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Abstract 

In this thesis, the regulation of ASPP1 and ASPP2 was investigated. ASPP1 and ASPP2 

are p53 co-activators that can specifically induce p53-dependent apoptosis but have no 

effect on p53-dependent cell cycle arrest. Both ASPP1 and ASPP2 contain a Ras- 

association domain in their amino terminal regions. ASPP1 can bind activated Ras 

directly via its amino terminal region in vitro, and both endogenous ASPP proteins bind 

endogenous Ras in vivo after stimulation of cells with serum and growth factors. 

Oncogenic H-RasV 12 and K-RasV 12 stimulate ASPP1 and ASPP2 pro-apoptotic 

activity in a p53-dependent manner and can also stimulate ASPP2 co-activation of the 

p53 family members, p63 and p73. These results suggest that ASPP1 and ASPP2 are 

novel Ras effector proteins. 

Ras is upstream of several effector pathways. One of its downstream effector pathways, 

Raf-MEK-MAPK, can activate ASPP1 and ASPP2. MAPK phosphorylates ASPP2 in 

vitro, and both ASPP1 and ASPP2 in vivo at serines 746 and 827, respectively. ASPP1 

and ASPP2 phosphorylation by MAPK results in an increase in their ability to co- 

activate p53. Additionally, MAPK phosphorylation of ASPP2 leads to increased ASPP2 

protein levels, suggesting that MAPK can regulate ASPP2 by modulating its protein 

stability. 

ASPP1 and ASPP2 deletion fragments were used to examine the regulation of ASPP 

proteins. Amino-terminus fragments were shown to increase full-length ASPP activity 

when co-transfected. Moreover, PKA was also found to be a regulator of ASPP2 and 

was shown to phosphorylate ASPP2 in vitro. Forskolin, a stimulator of PKA, could 

enhance ASPP2 activity. The results provide the first insight into these novel 

mechanisms by which ASPP activity may be regulated. 
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Chapter 1 

Introduction 

1.1 Cancer 

The last quarter of a century has seen a significant increase in our understanding of 

cancer. It is now widely accepted that cancer progression arises as a result of small 

lesions in our DNA known as somatic mutations, as well as gene silencing by 

epigenetic changes, such as gene methylation. Mutations occur following a number of 

different carcinogens such as ultra-violet light, ionizing radiation and reactive oxidative 

metabolites. Insight into this disease has been enhanced with the recognition that there 

are two classes of cancer genes: proto-oncogenes and tumour suppressor genes. Proto- 

oncogenes are commonly mutated in cancers to become oncogenes, with a gain of 

function relative to their wild-type counterparts. These proteins function by regulating 

cell cycle proliferation, survival and angiogenesis. Tumour suppressor genes, however, 

are recessive genes: their function is lost or compromised in tumour cells. Tumour 

suppressor genes regulate diverse cellular activities including cell cycle checkpoint 

responses, detection and repair of DNA damage, and differentiation. 

Tumour suppressor genes play a crucial role in preventing the formation of tumours and 

usually a single functional allele is sufficient for their full activity. As such, 

tumourigenesis requires inactivation of both alleles of the tumour suppressor genes; this 

is known as the "two-hit" theory (Knudson, 1971). The term "tumour suppressor" 

includes a wide range of genes involved one way or another in preventing the formation 
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of tumours. In reality, there are subsets of genes that fit under the category of tumour 

suppressors. 

There are three main sub-groups of tumour suppressor genes as described by Kinzler 

and Vogelstein (Kinzler and Vogelstein, 1998): the "gatekeepers", "caretakers" and 

"landscapers". The gatekeeper genes represent the tumour suppressors that directly 

modulate cell proliferation and cell death, such as p53, retinoblastoma protein (Rb), von 

Hippel-Lindau protein (VHL) and adenomatous polyposis coli protein (APC). They are 

known as gatekeepers because they prevent "runaway" growth of cells; a mutation of a 

gatekeeper gene leads to a permanent imbalance of cell division over cell death. Some 

gatekeeper proteins are specific to a particular tissue, for example retinoblastoma 

mutations affect retinal epithelial cells, VHL is the gatekeeper to kidney cells and APC 

the gatekeeper to colon cells. The "caretakers" of the genome are susceptibility genes 

that indirectly suppress neoplasia, such as XPB, ATM, MSH2 and MLH1. These 

generally encode DNA repair proteins. Inactivation of a caretaker gene leads to an 

increased mutation rate, resulting in a higher probability of the cell becoming 

tumourigenic. The "landscapers" are genes which, when mutated, can increase the risk 

of an altered stromal environment. This is seen in patients with juvenile polyposis 

syndromes that have an increased risk of the adjacent epithelia becoming malignant. 

There are over one hundred distinct types of cancers and many more subtypes of 

tumours. Nonetheless, most, if not all, tumours share many similar acquired capabilities, 

resulting in the cells being defective in regulating proliferation and homeostasis. The 

vast majority of cancer cells have six essential alterations in their physiology that allow 

them to achieve malignant growth (Hanahan and Weinberg, 2000). These alterations 
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result from mutation in oncogenes and tumour suppressor genes; although these 

mutations can be tissue specific, some are common in many different types of cancers 

as shown below in brackets. The essential alterations to form cancer cells are: self- 

sufficiency in growth signals (e. g. activated H-Ras); insensitivity to growth-inhibitory 

signals (e. g. loss of Rb); evasion of programmed cell death, known as apoptosis (e. g. 

loss of p53); limitless replicative potential (e. g. activated telomerase); sustained 

angiogenesis (e. g. VEGF produced); and tissue invasion and metastasis (e. g. 

inactivation of E-cadherin). 

The progressive transformation of normal cells to malignant derivatives follows a 

multistep process, with each step being equivalent to further genetic alterations. This is 

exemplified in the colorectal cancer system where the well-defined progression to 

cancer is a result of at least 7 distinct steps, including mutations of APC, K-Ras, 

DCC/DPC4 and p53 among others (Kinzler and Vogelstein, 1996). Transformation of 

cultured cells is also a multistep process as rodent cells need at least two introduced 

genetic changes to acquire tumourigenic competence (Hahn et al., 1999). 

As mentioned above, most changes in cancer cells are acquired through mutations in the 

genome. However, mutation rates in cells are rare events due to an extensive system of 

proteins that can monitor DNA damage and repair it. Thus, the genomes of cancer cells 

must be more prone to mutations than their normal counterparts for the tumour to 

progress. Indeed, inactivation of genomic gatekeepers at an early stage of the tumours 

results in increased mutability (Lengauer et al., 1998). 
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The selection of cancer cells following a series of genetic alterations is highly 

analogous to Darwin's evolution theory, with genomic changes conferring growth and 

survival advantages over the non-transformed cells. An oncogenic mutation of a tumour 

cell allows for clonal expansion of the affected cell, thereby propagating the initial 

mutation. As cells that have an initial mutation and growth advantage are selected for, 

they have a higher chance of undergoing more mutations as they proliferate. Thus 

tumour cells are selected for in a similar manner to evolution's natural selection 

process. The varying tumours will have different mutations and different growth 

patterns depending on the stromal environment they are growing in and what part of the 

body they are in, but all will share the common property of proliferating independently 

of growth control signals and having reduced sensitivity to apoptosis-inducing signals. 
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1.2 Cell cycle 

In order for a cell to reproduce and give rise to two daughter cells, it must duplicate its 

content and then divide in two. The process of cell division is known as the cell cycle 

and is highly conserved from yeast to humans. There are two main phases in the cell 

cycle: mitosis (M), when the duplicated chromosomes segregate to form two daughter 

cells, and the interphase which is the time between one round of mitosis and another. 

The interphase can be separated into three distinct temporal and functional periods: S 

phase (Synthesis) which is when the cell replicates its DNA content from 2n to 4n; G1 

(Gap-1) which is the phase between mitosis and S phase, where most of the proteins and 

RNAs are synthesised; and G2 (Gap-2) which follows DNA duplication and prepares 

for the process of division. Another phase, known as GO, is the quiescent phase, when 

the cell is no longer cycling but is metabolically active. In some cases, cells in GO can 

re-enter the cell cycle following the necessary signals. 

Progression through the cell cycle is tightly regulated and proceeds in the strict 

temporal order of G1, S, G2 followed by M to ensure the proper duplication of DNA 

before separation of chromosomes. In order for the cell cycle to start dividing, it must 

be of a critical mass and it must respond to external stimuli, such as the presence of 

nutrients or growth factors. 

The cell cycle is regulated by the sequential and periodic activation and inactivation of 

cyclin-dependent kinases (Cdks). There are 9 known Cdks in mammals and these are 

generally found at constant levels throughout the cell cycle (Johnson and Walker, 

1999). The main mechanism of Cdk regulation is its association with its binding 
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partners, the cyclins. Although there are 16 known cyclins, only a proportion of those 

have clearly defined roles in regulating the cell cycle. Cyclins were first identified by 

Tim Hunt as proteins that had oscillating levels throughout the cell cycle and he 

proposed that they were somehow involved in cell division (Evans et at., 1983). Indeed, 

time has proved him right, and they are now known to be key regulators of the cell 

cycle. The binding of cyclins to their appropriate Cdk partner activates the Cdk, and the 

complex is then competent to phosphorylate a number of substrates resulting in the 

progression of the cell cycle (Johnson and Walker, 1999). To maintain the temporal 

order of the cell cycle, individual Cdk-cyclin pairs must be activated only at specific 

points. This is ensured by the constant, highly regulated, cycle of synthesis and 

degradation of cyclins. 

There are three main groups of cyclins involved in the cell cycle: the G1 cyclins (D-type 

cyclins), the S phase cyclins (cyclins E and A) and the mitosis cyclins (cyclins B and A) 

(Murray, 2004). Entry into the G1 phase from the quiescent GO phase requires the 

cyclin D/Cdk4 and cyclin D/Cdk6 partners. These phosphorylate many substrates, 

resulting in the synthesis of cyclin E. Once synthesised, cyclin E associates with Cdk2 

to activate it at late G1 phase. Entry into S phase is dependent on both cyclin E/Cdk2 

and cyclin A/Cdk2 activities. As S phase progresses, cyclin A associates with a 

different Cdk, Cdkl, leading the cell into G2 phase after the successful completion of 

DNA replication. The entry into mitosis is correlated with the activation of cyclin 

B/Cdc2 complex (summarized in figure IA) (Johnson and Walker, 1999). 
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Figure 1.1 C_yclins and the cell cycle. (A) The four successive phases of a standard cell cycle are 
shown as GI, S, G2 and M. GO represents withdrawal of the cell cycle. The arrows represent the 
stage of the cell cycle where the cyclins and their cyclin-dependent kinase partners are active 
and necessary for progression. p21, p27 and INK4 are cyclin kinase inhibitors which prevent the 
activity of certain cyclins as shown. (B) The synthesis and degradation of the principle cyclins 
involved in cell division. 
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The protein levels of cyclins are tightly regulated to ensure smooth progression through 

the cell cycle. For example, cyclin D is needed for synthesis of cyclin E and cyclin A 

(Murray, 2004). This prevents the cell going into S phase before the full G1 phase has 

been completed. Not only is the synthesis of cyclins tightly regulated, but their 

destruction is as well - they must be present in the cell long enough to allow the next 

phase of the cycle to start, but must then be degraded to force the cell into the next 

phase instead of lingering unnecessarily at a particular phase of the cycle. Cyclin 

destruction is regulated by ubiquitination which results in proteasome-dependent 

degradation. G1 cyclins are ubiquitinated by the Skp1-Cullin1 E-box protein (SCF) 

complex and the mitotic cyclins are ubiquitinated by the anaphase-promoting complex 

(APC) (Murray, 2004). SCF complex is active throughout the cell cycle and the cyclin 

degradation is dependent on its phosphorylation status, with different components of the 

SCF having different affinities for phosphorylated substrates. APC is activated by Cdkl 

at the onset of anaphase and is most active when the cells exit mitosis. To prevent APC 

degradation of the cyclins before chromosome segregation is complete, there is a delay 

between Cdk1 activation and APC activation (Murray, 2004). Thus cyclins are the main 

factors in regulating cell cycle progression in a temporal manner, and as such they have 

short lives which are stringently regulated (figure 1B). 

Although cyclins are essential in activating Cdks, association of these two sets of 

proteins is not sufficient to fully activate the Cdks; they must be phosphorylated as well 

to achieve their full activation potential. The Cdk activating kinase (CAK) is a common 

activator of most Cdks and is composed itself of Cdk7 and cyclin H (Murray, 2004). 

Cdks are inactive when hypophosphorylated, but cyclin binding and threonine 
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phosphorylation by CAK in a region called the T loop results in an active enzyme 

complex. 

A further level of complexity in Cdk regulation comes from the Cdk-inhibitors (CKIs). 

There are two families of CKIs: the INK4 family and the CIP/KIP family. The INK4 

Cdk inhibitors are made up of 4 members: p15, p16, p18 and p19. These CKIs are 

specific for Cdk4 and Cdk6 which can only bind the D-type of cyclins. The INK4 

family members therefore control the G1 phase of the cell cycle and they do so by 

competing for the binding of the Cdk4/6 with the D-cylins (Johnson and Walker, 1999; 

Pines, 1997; Vidal and Koff, 2000). The other CKI family member, CIP/KIP, is less 

specific and can inhibit all cyclin-Cdk complexes. The family is composed of three 

members: p21, p27 and p57 (Vidal and Koff, 2000). The crystal structure of cyclinA- 

Cdk2-p27 has lead to much insight as to the mechanism of action of p27: p27 was found 

to bind cyclin A, as well as Cdk2. Binding to Cdk2 eliminated the glycine loop essential 

for ATP binding and blocked the ATP binding residues in the catalytic cleft, resulting in 

an inactive Cdk2 (Pines, 1997). Even though the crystal structure was made with 

incomplete cyclin A and p27, the results matched previous mutagenesis data suggesting 

that the interactions seen in the crystal structure also occur in vivo. 

As well as being regulated by synthesis and destruction of cyclins, phosphorylation and 

CKIs, cyclin-dependent kinases are also regulated by the sub-cellular localization of the 

cyclin-Cdk complexes. Whereas some cyclins are invariably nuclear (cyclin A), and 

others are invariably seen to be cytoplasmic (cylin B2), others have been shown to 

shuttle in and out of the nucleus. Cyclin D1 is nuclear in G1 but as S phase begins, it is 

exported to the cytoplasm following phosphorylation, where it is degraded (Yang and 
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Kornbluth, 1999). On the other hand, cyclin B1 is synthesised in S phase in the 

cytoplasm and once cells enter prophase, it translocates to the nucleus where it is active 

in regulating Cdc2 (Yang and Kornbluth, 1999). 

There are two major points in the cell cycle where the decision could be made to 

proceed with the division or to pause, and these are known as checkpoints. Checkpoints 

represent control stages where the initiation of the next phase of the cycle is dependent 

on the successful completion of the previous stage. The first checkpoint is present in G1 

and is known as the "restriction point" in mammals, and "start" in yeast. Once the 

restriction point has passed, the cell can no longer delay the entry into S phase and 

therefore proceeds with the cell cycle until the completion of mitosis, barring severe 

DNA damage or metabolic distress. The second checkpoint is the G2/M checkpoint that 

prevents entry into mitosis following incomplete DNA replication. The delay into the M 

phase allows the DNA to be successfully duplicated before chromosomes are separated. 

The main regulator of the G1 restriction point is the retinoblastoma protein, whereas 

p53 can regulate entry into various stages of the cell cycle in response to stress signals. 
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1.2.1. Rb regulation of the cell cycle 

Up until the restriction point in late G1, the decision of the cell to cycle is dependent on 

external stimuli. Past this point, external stimulus no longer can affect the decision of 

the cell to cycle and the cell undergoes a full round of division. The retinoblastoma (Rb) 

protein is thought to be crucial for this checkpoint (Bartek and Lukas, 2001). Before the 

restriction point, Rb is hypophosphorylated in cells, whereas beyond this checkpoint it 

is hyperphosphorylated. It has therefore been suggested that phosphorylation of Rb 

causes it to open the gates of cell division, allowing the cell to continue through its 

cycle (Planas-Silva and Weinberg, 1997). 

The understanding of Rb function has been enhanced by the discovery of its binding 

partners. Whilst Rb is known to bind a number of different proteins such as Elf-1, 

MyoD and c-Abl, it seems that its main function is to regulate E2F proteins by 

associating with them (Weinberg, 1995). The E2F family is composed of 6 members; 

three of the E2F proteins, E2F1-3, associate with Rb and two others, E2F4 and E2F5, 

associate with the Rb family members p107 and p130. All of the E2F members, except 

for E2F6, are transcription factors. In cells, the E2F proteins are found as heterodimers, 

associated with one of the two DP family members, DPI or DP2. DP and E2F activate 

E217-dependent transcription in a synergistic manner (Dyson, 1998). 

E2F1 is thought to be the main substrate of Rb since ectopically expressed E2171 is 

sufficient to lead the cell from the GO quiescent phase to the S phase of the cell cycle 

(Johnson et al., 1993). Thus E2F1 can lead the cell into the cell cycle and the main 

function of Rb is to restrict cell cycle progression by negatively regulating E2F activity, 

until the proper signal has been sent. This was confirmed by overexpression of Rb 
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inhibiting 13217-dependent transcription (Flemington et al., 1993; Helin et al., 1993; 

Hiebert et al., 1992). 

Since Rb is regulated by phosphorylation, it came as no surprise to find that the 

phosphorylation status of Rb influenced its regulation of E2F. Indeed, 

hypophosphorylated Rb is strongly associated with E2F, whilst hyperphosphorylated Rb 

is unable to bind E2F efficiently. Thus, before the restriction point, Rb is associated 

with E2F, inhibiting its activity, whereas after the restriction point Rb can no longer 

bind E2F and E2F is therefore free to transactivate a number of genes that can direct the 

cell further along the cycle (Dyson, 1998). 

The region of E2F that binds Rb is situated in its transactivation domain. It was 

therefore proposed that Rb inhibits E2F activation by physically blocking the action of 

the transactivation domain (Dyson, 1998). Although this is still thought to be true in 

some cases, a more complex mechanism for Rb regulation of E2F activity is now 

emerging. As well as passively inhibiting E2F by blocking its transactivation domain, 

the Rb-E2F complex can also actively repress a number of genes. This repression has 

been shown to be mediated by other proteins, such as hBrm and BRG1, and histone 

deacetylase activity has been associated with Rb, suggesting that E2F-Rb might repress 

transcription through changes in the chromatin structure (Brehm et al., 1998; Dyson, 

1998; Luo et al., 1998; Magnaghi-Jaulin et al., 1998). 

In order for the cell cycle to progress, Rb must be active only in a defined window of 

time. Following mitogenic stimuli, E2F is released from Rb and initiates the progression 

of the cell cycle. Rb regulation is at two levels: it is first phosphorylated by cyclin 
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D/Cdk4 and cyclin D/Cdk6, which are themselves regulated by extracellular stimuli, 

thus ensuring a direct correlation between these signals and Rb activity. Secondly, 

following Rb phosphorylation being initiated by cyclin D, Rb is then further 

phosphorylated by cyclin E/Cdk2, leading to the dissociation of Rb from E2F (Dyson, 

1998; Weinberg, 1995). The dissociation of the complex results in the abrogation of the 

active repression of the E2F-Rb complex, and in the transactivation of E2F target genes. 

Both these mechanisms lead to a change in overall cellular transcription, resulting in the 

cell progressing to the next phase of the cell cycle. For example, Rb phosphorylation by 

cyclin D/Cdk4/6 de-represses cyclin E transactivation, leading to an increase in its 

transcription. Cyclin E then associates with Cdk2 to further phosphorylate Rb, resulting 

in the dissociation of Rb from E2F. E2F1 is then free to transactivate cyclin A which 

can associate with Cdk2, leading the cell into S phase (Dyson, 1998). 

Whilst E2F activity is necessary for cells to proceed into S phase, a decrease in E2F 

activity is required for cells to exit S phase. Following a negative feedback loop, cyclin 

A has been shown to associate with E2F1/DP, phosphorylate it and inhibit its DNA- 

binding activity, rendering it inactive (Dyson, 1998). Towards the end of the S phase, 

E2F1 is targeted for a ubiquitin-proteosome dependent degradation. Thus the cell is 

then free to proceed into the G2 phase, with low levels of E2F and high levels of cyclin 

A. 

Rb is able to sense a range of different types of upstream influences, from growth- 

promoting signals and growth inhibitory signals (such as TGFß) to contact inhibition. 

Negative regulation of Rb is generally mediated by the CKIs which prevent Rb 

phosphorylation and thus blocking cell cycle progression (Bartek et al., 1997). The 
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main CKIs involved in Rb regulation are p27 from the CIP/KIP family, and p15 and 

p16 from the INK4 family. These inhibitors prevent Rb phosphorylation by inhibiting 

cyclin D/Cdk activity. 

Thus Rb plays a central role in integrating internal and external signals and allowing the 

cell to cycle only under the appropriate conditions. The importance of the Rb pathway 

in regulating cell cycle is highlighted by the common disruption of the Rb pathway in 

human tumours. The Rb pathway is rendered dysfunctional in many cancers through 

mutations and amplifications of its various members (see table 1) and is inactivated by a 

number of different viral proteins, such as the adenovirus E1A protein, the human 

papillomavirus (HPV) E7 protein and the SV40 large T antigen. 
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Member of the Rb pathway Dysfunction Type of cancer 

Rb Mutation / SV40 Retinoblastomas 

Small cell lung carcinoma 

Sarcomas 

Bladder carcinomas 

HPV Cervical carcinomas 

Cyclin D amplification Esophageal carcinomas 

Breast carcinomas 
Squamous cell carcinomas 

CDK4 amplification Glioblastomas 

Gliomas 

p15 or p16 deletion/ Esophageal squamous cell 

silencing due to carcinomas 

epigenetic Glioblastomas 

modifications Lung carcinomas 
Bladder carcinomas 
Pancreatic carcinomas 

Table 1. Dysfunctions of the Rb pathway found in cancers. HPV stands for human 

papilloma virus and SV40 for simian virus 40. Viruses are shown in italic. The most 

common epigenetic modification of p15 and p16 is methylation of their promoters. 
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1.2.2. p53 regulation of the cell cycle 

Once the cell has passed the restriction point in G1, it is committed to a full round of 

division, ending after mitosis. As described above, this restriction point is governed by 

external stimuli that converge on Rb regulation: once Rb function is inactivated the cell 

will cycle. However, following DNA damage or oncogenic stress, the cell will 

nonetheless be able to arrest in order to avoid replication and therefore reduce the 

propagation of genetically damaged cells. This additional checkpoint is governed 

mainly by p53. p53 is a tumour suppressor protein which is activated in response to 

various DNA damaging agents such as ultra-violet light and ionizing radiation, as well 

as many other types of stress. Genotoxic stress leads to post-translational modifications 

of the p53 protein, resulting in its increased stability following which it is 

transcriptionally active (Ko and Prives, 1996). p53 can activate a number of target 

genes, many of which are involved in cell cycle arrest (see section 1.4.2). 

The best-studied target of p53 is p21, also known as CIP or WAF-1. p21 was 

discovered simultaneously by two separate groups; one group found that it was a potent 

inhibitor of the cyclin-dependent kinases and called it CIP1 for 
-Cdk-inhibitor l2rotein-1, 

and the other group that it was a novel p53 effector protein and called it Waft for wild- 

type p53 associated fragment-1 (El-Deiry et al., 1993; Harper et al., 1993). For 

simplicity, I shall call it p21 from hereon. p53 was found to induce p21 which in turn 

could inhibit all the cyclin-Cdk complexes involved in the regulation of the cell cycle 

(Johnson and Walker, 1999; Vidal and Koff, 2000). Once the early Cdks are inhibited, 

particularly the cyclinD/Cdk4 and cyclin E/Cdk2, Rb can no longer be phosphorylated, 

following which E2F is no longer released to induce the cell cycle. Unlike the Rb 

restriction point, however, p21 can induce cell cycle arrest throughout G1, even in late 
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G1, due to its capacity to inhibit cyclin A/Cdk2 which is necessary for progression into 

S phase. Although the main role of p21 is to induce cell cycle arrest at the G1/S 

boundary of the cycle, it has also been shown to induce arrest at the G2 phase of the cell 

cycle. This is due to its capacity to inhibit the activity of all Cdks, including cyclin 

B/Cdc2. 

