of ewes with various fat sources pre- and post 
e.artum on La!!!. acid e.roe.ortions in lamb e.'asma same.'es collected at three weeks oL a&.e 

Diet s.e.d. p 

Fatty acid (gllOO g fatty Algae Linseed Megalac C. Cz Cl 

acids) 

Effect 0/ pre-partum diet 
Number per treatment 30 20 10 
C18:0 14.8 17.0 15.4 1.40 0.690 0.001 0.444 
CI8:ln-9 cis 21.8 25.5 25.3 1.49 0.007 0.002 0.102 
CI8:2n-6 cis 10.6 11.7 11.9 1.51 0.343 0.574 0.467 
CI8:3n-3 cis 2.34 1.98 1.07 1.009 0.211 0.992 0.234 
C20:4n-6 3.76 2.30 2.57 0.568 0.004 <0.001 0.136 
C20:5n-3 1.45 1.05 0.62 0.279 <0.001 0.171 <0.001 
C22:6n-3 1.64 1.05 1.03 0.226 0.003 0.003 0.052 

Total fatty acids (mg/ml) 2.71 2.42 2.84 0.416 0.916 0.425 0.724 

Effect 0/ post partum diet 
Number per treatment 10 20 30 
C18:0 11.7 19.1 15.1 0.73 <0.001 <0.001 0.010 
CI8:1n-9 cis 18.3 25.9 24.1 1.13 <0.001 <0.001 0.500 
CI8:2n-6 cis 10.5 9.74 12.2 1.438 0.281 0.069 0.044 
CI8:3n-3 cis 1.06 3.06 1.72 0.986 0.514 0.069 0.387 
C20:4n-6 5.38 2.25 2.77 0.341 <0.001 <0.001 0.084 
C20:5n-3 2.27 1.22 0.78 0.155 <0.001 0.780 <0.001 
C22:6n-3 2.19 1.13 1.17 0.178 <0.001 0.012 0.034 

Total fa~ acids ~m~mQ 2.56 2.83 2.56 0.413 0.999 0.155 0.310 
C. = Algae vs Megalac; C2 - Algae vs Linseed; C3 - Linseed vs Megalac 

Higher proportions ofCI8:1 trans were found in lambs suckling ewes fed strategies AA or 

AL compared to LL, LM or MM (P<O.OO I). Maternal supplementation with algae 

significantly reduced the proportion of CI8:1n-9 cis in lamb plasma, whether data were 

analysed according to dietary strategy, or to maternal fat source fed pre- or post partum. 

Lambs reared by ewes fed dietary strategy AM had the lowest and those offered strategy 

LL the highest, proportions of CLA within plasma fatty acids (P=O.O 18). 

The proportions of CI8:2n-6 within lamb plasma were unaffected by dietary treatment, 

regardless of whether data were analysed as a six-treatment randomised block design or 

according to the supplemental fat source offered to ewes during pregnancy. The only 

significant effect of post partum diet upon the proportion ofCI8:2n-6 within lamb plasma 

222 



at three weeks of age was an decrease conferred by supplementing ewes with linseed 

compared to Megalac. Feeding strategy AA to ewes resulted in a significant increase in 

the proportion of C20:4n-6 within lamb plasma at three weeks of age compared to the other 

five strategies. Furthermore, addition of algae to the diet either pre- or post partum 

significantly increased the proportional contribution of C20:4n-6 to lamb plasma fatty 

acids compared to feeding diets containing either linseed or Megalac. 

The provision of various dietary strategies and fat sources to the pregnant and lactating 

ewe did not significantly affect the proportion of C 18:3n-3 within lamb plasma at three 

weeks of age. The proportional contribution of C20:5n-3 to lamb plasma fatty acids was 

highest in lambs produced by ewes fed strategy AA and lowest in lambs born to ewes 

supplemented with strategy MM (P<O.OOI). Feeding algae to the ewe either pre- or post 

partum resulted in higher proportions of C20:5n-3 in lamb plasma, lambs suckling ewes 

fed linseed had intermediate values, with the lowest proportions found in lambs produced 

by ewes supplemented with Megalac. The proportion of C22:6n-3 within lamb plasma was 

increased by maternal supplementation with dietary strategy AA compared to any of the 

other five dietary strategies (P<O.OOI). Supplementing ewes with diets containing algae 

pre or post partum significantly increased the proportion of C22:6n-3 within plasma lipids 

of the suckling lamb compared to supplementation with either linseed or Megalac. 
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4.5. Discussion 

4.5.1. Ewe parameters 

4.5.1.1. Straw Intake 

Papadopoulos et al. (2002) report that the protein capsule surrounding the lipid component 

of the algal cell protects the long-chain PUF As within marine algae against ruminal 

biohydrogenation. Nonetheless, animals offered diets containing algae in the current study 

exhibited significantly lower forage intakes towards parturition and during lactation than 

those fed saturated fat sources. This is in contrast to the results of Cooper et al. (2004) 

who found no significant effect of supplementation with marine algae compared to linseed 

or fish oil upon the OM intake of lambs. Franklin et al. (1999) reported significant 

decreases in OM intake as a result of supplementing dairy cattle with marine algae; this 

was in part attributed to the reduced palatability of concentrates containing algae. 

However, as the straw fraction was fed separately from the concentrate component within 

the current study, any significant effect of concentrate palatability would not be expected 

to impact upon forage intake. This concurs with the results of Papadopoulos et al. (2002) 

who observed significant reductions in concentrate intake when the inclusion rate of 

marine algae was increased from 23.5 g to 47 g or 94 g, with no concurrent effect upon 

forage intake. 

Feeding whole oilseeds, in which a mucilaginous protein coat surrounds the lipid 

component, has been suggested as a strategy for enhancing the supply of unsaturated fatty 

acids to the duodenum (Ooreau and Ferlay, 1994; Szumacher-Strabel et al., 2001a). The 

majority of research involving the supplementation of lactating cattle with whole linseed 

has reported no significant effect of the fat source upon OM intake (Petit, 2002; 

AbuGhazaleh et al., 2003; Soita et al., 2003). Within the current study, ewes offered diets 

containing whole linseed exhibited lower daily straw intakes during pregnancy and 

lactation than those fed saturated fat sources. This is in contrast to the results of Wachira 
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et al. (2002) who observed no significant difference in DM intakes of growing lambs fed 

either whole linseed or Megalac. It may be suggested that supplementation of ewes with 

untreated whole linseed is ineffective as a method of protecting unsaturated fatty acids 

against ruminal biohydrogenation. This theory concurs with the results of Kennelley 

(1996) who demonstrated extensive biohydrogenation of C18:3n-3 when lactating cows 

were supplemented with whole linseed. Furthermore, Petit (2003) reported significant 

increases in dry matter intake as a result of feeding formaldehyde-protected whole linseed 

compared to unprotected linseed. Whether this is due to degradation of the protein coat 

within the rumen, or physical breakdown of the seed during mastication is not clear. 

The rumen ecosystem is subjective to adaptive change as a result of environmental, 

metabolic and dietary influences, however, it is generally assumed that the toxic effects of 

unsaturated fatty acids are negated by dietary change and that the potential for carry-over is 

limited. Nonetheless, the reduction in daily straw intake conferred by supplementation 

with either marine algae or linseed during pregnancy persisted during lactation, regardless 

of whether the dietary regime was maintained or the principal dietary fat changed to an 

alternative or saturated source. It is possible that the observed effect of fat source upon 

straw intake may have resulted from the lysis of cellulolytic bacteria leading to a long-term 

reduction in fibre digestion (Szumacher-Strabel et al., 2001a). Alternatively, it may have 

further reaching metabolic effects via the incorporation of long-chain unsaturated fatty 

acids into animal tissues during pregnancy. 

Similar depressions in DM intake have been observed with intestinal infusion of 

unsaturated fatty acids, which are unlikely to have occurred as a result of effects on rumen 

microorganisms (Doreau and Chilliard, 1997b). A significant reduction in ruminant dry 

matter intake has been reported by Benson et al. (2001) as a consequence of abomasal 

infusion of unsaturated fatty acids. This was suggested to result from effects upon 
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metabolic controllers of feed intake or patterns of eating behaviour. The potential effects 

upon behaviour patterns may have been due to continual infusion of oils negating the 

"normal" peaks and troughs in nutrient supply, and is therefore unlikely to have occurred 

in the current experiment. An alternative explanation proposed by Benson el al. (200 I) is 

that infused fatty acids interact with mobilised adipose tissue and depress intake via effects 

on metabolism. Incorporation of dietary long-chain PUF As into body tissue during 

pregnancy, which are then released during lactation may therefore explain the continuing 

reductions in feed intake exhibited in ruminants changed to diets containing Megalac post 

parIum. 

4.5.1.2. Nutritional status 

Treatment diets were formulated to be iso-energetic and iso-nitrogenous, therefore, as 

predicted, diet had little effect upon ewe liveweight, concurring with results reported by 

Goodridge et al. (2001), Johnson et al. (2002) and Petit (2003). However, ewes 

supplemented with algae during pregnancy gained less weight pre-partum than those fed 

diets containing Megalac. The reduction in straw intake exhibited by ewes fed algae was 

calculated to reduce ME supply by 1.5 MJ/day, a change that may explain the lower weight 

gain (AFRe, 1993). Although the difference was not statistically significant, the increase 

in lamb birthweight conferred by algal supplementation suggests that the lower rate of 

liveweight gain during pregnancy may have resulted from increased mobilisation of body 

reserves to meet foetal requirements, in combination with reduced rumen fill. Indeed, 

more condition was lost by ewes fed algae than those supplemented with Megalac, 

although, again, this difference was not statistically significant. 

The mean plasma concentrations of ~HB were lowest in ewes fed linseed and highest in 

ewes supplemented with Megalac pre-partum, with all values falling within the range 

proposed by Hamadeh et al. (1996). This may be interpreted as a result of differences in 
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the mobilisation of adipose tissue, however, this pattern does not concur with the body 

condition score results. Differences in PHB concentrations observed between ewes fed 

algae and linseed pre- and post parIum may therefore be a result of changes in ruminal 

fennentation and volatile fatty acid production. The addition of linseed oil to the ruminant 

diet was shown by Cottyn et al. (1971), Ikwuegbu and Sutton (1982) and Ueda et al. 

(2003) to reduce the production of butyrate and increase the proportion of propionate 

produced within the rumen, which would have concurrent effects upon the concentration of 

PHB in plasma. However, neither Broudiscou et al. (1994) nor Chikunya et al. (2004) 

reported a significant effect of linseed oil or fonnaldehyde-treated linseed upon ruminal 

butyrate production. Fish oil supplementation of the ruminant diet has also been shown to 

reduce the concentration of acetate and increase propionate within the rumen (Fievez et al., 

2003), although no effects upon the concentration of butyrate were reported. This may 

explain the similarity in plasma PHB concentrations between ewes fed diets containing 

algae or Megalac. 

Supplementing the pregnant ewe with algae during pregnancy increased the concentration 

of urea in plasma during both pregnancy and lactation, although values for all ewes were 

higher than those described by Dawson et al. (1999). Plasma urea originates mainly from 

ruminal protein degradation and deamination of amino acids; as all experimental diets 

contained similar protein concentrations, the protein component of the algal diet may have 

been more degradable than that within the linseed or Megalac diets. This concurs with the 

hypothesis propounded by Petit et al. (2002), who suggested that the mucilaginous protein 

coat surrounding oilseed fatty acids is a viable mechanism for protection of the fatty acids 

from biohydrogenation, and must thereby be resistant to ruminal degradation. 

Alternatively, it can be suggested that marine algae may have inhibited the growth of 

ruminal microorganisms, thereby increasing the amount of ammonia absorbed from the 

rumen. Doreau and Ferlay (1995) concluded that ruminant lipid supplementation either 

227 



maintains or reduces ruminal ammonia concentrations and increases microbial synthesis, 

thereby questioning the validity of this suggestion. 

4.5.1.3. Ewe antioxidant status 

Addition of unsaturated fatty acids in the form of linseed or algae to ruminant diets 

increases the peroxidation challenge to the animal. Erythrocyte GPx activities were similar 

among all treatments pre-partum although increased activity was observed in erythrocytes 

of ewes supplemented with algae post partum. The pre-partum results are in agreement 

with those of Smith and Isopenko (1997) who reported no significant differences in 

erythrocyte GPx as a result of protected PUFA supplementation of sheep. Observed GPx 

activities also concur with the range reported by Smith et al. (1994). Given the increased 

daily concentrate supply during lactation, the total dietary peroxide challenge to ewes fed 

algae would have been increased. The increased GPx activity may therefore have been in 

response to this challenge: Smith and Isopenko (1997) observed similar increases in GPx 

activity over time as a result of protected PUF A supplementation of sheep. 

No difference in serum CK concentrations were observed amongst treatments, either pre

or post partum. The activity of this enzyme was higher than values observed by Vojtic 

(2000) in pregnant ewes and by Braun et al. (1993) in non-pregnant ewes. Nevertheless, it 

was lower than the range of values reported by Clemens et al. (1989) in pigs exposed to 

stressful conditions. This suggests that the observed values may have resulted from tissue 

damage induced by sampling techniques. 
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4.5.1.4. Plasma fatty acids pre-parium 

A reduction in ewe plasma total fatty acid concentration resulting from PUF A 

supplementation of the diet was observed in Experiment One and repeated in the current 

study, the extent of the decrease appearing to be augmented by the degree of unsaturation 

of the supplementary fat source. This result concurs with the work of Offer et al. (200 I) 

who described reductions in the total concentrations of fatty acids within serum 

lipoproteins conferred by long-chain PUF A supplementation of dairy cattle. Differences in 

this parameter between treatments may be attributed to variation in the digestibility of fat 

sources. Conflicting results upon the effect of fatty acid unsaturation on digestibility are 

reported by Doreau and Chilliard (1997a) and Wu et al. (1991), however, the results of the 

current study suggest that increasing the proportion of unsaturated fatty acids in the diet 

reduces digestibility. This is in contrast to the work of Powles et al. (1995) who reported 

that, in pigs, digestibility increased with augmentation of the unsaturated fatty acid 

concentration of the diet. 

The saturated fatty acid profile of ruminant plasma is significantly affected by dietary fatty 

acid composition and by the degree of biohydrogenation of unsaturated fatty acids. The 

proportions of C 16:0 within the plasma lipid fraction conferred by dietary strategies 

concurred with the fatty acid composition of experimental diets, in that the highest 

concentrations were found in ewes fed Megalac, and the lowest in ewes offered the linseed 

diet. Although Ashes et al. (1992) reported a reduction in C16:0 within plasma as a result 

of fish oil supplementation of sheep, the results of the current study may simply be 

attributed to differences in dietary supply. 

Similarly, plasma C18:0 may originate directly from dietary supply or vIa the 

biohydrogenation of PUFAs within the rumen, specifically CI8:2n-6 and CI8:3n-3. 

Addition of long-chain PUF As to the ruminant diet in the form of fish oil has been shown 
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by Offer et al. (2001), Cooper et al. (2002) and Chikunya et al. (2004) to reduce the 

concentration of C18:0 within plasma, results which concur with the effects of adding 

algae to the diet of pregnant ewes within the current study. Dietary C 18:0 supply was 

equivalent across treatments, therefore the differences between plasma C 18:0 

concentrations of ewes fed algae and Megalac may be attributed to variation in the efficacy 

of ruminal biohydrogenation. As discussed with reference to the results observed in 

Experiment One, long-chain PUF As have cytotoxic effects upon rumen microtlora 

(Donovan et al., 2000) and tend to disrupt ruminal biohydrogenation resulting in the 

production of trans isomers of C18: I (Baumgard et al., 2000). The proportions of these 

fatty acids in plasma were increased by algal supplementation of the ewe, suggesting that 

biohydrogenation may have been disrupted by PUFA supplementation. 

Adding linseed to the ruminant diet has a significant augmenting effect upon the supply of 

C18:2n-6 and CI8:3n-6 to rumen bacteria, thereby potentially increasing the products of 

unsaturated fatty acid biohydrogenation within plasma. The study of Petit (2002) reported 

an increase in the concentration of C18:0 within milk as a consequence of feeding whole 

linseed compared to Megalac, a result that is in accordance with those described by 

Goodridge et al. (2001). The rise in plasma C18:0 exhibited by ewes offered diets 

containing linseed concurs with the high concentrations of C 18:2n-6 and C 18:3n-6 within 

the diet, suggesting that the biohydrogenation of these fatty acids was not entirely 

prevented by the provision of whole oilseeds within the feed. Although the fatty acids 

within linseed may be protected from ruminal biohydrogenation by the mucilaginous 

protein seed coat, mastication during feeding may rupture the seeds and render PUF As 

vulnerable to ruminal biohydrogenation. Supplementation of steers with whole linseed 

was observed by Scollan et al. (2001) to increase the flow of CI8:3n-3 at the duodenum, 

however, a significant quantity of ingested CI8:3n-3 was biohydrogenated with little 

protection offered by the seed coat. Wachira et al. (2000) and Chikunya et al. (2004) 
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reported similar results as a consequence of feeding whole linseed to sheep. The 

magnitude of ruminal biohydrogenation of fatty acids within whole linseed was not 

determined within the current study, Cooper et al. (2002) described biohydrogenation 

values of83.8% for CI8:2n-6 and 85.3% for C18:3n-3 in the rumen of sheep supplemented 

with whole linseed treated with formic acid. 

Ewes fed the linseed diet had a lower dietary intake of CI8:1n-9 cis compared to ewes 

supplemented with either the algae or Megalac diets. Differences in the concentration of 

this fatty acid within plasma at one week pre-partum between the linseed and Megalac 

treatments may therefore be attributed to variation in dietary supply. However, the 

proportion of C18: In-9 cis within plasma fatty acids was significantly reduced by algal 

supplementation of the ewe, concurring with the effects observed in Experiment One as a 

result of fish oil supplementation. By contrast, the work of Ashes et al. (1992) and Offer et 

al. (2001) described increases in CI8:1n-9 cis within plasma as a result of fish oil 

supplementation. Little data is available upon the effects of algal supplementation of 

ruminants upon plasma fatty acid composition, however, results by Franklin et al. (1999) 

and Papadopoulos et al. (2002) indicate that feeding algae to dairy cattle or lactating ewes 

significantly reduced the concentration of C18: In-9 cis within milk fat. Nevertheless, 

Cooper et al. (2004) reported lower concentrations of C18: In-9 cis within 

phosphatidylglycerols, but no differences in the concentration of this fatty acid in 

triacylglycerols in lambs fed a combination of algae and fish oil compared to fish oil alone. 

Dietary C18:2n-6 intakes were similar between treatment diets containing algae or 

Megalac, but the proportion of this fatty acid within plasma lipid was reduced by the 

inclusion of algae in the diet. Again, this result concurs with that published by Franklin et 

al. (1999) and Papdopoulos et al. (2002), and with those observed in Experiment One as a 

consequence of fish oil supplementation. It may be suggested that the rate of 
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biohydrogenation of C 18:2n-6 was affected by the provision of the algal supplement, 

however, long-chain PUF As tend to have a toxic effect upon rumen microorganisms. 

Therefore they would be expected to either reduce the extent of ruminal biohydrogenation, 

or to increase the products of incomplete biohydrogenation, namely CI8:I trans and CLA. 

Franklin et al. (1999) observed a decrease in CI8:2n-6 and a significant increase in the 

transfer of trans C 18: 1 fatty acids and CLA into milk fat as a result of algal 

supplementation of dairy cattle. Furthennore, Offer et al. (2001) described a significant 

decrease in plasma CI8:2n-6 concentrations as a result of fish oil supplementation of 

cattle. 

As discussed with reference to concentrations of C18:0 within plasma, the 

biohydrogenation of unsaturated fatty acids within the linseed diet appeared to be relatively 

high. This hypothesis is borne out by comparing the dietary intake of C 18:2n-6 within the 

linseed diet with the amount found in plasma. Although the highest daily intakes of 

C18:2n-6 were conferred by linseed supplementation, plasma concentrations of CI8:2n-6 

were similar to those found in ewes supplemented with algae. This concurs with the work 

of Chikunya et al. (2004) who observed that although dietary supply of CI8:2n-6 was 

similar among treatments, sheep fed a diet containing linseed had lower concentrations of 

CI8:2n-6 than sheep fed Megalac. Petit (2002) published similar results with reference to 

the effect of whole linseed supplementation of dairy cows upon milk CI8:2n-6 

concentrations. 

Endogenous synthesis of C20:4n-6 within the ruminant is achieved by the elongation and 

desaturation of C18:2n-6 (Wainwright, 2002). Consequently, an increased dietary supply 

of C 18:2n-6 would be expected to increase the concentration of C20:4n-6 in plasma and 

tissues. As no detectable quantities of C20:4n-6 were observed in experimental diets 

containing linseed or Megalac it may be concluded that the presence of this fatty acid in 
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plasma of pregnant ewes was a result of endogenous synthesis. Indeed, Wiesenfeld et al. 

(2003) observed that adding linseed to the diet of pregnant rats reduced the ratio of 

C18:2n-6:C18:3n-3 within serum with a concomitant reduction in serum C20:4n-6. By 

contrast, addition of algae to the basal diet increased the dietary supply of C20:4n-6. 

significantly enhancing the proportion of this fatty acid within plasma. 

The proportions of C 18:3n-3 within plasma largely reflect the dietary intakes, however, the 

supply of C18:3n-3 was 25-fold higher in the linseed compared to the algae or Megalac 

diets, but only five-fold higher in plasma. This is in contrast to the result of Chikunya et 

al. (2004) who only achieved a two-fold increase in duodenal flow of C18:3n-3 at the 

small intestine as a consequence of supplementing sheep with whole linseed. However, 

the ten-fold increase in plasma C18:3n-3 concentrations in ewes fed linseed compared to 

algae or Megalac within the current study indicates that a substantial transfer of C18:3n-3 

across the small intestine was achieved. Although a substantial amount of C18:3n-3 

bypassed biohydrogenation and was absorbed at the small intestine, it is clear that C l8:3n-

3 within whole linseed was not wholly protected from ruminal biohydrogenation. 

Hagemeister et al. (1991) concluded that the activity of L\-desaturase and elongase 

enzymes within the dairy cow is low, as only modest increases in C20:Sn-3 and C22:Sn-3 

were observed within milk fat as a consequence of linseed supplementation. No dietary 

C20:Sn-3 was supplied by any of the treatment concentrates and the presence of this fatty 

acid within plasma can only be explained by the mobilisation of body reserves, 

endogenous de saturation and elongation from C18:3n-3 or retro-conversion from longer

chain fatty acids. As the pre-experimental diet did not contain a source of C20:5n-3, it 

seems unlikely that sufficient quantities could have been mobilised from stored reserves to 

account for the amounts found in plasma at one week pre-parIum. Plasma C20:5n-3 

concentrations were similar in ewes fed diets containing algae or linseed despite the 
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significant variation in dietary supply of C18:3n-3. It can therefore be suggested that the 

C20:5n-3 within plasma originated from two different sources: from the retroconversion of 

C22:6n-3 (algae diet) and the elongationldesaturation ofC18:3n-3 (linseed diet). 

The algae diet provided a high dietary supply of C22:6n-3, thus it is conceivable that the 

C20:5n-3 present in plasma of ewes fed this diet originated from the retro-conversion of 

C22:6n-3 to C20:5n-3. This hypothesis was proposed by Smuts et al. (2002) to explain the 

increases in gestation length observed in women supplemented with C22:6n-3. A similar 

explanation was offered by Papadopoulos et al. (2002) to explain the presence of C20:5n-3 

within milk fat of ewes offered marine algae, and by Cooper et al. (2004) to explain the 

presence of this fatty acid in phosphatidylglycerols of sheep supplemented with algae. 

Although C20:5n-3 may have been synthesised via elongation and desaturation ofCI8:3n-

3 within ewes fed algae, there was a substantial difference in plasma C 18:3n-3 

concentrations between these ewes and those offered linseed. Furthermore, dietary 

provision of long-chain PUF As has been shown to inhibit the endogenous synthesis of 

C20:5n-3 and C22:6n-3 via the L\-desaturase pathways (Sargent, 1997). 

There is conflicting evidence regarding the efficiency of conversion of CI8:3n-3 to 

C20:5n-3 and C22:6n-3 within mammals. Wiesenfeld et al. (2003) reported that the 

concentration of C20:5n-3 within serum of pregnant rats was significantly increased by the 

addition of linseed to the diet. Furthermore, both De Groot et al. (2004) and Francois et al. 

(2003) demonstrated increases in plasma C20:5n-3 as a consequence of dietary C 18:3n-3 

supplementation of women. Bazinet et al. (2003) also reported that the concentration of 

C20:5n-3 within sow milk was increased by linseed oil supplementation. It appears clear 

that the C20:5n-3 present in plasma of ewes fed the linseed or Megalac diets was a 

consequence of the elongation and desaturation of CI8:3n-3. Therefore, the increased 

dietary supply of C 18 :3n-3 conferred by the linseed diet led to a concurrent increase in the 
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plasma C20:5n-3 concentration compared to the relatively low dietary supply and plasma 

concentrations in ewes fed Megalac. The published results of Francois et al. (2003) and 

De Groot et al. (2004) in humans, and those ofWachira et al. (2002), Cooper et al. (2004) 

and Demirel et al. (2004) in sheep indicate that although C18:3n-3 is elongated and 

desaturated to produce C20:5n-3, the production of C22:6n-3 is negligible. The observed 

concentrations of C22:6n-3 within plasma of ewes supplemented with either the linseed or 

Megalac diets concur with this hypothesis. 

The concentration of C22:6n-3 within plasma of ewes fed algae was approximately three

fold higher than that of ewes offered linseed or Megalac, concurring with the results 

observed by Franklin et al. (1999) and Papadopoulos et al. (2002) in milk as a 

consequence of algal supplementation. However, the proportion of C22:6n-3 within 

plasma of ewes fed the algae diets was lower than that which would have been predicted 

from the dietary supply, indicating either a significant biohydrogenation of C22:6n-3 

within the rumen or increased uptake by placental and foetal tissues during the last stage of 

pregnancy. As the latter suggestion does not appear to concur with the neonatal plasma 

C22:6n-3 concentrations, it appears that the C22:6n-3 within marine algae may not be 

invulnerable to ruminal biohydrogenation, as suggested by Papadopoulos et al. (2002). 

4.5.1.5. Gestation length 

The observation that human females from populations with a high habitual fish intake, 

such as the Eskimos or Danes, have longer gestation lengths than their counterparts in 

other areas of the world, led to the investigation of the effects of long-chain PUF A 

supplementation on this parameter. Subsequently, authors including Olsen et al. (1986; 

1992) suggested that the n-3 long-chain fatty acids might be responsible for these effects. 

Investigations by Baguma-Nibasheka et al. (1998; 1999) and Hong Ma et al. (2000) using 
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pregnant sheep further reported that the initiation of parturition in the pregnant ewe may be 

inhibited by infusion of n-3 PUF As into the bloodstream. 