As well as inducing cell cycle arrest, p21 has another role: it can inhibit activation of 

polymerase S, which allows chromosomal DNA replication, by the proliferating cell 

nuclear antigen (PCNA) (Kelman, 1997). Thus, inhibition of PCNA by p21 results in a 

decrease in DNA replication. This decrease in the rate of DNA synthesis would allow 

the DNA damage to be repaired before it is replicated, preventing propagation of the 

damage. 

As well as p21, p53 targets other genes involved in cell cycle arrest: GADD45 is 

involved in the G1/S checkpoint, whereas 14-3-3c and reprimo can arrest cells in G2 

(Hermeking et al., 1997; Kastan et al., 1992b; Ohki et al., 2000). Yet another p53 target 

gene is p53R2, a nucleotide reductase subunit known to be involved in DNA repair 

(Tanaka et al., 2000). This confirms a role for p53 in allowing the cell to overcome 

DNA damage. Interestingly, p53 triggers cell cycle arrest following only low levels of 

DNA damage; if the DNA damage levels are beyond a particular threshold, p53 will 

then induce apoptosis. 
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1.3 Apoptosis 

In order for a homeostatic state to occur in a multicellular organism, the context and 

number of cells interacting with each other must be strictly regulated. This can be 

achieved by regulating the cell cycle, and thus the proliferation of a cell, as well as by 

controlling the process of cell death. 

There are two types of cell death: necrosis and apoptosis. Whereas necrosis has been 

understood for a long time, apoptosis is a relatively new field, only discovered in the 

last 30 years or so. The rising awareness of a different type of cell death from necrosis 

started with microscopic observations of cells. Whilst looking at ischaemic liver 

injuries, John Kerr noticed some small round masses of cytoplasm that contained 

condensed chromatin and these cells were morphologically distinct from cells 

undergoing necrosis (Kerr, 1965). The main differences he observed with these cells 

compared to necrotic cells were their histological appearance; the fact that only a few 

isolated cells were affected; that there was no inflammation; and that they were non- 

degenerative with no lysosomal leakage. Further work by electron microscopy showed a 

clear morphological phenotype: condensation of the cytoplasm, aggregation of 

. compacted chromatin beneath the nuclear envelope, small round bodies containing 

fragments of nucleus and condensed cytoplasm, and plasma membrane blebbing whilst 

the organelles were preserved (Kerr, 1969; Kerr, 1971). He named this process 

"shrinking necrosis". Cells undergoing this process were seen to be engulfed by 

specialized phagocytes which then proceeded to digest them. 
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During this time, two other pioneers of the field, Andrew Wyllie and Alistair Currie 

also saw similar processes by light microscopy, looking in different tissues and species. 

Wyllie observed that this "shrinking necrosis" also occurred in adrenal cortices of rats 

following treatment with a suppressor of adrenocorticotrophic hormone (ACTH), 

suggesting that this process could be regulated by hormones (Wyllie et al., 1973a). 

Further work showed that the "shrinking necrosis" phenotype could be found in normal 

neonatal rats, following a physiological fall in ACTH, suggesting for the first time that 

this could be a naturally occurring process in development (Wyllie et al., 1973b). 

Confirming the role of hormone regulation in this phenotype, injection of ACTH 

prevented cell death. This same phenotype of cell death was also seen to occur during 

regression of rat breast carcinomas after ovary removal (Kerr and Searle, 1972). 

Following this ground-breaking work, Kerr, Wyllie and Currie introduced the concept 

of apoptosis as a distinctive, inherently programmed, cell death (Kerr et al., 1972). The 

term apoptosis correlated with the notion of cell suicide: the cell induces and actively 

participates in its own death. As originally suggested, apoptosis was found to occur in 

various different tissues and species and remains a tightly regulated process in normal 

development and adult cells. Inactivation of apoptosis has since been associated with 

cancer development and autoimmune diseases whereas its aberrant activation is 

associated with neurodegenerative diseases and stroke. 

Following the discovery of a conserved molecular machinery that mediates apoptosis, 

the morphological definition has slowly been replaced by a functional one. Indeed, 

although signalling for apoptosis occurs through multiple independent pathways that 
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can be triggered by either intracellular or extracellular events, all signalling pathways 

converge on caspase activation which ultimately leads to cell destruction. 

1.3.1. Caspases 

There are 15 known human caspases, of which seven are known to be involved in 

apoptosis. Caspases are cysteine proteases that cleave their substrates at the carboxy 

terminal side of an aspartate residue. Although all caspases recognize tetrapeptide 

motifs, each caspase has its own substrate specificity (Strasser et al., 2000). Caspases 

are produced as zymogens, with their catalytic site inactive. Following stimulation by 

upstream regulators, they are sequentially cleaved, first with the removal of the amino- 

terminal prodomain, followed by a further cleavage resulting in a large and a small 

subunit which associate to form an active enzyme (Danial and Korsmeyer, 2004). 

Active caspases are found as tetramers in cells, composed of two heterodimers, thus 

containing two active sites. 

There are two types of capases: the initiators (caspase 8 and caspase 9) and the effectors 

(all other caspases). Proteolysis and activation of the initiator caspases results in a 

downstream cascade of caspase activation. Caspases are thought to have up to 60 

different substrates, all involved in the processing of apoptosis, ranging from 

cytoskeletal and structural proteins, proteins involved in cell cycle and replication (e. g. 

Rb), transcription factors (e. g. NF-KB), protein kinases (PKC) and Bc12 family 

members (e. g. Bid) (Nagata, 1999). One invariable feature of apoptosis is the 

degradation of chromosomal DNA which was also shown to be mediated by caspases. 

Caspase 3 and caspase 7 cleave iCAD, an inhibitor of the caspase-activated DNase 
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(CAD). Proteolysis of iCAD results in its degradation, following which the active CAD 

is free to cleave chromosomal DNA (Nagata, 1999). DNA cleavage may occur to 

prevent spreading of cancerous genomes or viral DNA to the phagocytes that digest the 

apoptotic cells. 

1.3.2. Regulation of caspases through the death receptor pathway 

Apoptosis can be triggered in some cells by extracellular signals, such as cytokines. 

These signals are sensed by transmembrane receptors, known as death receptors, that 

have similarity to the tumour necrosis family receptors (TNFR). This family of death 

receptors includes the Fas/CD95, TNFR1, DR-3/TRAMP, DR4/TRAIL-R1 and 

DR5/KILLER receptors (Budihardjo et al., 1999). One well studied death receptor 

pathway is the FasL-Fas pathway. The Fas ligand (FasL) makes contact with the 

receptor Fas, following which Fas forms a trimer. The homotrimer of Fas can then 

recruit the cytosolic adapter protein FADD through interactions of death domains (DD) 

found in both the receptor and the adaptor protein. The complex of the Fas trimeric 

receptor and adaptor protein is known as the death-inducing signalling complex (DISC) 

(Budihardjo et al., 1999; Nagata, 1999). This complex can then recruit the initiator 

procaspase 8 by the interaction of the death effector domain (DED) found in both the 

FADD adaptor protein and procaspase-8. Once procaspase 8 is bound to the DISC, it 

oligomerizes, resulting in the cleavage of procaspase 8 to the enzymatically active 

caspase 8 (Budihardjo et al., 1999; Nagata, 1999). Caspase 8 then cleaves a number of 

downstream targets, including other caspases, as well as the pro-apoptotic protein Bid 

(figure 1.2). Cleavage of bid activates it and it is then translocated to the mitochondria, 

stimulating the mitochondrial-apoptotic pathway (Budihardjo et al., 1999; Danial and 
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Korsmeyer, 2004). It is worth noting that in some cases activation of the death receptor 

pathways is sufficient to induce apoptosis in a manner that is independent of the 

mitochondrial pathways but in other cases it is necessary for the death receptor pathway 

to activate the mitochondrial pathway to induce a full apoptotic response. It is not yet 

fully understood when the mitochondrial pathway is necessary for the death receptor 

pathway to induce apoptosis. 

Death receptor pathways can be negatively regulated in many ways. The first manner by 

which activation of the pathway is prevented, is by preventing procaspase 8 recruitment 

to the death receptor. This is done, for example, by the viral protein vFLIP that has two 

DED domains, thereby competing with procaspase 8 binding to the receptor. A 

mammalian homolog, cFLIP also inhibits the activation of procaspase 8 by the same 

mechanism (Budihardjo et al., 1999). Another way to negatively regulate the death 

receptor pathway is through the expression of decoy receptors. These decoy receptors 

sequester the cytokines, thereby preventing activation of the death receptors. This form 

of negative regulation of the apoptotic pathway is especially prominent in lung and 

colon carcinomas, where more than 50% of these carcinomas have amplified and 

overexpressed the DcR3 decoy receptor to FasL (Budihardjo et al., 1999; Nagata, 

1999). One other way to inhibit the death receptor pathway is to inhibit the proteolytic 

activation of procaspase 8, which is the mechanism of action of the viral protein CrmA 

(Budihardjo et al., 1999). 
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Figure 1.2 Caspase activation via multiple pathways. The FasL cytokine activates the Fas death receptor 
by binding to its extracellular region. Activated Fas forms trimers which recruit the FADD adapter protein, 
forming the death-inducing signalling complex (DISC). The DISC recruits pro-caspase 8 via its DED 
domain and procaspase 8 is consequently cleaved and activated. Caspase 8 activates procaspase 3 and Bid. 
Activated Bid can release cytochrome c from the mitochondria, as can Bax. Released cytochrome c 
associates with Apaf-1, thereby recruiting procaspase 9 to the apoptosome. Procaspase 9 is then cleaved 
and activated and can activate a number of downstream substrates, including procaspase 3. Activated 

caspase 3 cleaves a number of substrates, including the CAD inhibitor iCAD. Once CAD is no longer 
inhibited by iCAD its DNase activity is restored and it can degrade chromosomal DNA. The inhibitor of 
apoptosis proteins (IAP) can inhibit caspase 3 and caspase 9 activation. 
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1.3.3. Regulation of caspases through the mitochondrial pathway 

In addition to extracellular signals which induce apoptosis, apoptosis can also be 

triggered following internal stimuli. This latter pathway is dependent on mitochondria, 

and specifically on the release of cytochrome C from mitochondria. In normal cells, 

cytochrome C resides in the intermembrane space of the mitochondria. Upon 

inactivation of anti-apoptotic proteins of the Bcl-2 family or the activation of pro- 

apoptotic proteins of the Bcl-2 family, cytochrome C is released from the mitochondria 

and binds the adaptor protein Apaf-1, inducing a change in conformation of Apaf-1. 

Apaf-1 can subsequently associate with the initiator procaspase 9 via the caspase 

recruitment domain (CARD) present in both Apaf-1 and procaspase 9. The Apaf- 

1/cytochrome C/procaspase 9 complex is known as the apoptosome (Budihardjo et al., 

1999; Danial and Korsmeyer, 2004; Strasser et al., 2000). Once part of the apoptosome, 

procaspase 9 can self-process itself, resulting in the active caspase 9 enzyme which 

cleaves a number of downstream substrates, triggering the caspase cascade and 

ultimately leading to apoptosis (figure 1.2). 

Bcl-2 family of proteins 

The Bcl-2 family of proteins is a large family with all members sharing regions of 

sequence homology, known as BH domains. The number of domains can vary, 

depending on the proteins, from 4 homology domains (BH1-BH4) to a single domain 

(BH3). All members of the Bcl-2 family are involved in apoptosis regulation and can be 

divided into three groups: the anti-apoptotic family members (e. g. Bcl-2, BcI-XL, 

MCL1, Bcl-w) which have all four conserved BH domains; the multi-domain pro- 

apoptotic members (e. g. Bax, Bak) that have up to three conserved domains; and the 

pro-apoptotic BH3-only proteins (e. g. Bid), which, as their name suggests, contain only 
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a single BH3 domain (Dania] and Korsmeyer, 2004). The pro-apoptotic and anti- 

apoptotic members of the Bcl-2 family can physically interact (Strasser et al., 2000). 

The sub-cellular localization of these family members can differ, for example inactive 

Bax is in the cytosol and Bcl-2 is localized at the outer leaflet of the nuclear envelope, 

outer mitochondrial membrane and the endoplasmic reticulum (Antonsson, 2001; 

Strasser et al., 2000). 

The mechanism by which the Bcl-2 family regulates the release of cytochrome C from 

the mitochondria is still poorly understood. I will discuss three possible theories, 

although many more have been proposed (Antonsson, 2001; Budihardjo et al., 1999; 

Strasser et al., 2000). 

One hypothesis is that Bcl-2 regulates cytochrome C release via the permeability 

transition pore (PTP), which is a point of contact between the inner and the outer 

mitochondrial membranes. Since Bcl-2 is attached to the cytosolic side of the 

mitochondrial membrane, it may regulate the PTP. Disruption of the PTP by Bcl-2 

could lead to a disruption in the electrostatic and osmotic gradient, leading the 

mitochondrion to swell and rupture, releasing cytochrome C and other pro-apoptotic 

proteins present in the mitochondria such as the apoptosis inducing factor (AIF). 

Another theory is that Bcl-2 can act as an ion channel. The three dimensional structure 

of the Bcl-2 family member Bcl-xL suggests that it might have an ion channel activity. 

Anti-apoptotic Bcl-xL is predicted to form cation-specific channels, whereas the pro- 

apoptotic Bax family member would form anion-selective channels. If the ratios of the 

anionic and cationic channels are constant, the mitochondrion will have a normal ionic 

43 



gradient. However, an increase in pro-apoptotic Bax or a decrease in anti-apoptotic Bcl- 

XL would lead to a change in the electrostatic gradient and an increase of water in the 

mitochondrion, and resulting in the swelling and rupture of the organelle. As a 

consequence, cytochome C would be released. 

A third possibility for Bcl-2 regulation of the mitochondria is the BI3-containing 

model. Proteins such as Bid do not contain any other BH domains and are therefore 

unlikely to form pores. Nonetheless, they are the most potent inducers of apoptosis. 

Their ability to associate with anti-apoptotic Bcl-2 is directly related to their ability to 

release cytochrome C from the mitochondria. The mechanism of action of these BH3- 

only pro-apotoptic proteins is not yet understood. 

Since the Bcl-2 family members are so intricately involved in the downstream 

processing of apoptosis, it is expected that these proteins would be stringently regulated. 

There are two recognized forms of regulation for the Bcl-2 family members: 

transcriptional and translational regulation. One obvious example of transcriptional 

regulation is the chromosomal translocation of the Bcl-2 gene, resulting in the 

upregulation of its expression with a consequence of inhibiting apoptosis in B cell 

lymphomas (Antonsson, 2001; Danial and Korsmeyer, 2004). Several pro-apoptotic 

members of the Bcl-2 family, such as Bax, PUMA and Noxa, have been shown to be 

downregulated in many tumours. This downregulation of expression is a direct 

consequence of mutations and/or deletion of their upstream regulator, p53 (Miyashita 

and Reed, 1995; Nakano and Vousden, 2001; Oda et al., 2000a; Yu et al., 2001). There 

are several post-translational modes of regulation for the Bcl-2 family (Antonsson, 
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2001; Danial and Korsmeyer, 2004; Strasser et al., 2000). The pro-apoptotic BH3-only 

protein Bid is activated by proteolysis following caspase 8 activation. Phosphorylation 

is also a common modification, regulating the activities of Bad, Bik and Bid. Some of 

the pro-apoptotic Bcl-2 family members have their activity regulated by their 

subcellular localization. For example, Bax is in the cytosol when inactive and is found 

at the mitochondrial membrane when active. Similarly, Bim is bound to the 

microtubulin-associated dynein complex and is released from this complex upon 

activation. 

1.3.4. Inhibitors of apoptosis proteins (IAP) 

There are five known human inhibitors of apoptosis proteins (IAP) and they all share a 

common motif called BIR. Overexpression of these proteins leads the cells to becoming 

resistant to various apoptotic stimuli. These proteins can inhibit apoptosis by three 

different mechanisms. They can interfere directly with the catalytic activity of certain 

caspases (e. g. caspases 3 and 7); they can prevent the processing of procaspases to 

caspases, as seen with caspase 9; and they can compete with Apaf-1 binding to caspase 

9 by their own CARD domains (Budihardjo et al., 1999). These proteins can therefore 

inhibit both major pathways of apoptosis. 
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1.4. p53 

Following the discovery of p53 as a binding protein to the SV40 T large antigen, much 

research has been done on this protein (Lane and Crawford, 1979b; Linzer and Levine, 

1979). The importance of p53 as a tumour suppressor protein culminated with the 

finding that it was the most commonly mutated tumour suppressor protein, with 

mutations in over 50% of cancers (Hollstein et al., 1994). The crucial role that p53 plays 

in preventing tumourigenesis was confirmed following the discovery that patients 

suffering from the Li-Fraumeni syndrome, a hereditary syndrome that predisposes 

individuals to tumour formation, commonly have germline mutations in the p53 gene. 

Correlating with these observations, p53-null mice develop normally but are highly 

predisposed to tumours (Donehower et al., 1992). 

A consensus has emerged that p53 can respond to a variety of different stimuli such as 

DNA damage, oncogenic stress, hypoxia or telomeric erosion. Activation of p53 by 

these signals results in one of a number of responses ranging from cell cycle arrest and 

DNA repair to apoptosis. The growing understanding of the role p53 plays in preventing 

tumour formation has led this protein to be named the "guardian of the genome" (Lane, 

1992). 
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1.4.1. p53: structure function relationship 

As with most transcription factors, p53 is a modular protein with several regions of 

distinct but inter-dependent functions. 

Transactivation domain 

The acidic amino terminal region, which spans from residues 1-43, acts as a 

transcription activation domain and can associate with a number of different proteins. It 

can recruit basal transcriptional machinery, by interaction with transcription factors 

such as the TATA-box binding proteins (TBP) and the TBP-associated factors (TAFs) 

TAF�70 and TAF�31, both subunits of TFIID, thereby activating target genes (Lu and 

Levine, 1995; Thut et at., 1995). TBP and TFIID have been shown to cooperate with 

p53 in binding DNA (Chen et al., 1993). The amino terminal domain of p53 can also 

interact with other proteins such as the p53 negative regulatory factor Mdm2, as well as 

with TFIIH subunits. This latter interaction suggests a role for p53 in 

transcription/repair. 

Residues F19, L22 and W23 are required for transcriptional activation in vivo. 

Mutations in residues 22 and 23 render p53 transcriptionally inactive (Lin et al., 1994) 

and disrupt its interaction with TAFs, although p53 retains its ability to interact with 

TBP (Thut et al., 1995). 

As well as being a transcription activation site, some studies suggest that the amino- 

terminal region of p53 can also act as a repressor of transcription. In agreement with 

this, p53 protein containing mutations in residues 22 and 23 can no longer act as a 
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transrepressor (Farmer et al., 1996; Sabbatini et al., 1995b), suggesting that TAFs are 

necessary for p53-mediated repression. 

The transcription activation site of p53 is negatively regulated by a variety of proteins. 

The viral and cellular oncoproteins, E1B and Mdm2, respectively, bind to residues 22 

and 23, thereby inhibiting p53 association with the transcriptional machinery. The 

crystal structure of Mdm2 with a p53 peptide showed that the F19, L22 and W23 

residues of p53 stabilize the hydrophobic interactions between p53 and Mdm2 (Kussie 

et al., 1996); mutations of residues 22 and 23 disrupt the Mdm2-p53 interaction (Lin et 

al., 1994). 

Proline-rich domain 

The proline-rich domain (residues 64-91) of p53 has 5 repeats of the PXXP motif and 

can interact with a number of different proteins through their SH3 domain, such as c- 

Abl. p53 interaction with c-Abl has been shown to enhance p53 activity (Goga et al., 

1995). Deletion of this proline-rich region permits normal p53-mediated transcriptional 

activation but impairs p53 ability to inhibit tumour cell growth in culture (Walker and 

Levine, 1996). 

DNA binding domain 

The core domain of p53 ranges from residue 102 to 292. This region interacts with 

DNA in a sequence-specific manner (Bargonetti et al., 1993; Halazonetis and Kandil, 

1993; Pavletich et al., 1993; Wang et al., 1993). The three dimensional crystal structure 

of the p53 DNA binding region has enhanced our understanding of how the protein 

structure is related to its function (Cho et al., 1994). The four conserved regions within 
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the core domain (boxes II, III, IV and V as shown in figure 1.3) comprise the elements 

responsible for contacting the major and minor grooves of DNA, whereas the less 

conserved regions form a scaffold to support the DNA binding elements. 

Combining p53 structural studies with mutational analysis helped reveal the effect of 

mutations on p53 function (Cho et al., 1994). Over 90% of missense mutations occur in 

the DNA-binding region, highlighting the crucial role this domain has in p53 function. 

The four highly conserved regions have a particularly high incidence of mutations 

(Hollstein et al., 1994) and the residues that are most frequently mutated are known as 

the "hotspots" (figure 1.3). Each of the hotspot residues is found to make a critical 

contribution to the sequence-specific DNA binding. Other mutations that occur 

commonly affect either the scaffold or the structural element of the DNA-binding 

domain and have therefore been classified as contact or conformational mutants. 

The tetrameric p53 binds to four repeats of the consensus sequence: 5'-PuPuPuC(A/T)- 

3' (El-Deiry et al., 1992). This sequence is repeated in two pairs, each arranged as 

inverted repeats as shown: E-ý E-, with each arrow being a consensus sequence. The 

two pairs can be separated by 0-13 base pairs (El-Deiry et al., 1992). 

Linker Region 

The flexible linker region (300-320) connects the sequence-specific DNA binding 

domain to the tetramarization domain. 
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Figure 1.3 p53 structure. p53 domains are shown: transactivation domain (TA), proline- 
rich domain (PXXP), sequence-specific DNA binding domain (SSDB), oligomerization 
domain (OD) and basic domain (BD). The conserved regions are marked as box 1 (13- 
19), box II (117-142), box III (171-181), box IV (234-258) and box V (270-286). Six 
hotspots arc shown rcprcscnting residues R175, G254, R248, R249, R272 and R282 in 
human. The length of the vertical line is correlated to the frequency of the residue 
mutation. The nuclear localization domains are annoted as NLS and are found in the 
carboxy-terminus of the protein. 
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Oligomerization domain 

p53 is found to be in a tetrameric state in solution, as a dimer of a dimer. The 

oligomerization domain resides in residues 321-362. The loss of the oligomerization 

domain results in loss of cell cycle arrest but not growth suppression as measured by 

colony formation assays (Ishioka et al., 1995; Pellegata et al., 1995). 

Carboxy terminal region 

The carboxy-terminal region is an autonomous domain that binds non-specifically to 

DNA, including damaged DNA (Bakalkin et al., 1994; Bayle et al., 1995; Lee et al., 

1995; Reed et al., 1995; Wang et al., 1993). This domain encompasses residues 363-393 

and is rich in basic residues. These last few amino acids of p53 protein can regulate the 

transition from the latent to the active form of the full length protein. Deletion of the 

carboxy-terminal region, binding to the PAb 421 antibody or phosphorylation of this 

region by CKII or PKC can stimulate p53 to specifically bind to DNA by its central 

core domain (Halazonetis et al., 1993; Hupp et al., 1992; Takenaka et al., 1995). This 

region is therefore thought to act as an autoinhibitory domain. 