Within the current study, diet had no significant effect upon ewe gestation length. This is 

in contrast to the results of Olsen et al. (1990) in rats, Rooke et al. (200Ic) in pregnant 

sows and to the results of Experiment One (section 3.4.2.7). Moreover, it does not agree 

with the results of Pickard et al. (2005) who demonstrated increased gestation lengths in 

ewes supplemented with algae during pregnancy. Trienoic prostaglandins produced from 

C20:5n-3 are thought to inhibit or delay the action of dienoic prostaglandins derived from 

C20:4n-6 (Hansen and Olsen, 1988). Smuts et al. (2003) observed a significant effect of 

C22:6n-3 supplementation upon the gestation length of pregnant women and attributed this 

effect to retroconversion of C22:6n-3 to C20:5n-3 with consequent effects upon 

prostaglandin production. No C20:5n-3 was detected within within feed samples and the 

presence of this fatty acid within ewe plasma at one week pre-parIum derived either from 

the elongation and desaturation of CI8:3n-3 (linseed diet) or the retroconversion of 

C22:6n-3 (algae diet). However, the amount of C20:5n-3 produced by this mechanism 

appears to be less than that required to generate a difference in gestation length. Indeed, 

plasma proportions of C20:5n-3 were 50% lower in ewes fed algae or linseed compared to 

those observed in Experiment One as a result of fish oil supplementation although 

concentrations of C20:4n-6 were similar to those reported for Experiment One. This adds 

weight to the hypothesis that an interaction between C20:5n-3 and C20:4n-6 is responsible 

for changes in gestation length as a result of altered prostaglandin production, indeed, the 

plasma C20:5n-3:C20:4n-6 ratio of ewes fed algae or linseed averaged 0.71, in comparison 

to 2.74 for ewe supplemented with fish oil in Experiment One. By contrast, Waltman et al. 

(1978) reported that C20:4n-6 extends gestation length in pregnant rats when compared to 

C18:0 or CI8:1n-9 cis supplementation, but there is little other published evidence to 

support this result. 
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4.5.1.6. Colostrum 

There is a paucity of information available upon the effects of PUF A supplementation 

upon colostrum yield and composition in ruminants, therefore results are discussed with 

reference to animals in established lactation. Colostrum composition figures were higher 

than the reference values for ewes proposed by Hadjipanayiotou (1995), however this 

difference is proposed to be a result of the high plane of nutrition supplied to ewes within 

the current study. 

Colostrum yield is principally governed by energy and protein supply to the ewe, with 

significant but lesser effects of ewe breed and litter size (O'Doherty and Crosby, 1996; 

Knight, 2001; Pattinson and Thomas, 2004). Previous studies involving the 

supplementation of ruminants with long-chain PUF As in the form of marine algae, fish oil 

or linseed have reported differing effects, ranging from an increase (Keady and Mayne, 

1999a; Keady et al., 2000; Petit, 2002a), to a significant decrease in milk yield (Jones et 

ai., 1998; Lacasse et ai., 2002; Whitlock et ai., 2002). However, concurring with the 

results published by authors supplementing lactating ruminants with marine algae 

(Franklin et al., 1999; Papadopoulos et al., 2002) or linseed (Brz6ska et al., 1999; Petit et 

al., 2002; Petit, 2003), adding long-chain PUFAs to the diet had no significant effect upon 

colostrum yield of ewes within the current study. 

The response in milk fat concentration and yield conferred by augmenting the ruminant 

diet with long-chain PUF As is well documented. Although the addition of protected long

chain PUFAs has been shown by Kitessa et ai. (2003) to have no significant effect on milk 

fat production, unprotected long-chain PUF A supplementation decreases milk fat 

concentration and yield. This effect of PUF A supplementation has been reported by 

Franklin et al. (1999) as a consequence of algal supplementation of dairy cattle, and by 
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both Petit (2002) and Petit et al. (2003) when linseed was added to the diet of the lactating 

ruminant. 

One explanation for the reduced fat concentrations of ruminants supplemented with 

PUF As is that reductions in forage intake lower the amount of acetate produced in the 

rumen, thus decreasing milk fat synthesis (Voigt and Hagemeister, 2001). This hypothesis 

concurs with the relationship between DM intake and milk fat concentration observed 

within the current study, however, the consensus view, as suggested by Chouinard et al. 

(1999), Baumgard et al. (2000) and Perfield et al. (2002), is that this effect is due to the 

action of trans-1O,cis-12 CLA upon de novo fatty acid synthesis within the mammary 

gland. Identification of the trans-IO,cis-12 isomer of CLA was not possible within the 

current experiment, therefore it is not possible to substantiate this hypothesis. 

The protein component of colostrum contains an immunoglobulin component in addition 

to the principal milk protein casein, therefore values for this parameter are higher than the 

protein concentrations observed in studies measuring milk composition. The addition of 

marine algae or linseed to the diet may increase the undegradable digestible protein supply 

to the ruminant by virtue of the protein capsule or seed coat, therefore despite the iso

nitrogenous nature of the experimental diets, colostrum protein could conceivably have 

been increased by long-chain PUF A supplementation as observed by Papadopoulos et al. 

(2002) and Petit (2002; 2003). However, in agreement with the milk production results 

reported by Franklin et al. (1999) using marine algae, and Goodridge et al. (2001), Petit et 

al. (2002) and Soita et al. (2003) when feeding linseed, dietary treatment had no significant 

effect upon colostrum protein concentration within the current study. This is in direct 

contrast to the majority of research involving fish oil or linseed supplementation of 

lactating ruminants in which Lacasse and Ahnadi (1998), Keady et al. (2000) and Petit et 

al. (2002) observed decreases in milk protein concentrations. 
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4.5.1.7. Plasma fatty acids post parium 

The total fatty acid concentration within the plasma lipid component of the lactating ewe 

was unaffected by either dietary strategy or fat source, a difference which is at odds with 

the effects of PUF A supplementation upon plasma fatty acid concentrations pre-parIum 

and in Experiment One. 

Linseed supplementation during pregnancy appeared to decrease the concentration of 

C16:0 within plasma oflactating ewes, however, this result may simply be attributed to the 

increased dietary supply of this fatty acid within the algae and Megalac diets. 

Nevertheless, changing from the linseed diet pre-parIum to one containing Megalac 

(strategy LM) post partum did not raise proportions of this fatty acid in plasma to the 

levels found in ewes fed Megalac throughout the experiment. The carry-over effect of 

linseed supplementation during pregnancy upon proportions of C16:0 within plasma may 

therefore result from a combination of reduced dietary supply during pregnancy and 

lactation, and reduced labile supply from adipose tissue mobilisation. 

Ewes fed diets containing either algae or Megalac post-parIum had significantly lower 

plasma proportions of C18:0 when compared to ewes fed linseed. This has already been 

discussed with reference to pre-partum plasma results in section 4.5.1.4. Long-chain 

PUFA supplementation of ruminant diets in the form of fish oil demonstrably reduced the 

concentration of C18:0 within plasma of dairy cattle (Offer et al., 2001), sheep (Ashes et 

al., 1992) and steers (Ashes et al., 1992), results which concur with the effects of algal 

supplementation of ewes within the current study. Ruminal biohydrogenation of long

chain fatty acids accounts for a significant proportion of the C18:0 absorbed at the small 

intestine and given the similar concentrations of this fatty acid among diets, reductions in 

the efficiency of biohydrogenation may have accounted for the differences in plasma 

concentrations between ewes fed algae or Megalac. Incomplete biohydrogenation of 
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unsaturated fatty acids also leads to an increase in the intestinal absorption of trans isomers 

of C 18: 1. The significantly higher concentrations of these fatty acids in plasma of 

lactating ewes fed diets containing algae during lactation adds weight to the suggestion that 

ruminal biohydrogenation was disrupted by algal supplementation. 

Augmentation of the long-chain PUF A content of the diet with marine algae during 

pregnancy (regardless of the diet fed during lactation) significantly reduced the 

concentration of CI8:1n-9 cis within ewe plasma at three weeks post partum. This effect 

of PUF A supplementation was also observed within Experiment One but is in contrast to 

the results published by both Ashes et al. (1992) and Offer et al. (2001) who reported an 

increase in plasma concentrations of CI8:1n-9 cis as a result of long-chain PUFA 

supplementation of sheep and cattle. Demirel et al. (2004) reported lower concentrations 

of CI8:1n-9 cis within neutral and polar lipid fractions of adipose tissue of lambs 

supplemented with a mixture of linseed and fish oil, furthermore, both Franklin et al. 

(1999) and Papdopoulos et al. (2002) observed low concentrations of this fatty acid in milk 

fat from ewes fed diets containing marine algae. The reasons behind this decrease are 

unclear, but may simply be the cumulative effect of increased amounts of long-chain 

PUFAs displacing C 18: 1 n-9 cis within the plasma lipid fraction. 

Reductions in the efficiency of ruminal biohydrogenation of PUF As induced by algal 

supplementation of the ewe would be expected to increase the concentration of C 18 :2n-6 

within plasma, a result in contrast to the lower proportions observed within the current 

study. Similar results were observed by Franklin et al. (1999) and Papadopoulos et a/. 

(2002) within milk fat of dairy cows and sheep supplemented with algae and by Offer et a/. 

(2001) in lactating cattle. Linseed supplementation of the ewe, during pregnancy and/or 

lactation also reduced the proportion of CI8:2n-6 within plasma at three weeks post 

partum. This result concurs with those observed by Chikunya et al. (2004) in plasma of 
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dairy sheep and Petit (2002) in milk fat of lactating dairy cattle. It is interesting to note 

that both algae and linseed supplementation during pregnancy conferred significant carry

over effects on plasma CI8:2n-6 into lactation. This may be attributed to reduced 

deposition of this fatty acid into lipid reserves during pregnancy with a consequent 

decrease in the labile supply from mobilisation of tissue during lactation. However, this 

hypothesis is not entirely in agreement with the results published by Demirel et al. (2004) 

who noted that the deposition of C18:2n-6 into lamb muscle phosphatidylglycerols was 

reduced by linseed supplementation, but deposition into muscular triacylglycerols and liver 

was unaffected by treatment diet. 

Endogenous synthesis of C20:4n-6 may be inhibited by the supply of other long-chain 

PUF As, specifically n-3 PUF As to the ewe (Sargent, 1997). The presence of C20:4n-6 

within ewes fed linseed and Megalac was due to endogenous synthesis via desaturation and 

elongation of C 18 :2n-6, it would be expected that it would be found in higher quantities in 

ewes fed Megalac compared to linseed given the increased supply of the precursor fatty 

acid and a lower rate of competition from CI8:3n-3. By contrast, the proportions of 

C20:4n-6 within plasma of ewes at three weeks post parIum were similar in ewes fed 

linseed or Megalac. Algal supplementation of the pregnant and lactating ewe increased the 

concentration of C20:4n-6 within plasma at three weeks post parIum. In ewes 

supplemented with algae during pregnancy this may be attributed to an increased dietary 

supply. However, the biochemical reasons behind the carry-over effects of pre-partum 

supplementation upon this fatty acid in plasma warrant further investigation. 

Supplementing the diet of the pregnant and lactating ewe with linseed increased both the 

dietary supply of CI8:3n-3 and the concentration of this fatty acid within plasma at three 

weeks post partum compared to Megalac. This may be attributed to increased duodenal 

flow of this fatty acid as described by Wachira et al. (2000) and Chikunya et al. (2004). 
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Some investigators (Hagemeister et al., 2001) have concluded that the synthesis of long

chain n-3 PUFAs from C18:3n-3 is negligible within the ruminant. Indeed, Wachira et al. 

(2002) observed no differences in muscular C20:5n-3 and C22:6n-3 concentrations 

between sheep fed a diet augmented with linseed and one containing Megalac. 

Furthermore, although Chikunya et al. (2004) observed that the concentration of C20:5n-3 

within plasma of sheep supplemented with formaldehyde-treated linseed was higher than 

that of sheep fed Megalac, it was considerably reduced compared to sheep fed linseed 

mixed with fish oil. By contrast, ewes supplemented with linseed either pre- or post 

partum within the current study had similar proportions ofC20:5n-3 within plasma to ewes 

fed algae, and higher than those fed Megalac. Long-chain n-3 PUFAs are stored within 

muscular phosphatidylglycerols rather than the triacylglycerols contained within adipose 

tissue (Ashes et al., 1992). Although body tissues are mobilised in an attempt to maintain 

energy and protein supplies during pregnancy and lactation, the majority of the tissue 

mobilised is in the form of stored triacylglycerols rather than phosphatidylglycerols and 

would provide little, if any, C20:5n-3 or C22:6n-3. Therefore, the presence of C20:5n-3 

within plasma suggests that endogenous synthesis of n-3 fatty acids is not, as previously 

suggested by Voigt and Hagemeister (2001), negligible. 

Algal supplementation of the ewe during pregnancy and lactation increased the 

concentration of C20:5n-3 within plasma of ewes compared to those fed diets containing 

Megalac despite the low dietary supply of C 18:3n-3 from the algal diet. The endogenous 

desaturation and elongation mechanism required to produce this fatty acid from CI8:3n-3 

should, according to Sargent (1997), BougIe et al. (1999) and Poumes-Ballihaut et al. 

(2001), have been inhibited by the considerable dietary supply of preformed C22:6n-3. 

Therefore it may be suggested that the presence of C20:Sn-3 within plasma of ewes fed 

algae at three weeks post parIum was the result ofretroconversion of dietary C22:6n-3. 
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The increased dietary supply of C22:6n-3 conferred by algal supplementation of the ewe is 

likely to be the principal reason behind the increased proportion of this fatty acid within 

plasma pre-partum. This result concurs with those of Franklin et al. (1999) and 

Papadopoulos et al. (2002) resulting from the supplementation of lactating ruminants with 

marine algae. However, the reasons behind the continuing high concentrations of C22:6n-

3 within plasma at three weeks post partum, despite the change to a diet based on Megalac 

or linseed at twelve hours post partum are more difficult to elucidate. As previously 

discussed, long-chain PUFAs are not deposited in significant quantities in triacylglycerols, 

but instead into phosphatidylglycerols which have a slower turnover rate (Wonsil et al., 

1994). Wonsil et al. (1994) also observed a significant carry-over effect of fish oil 

supplementation oflactating cattle upon subsequent plasma concentrations ofC22:6n-3. 

Linseed supplementation of the ewe provided sufficient C 18:3n-3 to raise plasma 

concentrations of C20:5n-3 in the neonatal lamb to those observed in ewes fed marine 

algae. However, as evidenced by the current results, endogenous desaturation and 

elongation ofCI8:3n-3 was ineffective at increasing the concentrations ofC22:6n-3 within 

plasma of the lactating ewe. The studies published by Hagemeister et al. (1991), Petit 

(2002) and Francois et al. (2003) also concluded that endogenous production of C22:6n-3 

from CI8:3n-3 is low whether observed within the ruminant or human. As C20:5n-3 

concentrations were similar between algal and linseed treatments, the rate of endogenous 

synthesis ofC22:6n-3 may be limited by the conversion ofC20:5n-3 to C22:6n-3. 

4.5.1.8. Milk 

Given the plastic nature of the ruminal ecosystem, "cross-over" designs are generally 

considered to be valid for use within experiments employing ruminants. However, the 

effects observed upon milk production and composition as a result of PUF A 

supplementation during pregnancy throw doubt upon the validity of these experimental 
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designs. Milk yield was unaffected by fat source supplied to ewes during lactation, but 

there were significant carry-over effects of pre-partum algal supplementation upon milk 

yield. Neither the study of Franklin et al. (1999) nor work by Papadopoulos et al. (2002) 

observed any significant effect of algal supplementation of dairy cattle or ewes upon milk 

yield. However, both studies were carried out in animals during established lactation. No 

published studies have yet evaluated the effect of PUF A supplementation during 

pregnancy upon milk production and composition during lactation. 

Chilliard and Doreau (1997) and Keady and Mayne (1999a; 1999b) reported increased 

milk yields in dairy cows offered varying concentrations of dietary fish oil. This was 

attributed by Chilliard and Doreau (1997) to an increase in energy supply by fish oil 

supplementation, but given the iso-energetic nature of the treatment diets and the similar 

body condition score loss among treatments, this hypothesis does not explain the results 

observed within the current study. 

The production of lactose is a primary factor in the determination of milk yield, increased 

lactose production is associated with an increase in milk osmotic potential and concurrent 

increase in the secretion of water into milk (Ploumi et ai., 1998). Lactose yield was 

significantly increased by the provision of algae to pregnant ewes within the current study. 

Lactose in ruminant milk is produced from glucose and galactose, the former principally 

being derived from ruminal propionate production (Nielsen and Ingvartsen, 2004). 

Previous studies have noted decreases in ruminal acetate production with concurrent 

increases in propionate production as a result of long-chain PUF A supplementation 

(Chilliard, 1993; Doreau and Chilliard, 1997a; Doreau and Chilliard, 1997b). The 

hypothesis that milk yield is increased as a result of changes in rumen fermentation can 

therefore be considered valid, however, algal supplementation ceased four weeks before 

milk yield was recorded. 

244 



Infusing either CLA or trans C18:1 fatty acids into the abomasum of dairy cattle was 

shown by Mackie et al. (2003) to increase milk yield. Furthermore, Bernal-Santos et al. 

(2003) reported an increase in milk yield as a result of dietary supplementation of Holstein 

cattle with a mixture of CLA isomers. These authors concluded that a shift in nutrient 

partitioning from milk fat production towards milk synthesis was induced by CLA. If the 

effects observed within the current study are conferred by trans 18: I or CLA, this indicates 

that either rumen function remains disrupted four weeks after the PUF A source is 

withdrawn from the diet, or that sufficient stores of these fatty acids are laid down during 

the period of PUF A supplementation to induce significant changes in milk production and 

composition during mobilisation of fat reserves in lactation. Shingfield et al. (2003) 

observed significant carry-over effects of fish oil supplementation of dairy cattle upon milk 

parameters two weeks after supplementation had ceased. By contrast, the studies of 

Kitessa et al. (2001 a) and Kitessa et al. (200 I b) employed nine and twelve day adaptation 

periods respectively and observed no carry-over effects of fish oil supplementation on 

ruminal metabolism or milk composition. However, there is little published data available 

to indicate whether such effects would be observed at four weeks post supplementation at 

the relatively high levels ofPUFA supplementation employed within the current study. 

Despite changes in dietary fat source at 12 hours post partum, milk fat synthesis during 

lactation was significantly reduced by provision of linseed or algae during pregnancy. 

Administration of either a mixture of CLA isomers (Perfield et al., 2002; Bernal-Santos el 

al., 2003) or trans-lO, cis-12 CLA (Viswanadha et al., 2003) has been conclusively 

demonstrated to reduce milk fat synthesis. The mechanism by which CLA acts is thought 

to be via inhibiting effects upon the enzymes necessary for milk fat synthesis, namely 

acetyl-CoA carboxylase, fatty acid synthase and stearoyl-CoA desaturase (Ahnadi et al., 

2002). Trans 18: I fatty acids have also been implicated in the depression of milk fat 

synthesis by Wonsil et al. (1994), moreover, this fatty acid may be further desaturated 
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within the mammary gland by ~-9 desaturase to form CLA (Griinari et al., 2000). Indeed, 

Griinari et al. (2000) suggested that a significant proportion of the trans-lO, cis-12 CLA 

found within milk is derived from desaturated trans-lO C18: 1 fatty acids. If significant 

amounts of the trans-l0,cis-12 isomer of CLA were stored during pregnancy and released 

during mobilisation of body condition during lactation, this may explain the reduction 

observed in milk fat synthesis. 

Supplementing ewes with either algae or linseed during lactation also reduced milk fat 

concentration and yield within the current study. This concurs with the results observed by 

Franklin et al. (1999) as a consequence of algal supplementation and those of Petit (2002) 

who added linseed to the diet of lactating cattle. By contrast, the majority of studies 

involving linseed supplementation of ruminants report no significant effect upon milk fat 

concentration (Mansbridge et al., 1999; Petit et al., 2002; Petit, 2003; Soita et al., 2003). 

Within the current study, the quantity of linseed added to the treatment diets was relatively 

high (177g1kg), however, variation in linseed inclusion rate among the aforementioned 

experiments suggests that the milk fat depression observed within the current study may 

not simply be a consequence of the level of supplementation, and may be attributed to 

changes induced by the products of ruminal PUF A biohydrogenation. 

The synthesis of milk protein is dependent on the supply of amino acids and glucose from 

the diet (McDonald el al., 1988). As previously discussed, the increase in milk yield 

conferred by algal supplementation of the pregnant ewe can be attributed to shifts in 

ruminal fermentation towards propionate at the expense of acetate. An increase in ruminal 

propionate production would theoretically increase the potential for milk protein synthesis. 

However, within the current study, feeding algae or linseed during pregnancy significantly 

reduced milk protein concentrations at four weeks post-parIum. This is in contrast to the 

data published by Papadopoulos el al. (2002) who noted an increase in milk protein 
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concentration with algal supplementation. However, a non-significant decrease in milk 

protein concentration was observed by Franklin et al. (1999), concurring with the effects of 

fish oil supplementation described by Kitessa et al. (2001b), Ahnadi et al. (2002) and 

Lacasse et al. (2002). 

Milk protein concentration may be reduced by an increase in milk yield, without a 

concurrent increase in protein synthesis, or by a reduction in casein synthesis as postulated 

by Chilliard and Doreau (1997). Algal supplementation of the pregnant ewe increased 

milk yield and reduced milk protein concentration within the current study. By contrast, 

milk yield was unaffected by algal supplementation of the lactating ewe although a 

reduction in milk protein concentration was observed. This lends weight to the casein 

hypothesis, however it is not possible to verify this theory as parameters of casein 

synthesis were not measured within the current study. The majority of studies involving 

linseed supplementation of the ruminant have reported either an increase in milk protein 

concentration (Petit, 2002; Petit, 2003) or no difference between linseed and control 

treatments (Brzoska et al., 1999; Petit et al., 2002; Soita et al., 2003). Linseed appears to 

have acted by a similar mechanism to long-chain PUF A sources such as fish oil with 

regards to its observed effects upon milk fat and protein concentration, although no such 

effect was observed upon milk yield. 

4.5.2. Lamb parameters 

4.5.2.1. Maternal and neonatal behaviour 

The principal factors affecting the quality of maternal care towards the lambs appear to be 

ewe breed and prior maternal experience (Dwyer et al., 1999). Ewes traditionally used in 

extensive hill sheep systems tend to perform behaviours that enhance lamb survival, 

including vigorous grooming behaviour and facilitation of lamb suckling attempts (Dwyer 

and Lawrence, 1998). Furthermore, multiparous ewes exhibit less inappropriate 
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behaviours towards lambs during the first few hours after parturition than primiparous 

ewes (O'Connor et al., 1992). However, there is little evidence to suggest that 

supplementation of maternal diet may affect maternal behaviour. As observed in 

Experiment One, maternal diet had no significant effect upon maternal behaviour scores or 

the latencies of various maternal behaviours, indicating that the quality of maternal care 

provided to the lamb was similar amongst treatments. 

Observed latencies of neonatal behaviours concur with those published by Garcia

Gonzalez and Goddard (1998), Wassmuth et al. (2001) and Cloete et al. (2002). One of 

the first behaviours exhibited by the neonatal lamb is straightening of the hind limbs with 

concurrent attempts to stand (Vince, 1993), this behaviour being essential for exploratory 

behaviour, successful location of the udder and subsequent suckling. Within the current 

study, supplementation of the ewe with long-chain PUF As in the form of algae or linseed 

delayed standing by the lamb when compared to ewes supplemented with Megalac. The 

observed results are in contrast to those of Pickard et al. (2005), who observed that 

supplementing ewes with algal biomass significantly reduced the latency of lamb standing. 

However, the latencies observed by Pickard et al. (2005) were considerably higher (mean 

value across all treatments of 25.8 minutes) than those recorded within the current study 

(mean value across all treatments of 15.9 minutes). 

In contrast to suckling behaviours, which may be significantly affected by a combination 

of maternal behaviour, maternal posture and lamb sensory perception (O'Connor and 

Lawrence, 1992), the latency of lamb standing is primarily affected by ewe grooming 

behaviour. Dwyer and Lawrence (1999) noted that an increase in ewe grooming behaviour 

was related to delays in standing by neonatal lambs, furthermore, O'Connor and Lawrence 

(1992) concluded that ewe grooming behaviour within the first ten minutes post partum 

was positively correlated with lamb standing attempts. Although the maternal behaviour 
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scores utilised within the current study made use of qualitative measurements of ewe 

grooming behaviours, no quantitative measurements were made, therefore it is not possible 

to conclude whether the duration of grooming behaviours were increased in the ewes 

supplemented with algae and linseed compared to Megalac. 

Searching behaviours in the neonatal lamb are usually performed after standing is 

achieved, thus following a similar pattern to the observed latencies of standing. However, 

the interval between standing and searching for the udder was increased in lambs from 

ewes supplemented with Megalac compared to the other treatments. Searching behaviour 

in the lamb usually begins at the neck of the ewe, the lamb making upward searching 

movements with the nose in search of a smooth, warm and hairless area, i.e. the udder 

(Vince, 1993). The success of locating the udder may be affected by maternal behaviour, 

in particular the amount of movement by the ewe, and a delay in searching behaviour 

indicates an increased degree of separation from the dam or a decrease in the sensory 

perception of the lamb. Visual and olfactory cues are essential in contributing to the ability 

of the lamb to successfully locate the udder (Vince, 1993), enhanced visual development or 

olfactory detection may have resulted in the lower latency of searching observed in lambs 

produced by ewes supplemented with algae or linseed. 

Retinal cells contain a high proportion of long-chain PUFAs, specifically C22:6n-3, and 

some studies of long-chain PUF A supplementation of human infants have observed 

increases in visual acuity (Hoffman et al., 1993; Gibson et al., 1996; Birch et al., 2002). 

This may explain not only the decreased interval from standing to searching in lambs from 

ewes fed diets containing algae or linseed, but also the lower latency of successful suckling 

observed in these lambs. This is in agreement with the results of Rooke et al. (2001a) who 

described a tendency for piglets to locate and grasp the teats as a consequence of tuna oil 

supplementation during the period immediately prior to parturition. However, there was 
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no significant effect of maternal dietary supplementation upon brain fatty acid composition 

in the neonatal lamb, which suggests that retinal fatty acid composition may have been 

similar across all treatments. The latency of successful suckling in lambs from ewes fed 

with Megalac was increased when compared to the normal range of values reported by 

Fahmy et al. (1997) and to results obtained within Experiment One. Therefore the reduced 

latencies exhibited by lambs borne by ewes fed either algae or linseed may have only been 

significant as a consequence of an increased latency to suckle exhibited by lambs produced 

by ewes fed Megalac. 

4.5.2.2. Plasma fatty acids in the neonate 

Prior to colostrum ingestion, the neonatal lamb is wholly dependent upon the placenta to 

supply fatty acids for energy and tissue development. There is considerable debate as to 

whether fatty acids are transferred across the placenta with equal efficiency or whether 

selection mechanisms exist. 

Total fatty acid concentrations within neonatal plasma were similar to those observed in 

Experiment One, although considerably lower than values observed in ewes at one week 

pre-partum, a result in accordance concurring with the assertion by Leat and Harrison 

(1980) that fatty acid transfer from the dam to the foetus is limited in the ruminant. Lambs 

produced by ewes fed diet LL had a twofold increase in plasma fatty acid concentrations 

when compared to the other five treatments. This may be due to experimental error as 

there is no logical reason for this difference, especially given that the same diet was fed to 

ewes on treatments LL and LM during pregnancy. 

Studies by Elphick et al. (1979) and Leat and Harrison (1980) concluded that the transfer 

of C 16:0 across the ovine placenta was relatively low and that the placenta is impermeable 

to medium-chain fatty acids. As C16:0 was the principal fatty acid detected within ewe 
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plasma at one week pre-partum and was found in equivalent or higher concentrations in 

the neonatal lamb, it can be suggested that the concentration of this fatty acid may be 

influenced by maternal plasma concentrations, although it appeared to be unaffected by 

maternal dietary supply. 

The proportional contribution ofC18:0 to neonatal lamb plasma fatty acids was unaffected 

by maternal diet. Furthermore, no significant difference in the proportions of C 18: 1 trans 

existed among treatments, concurring with the observed results in ewe plasma at one week 

pre-partum. In the absence of an adequate EFA supply, C18:0 may be desaturated and 

elongated to form C20:3n-9 (Noble et al., 1982). However, this fatty acid was not 

detectable in any of the plasma samples analysed, indicating that the supply of C 18:2n-6 

and C18:3n-3 via placental transport may have been adequate to satisfy the requirements of 

the foetal lamb. 

The proportional contribution of C18:ln-9 cis to the lipid component of neonatal lamb 

plasma was higher than the proportions of this fatty acid within maternal plasma, 

suggesting that a concentration gradient selecting for this fatty acid may exist within the 

placenta. However, despite the wide range of values observed, maternal diet had no 

significant effect upon this parameter in the neonate. The concentrations observed were in 

agreement with the range of values reported by Noble et al. (1971) and Raijon et al. (1985) 

in lambs and Fritsche et al. (1993) and Rooke et al. (200Ib) in neonatal pigs. 

Supplementation of the pregnant ewe with linseed tended to increase the concentration of 

C 18:2n-6 within neonatal lamb plasma. Noble et al. (1978) asserted that the supply of 

CI8:2n-6 via the placenta to the foetal lamb was extremely low. Indeed, the proportional 

contribution of this fatty acid to total plasma fatty acids (average of 1.55 gllOOg fatty acids 

across all treatments) was considerably less than that observed in maternal plasma at one 
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week pre-partum (average of 14.0 g/lOOg fatty acids across all treatments). The lamb 

plasma concentration of CI8:2n-6 appeared to be affected by maternal diet, being highest 

in lambs born to ewes fed linseed, although this result did not directly concur with the 

maternal plasma concentrations in which the highest concentrations of C 18:2n-6 were 

found in ewes fed Megalac. Leat and Harrison (1980) concluded that although transfer of 

long-chain fatty acids across the placenta is low, there was no evidence for a selection 

gradient against C 18 :2n-6. The results of the current experiment contradict this 

hypothesis. Although neonatal fatty acid concentrations are lower than those observed in 

the dam, if the selection pressure was equal for all fatty acids, similar proportions would be 

observed within maternal and neonatal plasma. 

Elphick et al. (1979) suggested that low concentrations of C18:2n-6 within neonatal lamb 

plasma may result from the endogenous desaturation and elongation of C 18:2n-6 to form 

C20:4n-6. Indeed, within the current study, the concentrations of C20:4n-6 were higher in 

neonatal plasma than might have been expected from amounts measured in maternal 

plasma. Huang and Craig-Schmidt (1996) stated that C20:4n-6 is conditionally essential 

within the foetal and neonatal animal for the development of neural tissues. Therefore, 

given the negligible concentrations of this fatty acid in commercial sheep diets, a 

biochemical mechanism may have evolved either to selectively transfer C20:4n-6 via the 

placenta or to produce it endogenously within the neonate. 

Campbell et al. (1998) have identified a human placental membrane fatty acid binding 

protein that has higher binding capacities for C20:4n-6 and C22:6n-3 compared to CI8:2n-

6 and these authors concluded that this protein may serve to preferentially transport 

C20:4n-6 from the dam to the foetus. The presence of a similar protein within the ovine 

placenta would provide an explanation for the increased concentrations of C20:4n-6 

observed within neonatal plasma. 
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Shand et al. (1978) reported that increasing the supply of C 18:2n-6 to the foetal lamb 

conferred an increase in the concentration of C20:4n-6 within liver phospholipids. 

Furthermore, Noble et al. (1982) noted significant amounts of C20:4n-6 within neonatal 

lamb plasma and hypothesised that this was due to desaturation and elongation ofCI8:2n-

6 within the placenta, as the maternal concentrations of this fatty acid were extremely low. 

Raijon et al. (1985) propose a similar theory, whilst Noble et al. (1985), concluded that 

desaturation and elongation of fatty acids may occur within the placenta. Noble et al. 

(1971) also suggested that foetal tissues were able to convert C 18:2n-6 to C20:4n-6, and 

further postulated that the endogenous desaturation and elongation ofC18:2n-6 to C20:4n-

6 is more active within the foetal and neonatal lamb than in the ewe due to the increased 

cellular demand for this fatty acid (Noble et al., 1978). Uauy et al. (2000) suggested that 

neonatal human infants are able to desaturate and elongate EF As to their long-chain PUF A 

derivatives, furthennore, Salem et al. (1996) demonstrated that the synthesis of C20:4n-6 

from CI8:2n-6 within the human neonate was not only achieved within the liver and brain, 

but that it was more efficient than the synthesis of C22:6n-3 from C18:3n-3. It appears 

clear that the increased concentrations of C20:4n-6 in neonatal lambs compared to ewes 

within the current study were a consequence of elongation and desaturation of C 18 :2n-6 in 

response to an increased cellular requirement. 

Previous studies have reported shown that the concentration of CI8:3n-3 within neonatal 

lamb plasma is usually lower than that of C 18:2n-6 (Noble et al., 1982; Noble et al., 1985; 

Raijon et al., 1985), a difference which may be attributed to lower maternal plasma 

concentrations of CI8:3n-3. Concurring with the aforementioned results, CI8:3n-3 was 

not detectable in plasma of any neonatal lambs save for those borne by ewes supplemented 

with linseed during pregnancy. This result is not wholly unexpected given that CI8:3n-3 

is the principal fatty acid within linseed, although concentrations of this fatty acid were 
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extremely low when compared to maternal plasma results at one week pre-partum. As 

previously discussed, there is an increasing body of evidence to suggest that long-chain 

PUF As may be endogenously synthesised from their EF A precursors in human infants 

(Salem et al., 1996; Green and Yavin, 1998; Uauy et al., 2000), primates (Su et al., 1999; 

Su et al., 2001), rodents (Kanazawa and Fujimoto, 1993; Woods et al., 1996) and 

ruminants (Noble et al., 1985; Raijon et al., 1985). The magnitude of the difference 

between maternal and neonatal plasma C18:3n-3 concentrations may therefore, in part, be 

due to conversion of this fatty acid to C20:5n-3 and C22:6n-3 within the neonate. 

Wiesenfeld et al. (2003) fed linseed to pregnant rats and observed an increase in the 

amount of C20:5n-3 within serum of neonatal rats. As C20:5n-3 is produced as an 

intermediate during the conversion of CI8:3n-3 to C22:6n-3, it would be expected that the 

proportion of this fatty acid would be increased in lambs produced by ewes fed linseed. 

However, concentrations of C20:5n-3 in neonatal lamb plasma were similar among 

treatments. It may be suggested that the demand for C22:6n-3 during foetal and neonatal 

development is such that any excess C20:5n-3 may have been desaturated and elongated to 

C22:6n-3. Alternatively, the elongation and desaturation process that produces C20:5n-3 

from CI8:3n-3 may have been inhibited either by competition for ~-desaturase enzymes or 

by other metabolic processes within the neonate. 

Treatment diets containing algae or linseed were formulated to provide a similar potential 

supply of C22:6n-3 to the pregnant ewe (and subsequently to the foetus), either preformed 

(algae) or by endogenous synthesis (linseed). Estimates of the efficiency of conversion of 

CI8:3n-3 to C22:6n-3 vary, but the consensus view appears to be that preformed C22:6n-3 

is between seven and eight-fold more effective at providing C22:6n-3 accretion in tissues 

compared to C18:3n-3 (Su et al,. 1999; 2001). The similar concentrations ofC22:6n-3 in 

plasma of neonatal lambs between the algae and linseed treatments suggests that this 
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formulation was successful and that the level of linseed inclusion within the diet provided 

equivalent concentrations of C22:6n-3 as the algal diet. Nonetheless, Sinclair et al. (2002) 

suggested that plasma C22:6n-3 may not be an accurate indicator of tissue C22:6n-3 status 

due to the biosynthetic capacities of brain and retina. 

4.5.2.3. Neonatal lamb brain fatty acids 

The range of lipid concentrations within brain tissue in the current study (from 20.6 mglg 

freshweight to 25.5 mg/g freshweight) are in agreement with the values proposed by 

Lauritzen et al. (2001). Given the essential role of fatty acids within nervous tissue, it it 

logical to suggest that, unless dietary supply is severely compromised, the brain has 

evolved to maintaining a constant lipid concentration. 

The proportions of the principal saturated (CI6:0 and CI8:0) and monoenoic (CI8: I trans, 

C18: In-9 cis) fatty acids within lamb brain tissue were similar among treatments. 

Although saturated and short or medium-chain fatty acids are present within brain tissue 

and have minor functions, arguably the most important fatty acids supplied to the foetus 

for brain development are the EFA precursors of long-chain PUFAs (CI8:2n-6 and 

CI8:3n-3) and preformed long-chain n-6 and n-3 fatty acids (C20:4n-6, C20:5n-3, C22:6n-

3). 

Small amounts of CI8:2n-6 were present within brain tissue with proportions similar 

across all treatment groups. Neonatal plasma results showed far greater concentrations of 

this fatty acid in lambs produced by ewes fed either linseed or Megalac diets. The lower 

brain concentrations of this fatty acid in the lambs borne by ewes fed linseed or Megalac 

may be attributed to its use as a precursor for the long-chain PUFA, C20:4n-6. Previous 

studies (Yamamoto et al., 1987; Green and Yavin, 1993; Salem et al., 1996) have 

demonstrated that cells within the brain are capable of synthesising long-chain PUF As in 
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the absence of a preformed dietary supply. Therefore, neonatal lambs from ewes fed either 

linseed or Megalac diets should synthesise C20:4n-6 from C 18:2n-6. If, by contrast, 

endogenous synthesis did not occur within the brain and fatty acid composition was only 

affected by placental supply, highest proportions of C20:4n-6 would be expected in 

neonatal brain tissue from lambs produced by ewes fed algae, with lower concentrations in 

those borne by ewes fed linseed or Megalac, as the amount of C20:4n-6 within ewe plasma 

at one week pre-partum was significantly higher in ewes supplemented with algae 

compared to linseed or Megalac. 

Elongation and desaturation of CI8:2n-6 may also be inhibited by other fatty acids, 

specifically CI8:3n-3. Lambs produced by ewes fed linseed had proportions ofC20:4n-6 

within brain tissue similar to those of lambs borne by ewes given a preformed dietary 

supply ofC20:4n-6. It can therefore suggested that the conversion ofCI8:2n-6 to C20:4n-

6 was most efficient in lambs produced by ewes fed Megalac, was intermediate in those 

from ewes fed linseed due to competition from CI8:3n-3 for ~-desaturase enzymes and 

was lowest in those borne by ewes fed algae which was predicted to have the highest 

placental supply of C20:4n-6. 

Su et al. (2001) evaluated the efficiency of supplementing foetal baboons with CI8:3n-3 as 

an alternative to a preformed supply of C22:6n-3, and concluded that although C22:6n-3 is 

synthesised from C18:3n-3 and utilised by the brain, the process is eightfold less effective 

than supplementing the animal with a preformed supply. Within the current study, 

concentrations of C22:6n-3 were similar between neonatal lambs produced by ewes fed 

algae or linseed, indicating that endogenous synthesis was as effective as a preformed 

supply for deposition into brain. The experimental concentrate supplemented with algae 

contained 7.71 glkg DM ofC22:6n-3 whereas the linseed concentrate contained 54.9 glkg 

DM CI8:3n-3. Therefore, it can be seen that CI8:3n-3 within the current study was just 
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over sevenfold less effective than preformed C22:6n-3 for deposition into brain, concurring 

with the results of Su et al. (2001). 

Despite the lack of a dietary supply of C22:6n-3 in ewes fed Megalac pre-partum, lambs 

produced by these ewes had proportions of C22:6n-3 within brain tissue equivalent to 

lambs from ewes fed either algae or linseed. Given the low concentrations of this fatty 

acid within neonatal plasma, it may be suggested that, in the absence of a placental supply 

of either C 18:3n-3 or preformed C22:6n-3, these lambs may have exhibited a preferential 

rate of uptake and deposition of C22:6n-3 into brain in an attempt to maintain long-chain 

PUF A concentrations. Both feral and domesticated sheep have a relatively low dietary 

supply of CI8:3n-3 and no dietary preformed C22:6n-3 source, thereby a biochemical 

mechanism must exist to preferentially conserve and deposit C22:6n-3 into nervous tissue. 

4.5.2.4. Lamb growth rate 

Neonatal survival is dependent upon a combination of factors, including birthweight, 

perinatal vigour and the ability to ingest colostrum during the immediate postnatal period. 

Studies in neonatal lambs (Christley et al., 2003) and piglets (Tuchscherer et al., 2000) 

concluded that birthweight is an important factor; hypothermia may be increased by a high 

surface area: volume ratio (as exhibited by smaller animals) with a concurrent increase in 

mortality. Supplementation of the pregnant female with long-chain PUFAs has been 

shown to increase birthweight of both human (Olsen et al., 1992; Crawford et al., 1997; 

Smuts et al., 2003) and animal (Rooke et al., 2001a) offspring, however, no significant 

effect of adding algae or linseed to the diet of the pregnant ewe was observed upon lamb 

birthweight in the current study. 

Post partum, one of the most important contributors to lamb growth rate is the energy and 

protein supplied by maternal milk. As long-chain PUF A supplementation of the lactating 
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animal has been shown to reduce milk yield, and particularly milk fat yield (Franklin et al., 

1999; Petit, 2002; Petit et al., 2003), a decrease in lamb growth rate would have been 

expected to be exhibited by lambs suckling ewes offered diets AA and LL. However, no 

significant effects of dietary strategy were observed upon lamb growth rate, a result which 

concurs with those of Pickard et al. (2005). This result may be explained by the 

observation that although milk component concentrations were altered by dietary 

treatment, milk component yields were similar among dietary strategies. 

One consequence of supplementing infant formulae with long-chain n-3 PUF As is a 

concomitant reduction in C20:4n-6 supply (Homstra et al. 1995). Koletzko (1992) 

concluded that C20:4n-6 deficiency is a significant factor in the reduced growth rate of 

human infants fed formulae. Therefore, it may be suggested that lambs with increased 

concentrations of not only n-3 fatty acids, but also C20:4n-6, may have an improved 

growth rate. However, despite the increased concentrations of C20:4n-6, C20:5n-3 and 

C22:6n-3 in plasma of lambs from treatment AA, this appears to have had little effect on 

lamb growth. 

4.5.2.5. Lamb antioxidant status 

Lamb erythrocyte GPx activities at birth were similar to values observed for pregnant ewes 

and gradually increased over time to reach a three-fold increase at three weeks of age. 

Studies indicate that the placental transfer of selenium may be limited in the ruminant 

(Jacobsson and Oksanen, 1966; Bostedt and Schramel, 1990). However, samples were 

taken from lambs at twelve hours post partum after considerable colostrum consumption. 

Selenium transfer from the ewe to the lamb is not constrained by any mammary barrier, 

hence the concurrence between concentrations in the lactating ewe and suckling lamb. 

Increasing the supply of long-chain PUFAs to the lamb, either by placental or mammary 

transfer, would be expected to increase the oxidative challenge with consequent reductions 
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in GPx activity. By contrast, Smith and Isopenko (1997) suggested that GPx activity 

increases in response to a peroxidative challenge. Results observed within the current 

study agree with those of the aforementioned authors in that PUF A supplementation of the 

ewe did not affect the activity of lamb erythrocyte GPx. The range of activities observed 

within the current study (95-315 U/ml PCV) concur with those reported by Smith et al. 

(1994) in weaner sheep. 

Lamb serum CK concentrations were below the thresholds considered by EI-Neweehy et 

al. (2000) to be indicative of sub-clinical (1186-3740 IU/I) or clinical (4291 lUll) 

nutritional myopathy. High CK values observed in the neonatal lamb (12 hours of age) are 

likely to have been a consequence of the tissue damage incurred during parturition, with an 

increased margin for experimental error incurred by the difficulty of obtaining blood 

samples from these animals. Serum CK concentrations declined with age, reaching levels 

considerably lower than those reported by Clemens (1989) and Batra and Hidiroglou 

(1993) in pigs. Although the addition of linseed or algae to the maternal diet increased the 

dietary long-chain PUF A supply with a concurrent increase in peroxidative challenge to 

the animal, this challenge was not sufficient to induce tissue damage in the lamb, possibly 

as a consequence ofthe high maternal dietary vitamin E supply. 

4.5.2.6. Suckling lamb plasma fatty acids at twelve hours of age 

The rumen of the neonatal lamb is undeveloped and initially, free of the fanua needed for 

ruminal digestion (Skillman et al., 2004). Consequently, the neonatal lamb, solely fed on 

colostrum, may be considered as a monogastic animal in terms of digestive process, 

without the potential to saturate PUFAs via the rumen. The fatty acid composition of the 

plasma lipid component is therefore directly linked to the fatty acids provided by 

colostrum from the ewe with a minor contribution made by fatty acids transferred across 

the placenta. 
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Total plasma fatty acids were increased approximately six-fold after the lamb had suckled, 

compared with the neonate. This result concurs with those of both Leat and Harrison 

(1980) and Raijon et al. (1985), both sets of authors concluding that lambs were deficient 

in EF As at birth but achieved a satisfactory fatty acid status after ingestion of colostrum. 

Although the amount of colostrum ingested by the lamb over the first twelve hours after 

birth is difficult to assess, the high colostrum fat content, ranging from 97 glkg to 136 glkg 

will have been a significant factor in the enhancement of lamb fatty acid status. 

The similarity in total plasma fatty acid concentrations among treatments suggests that 

lambs may be able to regulate their colostrum consumption according to their dietary 

requirements. Several studies have demonstrated that voluntary feed intake is depressed 

by the provision of long-chain PUFAs in adult animals, however, this tends to be a 

consequence of changes in ruminal function (Chilliard, 1993; Velasco et al., 2001; 

Donovan et al., 2000), which do not apply to the sucking lamb in the current situation. 

Studies in humans have reported that high-fat diets do not invoke the sensations of satiety 

after a meal produced by diets high in water, protein or carbohydrate (Blundell and 

MacDiarmid, 1997). If lambs are able to select their level of colostrum intake according to 

its fat content, it appears that this is not related to their level of satiation, but may be related 

to a biochemical or metabolic process. The enzyme cholecystokinin (CCK) has been 

related to the control of food intake, and its release into the monogastic stomach is 

stimulated by the presence of partly digested lipid and protein compounds (Crawley and 

Corwin, 1994). Therefore, it is possible that the lower fat content of the colostrum 

produced by ewes supplemented with diets containing linseed did not stimulate sufficient 

CCK production to limit colostrum intake compared to the other four diets. 

By contrast, although the proportion of C16:0 within lamb plasma was similar between 

algae and Megalac treatments, lambs suckling ewes fed diets containing linseed had a 
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lower proportion of C16:0 within plasma. Long-chain PUFA supplementation of 

ruminants has been consistently demonstrated to reduce synthesis of C16:0 within the 

mammary gland and to lower the secretion of this fatty acid into colostrum and milk, 

therefore this result may have arisen as a consequence of effects of linseed 

supplementation on milk fatty acid composition. This result is in agreement with the work 

of Petit (2002), who reported reduced concentrations of C16:0 in milk of dairy cows fed 

whole linseed compared to Megalac. Ewes fed diets containing algae also had a significant 

dietary supply of long-chain PUF As within the diet, but they were also supplemented with 

a preformed supply of C16:0 in the form of Megalac, and therefore may have been less 

reliant upon the endogenous synthesis of this fatty acid for secretion into colostrum and 

transfer to the lamb. 

The proportions of C 18:0 within plasma lipids of the suckling lamb at twelve hours of age 

reflect the fatty acid composition of ewe plasma at one week pre-parium, i.e. the lowest 

concentrations of C18:0 were found in lambs suckling ewes fed diets containing algae, 

intermediate in those suckling ewes consuming diets based on Megalac and highest in 

those suckling ewes supplemented with linseed. This may be attributed to changes in the 

deposition of C18:0 into milk and subsequent transfer to the lamb as a consequence of 

differences in ruminal biohydrogenation of unsaturated fatty acids among treatments. 

Augmenting the ruminant diet with long-chain PUFAs has been reported by Kitessa et al. 

(2001c) to disrupt ruminal biohydrogenation with consequent increases in the production 

of trans C 18: 1 fatty acids. This concurs with the results of the current study: the 

proportional contribution of C 18: 1 trans fatty acids to plasma fatty acids were significantly 

higher in lambs suckling ewes offered diets containing algae, and given the lack of a 

functioning rumen in these animals, may be attributed to the supply from colostrum. As 

demonstrated by Goodridge et al. (2001), feeding linseed to ruminants tends to increase the 

products of biohydrogenation within plasma and milk. The main product of ruminal 
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biohydrogenation ofCI8:3n-3 is CI8:0, therefore, the increased dietary supply ofCI8:3n-

3 to ewes fed linseed may be suggested to have significantly increased the proportion of 

C18:0 within colostrum and hence the concentration of this fatty acid in lamb plasma. 

As observed for CI8:0, the concentrations of CI8:1n-9 cis within suckling lamb plasma 

mirrored those observed within ewe plasma at one week pre-parIum, suggesting that 

similar patterns would have been observed in colostrum. Noble et al. (1978) observed 

lower concentrations of C18:1n-9 cis within the colostrum of ewes fed a protected PUFA 

supplement containing high concentrations of C 18:2n-6, furthermore, Petit (2002) reported 

decreases in the concentrations of this fatty acid in milk of dairy cows supplemented with 

linseed compared to a Megalac control. In terms of algal supplementation, both Franklin et 

al. (1999) and Papadopoulos et al. (2002) observed decreases in C18:1n-9 concentration in 

milk fat as a consequence of adding algae to the ruminant diet. These effects may be 

extrapolated into colostrum and further into the plasma of suckling lambs. 

Both Noble el al. (1978) and Raijon et al. (1985) described low concentrations of the EFAs 

CI8:2n-6 and C18:3n-3 within neonatal lamb plasma, concluding that these fatty acids can 

only be transferred into plasma at satisfactory concentrations after ingestion and absorption 

of fatty acids from colostrum. These conclusions are borne out by the results of the current 

study, with considerably higher amounts of both C18:2n-6 and C18:3n-3 observed in 

suckling lambs at twelve hours of age compared to neonatal lambs immediately after birth. 

Concentrations of C 18:2n-6 within lamb plasma reflect ewe plasma results at one week 

pre-parIum, in that both sources of long-chain PUFAs (algae or linseed) depressed the 

concentration of this fatty acid within the plasma lipid fraction. This suggests a concurrent 

reduction in colostral CI8:2n-6 concentration and subsequent drop in the efficiency of 

transfer to the suckling lamb. As previously discussed (section 4.5.1.4.), both Franklin et 

al. (1999) and Papdopoulos el al. (2002) demonstrated a reduction in the amount of 
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CI8:2n-6 within milk of dairy cattle supplemented with marine algae. Petit (2002) also 

reported lower concentrations of C18:2n-6 in the milk fat of cows fed diets augmented 

with whole linseed. Therefore, it is likely that the positive relationship between lamb and 

ewe plasma C18:2n-6 is due to transfer of this fatty acid into milk at a concentration 

proportional to the amount found in ewe plasma. 

As the precursor of C20:4n-6 within the ruminant, the proportion of C18:2n-6 within 

plasma of suckling lambs might have been expected to vary according to the demands for 

endogenous synthesis of long-chain n-6 PUF As. Indeed, the study published by Shand et 

al. (1978) concluded that both neonatal and suckling lambs have the ability to elongate and 

desaturate CI8:2n-6 in order to produce C20:4n-6 within the liver. However, potential 

differences in mammary transfer of C 18 :2n-6 into colostrum, with the added complication 

of the maternal dietary supply of preformed C20:4n-6 in ewes fed algae, make it difficult 

to draw meaningful conclusions regarding the efficiency of the endogenous production of 

C20:4n-6 in the suckling lamb. 

Studies suggest that the suckling animal has the capacity to elongate and de saturate EF As 

to their long-chain PUFA derivatives (Uauy et al., 2000; Bazinet et al., 2003) but the 

transfer of preformed long-chain n-3 PUF As from colostrum may have depressed this 

synthesis. Dietary supply may have therefore been the major factor affecting the 

concentration of long-chain n-3 PUF As in lamb plasma. The magnitude of the differences 

between dietary supply and plasma concentrations of C18:3n-3 in the ewe were 

considerable with a large proportion of the dietary C18:3n-3 appearing to be 

biohydrogenated or saturated. Further to this result, the five-fold increase in plasma 

C18:3n-3 concentrations of ewes fed linseed compared to those fed algae or Megalac was 

reduced to three-fold in plasma of lambs suckling ewes fed linseed compared to algae or 

Megalac. Suitable data were not available to calculate the transfer efficiency of ingested 
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C18:3n-3 into colostrum or milk within the current study, but the results suggest that 

C 18:3n-3 may be transferred from the ewe to the lamb at an efficiency of approximately 70 

%. This figure is only slightly higher than that suggested by Goodridge et al. (2002) who 

observed a transfer efficiency from a maternal diet high in C18:3n-3 into milk of64 %. 

A positive relationship appeared to exist between maternal plasma concentrations of 

C20:5n-3 and C22:6n-3 at one-week pre-partum with those in the suckling lamb at twelve 

hours post parIum; the highest concentrations of C20:5n-3 observed in lambs suckling 

ewes fed algae or linseed compared to Megalac and the highest amounts of C22:6n-3 

reported in lambs suckling ewes supplemented with algae compared to linseed or Megalac. 