The carboxy-terminal region is believed to encompass a repression domain that can also 

interact with TBP (Haupt et al., 1995; Horikoshi et al., 1995; Subler et al., 1994). In 

addition, this domain contains three nuclear localization signals that allow p53 to shuttle 

from the cytoplasm to the nucleus (figure 3.1). 

Domains needed to suppress transformation 

p53 mutants lacking the activation domain or the carboxy-terminal region can still 

suppress transformation, although at a lower frequency than wild-type p53 (Shaulian et 
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al., 1995; Unger et al., 1993). Growth suppression, however, requires both the amino 

and the carboxy terminus regions of p53 (Pietenpol et al., 1994). Some mutants can 

suppress growth but are no longer able to suppress transformation (Crook et al., 1994; 

Pietenpol et al., 1994) suggesting two separate functions of p53. 

Although there is a correlation between growth suppression and transcriptional 

activation of p53, some p53 mutants retain their transactivation activity but are no 

longer able to suppress growth (Crook et al., 1994). A p53 protein with a mutation in its 

transactivation domain rendering it inactive, has defects in cell cycle regulation and 

apoptosis stimulation (Jimenez et al., 2000). This suggests an essential role of the 

transactivation domain in the tumour suppressor activities of p53 

p53 protein variants 

Although p53 is predominantly expressed as a protein of 393 amino acids, it can also be 

expressed as smaller products. Independent studies have suggested that p53 can be 

alternatively spliced in three different ways (Courtois et al., 2004). The first p53 variant 

to be discovered lacked the carboxy terminus: its last 26 amino acids were replaced by 

17 new amino acids and the alternatively spliced product was named ASp53. It was 

identified in mouse fibroblasts and has never been shown to be naturally present in 

humans. Another alternatively spliced p53 protein, 19+, has an alternative carboxy 

terminus and defective DNA-binding activity. It is present in most normal human cells 

and tissues. A third alternatively spliced p53 isoform affects the amino-terminus of p53 

and is detectable in both normal and transformed cells. The presence of an internal 

initiation ATG translation site has also been brought to light recently. A p53 fragment 

lacking its first 39 amino acids (ANp53) has been detected in most human cell lines and 
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tissues (Courtois et al., 2004). The function of these p53 variants resulting from 

alternative splicing and alternative translation initiation is still poorly understood. 
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1.4.2. p53 as a transcription activator 

p53 can integrate a range of different signals such as DNA damage and oncogenic stress 

and decide which is the appropriate response. It is upstream of a number of different 

pathways including DNA repair, cell cycle arrest and apoptosis and it is able to 

coordinate the necessary response for a particular stimulus. The main mechanism for 

p53 to activate all these downstream pathways is by acting as a transcription factor and 

inducing the expression of various genes which will ultimately lead to a suitable 

response to the stimulus. Indeed, the transcriptional activation function of p53 is a 

major component of its biological effects (Crook et al., 1994; Pietenpol et al., 1994). 

p53 target genes have been identified by various different approaches such as 

differential display, cDNA microarray analysis and direct cloning of the p53-binding 

sequences from human genomic DNA. 

Mdm2. the negative regulator of p53 

The proto-oncogene Mdm2 was identified as a gene induced by wild-type p53 in an 

assay using a temperature-sensitive p53 mutant (Barak et al., 1993). Murine Mdm2 has 

two different promoters, one present upstream of the gene known as P1, and the other 

situated near the 3' end of the first intron, known as P2 (Barak et al., 1994). Transcripts 

from both promoters possess similar coding potentials since the translation start site is 

located within exon 3. Only the second, P2 promoter is activated by p53, resulting in a 

mRNA with a transcription site that starts at exon 2 (Barak et al., 1994). The upstream 

promoter is consitutively active and is only slightly affected by p53. The Mdm2 protein 

can bind to p53 and inhibit its activity, suggesting a negative feedback loop between 

p53 and Mdm2 as described in more detail in section 1.4.5 (Momand et al., 1992) 

(figure 1.4). 
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Apoptosis 

Following DNA damage, oncogenic activation or withdrawal of growth factors, p53 can 

induce apoptosis. The first evidence that p53 could induce apoptosis came from the 

study which showed that p53 reintroduction in a p53-deficient myeloid leukaemic cell 

line induced apoptosis (Yonish-Rouach et al., 1991). In accordance with this 

observation, normal thymocytes were seen to undergo apoptosis following DNA 

damage whereas those from p53-null mice did not (Clarke et al., 1993; Lowe et al., 

1993). The importance of apoptosis in the tumour suppressor function of p53 was 

highlighted when it was shown that loss of apoptosis correlated with tumour 

progression in p53-null mice (Symonds et al., 1994). Apoptosis has since been shown to 

be important in suppressing tumour growth and transformation by oncogenes (Lowe et 

al., 1994; Symonds et al., 1994). 

Knock-in mice expressing transcriptionally dead, but DNA-binding proficient, p53 are 

defective in apoptosis, suggesting that transactivation activity of p53 is essential for it to 

promote apoptosis in normal cells (Jimenez et al., 2000). Indeed, p53 has been shown to 

directly stimulate apoptosis by transactivating genes which act as effectors in the 

apoptotic pathway. Both of the major apoptotic pathways are stimulated by p53: the 

mitochondrial pathway and the death receptor pathway. 

p53 can stimulate the mitochondrial pathway by transactivating various genes which 

are part of the Bcl-2 family. Bax, Bid, Noxa and PUMA are all pro-apoptotic members 

of the Bc12 family and are direct targets of p53 (Miyashita et al., 1994b; Nakano and 

Vousden, 2001; Oda et al., 2000a; Sax et al., 2002; Yu et al., 2001) (figure 1.4). All 

those genes have p53-binding elements through which p53 has been shown to 
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transactivate these genes. These four p53 target genes contain BH3 domains and can 

bind to the anti-apoptotic members of the Bcl-2 family. An increase in the ratio of pro- 

apoptotic Bc12 members to anti-apoptotic Bcl-2 family members results in the release of 

cytochrome C which ultimately leads to cell death (as described in section 1.3.3). Once 

cytochrome C has been released from the mitochondria, it must bind Apaf-1 in order to 

activate caspase 9 which is situated at the top of the caspase cascade. Apaf-1 has been 

identified as a target gene of both E2F1 and p53, and can sensitize cells to apoptosis 

(Moroni et al., 2001). 

The discovery of PIGS and FDXR as p53 target genes strongly suggested that p53 could 

respond to reactive oxygen species (ROS) by generating oxidative stress in the 

mitochondria (Hwang et al., 2001; Polyak et al., 1997). Following oxidative stress, the 

mitochondrial components are degraded, culminating in cell death. Although PIG3 has 

a consensus p53 binding element in its promoter, p53 was found to bind the PIG3 

promoter through an alternative pentanucleotide microsatellite sequence (Contente et 

al., 2002). The number of repeats is polymorphic and is directly correlated with the 

ability of p53 to bind to the PIGS promoter in vivo. Interestingly, the proline-rich 

domain of p53 has been shown to be necessary for PIG3 transactivation: deletion of the 

proline-rich region prevents the transactivation of PIG3 whilst not affecting the 

transactivation of p21, Mdm2 and Bax (Venot et al., 1998). A tumour-derived p53 

mutant was found to mimic the loss of the proline-rich domain and, as with the deletion 

mutant, specifically failed to induce PIG3 (Roth et al., 2000). Both the deletion mutant 

and the tumour-derived mutant were defective in inducing apoptosis, suggesting that 

PIG3 plays a crucial role in p53-dependent apoptosis (Roth et al., 2000). 
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As well as targeting the mitochondrial-mediated apoptotic pathway, p53 can also 

activate the death-receptor apoptotic pathway. In normal cells there is a set ratio of 

death receptors and what are known as decoy receptors (section 1.3.2. ). By inducing the 

expression of the death receptors Fas/APO1 and DR5/KILLER, p53 shifts the balance 

towards death-receptor-induced apoptosis (Owen-Schaub et al., 1995; Wu et al., 1997). 

p53 was also found to transactivate a novel gene, known as PIDD, which contains a 

death domain, suggesting a role in the death-receptor-mediated apoptotic pathway. 

Overexpression of PIDD results in an increase in apoptosis (Lin et at., 2000). 

Two other genes downstream of p53 were found to be involved in the apoptotic 

pathway. p53AIP (p53-regulated apoptosis-inducing protein 1) is induced by p53 

through its p53 binding sequence and once expressed is localized at the mitochondria 

(Oda et al., 2000b). Following DNA damage, p53AIP is expressed in a p53-dependent 

manner. Induction of p53AIP by human p53 requires a phosphorylation site on the 

serine 46 of p53; phosphorylation of p53 at this site is correlated with its ability to 

induce apoptosis. Thus p53AIP is likely to play an important role in apoptosis and p53 

phosphorylation at serine 46 regulates the transcriptional levels of p53AIP. Another 

p53-inducible gene is p53DINP1. This target protein is present in a complex that can 

phosphorylate p53 at serine 46, thereby increasing its transactivation of p53AIP1 (figure 

1.4). Thus, p53DINP1 acts in a positive feedback loop with p53, ultimately inducing 

p53-mediated apoptosis. 
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Figure 1.4 p53 target genes. p53 is upstream of several different effectors. It 
transcriptionally actives most genes (continuous arrows) but can also repress genes 
(represented by the bold perpendicular line). Some of its target genes can regulate p53 
activity (dotted lines), for example Mdm2 inhibits p53 activity, whereas p53DINP1 induces 
p53 transcription of the pro-apopotitic genes such as p53 AIPI. p53 can induce apoptosis 
via both the death receptor pathway and the mitochondria-mediated pathway. p53 can also 
induce cell cycle arrest and DNA repair as well as inhibiting survival signals and 
angiogenesis. 
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The fact that p53 can simultaneously target multiple apoptotic pathways to coordinate 

cell death might explain why no single p53 effector molecule can account for all p53 

pro-apoptotic activity. For example, whereas Bax disruption compromises p53-mediated 

apoptosis in oncogenically transformed fibroblasts (McCurrach et al., 1997), it has no 

obvious effect of p53-mediated apoptosis in normal thymocytes (Knudson et al., 1995). 

Similarly, disruption of Apaf-1 expression attenuates p53-mediated apoptosis in 

transformed fibroblasts (Soengas et al., 1999) and melanoma cells (Soengas et al., 2001) 

but it has no effect on thymocytes in response to ionizing radiation (Marsden et al., 

2002). This discrepancy in sensitivity to particular components of the apoptotic pathway 

demonstrates differences in cell types. 

Cell cycle arrest 

Following DNA damage or oncogenic stress, p53 can induce cell cycle arrest. There are 

two main checkpoints during the cell cycle where p53 can arrest the cycling state of the 

cell: the G1/S boundary and the G2/M boundary (see section 1.2.2). 

p21 was discovered simultaneously as a p53 target gene and as an inhibitor of the cell 

cycle (El-Deiry et al., 1993; Harper et al., 1993). Following induction by p53, it can 

form part of a quaternary complex with cyclins, cyclin-dependent kinases (Cdks) and 

the proliferating cell nuclear antigen (PCNA). As part of this complex, p21 can inhibit 

Cdk function, leading to hypophosphorylated Rb accumulation and resulting in G1 

arrest (see section 1.2.1). Following ionizing radiation, the p53-dependent G1 arrest is 

at least partly due to p21 activity (el-Deiry et al., 1994). p21-null fibroblasts are 

defective in cell cycle arrest in response to irradiation (Brugarolas et al., 1995; Deng et 
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al., 1995). p21 can also directly inhibit PCNA function in replication, allowing a time 

lag for the cells to repair any DNA damage before entering the S phase (Flores-Rozas et 

al., 1994; Waga et al., 1994). 

p53 has been suggested to be involved in a mitotic checkpoint because of the 

observation that whilst p53 wild-type cells arrest in G2 following treatment with mitotic 

spindle inhibitors, p53-null cells do not arrest and the cells continue to cycle, resulting 

in aneuploidy (Cross et al., 1995). In accordance with this observation, three p53 target 

genes are involved in a G2/M checkpoint arrest: GADD45, reprimo and 14-3-3a 

(Hermeking et al., 1997; Kastan et al., 1992b; Ohki et al., 2000). Both GADD45 and 

14-3-3a can inhibit cyclinB/Cdk2, thereby preventing entry into mitosis (Chan et al., 

1999; el-Deiry, 1998). As well as preventing entry into mitosis, GADD45 can also 

block the cell cycle at the G1/S boundary. It interacts with the replication and repair 

factor PCNA, inhibiting the cell's entry into S phase (Smith et al., 1994). 

DNA repair 

The p53 target gene p53R2 contains high similarity to the ribonucleotide reductase 

small subunit. Inhibition of p53R2 expression reduced ribonucleotide reductase activity, 

DNA repair and cell survival after genotoxic stress (Tanaka et al., 2000). p53R2-null 

cells have reduced deoxynucleotides triphosphate (dNTP) pools and increased apoptosis 

(Yamaguchi et al., 2001), suggesting a role for the p53-induced p53R2 in DNA repair. 

Further evidence that p53 is involved in repair came with the discovery that p53 binds 

to several proteins involved in DNA repair, such as RP-A, TFIIH and CSB, and that p53 

can recognize both irradiated DNA and mismatched DNA through its carboxy-terminal 
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region. PCNA, which is involved in DNA repair and replication, is also a gene target for 

p53 transcription activation (Shivakumar et al., 1995) and further implicates p53 in the 

DNA repair process. 

Inhibition of survival signals 

The insulin-like growth factor binding protein 3 (IGF-BP3) can be induced by p53 

following DNA damage (Buckbinder et al., 1995). IGF-BP3 inhibits signalling by 

insulin-like growth factor, thereby having an antimitogenic role and leading to the 

suppression of growth. Another p53 target that prevents anti-apoptotic signals is PTEN 

(Stambolic et al., 2001). PTEN is a lipid phosphatase that can attenuate the survival 

signals from the Akt pathway by dephosphorylating the Akt products, phosphatidyl 

inositol 3-phosphates. 

Inhibition of angio; enesis 

p53 can stimulate both thrombospondin-1 (TSP1) and BAI1 expression which are both 

potent inhibitors of angiogenesis (Dameron et al., 1994; Nishimori et al., 1997). Both 

these proteins contain the thrombospondin type 1 repeats. 
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1.4.3. p53 as a transcription repressor 

As well as acting as a transcription activator of genes, p53 is also capable of 

transrepressing genes. p53 can inhibit transcription of genes lacking a p53-binding site, 

such as c-fos, c-jun, IL-6, Rb and Bc12 (Donehower and Bradley, 1993; Jackson et al., 

1993; Miyashita et al., 1994a). Only genes with promoters containing TATA boxes, not 

those containing initiator elements, are inhibited by p53 (Mack et al., 1993), suggesting 

that p53 might sequester TBP. The carboxy terminal region of p53 contains a repression 

domain that can also interact with TBP (Horikoshi et al., 1995; Shaulian et al., 1995; 

Subler et al., 1994). As mentioned above, a p53 mutant with residues 22 and 23 altered 

no longer binds TAFs but still interacts with TBP. These mutants are unable to repress 

transcription, suggesting that TAF-binding is required for p53-mediated repression. 

Apoptosis and cell cycle arrest may be mediated in part by transcriptional repression 

since E1B (19 KDa), WT1 and 1362, oncogenes that block p53 repression activity 

whilst having no effect on its transactivation activity, can block p53 apoptotic activity 

(Crook et al., 1994; Maheswaran et al., 1995; Sabbatini et al., 1995a; Shen and Shenk, 

1994). Some p53 mutants that are defective in their transactivation activity retain their 

suppression of oncogenic transformation function and the G1/S checkpoint arrest 

function (Sal et al., 1995; Unger et al., 1993). p53 can interact simultaneously with 

Mdm2 and Rb. In this complex p53 retains its ability to repress genes expression and 

induce apoptosis despite being defective for the transactivation of its target genes such 

as p21 (Hsieh, 1999). These results all suggest a correlation between transcriptional 

repression and apoptosis. 
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The identification of the transcription repressor Sin3A as a binding partner to p53 

provides a possible explanation for p53 repression activity (Murphy et al., 1999) since 

Sin3A is complexed with histone deacetylases (HDACs), which are known to silence 

chromatin structures. Interestingly, Sin3A interacts with p53 in the proline-rich domain 

of p53, which has been shown to be required for p53-mediated apoptosis and for its 

transcriptional repression activity (Venot et al., 1998). 

p53 as a transcriptional repressor can function through a number of different 

mechanisms. Firstly, it can act by interfering with the function of DNA-binding of 

transcriptional activators, as seen with the AFP gene (Lee et al., 1999a). Secondly, it 

can interfere with the basal transcriptional machinery, as is the case with cyclin B 

repression (Krause et al., 2000). Thirdly it can alter the chromatin structure of its target 

genes by recruitment of HDACs, as with the Survivin target gene. Treatment with 

trichostatin A (TSA), an inhibitor of HDACs, can abolish p53-mediated repression of 

survivin (Hoffman et al., 2002; Mirza et al., 2002). Survivin encodes an apoptosis 

inhibitor protein (AIP) that is capable of inhibiting apoptosis (Ambrosini et al., 1997), 

further emphasizing a link between transrepression and apoptosis. 
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1.4.4. p53 can induce apoptosis in a transcriptionally-independent manner 

A mutant p53 with mutations in residues 22 and 23 is no longer transcriptionally active 

nor does it have transrepression activity. This p53 mutant, however, is nonetheless still 

able to induce apoptosis in a transient transfection apoptosis assay in HeLa cells (Haupt 

et al., 1995). In contrast, however, a temperature sensitive form of this same mutant p53 

was not able to induce apoptosis in BKR cells in the presence of E1A (Sabbatini et al., 

1995b), highlighting the complexity of the situation. The fact that wild-type p53 could 

still induce apoptosis in the presence of either the transcriptional inhibitor actinomycin 

D or the translational inhibitor cyclohexamide (Caelles et al., 1994; Wagner et al., 

1994), is a strong indication that p53-mediated apoptosis can occur in a transcription- 

independent manner. 

Recently, it has been shown that p53 can accumulate in mitochondria following stress, 

resulting in a cytochrome C-dependent cell death (Marchenko et al., 2000; Mihara et al., 

2003). Following the discovery that p53 can interact with Bcl-XL and Bcl-2, it has been 

proposed that p53 localization to the mitochondria liberates Bax and Bak from the Bcl-2 

anti-apoptotic family members, thereby allowing them to induce cytochrome C release 

from the mitochondria. Interestingly, Bcl2 and Bcl-XL bind p53 in its sequence-specific 

DNA binding region, and most hotspot mutations that disrupt p53 binding to DNA also 

disrupt its ability to interact with Bcl-XL and Bcl-2 (Mihara et al., 2003). In agreement 

with these studies, Dumont et al. showed that the polymorphic variant of p53 with an 

arginine at codon 72 has an increased localization to the mitochondria and this 

correlates with a greater ability to induce apoptosis (Dumont et al., 2003). 
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1.4.5. Regulation of p53 

Since p53 activation can lead to dramatic responses such as cell cycle arrest or 

apoptosis, its activity must be tightly regulated. In order for it to function efficiently as a 

tumour suppressor protein, it must be capable of being activated instantly following the 

correct stimuli, and then lose its activity rapidly when it is no longer needed. The 

observation that p53 could still be activated in cells treated with transcription or 

translation inhibitors suggested that the mechanism for p53 regulation is post- 

translational (Fritsche et al., 1993). Further work demonstrated that p53 could be 

regulated at several levels: protein levels, protein-protein interactions, post-translational 

modification and sub-cellular localization. These different methods of regulating p53 

are not discrete units but are interdependent. For example, the protein level of p53 is 

tightly correlated with its post-translational modifications, and the affinity of the 

interaction between p53 and its binding partners can be affected by p53 post- 

translational modifications. 

1.4.5.1. Post-translational regulation of p53 

There are several types of post-translational modifications that can affect p53 activity: 

ubiquitination, phosphorylation, acetylation and sumoylation. The use of antibodies to 

recognize specific covalent modifications such as phoshorylation or acetylation has 

been a powerful approach to study the effect of post-translational modifications on p53 

function. 
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Phosphorylation 

p53 is rapidly activated following DNA damage. This is correlated with the presence of 

a number of phosphorylation sites altered after DNA damage, leading to a more stable 

and more active p53. There are two main regions of p53 that are phosphorylated: the 

amino terminal transactivation domain and the carboxy terminal domain. 

Amino terminal region 

There are several different kinases that can phosphorylate the amino-terminal region of 

p53, including DNA PK, ATM, ATR, Chkl and Chk2. Phosphorylation of p53 by these 

kinases plays an important role in p53 stabilization and activation by impairing the 

interaction of p53 and Mdm2 

The prevailing view is that DNA damage is sensed by the presence single-stranded 

DNA (ssDNA) and DNA double stranded breaks (DSBs), although the chromatin 

conformation has also been implicated in the sensing of DNA damage (Bakkenist and 

Kastan, 2003; Nyberg et al., 2002; Zhou and Elledge, 2000). ATM and ATR are two 

members of the P13K family, located immediately downstream of the damage sensors. 

ATM is mutated in patients suffering from ataxia telagiectasia (AT) and these patients 

have a predisposition to cancer among other phenotypes. Both kinases are stimulated 

following different types of damage: ATM responds to ionizing radiation (IR) whereas 

ATR responds mainly to ultra-violet (UV) radiation, although it can also be activated 

somewhat more slowly by IR. Both these kinases phosphorylate and activate the Chk 

proteins: ATM phosphorylates Chk2 (Matsuoka et al., 1998; Matsuoka et al., 2000; 

Melchionna et al., 2000) whilst ATR phosphorylates Chkl (Liu et al., 2000b; Sanchez 

et al., 1997). 
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Three p53 phosphorylation sites are directly linked to DNA damage, although other 

sites can also be phosphorylated in response to stress: serine 15, serine 33 and serine 37, 

which are all situated in the transactivation domain of p53 (figure 1.5). Different stress 

signals can give rise to different patterns of phosphorylation, partly due to the fact that 

distinct stress signals activate specific kinases. Whilst IR stimulation of ATM can 

phosphorylate p53 at serine 15 (Banin et al., 1998), UV stimulation of DNA PK and 

ATR can lead to both serines 15 and 17 phosphorylation (Lees-Miller et al., 1992; 

Tibbetts et al., 1999). The kinetics of p53 phosphorylation following different damages 

can vary, as seen with serine 15 phosphorylation following UV irradiation that has 

slower kinetics compared to phosphorylation of the same residue after IR treatment 

(Shieh et al., 1997; Shieh et al., 1999; Siliciano et al., 1997; Tibbetts et al., 1999). 

Phosphorylation of p53 on different sites can follow a temporal order, for example 

ATM and ATR phosphorylation of p53 on serine 15 precedes phosphorylation on serine 

20 by Chk2 and possibly Chk1 (Iliakis et al., 2003). In cells from AT patients, lacking a 

functional ATM, p53 induction in response to IR is significantly delayed, as is its 

phosphorylation at serine 15 (Kastan et al., 1992a; Khanna and Lavin, 1993). 

Nonetheless, although delayed, p53 still becomes phosphorylated at serine 15 in AT 

cells in response to IR, and this is believed to be mediated by ATR (Tibbetts et al., 

1999). 