Although the maternal supply of C 18:3n-3 provided by the diets containing linseed was 

sufficient to provide equivalent concentrations of C22:6n-3 within brain tissue and plasma 

of neonatal lambs, lambs suckling ewes fed linseed had significantly less C22:6n-3 within 

plasma at twelve hours post partum than those suckling ewes fed algae. It can therefore be 

hypothesised that either the placenta has the ability to desaturate and elongate CI8:3n-3 to 

C22:6n-3 as suggested by Noble et al. (1985), Koletzko (1992) and Williard et al. (2001) 

and that this characteristic is lacking in the mammary gland, or that the mechanisms by 

which C22:6n-3 is produced from C18:3n-3 are more effective in the ewe during 

pregnancy compared to lactation. Certainly, an endogenous mechanism for C22:6n-3 

production must exist given the similarity between brain C22:6n-3 concentrations in lambs 

from ewes fed algae, linseed or Megalac, despite differing maternal dietary supply of 

C22:6n-3. As with the partitioning and synthesis of other metabolic products and 

chemicals during pregnancy, it is possible that there may be endocrine effects upon the rate 

of endogenous synthesis of C22:6n-3 which have not yet been investigated. As the greater 

part of nervous system and brain development occur during lamb foetal development. a 

biochemical mechanism by which C22:6n-3 synthesis is maximised during the last few 

weeks of pregnancy and minimised during lactation would maximise ewe and lamb 
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nutritional resources. However, the existence of such a mechanism has yet to be 

demonstrated in the ruminant. 

4.5.2.7. Suckling lamb plasma fatty acids at three weeks of age 

At three weeks of age, digestion in suckling lambs with no access to forage occurs by a 

similar process to that of the monogastric, with a high positive correlation being expected 

between the fatty acid composition of ewe milk and lamb plasma. Despite differences in 

milk fat yield among treatments, the concentration of total fatty acids in lamb plasma was 

similar among treatments, suggesting that all lambs had a similar dietary fat supply. 

Although a proportion of ingested fatty acids are utilised for specific metabolic purposes, 

the majority of ingested fat in the suckling lamb is oxidised and used as an energy source 

(Palmquist, 1984). Therefore, despite the variation in milk fat yield, the concurrence 

among lamb plasma fatty acid concentrations may explain the lack of a significant 

treatment effect upon lamb growth rate. 

The relatively high concentration of C16:0 within lamb plasma was not unexpected as this 

fatty acid predominates within milk fat. However, various studies have demonstrated a 

reduction in fatty acid synthesis within the mammary gland as a result of long-chain PUF A 

supplementation (Brz6ska et al., 1999; Donovan et al., 2000), therefore the lack of any 

treatment effect upon the plasma concentration of this fatty acid was surprising. It is 

notable that a lower proportion of C16:0 was present within the plasma of lambs sucking 

ewes supplemented with dietary strategies AL and LL, i.e. those fed linseed during 

lactation. Diets based on either algae or Megalac both contained a significant proportion 

of C16:0 as a result of Megalac being added to balance fatty acid concentrations. 

Therefore, the lower dietary supply of C16:0 conferred by the linseed diet may have 

reduced proportions of this fatty acids in milk with a concomitant reduction in C 16:0 

within lamb plasma. 
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Augmentation of maternal diets with linseed during lactation increased the proportion of 

C18:0 within lamb plasma fatty acids at three weeks post partum. This may be attributed 

to rumina 1 biohydrogenation of CI8:2n-6 and CI8:3n-3 within the linseed diet increasing 

the duodenal flow ofC18:0 concurrent deposition into plasma and milk. Trans C18: I fatty 

acids have been implicated as one of the major causes of milk fat depression in lactating 

ruminants fed long-chain PUFAs (Romo et al., 1996; Brz6ska et al., 1999; Bauman and 

Griinari, 2001), their effect attributed to a decrease in the efficiency of enzymes 

responsible for fatty acid synthesis within the mammary gland (Ahnadi et ai.. 1998). 

Increased concentrations of C 18: 1 trans were observed in colostrum and milk fat of ewes 

as a result of PUF A supplementation within Experiment One, with a concurrent reduction 

in milk fat concentration. The increase in C 18: 1 trans concentration within plasma of 

lambs suckling ewes offered dietary strategy AA positively correlates with the reduced 

milk fat yields of ewes fed this diet. Furthermore, as C 18: 1 trans is principally produced 

by ruminal biohydrogenation of PUF As, the monogastric status of the suckling lamb 

indicates that this fatty acid which must have been supplied preformed from the diet. A 

significant carry-over effect of algal supplementation upon C 18: I trans concentrations 

within lamb plasma was observed when data were analysed according to maternal diet pre

partum (Algae vs. Megalac, P<0.05; Algae vs. Linseed, P<0.05, data not shown) which 

may explain the carry-over effects of algal supplementation during pregnancy upon milk 

fat concentration during lactation. 

As observed within ewe plasma at one week pre-partum, supplementing the maternal diet 

with algae during lactation reduced the proportion of CI8:ln-9 cis within plasma fatty 

acids of the suckling lamb. This implies that the amount of this fatty acid within milk was 

reduced by algal supplementation, a result which concurs with those observed within 

Experiment One as a result of fish oil supplementation. The reason behind the drop in 

C 18: 1 n-9 cis concentrations in lambs supplemented with long-chain PUFAs is not clear, 

266 



and is in direct contrast to the results reported by Offer et al. (2001), in which dairy cows 

fed fish oil had higher concentrations of C 18: I n-9 cis within the lipid fractions of plasma. 

Concentrations of CI8:2n-6 are relatively low within milk fat (Shingfield et al., 2003), 

although, as observed within Experiment One, this was one of the predominant fatty acids 

within lamb plasma lipids. Neonatal lambs are generally considered to be deficient in 

EFAs (Leat, 1996; Payne, 1978), but Noble et al. (1971) suggested that C18:2n-6 may be 

preferentially accumulated in phosphatidylglycerols to overcome the deficiency effects 

observed before milk consumption. Therefore, a compensatory mechanism may exist to 

maintain the EFA status of the suckling lamb, despite the low dietary supply. 

Although it is possible to suggest differences in the efficiency of C20:5n-3 and C22:6n-3 

synthesis among treatments, only maternal dietary supply appeared to have any significant 

effect upon concentrations of C20:4n-6 within the suckling lamb. Furthermore, 

supplementation of the ewe within algae during pregnancy continued to have an 

augmenting effect upon the amount of C20:4n-6 within lamb plasma at three weeks of age. 

It is hypothesised that deposition of C20:4n-6 into maternal phosphatidylglycerols during 

the period of supplementation, followed by mobilisation of body reserves during lactation 

may have produced a labile source of C20:4n-6 for secretion into milk, thereby increasing 

the dietary supply to the lamb. 

Bazinet et al. (2003) observed a significant increase in the amount of C18:3n-3 within 

piglet plasma and tissues as a consequence of supplementing the diet of the lactating sow 

with linseed oil. By contrast, C18:3n-3 was present as a minor constituent of the fatty acid 

fraction of suckling lamb plasma, at proportions comparable to those reported by 

Palmquist et al. (1977) in suckling lambs. Various studies have demonstrated increases in 

the concentration of CI8:3n-3 within milk conferred by linseed supplementation 
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(Kennelly, 1996; Brzoska et al., 1999; Petit et al., 2002), however, if this phenomenon 

occurred, it was not carried further into an increase in the proportion of CI8:3n-3 within 

lamb plasma. 

One aim of the current study was to evaluate linseed as a replacement for fish oil within 

the diet of the pregnant and lactating ewe as a precursor for endogenous synthesis of 

C20:5n-3 and C22:6n-3. Bazinet et al. (2003) noted a significant increase in the proportion 

of C20:5n-3 and C22:6n-3 within plasma of piglets suckling sows supplemented with 

linseed oil. Furthermore, feeding formulas high in C 18:3n-3 increased the deposition of 

C20:5n-3 and C22:6n-3 into neural tissues of piglets in the study published by Arbuckle 

and Innis (1992). However, studies in neonatal humans (Salem et al., 1996), primates (Su 

et at., 1999; Su et al., 2001) and rats (Woods et al., 1996) have reported that CI8:3n-3 is 

significantly less effective as a source of C22:6n-3 for deposition into tissues compared to 

preformed C22:6n-3. No C20:5n-3 was present in any of the treatment diets supplied to 

the ewes, and the amounts present in plasma are suggested to be derived from CI8:3n-3 via 

elongation and desaturation, or by peroxisomal retroconversion of C22:6n-3. The 

proportional contribution of C20:5n-3 to plasma fatty acids was increased by linseed 

supplementation of the ewe, suggesting that this fat source was effective in increasing 

C20:5n-3 deposition in the lamb, but concentrations were not as high as those observed in 

lambs suckling ewes fed algae. However, C22:6n-3 deposition in suckling lamb plasma 

was unaffected by linseed supplementation compared to Megalac, suggesting that the rate

limiting step in endogenous C22:6n-3 synthesis may be the conversion of C20:5n-3 to 

C22:6n-3 within microsomes. Despite differences in ewe plasma fatty acid composition, 

C22:6n-3 and C20:5n-3 concentrations were similar in suckling lamb plasma as a result of 

algal supplementation, suggesting either that a substantial amount of retroconversion 

occurred within the lamb to fulfil C20:5n-3 requirements, or that a selective transfer 
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against C22:6n-3 occurred within the mammary gland, thereby reducing the dietary 

C22:6n-3 supply to the lamb. 
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4.6. Conclusion 

Both marine algae and linseed were effective in improving neonatal lamb vigour in terms 

of reducing the latency of suckling, however, the deposition of C22:6n-3 into neonatal 

lamb brain tissue was unaffected by treatment diet. Furthermore, neither preformed 

C22:6n-3 nor its precursor fatty acid CI8:3n-3 had a significant effect upon ewe gestation 

length. Changing from a diet containing long-chain PUF As to a saturated fatty acid source 

during lactation negated the decrease in lamb growth rate observed with long-chain PUF A 

supplementation during lactation as observed previously. Significant carry-over effects of 

pre-parIum diet upon milk composition and yield warrant further investigation. 
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5. FISH OIL AND VITAMIN E SUPPLEMENTATION OF EWES DURING 

PREGNANCY AND LACTATION: EFFECTS UPON EWE AND LAMB 

PERFORMANCE 

5.1. Introduction 

The first experiment demonstrated that supplementing pregnant ewes with long-chain 

PUFAs in the form of fish oil significantly increased gestation length and reduced the 

latencies of neonatal lamb behaviours. Furthermore, increasing the vitamin E supply to the 

pregnant ewe augmented the concentrations of this vitamin within brain and muscle tissue, 

and improved lamb birthweight. However, continuing the long-chain PUF A 

supplementation into lactation significantly reduced milk fat concentration and yield and 

depressed lamb growth rate. 

In an attempt to define the specific fatty acids responsible for changes in gestation length 

and neonatal behaviour, the second experiment employed a species of marine algae high in 

DHA within the diet. Linseed was used as an alternative fatty acid source to assess 

whether endogenous synthesis of C22:6n-3 from C 18:3n-3 was adequate for the deposition 

of C22:6n-3 into lamb brain tissue. Although supplementation with either linseed or algae 

improved latencies of lamb behaviour, there was no effect upon gestation length, 

suggesting that C22:6n-3 supply was not wholly responsible for the effects observed in 

Experiment One. Changing to a diet containing Megalac during lactation negated the 

effects of PUF A supplementation upon lamb growth rate, however, significant carry-over 

effects of algal supplementation during pregnancy were observed upon milk production. 

To determine the ideal dietary strategy for improving lamb vigour and birthweight, without 

reducing growth rate, the current study returned to the use of fish oil as the principal fatty 

acid source during pregnancy, followed by Megalac in lactation. This was considered to 
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provide a source of both C20:5n-3, thought to increase gestation length; and C22:6n-3 for 

deposition into lamb brain with concurrent effects upon vigour, whilst abrogating negative 

effects of PUF As during lactation. Although promising results were observed within 

Experiment One, the extent of vitamin E transfer from the ewe to the lamb remains 

unclear. The effects of supplementing ewes with either basal or supranutritional dietary 

concentrations of vitamin E were therefore re-explored. 

5.2. Objectives 

1) To investigate the targeted supplementation of ewes with fish oil during pregnancy 

followed by Megalac® during lactation upon ewe and lamb behaviour and performance. 

2) To investigate the supplementation of pregnant and lactating ewes with supranutritional 

concentrations of vitamin E upon ewe and lamb behaviour and performance. 

5.3. Materials and Methods 

5.3.1. Experimental animals and housing 

Thirty twin-bearing ewes with a mean age of 3.2 years (s.d. 1.25), liveweight of 73.1 kg 

(s.d. 5.82) and body condition score of 3.1 units (s.d. 0.21) were selected from the Harper 

Adams University College early lambing flock (Edgmond, Newport, Shropshire, UK). All 

ewes were Suffolk x North of England mules, blocked according to age, condition score 

and liveweight and randomly allocated to one of three strategies within a randomised block 

design. Ewes were housed, individually penned and bedded on sawdust from week 15 of 

pregnancy (designated week -6) until week 4 (week +4) of lactation. An additional nine 

twin-bearing ewes were housed in three group pens until parturition, bedded on straw and 

fed one of three concentrates (three ewes per treatment, diets ML, FL or FH). These ewes 

provided nine neonatal lambs (one per ewe) for sacrifice. The building was continually lit 

and all ewes had free access to fresh water supplies. 
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5.3.2. Experimental diets 

A basal ration was fonnulated containing barley, sugar beet pulp, soyabean meal, urea and 

molasses (Table 5.1). To this diet was added 59 g of long-chain PUFAs in the fonn of 

pilchard/mackerel oil with an n-3 fatty acid content of approximately 30 gikg (United Fish 

Industries, Gilbey Road, Grimsby, South Humberside, UK) or a control saturated fat 

(CI6:0; Megalac®; Volac UK Ltd, Royston House, Royston, UK). Butylated 

hydroxytoluene was added as an antioxidant to the fish oil at a rate of at 500 mglkg. 

Exactly 30 g/kg of vitamin/mineral supplement containing either 50 mglkg or 500 mglkg 

vitamin E was also added to each diet. Numerous studies have demonstrated that 

protecting fatty acids from ruminal biohydrogenation increases their absorption and 

deposition in ruminant tissues and milk (Jenkins, 1993; Kitessa et al. 2001a; Gulati et al., 

2002), however, it is not clear whether adsorbing fish oil onto venniculite is an efficient 

protection method. Therefore, unprotected fish oil was employed within the treatment 

concentrates. The resulting concentrates were isoenergetic and isonitrogenous with a 

predicted nutrient composition of 14.1 MJ/kg DM metabolisable energy, 255 glkg DM 

crude protein and 80.3 glkg DM fatty acids. 

The treatment concentrates were fed in three dietary strategies in an attempt to reduce the 

detrimental effect of long-chain PUFA supplementation upon milk composition and lamb 

growth rate. Therefore, during pregnancy, 20 ewes were fed fish oil in combination with 

either a basal or supranutritional concentration of vitamin E, and 10 ewes were fed 

Megalac® with a basal concentration of vitamin E. The ewes fed fish oil were then 

changed to a Megalac® -based concentrate at 24 hours post partum, each concentrate again 

containing either a basal or supranutritional concentration of vitamin E. 
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The treatment diets were therefore: 

MML: Megalac® + basal vitamin E during pregnancy and lactation (ML) 

FML: Fish oil + basal vitamin E during pregnancy (FL) 

Megalac® + basal vitamin E during lactation (ML) 

FMH: Fish oil + supranutritional vitamin E during pregnancy (FH) 

Megalac® + supranutritional vitamin E during lactation (MH) 

Table 5.1. Raw material and chemical composition ofthe[our treatment concentrates 
ML MH FL 

Raw material composition (g/kg) 
Barley 536 536 545 
Sugar beet pulp 100 100 100 
Soyabean meal 200 200 200 
Fish oil 59 
Megalac® 68 68 
Molasses 50 50 50 
Urea 16 16 16 
VitaminslMinerals 30 30 30 

Predicted' chemical composition (g/kg DM) 
DM (g/kg) 864 864 862 
CP 254 254 255 
ERDP' 152 152 153 
DUp· 83 83 81 
EE 80 80 80 
NOF 198 198 200 
Ash 83 83 74 
Vitamin E (mg/kg in premix) 500 500 50 

ME (MJlkg DM) 14.2 14.2 14.1 
FME (MJlkg DM) 11.1 11.1 11.2 
ERDP:FME Ratio 13.7 13.7 13.7 

FH 

545 
100 
200 
59 

50 
16 
30 

862 
255 
153 
81 
80 
200 
74 
500 

14.1 
11.2 
13.7 

VitaminlMineral supplement (Hac Ewe 25, Roche Products Limited, Heanor, Derbyshire) supplied per kg of 
diet: Calcium 7.06 g; Sodium 2.67 g; Phosphorus 1.65 g; Selenium 0.36 mg; Vitamin A 14,40010; Vitamin 
D 30,000 IU; Vitamin E 50 mg or 500 mg. 
, (AFRC, 1993) 
• calculated according to AFRC (1993) at a rumen outflow rate of 0.08 mVhour 

Ewes were fed a stepped concentrate ration (Table 5.2) in two equal meals per day (at 

08:00 and 16:00) during pregnancy and at a flat-rate of 1.7 kg/day in three meals per day 

(at 08:00, 12:00 and 16:00) during lactation. Straw was fed at a flat rate of 0.8 kg/day 

(freshweight) during pregnancy and was increased from week + 1 onwards (Table 5.3). 

Straw refusals were weighed back weekly. 
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Table 5.2. Daily concentrate allowance [or ewes 
Day of gestation 110 117 

Daily concentrate allowance 
(kg freshweight) 

0.6 

Table 5.3. Daily[orage allowance [or ewes 

0.7 

Day of lactation Pregnancy 

Daily straw allowance (kg freshweight) 0.8 

5.3.3. Experimental Procedure 

124 131 

0.8 0.9 

7 

1.0 

138 145 Lactation 

1.0 1.1 1.7 

Day of lactation 
14 21 

1.2 1.4 

Concentrate and straw sub-samples were taken weekly and stored in airtight bags at -20°C 

until analysis. Ewe liveweight, body condition score, maternal and neonatal behaviour, 

lamb birthweight, lamb liveweight and milk production were measured as previously 

described in Chapter Two. 

5.3.3.1. Blood sampling 

Blood samples were obtained from ewes by jugular venepuncture at II :00 at six weeks 

(day 103, before the experimental concentrates were fed) and one week (138 of gestation) 

pre-partum; at 12 hours post partum and at two weeks into lactation. Lamb blood and 

tissue samples were taken from nine neonatal lambs immediately after cessation of the 

heartbeat as described in section 2.2.4. Blood samples were taken from growing lambs by 

jugular venepuncture at +24 hours of age and at 11 :00 at two weeks of age. The rectal 

temperature of each lamb was recorded at three hours post partum using a LifeSource flex-

tip digital thermometer (A&D Medical, 1555 McCandless Drive, Milpitas, CA 95035, 

USA). 

5.3.4. Sample analysis 

Concentrate and straw samples were analysed for DM, ash, CP and NDF, and concentrate 

samples analysed for vitamin E and fatty acid composition. Ewe blood samples were 
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analysed for urea, pHB, CK and GPx at all time points and for fatty acids and vitamin E at 

days 103 and 131 of gestation and at 14 days into lactation. Neonatal lamb blood samples 

were analysed for fatty acids and vitamin E; suckling lamb blood samples were analysed 

for CK and GPx at all time points and for vitamin E and fatty acids at +24 hours and 14 

days of age. All analyses are described in Chapter Two. 

5.3.5. Statistical analysis 

Data were analysed as a randomised block design. Lamb sex was used as a co-variate 

when analysing lamb birthweight, liveweight and growth rate data. Plotting lamb 

liveweight against time revealed linear growth rates, therefore overall growth rates were 

calculated using linear regression. All analyses utilised the ANOV A function within 

Genstat 6 version 6.2 (Lawes Agricultural Trust, 2002). 
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5.4. Results 

Data from one ewe (treatment FMH) was excluded from the results before analysis as the 

subject lambed at 139 days of gestation. Data collected from the lambs produced by this 

ewe were also excluded from statistical analysis. 

5.4.1. Diet composition 

All parameters relating to feed chemical composition (OM, OM, CP, ash, NDF, total fatty 

acids) were similar between treatment concentrates (Table 5.). Vitamin E concentrations 

were similar to those predicted when formulating the diets. 

Table 5.4. Chemical composition of the [our treatment concentrates pius the straw 
Concentrate Straw 

MML MH FML FMH 

Ory matter (g/kg) 887 887 883 882 857 
Crude protein (glkg OM) 247 247 254 249 59 
Organic matter (g/kg OM) 905 901 905 912 909 
Ash (g/kg OM) 95 99 95 88 91 
Neutral detergent fibre (g/kg OM) 189 192 188 192 790 
Vitamin E (g/kg OM) 65 568 67 521 
Total fatty acids (g/kg OM) 88 95 95 103 

MML = Megalac + 50 mg/kg vitamin E; MH = Megalac + 500 mg/kg vitamin E; FML = Fish oil + 50 mglkg 
vitamin E; FMH = Fish oil + 500 mg/kg vitamin E 

Table 5.5. Fatty acid composition of the [our treatment concentrates 
Concentrate 

Fatty acid (g/kg DM) MML MH FML FMH 

C16:0 38.1 41.4 14.7 15.2 
CI6:ln-7 O.IS 0.23 3.37 3.67 
C18:0 3.69 3.82 2.79 2.68 
C18:1 trans NO NO 0.60 0.85 
ClS:ln-9 cis 23.1 25.4 1.92 2.01 
CI8:2n-6 cis 18.0 18.4 13.7 14.7 
CIS:3n-3 cis 1.65 1.55 1.92 2.0S 
C20:4n-6 0.10 0.13 0.14 0.13 
C20:5n-3 NO NO 4.50 4.94 
C22:6n-3 NO NO 6.12 6.76 

RFA' 3.18 4.07 45.2 50.0 
MML = Megalac + 50 mglkg vitamin E; MH - Megalac + 500 mg/kg vitamin E; FML = Fish oil + 50 mg/kg 
vitamin E; FMH = Fish oil + 500 mg/kg vitamin E 
, RF A = Remaining ratty acids; ND = not detected 

The predominant fatty acids contained within the Megalac concentrates (MML and MMH) 

were CI6:0, C18: In-9 cis and C18:2n-6, whilst the n-3 fatty acids C20:5n-3 and C22:6n-3 
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were not detected (Table 5.5). By contrast, the concentrates containing fish oil (FML and 

FMH) contained approximately 4.72 glkg OM ofC20:5n-3 and 6.44 g/kg DM ofC22:3n-3. 

All experimental concentrates had a similar total fatty acid concentration at 95 g/kg OM. 

Table 5.6. Effect o/PUFA and vitamin E supplementation o/ewes on daily straw intakes 
Dietary strategy s.e.d. P 

Pre-parium intake (kg DM): 
6 weeks' pre-parium 
1 week' pre-partum 
Pre-partum intake (kg DM/day) 

MML FML FMH 

0.58 
0.55b 

0.5gb 

0.56 
0.49a 

0.54a 

0.54 
0.51-
0.52-

0.027 
0.018 
0.020 

0.270 
0.012 
0.027 

Post parium intake (kg DM): 
o weeks' postpartum 0.61 0.55 0.59 0.035 0.218 
3 weeks' posl parium 1.06 0.98 1.03 0.031 0.067 
Posl parium intake (kg DM/day) 0.80 0.76 0.78 0.037 0.546 

MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mglkg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, 6 weeks pre-parium = mean straw intake on days 103-110 of gestation; I week pre-parium = mean straw 
intake on days 138-145 of gestation; 0 weeks post parium = mean straw intake on days 0 - 7 of lactation, 3 
weeks pOSI parIum = mean straw intake on days 21 - 28 of lactation 
Means without common superscripts are significantly different at the P<0.05 level 

5.4.2. Ewe performance parameters 

5.4.2.1. Straw intake 

Dietary treatment had no significant effect upon daily straw intake between weeks -6 and -

4 (Figure 5.1); however, ewes fed diets FML or FMH had significantly lower daily intakes 

than ewes fed diets MML from week -3 until parturition. The mean pre-partum straw 

intake was significantly lower for ewes fed fish oil as the main fat source (diets FML and 

FMH) compared to those fed Megalac (diet MML; Table 5.6), but, there was no effect of 

vitamin E concentration. Daily straw intakes increased between parturition and week +3 of 

lactation for ewes on all treatments. Small numerical differences in daily straw intake 

were again observed post partum, however, no significant effect of dietary treatment was 

in evidence upon daily or mean post partum intakes. 
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Figure 5.1. Effect of PUFA and vitamin E stlpplemelltatioll of ewes 011 

daily straw intakes 

Table 5.7. Effect of PUFA amI vitamin E stlpplemelltation of ewes 011 liveweiglll (//1(1 body 
comlilion score (eS) c/tmlge 

Dieta ry strategy s.e.d. 

MML FML FMH 

Pre-partum weight (kg): 
6 weeks' pre-parIum 83.2 81.1 85 .0 2,02 0.189 
I week' pre-parIum 91.2 87.2 9 1.1 1,96 0,093 
Pre-parIum change 8.00 6.22 6.07 0.868 0.073 

Pre-partum cs: 
6 weeks' pre-parIum 3.12 3.12 3.12 
I week' pre-parIum 3.38 3.25 3.38 0.095 0.338 
Pre-partum change 0.25 0.17 0.25 0.091 0.584 

Post partum weigltt (kg): 
I week' posl partum 77.1 73.9 78 ,0 1.68 0.059 
4 weeks' post partum 72.4 71.0 73 .7 2.06 0.436 
POSI partum change -4.64 -2.89 -4.34 0,937 0,166 

Post partum CS: 
I week'tostpartum 2.93 2.83 2.85 0,113 0.662 
4 weeks post partum 2.38 2.28 2.43 0.097 0,311 
Post partum change -0.55 -0.56 -0.43 0.095 0.320 

MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML = Fish oi l + 50 mglkg 
vitamin E in pregnancy fo llowed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
, 6 weeks pre-parium = day 103 of gestation; I week pre-partum = day 138 of gestation; I week post partlllll 
= day 7 of lactation; 4 weeks pOSI parIum = day 28 of lactation 

5.4.2.2. Liveweight and condition score 

Dietary treatment had no significant effect upon ewe weights during pregnancy although 

ewes offered diets containing fish oil (FML and FMH) tended to gain less weight pre-
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partum than ewes fed diets containing Megalac (P=O.073; Table 5.7). All ewes gained 

condition between the start of the experiment and parturition, but there was no significant 

effect of treatment diet upon the total condition score change pre-partum. 

Neither long-chain PUFA nor vitamin E supplementation had any significant effect upon 

ewe liveweight at individual time points, or upon liveweight change post partum although 

ewes supplemented with diet FML tended to have lower liveweights at one week post 

partum than ewes offered either of the other two treatment diets (P=O.059). There were no 

significant effects upon body condition score change between parturition and four weeks 

into lactation. 

5.4.2.3. Metabolic profiles 

There was no significant effect of treatment strategy upon plasma PHB during pregnancy 

(Table 5.8). However, ewes supplemented with fish oil plus a low concentration of 

vitamin E (FML) tended to have increased PHB concentrations at two weeks post partum 

compared to ewes fed strategies FMH or MML (P=O.087). 

Table 5.B. Effect of PUF A and vitamin E supplementation of ewes on concentrations of plasma 
p..hYdroxybutyrate and urea 

Plasma fHB concentradon (mmoll): 
6 weeks pre-partum 
1 week'fre-partum 
2 weeks post partum 

Plasma urea concentration (mmoVl): 

Dietary strategy 

MML FML FMH 

1.12 
1.53 
1.01 

0.98 
1.00 
1.39 

0.95 
0.72 
0.91 

s.e.d. 

0.137 
0.373 
0.208 

p 

0.437 
0.117 
0.087 

6weeks'pre-partum 6.41 5.70 5.38 0.531 0.171 
1 week' fre-partum 7.05

1 
7.69

1 
8.98

b 
0.422 <0.001 

2 weeks postpartum 9.39 9.54 10.41 0.695 0.318 
MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML - Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH '" Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, 6 weeks pre-parium'" day 103 of gestation; 1 week pre-partum '" day 138 of gestation; 2 weeks post 
parium = day 14 oflactation. .. . 
Means without common superscnpts are slgmficantly different at the P<O.05 level 
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The concentration of urea in ewe plasma increased during pregnancy (between week -6 

and week -1) and again during lactation, regardless of dietary treatment (Table 5.8). Ewes 

fed fish oil plus a supranutritional concentration of vitamin E (strategy FMH) during 

pregnancy had higher levels of plasma urea at one week pre-parIum compared to ewes 

offered strategies MML and FML (P<O.OO 1). Although a similar pattern in plasma urea 

concentrations was evident between treatments during lactation, the differences were not 

significantly different. 

5.4.2.4. Antioxidant status 

Maternal plasma vitamin E concentrations at one week pre-parIum were significantly 

increased by adding supranutritional concentrations of vitamin E to the fish oil based diet 

(Table 5.9), but no significant difference was observed between ewes fed fish oil or 

Megalac in combination with a basal vitamin E concentration. During lactation, highest 

plasma vitamin E concentrations were again observed in ewes offered strategy FMH 

compared to strategies FML or MML. 

Table 5.9. Effect of PUFA and vitamin E supplementation of ewes on plasma vitamin E 
concentrations 

Dietary strategy s.e.d. p 

MML FML FMH 

Plasma vitamin E concentration (I'moVl): 
1 week' fre-partum 2.941b 1.75

1 
3.45b 0.425 0.004 

2 weeks postpartum 2.511 1.991 5.09b 0.349 <0.001 
MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML - Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, 1 week pre-parIum = day 138 of gestation; 2 weeks post partum = day 14 of lactation 
Means without common superscripts are significantly different at the P<O.OS level 

The selenium status of all ewes as indicated by the activity of GPx in erythrocytes, 

increased between the start of the experiment and parturition, and further increased in 

lactation (Table 5.10). No significant treatment effects were observed upon erythrocyte 

GPx activities at any time point. Serum CK concentrations declined between the start of 
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the experiment and week -1 in all ewes (Table 5.10). Neither long-chain PUFA nor 

vitamin E supplementation had any significant effect on this parameter during pregnancy 

or lactation. 

Table 5.10. Effect of PUFA and vitamin E supplementation of ewes on indicators of selenium 
status and of cellular damage 

Erythrocyte GPx activity (Ulml PCV): 
6 weeks' pre-partum 
1 week' fre-partum 
2 weeks post partum 

Serum CK activity (UA): 

Dietary strategy 

MML FML FMH 

129 
168 
208 

138 
173 
225 

140 
194 
229 

s.e.d. 

23.1 
21.2 
19.3 

P 

0.881 
0.453 
0.503 

6 weeks' pre-partum 188 253 180 33.5 0.087 
I week'fre-partum 155 191 125 38.5 0.254 
2 weeks postpartum 163 119 129 27.6 0.275 
MML = Megalac + 50 mg/kg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, 6 weeks pre-partum = day 103 of gestation; 1 week pre-partum = day 138 of gestation; 2 weeks post 
partum = day 14 oflactation 

Table 5.11. Effect of PUF A and vitamin E supplementation 1. ewes on the proportions of 
individual fatty acids in ewe plasma samples collected at six weeks pre-panum (pre-treatment) 

Dietary strategy s.e.d. P 

Fatty acid (giIOO g fatty acids) MML FML FMH 

C16:0 17.6 17.6 17.5 0.47 0.987 
CI6:ln-7 0.92 0.86 0.86 0.030 0.083 

C18:0 23.9 24.7 24.7 0.62 0.314 

C18:1 trans 4.86 4.42 4.24 0.355 0.244 

CI8:1n-9 cis 22.2b 20.2- 20.9- 0.733 0.045 

CI8:2n-6 cis 7.05 8.27 8.23 0.532 0.063 
CLA (cis-9.trans-l1) 0.31 0.50 0.31 0.492 0.279 

CI8:3n-3 cis 2.45 2.56 2.34 0.197 0.558 

C20:4n-6 3.21 3.43 3.80 0.268 0.119 

C20:5n-3 2.05 1.92 1.90 0.201 0.733 

C22:6n-3 1.38 1.63 1.55 0.261 0.633 

RFA' 14.2 14.0 13.6 0.49 0.562 

Totalfatty acids (mg/ml) 1.06 0.978 0.917 0.0798 0.199 
MML = Megalac + 50 mg/kg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
, six weekspre-partum = day 103 of pregnancy 
tRF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<O.OS level 
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5.4.2.5. Plasma fatty acids (six weeks pre-partum) 

The proportions of all individual fatty acids within ewe plasma were similar between 

treatments at six weeks pre-partum (Table 5.11) save for the proportion of C18: In-9 cis 

which was higher in ewes allocated to strategy MML compared to the other two strategies 

(P=O.045). 

5.4.2.6. Plasma fatty acids (one week pre-partum) 

Total fatty acid concentrations within ewe plasma samples at one week pre-parIum were 

significantly lower in ewes fed diets containing long-chain PUFAs (FML and FMH) during 

pregnancy compared to those offered diets containing Megalac (MML), regardless of the 

dietary vitamin E concentration (Table 5.12). Proportions of C16:0 and C18:0 within 

plasma lipid were significantly lower in ewes offered diets containing fish oil (FML and 

FMH) compared to those fed diets containing Megalac as the principal fat source. 

Table 5.12. Effect of PUFA and vitamin E supplementation f ewes on the proportions of 
;nd;v;dualla~ acids in ewe e.'asma same.'es collected at one week e.,e-e.artum 

Dietary strategy s.e.d. P 

Fatt~ acid {21100 g fatt~ acids} MML FML FMH 

C16:0 24.0b 16.0· 16.0· 0.45 <0.001 
C16:1n-7 0.55· 1.17b 1.13b 0.136 <0.001 

C18:0 22.2b 18.3' 18.11 0.77 <0.001 
C18:1 trans 2.42· 7.77b 7.S6b 0.915 <0.001 
C18:1n-9 cis 16.4b 9.49- 9.27' 0.762 <0.001 
C1S:2n-6 cis IS.1 b 9.38" 9.45· 0.415 <0.001 
CLA (cis-9,trans-ll) 0.19- 2.1Sb 1.98b 0.178 <0.001 
C18:3n-3 cis 1.041 2.52b 1.90b 0.321 0.001 
C20:4n-6 3.40 2.70 2.67 0.340 0.OS6 

C20:Sn-3 1.20· 5.23b 5.5Sb 0.232 <0.001 

C22:6n-3 1.14· 3.44b 3.44b 0.213 <0.001 

RFA' 9.3S1 21.8b 22.7b 1.62 <0.001 

Total fatty acids (mg/ml) 1.20
b 

O.SSO· 0.838
1 

0.064 <0.001 
MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML - Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mglkg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, one weekpre-partum = day 138 of pregnancy 
fRF A == All remaining fatty acids 
Means without common superscripts are significantly different at the P<O.OS level 
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Ewes offered dietary strategies containing fish oil (FML or FMH) during pregnancy had 

significantly higher proportions ofCI6:ln-7 and C18:1 trans within plasma than those fed 

diet MML. By contrast, the proportion ofCI8:ln-9 cis, the principal monoenoic fatty acid 

within plasma, was reduced in ewes fed diets FML and FMH compared to ewes offered 

diet MML (P<O.OOI). Ewes offered diets FML and FMH had approximately ten-~ Id 

higher proportions ofCLA within plasma lipid than those fed diet MM L (P<O.OOI). 

Plasma CI8:2n-6 was approximately two-fold higher in ewes offered strategy MML 

compared with FML or FMH (P<O.OOI). Furthermore, the an10unt of C20:4n-6 within 

plasma tended to be higher in ewes supplemented with Megalac than in those fed diets 

containing fish oil (P=O.086). Proportionally, the contribution of C 18:3n-3 to total plasma 

fatty acids was similar between ewes fed diets FML or FMH, being more than two-~ ld 

higher than in ewes offered diet MML (P=O.OOI). The addition of fish oil to the diets of 

pregnant ewes significantly increased the proportion of C20:5n-3 within plasma at one 

week pre-parium compared to ewes supplemented with Megalac. Similar results were 

observed for C22:6n-3 as a result of fish oil supplementation with a three-fold difference in 

plasma proportions between ewes supplemented with fish oil and those fed Megalac. 
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5.4.2.7. Gestation length 

No significant effect of dietary treatment was observed upon ewe gestation length (Figure 

5.2). 

5.4.2.8. Plasma fatty acids (two weeks post partum) 

The total fatty acid concentration within ewe plasma at two weeks post parIum was similar 

between treatments with no significant effect of dietary fat source or vitamin E 

concentration (Table 5.13). Individual proportions of the saturated fatty acids C 16:0 and 

C18:0 within the plasma lipid fraction were similar between treatment diets with no 

significant effect of fat source or vitamin E concentration being observed. 

Table 5.13. Effect of PUFA and vitamin E supplementation of ewes on the proportions of 
individuallat.!1. acids in e.lasma same.les collected at two weeks· e.ost e.artum 

Dietary strategy s.e.d. P 

Fatty acid (gllOO g fatty acids) MML FML FMH 

C16:0 18.1 19.1 18.6 1.12 0.683 
CI6:1n-7 0.34b 0.16- 0.19- 0.064 0.036 
C18:0 17.7 19.7 19.0 0.91 0.109 
C18:1 trans 2.56 2.86 2.73 0.177 0.270 
CI8:1n-9 cis 15.5 14.0 13.7 1.09 0.258 
CI8:2n-6 cis 14.0 15.5 14.3 0.68 0.826 
CLA (cis-9.trans-ll) 1.02 1.03 0.80 0.114 0.118 
CI8:3n-3 cis 0.88 0.92 0.83 0.150 0.826 

C20:4n-6 3.42b 2.39- 2.328 0.292 0.003 

C20:5n-3 2.56 2.86 2.73 0.177 0.270 
C22:6n-3 0.718 2.12b 1.91 b 0.478 0.022 

RFA§ 23.3 19.4 23.0 4.00 0.581 

Total fatty acids (mg/ml) 1.13 1.02 1.04 0.083 0.387 
MML = Megalac + 50 mg/kg vitamin E fed throughout pregnancy and lactation; FML - Fish oil + 50 mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, two weeks post partum = day 14 of lactation 
§RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 

Relatively small amounts of C16:1n-7 were present in ewe plasma samples, but 

supplementing the ewes with fish oil during pregnancy (diets FML and FMH) significantly 

reduced the proportion of this fatty acid within plasma compared to ewes fed Megalac 
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during pregnancy (diet MML). By contrast, the proportions of the minor plasma lipid 

constituent C18:1 trans and the principal plasma fatty acid C18:1n-9 cis were unaffected 

by either the dietary fat source or vitamin E concentration fed during pregnancy and 

lactation. Although ewes offered diet FMH appeared to have lower proportions of CLA 

(cis-9,trans-ll) within plasma at two weeks post partum compared to ewes offered diets 

FML or MML, this difference did not approach statistical significance. 

The proportion of C 18:2n-6 within plasma lipid was unaffected by treatment diet. By 

contrast, supplementing ewes with fish oil during pregnancy had a significant carry-over 

effect upon the proportion of C20:4n-6 within plasma at two weeks post partum, with a 

mean value of approximately 2.36 g/100 g fatty acids (diet FML + diet FMH) compared to 

3.42 g/100 g fatty acids (diet MML). 

Neither the amount of CI8:3n-3 nor C20:5n-3 within ewe plasma at two weeks post 

parIum was significantly affected by dietary fat source or vitamin E concentration. 

Nonetheless, a significant carry-over effect of fish oil supplementation during pregnancy 

was observed upon the proportion of C22:6n-3 within ewe plasma at two weeks post 

parIum with mean values of approximately 2.02 g/100 g fatty acids compared to 0.71 

g/IOO g fatty acids for ewes fed diets containing fish oil or Megalac respectively. 

5.4.2.9. Milk production parameters 

Supplementation of ewes with long-chain PUF As and vitamin E during pregnancy had no 

effect on the secretion rate or calculated daily milk yield at four weeks into lactation (Table 

5.14). The fat concentration in milk tended (P=0.091) to be lower in ewes supplemented 

with fish oil (diets FML and FMH) during pregnancy when compared to those fed the 

control diet (MML). A similar pattern was observed in fat yield (glhour), however, the 

difference did not reach statistical significance. Milk protein concentrations and yields 
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were not significantly different between treatments. Furthennore, there was no significant 

effect of dietary fat source or vitamin E concentration upon milk lactose concentration or 

yield. 

Table 5.14. Effect o/PUFA and vitamin E supplementation of ewes on milk parameters at/our 
weeks' post partum 

Dietary strategy s.e.d. P 

MML FML FMH 

Secretion rate (mllhour) 106 101 106 11.8 0.880 
Yield (llday) 2.55 2.42 2.55 0.284 0.880 

Fat concentration (g/kg) 80.1 65.2 56.4 10.18 0.091 
Fat yield (g/hour) 8.82 6.55 5.75 1.412 0.109 

Protein concentration (g/kg) 38.6 37.8 36.5 1.10 0.189 
Protein yield (g/hour) 4.10 3.80 3.86 0.451 0.793 

Lactose concentration (g/kg) 47.5 48.9 48.7 0.86 0.230 
Lactose yield (g/hour) 5.02 4.93 5.18 0.564 0.904 

MML = Mega1ac + 50 mg/kg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + 50 mglkg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
, four weeks post partum = day 28 of lactation 

5.4.3. Lamb performance parameters 

5.4.3.1. Neonatal lamb behaviour 

Ewe maternal behaviour scores were similar for all treatments, regardless of dietary fat 

source or vitamin E concentration (Table 5.15). The latency of ewe standing was reduced 

by in ewes supplemented with long-chain PUFAs (diets FML and FMH) compared to the 

control fat source (MML; P=O.030). The latency of vocalisation was similar for treatments 

containing a basal concentration of vitamin E (MML and FML) but increased in treatment 

FMH (P=O.009). The time interval between expUlsion of the lamb and the first contact 

between ewe and lamb was unaffected by dietary treatment. 

Numerical differences in the latency of lamb standing existed between diets containing fish 

oil (FML and FMH) compared to the control fat diet (MML), but these differences were 

not statistically significant. These differences persisted in the latency of lamb searching 
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for the udder, which was lower in lambs produced by ewes fed diets FML and FMH 

compared to diet MML although again, this did not approach statistical significance. 

Similarly, although not statistically significant, a difference of approximately four minutes 

existed between the time taken for lambs on treatments FML and FMH to successfully 

suckle compared to those on treatment MML. Neonatal lamb body temperatures were not 

significantly affected by long-chain PUFA or vitamin E supplementation of the ewe. 

Table 5.15. Effect of PUFA and vitamin E supplementation of ewes on maternal behaviour 
scores, latencies of maternal and neonatal lamb behaviours and neonatal lamb temperatures 

Dietary strategy s.e.d. P 

MML FML FMH 

Maternal measurements: 
Maternal behaviour score 118 117 118 5.2 0.959 
Latency of standing (sec) 317b 84.0' 90.0· 96.00 0.030 
Latency of vocalisation (sec) 49.0' 36.0· 16lb 42.00 0.009 
Latency of contact with the lamb (sec) 55.0 61.0 71.0 32.60 0.891 

Neonatal measurements: 
Latency of standing (min) 15.6 12.9 11.8 2.46 0.296 
Latency of searching for the udder (min) 17.5 13.8 14.9 3.21 0.508 
Latency of successful suckling (min) 44.3 40.0 40.7 6.11 0.747 
Lamb body temperature eC) 38.98 39.04 39.03 0.224 0.959 

MML = Megalac + SO mg/kg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + SO mg/kg 
vitamin E in pregnancy followed by Megalac + SO mglkg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
Means without common superscripts are significantly different at the P<0.05 level 

5.4.3.2. Neonatal lamb plasma vitamin E 

Plasma vitamin E concentrations were below the detectable limit «0.1 ~mol/l) in neonatal 

lambs from any of the three treatments. 

Table 5.16. Effect of PUFA and vitamin E supplementation 
concentrations of neonatal lamb brain tissue 

Dietary strategy 

MML FML FMH 

of ewes on vitamin E 

s.e.d. P 

Brain vitamin E concentration (mglkg) 2.27 2.65 2.98 0.237 0.05 I 
MML = Megalac + SO mg/kg vitamin E fed throughout pregnancy and lactation; FML - Fish oil + SO mg/kg 
vitamin E in pregnancy followed by Megalac + SO mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
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5.4.3.3. Neonatal lamb tissue vitamin E 

Lambs produced by ewes fed supranutritional concentrations of vitamin E tended to have 

higher brain vitamin E concentrations than those supplemented with basal vitamin E in 

combination with Megalac (P=O.051; Table 5.16). There was no significant difference 

between brain vitamin E concentrations in lambs borne by ewes fed strategy FML and 

either strategy MML or FMH. 

Table 5.17. Effect of PUF A and vitamin E supplementation of ewes on the proportions of 
individualla!!f. acids in neonatal lamb e.lasma 

Dietary strategy s.e.d. P 

Fatty acid (gllOO g fatty acids) MML FML FMH 

C16:0 2.64 3.54 1.89 0.601 0.119 
CI6:1n-7 5.50 7.00 4.19 2.093 0.475 
C18:0 9.38 9.29 9.30 0.890 0.993 
C18:1 trans 3.68 3.87 2.98 0.529 0.317 
CI8:1n-9 cis 3S.9b 22.8" 3S.9b 2.87 0.016 
C18:2n-6 cis 1.70 1.43 3.00 0.945 0.312 
CLA (cis-9.trans-ll) 2.12 ND NO 
C18:3n-3 cis ND ND 1.64 

C20:4n-6 1.50 2.88 0.77 0.979 0.206 
C20:Sn-3 o.n" S.21b 2.36" 1.004 0.027 
C22:6n-3 ND 4.31 b 1.71" 0.314 <0.001 

RFA' 36.9 39.7 36.2 2.12 0.329 

Total fatty acids (mg/ml) 0.365" 0.3551 0.716b 0.0725 0.012 
MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML - Fish oil + 50 mg/kg 

vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
, RF A = All remaining fatty acids; ND = not detected 
Means without common superscripts are significantly different at the P<0.05 level 

5.4.3.4. Neonatal lamb plasma fatty acids 

Total plasma fatty acid concentrations were similar in neonatal lambs produced by ewes 

offered low dietary concentrations of vitamin E (MML and FML) but were approximately 

two-fold higher in lambs from ewes fed a high vitamin E concentration (diet FMH; 

P=O.OI2; Table 5.17). No significant differences in the proportions of individual saturated 

fatty acids were conferred by dietary supplementation of the ewe. 
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No significant effect of dietary treatment was evident upon the proportions of C 16: In-7 or 

C18:1 trans within neonatal lamb plasma. By contrast, the proportion ofCI8:ln-9 within 

plasma lipids was reduced in lambs produced by ewes fed diet FML during pregnancy 

compared to those fed diets MML or FMH (P=O.O 16). Neither dietary fat source or 

vitamin E concentration had any significant effect upon the proportion of CLA within 

neonatal lamb plasma. 

Ewes offered diet FMH during pregnancy appeared to produce lambs with higher amounts 

of CI8:2n-6 within plasma, however, this difference did not reach statistical significance. 

There was no significant effect of dietary treatment upon the proportion of C20:4n-6 

within neonatal lamb plasma. 

Plasma CI8:3n-3 was only detected in samples from lambs suckling ewes fed strategy 

FMH. With reference to C20:5n-3, significant differences were observed between all three 

dietary treatments with samples from lamb on treatment FML having the highest 

proportion of C20:5n-3 compared to treatments FMH and MML. Proportions of plasma 

C22:6n-3 were below detectable levels in samples from treatment MML. Lambs born to 

ewes fed diet FML had plasma proportions of C22:6n-3 two-fold higher than those in 

lambs produced by ewes offered diet FMH (P<O.OOI). Neonatal lambs produced by ewes 

fed strategy MML did not have detectable quantities of C22:6n-3 within plasma. 

5.4.3.5. Neonatal lamb brain fatty acids 

Supplementing ewes with diets containing fish oil during pregnancy reduced the 

concentration of total fatty acids within neonatal brain tissue with mean values of 

approximately 30.1 mg/g (diets FML + FMH) compared to 34.8 mglg (diet MML, 

P=O.O 16; Table 5.18). The proportions of the principal saturated fatty acids of note within 
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neonatal lamb brain tissue, C16:0 and CI8:0, were unaffected by maternal dietary 

treatment. 

Table 5.18. Effect of PUFA and vitamin E supplementation of ewes on the proportions of 
individual!ar!1. acids in neonatal lamb brain 

Dietary strategy s.e.d. P 

Fatty acid (giIOO g fatty acid) MML FML FMH 

C16:0 19.3 20.0 19.1 0.41 0.199 
C16:1n-7 0.99 1.01 1.07 0.050 0.361 
C18:0 15.1 15.6 15.3 0.37 0.461 
C18:1 trans 3.45b 3.02" 3.36b 0.085 0.016 

C18:1n-9 cis 13.3 13.5 13.2 0.46 0.797 

C18:2n-6 cis 0.15 0.28 0.22 0.038 0.060 
CLA (cis-9.trans-1l) 0.96 0.81 0.92 0.103 0.411 
C18:3n-3 cis 0.38b 0.30· 0.37b 0.013 0.009 

C20:4n-6 4.22 3.45 3.44 0.309 0.104 
C20:5n-3 0.69 0.70 0.68 0.059 0.930 

C22:6n-3 9.77 10.5 10.2 0.409 0.322 

RFA' 31.71 30.81 32.10 0.81 0.358 

Total fatty acids (mg/g) 34.8b 30.9" 29.3" 1.45 0.043 
MML = Megalac + 50 mg/kg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + SO mg/kg 

vitamin E in pregnancy followed by Megalac + 50 ms'kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<0.05 level 

There was no significant difference in the proportion of C 16: I n-7 within neonatal lamb 

brain tissue between treatments. By contrast, supplementing pregnant ewes with fish oil in 

combination with a low concentration of vitamin E significantly reduced the proportion of 

C18:1 trans within neonatal lamb brain tissue when compared to the other two treatment 

strategies. The proportions of CI8:ln-9 cis within neonatal lamb brain were similar 

between strategies. Although numerical differences were present, no significant effect of 

maternal dietary strategy was observed upon the proportion of CLA within lamb brain 

tissue. 

Feeding diets containing fish oil to pregnant ewes marginally increased the proportion of 

CI8:2n-6 within brain tissue, a result that tended towards significance (P=0.060) with 

mean values of 0.25 g/IOO g fatty acids and 0.15 glI00 g fatty acids for fish oil and 
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Megalac treatments respectively. By contrast, the amount of C20:4n-6 within neonatal 

lamb brain tissue was reduced by fish oil supplementation of the pregnant ewe when 

compared to Megalac supplementation, however, this result only just approached statistical 

significance. 

Feeding fish oil in combination with a low concentration of vitamin E to pregnant ewes 

reduced the proportion of CI8:3n-3 within neonatal brain tissue compared to feeding 

strategies FMH or MML (P=O.009). The amount of C20:5n-3 found within neonatal lamb 

brain tissue was similar among different dietary strategies, with no significant effect of 

maternal dietary fat source or vitamin E concentration. Although numerical differences in 

the proportion of C22:6n-3 within brain tissue were observed, with higher values seen in 

lambs borne by ewes fed fish oil during pregnancy, these differences did not reach 

statistical significance. 

Table 5.19. Effect of PUFA and vitamin E supplementation of ewes on lamb birth weights (kg) 
and on lamb and litter growth rates (kg/day) 

Dietary strategy s.e.d. P 

MML FML FMH 

Lamb liveweight: 
At birth 4.74 4.57 4.70 0.268 0.807 
At 1 week of age 6.87 6.62 6.87 0.287 0.593 
At 2 weeks of age 9.16 9.21 9.33 0.330 0.863 
At 3 weeks of age ILl 11.2 11.3 0.41 0.957 
At 4 weeks of age 13.1 12.9 13.5 0.48 0.493 

Lamb growth rate 0.30 0.30 0.31 0.013 0.651 
Litter growth rate 0.60 0.59 0.62 0.027 0.667 

MML = Megalac + 50 mg/kg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + 50 mglkg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 

5.4.3.2. Lamb liveweight 

Individual lamb birthweights were similar between treatments with no effect of maternal 

long-chain PUF A or vitamin E supplementation (Table 5.19). Moreover, no significant 

effect of treatment strategy was observed at any time point, or upon the individual or litter 

growth rate. 
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5.4.3.3. Suckling lamb antioxidant status 

Lamb plasma vitamin E concentrations were unaffected by fat source, but maternal dietary 

vitamin E concentration had a significant effect upon plasma concentrations at both 24 

hours and two weeks post partum with highest values exhibited by lamb suckling ewes fed 

diet FMH (Table 5.20). 

Table 5.20. Effect of PUF A and vitamin E supplementation of ewes on indicators of vitamin E 
and selenium status and of cellular damage in lambs 

Dietary strategy 

MML FML 

Plasma vitamin E concentration (pmoVl): 
24 hours post partum 2.058 1.948 

2 weeks post partum 2.12a 2.05' 

Erythrocyte GPx activity (Ulml PCV): 
24 hours post partum 1308 143a 

2 weeks post parIum 183 180 

Serum CK concentration (UIl): 

FMH 

3.74b 

3.74b 

160b 

202 

s.e.d. 

0.625 
0.430 

8.0 
11.3 

p 

0.032 
0.004 

0.003 
0.121 

24 hours post partum 401 398 470 62.3 0.425 
2 weeks postpartum 229 158 168 49.9 0.319 

MML = Megalac + 50 mglkg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + SO mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mg/kg vitamin E in lactation; FMH = Fish oil + 500 
mg/kg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
Means without common superscripts are significantly different at the P<0.05 level 

Lamb erythrocyte GPx activities were increased at two weeks of age compared to values at 

24 hours of age. A significant increase in erythrocyte GPx was observed in lambs 

produced by ewes fed diet FMH compared to those fed either diet FML or MML at 24 

hours of age. A similar pattern was seen at two weeks of age, but this difference was not 

statistically significant. 