As well as inhibiting Mdm2 binding to p53, phosphorylation at the amino terminus 

domain of p53 can also enhance recruitment of p300 and PCAF to p53, resulting in 

increased acetylation of p53 and increased stability (see below). 
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ATM not only phosphorylates p53, but it can also phosphorylate the p53 negative 

regulator Mdm2. Phosphorylation of Mdm2 by ATM can impair the ability of Mdm2 to 

target p53 for degradation, further stabilizing p53 (Maya et al., 2001). The kinase JNK 

can also affect p53 stability following UV damage by phosphorylating p53 on tyrosine 

81, leading to p53 stabilization (Buschmann et al., 2001b). 

Carboxy-terminal region 

The carboxy terminal region of p53 is believed to act as an autoinhibitory domain (see 

section 1.4.1). Two kinases have been shown to phosphoryate p53 in this region: CKII 

and PKC. Following DNA damage, some sites in this region are phosphorylated whilst 

others are dephosphorylated. 

CKII phosphorylates p53 at serine 392 (389 in murine p53) and this covalent 

modification can increase p53 activity (figure 1.5). Indeed, a point mutation at residue 

392 from a serine to a glutamate residue rescues p53 function (Hao et al., 1996). One 

possible explanation for this enhanced activity of p53 following phosphorylation is that 

TBP or p300, which can both interact with p53 in the carboxy terminal region and are 

known to be implicated in the repression function of p53, might require phosphorylation 

at serine 392 to interact with p53. Whereas phosphorylation at serine 392 increases p53 

tetramerization, phosphorylation by Cdks at serine 315 in the linker region reverses 

tetramerization. Phoshorylation of p53 at serine 315 by S and G2/M Cdks can also 

stimulate p53 DNA binding to a subset of p53 sites (figure 1.5) (Wang and Prives, 

1995). 
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In unstressed cells, PKC phosphorylation of p53 at serine 376 enhances ubiquitination 

and degradation of p53 (figure 1.5) (Chernov et al., 2001). Following IR, p53 loses this 

PKC phosphorylation site and the ensuing dephosphorylation is correlated with p53 

increased ability to bind to 14-3-3, leading to the stimulation of its site-specific DNA 

binding function and transactivation activity (Waterman, 1998). 

Acetylation 

Following phosphorylation of p53 at serines 15 and 33, p300/CBP can acetylate p53 

lysines at residues 373 and 382 (figure 1.5) (Gu and Roeder, 1997). Another acetyl 

transferase that can covalently modify p53, following p53 phosphorylation in the amino 

terminus region, is PCAF, by acetylating lysine 320 (Sakaguchi et at., 1998). 

Acetylation at lysines 320,373 and 382 is modified in response to UV and IR damage 

(Gu and Roeder, 1997; Liu et al., 1999; Sakaguchi et al., 1998). Although lysine 320 is 

acetylated following both UV and IR-induced stress, it is an earlier event following UV 

treatment compared to IR (Sakaguchi et al., 1998). After acetylation, p53 has an 

increased DNA binding activity (Gu and Roeder, 1997; Liu et al., 1999; Sakaguchi et 

al., 1998), and acetylation at residues 320 and 373 can increase the expression of PIG3 

and Noxa genes, resulting in increased apoptosis (Terui et al., 2003). This suggests that 

stabilization of p53 by Mdm2 dissociation is not the only mechanism to induce p53 in 

response to DNA damage. 
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As well as increasing the DNA binding domain activity of p53, acetylation can regulate 

p53 activity by reducing its ubiquitination. Both acetylation and ubiquitination occurs in 

the carboxy-terminus of p53; acetylation of this domain is sufficient to abrogate Mdm2- 

mediated ubiquitination, even in the absence of DNA damage (figure 1.5) (Li et al., 

2002). It is also possible that p300 acetylation of p53-bound nucleosomes could 

facilitate access to other components of the transcriptional machinery (Espinosa and 

Emerson, 2001), contributing to p53 enhanced transcriptional activation. 

Sumoylation 

Among its other covalent modifications, p53 was found to be sumoylated at lysine 386 

within its carboxy-terminus region (figure 1.5) (Gostissa et al., 1999; Kwek et al., 2001; 

Muller et al., 2000; Rodriguez et al., 1999). p53 sumoylation results in p53 repression 

and a point mutation at residue 386 from lysine to arginine leads to increased p53 

activity. 

As well as affecting p53 function directly, sumoylation can affect the function of p53 

regulators. Mdm2 sumoylation prevents its auto-ubiquitination leading to increased 

Mdm2 stability (Buschmann et al., 2001a). 

1.4.5.2. Cellular regulators of 5533 

Mdm2 

Mdm2 is a binding partner to p53 and can inhibit its activity through a number of 

different ways. By binding to the transactivation domain of p53, Mdm2 can conceal it 

from basic transcriptional machinery and coactivators (Momand et al., 1992). Mdm2 
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has also been shown to recruit the transcriptional repressor CtBP2 to p53, further 

inhibiting its transactivation activity (Mirnezami et al., 2003). The realization that 

Mdm2 can negatively regulate p53 by affecting its stability stemmed from the 

observation that overexpression of Mdm2 causes degradation of p53 and that mutations 

in p53 or Mdm2 that prevent interaction between the two proteins leads to p53 

stabilization (Haupt et al., 1997; Kubbutat et al., 1997). Since Mdm2 is an E3 ubiquitin 

ligase for p53 (Honda et al., 1997), it was suggested that Mdm2 might negatively 

regulate p53 stability by adding ubiquitin molecules to the carboxy-terminal region of 

p53, thereby tagging p53 for the 26S proteasome-mediated degradation (figure 1.5). In 

accordance with this model, Mdm2-mediated degradation of p53 is blocked by the 

presence of proteasome inhibitors (Haupt et al., 1997; Kubbutat et al., 1997). Unlike 

many E3 ubiquitin ligases, Mdm2 can only mono-ubiquitinate p53, raising the 

possibility that another factor is needed for polyubiquitination (Lai et al., 2001). 

Mdm2 can further regulate p53 by shuttling p53 from the nucleus to the cytoplasm 

where it is no longer able to act as a transcription activator or repressor (Roth et al., 

1998). Once in the cytoplasm, p53 is available to the proteasome complex and p53 

degradation ensues, although it has also been shown that nuclear export is not required 

for proteasomal degradation of p53 (Xirodimas et al., 2001). It has been suggested that 

Mdm2 requires cofactors to fully ubiquitinate p53. In accordance with this theory, 

Mdm2 has been found to bind p300 and this interaction is required for Mdm-2 mediated 

degradation of p53 (Grossman et al., 1998). 

Mdm2 is a transcriptional target of p53, thereby forming a negative feedback loop for 

p53 activity (Barak et al., 1993; Perry et al., 1993; Wu et al., 1993). This feedback loop 
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was elegantly demonstrated using knock-out mice: loss of Mdm2 induces early 

embryonic lethality that is entirely dependent on p53 function, since the double knock- 

out of both p53 and Mdm2 rescues the phenotype (Jones et al., 1995; Montes de Oca 

Luna et al., 1995). 

As much as p53 activity must be curbed during normal cell growth, p53 must be 

functionally active following DNA damage and other stimuli. In these circumstances, 

Mdm2 is no longer an effective negative regulator of p53 and p53 levels are increased 

as a consequence. Mdm2 interaction with p53 can be blocked by two main ways: 

covalent modification of p53 or Arf activation. Both of these mechanisms will be 

discussed below. 

MdmX 

MdmX is a Mdm2 homolog and can also regulate p53 activity (Shvarts et al., 1996). 

However, unlike Mdm2, Mdmx does not promote p53 ubiquitination and therefore does 

not target p53 for degradation but was instead found to increase p53 stability (Jackson 

and Berberich, 2000; Stad et al., 2000). This increase in p53 stability is thought to occur 

by Mdmx preventing p53 nuclear export (Stad et al., 2001). Nonetheless, Mdmx can 

block p53 activity by inhibiting its transcriptional activation of target genes, thereby 

acting as a negative regulator of p53 (Jackson and Berberich, 2000; Stad et al., 2000). 

Paradoxically, as well as increasing p53 stability, Mdmx can also increase Mdm2 

expression levels by preventing Mdm2 autobiquitination (Stad, 2001). The importance 

of MdmX as a negative regulator of p53 activity was highlighted by the embryo 

lethality phenotype of the MdmX knock-out mice that was rescued by simultaneous loss 

of p53 (Parant et al., 2001). 
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Arf 

Contrary to their proliferative effects, some oncogenes, such as Ras, myc and E2F1, can 

cause p53 accumulation. This stimulation of p53 is thought to be at least partially 

mediated by Arf: Ras, myc and E2F1 can all induce Arf (Bates et al., 1998; Palmero et 

al., 1998; Zindy et al., 1998), and overexpression of Arf leads to growth arrest and 

repression of transformation by Ras in p53 wild-type but not in p53-null cells (Kamijo 

et al., 1997; Pomerantz et al., 1998). Oncogenic stimulation of Arf by myc and E2F1 is 

mediated by DAP kinase (Raveh et al., 2001). 

Arf stimulates p53 transcriptional activity by binding to the p53 negative regulator 

Mdm2 and preventing Mdm2-mediated degradation of p53 (Kamijo et al., 1997; 

Pomerantz et al., 1998; Stott et al., 1998; Zhang et al., 1998). Arf inhibits Mdm2 

activity by sequestering Mdm2 in the nucleolus, preventing its nuclear-cytoplasmic 

shuttling and inhibiting its ubiquitination of p53 (Honda and Yasuda, 1999; Tao and 

Levine, 1999; Weber et al., 1999). However, Mdm2 nucleolar relocalization is not 

essential for Arf to stabilize p53 (Llanos et al., 2001). Arf can bind directly to both p53 

and Mdm2 and the three proteins can be found in a ternary complex (Kamijo et al., 

1998). Its role as a tumour suppressor was confirmed in Arf knock-out mice, where 

accelerated tumour development was observed compared to wild-type mice (Sherr and 

Weber, 2000). p53 and Arf act in a negative feedback loop, since p53 is able to 

downregulate Arf expression (Stott et al., 1998). 

The Arf checkpoint is genetically different in regulating p53 from the DNA damage 

checkpoint, as Arf-null cells have intact DNA damage checkpoints (Kamijo et al., 1997) 
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and E1A can induce p53 without p53 phosphorylation at serine 15. Thus p53 can be 

stimulated by DNA damage and by oncogenic stress through two independent 

pathways. 

E2F1 

E2F1 was first considered to be an oncogene as it drove the proliferating cell into S 

phase following release from Rb (Dyson, 1998). Studies in knock-out mice, however, 

suggested that E2F1 could also act as a tumour suppressor: EM-null mice were 

predisposed to tumour development (Dyson, 1998). In accordance with its role as a 

tumour suppressor, E2F1 was found to induce apoptosis, in both a p53-dependent and 

p53-independent manner. The mechanism by which E2F1 induces p53-dependent 

apoptosis is not yet clear but is believed to involve the cyclin A binding site of E2F1: 

p53 and cyclin A compete in their interaction with E2F1 (Hsieh et al., 2002). Following 

UV treatment of cells, there in an increased association of E2F1 and p53 that is 

correlated with decreased cyclin A levels and increased apoptosis (Hsieh et al., 2002). 

Thus E2F1 can activate p53 by two independent mechanisms: by inducing Arf, leading 

to an inhibition of Mdm2-mediated degradation of p53, and by interacting with p53 

directly. 

Viral proteins 

p53 was originally discovered as a binding partner to the SV40 large T antigen (Lane 

and Crawford, 1979a; Linzer et al., 1979), following which the tumour suppressor gene 

was found to interact with a number of viral oncogenes. Adenovirus E1B, Human 
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Papilloma virus (HPV) E6 and the SV40 large T antigen all associate with and inhibit 

the transactivation activity of p53 (Mietz et al., 1992; Moran, 1993). 

PML 

Promyelocytic leukaemia (PML) protein is present within the nucleus in specialized 

structures known as nuclear bodies (NBs). PML can directly interact with the core 

domain of p53 to recruit p53 to the NBs. Once in the NBs, p53 forms a complex with 

PML and p300/CBP. This complex enhances p53 transactivation activity (Fogal et al., 

2000) and PML is required for p53 to induce apoptosis and senescence. 

HIPK2 

Also present in the nuclear bodies with p53 and PML is HIPK2, a kinase that can 

phosphorylate p53 on serine 46. Phosphorylation on this site is important for cell death 

and leads to increased p53-dependent transactivation of p53AIP1 (Oda et al., 2000b). 

As well as inducing apoptosis, phosphorylation at serine 46 can, when in concert with 

acetylation at lysine 382, lead to cell cycle arrest (Hofmann et al., 2002). Since both 

HIPK2 and p300/CBP are present in NBs, one can suppose that this dual-modification 

is not uncommon. The overall response to serine 46 phosphorylation, whether cell cycle 

arrest or apoptosis, might depend in part on other post-translational modifications of 

p53. 

JMY 

JMY can interact with p300 and is involved in regulating p53-dependent apoptosis 

(Shikama et al., 1999). JMY, p300 and p53 form a ternary complex that can increase 

p53 transactivation activity. JMY is one of the first regulators of p53 found to 
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specifically promote one p53-dependent response rather than another (in this case, 

apoptosis). 

c-Abl 

c-Abl interacts with p53 through its SH3 domain with the p53 proline-rich domain and 

enhances p53 activity (Goga et al., 1995). It can activate p53 by inhibiting Mdm2- 

mediated p53 ubiquitination and nuclear export (Sionov et al., 2001). c-Abl contributes 

to the G1 arrest checkpoint following IR stimulus in a p53-dependent and p21- 

independent manner (Yuan et al., 1996). 

533BP1 

53BP1 was found to bind to wild-type p53 but not to mutant p53 in a yeast two hybrid 

screen (Iwabuchi et al., 1994). It contains BRCT domains with high homology to the 

Rad9 DNA damage checkpoint protein. Following IR stimulation, 53BP1 changes its 

subcellular localization from a diffuse nuclear staining to nuclear foci, representing sites 

of double stranded breaks (Schultz et al., 2000). 53BP1 is required for a subset of ATM- 

dependent phosphorylation events and for cell cycle arrest at the G2/M boundary of the 

cell cycle following exposure to IR (DiTuIlio et al., 2002). 

The ASPP family 

The carboxy terminus of ASPP2 was found to bind wild-type p53 but not mutant p53 in 

a yeast two hybrid screen (Iwabuchi et al., 1994). It was originally named 53BP2, until 

the full length protein was cloned, at which point it was renamed ASPP2 for apoptosis 

stimulating protein of V53. ASPP1 has high sequence similarity with ASPP2 and both 

proteins bind p53 in its core domain and enhance its transactivation activity to 
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specifically target pro-apoptotic genes only (Samuels-Lev et al., 2001). The third 

member of the family is iASPP, which is an inhibitory protein and prevents p53- 

mediated apoptosis (Bergamaschi et al., 2003b). More detail on these proteins is 

described in section 1.6. 

1.4.5.3. p53 regulation by subcellular localization 

As mentioned above, p53 can shuttle in and out of the cytoplasm and nucleus. The 

nuclear localization signals are present in the carboxy-terminus of p53, whereas the two 

nuclear export signals are at a distance from each other; one is in the oligomerization 

domain and the other is in the transactivation domain. 

The intrinsic ability of p53 to be exported from the nucleus is enhanced in the presence 

of Mdm2 (Freedman et al., 1999) and is dependent on the ubiquitin ligase function of 

Mdm2 (Boyd et al., 2000; Geyer et al., 2000). One possible explanation is that the 

nuclear export signal situated in the carboxy terminus of p53 is unmasked following 

ubiquitination. By a different mechanism, the nuclear export signal situated in the 

transactivation domain is regulated by phosphorylation: following stress, this site is 

phosphorylated, thereby inhibiting this export signal (Zhang and Xiong, 2001). 

Although nuclear export is not necessary for p53 degradation (Xirodimas et al., 2001), 

p53 is nonetheless degraded more effectively in the cytoplasm (Freedman and Levine, 

1998). 

Although nuclear export of p53 is usually seen as a way to inhibit its activity, the recent 

discovery that p53 can localize to the mitochondria and thereby induce apoptosis 
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(Marchenko et al., 2000; Mihara et al., 2003), could suggest that p53 nuclear export 

might not necessarily be a negative regulation of p53. 

Within the nucleus, p53 is found in different discrete structures, including nucleoli and 

nuclear bodies (NBs). Nucleolar p53 is associated mainly with mdm2 and Arf whereas 

p53 found in the NBs is associated with PML and p300. 
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negative regulators of p53 p53 activating proteins 

By degradation: Mdm2 By phosphorylation: DNA PK 

E6 (HVP) JNK 

ATM 

ATR 

Chkl 

Chk2 

CKII 

HIPK2 

By phosphorylation: PKC By acetylation: p300/CBP 
PCAF 

JMY 

By other means: MdmX By other means: Arf 

iASPP E2F1 

large T antigen (SV40) PML 

EIB (adenovirus) TBP 

TAFs 

c-Abl 
53BP2 

ASPP1 

ASPP2/53BP2 

Table 1.2 Summary of p53 binding proteins. Viral proteins are shown in italics with the 

virus species in brackets. All other proteins are cellular proteins. 
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1.4.6. Choice of response: cell cycle arrest or apoptosis 

In response to many different stimuli, p53 can stimulate a variety of responses. The 

most prominent responses that the tumour suppressor induces are cell cycle arrest and 

apoptosis. How one or the other of these two responses becomes favoured is not yet 

fully understood but the factors involved are slowly coming to light. 

A number of factors can affect the outcome of p53 response, such as the presence of 

overexpressed viral or cellular oncoproteins, growth factor availability and expression 

of Rb/E2F1. Loss of Rb function caused by viral proteins correlates with a loss of G1 

arrest following DNA damage (Demers et al., 1994; Hickman et al., 1994; Slebos et al., 

1994). This relationship between p53 and Rb explains why several DNA tumour viruses 

inactivate both tumour suppressors (e. g. adenovirus, HPV). 

Two possible models have been proposed to explain p53 selectivity for either cell cycle 

arrest or apoptosis (Vousden and Lu, 2002). 

p53 "dumb" model 

In this model, p53 always sends exactly the same signals following activation, and 

induces both cell cycle arrest and apoptosis target genes. Inhibition of p53-induced 

apoptosis by extrinsic components reveals the parallel p53-dependent cell cycle arrest, 

and vice versa. 

Some cell types, such as thymocytes, show a propensity to undergo apoptosis following 

p53 activation, whereas others tend to arrest. This difference might be due to the 

transcription factors present in the different cell types. The fact that cell cycle arrest 
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genes and apoptotic genes are differentially regulated within the same cell type can be 

explained by the availability of different transcription factors that bind the promoters of 

these genes. 

In addition, there is an enhanced sensitivity of transformed cells to undergo apoptosis in 

response to p53 activation, which explains why p53 activation preferentially kills 

tumour cells while sparing normal tissue. E2F1, for example, although an oncogene, can 

synergize with p53 to induce apoptosis (Hsieh et al., 1997b). Not all oncogenes can 

preferentially select for apoptosis, however; NF-KB, for example, is known to inhibit 

cell death. At high levels, NF-icB can compete with p53 for the p300 coactivator, 

blocking p53 apoptotic activity (Ravi et al., 1998a; Webster and Perkins, 1999). Myc 

overexpression can also influence p53 response: p53 no longer induces p21 expression 

because Myc and its binding partner Mizl are present at the p21 promoter, preventing 

p53-mediated transcription (Fridman and Lowe, 2003). Therefore, in the presence of 

myc overexpression, p53 induces apoptosis following activation. In these cases, the 

presence of a particular oncogene in the cell would determine the p53 response rather 

that the intrinsic activity of p53 itself. 

Some oncogenes do not generate straight-forward activation or inhibition of p53 

responses. Ras, for example, can stimulate p53 activity by inducing Arf expression. 

Following Arf expression, p53 relocalizes to the nucleoli, and induces senescence 

(Weber et al., 1999). Parallel to Arf activation, Ras can also stimulate Akt which is 

upstream of survival signals, inhibiting p53-mediated responses (Sabbatini and 

McCormick, 1999). In the case of Ras, the final response of cells to these stimuli will be 

the result of the integration of a complex network of signals. 
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p53 "smart" model 

In this model, p53 itself governs the choice of response appropriate for the stimuli. It 

would be expected that different forms of p53 could affect the choice. For example, it is 

known that low amounts of p53 can induce cell cycle arrest whereas higher levels leads 

to apoptosis. One possible explanation for this observation is that p53 binds the pro- 

apoptotic promoters with a lower affinity than to the cell cycle arrest promoters and the 

pro-apoptotic promoters would therefore only be activated following higher p53 protein 

levels. 

Another example when p53 could modulate its own activity is seen with its 

phosphorylation state at serine 46. Phosphorylation at serine 46 is required to induce the 

expression of the apoptotic gene p53AIP1 (Oda et al., 2000b), resulting in a apoptotic 

response. 

IR and UV radiation can induce different p53 target genes in the same cell types (Zhao 

et al., 2000). These distinct stimuli lead to different post-translational modifications, 

which can influence p53 in its choice of targets. Similarly, DNA damage and hypoxia 

produce different p53 modifications that correlate with the ability of p53 to associate 

with different transcriptional coactivators and repressors (Koumenis et al., 2001). 

Some co-factors of p53 are known to direct p53 to stimulate one particular response 

over another. ASPP1, ASPP2 and JMY can target p53 to induce activation of apoptotic 

genes specifically (Samuels-Lev et al., 2001; Shikama et al., 1999) (see section 1.6). 

The modulation of the availability of these co-factors or the regulation of their ability to 
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interact with p53 could be key in determining whether a cell undergoes apoptosis or cell 

cycle arrest in response to p53 activation. In accordance with this theory, ASPP 

inhibition can block p53-mediated apoptosis (Samuels-Lev et al., 2001). In addition to 

co-factors, p53 requires at least one member of its family, p63 or p73, for an apoptotic 

response (Flores et al., 2002). 

Further in agreement with this model, it is known that cell cycle arrest and apoptosis 

inductions are separate functions of p53. Some tumour-derived p53 mutants have 

defects in activation of pro-apoptotic promoters but not cell cycle arrest targets 

(Friedlander et al., 1996; Ludwig et al., 1996), suggesting an intrinsic ability of p53 to 

decide which response to activate. 
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1.4.7. p53 and tumourigenesis 

More than 50% of cancers have missense mutations in the p53 gene, of which 28% of 

mutations affect only six residues: 175,245,248,249,273,282 (Hollstein et al., 1994). 

These mutations are selected to prevent p53 binding to DNA in a sequence-specific 

manner. The importance of p53 as a tumour suppressor is indisputable; patients with the 

Li-Fraumeni syndrome have germline mutations of p53 and are predisposed to cancer. 

Similarly, p53 knock-out mice are also predisposed to tumour development 

(Donehower et al., 1992). Following the two-hit system for tumour suppressors 

described by Knudson (Knudson, 1971), it is typical to find one p53 allele deleted 

whilst the prevailing one is mutated. Confirming this model, the majority of 

heterozygous p53 mice developing tumours have the remaining p53 allele mutated in 

the tumours. It is not necessary for both p53 alleles to be dysfunctional or deleted, 

however, for p53 to have reduced activity. p53 heterozygous cells show dosage effects 

in chemically induced mouse skin tumours, suggesting that the level of p53 can 

influence the phenotype (Kemp et al., 1993). 