Serum CK concentrations were reduced in all lambs, regardless of maternal dietary 

treatment, at two weeks of age compared to values recorded at 24 hours old. Although 

numerical differences between treatments were observed, no significant effect of maternal 

long-chain PUFA or vitamin E supplementation was evident at any time point. 
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5.4.3.4. Suckling lamb plasma fatty acids at 24 hours of age 

No significant effect of maternal treatment diet was evident upon the total fatty acid 

concentration in lamb plasma at 24 hours of age (Table 5.21). Expressing individual fatty 

acid data as a proportion of total plasma fatty acids revealed significant reductions in the 

contribution ofCI6:0 in lambs produced by ewes offered FML or FMH compared to those 

borne by ewes fed diet MML. Maternal dietary supplementation with fish oil or Megalac 

had no significant influence upon the proportion ofC18:0 within lamb plasma at 24 hours 

of age. 

Table 5.21. Effect of PUFA and vitamin E supplementation of ewes on the proportions of 
individual la!!l,. acids in lamb I!.lasma saml!.les collected at 24 hours ol a&e 

Dietary strategy I.e.d. P 

Fattx acid {gllOO g fatty acids} MML FML FMH 

C16:0 22.4b 20.7' 21.0· 0.6S 0.045 
CI6:1n-7 1.40 1.64 1.5S 0.170 0.374 
ClS:0 10.6 10.1 8.8S 0.906 0.178 
C18:1 trans 2.S2a 4.77b S.12b 0.3S0 <0.001 
CI8:1n-9 cis 32.8b 23.1' 23.0· 1.62 <0.001 
CI8:2n-6 cis 7.5Sb S.3S' S.2S- 0.7S4 0.014 
CLA (cis-9,trans-ll) 0.74" 1.70b 1.51 b 0.198 <0.001 
CI8:3n-3 cis 0.9S 1.06 1.24 0.160 0.237 
C20:4n-6 1.82 2.30 1.96 0.2S9 0.194 
C20:Sn-3 0.81a 3.99b 3.4Sb 0.390 <0.001 
C22:6n-3 O.32a I.Sl b 1.3Sb 0.275 <0.001 

RFA' 18.11 23.Sb 2S.6b I.4S <0.001 

Total fatty acids (mg/ml) I.S7 1.32 1.52 0.793 0.784 
MML :::; Megalac + SO mglkg vitamin E fed throughout pregnancy and lactation; FML :::; Fish oil + SO mg/kg 
vitamin E in pregnancy followed by Megalac + 50 mglkg vitamin E in lactation; FMH = Fish oil + SOO 
mglkg vitamin E in pregnancy followed by Megalac + 500 mglkg vitamin E in lactation 
, RF A :::; All remaining fatty acids 
Means without common superscripts are significantly different at the P<O.OS level 

No significant effect of maternal diet was observed upon the proportion of C 16: I n-7 in 

lamb plasma at 24 hours of age; by contrast, the proportion of CI8:1 trans within total 

plasma fatty acids was significantly higher in lambs produced by ewes fed diets FML and 

FMH compared to diet MML. Furthermore, the proportion of C18:1n-9 cis as a 

component of total lamb plasma fatty acids was lower in lambs born to ewes supplemented 

with fish oil during pregnancy, than in those fed Megalac (P<O.OO 1). The proportion of 
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CLA within plasma was significantly higher in lambs suckling ewes offered diets FML and 

FMH compared to diet MML. 

Fish oil supplementation of the ewe conferred a significant reduction in the proportion of 

C18:2n-6 within plasma of lambs produced by ewes fed strategies FML and FMH 

compared to MML. Proportions of C20:4n-6 within lamb plasma at 24 hours of age were 

similar between treatments and unaffected by maternal dietary fat source or vitamin E 

concentration. Supplementing the diet of the pregnant ewe with fish oil (regardless of the 

dietary vitamin E concentration) resulted in a four-fold increase in the proportion of 

C20:5n-3 within lamb plasma at 24 hours of age when compared to supplementation with 

Megalac (P<O.OOl). Furthermore, the mean proportion of C22:6n-3 in lambs suckling 

ewes fed fish oil during pregnancy was significantly higher at 1.6 gllOO g fatty acids 

compared to 0.32 gllOO g fatty acids in lambs borne by ewes fed Megalac. 

Table 5.22. Effect of PUF A and vitamin E supplementation of ewes on the proportions of 
individual f!.!!1. acids in lamb e.lasma same.les collected at two weeks 0l ar.e 

Dietary strategy s.e.d. P 

Fatty acid (gllOO g fatty acids) MML FML FMH 

C16:0 21.8 22.0 22.1 0.76 0.932 

C16:1n-7 0.83 0.83 0.91 0.045 0.192 

C18:0 16.4 16.2 15.6 1.35 0.410 

C1S:1 trans 2.96 3.25 2.45 0.203 0.095 

CIS: In-9 cis 24.7 24.2 24.9 0.95 0.761 

C18:2n-6 cis 14.1 14.2 13.9 1.28 0.965 

CLA (cis-9.trans-11) 0.22 0.26 0.27 0.096 0.835 

C18:3n-3 cis 1.06' 1.40b 1.3Sb 0.106 0.016 

C20:4n-6 3.64b 2.07' 2.08- 0.396 0.002 

C20:Sn-3 0.71' 1.S4b 1.47b 0.098 <0.001 

C22:6n-3 0.82" 1.30b 1.36b 0.150 0.007 

RFA' 12.8 12.9 12.6 0.49 0.880 

Total fatty acids (mg/ml) 2.22 2.18 2.11 0.355 0.951 
MML = Megalac + SO mglkg vitamin E fed throughout pregnancy and lactation; FML = Fish oil + 50 mg/kg 

vitamin E in pregnancy followed by MegaJac + SO mglkg vitamin E in lactation; FMH = Fish oil + 500 
mglkg vitamin E in pregnancy followed by Megalac + 500 mg/kg vitamin E in lactation 
, RF A = All remaining fatty acids 
Means without common superscripts are significantly different at the P<O.OS level 
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5.4.3.5. Suckling lamb plasma fatty acids at two weeks of age 

Total fatty acid concentrations within plasma of suckling lambs were similar between 

treatments, with no significant effects of maternal dietary fat source or vitamin E 

concentration (Table 5.22). No significant effect of maternal dietary treatment was evident 

upon the proportion of C16:0 or C18:0 within lamb plasma samples at two weeks of age. 

Minor numerical differences in the proportions ofCI6:ln-7, C18:1 trans and CI8:1n-9 cis 

within lamb plasma were present as a result of maternal dietary supplementation, but these 

differences did not reach statistical significance. The proportion of CLA within lamb 

plasma at two weeks of age was similar between all maternal dietary treatments. 

The proportions ofC18:2n-6 within lamb plasma samples at two weeks of age were similar 

between maternal dietary treatments. By contrast, long-chain PUF A supplementation of 

the pregnant ewe significantly reduced the proportional contribution of C20:4n-6 to plasma 

fatty acids by a factor of 1.75 compared to supplementation with Megalac. Adding fish oil 

to the diet of pregnant ewes significantly increased the proportion ofCI8:3n-3 within lamb 

plasma with mean values of approximately 1.38 glI00 g fatty acids (strategies FML + 

FMH) compared to 1.06 gllOO g (strategy MML). The proportion of C20:Sn-3 was 

approximately two-fold higher in lambs produced by ewes fed fish oil during pregnancy 

when contrasted with those offered diets containing Megalac (P<O.OO 1). Amounts of 

C22:6n-3 within plasma were also two-fold higher in lambs suckling ewes fed fish oil 

compared to those fed Megalac during pregnancy (P=0.007). 
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5.5. Discussion 

5.5.1. Ewe parameters 

5.5.1.1. Straw Intake 

In direct contrast to the results observed in Experiment One, fish oil supplementation 

significantly reduced the daily straw intake of pregnant ewes. This concurs with previous 

research in ruminants where feeding fish oil was associated with a decrease in DM intake 

(Donovan et 01., 2000; Keady et 01., 2000; Whitlock et 01., 2002). Moreover, similar 

results were observed by Annett et 01. (2004), with a significant reduction in silage intake 

occurring as a result of fish oil supplementation of pregnant ewes. The differences 

between results observed here and those described in Experiment One indicate that 

vermiculite may have had a protective effect upon the unsaturated fatty acids contained 

within fish oil. 

Changing from a dietary long-chain PUF A source during pregnancy to a saturated source 

during lactation appeared to negate the significant decrease in DM intake observed during 

pregnancy. Although considerable quantities of unsaturated fatty acids may be stored 

within lipid reserves during pregnancy and mobilised during lactation, the effects upon dry 

matter intake observed in previous studies appear to be via the cytotoxic effects of dietary 

long-chain PUF As upon ruminal microorganisms. Although bacterial growth is 

significantly retarded by long-chain PUF As, this effect has also been observed with 

medium-chain and saturated fatty acids (Doreau et 01., 1997). However, the addition of 

Megalac to the diet of ruminants has been demonstrated to have significantly less effect 

upon DM intakes than fish oil (Wachira et 01.,2002). 

5.5.1.2. Nutritional status 

Liveweight change pre-partum was significantly reduced as a consequence of fish oil 

supplementation of the pregnant ewe in the study of Annett et 01. (2004), but little other 
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information upon the effects of fish oil supplementation upon ewe liveweight and 

condition score is available. The studies of Fritsche et al. (1993) and Rooke et al. (2000; 

200 1 b) using domestic swine indicated that the addition of fish oil to the diet has no effect 

upon liveweight or backfat thickness. Although the addition of fish oil to the diet of 

pregnant ewes reduced straw intake during pregnancy, quantitatively, the difference was 

small. This would have reduced daily energy supply by 0.27 MJ (ARFC, 1993), which 

would not have significantly impacted upon ewe liveweight or condition score. The lack 

of a significant effect of vitamin E supplementation of the ewe upon these parameters is in 

agreement with the results published by both Kott et al. (1998) and Merrell (1998). 

Metabolic indicators of ewe nutritional status were similar between treatments, although 

high co-efficients of variation indicated a wide range of values between individual animals. 

The mobilisation of body tissues during a period of negative energy balance leads to an 

increase in plasma PHB and NEF A (Noziere et al., 2000). The lack of any effect of dietary 

supplementation upon these parameters concurs with the results observed for liveweight 

and condition score change during pregnancy and lactation. Ewes used in the current study 

were well-fed, with a ERDP:FME ratio slightly in excess of that recommended by AFRC 

(1993). Consequently, plasma concentrations of PHB and urea observed in the current 

study were higher than the reference values for ruminants proposed by Topps and 

Thompson (1984) and those reported by both Antunovic et al. (2002) and Hamadeh et al. 

(1996). Furthermore, blood sampling occurred at approximately 2.5 hours after feeding, 

which may have increased the concentrations of these metabolites within plasma compared 

to sampling after a fasting period (Eicher et al., 1999). 

5.5.1.3. Ewe antioxidant status 

Augmentation of the ewe dietary vitamin E supply conferred a significant increase in 

plasma concentrations, a response which has been documented in sheep (Hidiroglou et al., 
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1969; Njeru et al., 1994), pigs (Farnworth et al., 1995; Lauridsen et al., 2002), rats (Martin 

and Hurley, 1977) and humans (Mino and Nishino, 1973; Leger et al., 1998). The 

observed concentrations concurred with those reported by Gentry et al. (1992), Hidiroglou 

et al. (l993a) and Gabryszuk and Klewiec (2002). By contrast to the results observed in 

Experiment One, ewes fed diet FMH had higher plasma vitamin E concentrations during 

lactation compared to pregnancy, which may, in part, be attributed to an increased dietary 

supply post partum. Chawla and Kaur (2004) observed a similar pattern in plasma vitamin 

E concentrations during pregnancy and lactation when dairy cattle were supplemented with 

1000 IV dl-a-tocopherol acetate. This is in agreement with the results published by Mahan 

(1991) who described an improvement in vitamin E status of lactating sows as lactation 

progressed. 

Hidiroglou et al. (1992) suggested that a ruminant plasma vitamin E concentration of >4 

mglkg indicates an adequate vitamin E status. However, by this definition, all ewes were 

clinically deficient in vitamin E during pregnancy, with only those supplemented with 

supranutritional vitamin E concentrations reaching marginal status during lactation. This 

underlines the suggestion that the basal vitamin E requirements of the ewe should be re

evaluated. A major factor in the determination of the dietary vitamin E requirement of any 

animal is the potential oxidative challenge posed as a result of PUFA supply from the diet. 

Several authors have reported that animals supplemented with long-chain PUF As have a 

concurrent reduction in vitamin E status (Hidiroglou et al., 1993a; Farnworth et al., 1995; 

Wang et al., 1996; McGuire and Fritsche, 1997), although no such effect was observed 

within the current study. This concurs with the results of Rochester and Caravaggi (1971) 

in lambs supplemented with fish oil. 

In its role as a cellular antioxidant, vitamin E works in conjunction with vitamins A and C, 

and the selenoenzyme GPx, this enzyme being responsible for the reduction of lipid 
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hydroxyperoxide compounds within the cell (Putnam and Comben, 1987). The complex 

relationship between GPx and vitamin E was demonstrated in the study of Suarez el al. 

(1999) who described a reduction in liver and brain GPx concentration as a result ofPUFA 

supplementation of rats, concluding that this effect is due to a sparing effect of vitamin E 

upon GPx synthesis. However, as observed in Experiment One, no significant effect of 

vitamin E supplementation was observed upon the ewe erythrocyte GPx activity, 

moreover, no effect of fat source was seen. It appears that the peroxidative challenge 

imposed by the experimental diets in the current study was insufficient to increase GPx 

activity, however, it is notable that GPx activity was increased by the additional daily 

selenium and vitamin E supply during lactation across all treatments. 

It may therefore be suggested that dietary treatment would have no concurrent effect upon 

the cellular metabolites produced by peroxidation, i.e. creatine kinase. Indeed, provision 

of the treatment diets reduced the concentration of CK during pregnancy compared to 

baseline results, with little change between concentrations in pregnancy and lactation. 

When compared to reference values for CK in ovine serum (Bostedt and Schramel, 1990), 

observed values were tenfold lower than those indicative of clinical disease. The study 

published by Walsh el al. (1993) suggested that the threshold for sub-clinical myopathy 

may be as low as 250 lUll, nonetheless, all ewes had serum CK concentrations below this 

threshold. 

5.5.1.4. Plasma fatty acids pre-partum 

The plasma fatty acid composition of the ruminant has a complex relationship with the 

dietary fatty acid supply (Jenkins and Thies, 1997). Daily fatty acid intakes were similar 

between treatments at one week pre-parIum, but the total plasma fatty acid concentration 

was significantly lower in ewes offered diets containing fish oil. This may be attributed 
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either to differences in fatty acid absorption, or to changes in the endogenous synthesis of 

fatty acids within the ruminant. 

Studies measuring the absorption of fatty acids within the ruminant intestine have 

produced conflicting results. Doreau and Chilliard (1997a) reported that fatty acid 

digestibility is reduced as acyl chain length increases, whilst Wu et al. (1991) suggested 

that digestibility may be increased with fatty acid unsaturation. Although the fish oil used 

in the current study was unprotected, the results observed were similar to those noted in 

Experiment One, using fish oil protected with vermiculite. 

Several studies have reported the effect of long-chain PUF A supplementation upon 

endogenous fatty acid synthesis, specifically the depression of microbial (Loor et al., 2002) 

and cellular fatty acid synthesis (Chilliard and Doreau, 1997). Microbial fatty acid 

synthesis may be reduced in ruminants due to the toxic effects of unsaturated fatty acids 

upon cellulolytic bacteria reducing ruminal production of the two-carbon fatty acid 

precursor acetate (Szumacher-Strabel et al., 2001 b). The reduction in straw intake 

observed in ewes fed fish oil concurs with this hypothesis. In addition, the trans CI8:I 

fatty acids (Ahnadi et al., 1998) and CLA (Chouinard et al., 1999) have been implicated in 

the suppression of cellular fatty acid synthesis and the concentration of these fatty acids 

were significantly increased in plasma of ewes offered fish oil within the current study. 

The principal saturated fatty acid contained within plasma of ewes fed Megalac was CI6:0, 

with concentrations of this fatty acid being more than two-fold lower in ewes offered diets 

containing fish oil. However, the magnitude of this difference was not as great as the 

differences in dietary supply conferred by the treatment diets. This may suggest that the 

endogenous production of CI6:0 was not inhibited by fish oil supplementation within the 

current study. The amount of C18:0 within plasma was significantly reduced by the 
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addition of fish oil to the diet of the pregnant ewe. Dietary supply of this fatty acid was 

equivalent between treatment concentrates, therefore this reduction may have resulted as a 

consequence of alterations in the efficiency of ruminal biohydrogenation. Ruminal 

biohydrogenation of unsaturated fatty acids principally produces C18:0, but the addition of 

long-chain PUF As to the diet demonstrably shifts the pattern of biohydrogenation towards 

the production of trans C 18: 1 fatty acids and CLA (Gulati et al., 1999). This concurs with 

the proportions of C 18: 1 trans and CLA observed as a result of fish oil supplementation. 

Both Ashes et al. (1992) and Chikunya et al. (2004) reported similar results as a 

consequence of feeding protected fish oil to sheep, as did Offer el al. (200 I) who 

supplemented lactating cattle with unprotected fish oil. 

Differences in ewe plasma concentrations of C 18: 1 n-9 cis between treatments are in 

agreement with those recorded as a result of fish oil supplementation of ewes in 

Experiment One. The amount of this fatty acid within plasma was increased by protected 

fish oil supplementation in the study of Ashes el al. (1992), when compared to a basal diet. 

However, the concentration of C 18: 1 n-9 cis in experimental concentrates containing 

Megalac was high, therefore, the decrease in CI8:ln-9 cis concentrations observed with 

fish oil supplementation may be attributed to variation in the concentration of this fatty 

acid between experimental diets. 

The magnitude of the differences in plasma C 18:2n-6 proportions between treatments was 

higher that would have been predicted from the daily fatty acid intake. Lower C 18:2n-6 

concentrations in plasma as a result of fish oil supplementation have been reported by 

Ashes et al. (1992) in sheep and Offer et al. (2001) in cattle. The extent to which CI8:2n-

6 is biohydrogenated is variable, with published values ranging from 70 to 95% (Chilliard 

et al., 2000; Wachira et al., 2000; Chikunya et al., 2004 ), and appears to be dependent 

upon the fatty acid composition of the diet. Dohme et al. (2003) suggested that microbial 
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lipases may specifically target ester linkages associated with C18:2n-6 in preference to 

C20:5n-3 and C22:6n-3, thereby increasing the biohydrogenation of this fatty acid in 

preference to other long-chain PUF As. This may explain the apparent increase in 

biohydrogenation ofC18:2n-6 from fish oil compared to Megalac diets. 

All treatment concentrates contained small amounts of C20:4n-6, but the proportion of 

C20:4n-6 within plasma fatty acids tended to be lower in ewes supplemented with fish oil 

compared to Megalac. This may be a consequence of inhibition of endogenous C20:4n-6 

synthesis by the addition of preformed n-3 fatty acids to the diet, as described by Makrides 

et al. (1995) in humans. The decreases in C20:4n-6 within plasma observed throughout the 

Experiments One and Three as a consequence of fish oil supplementation may also have 

occurred due to competition between C20:4n-6, C20:5n-3 and C22:6n-3 for incorporation 

into phosphatidylglycerols. 

As an EFA, C18:3n-3 must be supplied preformed from the ruminant diet, thus the 

presence of this fatty acid within plasma indicates that it has originated either from dietary 

supply or mobilisation of existing body fatty acid reserves. The small, but significant 

differences in plasma proportions of this fatty acid observed between treatments were 

related to the dietary intake of this fatty acid, i.e. lower intakes in ewes consuming diets 

containing Megalac. Biohydrogenation and absorption rates for C 18:3n-3 are therefore 

assumed to have been similar between experimental diets. Voigt and Hagemeister (200 I) 

suggested that the endogenous synthesis of C20:5n-3 and C22:6n-3 is negligible in the 

ruminant, however, this hypothesis does not concur with the results of any the three 

experiments within this study. Given the lack of a preformed source of C20:5n-3 or 

C22:6n-3 within the Megalac diet, it may be further suggested that the reduced proportion 

of C18:3n-3 within plasma of these ewes may result from C20:5n-3 and C22:6n-3 
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synthesis. Indeed, the exponential growth rate exhibited by the foetus in late pregnancy 

would increase the requirement for these fatty acids pre-partum. 

Ashes et al. (1992) and Offer et al. (2001) demonstrated increases in the amount of 

C20:5n-3 and C22:6n-3 within plasma as a consequence of supplementing the ruminant 

diet with fish oil, and similar results have been observed in the current study. Protecting 

fish oil from ruminal hydrogenation is suggested to increase the amount of C20:5n-3 and 

C22:6n-3 absorbed at the small intestine. Despite increased daily intakes of C20:5n-3 and 

C22:6n-3 in the current study, the plasma proportions of these fatty acids were reduced in 

plasma compared to results within Experiment One. This suggests that the method of 

protection used in Experiment One (adsorption onto venniculite) may have provided a 

degree of protection against the biohydrogenation of C20:5n-3 and C22:6n-3. 

Furthennore, Dohme et al. (2003) concluded that the extent of biohydrogenation of 

C20:5n-3 and C22:6n-3 from fish oils is dependent upon the inclusion rate and type of oil. 

Although inclusion rates were similar between Experiments One and Three, Experiment 

One employed unrefined Scandinavian fish oil, and Experiment Three used a mixture of 

mackerel and herring oil. Biohydrogenation rates of long-chain n-3 PUFAs may therefore 

have been higher in Experiment Three, independent of protection method. 

Gulati et al. (2003) reported an increased transfer rate of C20:5n-3 compared to C22:6n-3 

from dietary fish oil into milk of lactating cattle, suggested to be due to retroconversion of 

C22:6n-3 to C20:5n-3. The apparent transfer of C20:5n-3 from the diet to plasma of 

pregnant ewes in the current study appeared to be higher than that of C22:6n-3, concurring 

with plasma results from Experiment One. Whether this effect was due to retroconversion, 

changes in biohydrogenation and absorption or to a preferential transfer of C20:5n-3 from 

the small intestine into plasma lipid fractions, warrants further investigation. 
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5.5.1.5. Gestation length 

In humans, both high dietary fish intakes and supplementation with fish oils have been 

observed to increase gestation length (Olsen et al., 1986; 1992). The principal long-chain 

fatty acids within fish oil are C20:5n-3 and C22:6n-3, and it is assumed that one, or both of 

these are responsible for the reported effects. Several theories have been advanced to 

explain the mechanism by which these results occur, including effects upon the immune 

system (Waltman et al., 1978) and on eicosanoid production (Olsen et al., 1992). 

Consensus opinion appears to favour the hypothesis described by Olsen et al. (1992) and 

Abayasekara and Wathes (1999) proposing an effect of specific n-3 fatty acids upon the 

production of prostaglandins required for parturition. Trienoic prostaglandins, which have 

an inhibitory effect on the normal process of parturition, are endogenously synthesised 

from C20:5n-3, abrogating the effects of stimulatory dienoic prostaglandins produced from 

n-6 fatty acids (Abayasekara and Wathes, 1999). If the increase in gestation length can be 

attributed to the increased production of trienoic prostaglandins, it is suggested that 

C20:5n-3 alone is responsible. Supplementation of pregnant women with C22:6n-3 was 

reported to increase gestation length in the study of Smuts et al. (2003), but this effect was 

attributed to retro-conversion of C22:6n-3 to C20:5n-3 as C22:6n-3 is not a significant 

prostaglandin precursor. Nonetheless, C22:6n-3 may inhibit the formation of C20:4n-6-

derived prostaglandins by binding to cellular sites or competing for enzymes required for 

prostaglandin production (Hansen and Olsen, 1988). 

In contrast to the results of Rooke et al. (200Ic) using pigs, Pickard et al. (2005) in sheep 

and the effects observed in Experiment One, fish oil supplementation of the pregnant ewe 

had no significant effect upon gestation length in the current study. This may simply be 

because the unprotected fish oil employed within the current study reduced the amount of 

C20:5n-3 absorbed by and available to the ewe for prostaglandin synthesis compared to 

that fed in Experiment One. Plasma concentrations of C20:5n-3 at one week pre-parIum 
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were slightly reduced when expressed on a mg/ml basis and the proportional contributions 

were approximately 2.5 g/lOOg fatty acids lower than the equivalent results obtained in 

Experiment One. However, the absolute amount of C20:5n-3 within plasma and tissues 

may not be the instigator of changes in prostaglandin production, but rather the ratio of 

C20:5n-3 to C20:4n-6. The C20:5n-3:C20:4n-6 ratio in the current study for ewes 

supplemented with fish oil was 2.07 compared to 2.74 for Experiment One. Olsen el al. 

(1992) suggested that gestation length is increased only when C20:5n-3 saturation reaches 

a threshold level. It is therefore postulated that a threshold for the C20:5n-3:C20:4n-6 ratio 

exists, above which dienoic prostaglandin synthesis is reduced and gestation length 

increased. 

Gestation length appeared to be increased across all treatments when compared to results 

observed in Experiment One, as the control (Megalac) group had a gestation length of 

147.5 days in Experiment Three compared to 145.6 days in Experiment One. Although 

this appeared to have no effect upon gestation length in Experiment One, Cheng et al. 

(2003) propose that this fatty acid competes with C20:4n-6 for uptake and enzymes 

systems associated with prostaglandin production. Indeed, plasma concentrations of 

CI8:2n-6 were significantly higher in ewes supplemented with Megalac in the current 

study. Nonetheless, concentrations of C20:4n-6 in plasma at one week pre-parium were 

significantly higher in the Megalac-supplemented group than in those fed fish oil, which 

was suggested by Olsen et al. (1990) to reduce gestation length. As ewe gestation length 

naturally ranges from 145-147 days, it is possible that the results observed were a 

consequence of prostaglandin inhibition across treatments by both C20:5n-3 (treatments 

FML and FMH) and CI8:2n-6 (treatment MML), resulting in no significant difference 

between treatments. 
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5.5.1.6. Plasma fatty acids post partum 

In an attempt to negate the effects of long-chain PUF A supplementation of pregnant and 

lactating ewes upon milk composition and lamb growth rate, ewes fed diets containing fish 

oil during pregnancy were changed onto a diet containing Megalac. However, it is 

interesting to note that some aspects of milk composition, namely fat concentration, were 

still affected by long-chain PUFA supplementation during pregnancy. Plasma fatty acids 

provide an indication of the fatty acid status of the ewe and may provide an insight into the 

mechanisms behind inhibition of milk fat synthesis. Nonetheless, within the current study, 

few significant differences were observed in the concentrations of plasma fatty acids as a 

consequence of dietary treatment during lactation. 

In contrast to changes in plasma fatty acid composition observed during lactation within 

Experiment Two, fish oil supplementation of the ewe during pregnancy had no significant 

effect upon the concentrations of the major saturated fatty acids C 16:0 and C 18:0 within 

plasma at two weeks post partum. Furthermore, the concentrations of both C 18: 1 n-9 cis 

and CI8:I trans were not significantly affected by dietary treatment. A considerable 

amount of research has been devoted to investigating the mechanisms behind milk fat 

depression in ruminants given long-chain PUF As, and it appears that the incomplete 

biohydrogenation of fatty acids that leads to the production of trans octadecanoic fatty 

acids may be a major contributing factor (Wonsil et al., 1994). However, given the 

tendency for ewes supplemented with fish oil during pregnancy to have lower milk fat 

concentrations at three weeks into lactation within the current study, a concurrent increase 

in the concentration ofCI8: I trans fatty acids within plasma would have been expected. 

In the absence of a preformed dietary source of long-chain PUFAs, the ewes requirement 

for C20:4n-6, C20:5n-3 and C22:6n-3 must be met by elongation and desaturation of the 

essential precursor fatty acids, C18:2n-6 and CI8:3n-3. Concentrations of both C18:2n-6 

307 



and CI8:3n-3 within plasma were similar between treatments, a result that may be 

attributed to similar dietary supply during lactation. However, provision of dietary fish oil 

during pregnancy had significant carry-over effects upon the amounts of long-chain 

PUF As present within plasma at two weeks post partum. Little research has been directed 

towards the carry-over effects of PUF A supplementation upon ruminant plasma fatty acids. 

However Wonsil et al. (1994) suggested that the slow tum-over of phosphatidylglycerols 

and cholesterol esters within which long-chain PUFAs are preferentially incorporated may 

impart residual effects of supplementation upon plasma fatty acid concentrations once the 

PUF A source has been removed from the diet. This hypothesis would explain both the 

increase in C22:6n-3 concentration and decrease in C20:4n-6 concentration in plasma of 

ewes fed fish oil during pregnancy. Supplementation of the ewe with preformed dietary 

C22:6n-3 would facilitate the increased deposition of this fatty acid into plasma lipid 

components as reported by Ashes et al. (1992) and Chikunya et al. (2004). By contrast, 

the inhibition of C20:4n-6 synthesis induced by long-chain PUF A supplementation 

(BougIe et al., 1999) would reduce the amount of this fatty acid deposited in plasma 

phosphatidylglycerols and cholesterol esters. 

5.5.1.7. Milk 

Milk yield and composition is affected by factors intrinsic to the ewe such as breed, age 

and stage of lactation, and by the dietary energy and protein supply (Hullar and Brand, 

1993). Previous studies in which lactating ruminants were supplemented with fish oil have 

reported differing results: Keady et al. (2000) observed an increase in milk yield as a result 

of long-chain PUF A supplementation as did Chilliard and Doreau (1997), whereas the 

results of Jones et al. (1998), Kitessa et al. (2001b) and Shingfield et al. (2003) suggested 

that milk yield is depressed by the addition of fish oil to the ruminant diet. By contrast, no 

significant effect of dietary fish oil or vitamin E supplementation was observed upon milk 

yield or secretion rate within the current study, concurring with the results noted by Kitessa 
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et al. (2003) and Kitessa et al. (2004) using protected tuna oil and those of Cant et al. 

(1997), Offer et al. (2001) and AbuGhazaleh et al. (2003) using unprotected fish oils. 

The consensus view is that isomers of CLA or trans C 18: 1 produced from incomplete 

ruminal fermentation of PUF As are responsible for milk fat depression in animals fed 

long-chain PUF A sources via effects upon the enzymes required for milk fat synthesis 

within the mammary gland (Ahnadi et al., 1998). However, the source of CLA and trans 

C18:1 in animals fed a diet devoid of long-chain PUFAs for a three-week period is a matter 

of contention. The industry standard for ruminal adaptation from a diet containing 

nutrients that have significant effects upon rumina I fermentation, is three weeks. However, 

milk composition was measured at four weeks after the diet change-over within the current 

study, at which point, carry-over effects were still present. Similar results were reported 

by Shingfield et al. (2003) after a 14-day diet adaptation period, but there is no comparable 

information available for longer time periods. No significant carry-over effect of fish oil 

supplementation during pregnancy was observed upon plasma concentrations of C 18: 1 

trans or CLA within the current study. It is not possible to draw accurate conclusions 

regarding the effect of trans-lO, cis-12 CLA upon milk fat concentrations due to 

difficulties in the identification of this fatty acid by gas chromatography. 

A plausible explanation for the carry-over effect of fish oil supplementation upon milk fat 

concentration is that mobilisation of tissue reserves during lactation releases stored CLA 

and trans CI8:! fatty acids. However, long-chain PUFAs are normally stored in 

phosphatidylglycerols with only small amounts found in adipose tissue (Poumes-Ballihaut 

et al., 2001) and it may be suggested that the low mobilisation of fatty acids from 

phosphatidylglycerols would not produce sufficient quantities of these fatty acids to induce 

changes in milk composition. By contrast, Scollan et al. (2003) suggested that 

triacylglycerols are the major storage depot for CLA, and Schrock and Connor (1975) 
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reported significant incorporation of trans C 18: 1 fatty acids into triacylglycerols compared 

to phosphatidylglycerols. Mobilisation of these tissues during lactation may provide a 

labile source of these fatty acids. 

Milk protein synthesis within the mammary gland is directly dependent upon sufficient 

supplies of amino acids and glucose. The iso-nitrogenous and iso-energetic nature of the 

experimental diets would suggest that milk protein concentration or yield should be 

unaffected by treatment diet. However, several authors have published data suggesting 

that milk protein concentration is depressed by fish oil supplementation of the lactating 

ruminant (Kites sa et al., 2001b; Ahnadi et al., 2002; Lacasse et al., 2002) suggesting that 

these effects may be due to a decrease in casein synthesis or caused by a dilution effect of 

an increase in milk yield. Although the carry-over effects of fish oil supplementation 

during pregnancy were potent enough to affect milk fat concentrations, these effects may 

have been less significant upon milk protein. 

5.5.2. Lamb parameters 

5.5.2.1. Maternal and neonatal behaviour 

Measurements of maternal behaviours and care have been shown to differ between breeds 

(Fahmy et aI., 1997; Lawrence and Dwyer, 1997; Lambe et al., 2001) and to be affected by 

prior maternal experience (O'Connor et al., 1985; Lambe et al., 2001). However, diet is 

not generally considered to be a significant factor in maternal behaviours directed towards 

the neonatal lamb. The similar maternal behaviour scores exhibited by ewes on all 

treatments suggests that the quality of maternal care was unaffected by diet and would 

have little or no effect upon differences observed in lamb behaviours. 

Differences in the latency of ewe vocalisation were unexpected, being significantly higher 

in ewes supplemented with fish oil plus a supranutritionallevel of vitamin E. Dwyer et al. 
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(1998) suggested that ewe vocalisation is intrinsically linked to maternal experience and 

breed, and unrelated to lamb characteristics. The aforementioned study discriminated 

between low-pitched bleating, emitted in the presence of the lamb and thought to reinforce 

the ewe-lamb bond, and high-pitched bleating, a distress signal related to lamb absence. 

Although these data were not recorded in the current study, lambs borne to ewes fed diet 

FMH may have spent more time apart from the lamb in the immediate post partum period 

thereby exhibiting increased vocalisation. A lack of vocalisation was correlated with 

reduced lamb standing attempts in the study of Vince (1986), but this effect was not 

observed in the current study. 

Neonatal lamb behaviours follow an established pattern (Fraser and Broome, 1997), 

regardless of breed, although the latencies of these behaviours are directly related to lamb 

vigour, and may be affected by lamb breed (O'Connor and Lawrence, 1992; Wassmuth et 

al., 2001) and birthweight (Tuchscherer et al., 2000). The latencies observed for neonatal 

lambs within the current study concur with the time periods reported by Alexander and 

Williams (1966), Fahmy et al. (1997) and Wassmuth et al. (2001). 

Supplementation of the pregnant ewe with long-chain PUF As appeared to reduce the 

latencies of standing, searching for the udder and suckling in neonatal lambs, however, 

these differences were not significantly different. The underlying assumption behind the 

theory that long-chain PUFA supplementation will improve neonatal vigour, hinges upon 

the supposition that increasing the concentration of long-chain PUF As within brain and 

nervous tissue will improve cognitive development and impact on behaviours. Studies 

involving the supplementation of animals with long-chain PUFAs upon neonatal 

behaviours have reported conflicting results. Rooke et al. (200Ia) observed reduced 

latencies of contact with the udder and teats in piglets borne by sows fed tuna oil during 

late pregnancy. Pickard et al. (2005) also described lower latencies of standing in lambs 
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born to ewes supplemented with algal biomass. By contrast, the study of Rooke et al. 

(1998) reported reduced viability scores in piglets from tuna-oil supplemented sows. Brain 

tissue samples taken from neonatal lambs borne to ewes fed fish oil had higher proportions 

of C22:6n-3 compared to those from lambs produced by ewes fed Megalac, although these 

differences were not significant. When taken in combination with the reduced latencies of 

neonatal behaviour in these animals and the significant results observed in Experiment 

One, it could be suggested that a larger sample size might have led to these differences 

being significant. 

Studies in humans, in which infants were fed formulae supplemented with long-chain 

PUFAs have reported significant improvements in infant visual acuity, intellectual 

development and motor skills (Hoffman et al., 1993; Willatts et al., 1998; Bouwstra el al., 

2003). However, human neonates are altricial by nature, dependent on maternal care 

during the first few months of life in contrast to sheep and pigs which are precocial, 

standing and following the dam within minutes of birth (Zelditch et al., 2003). Therefore, 

it is possible that latencies of behaviours in lambs are not as precise indices of cognitive 

and motor development as they are in human infants. 

Vitamin E supplementation of the pregnant ewe has been reported by Kott et a1. (1998) to 

reduce lamb mortality and by Merrell (1998) to improve neonatal lamb vigour. No 

significant effect of maternal dietary vitamin E supplementation upon latencies of lamb 

behaviours was observed in the current study, furthermore, lamb mortality was unaffected 

by vitamin E supplementation. 

5.5.2.2. Body temperature 

The neonatal lamb is susceptible to substantial heat loss during the first hours of life as the 

skin is saturated with amniotic fluid (Fraser and Broom, 1997). Furthermore, lamb 
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mortality rates have been reported to be increased by inclement weather conditions when 

ewes lamb outside (Nowak, 1996; Kott et al., 1998). The ability of the neonate to maintain 

homeothenny is therefore a significant factor in its survival (Herpin et al., 2002). 

Homeothenny may be achieved in the neonate via three mechanisms: reducing 

evaporation, ingesting colostrum or thennogenesis (Herpin el al., 2002). Grooming 

behaviour of the dam considerably reduces heat loss caused by the evaporation of amniotic 

fluids from the skin (Fraser and Broom, 1997). The ingestion of colostrum by the lamb 

then provides energy for heat production (Gonyou and Stookey, 1987). However, non

shivering thennogenesis (NST) is a major factor in the regulation of the lambs temperature 

with concurrent effects upon survival rate (Robinson, 1981). Thennogenesis occurs in 

brown adipose tissue (BAT), the extent of heat production dependent on the activation of 

the enzymes required for the uncoupling of oxidative phosphorylation (Palou el al., 1998). 

Oudart el al. (1997) reported that the thennogenic activity of BAT is enhanced by the 

addition of long-chain PUF As to the diet of rats. Therefore, it is logical to assume that 

supplementation of the ewe diet with fish oil may augment heat production via NST in the 

lamb. By contrast, Wrutniak and Cabello (1989) suggested that the increase in T 3 

concentrations induced by the administration of soya oil to neonatal lambs may exert a 

negative feedback response upon the hypothalamus-pituitary-thyroid axis, thereby 

reducing NST. 

Lamb rectal temperatures were similar between treatments in the current study, suggesting 

that maternal diet had no significant effect upon this parameter. However, in order to 

avoid biasing behavioural data, temperatures were measured at three hours post parIum 

after the consumption of colostrum and considerable grooming from the dam, therefore 

may have been confounded by these factors. The rectal temperatures recorded in the 

current study are in agreement with those reported by Wassmuth el al. (2001) at three 

hours post parIum, but it is not known whether differences would have been observed if 
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temperatures were recorded earlier. Furthermore, all lambs were housed and bedded on 

sawdust with little effect of climatic conditions, which may have masked potential 

differences in NST between treatments. 

5.5.2.3. Antioxidant status of the neonate 

Results observed during Experiment One suggested that transfer of vitamin E across the 

ovine placenta and subsequent deposition into neonatal tissues may be manipulated by the 

maternal dietary vitamin E supply. This is in contrast to the body of research which. to 

date, has concluded that placental transfer of vitamin E to the foetus is negligible and that a 

satisfactory vitamin E status is only achieved by the ingestion of colostrum (Njeru el al., 

1994). Plasma vitamin E concentrations are commonly regarded to be a reliable indicator 

of whole body vitamin E status, both in humans (Mino and Nishino, 1973; Leger el al., 

1998) and various animals (Njeru el al., 1994; Hidiroglou et al., 1995; Lauridsen el al., 

2002). Low neonatal plasma concentrations are therefore suggested to be indicative of a 

low vitamin E status. In agreement with results observed within Experiment One, Pehrson 

el al. (1990) reported increased plasma vitamin E concentrations in lambs borne by ewes 

supplemented with oral or intramuscular vitamin E, moreover, both Hidiroglou el al. 

(1993a) and Mahan (1991) demonstrated similar results in piglets. 

Kelly et al. (1992) hypothesised that plasma concentrations may not fully represent foetal 

vitamin E status and that the liver may act as a labile source of vitamin E during periods of 

low placental supply. At first glance, the results of the current study appear to bear out the 

conclusions of previous researchers, in that neither fat source or maternal vitamin E supply 

had any significant effect on neonatal plasma vitamin E concentration. Indeed, all 

concentrations were below the level detectable by high performance liquid 

chromatography. However, supplementing pregnant ewes with supranutritional dietary 

concentrations of vitamin E significantly increased the deposition of vitamin E within the 
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brain of neonatal lambs, thereby rejecting the widely held hypothesis that placental transfer 

of vitamin E is impervious to manipulation by the maternal diet. Hidiroglou et al. (1993b) 

reported a similar pattern in piglet brain and liver as a consequence of increased maternal 

vitamin E supplementation. 

Tissue vitamin E concentrations observed by Hidiroglou et al. (l993b) were substantially 

lower than those detected within the current study, possibly due to the relatively high 

dietary vitamin E concentrations used within the experiment. Moreover, brain vitamin E 

concentrations within the current study were approximately threefold higher than those 

reported by Lauridsen et al. (2002) in neonatal piglets. However, the current values were 

lower than those reported by Vatassery et al. (1988) in vitamin E-deficient rats. 

High concentrations of long-chain PUF As tend to abrogate the concentration of vitamin E 

within tissues and body fluids (Hidiroglou et al., 1970; Farnworth et al., 1995; Wang et al., 

1996). Although not significantly different, brain tissue concentrations of vitamin E were 

higher in lambs borne by ewes fed diet FML compared to MML. This is in contrast to the 

values observed within the Experiment One in which diets FB and MB conferred almost 

equivalent brain concentrations of vitamin E. Although maternal dietary vitamin E 

concentrations were similar between treatments MML and FML, this result may have been 

due to differences in absorption, placental transfer and incorporation into foetal tissue. 

Furthermore, it is possible to suggest that tissues with an enhanced PUF A concentration as 

a consequence of fish oil supplementation of the ewe may also have a concurrent increase 

in vitamin E deposition in order to prevent against oxidative stress. 

5.5.2.4. Plasma fatty acids in the neonate 

The effectiveness of the placental fatty acid supply to the neonatal lamb has been debated 

for some time. In essence, most reviewers have concluded that the only mechanism by 
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which the lamb attains a satisfactory fatty acid status is via the ingestion of colostrum 

(Raijon et al., 1985). Analysis of plasma lipid fractions in the human female and neonatal 

infant by Matorras et al. (1999) showed that a high positive correlation exists between 

maternal and foetal plasma fatty acid concentrations, with particular reference to n-3 fatty 

acids. However, although fish oil supplementation reduced total fatty acid concentrations 

in ewes at one week pre-partum, treatment FMH (fish oil plus a high concentration of 

vitamin E) increased the concentration of fatty acids within neonatal plasma in the current 

study. Fatty acids are transported across the ovine placenta by specific fatty acid-binding 

proteins (Knipp et al., 1999). Placental transfer has not been demonstrated to increase with 

vitamin E supplementation, therefore it appears that some mechanism exists by which 

PUF A transfer may be augmented. The total concentration of fatty acids within neonatal 

lamb plasma was approximately one quarter of that found in ewe plasma (treatments MML 

and FML) and almost equal for treatment FMH. The reduced concentrations concur with 

the results of Elphick et al. (1978) and Leat and Harrsion (1980) but indicate that although 

transfer is low, it may not be described as negligible. 

The total concentration of saturated fatty acids within neonatal lamb plasma was increased 

by the provision of fish oil and supranutritional dietary concentrations of vitamin E to the 

ewe. However, the concentrations of the individual fatty acids C16:0 and C18:0 within 

neonatal lamb plasma were unaffected by ewe diet. The quantity of these fatty acids 

within ewe plasma was reduced by supplementation with fish oil, therefore the current 

results concur with those of Leat and Harrison (1980) who suggested that the placenta may 

differentiate between specific fatty acids. The preferential transfer of specific fatty acids 

across the placenta would explain the variation in fatty acid composition of neonatal lamb 

plasma compared to ewe plasma. For example, the concentration of C16:0 was high in 

experimental diet MML and concurrently high in ewe plasma, however, this fatty acid was 
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present in lower amounts in lambs produced by ewes offered diet MML compared to diet 

FML. 

Neonatal lamb plasma concentrations of C18:1 trans were unaffected by maternal diet 

within the current study, but significant effects were observed upon C18: In-9 cis, the 

lowest concentrations being found in lambs borne by ewes fed diet FML, compared to 

those fed diets MML and FMH. This appears to have resulted from the lower proportions 

of CI8:1n-9 cis within ewe plasma, affecting the transfer of this fatty acid across the 

placenta. Supplementing the ewes' diet with fish oil during pregnancy (treatments FML 

and FMH) also significantly reduced the concentration of this fatty acid within plasma, 

concurring with the effect of diet MML compared to FML upon neonatal lamb plasma. 

Several authors have described the EFA status of the neonatal lamb: Elphick et al. (1979) 

reported extremely low concentrations of CI8:2n-6 in plasma as did Leat and Harrison 

(1980), Raijon et al. (1985), and Noble et al. (1978), the latter authors attributing this to 

the inability of complex lipids to transverse the placenta and only the unesterified fraction 

being available to the foetus via the placenta. By contrast, Payne (1978) suggested that 

placental transfer from dam to foetus is substantial and that the low concentrations of EFAs 

found in plasma are not representative of overall EFA status. The results of the current 

study appear to concur with the research of Elphick et al. (1979), Leat and Harrison (1980) 

and Raijon et al. (1985) in that the concentrations of C 18:2n-6 within neonatal lamb 

plasma were extremely low and C 18:3n-3 was virtually undetectable. However, this 

reduction in EFAs is often accompanied by an increase in C20:3n-9 (mead acid), the 

principal metabolite of the elongation and desaturation of C 18:0 in the absence of C 18:2n-

6 or CI8:3n-3 and a prime indicator of EFA deficiency (Noble et al., 1982). Within the 

current study, C20:3n-9 was undetectable in neonatal lamb plasma samples (data not 

shown) and it is not possible to conclude whether lambs were deficient in EFAs. 
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Raijon et al (1985) suggested that plasma metabolites of EFAs are a pertinent indicator of 

EF A status, but within the current study, these were confounded by the supply of fish oil 

rich in C20:5n-3 and C22:6n-3 to pregnant ewes. The amounts ofC20:4n-6, C20:5n-3 and 

C22:6n-3 within plasma were higher than those of the precursor fatty acids. Furthennore, 

the proportional contributions of C20:4n-6, C20:5n-3 and C22:6n-3 to plasma fatty acids 

were appreciably higher in the neonate than in maternal plasma at one week pre-parIum 

indicating either a substantial fatty acid synthesis within the placenta or neonate, or a 

preferential transfer of these fatty acids across the placenta. Noble (1981) and Noble el al. 

(1985) postulated that increases in C20:4n-6 between the maternal and foetal circulation 

may be due to elongation and desaturation of maternally derived C 18:2n-6. This is further 

confirmed by the presence of the 6.-6 and 6.-9 desaturase enzyme systems within the ovine 

placenta (Crawford, 2000). However, although small amounts of C20:4n-6 and C20:5n-3 

were present in the plasma of lambs borne by ewes fed Megalac, C22:6n-3 was not 

detectable, which throws doubt upon the elongation-desaturation hypothesis. 

Concurring with the hypothesis of Noble (1981), Campbell et al. (1998) described a fatty 

acid-binding protein present within the human placenta which preferentially binds and 

transfers C20:4n-6 and C22:6n-3 to the foetus. The presence of a similar protein within the 

ovine placenta would explain the increased concentrations of the n-3 and n-6 fatty acids 

within lamb plasma within the current study and warrants further investigation. The 

developing organs of the foetal and neonatal lamb may have an increased requirement for 

C20:5n-3 and C22:6n-3 compared to the adult animal, therefore, it may be hypothesised 

that, as a consequence of endogenous biosynthesis within brain and retina. plasma 

concentrations of these fatty acids may not be reliable indicators of their concentrations 

within tissue (Sinclair et al., 2002). 
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5.5.2.5. Neonatal brain fatty acids 

In Experiments One and Two it was suggested that the total fatty acid content of brain 

tissue was relatively inflexible due to the essential role played by the lipid component, 

hence the lack of significant effects of maternal treatment diet. However, within the 

current experiment, not only were the total fatty acid concentrations of neonatal brain 

tissue higher for all treatments than in the two previous studies but they were further 

augmented by the addition of Megalac to the maternal diet. Celik et al. (1999) 

demonstrated that the addition of either vitamin E, selenium or their combination to the 

diet of growing lambs (at eight to nine months of age) significantly increased the lipid 

component of brain tissue. The higher vitamin E concentrations within brain tissue within 

the current study compared to that described in Experiment One concur with this result and 

suggest that the increased lipid component may have been facilitated by increased vitamin 

E deposition into brain tissue. However, two further questions are posed by the acceptance 

of this theory: dietary vitamin E concentrations (whether basal or supranutritional) were 

similar between Experiments One and Three and it is unclear whether the observed 

differences in plasma levels were due to variation in brain deposition, or to maternal 

transfer. Furthermore, the vitamin E concentration of brain tissue was lower in lambs 

produced by ewes fed diet MML, yet the brain fatty acid concentration was highest in these 

lambs, a fact which throws doubt on the validity of the theory that vitamin E deposition in 

the brain affects lipid concentration. It is not clear whether differences in total brain fatty 

acid concentration were observed in the studies in piglets published by Rooke et al. (1999; 

2000; 200 I a; 2001 b) as all results were stated as proportions of total fatty acids. 

Saturated and monoenoic fatty acids have a structural role within brain tissue, but, as 

discussed within section 4.5.2.3. playa minor functional role compared to the EFAs 

(C18:2n-6 and C18:3n-3) and the conditionally essential long-chain PUFAs (C20:5n-3, 

C20:4n-6 and C22:6n-3). The proportion of C18:2n-6 within neonatal lamb brain tissue 
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was considerably lower than that within plasma for all treatments, suggesting either a 

reduced uptake by brain tissue, or the conversion of this fatty acid to its long-chain 

derivative (C20:4n-6). Indeed, Innis (2003) suggested that the low concentrations of 

CI8:2n-6 within human brain tissue are due to the high requirement of neural tissue for 

C20:4n-6 and C22:6n-3. However, the proportion of CI8:2n-6 within the brain lipid 

component tended to be higher in lambs borne to ewes offered fish oil during pregnancy 

despite the lack of a treatment effect on neonatal plasma concentrations. From this result it 

could be hypothesised that C20:4n-6 was endogenously synthesised to a lesser extent in 

these lambs compared to those produced by ewes fed Megalac, a result which would be 

expected given the inhibitory nature of preformed long-chain n-3 PUFAs (C20:5n-3, 

C22:6n-3) upon synthesis of n-6 PUFAs. Indeed, the proportion of C20:4n-6 within lamb 

brain tissue tended to be lower in lambs borne to ewes fed fish oil during pregnancy 

compared to those from ewes offered Megalac. Depressions in C20:4n-6 status in neonatal 

piglets were related to reductions in birthweight by Cordoba et al. (2000). Furthermore, 

both Arbuckle and Innis (1992) and Su et al. (1999) reported reduced growth rate in 

animals with low concentrations ofC20:4n-6 compared to n-3 fatty acids. 

The proportion ofC18:3n-3 within neonatal lamb brain tissue was reduced in lambs borne 

to ewes supplemented with diet FML compared to MML or FMH. The reason for this 

decrease is not immediately obvious. However, it may be hypothesised that it is a 

consequence of differing lamb antioxidant status between treatments. Lambs produced by 

ewes fed diet FML would be hypothesised to have the lowest vitamin E concentrations 

within brain tissue due to the combination of low maternal dietary supply and increased 

antioxidant challenge. Therefore, as demonstrated by <;elik et al. (1999), the deposition of 

specific fatty acids into brain tissue may have been reduced by the low vitamin E supply. 

However, <;elik et al. (1999) found that this reduced deposition was equivalent between 

fatty acids, with no significant effect of chain length or level of unsaturation. By contrast, 
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the effect of maternal vitamin E supplementation observed within the current study only 

appears to have affected the deposition ofCI8:3n-3 into brain tissue. 

Various studies by Rooke et al. (1998; 1999; 2000) have demonstrated that the fatty acid 

composition of neonatal brain tissue may be manipulated by dietary supplementation of the 

dam with fish oils, with specific interest in increasing the brain C22:6n-3 concentration. In 

contrast to the results of Rooke et al. (1998; 1999; 2000), there was no concurrent increase 

in proportions of C20:5n-3 within lamb brain tissue despite maternal C20:5n-3 supply 

being increased by the addition of fish oil to the treatment diets. As previously discussed 

(sections 3.4.3.5 and 4.4.3.3), the brain does not appear to have a significant requirement 

for C20:5n-3, hence the concentration gradient that exists between plasma and brain tissue. 

Endogenous synthesis of C20:5n-3 from CI8:3n-3 may occur in brain tissue, although the 

principal function of this synthesised fatty acid within the brain is as an intermediate in the 

synthesis of C22:6n-3 (Williard et al., 2001). In contrast to lambs produced by ewes fed 

fish oil, ewes supplemented with the Megalac diet (MML) did not have a preformed 

dietary supply of C22:6n-3. Therefore it may be concluded that any C22:6n-3 present 

within the brain tissue of their offspring resulted from the endogenous elongation and 

desaturation of CI8:3n-3. The pathway by which C20:5n-3 is converted to C22:6n-3 is not 

100% efficient, therefore, it would be expected that higher C20:5n-3 concentrations would 

be present in the brains of lambs produced by ewes fed Megalac in order to accumulate 

sufficient C22:6n-3 for optimal function. This result was not observed within the current 

study, with similar proportions of C20:5n-3 in brain tissue between treatments. However, 

within the ruminant brain, it is not clear as to which step within the desaturation and 

elongation process is the rate-limiting step, therefore, there may have been a build-up of 

other intermediate fatty acids which have not been identified. Williard et al. (2001) stated 

that ~-6-desaturase is the enzyme that limits the synthesis of C22:6n-3 as the binding-site 

of this enzyme is competed for by C18:1n-9, C18:2n-6 and CI8:3n-3, however, both 
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C24:4n-6 and C24:5n-3 are also in competition with the aforementioned fatty acids for the 

synthesis of either C20:4n-6 or C22:6n-3. Therefore it is possible that the detection of 

differences in C24:5n-3 concentrations within brain tissue would have provided more 

evidence for the synthesis ofC22:6n-3 within the brain of these lambs. 