The impact of altered or loss of p53 function might be greater than originally thought: 

tumours with wild-type p53 often have mutations in the upstream regulators or 

downstream effectors of p53, preventing p53 normal function. For example, Mdm2 is 

amplified in one third of all sarcomas, and these tumours all have wild-type p53 (Oliner 

et al., 1992). Similarly, ASPP1 and ASPP2, the p53 co-factors that can induce p53- 

dependent apoptosis, have reduced expression in breast carcinomas, whereas iASPP, the 

family member that inhibits p53-depending apoptosis, is overexpressed in a number of 

tumours (Bergamaschi et at., 2003b; Samuels-Lev et al., 2001). Thus, in cases where 

p53 is wild-type, loss of function of p53 regulators can lead to p53 dysfunction. 
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The temporal occurrence of p53 mutations varies in tumours; p53 mutations can occur 

late in some cancers, such as in colorectal cancers, and early in some pre-malignant 

lesions, such as in skin cancers. The selection for p53 inactivation could be caused by a 

variety of factors such as tissue environment and oncogenic overexpression. An 

understanding of the tumour cell environment selecting for p53 inactivation came with 

the observation that p53 can be induced by hypoxic conditions, such as happens when 

tumours have inadequate blood supplies (Graeber et al., 1994). Therefore cells lacking 

functional p53 have a growth advantage in hypoxic conditions. 

Most mutant p53 proteins are more stable than their wild-type counterpart and are 

present at higher levels. Some mutants are thought to act as dominant negative 

inhibitors of wild-type p53, although this activity is generally not sufficient since many 

tumours that harbour point mutations also show loss of heterozygosity, thereby 

eliminating the wild-type allele. However, it has been shown in some cases of mice with 

a single dominant negative p53 mutant, that this is sufficient to develop tumours 

without the loss of wild-type p53 (Liu et al., 2000a). Some p53 mutants, such as p53 

R175H, provide gain of function phenotypes (Gualberto et al., 1998). These mutants 

can provide a selective survival advantage following chemotherapy treatment, possibly 

compromising the efficiency of chemotherapy (Blandino et al., 1999). The gain of 

function of some p53 mutants might be due to their ability to interact with other p53 

family members. 

As mentioned above (sections 1.4.3 and 1.4.4), p53 does not always require its 

transactivation activity to induce apoptosis. However, the selection for p53 mutants that 
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have defective DNA binding activity (known as hotspot mutations) strongly suggests 

that transcription activation is critical for p53 to function as a tumour suppressor. Some 

tumour-derived p53 mutants can activate p21 but not Bax (Friedlander et al., 1996), 

suggesting that cell cycle arrest induction is not sufficient for p53 to function as a 

tumour suppressor. In agreement with these observations, studies have linked p53 loss 

to apoptotic defects during the progression of murine and human tumours, emphasizing 

the role of apoptosis in p53 tumour suppressor function (Attardi and Jacks, 1999; 

Bardeesy et al., 1995). 

p53 polymorphism 

A single nucleotide polymorphism is found at codon 72 of p53, within its proline-rich 

domain. This codon can either encode an arginine (R) or a proline (P) residue. The p53 

polymorphism can affect the risk of developing some tumours (Buller et al., 1997; 

Wang-Gohrke et al., 1998). 

p53 polymorphism can also influence tumour response to drug therapy: the wild-type 

p53 72R polymorphism has an increased ability to induce apoptosis following 

chemotherapy, compared to wild-type p53 72P (Dumont et al., 2003; Sullivan et al., 

2004). This difference is at least in part mediated by the greater ability of wild-type p53 

72R to localize to the mitochondria (Dumont et al., 2003). Interestingly, a p53 mutant 

with the 72R codon has decreased sensitivity to chemotherapy drugs compared to a p53 

mutant with 72P codon, in head and neck cancers (Bergamaschi et al., 2003a). The 

ability of mutant p53 72R to provide survival signals to cells following drug treatment 

might be due to its interaction with other p53 family members: mutant p53 72R can 

bind to p73 and inhibit its pro-apoptotic activity with a higher affinity that the mutant 
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p53 72P (Marin et al., 2000). The arginine polymorphic form of p53 is preferentially 

mutated in squamous cell tumours arising in polymorphic heterozygotes, suggesting 

that inactivation of the p53 family members may contribute to the oncogenic properties 

of a subset of p53 mutants (Marin et al., 2000). 
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1.5. The p53 family members: p63 and p73 

Twenty years after the discovery of the tumour suppressor protein p53 (Lane and 

Crawford, 1979a; Linzer and Levine, 1979), two other members of the family were 

identified: p63 and p73 (Kaghad et al., 1997; Osada et al., 1998; Schmale and 

Bamberger, 1997; Trink et al., 1998; Yang et at., 1998; Zeng et al., 2001). All three 

family members are structurally related and share homology in three domains: the 

transactivation domain, the DNA-binding domain and the oligomerization domain. As 

well as these three domains, p63 and p73 also contain an additional domain in their 

carboxy-terminus, the SAM motif. Although the SAM motif found in other proteins is 

known to be involved in protein-protein interactions, its role in p63 and p73 has not yet 

been uncovered. 

p63 and p73 share a high level of homology with p53 in all three common domains, 

although the DNA binding domain shows a particularly striking homology with 60% 

identity in all three proteins. The DNA-binding domains of p63 and p73 have an even 

higher level of identity between themselves at 86% amino acid identity and 91% amino 

acid homology. All the p53 residues that contact DNA or are involved in the structural 

scaffolding of the p53 DNA binding domain, known as hotspots due to their frequent 

mutation rates, are conserved in all three family members. 

Unlike p53, both p63 and p73 have structurally complex genes. Both genes have several 

carboxy-terminus alternative splice variants, giving rise to many different proteins. In 

addition, p63 and p73 have two alternative promoters: P1 is situated in the 5' 

untranslated region (UTR) and is upstream of the non-coding exon 1, whereas P2 is 

present within intron 3. All transcripts that start from the P1 promoter include a 
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transactivation (TA) domain in their amino terminus, whilst all the transcripts starting 

from the P2 promoter lack the TA domain and are known as AN. 

TAp63 and TAp73 have a similar function to p53. They can transactivate many p53- 

target genes, such as p21,14-3-3a, GADD45, PIGs, p53R2, Mdm2 and Bax, and can 

also induce apoptosis (Nakano et al., 2000; Steegenga et al., 1999; Zhu et al., 1998). As 

with p53, p73 can also repress transcription (Salimath et al., 2000). On the other hand, 

the AN isoforms of p63 and p73 act as dominant negative inhibitors of their full-length 

isoforms and of p53. 

p53 does not play an important role in development but is essential for preventing 

tumour formation: p53 knockout mice are viable but are predisposed to tumours 

(Donehower et al., 1992). Unexpectedly, although p63 and p73 have similar 

transcription and apoptotic activities as p53, their roles differ significantly. Knockout 

mice studies show that neither p63 nor p73 prevent the formation of tumours although 

they both are important players in mouse development: p63 knockout mice have 

epidermal developmental defects (Mills et al., 1999; Yang et al., 1999a) whilst p73 

knockout mice have considerable neuronal defects (Pozniak et al., 2002; Yang et al., 

2000). Confirming the importance of p63 as an important player in development, it was 

found that heterozygous germline mutations of p63 in humans cause the autosomal 

dominant developmental disorder EEC (Ectrodactyly, Ectodermal Dysplasia, Facial 

Clefts). The p63 mutations from these patients reside within its DNA-binding region 

and prevent TAp63 trancscription activation whilst iNp63 cannot act as a dominant 

negative protein in these patients. 
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1.5.1. Are p63 and p73 tumour suppressor proteins? 

The p73 gene frequently undergoes loss of heterozygosity (LOH) in some cancers, 

suggesting that it can act as a tumour suppressor (Kaghad et al., 1997). However, unlike 

the classic tumour suppressor protein described by Knudson (Knudson, 1971), it is rare 

to find p73 loss of function mutations. Additionally, p73 fails to be inactivated by viral 

oncoproteins that can inactivate p53, such as SV40 T antigen and the adenovirus E1B 

55 KDa protein, further suggesting that p73 is not a tumour suppressor. 

Unlike tumour suppressor proteins, p73 is overexpressed in a majority of cancers 

(Kovalev et at., 1998; Zaika et at., 1999). Paradoxically, p73 is methylated in many 

tumour types, such as lymphomas, gliomas and pancreatic carcinomas, consistent with 

tumour suppression function (Corn et at., 1999; House et at., 2003; Martinez-Delgado et 

at., 2002; Siu et at., 2002; Watanabe et at., 2002). The levels of p73 in tumours can be 

correlated with the prognosis: patients with higher levels of p73 expression have a 

worse survival rate than patients with undetectable levels of p73 (Tannapfel et at., 

1999). 

Whereas TAp63 isoforms do not seem to vary in tumours compared to normal tissue, 

the ONp63 dominant negative isoforms are often overexpressed in tumours, due to the 

amplification of the gene. 
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1.5.2. Regulation of p63 and p73 

As with p53, both p63 and p73 can be stabilized in the presence of proteasome 

inhibitors. However, unlike p53, the proteasome-mediated degradation of p73 is not 

mediated by Mdm2 (Gu et al., 2000). It therefore comes as no surprise that the tumour 

suppressor Arf, that can increase p53 levels by inhibiting Mdm2, has no effect of p73 

stability (see section 1.4.5). Nonetheless, Mdm2 can still bind to p73 and inhibit its 

transcription activity; the p73-Mdm2 complex prevents p73 binding its co-factor 

p300/CBP, thereby reducing p73 activity (Zeng et al., 1999). As with p53, Mdm2 is a 

gene target for p73 transactivation, and therefore acts as a negative feedback loop 

(Balint et al., 1999; Dobbelstein et al., 1999; Zeng et al., 1999). p73 is also resistant to 

other oncogenes that can mediate p53 degradation, such as the viral protein HPV E6. 

Whilst TAp63 levels are dependent on proteasome-mediated degradation, its ANp63 

isoforms can be regulated independently of proteasomes. The regulation of the 

dominant negative form of p63 has actually been shown to be dependent on p53, further 

connecting the family members together. 

As seen in section 1.4.5, p53 activity can be regulated by post-translational 

modifications, occurring mostly in response to DNA damage. p73 can also be stabilized 

and activated in response to some stimuli, such as cisplatin, doxorubicin, taxol and 

ionizing radiation (IR), but is insensitive to other DNA damage agents such as ultra- 

violet radiation (UV), actinomycin D and mitomycin C (Bergamaschi et al., 2003a; 

Fang et al., 1999a; Kaghad et al., 1997). IR induces c-Abl to phosphorylate p73 at 

tyrosine 99, following a direct interaction between the proline rich region of p73 and the 

92 



SH3 domain of c-Abl (Agami et al., 1999; Yuan et al., 1999). The phosphorylated form 

of p73 has an increased stability (Gong et al., 1999). 

p73 can also interact with cyclin-dependent kinases (Cdks) and can be phosphorylated 

by them on threonine 83 in vitro. In vivo phosphorylation of p73 at residue 83 is cell- 

cycle dependent and results in the repression of p73 transactivation activity (Gaiddon et 

al., 2003). 

Another post-translational modification that can affect p73 activity is sumoylation; p73 

is sumoylated at its carboxy-terminus on lysine 627, promoting its degradation (Minty 

et al., 2000). p73 can also be acetylated at residues 321,327 and 331 in a DNA-damage- 

dependent manner; these acetylation modifications regulate p73 promoter specificity 

(Costanzo et al., 2002). 

Following high levels of E2F1, Myc or EIA, endogenous TAp73 can be induced, 

resulting in increased transcriptional activity, apoptosis and growth suppression (Lissy 

et al., 2000; Stiewe and Putzer, 2000; Zaika et al., 2001). E2F1 can directly regulate 

TAp73 expression by binding to its P1 promoter and transactivating the gene (Irwin et 

al., 2000; Stiewe and Putzer, 2000). Since E2F1 is commonly deregulated in many 

tumours, this might provide an explanation for why p73 is overexpressed in tumours. 

As with p53, both p63 and p73 bind to co-factors that regulate their function. ASPP1 

and ASPP2 bind to all three p53 family members and specifically enhance their pro- 

apoptotic activity (Bergamaschi et al., 2004) (see section 1.6). The Wilms tumour 1 
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protein (WT1) on the other hand, can inhibit p53 and p73 apoptotic activity 

(Scharnhorst et al., 2000). 

1.5.3. Crosstalk between p53 family members 

Although no physical interaction has been shown between p53 wild-type and its family 

members, some p53 mutants can associate with p73 or p63 (Di Como et al., 1999; 

Gaiddon et al., 2001; Marin et al., 2000). Additionally, some p53 mutants with the 

arginine polymorphism at codon 72 can bind p73 with a higher affinity than those with 

the proline polymorphism, and therefore have a greater ability to inhibit p73 function 

(Bergamaschi et al., 2003a; Marin et al., 2000) (see section 1.4.7). This interaction 

might provide one possible explanation for the p53 gain-of-function mutants: by 

interacting with p73 and inhibiting its pro-apoptotic function, mutant p53 can act as an 

oncogene. 

Wild-type p53, p63 and p73 proteins can also communicate with each other. In an 

elegant study by Flores et al., it was shown that mouse embryo fibroblasts (MEFs) 

transformed with EIA, lacking either p63 or p73, show an intermediate resistance to 

apoptosis in response to doxorubicin treatment, when compared to p53-null and wild- 

type MEFs transformed with E1A (Flores et at., 2002). Surprisingly, p63 and p73 

double knockout cells (p634'; p73') were as resistant to apoptosis as the p53 knockout 

MEFs. This suggests that p63 and p73 are required for p53-induced apoptosis. Pursuing 

this issue further, it was discovered that although p63'1'; p73'1' had no effect on p53 

transcription activity of endogenous p21 and Mdm2 genes, there was a significant 

reduction in p53 transactivation of the pro-apoptotic genes bax and PERP (p53 
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apoptosis effector related to PMP-22). Chromatin-immunprecipitation (ChIP) assays 

demonstrated that p63 and p73 are required for p53 binding to its pro-apoptotic target 

gene promoters specifically, and not to its other target genes such as p21 and Mdm2 

(Flores et al., 2002). Thus, p53, p63 and p73 cooperate to ensure proper transactivation 

of pro-apoptotic genes ultimately leading to apoptosis. 

As mentioned earlier, the p73 gene has two different promoters, giving rise to two 

isoforms. Interestingly, it was discovered that the full length TAp73 can stimulate the 

expression of the ANp73. Adding complexity to the system, p53 was also found to 

transactivate ONp73 from the P2 promoter. Since ANp73 can act in a dominant negative 

fashion to TAp73 and to p53, both cases represent a negative feedback loop, similar to 

that seen with p53 and Mdm2 (Grob et al., 2001). In addition, ANp63 is 

transcriptionally repressed by p53, further showing cross-talk between the family 

members (Waltermann et al., 2003). 
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1.6. The ASPP family 

1.6.1. ASPP1 and ASPP2 

The first member of the ASPP family to be discovered was found to specifically bind 

wild-type and not mutant p53 in a yeast two-hybrid screen (Iwabuchi et al., 1994). The 

protein was named 53BP2 for p53 binding protein 2 and was a partial clone of what is 

now known as full length ASPP2, spanning residues 528-1128. Unlike other previously 

described p53-binding proteins, 53BP2 was found to bind p53 in its DNA-binding 

domain (Gorina and Pavletich, 1996; Iwabuchi et al., 1994). 53BP2 binds p53 through 

its ankyrin repeat domain and its SH3 domain, situated in the carboxy-terminus of 

53BP2 (Gorina and Pavletich, 1996; Iwabuchi et al., 1994). 

Understanding the function of the ASPP family was impeded by the fact that, until 

recently, only partial cDNA clones of ASPP2 were available. Following the initial 

discovery of 53BP2 (residues 528-1128 of full length ASPP2), a larger, but still 

incomplete, clone of ASPP2 was discovered as a Bcl-2 binding protein and was 

therefore called Bbp2, for Bcl-2 binding protein 2 (Naumovski and Cleary, 1996). This 

larger version of 53BP2 is a protein of 1005 amino acids, corresponding to residues 

123-1128 of full length ASPP2 (figure 1.6A). 

The different sized fragments seem to function in opposing manner: whereas 53BP2 

(528-1128 ASPP2) inhibits p53 activity by preventing p53 binding to DNA (Iwabuchi 

et al., 1994), the larger clone Bbp2 (123-1128 ASPP2) stimulates p53 activity by 

increasing p53 transactivation (Iwabuchi et al., 1998). Nonetheless, there remains some 

controversy about the role Bbp2 plays in regulating p53 function: whilst some studies 
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demonstrated that Bbp2 stimulates p53 pro-apoptotic function (Ao et al., 2001; Yang et 

al., 1999b), others showed that Bbp2 impedes cell cycle progression at G2/M in a p53- 

dependent manner (Naumovski and Cleary, 1996). Bbp2 (123-1128 ASPP2) was also 

shown to partially suppress E1A and Ras-mediated transformation of rat embryo 

fibroblasts (REFs) and to inhibit clonogenic survival of the HEK293 cell line (Ao et al., 

2001; Iwabuchi et al., 1998). Taken together, the above observations strongly indicate 

that Bbp2 (residues 123-1128 of ASPP2) enhances p53 tumour suppressor activity. 

The discovery of the full length ASPP2 and its close homolog, ASPP1, helped clarify 

some of the misunderstandings (Samuels-Lev et al., 2001). Both ASPP1 and ASPP2 are 

large proteins, containing 1190 residues and 1128 residues, respectively. Their highest 

homology regions are situated in their amino termini, which contain a putative alpha 

helix domain, and their carboxy termini, which contain ankyrin repeats and an SH3 

domain (Figure 1.6A). ASPPI and ASPP2 were so called to highlight their structure 

(ankyrin repeat, SH3 domain and proline-rich domain-containing proteins) and their 

function (apoptosis stimulating protein of 1253). All the ASPP2 residues that contact p53 

are conserved in ASPP1 and the two proteins have a similar function in stimulating p53 

activity. 
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Figure 1.6. ASPPI and ASPP2 structure and function. (A) Schematic diagram of 
ASPP1 full length (1-1090), ASPP2 full length (1-1128) and its partial clones Bbp2 
(123-1128) and 53BP2 (528-1128). All four proteins contain a proline-rich region 
(ASPPI: 669-860; ASPP2: 696-882), ankyrin repeats (ASPPI: 920-982; ASPP2: 958- 
1023) and an SH3 domain (ASPPI: 1021-1076; ASPP2: 1060-1116). ASPPI, ASPP2 
and Bbp2 also contain a putative a helix domain in their amino terminus. Both ASPP1 

and ASPP2 have a putative nuclear export signal (ASPPI: 267-271; ASPP2: 234-246) 
and a putative nuclear localization signal as described by Sachdev (1998) (ASPPI: 889- 
894; ASPP2: 927-932). (B) p53 can induce either apoptosis or cell cycle arrest in 
response to DNA damage. ASPPI and ASPP2 can specifically enhance p53-dependent 
apoptotis activity without inducing cell cycle arrest. 
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Unlike the partial clones, the activity of full length ASPP1 and ASPP2 was easier to 

interpret. By binding the DNA-binding domain of p53, ASPP1 and ASPP2 can 

specifically enhance p53 affinity for the promoters of its pro-apoptotic target genes, 

such as Bax, compared to its other target genes, such as p21, as shown by chromatin 

immunoprecipitation (ChIP) assays (Samuels-Lev et al., 2001). p53 transcription 

activity is increased on promoters of pro-apoptotic genes, as shown by transactivation 

assays: bax, PIGS and PUMA are all upregulated in the presence of ASPP1 and ASPP2, 

in a p53-dependent manner, whereas p21 and Mdm2 transcription are not significantly 

affected by ASPP1 or ASPP2 (Samuels-Lev et al., 2001). The overall effect is that 

ASPP1 and ASPP2 can specifically induce p53-mediated apoptosis, whilst having no 

effect on its cell cycle arrest activity (Figure 1.6B). As well as enhancing p53-mediated 

apoptosis, ASPP1 and ASPP2 can also enhance the transcription activity and apoptosis 

induced by the p53 family members, p63 and p73 (Bergamaschi et al., 2004) (see 

section 1.5). 

Following DNA damage, ASPP1 and ASPP2 can enhance p53-mediated apoptosis and 

higher levels of ASPP correlate with an increased sensitivity to DNA damaging agents 

(Mori et al., 2000; Samuels-Lev et al., 2001). In accordance with ASPP responsiveness 

to DNA damaging agents, ultra-violet (UV) radiation was shown to increase Bbp2 

(residues 123-1128 of ASPP2) levels in a p53-independent manner (Lopez et al., 2000). 

Although ASPP2 is predominantly found in the cytoplasm, it has occasionally been 

seen in the nucleus (Samuels-Lev et al., 2001); the ankyrin repeat of ASPP2 has been 

found to contain a novel class of nuclear import signal, suggesting a putative role in the 

nucleus (Sachdev et al., 1998). 

99 



The crystal structure of the p53-53BP2 complex revealed that the p53 residues that 

contact 53BP2 are evolutionarily conserved. Furthermore, the p53 residues that interact 

with 53BP2 are commonly mutated in tumours. In light of ASPP1 and ASPP2 function, 

the relevance of the p53 mutants seems more pertinent than ever. p53 mutants that 

cannot be stimulated by ASPP1 and ASPP2 will no longer be able to induce apoptosis 

effectively. It was thus not unexpected to discover that several tumour-derived p53 

mutants are defective for ASPP2 binding without having lost their ability to bind DNA, 

such as those with mutations in residues H178, H179, M243, N247 and R282 (Gorina 

and Pavletich, 1996; Thukral et al., 1994). Additionally, there exists a tumour-derived 

p53 mutant with a mutation at residue 181 that, although able to bind ASPP2, can no 

longer can be regulated by ASPP2. Moreover, the implication that ASPP2 could be 

necessary for p53 tumour suppressor function came with the observation that the p53 

residues that contact both 53BP2 and DNA (R248, R273) were the residues most 

commonly mutated in human tumours, compared to the residues that contact either 

DNA or 53BP2 (Cho et al., 1994; Gorina and Pavletich, 1996). 

If ASPP1 and ASPP2 regulation is necessary for p53 tumour suppressor function, as 

these p53 mutants suggest, it is expected that tumours that have retained wild-type p53 

will no longer have functional ASPPI and ASPP2 proteins. Indeed, in a screen of breast 

carcinomas containing wild-type p53, it was shown that 60% of tumours had reduced 

expression of ASPP1 and 23% had a decrease in ASPP2 levels (Samuels-Lev et al., 

2001). In addition, ASPP2 has been mapped to chromosome 1g41-42 (Iwabuchi et al., 

1998), a site that has been found to be deleted in cervical carcinomas (Sreekantaiah et 

al., 1988). 
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Since ASPP1 and ASPP2 can induce p53-mediated apoptosis, it is expected that they 

are stringently regulated. How these proteins are regulated is not yet known, although it 

is likely to involve interaction with their binding partners. Although ASPP1 has so far 

not been much studied, ASPP2 truncation mutants (53BP2 and Bbp2) interact with 

many different proteins, mainly through the use of the yeast-two hybrid system. It is 

worth taking note that none of the interactions discovered by the yeast-two hybrid 

system between the partial ASPP2 clone and its binding partners were confirmed by co- 

immunopreci pitations. 

One of the first proteins found to interact with Bbp2 (residues 123-1128 of ASPP2) was 

the anti-apoptotic protein Bcl-2 (see section 1.3.3). Bcl-2 and p53 are unable to bind 

Bbp2 simultaneously and they therefore compete for Bbp2 binding (Naumovski and 

Cleary, 1996). Although it is clear that ASPP2 can increase p53-mediated apoptosis by 

increasing its binding to promoters of pro-apoptotic genes, it is also possible that 

ASPP2 may induce apoptosis by inhibiting Bcl-2 anti-apoptotic function. 