Payne (1978) suggested that there was a significant transfer of fatty acids across the ovine 

placenta, this assumption being based upon the presence of similar concentrations of n-3 

fatty acids within brain tissue of neonatal and adult ruminants. Lauritzen et al. (200 I) 

suggested that the human infant attains maximum n-3 deposition into brain (3 mglg fresh 

tissue) at approximately two years of age. There is a paucity of data available upon the 

fatty acid composition of adult ovine brain. However, if the suggestion of Lauritzen et al. 

(2001) can be extrapolated to ruminants, it is likely that the proportions of C22:6n-3 

observed in neonatal lamb brains within the current study were similar to that of the adult 

tissue. 

The majority of research on infants concerning fatty acid supplementation to date has 

concentrated on the theory that increasing brain C22:6n-3 content has positive effects upon 

cognitive and motor development. Concurring with this research, the proportion of 

C22:6n-3 within lamb brain tissue, although not significantly different between treatments, 

was higher in lambs borne by ewes fed fish oil in the current study. These lambs also 

exhibited lower latencies of standing and suckling, although, again, the difference was 

non-significant. Therefore, although a link between the two parameters was demonstrated 

by the results within Experiment One, this link is more tenuous within the current study. 

This may be due to a number of factors, including variation in the fatty acid composition of 

fish oil, the absence of any protection against ruminal biohydrogenation and the non

factorial nature of the current experiment reducing the sample size. 
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5.5.2.6. Lamb growth rate 

Lamb birthweight may have been a significant factor in the improvements in lamb vigour 

is response to maternal vitamin E supplementation as documented by authors including 

Gentry et al. (1992), Kott et al. (1996) and Merrell (1998). As observed within 

Experiment One, vitamin E supplementation of the ewe increases lamb birthweight, and 

this may have a significant positive effect upon lamb survival. Indeed, reduced levels of 

pre-weaning mortality in lambs from ewes supplemented with vitamin E were reported by 

Kott et al. (1983) and Gabryszuk and Klewiec (2002). By contrast, vitamin E 

supplementation of the pregnant ewe appeared to have no significant effect upon lamb 

birthweight within the current study, although numerically, lambs produced by ewes fed 

dietary strategy FML (who would be expected to have the lowest vitamin E status) had the 

lowest birthweights. These results are in agreement with those noted by Williamson el al. 

(1995) and Kott et al. (1998) who described no effect of vitamin E supplementation upon 

lamb liveweight or growth rate. 

Long-chain PUF A supplementation of pregnant humans and animals may increase the 

birthweight of the offspring (Olsen et al., 1992; Rooke et al., 200 I a; Smuts et al., 2003), 

either as a result of improved nutritional status, or increased gestational age at birth. 

However, concurring with the lack of effects observed as a result of PUF A 

supplementation upon gestation length in the current study, lamb birthweights were 

unaffected by maternal dietary strategy. This is also in agreement with the results 

published by Annett et al. (2004) with regards to fish oil supplementation of pregnant 

ewes. Lamb growth rate was also unaffected by maternal diet, despite carryover effects of 

maternal pre-partum diet upon milk component yield. This may imply that PUF A 

supplementation of the dam may increase the efficiency of energetic conversion from milk 

to lamb growth. Low growth rates in human infants deficient in C20:4n-6 are reported by 

Koletzko (1992). Concentrations of this fatty acid were indeed lower in lambs suckling 
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ewes supplemented with fish oil during pregnancy, but this did not impact on growth rate. 

Similar results were observed by Rooke et al. (2001) and Rooke et al (200Ic) as a result of 

augmenting the diet of pregnant and lactating sows with salmon or tuna oil. Therefore, 

despite differences in nutrient supply, it appears that replacing fish oil within the diet of 

pregnant ewes with saturated fats during lactation negates the negative effects of long

chain PUF As upon lamb growth rate as observed during Experiment One. This concurs 

with the results published by Pickard et al. (2005). Alternatively, the methods by which 

milk yield and lamb growth rate were recorded may have led to overestimation of the 

nutrient supply to the lamb. 

5.5.2.7. Suckling lamb antioxidant status 

As demonstrated by the results of Experiment One, supranutritional vitamin E 

supplementation of the ewe significantly increases the dietary vitamin E supply to the lamb 

via colostrum and milk. Differences in lamb plasma vitamin E concentrations may 

therefore be attributed to variation in the colostrum and milk vitamin E yields between 

treatments, the highest values being seen in lambs suckling ewes fed diets containing a 

supranutritional vitamin E concentration. This concurs with the results of Njeru et al. 

(1994) who supplemented pregnant and lactating ewes with various levels of vitamin E. 

Observed plasma vitamin E concentrations were in agreement with the range of values 

published by various authors as a result of vitamin E supplementation of sheep (Doncon 

and Steele, 1988; Gentry et al., 1992; Hatfield et al., 2002). When compared to the index 

suggested by Hidiroglou et al. (1992) for threshold values for vitamin E deficiency in 

cattle, lambs from all treatments appear to be deficient in vitamin E at both 24 hours and 

two weeks of age, regardless of the extent of maternal vitamin E supplementation. This 

concurs with the results of Wachira (1999) who observed poor intestinal absorption and 

consequent deposition of vitamin E into tissues of growing lambs. 
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Lambs solely dependent upon colostrum for nutrients had relatively high erythrocyte GPx 

activities, approximately two-fold higher than those observed in the ewe at one week pre

partum. This concurs with the theory that, although placental transfer of selenium may be 

limited, there is no barrier to mammary transfer (Jacobs son and Oksanen, 1966; Bostedt 

and Schramel, 1990). Concurring with ewe GPx results, maternal diet had no significant 

effect upon the activity of this enzyme in the lamb, at either 24 hours or two weeks of age. 

Although not reaching statistical significance, fish oil supplementation of the pregnant ewe 

depressed lamb GPx activity during lactation, which may be a consequence of the observed 

carry-over effect of fat source upon milk composition. Milk fat depression in lactating 

ewes resulting from fish oil supplementation may be associated with an increase in the 

proportion of long-chain PUFAs within milk. Lambs suckling from ewes fed diets FML or 

FMH may therefore have been subject to an increased oxidative challenge with consequent 

reduction in GPx activity. Lamb serum CK concentrations appeared to be increased by 

supranutritional vitamin E supplementation of the dam, although remaining below the 

threshold limits suggested by Bostedt and Schramel (1990) and Walsh et al. (1993) for 

sub-clinical myopathy. This is in direct contrast to the expected result, the biochemical 

mechanisms behind it being unclear. 

5.5.2.S. Suckling lamb plasma fatty acids at 24 hours of age 

The neonatal lamb effectively functions as a monogastric; ingested colostrum traveling 

down the oesophageal groove and forming an insoluble clot in the abomasum before 

digestion via lipase enzymes in the small intestine (Hocquette and Bauchart, 1999). 

Consequently, the plasma fatty acid composition at 24 hours of age is directly linked to the 

fatty acid composition of colostrum, although placental transfer of fatty acids also makes a 

small contribution. Neonatal animals are born with low concentrations of fatty acids 

within plasma, specifically EF As, and researchers suggest that an adequate fatty acid status 
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is only attained after the consumption of colostrum (Leat and Harrison, 1980; Raijon et al., 

1985). Total plasma fatty acid concentrations at 24 hours of age were similar between 

treatments, but the fatty acids status of the lamb at this time point was considerably 

improved when compared to the neonate. 

Lamb colostrum consumption was assumed to be similar between treatments and it can be 

suggested that differences in the amount of C16:0 within lamb plasma were the result of 

changes in colostrum composition. As previously discussed, long-chain PUF A 

supplementation of ruminants reduces the synthesis of C16:0 within the mammary gland 

with consequent effects upon the secretion of this fatty acid into colostrum. Furthermore, 

the maternal dietary supply of C16:0 was higher in ewes fed diet MML, corresponding 

with the increased concentrations of this fatty acid in lamb plasma. The proportion of 

C16:0 within suckling lamb plasma was increased when compared to that of the neonatal 

lamb, indicating a substantial transfer of this fatty acid from the maternal diet to colostrum. 

The proportions of both C16:0 and C18:0 within plasma were similar to those reported by 

Fritsche et al. (1993) in suckling piglets as a result of fish oil supplementation. 

Concentrations ofC18:0 within lamb plasma were unaffected by maternal diet, a finding in 

contrast to the results observed for colostrum fatty acid composition within Experiment 

One. 

Supplementation of the pregnant ewe with fish oil has been demonstrated to increase the 

concentration of C18: I trans fatty acids within plasma and milk as a result of incomplete 

biohydrogenation of long-chain fatty acids within the rumen (Chilliard et al., 2001 a). 

Concurring with these results, augmentation of the maternal diet with fish oil increased the 

concentration of C18:1 trans within lamb plasma in the current study, at concentrations 

and proportions higher than those observed in the neonate. The principal fatty acid 

contained within lamb plasma was C 18: I cis, with lower concentrations observed as a 
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result of fish oil supplementation of the ewe. Ewe plasma concentrations of C 18: I cis 

were similarly reduced by fish oil supplementation at one week pre-partum. Although the 

concentration of this fatty acid may be increased in colostrum compared to plasma by 

virtue of ~-desaturase enzymes within the mammary gland (Chilliard et al. 200 I a), the 

proportions of this fatty acid within suckling lamb plasma were similar to those observed 

in the neonate. 

A major research issue in neonatal ruminants has been the discovery that lambs have very 

low plasma concentrations of the EFAs CI8:2n-6 and CI8:3n-3, that are rectified by the 

consumption of colostrum and milk over the first few weeks of life (Raijon et al., 1985). 

Indeed, the consumption of colostrum over the first 24 hours of life considerably increased 

the concentration of C18:2n-6 within suckling lamb plasma across all treatments. High 

plasma concentrations of C20:3n-9 indicate EFA deficiency in the lamb (Noble et al., 

1978) but this fatty acid was found in very low concentrations within lamb plasma (data 

not shown), therefore it can be concluded that lambs achieved an adequate fatty acid status 

by 24 hours post parIum. 

Despite differences observed in ewe plasma C20:4n-6 concentrations, the amount of this 

fatty acid within lamb plasma was similar between treatments. Dietary C20:4n-6 that 

escapes ruminal biohydrogenation is incorporated into phosphatidylglycerols and may be 

secreted into milk and colostrum, but the amount transferred to the lamb appears to be 

independent of the maternal dietary supply. Shand et al. (1978) reported that neonatal and 

suckling lambs were able to produce C20:4n-6 from CI8:2n-6 within the liver via ~-6 

desaturase. Differences observed between maternal and lamb plasma concentrations may 

therefore be a result of C20:4n-6 synthesis within the lamb. 
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Both n-3 and n-6 PUF As are essential for the correct fonnation and function of neural 

tissues both in the foetal and neonatal lamb (Goustard-Langelier et al., 1999). 

Supplementation of the lactating ruminant with fish oil demonstrably increases the 

concentrations of C20:5n-3 and C22:6n-3 within milk as described by Lacasse et al. 

(1998), Keady et al. (2000) and Chilliard et al. (200 I b) and it is logical to assume that the 

same mechanism occurs within colostrum, as observed within Experiment One. This 

concurs with the results observed for these fatty acids in lamb plasma, which, without 

being subject to modification by ruminal biohydrogenation, represent the concentrations of 

individual fatty acids in colostrum. This concurs with results observed in monogastric 

studies, including the study of Goustard-Langelier et al. (1999) where piglets fed fonnulae 

supplemented with n-3 fatty acids resulted in increased concentrations of C20:5n-3 and 

C22:6n-3 within plasma. 

5.5.2.9. Suckling lamb plasma fatty acids at two weeks of age 

Within the current study, lambs were solely dependent on maternal milk to fulfil their 

nutritional requirement at two weeks of age. Given the lack of long fibre, ruminal 

digestion and function would have been negligible in these suckling lambs. It may 

therefore be suggested that the fatty acid composition of lamb plasma at this time point 

provides an indication of milk fatty acid composition, especially given the positive 

relationship between maternal and lamb plasma fatty acid composition at two weeks post 

partum. Results from both Experiment One and studies published by Keady and Mayne 

(l999b), Chilliard et al. (2000) and Voigt and Hagemeister (2001) have demonstrated that 

long-chain PUF A supplementation of lactating ruminants reduces the fat concentration of 

milk. However, milk fat yield was unaffected by treatment diet and the similar total lamb 

plasma fatty acid concentrations between treatments suggest that all lambs had a similar 

fatty acid intake at two weeks post partum. 
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Lamb plasma fatty acid composition at two weeks post parIum concurs with results 

observed in maternal plasma in that the concentrations of C16:0 and C18:0 were 

unaffected by treatment diet. There is some evidence to suggest that both long-chain 

PUFAs and products of the incomplete ruminal biohydrogenation of PUFAs (trans 

octadecanoic fatty acids, trans-IO, cis-12 CLA) may act directly upon enzymes within the 

mammary gland and reduce milk fat synthesis (Peterson el al., 2003), specifically reducing 

concentrations ofCI6:0. However, it appears that supplying a preformed dietary source of 

C 16:0 in the form of Megalac to the lactating ewe may have negated any carry-over effect 

of PUF A supplementation upon the transfer of this fatty acid to the suckling lamb. 

Furthermore, the amounts of trans C 18: I and CLA, were present in similar proportions in 

all lamb plasma samples, suggesting that their concentrations within milk fat were equally 

unaffected by treatment diet. 

Concentrations of CI8:2n-6 within lamb plasma at two weeks post partum were similar 

between treatments, a result which implies that the dietary supply of this fatty acid was 

consistent between treatments. This would be expected given that all ewes were 

supplemented with diets of a similar fatty acid composition during lactation. As previously 

discussed (section 5.5.1.6.), a decrease in C20:4n-6 synthesis within ewes fed fish oil and 

subsequent low transfer to the lamb may have resulted from the inhibition of 6.9 -desaturase 

enzymes involved in the elongation and desaturation process (Demirel et al., 2004). 

However, a relative increase in the proportion of the precursor fatty acid (CI8:2n-6) within 

plasma would also have been expected to be observed. The proportion of this fatty acid 

within plasma may therefore be an inadequate indicator of the efficiency of the 

endogenous synthesis of n-6 fatty acids within the ewe or lamb. 

The lower proportions of CI8:3n-3 within plasma of lambs suckling ewes fed Megalac 

may be attributed to the utilisation of this fatty acid for C20:5n-3 and C22:6n-3 synthesis. 
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Despite the change to a dietary saturated fatty acid source during lactation, lambs suckling 

ewes which had been fed diets containing fish oil during pregnancy had significantly 

higher concentrations of C20:5n-3 and C22:6n-3 within plasma at two weeks post partum. 

This is in contrast to the results of Kitessa et al. (2003) who observed no significant carry

over effects of protected tuna oil upon milk composition at six days after fish oil was 

removed from the diet of lactating sheep. If, as suggested by Wonsil et al. (1994), long

chain n-3 PUF As are incorporated into phosphatidylglycerols and cholesterol and slowly 

released as a result of the mobilisation of these lipid components, this increase in plasma 

long-chain n-3 PUFAs is not unexpected. Ewe plasma C20:5n-3 concentrations were 

similar between treatments and C22:6n-3 concentrations were approximately three-fold 

higher in ewes that were supplemented with fish oil during pregnancy. As the proportions 

of C20:5n-3 and C22:6n-3 were similar in suckling lambs, this appears to indicate a 

preferential transfer of C20:5n-3 into ewe milk lipids, with concurrent effects upon lamb 

dietary supply. Alternatively, a proportion of either maternal C22:6n-3 or that supplied to 

the lamb via mammary transfer may have been retroconverted to C20:5n-3. However, the 

reason behind the retroconversion of preformed C22:6n-3 to C20:5n-3 within the sucking 

lamb is as yet unknown as it would be expected that the lamb would have a relatively 

higher requirement for C22:6n-3 than for C20:5n-3 during this period of growth and neural 

tissue development. 

330 



5.6. Conclusion 

Long-chain PUF A supplementation of the ewe in the fonn of fish oil had no significant 

effect upon ewe gestation length. The latencies of neonatal lamb behaviours appeared to 

be reduced by long-chain PUFA supplementation of the ewe, however, these differences 

did not reach statistical significance. Furthennore, deposition of C22:6n-3 within neonatal 

lamb brain tissue was unaffected by treatment diet. Changing the diet from one based on 

long-chain PUF As during pregnancy, to one containing predominantly saturated fatty acids 

during lactation successfully negated effect of PUF A supplementation upon lamb growth 

rate. Nevertheless, milk composition tended to be affected by pre-parIum diet even after a 

four-week interval. Supplementing pregnant ewes with supranutritional concentrations of 

vitamin E tended to increase the deposition of this vitamin in neonatal lamb brain tissue 

although no significant effect of maternal vitamin E supply was observed upon lamb 

behaviour. 
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6. GENERAL DISCUSSION 

The objective of this series of experiments was to investigate the effects of long-chain 

PUF A and vitamin E supplementation of ewes upon lamb vigour and performance. This 

section concentrates on the discussion of parameters that have a direct impact upon this 

objective, and the possible implications for both animal and human nutrition. 

One of the most notable findings of the current study was the significant effect of long

chain PUFA supplementation of pregnant ewes on gestation length in Experiment One. 

The supplementation of pregnant ewes with fish oil significantly increased gestation length 

by approximately two days within this experiment. By contrast, there was no effect of fat 

source upon this parameter in Experiments Two and Three. As described in section 

1.2.3.3, endogenous synthesis of the prostaglandins that control parturition is governed by 

the supply of n-3 and n-6 long-chain PUFA precursors (Hansen and Olsen, 1988). Olsen el 

al. (1990) suggested that a threshold level might exist for the ratio of stimulatory to 

inhibitory prostaglandins, with ratios exceeding this level leading to the inhibition of 

parturition. The synthesis of stimulatory 2-series prostaglandins from C20:4n-6, which 

initiate parturition, may have been depressed or abrogated by C20:Sn-3 supplementation 

and the production of inhibitory (3-series) prostaglandins in Experiment One. Certainly, 

the ratio of C20:5n-3:C20:4n-6 within ewe plasma at two weeks pre-parium was higher 

(2.71) within Experiment One than in the second (one weekpre-partum; C20:5n-3:C20:4n-

6 = 0.71) and third experiments (one weekpre-partum; C20:5n-3:C20:4n-6 = 2.07). 

Research in human neonates has demonstrated that parameters of neonatal vIgour, 

specifically birthweight, increase with gestational age (Ayoubi el 01., 2002). It may 

therefore be suggested that the reductions in latencies of neonatal behaviours observed 

with long-chain PUF A supplementation of the ewe in Experiment One were conferred by 
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the concurrent increase in gestation length. As gestational age increases, foetal 

concentrations of EFAs and n-3 PUFAs are increased (Friedman, 1986). Consequently, if 

PUF A status is a significant contributing factor to lamb vigour during the perinatal period, 

an increase in ewe gestation length would be expected to improve latencies of neonatal 

behaviours. Nonetheless, gestation length was similar between treatments in Experiments 

Two and Three, therefore overall, the correlation between ewe gestation length and latency 

of lamb suckling was close to zero (r = 0.0014; Figure 6.1). 

The effects of long-chain PUF A supplementation of pregnant humans upon gestation 

length and neonatal vigour have been investigated in several studies including those of 

Olsen et al. (1986; 1992). However, one obvious drawback of human studies is the 

inability to relate behavioural characteristics such as improved cognitive or motor 

development to brain fatty acid composition (Bondi a-Martinez et al., 1998). Within the 

current study, providing preformed dietary sources of C20:Sn-3 and C22:6n-3 to the 

pregnant ewe significantly improved lamb vigour in Experiment One and tended to 

improve it in Experiments Two and Three. Bondia-Martinez et al. (1998) suggested that 

augmentation of the C22:6n-3 concentration within neural tissue via dietary 

supplementation might improve human neonatal development. From the current study, it 

appears that neonatal lambs may be used as a sensitive model for the neonatal human, 

although differences in the repertoire of neonatal behaviours of the two species should be 

taken into account. Previous studies have assumed that the absolute amount of C22:6n-3 

deposited in brain tissue is responsible for behavioural changes (Uauy et al., 2003; Levant 

et al., 2004). This hypothesis concurs with the results observed in Experiment One, where 

an increase in brain C22:6n-3 concentration with concurrent reductions in neonatal 

behavioural latencies was observed. However, this does not elucidate the mechanisms by 

which behavioural parameters appeared to be improved by PUFA supplementation in 
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Experiments Two and Three, despite the lack of a significant increase in brain 22 :611-3 

concentrations. 
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Significant deposition of C20:4n-6 into foetal neural tissue also occur during the brain 

growth spurt prior to birth (Arbuckle et al., 1994). Therefore the lack of a significant 

effect of PUFA supplementation on the deposition of C22:611-3 into lamb brain ti slle in 

Experiments Two and Three may have resulted from competition with 20:4n-6. As 

previously discussed (section 4.5.2.3), both C20:4n-6 and C22 :6n-3 have e sential 

functions within the brain, therefore it may be difficult to manipulate the absolute am lints 

of these fatty acids deposited into brain tissue. Nonetheless, it may be appropriate to 

examine the ratio of C22:6n-3 to C20:4n-6 within neonata l lamb brain tissue acros the 

three experiments when trying to elucidate the mechanisms behind behavioural changes. 

From the data presented in Figure 6.2, it can be observed that long-chain PU FA 
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supplementation of pregnant ewes increases the ratio of C22:6n-3 :C20:4n-6 within the 

brain from approximately 2.44 (diets based on Megalac) to 3.24 (diets based on fi h oil , 

algae or linseed). This leads to the conclusion that the ratio of C22:6n-3:C20:4n- within 

neural tissue has a major effect upon neonatal behaviour. In essence the latency r 

suckling behaviours appears to be reduced as the C22:6n-3:C20:4n-6 ratio of brnin tis u 

increases. This has significant implications for human nutrition and the developm nt f 

infant formulae and feedstuffs designed to maximise neonatal cognitive development. 
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Merrell (1998) and Kott et al. (1983; 1998) reported significant improvements in neonatal 

lamb vigour and reductions in lamb mortality rate as a consequence of vitamin E 

supplementation. By contrast, maternal dietary vitamin E concentration did not affect 

neonatal lamb behaviour in the current study. Within Experiment One, lamb birthweight 

was increased by vitamin E supplementation, which, according to the study of Tuchscherer 

et al. (2000), may improve survival. No differences in lamb mortality rates were observed 

across any of the experiments within this study. However, the level of animal husbandry 

and environmental conditions may be considered more conducive to survival than 

commercial lambing conditions, particularly those found in extensive husbandry systems. 

The mechanism behind the increase in birthweight conferred by vitamin E supplementation 

is unclear: although it may be related to an improvement in ewe immunocompetence, one 

would expect a similar result to have occurred in Experiment Three. 

A further significant finding of the current study was the effect of maternal dietary vitamin 

E supplementation upon concentrations of vitamin E within lamb tissues. Research to date 

has concluded that the placental transfer of vitamin E from the dam to the foetus is 

negligible (Mino and Nishino, 1973; Njeru et al., 1994; Leger et al., 1998). Furthermore, 

Van Saun et al. (1989) and Hidiroglou et al. (1995) concluded that the presence of low 

vitamin E concentrations within plasma of neonatal animals compared to maternal plasma, 

indicated that the neonate was clinically deficient in this vitamin. Results from the current 

study indicate that this assumption is not valid. Tissues such as the brain, which have a 

considerable vitamin E requirement, may have evolved mechanisms to maintain 

satisfactory concentrations under conditions of sub-optimal supply. There is a paucity of 

data available relating to the concentration of vitamin E within neural tissue of suckling or 

adult ruminants and it is unclear whether the tissue concentrations achieved within 

Experiments One and Three were indicative of a satisfactory vitamin E status. Therefore, 

although placental transfer of vitamin E many be manipulated by maternal dietary regime, 
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it is not known whether this transfer alone may confer an adequate vitamin E status upon 

the lamb. However, it is clear, that the assumption made by previous researchers, namely 

that placental transfer of vitamin E from the ewe to the lamb is negligible, is invalid. 

Concurring with the results of Cant et al. (1997), Keady and Mayne (l999b) and Petit el al. 

(2002a), Experiment One demonstrated that dietary supplementation of lactating ewes with 

long-chain PUF As had significant effects upon milk composition and yield. A concurrent 

decrease in lamb growth rate was observed with long-chain PUF A supplementation, and 

the use of strategies, in which PUF As were replaced with a saturated fat alternative during 

lactation were explored in Experiments Two and Three. Results from the latter two 

experiments indicated that it was possible to negate the effects of PUF A supplementation 

of lactating ewes upon lamb growth rate by changing to a saturated dietary fat source post 

partum. Nevertheless, significant effects of pre-parIum diet upon milk composition were 

observed in both Experiments Two and Three, despite a period of four weeks elapsing 

between diet change-over and milk sampling. Similar results were observed by Shingfield 

et al. (2003) after a 14-day change-over period, but the study of Gulati el al. (2003) 

indicated that a shorter change-over period was sufficient to negate carry-over effects of 

PUF A supplementation. The results of the current series of experiments suggest that the 

observed carry-over effects may have major implications for previous and future 

nutritional experiments involving "cross-over" designs. 
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7. AREAS FOR FURTHER RESEARCH 

The following questions have emerged from the current study and warrant further 

investigation: 

• Is the increase in gestation length observed with long-chain PUF A supplementation 

the result of changes in prostaglandin synthesis? If so, are these changes dependent 

on the absolute amount of C20:5n-3 supplied to the ewe, or upon the ratio between 

C20:5n-3 and C20:4n-6 available to tissues? 

• To what extent can changes in neonatal lamb behaviour be attributed to differences 

in gestation length as opposed to variation in brain C22:6n-3 concentration? 

Moreover, do behavioural differences simply result from differences in brain 

C22:6n-3 concentrations, or from differences in the ratio of C22:6n-3 to C20:4n-6 

within the brain? 

• Does a ceiling exist for the placental transfer and subsequent deposition of vitamin 

E into foetal tissues? To what extent may placental transport be manipulated by 

maternal dietary supplementation? 

• What is the biochemical mechanism by which long-chain PUF As continue to affect 

milk yield and composition after a significant dietary change-over period? 
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8. CONCLUSION 

This study showed that long-chain PUF A supplementation of pregnant ewes can improve 

neonatal lamb vigour, probably mediated by effects upon ewe gestation length and lamb 

brain fatty acid composition. The negative effects of dietary supplementation with long

chain PUF As upon milk composition and lamb growth rate may be negated by the 

provision of a saturated fat source during lactation. Placental transfer of vitamin E from 

the ewe to the foetal lamb may be enhanced by maternal dietary supplementation. 
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