The p65 ReIA member of the NF-KB family, can also bind Bbp2 (residues 123-1128 of 

ASPP2) in a yeast-two hybrid system (Yang et al., 1999b). The NF-KB family members 

are transcription factors that are critical regulators of cellular responses following 

various stimuli and are involved in both pro-apoptotic and anti-apoptotic pathways. The 

most common form of NF-KB is a heterodimer composed of p50 and p65, with the p65 

subunit being the active transcriptional component (Nolan et al., 1991). NF-KB is 

retained in the cytoplasm by its inhibitory family member, IKB. Following stimulation, 

such as the TNFa responsive pathway, IKB gets phosphorylated and dissociates from 

NF-O, which is then free to translocate to the nucleus and transactivate its many target 
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genes. Bbp2 interacts with the central region of p65. Although the effect of p65 on 

ASPP2 is still unclear, p65 can suppress Bbp2-mediated apoptosis (Yang et al., 1999b), 

suggesting it might acts as an inhibitor to ASPP2. 

Bbp2 (123-1128 ASPP2) was found to interact with the catalytic subunit of protein 

phophatase 1 (PP1) in a yeast-two hybrid screen (Helps et al., 1995). As with Bcl-2, 

binding of PPl and p53 to Bbp2 is mutually exclusive. PPl interacts with a variety of 

regulatory subunits that modulate its activity. Bbp2 can regulate PP1 activity in some 

cases only: it abolishes PP1 activity towards glycogen phosphorylase but has no effect 

on PP1 activity towards myosin P-light chains, suggesting a selective effect on PP1 

substrate specificity (Helps et al., 1995). Further work by Susana Llanos in our 

laboratory confirmed that full length ASPP1 and ASPP2 could bind PP1 in vivo, and 

they did so with a higher affinity than for p53 (Llanos, unpublished). 

Another Bbp2 binding partner discovered by the yeast-two hybrid system is the Yes- 

associated protein (YAP). The WW1 domain of YAP interacts directly with the SH3 

domain of Bbp2. Overexpression of c-Yes leads to tyrosine phosphorylation of Bbp2, 

and this phosphorylation can affect YAP-Bbp2 interactions (Espanel and Sudol, 2001). 

Yet another protein known to bind the ASPP2 truncation mutant, Bbp2, is APCL. 

APCL is highly homologous to the tumour suppressor APC and is expressed mainly in 

the central nervous system. Co-expression of APCL with Bbp2 causes Bbp2 

relocalization from the cytoplasm to the perinuclear region (Nakagawa et al., 2000). 
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1.6.2. iASPP 

A third member of the ASPP family was recently discovered and named iASPP for 

inhibitor of the ASPP proteins. Unlike ASPP1 and ASPP2, that could both enhance 

p53-pro-apoptotic activity, iASPP specifically inhibits p53 pro-apoptotic activity. 

iASPP has high homology to ASPP1 and ASPP2 in its carboxy-terminus region, 

especially the ankyrin repeats, the SH3 domain and the proline-rich region. However, it 

has no homology to the two pro-apoptotic family members in its amino-terminus 

region. 

iASPP had previously been identified as an inhibitor of the NF-KB family member, 

RelA, and has therefore been named RAI for RelA-associated inhibitor. RAI was shown 

to bind to the p65 subunit and inhibit its transcriptional activity by preventing p65 

binding to DNA (Yang et at., 1999b). As a consequence of its structural homology to 

ASPP1 and ASPP2 and of its role in ASPP-p53 mediated apoptosis, it was renamed 

iASPP by our laboratory. 

iASPP is the most evolutionarily conserved member of the family, present in humans 

and Caenorhabditis elegans (C. elegans) (Bergamaschi et al., 2003b). Inhibition of 

iASPP expression can induce p53-mediated apoptosis in C. elegans and human cells, 

and overexpression of iASPP confers resistance to DNA damage-induced apoptosis. In 

addition, iASPP can cooperate with Ras, E1A and E7 to transform rat embryo 

fibroblasts (REFs) (Bergamaschi et al., 2003b). The role of iASPP as an oncoprotein 

was confirmed when it was found to be overexpressed in breast carcinomas containing 

wild-type p53 and normal levels of ASPPI and ASPP2 expression (Bergamaschi et al., 

2003b). Taken together, these results indicate that iASPP is a novel oncogene and could 
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provide an important factor in determining the necessary therapy for a particular 

tumour. 
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1.7. Ras 

Ras is a key mediator of signal transduction in all eukaryotic cells, from yeast to 

humans. It acts as a molecular switch by binding to guanine nucleotides with high 

affinity: when inactive it is bound to GDP, and following stimulation, it is bound to 

GTP and is "turned on". Ras senses extracellular signals from growth factors, cytokines, 

hormones and neurotransmitters and relays them to a number of different cytosolic 

effector proteins. Following activation, Ras can influence cell growth, differentiation 

and apoptosis. 

1.7.1. Ras: structure function relationship 

Three Ras genes 

Humans and rodents encode three functional Ras genes: H-Ras, K-Ras and N-Ras, that 

are dispersed in different chromosomes (Lowy and Willumsen, 1993). The three Ras 

genes have a common structure with a 5' noncoding exon and four coding exons. The 

exons are similar for all three genes but the sizes of the introns differ widely between 

genes, resulting in large differences in the sizes of the Ras genes. The three Ras genes 

have promoters with high GC content and no TATA motif, which is characteristic of 

housekeeping genes. Some of the regions controlling Ras expression are found in the 5' 

region of the genes and in the first intron (Jeffers and Pellicer, 1994; Paciucci and 

Pellicer, 1991). 

Following alternative splicing of the fourth exon, the K -Ras gene encodes two proteins, 

K-rasA and K-rasB (McGrath et al., 1983). All four Ras proteins are either 188 or 189 
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amino acids long. Different Ras genes are expressed in different tissues at different 

levels but at least one Ras protein is found in all tissues (Lowy and Willumsen, 1993). 

All three Ras genes share 85% amino acid identity. They are highly homologous in their 

first 164 amino acids, whilst their last 25 amino acids diverge significantly except for a 

conserved cysteine four residues from the carboxy terminus. 

Ras is a guanine nucleotide-binding protein 

As mentioned above, Ras can bind both GDP and GTP with high affinity. When bound 

to GDP, Ras is inactive but following stimulation, Ras binds GTP and is then able to 

activate its downstream effectors. Ras has an intrinsic GTPase activity that can 

hydrolize GTP to GDP, returning Ras to its inactive state (Gibbs et al., 1984; Manne et 

al., 1985; Sweet et al., 1984). The higher intracellular GTP concentration compared to 

GDP means that upon dissociation of GDP, Ras will normally bind GTP. Most Ras 

proteins in normal cells are found in their inactive GDP-bound state. There are four 

sequence motifs in Ras involved in nucleotide interactions: residues 10-17 (binds the (I 

and ß phosphates), residues 57-60 (binds Mg2+ and y phosphate of GTP) and the two 

regions at 116-119 and 144-147 that both bind the guanine ring (Lowy and Willumsen, 

1993). 

Ras-GTP has a different conformation than Ras-GDP. These conformational changes 

described in crystal structures are concentrated in two regions: residues 30-38 

(loop2/switchI region) and residues 60-76 (loop4/switch2 region) (Milburn et al., 1990; 

Schlichting et al., 1990). Switch I region is the main effector binding site, responsible in 

part for interactions with GTPase activation proteins (GAPs) and downstream effectors. 

The Switch II region interacts mainly with guanine nucleotide exchange factors 
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(GNEFs). Other residues outside of switch I and II regions have also been found to be 

critical for Ras signalling even though they do not change their conformation upon 

ligand exchange; these residues are designated "activator region" or "constitutive 

effector region" (Fujita-Yoshigaki et al., 1995; Marshall, 1993). Therefore, depending 

on whether Ras is bound to GDP or GTP, it can interact with its regulatory proteins and 

signal to its downstream effector proteins (Malumbres and Pellicer, 1998). 

5 
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1.7.2. Regulation of Ras 

Following, extracellular stimulation, Ras can be activated by guanine nucleotide 

exchange factors (GNEFs) that dissociate GDP from Ras, allowing Ras to bind to GTP 

and thereby become active. GTPase activating proteins (GAPs) negatively regulate Ras. 

Ras has a very slow intrinsic GTPase activity, and can only efficiently hydrolyze GTP 

to GDP in the presence of a GAP. 

Upstream activators of Ras 

Acting as intermediates between extracellular signals and Ras are transmembrane 

receptors. These receptors interact with the extracellular signalling molecules directly, 

and consequently activate Ras by recruiting a GNEF. There are different types of 

receptors that can activate Ras: tyrosine kinase receptors, T cell receptors and subunits 

of heterotrimeric G proteins. 

The most studied route for Ras activation is the epidermal growth factor (EGF) 

signalling through its receptor, EGFR. Following association of its extracellular 

segment with EGF, EGFR dimerizes and autophosphorylates itself in its intracellular 

portion on tyrosine residues. The phospho-tyrosine residues on EGFR are binding sites 

for SH2 domains and recruit the adaptor protein Grb2 to the cell surface. Grb2 is in a 

stable association with the GNEF Sos which consequently is also recruited to the 

plasma membrane (Chardin et al., 1993; Gale et al., 1993; Lowenstein et al., 1992; 

Rozakis-Adcock et al., 1992). Sosl and Sos2 are widely expressed GNEFs. They are 

related to the son-of-sevenless (Sos) Drosophila product which functions in eye 

development (Bonfini et al., 1992; Bowtell et al., 1992). Sos is specific for H-Ras and 

N-Ras and is unable to catalyze the nucleotide exchange for the Ras-related proteins 

108 



RaIA or Cdc42. Once in proximity with Ras, Sos can dissociate GDP from Ras. The 

high GTP/GDP intracellular ratio ensures that the released nucleotide is replaced with 

GTP. Sos then dissociates, leaving Ras in its active form where it can bind a number of 

effector proteins and activate various downstream signalling pathways (Bourne et al., 

1990; Bourne et al., 1991). 

Although Sos is the best studied GNEF, there are others that can also activate Ras. 

rasGRF is homologous to the Saccharomyces cerevisiae (S. cerevisiae) Cdc25 (Wei et 

al., 1992) and is expressed specifically in the brain. It activates H-Ras but not N-Ras nor 

K-rasB (Jones and Jackson, 1998). rasGRF2 is stimulated not by receptor tyrosine 

kinases but by calcium influx, following which it translocates from the cytosol to the 

cell periphery (Fam et al., 1997; Malumbres and Pellicer, 1998). 

GAPs 

The most well-studied GTPase activating protein (GAP) is p120-GAP. It was isolated 

from Xenopus and found to bind preferentially to Ras-GTP (Vogel et al., 1988). p120- 

GAP can accelerate the intrinsic GTPase activity of normal Ras by at least five orders 

of magnitude (Gideon et al., 1992; Trahey and McCormick, 1987). p120-GAP is active 

on H-Ras, K-Ras and N-Ras but not on other Ras family members such as Rho and Rac 

proteins (Takai et al., 2001). 

NF1 is another regulator of Ras. It is responsible for von Recklinghausen's 

neurofibromatosis (NFl disease) which is inherited as an autosomal dominant disorder 

in patients that have benign and malignant tumours. The mutation in the NFl gene 

represents a null allele, strongly suggesting that NF1 acts as a tumour suppressor 

109 



f 

protein. The middle region of the protein has sequence and functional homology to the 

catalytic domain of p120-GAP. Unlike p120-GAP, NF1 is preferentially expressed in 

cells from the nervous system (Daston and Ratner, 1992; Golubic et al., 1992). 

Post-translational modifications and localization 

All three Ras proteins are synthesised in the cytoplasm. Post-translational modifications 

at the carboxy terminus increase the hydrophibicity of the proteins, resulting in their 

association with the inner face of the plasma membrane (Grand et al., 1987; Willingham 

et al., 1980). Ras is thought to associate with specific receptors in caveolae 

microdomains of the plasma membrane (Mineo et al., 1996; Song et al., 1996). The 

hypervariable domain of Ras, situated in its last 25 amino acids, is essential for 

membrane association, and the cysteine positioned at residue 186 is required to initiate 

post-translational modification (Hancock, 2003; Willumsen et al., 1984). Mutation in 

the last four residues, the CAAX motif, abolishes plasma-membrane localization and 

signalling of Ras (Willumsen et al., 1984). 

The first modification to occur is farnesylation of the cysteine 186 of the CAAX motif 

(Hancock et al., 1989; Reiss et al., 1990). Following that, the last three amino acids at 

the carboxy terminus are proteolytically cleaved (Fujiyama and Tamanoi, 1990; 

Hancock et al., 1989) and the carboxyl group of cysteine 186 is methylated (Dai et al., 

1998; Hancock et al., 1991; Hrycyna et al., 1991). Then H-Ras and N-Ras cysteine 

residues upstream of the farnesylated cysteine become reversibly palmitoylated in their 

hypervariable region (Buss and Sefton, 1986; Hancock et al., 1989). 
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Studies using live-cell imaging, fluorescence resonance energy transfer, fluorescence 

recovery after photobleaching and electron microcopy have shown that the interaction 

of Ras with the plasma membrane is highly dynamic and that Ras is also present on 

endosomes, the endoplasmic reticulum and Golgi apparatus (Hancock, 2003). Ras does 

not translocate directly to the cell surface but first interacts with intracellular 

membranes (Apolloni et al., 2000; Choy et al., 1999). Ras first interacts with the 

endoplasmic reticulum, and this interaction requires the CAAX structure and 

farnesylation. N-Ras and H-Ras then associate with the Golgi apparatus, following 

which they are transported by exocytic vesicles. K-Ras translocation to the plasma 

membrane does not involve the Golgi route. 

Farnesylation of the carboxy terminus of Ras appears to be important for the high 

affinity interaction of Ras with its effector Raf, suggesting that the Ras carboxy 

terminus region may be involved in effector interaction, as well as the switch I and II 

regions (Campbell et al., 1998; Hu et al., 1995). Ras does not only signal to its effector 

protein Raf from the plasma membrane, it can also signal to it from the Golgi and the 

endoplasmic reticulum membranes (Chiu et al., 2002). 

Differences in the three Ras proteins 

Although the three Ras proteins, H-Ras, K-Ras and N-Ras all seem to signal to similar 

effectors, there are nonetheless differences between them. They all have different 

expression patterns according to the organ in which they are present, throughout 

development and differentiation (Malumbres and Pellicer, 1998) and they have different 

affinities for interacting proteins; for example NFl has a higher affinity for H-Ras than 

N-Ras and rasGRF activates H-Ras but not N-Ras nor K-Ras (Bollag and McCormick, 

111 



1991; Jones and Jackson, 1998). As mentioned above, K-Ras does not get palmitoylated 

and it is likely that it is present at a different microdomain of the plasma membrane to 

H-Ras and N-Ras, which might affect its activity. 

Highlighting the differences in the three Ras genes, are the different phenotypes present 

in transgenic mice with each of the Ras genes knocked-out. N-Ras knockouts develop 

and reproduce normally although they have a defective immune response and T-cell 

function (de Castro et al., 2003; Umanoff et al., 1995). H-Ras knockouts have no 

obvious phenotype although they develop fewer tumours following treatment with 

carcinogens compared to wild-type mice (Esteban et al., 2001; Ise et al., 2000). K-Ras is 

the only gene that is required for development as its deletion leads to embryo lethality 

following fetal liver defects and anaemia (Johnson et al., 1997; Koera et al., 1997). 

Since mice with a double deletion for H-Ras and N-Ras can still develop normally, K- 

Ras is required for normal mouse development, suggesting that K-Ras has functions 

that are not shared by its other family members (Esteban et al., 2001). 
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1.7.3. The Raf-MAPK pathway 

Raf is an effector of Ras 

Following the observation that activated Raf can cause transformed and tumourigenic 

phenotypes indistinguishable from the activated Ras phenotype, it has been suggested 

that Raf is a downstream effector of Ras (Bonner et al., 1985; Leevers et al., 1994; 

Stanton et al., 1989; Stokoe et al., 1994). In accordance with this hypothesis, dominant 

negative forms of Raf-1, MEK and MAPKs have been shown to reduce Ras 

transformation activity (Campbell et al., 1998). 

There are three Raf genes: Raf-1, A-Raf and B-Raf, with B-Raf existing in multiple 

spliced forms. All three proteins have been shown to be activated by Ras. 

Raf interaction with Ras 

Raf binds to Ras in a GTP-dependent manner both in vitro and in vivo (Moodie et al., 

1993; Van Aelst et al., 1993; Vojtek et al., 1993; Warne et al., 1993). GTP-bound Ras 

translocates Raf-1 to the plasma membrane where Raf gets activated (Stokoe et al., 

1994). Raf-1 binds Ras-GTP through its Ras binding domain (RBD) in its conserved 

region CRI. This initial interaction allows for a second Ras binding site in Raf-1, 

known as the cysteine-rich domain (CRD), to contact Ras (figure 1.7) (Brtva et al., 

1995; Drugan et al., 1996). The CRD associates with different residues of Ras-GTP 

from those that bind the RBD (Drugan et al., 1996). In the full-length Raf-1 molecule, 

the CRD is inaccessible for Ras-GTP but previous binding of the RBD domain to Ras 

unmasks the CRD domain, which is then able to interact with Ras. 
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A mutant Ras that can bind Raf but is still unable to activate it, suggested that Ras 

binding to Raf is not sufficient to activate Raf and other factors might be needed 

(Akasaka et al., 1996). Similarly, Raf binding to Ras in vitro is not sufficient to 

stimulate Raf-1 kinase activity (Traverse et al., 1993; Zhang et al., 1993). Following 

Ras activation, Raf-1 is hyperphosphorylated (Morrison et al., 1993). Overexpression 

systems and mutational analysis have shown that Raf-1 phosphorylation at tyrosines 

340 and 341 enhances its catalytic activity (Marais et al., 1995). Further work showed 

that the tyrosine kinases that phosphorylate Raf-1 are members of the Src kinase family 

(Marais et al., 1995; Park et al., 1996). Other kinases have also been suggested to play a 

role in Raf activation, such as PAK, PKC and PKA (Chong et al., 2003). 

14-3-3 is a specific phosphoserine-binding protein (Muslin et al., 1996) and has been 

shown to interact with Raf-1 and activate it in a way that does not affect Raf interaction 

with Ras (Fand et al., 1994; Freed et al., 1994). 14-3-3 is thought to play two roles: it is 

required to maintain Raf-1 in its inactive conformation in the cytosol prior to Ras 

stimulation and, following Ras stimulation, it facilitates Raf-1 activation and stabilizes 

activated Raf-1 (Michaud et al., 1995; Takai et al., 2001). Other components are known 

to be involved in Raf activation such as the heat shock proteins, Hsp90 and p50, 

molecular chaperones and phospholipids, although their roles in Raf activation have not 

yet been clearly defined (Campbell et al., 1998). 

Post-translational modifications of Ras are thought to be important for the activation of, 

but not the association with, Raf (Lerner et al., 1995; Okada et al., 1996). Therefore, 

post-translational modification of Ras is necessary for both its localization and its 
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biological activity. In accordance with this, post-translational modification of K-Ras is 

required for MAPK activation in a cell-free system (Itoh et al., 1993) 

Whereas Ras activates Raf-1 by recruiting it to the membrane, it activates B-Raf by 

inducing a conformational change of B-Raf (Leevers et at., 1994; Yamamori et at., 

1995). It is worth noting that these studies were done with oncogenic H-Ras only, not 

with any of the other Ras proteins which might have a slightly different method of 

regulating Raf. 

Ras can activate the different Raf proteins to different extents; Raf-1 and A-Raf are 

weakly activated by oncogenic Ras and strongly activated by Src, whereas B-Raf is 

strongly activated by Ras and not activated by Scr. Raft has two tyrosine 

phosphorylation sites that are involved in Ras-dependent activation of Raf-1; these two 

sites are missing in B-Raf, suggesting a different mode of regulation for these proteins 

(Marais et al., 1997). 

Raf-MEK-MAPK phosphorylation cascade 

Activated Raf kinase can phosphorylate its substrates AAPK extracellular signal- 

reglated kinases 1 and 2 (MEK1 and MEK2), thereby activating them (figure 1.7) 

(Kyriakis et al., 1992). Once phosphorylated, the MEK dual threonine/tyrosine kinase 

activity is stimulated and it can then phosphorylate its downstream substrates mitogen- 

activating protein kinases 1 and 2 (MAPK1 and MAPK2) also known as Erkl and Erk2 

(figure 1.7) (Gomez and Cohen, 1991; Kosako et al., 1992; Nakielny et al., 1992). 

MAPK phosphorylation promotes its homodimerization and results in the translocation 

of MAPK to the nucleus where it can directly phosphorylate its substrates 
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(Khokhlatchev et at., 1998). Unlike Raf and MEKs, MAPK1 and MAPK2 have 

numerous substrates that are present in both the cytoplasm and the nucleus, such as p90 

ribosomal S6 kinase (p9ORSK) and the transcription factors TCF/Elkl and Ets2. These 

transcription factors are involved in ternary complex formation at the serum response 

elements (SRE), which regulate the expression of immediate-early genes, such as Fos, 

eventually leading to cell proliferation (figure 1.7) (Gille et al., 1992). Phosphorylation 

of p90RSK , also known as Rsk, activates it and stimulates its phosphorylation of the 

transcription factor CREB, making it transcriptionally active (Xing et al., 1996). Rsk is 

involved in Raf-mediated survival signals and a dominant negative form of Rsk 

eliminates survival signals from activated MEK alleles (Bonni et al., 1999; Shimamura 

et al., 2000). The importance of the Raf-MAPK pathway in Ras signalling is confirmed 

by the observation that constitutively active MEK can mimic the effects of Ras 

activation in some cell types (Cowley et al., 1994; Mansour et al., 1994). 

The kinase suppressor of Ras (KSR) was discovered as a loss-of-function allele that 

blocked the MAPK signalling pathway and Ras-induced transformation (Denouel-Galy 

et al., 1998; Joneson et al., 1998). It can directly interact with MEK1, MEK2 and 

MAPK proteins (Denouel-Galy et al., 1998; Yu et al., 1998) and it has been proposed 

that it acts as a scaffold protein that links MEK to its substrates MAPK1/2, thereby 

facilitating signal transmission between these proteins (figure 1.7) (Therrien et al., 

1996; Yu et al., 1998). 
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Figure 1.7. The Ras-Raf-MEK-MAPK pathway. Following stimulation, Ras recruits 
Raf to the plasma membrane. Rat' binds Ras through two regions, the Ras binding 
domain (RBD) and the cysteine-rich domain (CRD). Following its recruitment to the 
membrane, Raf is activated by many factors, including 14-3-3 and Src. Activated Raf 
phosphorylates MEK which then phosphorylates MAPK. MAPK is then free to 
phosphorylate various downstream substrates, mostly transcription factors, present both 
in the cytoplasm and in the nucleus. In response to MAPK, phosphorylated 
transcription factors transactivate genes involved in proliferation. MAPK can also 
prevent p27 cell cycle inhibition by targeting it for degradation. 
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Evidence suggests that there is a feedback loop between members of the 

phosphorylation cascade: MAPK has been shown to phosphorylate MEK, and MEK can 

phosphorylate Raf-1 and increase its activity (Campbell et al., 1998). This feedback 

loop could further amplify the signal from the phosphorylation cascade. 

The termination of Ras signalling to Raf is not fully understood. However, it has been 

shown that the Raf-MAPK pathway leads to Sos phosphorylation. Sos phosphorylation 

has been suggested to induce dissociation of Sos from Grb2, following which Sos 

would no longer be present at the membrane to activate Ras (Holt et al., 1996; Klarlund 

et al., 1996). 
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1.7.4. PI3K pathway 

Phosphoinositol 3 kinase (P13K) catalyzes the phosphorylation of phosphatidylinositol 

(4,5)-biphosphate (PtdIns[4,5]P2) to yield phosphatidylinositol (3,4,5)-triphophate 

(Ptdlns[3,4,5]P3) in response to growth factors and cytokines. PI3K are found as 

heterodimers consisting of a pl10 catalytic subunit and a p85 regulatory subunit. There 

are two P13K that are activated by receptors tyrosine kinases, PI3Ka and PI3Kß, 

corresponding to the catalytic subunits p1 10a and p110ß, respectively. 

P13K and its lipid products act on pathways that control cell proliferation, cell survival, 

membrane ruffling, cell chemotaxis and vesicular trafficking (Fantl et al., 1992; Kotani 

et al., 1994; Kundra et al., 1994; Schu et al., 1993; Wennstrom et al., 1994a; 

Wennstrom et al., 1994b; Yao and Cooper, 1995). 

P13K activation 

Ras binds to and activates the p110a subunit of P13K and can stimulate P13K activity: 

following Ras stimulation with growth factors, Ptdlns[3,4,5]P3 levels increase, and this 

is blocked by the dominant negative form of rasN17 (Rodriguez-Viciana et al., 1996; 

Rodriguez-Viciana et al., 1994). In accordance with P13K being an effector of Ras, 

P13K is required for some of the effects Ras has on cells (Rodriguez-Viciana et al., 

1996; Rodriguez-Viciana et al., 1994; Rodriguez-Viciana et al., 1997). Ras stimulation 

of P13K is cooperative with tyrosine phosphopeptide binding to p85 (Rodriguez-Viciana 

et al., 1996). 

P13K has three main targets: the ribosomal protein p70 S6 kinase (p70S61) that controls 

the translation of mRNA transcripts containing polypyrimidine tracts, Rac that is 
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involved in cytoskeletal organization (Welch et al., 2003), and PKB (also known as 

Akt) that is involved in cell survival and metabolism (Downward, 1998a), as shown in 

figure 1.8. 

PKB activation 

PKB/Akt has a serine/threonine kinase domain and a pleckstrin homology (PH) domain, 

the latter of which can specifically bind Ptdlns[3,4,5]P3, stimulating PKB translocation 

to the membrane (Frech et al., 1997; James et al., 1996; Klippel et al., 1997; Stokoe et 

al., 1997). Once present at the plasma membrane, PKB is phosphorylated on two sites, 

threonine 308 and serine 473, resulting in its activation (Alessi et al., 1996; Downward, 

1998a). Phophoinositide-dependent protein kinase 1 (PDK1) has been shown to 

phosphorylate PKB at threonine 308 following P13K stimulation (figure 1.8) (Alessi et 

al., 1997; Datta et al., 1999). 

Following stimulation, PKB can phosphorylate a number of substrates including 

glycogen synthase kinase 3 (GSK3) and phosphofructokinase, thereby influencing 

metabolism (figure 1.8) (Downward, 1998a). PKB can also induce transcription from 

the Fos promoter and stimulate DNA synthesis in quiescent cells. 

PKB is involved in the Ras-mediated survival pathway and protects cells from apoptosis 

(Berra et al., 1998; Dudek et al., 1997; Kauffmann-Zeh et al., 1997). It can do so by 

inhibiting the pro-apoptotic proteins Bad and caspase 9, as well as by inhibiting the 

forkhead transcription factors that are involved in FasL expression (figure 1.8) (see 

section 1.3.2) (Brunet et al., 1999; Cardone et al., 1998; Datta et al., 1997; Kops et al., 

1999). 
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Figure 1.8. The Ras-PI3K signalling pathway. Ras stimulates P13K which can then 

phosphorylate phosphotidylinsotol (4,5)P, (PIP2) to phosphotadylinositol (3,4,5)P1 
(PIP3). PTEN is a phosphatase that reverses P13K activity. PIP3 binds to and stimulates 
PKB, PDK1, Rae and p70 S6 kinase (p70 S6K). PDKI further stimulates PKB and Rac. 
PKB inhibits Bad, caspase 9 and forkhead transcription factors (TFs), thereby 
preventing apoptosis. Both Rac and PKB can activate NFKB, further enhancing their 

survival signals. PKB phosphorylation of glycogen synthase kinase (GSK3) inhibits its 

activity, thereby allowing cyclin D accumulation and cell proliferation. p70 S6K 

activates the translation machinery, also resulting in increased proliferation. Rae is 
involved in cell motility and regulates actin filament formation. 
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1.7.5. Ral GDS pathway 

RaIGDS is another effector of Ras and interacts with Ras in response to extracellular 

stimuli (Hofer et al., 1994; Kikuchi et al., 1994; Kikuchi and Williams, 1996; Miller et 

al., 1997). Ra1GDS can stimulate the GDP/GTP exchange of RaIA and RalB in a Ras- 

dependent manner, highlighting the cross-talk between the members of the Ras 

superfamily (figure 1.9) (Albright et al., 1993; Urano et al., 1996). Downstream targets 

of Ral include Cdc42 and phospholipase D (PLD) (Malumbres and Pellicer, 1998). PLD 

can stimulate vesicle formation and trafficking in Golgi. 

A dominant negative form of Ral can partially suppress Ras transformation, suggesting 

that Ra1GDS and Ral are involved in Ras-mediated transformation (Urano et al., 1996). 

Similarly, Ral coexpression enhances Ras-mediated transformation. 

1.7.6. OtherRas effector pathways 

MEKKI/JNK 

MEKK1 is a direct activator of the protein kinase JNKK (also known as 

SEK1/SAPKKI) which in turn activates the stress-activated protein kinase JNK/SAPK 

(Minden et al., 1994; Yan et al., 1994). JNK regulates c-Jun and ATF-2 activity by 

direct phosphorylation which results in increased transcription of target genes (Derijard 

et al., 1994; Gupta et al., 1995). MEKK1 stimulation of JNK and p38MAPK is 

associated with stress responses that result in apoptosis (figure 1.9) (Chen et al., 1996a; 

Verheij et al., 1996; Xia et al., 1995). Although in vitro data shows that MEKK1 binds 

Ras in a GTP-dependent manner and MEKK1 can be stimulated in a Ras-dependent 
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manner, it is not yet certain whether Ras activates MEKK1 directly in vivo (Lange- 

Carter and Johnson, 1994; Malumbres and Pellicer, 1998; Russell et al., 1995). 

Norel 

Norel was identified as specifically binding the active form of Ras upon serum 

stimulation (Vavvas et at., 1998). Norel is related to, and can heterodimerzie with, the 

tumour suppressor gene RASSFI, known to promote apoptosis (Ortiz-Vega et al., 2002; 

Vos et al., 2000). Norel has also been shown to promote apoptosis (Khokhlatchev et al., 

2002) and is thought to do so in a manner similar to RASSFI since both proteins bind to 

Mstl, a protein kinase involved in apoptosis (figure 1.9) (Graves et al., 1998; Lee et al., 

1998). Mstl activates caspase 3 upon FasL induced apoptosis. 

Although the Ras-Norel-Mstl complex mediates apoptosis in cells exposed to 

tamoxifen, there is no change in Mstl kinase activity following binding to Ras 

(Khokhlatchev et al., 2002). It is worth noting that this study was performed with 

overexpressed Ras. 

AF-6 

AF-6 and canoe, two structurally related proteins, bind to Ras in a GTP-dependent 

manner (Kuriyama et al., 1996). AF-6 function is unclear although it contains a motif 

shared among proteins that localize to specific cell-cell interaction sites. AF-6 is 

commonly found as a fusion protein to ALL-1 in a number of translocations present in 

acute lymphoblastic and myelocytic leukaemias (Prasad et al., 1993). 
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Unlike Raf, AF6 does not have a Ras binding domain (RBD) but instead has a Ras- 

association (RA) domain through which it interacts with Ras. The RA domain was 

proposed based on sequence and predicted structural similarities between Ra1GDS and 

AF6 (Ponting and Benjamin, 1996). Although the RBD of Raf and the RA domain of 

RaIGDS have low levels of sequence homology, they have a similar tertiary fold (Geyer 

et al., 1997; Huang et al., 1997). 
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Figure 1.9. Summary of Ras downstream effector pathways. Ras is upstream of 
various effector pathways. Following ligand stimulation, the receptor tyrosine kinase 
(RTK) recruits Grb2 and Sos to the membrane. Sos is a GNEF that can activate Ras. 
NF1 and p120-GAP are GAPs that negatively regulate Ras by increasing its GTP 
hydrolysis rate. Once activated, Ras can stimulate a number of pathways: RaIGDS 

activation results in Ral stimulation, leading to vesicle formation; Raf stimulates the 
MEK-MAPK pathway leading to proliferation, survival or apoptosis; Norel and the 
MEKK-JNK pathways stimulate apoptosis; and the P13K stimulates cytoskeletal 
organization via Rae activation, and increased metabolism and survival via PKB 

activation. 
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1.7.7. Cross-talk between Ras effectors 

So far, Ras has been shown to activate discrete downstream pathways, such as the Raf- 

MAPK, the PI3K-PKB and the RaIGDS-Ral pathways. In reality, however, these 

pathways influence each other's activities. In some cases they can act synergistically, as 

seen with RaIGDS and Raf that act cooperatively to stimulate Fos expression (Okazaki 

et al., 1997) and induce differentiation (Verheijen et al., 1999). In other cases they act in 

an antagonistic manner, for example P13K has been shown to downregulate Raf 

signalling (Guan et al., 2000; Rommel et al., 1999; Zimmermann and Welling, 1999). 

Further highlighting the influence the P13K pathway and the Raf pathway have on each 

other, was the observation that P13K can be required for Ras and Raf signalling (King et 

al., 1997; Pandey et al., 1999; Wennstrom and Downward, 1999; York et al., 2000). 

Similarly, prolonged activation of MAPK in Swiss 3T3 stimulated with platelet-derived 

growth factor (PDGF) is partially dependent on P13K, although the initial burst of 

activation is P13K-independent (Grammer and Blenis, 1997). Both the Raf-MAPK 

pathway, through the stimulation of the Ets transcription factor, and the PI3K-PKB 

pathway through the inhibition of GSK, can synergize in inducing cyclin D1 expression 

and therefore proliferation. Thus it seems that the many downstream effector pathways 

of Ras interact with each other, adding further complexity to Ras signalling. 
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1.7.8. Ras and tumourigenesis 

H-Ras and K-Ras genes were first discovered as viral oncogenes of the murine sarcoma 

viruses (MSV) Harvey-MSV and Kirsten-MSV (Ellis et al., 1981; Scolnick et al., 

1975). The human homologs were later discovered as transforming genes from the T24 

and EJ bladder carcinoma cell lines (Der et al., 1982; Goldfarb et al., 1982; Parada et 

al., 1982; Pulciani et al., 1982; Santos et al., 1982; Shih and Weinberg, 1982) and the 

third member of the family, N-Ras, was identified soon after (Hall et al., 1983; Shimizu 

et al., 1983). Further work showed that the functional difference between the normal 

Ras and its oncogenic allele is due to a single point mutation (Reddy et al., 1982; Tabin 

et al., 1982; Taparowsky et al., 1982). Ras was later found to be mutated in many 

human cancers (Bos, 1989), with a particularly high incidence in colon, lung and 

pancreatic carcinomas (Almoguera et al., 1988; Bos et al., 1987; Forrester et al., 1987; 

Rodenhuis et al., 1987). The mutated forms of Ras were shown to stimulate 

proliferation and transformation of cultured cells (Brown et al., 1984; Feramisco et al., 

1984; Stacey and Kung, 1984). 

Transforming Ras proteins are associated with alterations in their amino acids important 

for guanine nucleotide coordination. Mutant Ras proteins have abnormally high levels 

bound to GTP due to a decrease in their GTPase activity and/or an increase in 

nucleotide exchange rate, depending on the mutation. The most commonly mutated 

forms of Ras have single point mutations at residues 12,13 or 61 (Bos, 1989; 

Taparowsky et al., 1983). Mutations in these residues reduce Ras GTPase activity and 

render the protein insensitive to GAPs with the net consequence that these Ras mutants 

are constitutively bound to GTP and therefore constitutively active (Adari et al., 1988; 

Martin et al., 1990; Trahey and McCormick, 1987). 
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Different Ras genes are preferentially mutated in different carcinomas. For example, K- 

Ras is commonly mutated in pancreatic cancers, colorectal malignancies and 

adenocarcinomas of the lung. H-Ras mutations are found in cutaneous squamous cell 

carcinomas and squamous head and neck tumours, whereas N-Ras are most frequently 

mutated in acute leukaemias and myelodysplastic syndromes (Rodenhuis, 1992). In 

accordance with the role of oncogenic K-Ras in human lung tumours, a transgenic 

mouse with an oncogenic form of K-Ras that can be spontaneously expressed developed 

lung tumours, thymic lymphomas and skin papillomas (Johnson et at., 2001). 

Ras involvement in tumourigenesis does not only occur through point mutations, it can 

also arise from overexpression, as seen in tumour formation following N-Ras 

overexpression in transgenic mice (Mangues et al., 1992). Whilst overexpression of 

GAPs can prevent transformation by Ras overexpression, it has no effect on the 

transformation potential of Ras mutants with mutations in their GTPase region. 

Proteins involved in Ras regulation or its downstream pathways have also been found to 

be mutated in cancers. Overexpression of ErbB2 or EGFR is common in breast, lung, 

pancreas and colon cancers (Yarden and Sliwkowski, 2001) and it has recently been 

shown that EGFR is mutated in non-small cell lung cancer (Lynch et al., 2004; Paez et 

al., 2004). Loss of negative regulators of Ras, such as NF1, can cause tumours with 

increased Ras activity (Basu et al., 1992). The downstream effector of Ras, B-Raf, is 

also mutated in most human melanomas as well as in many other tumours (Davies et al., 

2002) and another Ras effector, P13K, is amplified in ovarian tumours and has recently 

been found to have activating mutations in various tumours (Samuels et at., 2004). 
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Activated Ras can also be detected in premalignant lesions, suggesting a role in tumour 

initiation. It is possible that Ras mutations arise in healthy individuals and remain silent 

until other genetic alterations occur, as seen in colon carcinogenesis (Kinzler and 

Vogelstein, 1996). 

Oncogenic Ras is not only more active than its normal counterpart, it can signal 

differently as well. Ras signalling in tumours is persistent compared to the temporally 

fluctuating signal found in normal cells and as a consequence oncogenic Ras can 

activate some effectors effectively, such as P13K, whilst normal Ras can only weakly 

activate P13K (McCormick, 1999). Thus, normal endogenous Ras can stimulate P13K to 

activate PKB but has no effect on lamellipodium formation, whereas ectopically 

expressed activated Ras can induce both PKB activation and lamellipodium formation 

(van Weering et al., 1998). 

Unlike its viral counterpart, the human Ras oncogene is not sufficient to transform cells 

in culture (Land et al., 1983; Newbold and Overell, 1983; Ruley, 1983). Transformation 

of rodent primary cells requires cooperation of a second oncogene, such as the 

adenoviral E1A protein or Myc (Land et al., 1983; Ruley, 1983). The tumour promoting 

function of an oncogene is frequently balanced by an inhibitory effect which must be 

overcome by additional mutations to allow tumourigenesis (Evan and Vousden, 2001). 

For example, in REFs, high Ras activity without a cooperating oncogene results in 

arrest at the G2 phase of the cell cycle, and Myc deregulation results in apoptosis (Evan 

et al., 1992). Human and rodent cells differ in their susceptibility to transformation: 

human cells are not transformed by two cooperating oncogenes, they require a multistep 
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process for the development of human tumours, as seen with colorectal cancers (Hahn 

and Weinberg, 2002; Kinzler and Vogelstein, 1996). 
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1.7.9. Ras regulation of cell cycle 

Proliferation 

The first indication that Ras was involved in mitogenesis following serum- or growth 

factor-stimulation came with studies in which Ras activity was inhibited with a 

neutralizing antibody, dominant negative form of Ras, p120-GAP or anti-sense 

oligonucleotides (Chang et al., 1991; Feig and Cooper, 1988; Kung et al., 1986; Monia 

et al., 1992). Ras can also induce DNA synthesis in quiescent cells; Ras signalling is 

required at several points during G1 for the stimulation of quiescent cells into S phase 

(Mulcahy et al., 1985; Stacey and Kazlauskas, 2002). 

One important function of activated Ras is to overcome the effects of the tumour 

suppressor Rb that prevents the cell entry into S phase (Lee et al., 1999b; Mittnacht et 

at., 1997; Peeper et al., 1997). Ras can do so by stimulating cyclin D1 expression. 

Cyclin D1 is a major player in cell cycle progression in G1 as described in section 1.2. 

Briefly, cyclin D activates Cdk4/6 which phosphorylate Rb, rendering it unable to 

inhibit E2F1, ultimately leading to the progression of the cell cycle from G1 to S phase. 

Although cyclin D1 is necessary for Ras stimulation of cell cycle progression, it is not 

sufficient for its transforming activity (Aktas et al., 1997; Liu et al., 1995). 

Cyclin D1 activation by Ras is dependent on the Raf-MAPK pathway (Lavoie et al., 

1996). A dominant negative form of Ras leads to reduced levels of cyclin D1, 

accumulated hypophosphorylated Rb and G1 arrest (Leone et al., 1997; Peeper et al., 

1997). Cyclin D1 is also regulated by the P13K pathway during the later stages of G1 

(Gille and Downward, 1999; Jones and Kazlauskas, 2001): the PI3K-PKB pathway 

stabilizes cyclin D1 by inhibiting its GSK-mediated phosphorylation (figure 1.8) (Diehl 
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et al., 1998). Additionally, P13K mediates p27 downregulation that occurs in late G1, 

allowing the cell to proceed into S phase (Takuwa and Takuwa, 1997). The MAPK 

pathway also seems to be involved in p27 degradation (Kawada et al., 1997). MAPK- 

dependent degradation of the inhibitor p27 results in activated cyclin E, leading to 

increased proliferation (see section 1.2) (Aktas et al., 1997; Kawada et al., 1997; Leone 

et al., 1997; Takuwa and Takuwa, 1997). Therefore, in order to progress through the 

cell cycle, Ras needs more than one effector pathway (Marshall, 1999). 

Cell cycle arrest 

As mentioned above in section 1.7.8, activated Ras leads to cell cycle arrest in rodent 

primary cells unless it is cooexpressed with a cooperative oncogene (Franza et al., 1986; 

Hicks et al., 1991). The Ras-Raf pathway can also induce cell cycle arrest in some 

human cancer cell lines (Ravi et al., 1999; Ravi et al., 1998b). It has been proposed that 

Ras cooperation with Myc, E1A, dominant negative p53 or the SV40 T antigen is due to 

the fact that these oncogenes can prevent Ras induction of cell cycle arrest, allowing 

Ras to induce proliferation (Hicks et al., 1991; Lloyd et al., 1997). 

The main manner in which Ras can induce cell cycle arrest is by inducing expression of 

p21 and the p16 member of the INK family (see sections 1.2 and 1.4) (Lin et al., 1998; 

Lloyd et al., 1997; Malumbres et al., 2000; Pumiglia and Decker, 1997; Serrano et al., 

1997). In primary cells, Ras activation of p53 induces cell cycle arrest that is 

indistinguishable from senescence, as seen by flat morphology and other senescence 

markers (Serrano et al., 1997). 
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Thus Ras can induce a number of opposing effects on the cell cycle: from proliferation 

to arrest, and even in some cases, differentiation (Noda et al., 1985). How Ras decides 

which pathway to induce is still unclear but is likely to be dependent on the presence of 

cooperating oncogenes. It has also been suggested that high levels of activated Ras can 

induce arrest, whereas lower levels of Ras induces proliferation (Sewing et al., 1997). 
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1.7.10. Choice of response: to die or not to die? 

There have been many reports that Ras can inhibit apoptosis and promote survival. 

However, paradoxically, there have also been reports that Ras can induce apoptosis. The 

effect of Ras on survival versus apoptosis depends largely on cell types and other 

signalling pathways occurring at the time. In normal cells, high levels of activated Ras 

are more likely to induce apoptosis whereas activated Ras in transformed cells is more 

likely to mediate survival. 

Induction of apoptosis 

Ras can induce apoptosis in a number of different cell lines, such as lymphocytes and 

fibroblasts. In fibroblasts, Ras has been involved in the apoptotic response following 

various types of stress, such as tamoxifen treatment, tumour necrosis factor (TNF) 

treatment and forced Myc expression during serum starvation (Kauffmann-Zeh et al., 

1997; Trent et al., 1996; Vater et al., 1996). In lymphocytes, Ras can be activated by the 

IL-2 receptor or by an antigen receptor; following stimulation, Ras has been shown to 

induce either proliferation or apoptosis. The choice of response was largely dependent 

on the other stimuli acting in the cells simultaneously (Gomez et al., 1996; Gomez et 

al., 1997; Latinis et al., 1997). 

Ras-induced apoptosis has been shown to be mediated by the Raf-MAPK pathway 

(figure 1.9) and, in accordance with this, a dominant negative form of Raf can block the 

ability of Ras to induce apoptosis (Fukasawa and Vande Woude, 1997; Kauffmann-Zeh 

et al., 1997; Navarro et al., 1999). p53 is also thought to be involved in apoptosis 

following Ras signalling as Ras is no longer able to induce apoptosis following the loss 

of p53 (Fukasawa and. Vande Woude, 1997; Nikiforov et al., 1996; Vater et al., 1996). 
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Interestingly, the phase of the cell cycle is thought to influence the Ras decision to 

mediate apoptosis: MAPK activation in Swiss 3T3 fibroblasts results in apoptosis only 

in cells found in S phase at the time of the signal, if cells are in other parts of the cell 

cycle, MAPK induces arrest (Fukasawa and Vande Woude, 1997). 

Ras can stimulate apoptosis in a Raf-independent manner as well: constitutively 

activated Ras can stimulate the MEKK-JNK pathway (see section 1.7.5), thereby 

stimulating apoptosis (figure 1.9) (Xia et al., 1995). However, Ras alone is not 

sufficient to fully activate JNK (Rausch and Marshall, 1997). 

As mentioned above, the Ras effector protein Norel is implicated in apoptosis (figure 

1.9) (Khokhlatchev et al., 2002). Induction of Norel by Ras stimulates apoptosis in an 

Mstl dependent manner (Graves et at., 1998; Khokhlatchev et at., 2002; Lee et at., 

1998). K-Ras is more effective than H-Ras at promoting apoptosis (Khokhlatchev et at., 

2002). Since K-Ras can preferentially activate the Raf-MAPK pathway rather than the 

P13K pathway (Yan et at., 1998), it is possible that K-Ras signalling to Norel might not 

be significantly counterbalanced by the P13K-mediated survival signals, and therefore 

K-Ras has a greater propensity to induce apoptosis. 

Signalling survival 

In epithelial cells and myeloid cells, Ras stimulation mostly results in survival signals 

(Downward, 1998b). Ras has been shown to prevent apoptosis in epithelial cells 

following E1A overexpression and detachment from the extracellular matrix (Frisch and 

Francis, 1994; Lin et at., 1995; Rak et al., 1995). 
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The main Ras effector pathway mediating the survival signals is the P13K pathway: 

activated P13K or Akt can abrogate apoptosis whilst inhibition of the P13K pathway can 

enhance apoptosis (figure 1.9) (Cox and Der, 2003; Datta et al., 1999; Downward, 

1998b; Dudek et al., 1997; Gire et al., 2000; Kauffmann-Zeh et al., 1997; Yao and 

Cooper, 1995). P13K can prevent apoptosis in various ways (figure 1.8). Firstly it 

stimulates PKB phosphorylation of the pro-apoptotic Bcl-2 family member Bad at 

serine 136. Once phosphorylated, Bad binds 14-3-3, forming an inactive complex 

instead of sequestering the anti-apoptotic proteins Bcl-XL and Bcl-2 (Datta et al., 1997; 

del Peso et al., 1997; Zha et al., 1996). Bcl-XL and Bcl-2 are therefore free to inhibit 

apoptosis (see section 1.3). Secondly, P13K can phosphorylate caspase 9, preventing its 

activation by cytochrome C. This suggests that P13K can block apoptosis downstream 

of cytochrome C release (Cardone et al., 1998). Thirdly, PKB influences survival by 

phosphorylating the Forkhead transcription factors. The Forkhead transcription factors 

phosphorylation leads to their sequestration in the cytoplasm where they are inactive 

(Biggs et al., 1999; Brunet et al., 1999). Forkhead transcription factors can transcribe 

many genes involved in apoptosis, such as Bax and FasL (Brunet et al., 1999; Miyashita 

et al., 1994b; Miyashita and Reed, 1995; Zhan et al., 1994). Lastly, P13K has been 

shown to suppress apoptosis through activation of NF-KB. P13K-mediated activation of 

Rac can stimulate NF-KB to protect cells from death (figure 1.8) (Joneson and Bar-Sagi, 

1999; Sulciner et at., 1996). In fibroblast cells, inhibition of NF-KB has lead to Ras 

induction of apoptosis in a p53-independent manner, suggesting that NF-KB is 

necessary for Ras-mediated survival (Mayo et al., 1997b). P13K can also stimulate NF- 

KB activity by the PKB pathway: PKB has been shown to phosphorylate and inactivate 

the NF-KB inhibitor, IKB (figure 1.8) (Ozes et al., 1999). NF-KB protects cells from 

apoptosis by promoting the transcription of anti-apoptotic genes such as the inhibitors 
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of apoptosis proteins (IAP) and B62-family members, described in section 1.3.4 (Chu 

et al., 1997). 

Although P13K is the main Ras-induced pathway involved in survival, the Raf-MAPK 

has also been shown to be involved in survival signalling in some circumstances (figure 

1.9). For example, MAPK protects neuronal cells from death following neurotrophic 

factor withdrawal (Xia et al., 1995) and protects fibroblasts from apoptosis following 

loss of attachment (Le Gall et al., 2000). As with PI3K, mitochondrial Raf and MEK 

signalling have also been involved in Bad phosphorylation, disrupting Bad-Bcl2 

interactions and thereby allowing Bcl-2 to inhibit apoptosis (Fang et al., 1999b; Scheid 

et al., 1999; Wang et al., 1996). As mentioned above, the downstream substrate of the 

Raf-MAPK pathway, RSK, can phosphorylate CREB, thereby activating it. The 

transcription factor CREB is involved in survival pathways, showing another pathway 

by which Ras-Raf-MAPK can mediate survival (Bonni et al., 1999; Finkbeiner, 2000). 

The Raf-MAPK pathway has also been implicated in promoting survival in IL-3 

dependent hematopoietic cells (Kinoshita et al., 1997; Terada et al., 2000), although 

PKB is still required for full survival signals in these cells: dominant negative forms of 

PKB and the P13K-inhibitor wortmannin suppress Raf-mediated survival (von Gise et 

al., 2001). 
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Thus Ras can induce both survival and apoptosis, depending on the cell type and cell 

context. Whereas the P13K pathway is mainly involved in survival signalling and the 

Norel pathway is mainly involved in apoptotis signalling, the Raf-MAPK pathway is 

less straightforward and can be involved in the induction of either response (figure 1.9). 
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1.8. Ras & p53 

Ras induces cell cycle arrest in a p53-dependent manner 

As mentioned in section 1.7.9, in the absence of cooperating oncogenes, Ras can induce 

cell cycle arrest and this arrest is mediated by the Cdk inhibitors p21 and p16. 

Interestingly, p21 induction by Ras is mediated by p53: activated Ras in primary mouse 

or human fibroblasts leads to increased levels of p53, which then stimulates its 

downstream target p21 to induce cell cycle arrest. Data confirming the role of p53 in 

mediating Ras-dependent cell cycle arrest comes from the observations that p53 

knockout MEFs are highly susceptible to Ras transformation and that Ras can induce 

transformation in cells harbouring p53 dominant negative mutants (Hicks et al., 1991; 

McMahon and Woods, 2001). Thus, p53 plays a major role in preventing Ras-mediated 

transformation by inducing cell cycle arrest in response to activated Ras. In some cases, 

loss of p21 can also predispose Ras to transformation, suggesting that p21 plays an 

important role in inhibiting Ras-induced transformation (Missero et al., 1996; Topley et 

al., 1999). 

Arf 

Ras stimulation of p53 occurs in an Arf-dependent manner since Ras transformation 

activity is inhibited by Arf overexpression in p53 wild-type but not in p53-null cells 

(figure 1.10) (Kamijo et al., 1997; Pomerantz et al., 1998). In accordance with a role of 

Arf in mediating Ras transformation, Arf knockout MEFs are highly susceptible to Ras 

transformation (Kamijo et al., 1997). As mentioned in section 1.4.5, Arf can stabilize 

p53 levels by inhibiting the p53-negative regulator Mdm2, thereby increasing p53 

activity. It is still unclear how Ras induces Arf expression, but it is thought to involve 
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the transcription factors Myc, E2F1 or DMP1 (Bates et al., 1998; Dimri et al., 2000; 

Inoue et al., 1999). DMP1 can bind the Arf promoter in vitro and induces Arf- 

dependent arrest mediated by p53 (Inoue et al., 1999). DMP1 is required for full Arf 

and p53 stimulation in response to activated Ras and DMPJ-null fibroblasts are 

susceptible to Ras-mediated transformation (Inoue et al., 2000). 

PML 

Following Ras-induced cell cycle arrest, PML is upregulated. Forced expression of 

PML is sufficient to induce upregulation of p53, p16 and premature arrest, all similar 

phenotypes to those seen following Ras activation (Ferbeyre et al., 2000; Pearson et al., 

2000). As mentioned in section 1.4.5, upon Ras stimulation, p53 associates with PML in 

the nuclear bodies (NBs) and forms a trinary complex with CBP. p53 gets acetylated by 

CBP, following which its transactivation activity is stimulated (figure 1.10) (Fogal et 

al., 2000). PML is necessary for Ras-induced senescence as PML-null fibroblasts no 

longer undergo senescence in the presence of activated Ras (Pearson et at., 2000; Ries 

et al., 2000). Although PML is not necessary for the p53 protein level increase observed 

after Ras activation, it is required for p53-dependent transactivation of p21, and 

therefore in Ras-mediated in cell cycle arrest. 
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Figure 1.10. Ras and p53 crosstalk. Ras can stimulate p53 activity via various pathways. It 

can induce cyclin D1 expression, resulting in upregulation of E2F1 activity. E2FI can then 
transactivate the Arf gene, thereby stabilizing p53. E2F1 can also synergyze with p53 to 
induce apoptosis. Ras can also stimulate Arf expression in an E2171 -independent manner, 
possibly through the DMP1 transcription factor. Ras can negatively regulate p53 by inducing 
Mdnt2 expression. By stimulating PML, Ras can increase p_53-mediated transactivation and 
induce cell cycle arrest. PTEN phosphatase is a p53 target gene and can reverse Ras-mediated 
P13K activity. p53 has been shown to increase Ras activity, either by directly transactivating 
the H-ras gene or by inducing the expression of growth factors upstream of Ras (see text for 
details). 
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Mdm2 

As mentioned in section 1.4.5, Mdm2 is both a transcriptional target of p53 and a 

negative regulator of p53, forming a negative feedback loop between itself and p53. It 

acts as an E3-ligase for p53 ubiquitination and leads to p53 degradation. 

As well as being a transcriptional target for p53, Mdm2 expression is also induced by 

the Ras-Raf-MAPK pathway in a p53-independent manner (figure 1.10) (Ries et al., 

2000). MAPK phosphorylates the transcription factors AP-1 and Ets, which 

subsequently transactivate the Mdm2 gene (McCarthy et al., 1997). In normal cells, the 

Raf-MAPK pathway induces both Mdm2 and Arf expression, resulting in a balance 

between the negative and positive regulators of p53 and no overall effect. However, in 

fibroblasts deficient for Arf, the Raf-MAPK pathway can only efficiently induce 

Mdm2, thereby inhibiting p53 activity (Ries et al., 2000). Thus, in tumours where 

functional Arf is no longer present, Raf-MAPK activation could result in a net 

inhibition of p53. 

E2F1 

Ras can increase cyclin D1 activity in two manners: the Ras-Raf-MAPK pathway can 

induce cyclin D1 expression and the Ras-PI3K-PKB pathway can stabilize cyclin D1 

expression (see section 1.7.9) (Cheng et al., 1998; Diehl et al., 1998; Lavoie et al., 

1996). High levels of cyclin D1 can stimulate Cdk4 and Cdk6 to phosphorylate Rb (see 

section 1.2.1). Phosphorylated Rb is no longer able to bind to the E2F1 transcription 

factor, and dissociated E2F1 is subsequently free to transactivate its target genes. One 

of the E2F1 target genes is Arf (Dimri et al., 2000; Zhu et al., 1999). Thus, E2171 can 

stimulate p53 activity by directly inducing Arf expression (figure 1.10). It has been 
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shown that E2F and Ras can synergize in their induction of Arf (Berkovich et al., 2003). 

Additionally, E2F1 can also stimulate p53 apoptotic activity in a transcriptionally- 

independent manner; this stimulation requires the cyclin A binding site of E2F1 (figure 

1.10) (Hsieh et al., 2002). 

PTEN 

PTEN is a lipid phosphatase that can antagonize P13K function by specifically 

dephosphorylating Ptdlns(3,4,5)P3 to PtdIns(4,5)P2 (Maehama and Dixon, 1998): 

tumour cell lines lacking PTEN and cell lines derived from PTEN-knockout mice have 

increased levels of Ptdlns(3,4,5)P3 (Katso et al., 2001). The loss of function mutations 

of PTEN and somatic deletions of the gene in tumours strongly support its role as a 

tumour suppressor. 

PTEN is also a p53 target gene and is induced by p53 wild-type but not p53 mutants 

(Stambolic et al., 2001). PTEN induction by p53 is required for p53-mediated apoptosis 

in immortalized mouse embryo fibroblasts. Thus p53 transactivation of PTEN can 

inhibit Ras activation of the P13K pathway. 

p53 can activate Ras 

It has been reported that p53 can stimulate Ras expression. A conserved p53 response 

element has been found in the first intron of H-Ras gene and this response element can 

confer the ability of H-Ras to be transactivated in a p53-dependent manner (figure 1.10) 

(Deguin-Chambon et al., 2000). Further studies have showed that p53 can induce 

sustained MAPK activation, but in this case the p53 target responsible for this activation 
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lies upstream of Ras, possibly at the level of heparin-binding EGF-like growth factor 

(HB-EGF) (Lee et al., 2000). 

In all the cases described in this section, Ras can activate p53 to specifically induce cell 

cycle arrest. It is not uncommon for the transforming activity of an oncoprotein to be 

counterbalanced by an inhibitory effect; it acts as a fail-proof system for cells to prevent 

the formation of tumours. 
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1.9 Aim of study 

The ASPP1 and ASPP2 proteins have recently been shown to be major players in p53 

regulation. Unlike other p53 regulators, they can specifically enhance p53 pro-apoptotic 

activity. The activity of the ASPP proteins clearly has to be regulated in a stringent 

manner to prevent apoptosis occurring in an uncontrollable manner. 

My objectives were to increase our understanding of how ASPP1 and ASPP2 are 

regulated, and therefore how p53 apoptotic activity is regulated. I have addressed this 

issue by investigating an ASPP2 mutant that is partially defective in inducing p53 pro- 

apoptotic activity. This mutant has its amino-terminal region deleted and, since this 

region does not contain the p53-interaction site, I consequently hypothesised that this 

amino-terminal region of ASPP2 may contain a regulatory domain necessary for its full 

activity. 

The first section of my thesis analyzes this amino-terminus region and the Ras- 

association domain it contains. I investigate whether Ras binds ASPPI and ASPP2 and 

whether this has any effect on ASPP activity. Ras is upstream of various effector 

pathways, many of which are activated by phosphorylation cascades. In the second part 

of my thesis, I therefore examine the possibility that ASPP activity is influenced by one 

of the downstream effector pathways of Ras. Finally, I briefly probe into other ways in 

which ASPPI and ASPP2 activity could be regulated. 
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Chapter 2 

Materials & Methods 

2.1 Materials 

2.1.1. Reagents 

All chemicals, unless otherwise stated, were obtained from BDH Chemicals, UK. All 

radio-isotopes, autoradiography films (Hyperfilm), ECL (Enhanced Chemi- 

Luminescence) reagents were purchased from Amersham Pharmacia Biotech (UK). All 

restriction enzymes, their buffers, were purchased from New England Biolabs (UK). All 

tissue culture dishes and flasks were from Greiner (UK). 

The Luciferase Assay System Kit and the TNT® T7 Quick Coupled 

Transcription/Translation System Kit was purchased from Promega (WI, USA). The Tet 

inducible cell system was purchased from CLONTECH (CA, USA) and the QIAGEN 

Plasmid Mega Kit was purchased from Qiagen (UK). The In Situ Cell Death Detection 

Kit, Fluorescein was purchased from Boehringer Mannheim (UK). 

5x Agarose Sample Buffer 

50% (w/v) Sucrose 

100 mm EDTA, pH 8.0 

0.1% (w/v) Bromophenol blue 

0.1% (w/v) Xylene cyanol FF 

Agarose gel for DNA elecrophoresis 

Agarose powder (GibcoBRL, UK) was weighed and dissolved in IX TAE buffer at an 

appropriate concentration. The mixture was heated in a microwave oven to dissolve the 

agarose and the solution allowed to cool to 40°C. Ethidium bromide was added to a 

final concentration of 20pg/ml. The agarose solution was poured into a casting tray 

with the required comb and was left to solidify at room temperature. 
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Ammonium Persulphate (APS) 

10% (w/v) stock solution was prepared in water, and stored at -20 °C in single-use 

aliquots. 

Ampicilin Stock 

5g of the antibiotic was dissolved in 25 ml sterile distilled water and 25 ml of ethanol 

making a 100 mg/ml stock solution in 50% ethanol. This was stored at -20 °C as 

aliquots. 

Blocking Solution 

10% (w/v) fat-free milk (Marvel, UK) was prepared in phosphate buffered saline (1X 

TBS-T). 

Calcium chloride 

A 2.5 M solution was made up by dissolving 36.75 g CaC12.2H20 in distilled water, 

filter-sterilised and stored at room temperature. This was used solely for calcium 

phosphate transfection. 

Cisplatin 

The stock concentration was made to 1m9/ml with distilled water and cisplatin was 

used at a final concentration of 3 µg/ml. The cisplatin is provided by Pharmacia via St 

Mary's Hospital pharmacy. 

COmpleteTM protease inhibitor cocktail 

1x Complete`"' protease inhibitor (Boehringer Mannheim, UK) tablet was dissolved in 

2.0 ml of sterilised distilled water as a 20x stock solution that is stable at -20 °C for 12 

weeks. 

Coomassie Staining Solution 

82% (v/v) Ethanol 

18% (v/v) Acetic acid 

1/10000 (w/v) Brilliant blue R (Sigma) 
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Alternatively Gelcode was used (Pearce) according to the manufacturer's directions. 

Cyclohexamide 

A stock solution of 50mg/ml was prepared by dissolving the powder in ethanol. It was 

stored at -20 °C. The working solution was used at a concentration of 50 µg/ml. 

DAPI staining solution 

A stock solution of 10 mg/ml was made by dissolving 4'-6-diamidino-2-phenylindole 

dihydrochloride hydrate (DAPI; Sigma, MO, USA) in water and then adding 10 x PBS 

to make a1 pg/ml working solution in 1x PBS. For visualisation of mycoplasma, 0.1 

yg/ml DAPI solution was used as described (Russell et al., 1975). 

Daunorubicin 

Daunorubicin was purchased from Sigma (UK) and was used at a final concentration of 

300ng/ml. 

Destain buffer 

50% water 

40% methanol 

10% acetate 

Dialysis buffer 

50mM Tris-Hcl, pH 7.5 

100mM NaCl 

5mM MgC12 

Immediatel y before use add 

1mM DTT 

Doxorubicin 

The solution was purchased from Pharmacia (UK) via the St Mary's Hospital pharmacy 

at a concentration of 0.5mg/ml. It was used at a final concentration of 1µ M. 
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EDTA Solution 

A 0.5M C, 0H14N2O8Na2.2H20 (EDTA) stock solution was made up by dissolving 18.6 g 

of EDTA in 70 ml distilled water. The pH was adjusted to pH 8.0 with NaOH and the 

volume made up to 100 ml with distilled water. 

Ethidium Bromide 

A 10 mg/ml stock solution was prepared by dissolving 0.2 g ethidium bromide in 20 ml 

of distilled water the stored at 4 °C in the dark. 

Fixer Solution 

50% (v/v) Ethanol 

10% (v/v) Acetic acid 

G-418 (Geneticin® or Neomycin) 

A stock solution was prepared under sterile conditions by dissolving 5 mg of the 

powered G-418 Geneticin® (G-418 Sulphate; Life Technologies Ltd, UK) in 50 ml of 

DMEM to make a 100 mg/ml stock which was stored at 4 °C. 

Giemsa staining solution 
Giemsa staining solution (Pierce, UK) was diluted 1: 20 in distilled water as 

recommended. 

GST lysis buffer 

50mM Tris-HCI, pH 7.5 

50mM NaCl 

5mM MgC12 

Immediate ly before use add 

I MM DTT 

1mM PMSF 
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2X HBS (HEPES buffered saline) 

39 mM 50 ml of 390mM stock (9.25 g in 100 ml) HEPES (made fresh) 

10 mm 50 ml of 100mM stock (0.744 g in 100 ml) KCl 

280mM 50 ml of 2.8 M stock (16 gin 100 ml) NaCl 

1.5 mM 50 ml of 15mM stock (0.213 g in 100 ml) Na2HPO4 

12mM 50 ml of 120mM stock (2.16g/100ml) Sucrose 

The solution was adjusted to pH 6.90-7.3 with NaOH and filter sterilised for 

transfections. These were stored in 50 ml aliquots at -20 °C for long term storage and 

4°C for short term storage. 

5x In vitro kinase buffer 

250 mM Tris-Hcl pH 7.5 

1.35 M sucrose 
0.5 mM EGTA 

0.5% v/v mercaptoethanol 

Loading buffer 

50mM Tris-HC1 pH7.6 

50mM NaCl 

5mM MgC12 

10mM EDTA 

On the day add 

5mM DTT 

2µCi [3H] GDP or [3H] GTP (10 ci/mmol, 1µCi/m1), Amersham Pharmacia 

Luciferase Assay System 

This assay system was purchased from Promega (WI, USA). The solutions were made 

up according to the manufacturer's directions and stored at -20 °C and allowed to 

equilibrate to room temperature before use. 

LY294004 

The powder was ordered from Calbiochem and a 50 mM stock concentration was made 
by dissolving the powder in DMSO. The working solution was 10 µM. 
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Membrane buffer 

50mM Tris pH 7.9 

0.5% NP40 (non-ionic detergent) 

0.1% Na Deoxycholate 

0.05% SDS 

20mM O-octyl glucopyronoside (non-ionic detergent) 

0.5mM EDTA 

0.5mM EGTA 

5mM Na pyrophosphate 

25mM Na B-glycerophosphate 

10% glycerol 
0.1% B-meraptoethanol 

On the day add 

1mM Na3VO4 

protease inhibitors 

Methanol/Acetone 

50% (v/v) Methanol 

50% (v/v) Acetone 

Mowiol 

6ml of glycerold, 6 ml of distilled water and 2.4g of Moxiol 4-88 (Calbiochem) were 

mixed in a 50 ml falcon tube. The mixture was vortexed and then shook for 2 hours. 12 

ml of 200 mM Tris-HCI, pH 8.5 was added and the solution was incubated at 50°C with 

occasional mixing until the Mowiol dissolves (approximately 3 hours). The solution 

was filtered through 0.45 µm syringes and stored in aliquots at 4°C. Before each 

aliquot's use, 2.5% w/v 1,4-diazabicyclo-[2.2.2]octane (DABCOA, Sigma, UK) was 

added and the solution was vortexed for 30 minutes to dissolve and left overnight at 4°C 

for the bubbles to disappear. 
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NET Buffer 

150 mM NaCl 

50 mm Tris-HCI, pH 7.5 

5 mm EDTA, pH 8. 

Nonidet P40 (NP40) Lysis Buffer 

100 mm NaCI 

50 mM Tris-HCI, pH 8.0 

1 mm EDTA, pH 8.0 

1% (v/v) NP40 

1 mm PMSF (Sigma) 

supplemented with phosphatase /protease inhibitors 

Para-formaldehyde Fixing Solution 

A4% (w/v) of Para-formaldehyde was first dissolved in water in the fume-hood and 

then 10 X PBS added till the final concentration of PBS was 1 x. The pH was adjusted 

to 7.0 with 1M HCl and the solution was stored at room temperature. 

PD98059 

A 50 mM stock concentration was prepared by dissolving PD98059 (Calbiochem) into 

DMSO. The final concentration was used at 100 µM. 

Phosphatase inhibitor cocktails I and II 

The solutions were purchased from Sigma. They were stored at 4°C and were used 

1: 100 as directed by the manufacturer's directions. 

Phosphate Buffered Saline (PBS) 

12.5 mM NaCl 

1 mm Sodium dihydrogen phosphate, NaH2PO4 

1.6 mM Disodium dihydrogen phosphate, Na2HPO4 

The pH was adjusted to 7.0 and autoclaved. The solution was prepared by the Ludwig 

washroom team. 
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PMSF (phenylmethylsulphonylfluoride) 

A 20 mg/ml (100x) stock solution of PMSF C, H7FO2S (Sigma, UK) was made up in 

iso-propanol and stored in 1 ml aliquots at -20 °C. 

Ponceau S Staining Solution (10 X) 

5% (v/v) Acetic acid 

2% (v/v) Ponceau S (sodium salt) (Sigma, MO, USA) 

30% (w/v) Trichloroacetic acid CC13. COOH 

30% (w/v) 5-sulfosalicyclic acid C7H606S. 2H20 (Sigma, MO, USA). 

The solution was dissolved in water to a final concentration of lx before use. 

Puromycin 

A 2mg/ml stock was made by dissolving puromycin (Sigma) into distilled water. The 

sotlution was used at a final concentration of 1 µg/ml 

Propidium Iodide Solution 

A stock solution of 1 mg/ml (20x) Propidium iodide C27H34N4I2 (Sigma) was made up in 

sterile distilled water. This was stored in single-use aliquots in the dark at -20 T. The 

PI solution was made up in 1xPBS as follows 

50mg/ml RNA'aseA (Boeringer Mannheim) 

25 mg/ml Propidium iodide 

Protein G Sepharose 

Stored in 20% ethanol at 4°C (Pharmacia Biotech) 

Puromycin 

A 2.5 mg/ml puromycin (Sigma, UK) stock solution was prepared in Millipore water 

and filter-sterilised and frozen in aliquots, it was used at 2.5 mg/ml. 

Qiagen Solution-1-Resusupension solution for plasmid preparations 
50 mM Tris-HCI pH 8.0 

10 mm EDTA pH 8.0 

100 pg/ml RNase A (stored at 4 °C after addition of RNase) 

153 



Qiagen Solution-2-Lysis solution for plasmid preparations 

200 mM NaOH 

1% (w/v) SDS 

Qiagen Solution-3-Neutralizing solution for plasmid preparations 
3M CH3COOH, pH 5.5 

Qiagen Elution Buffer 

1.25M NaCl 

50 mM Tris pH8.5 

15% Isopropanol 

Qiagen Equilibration Buffer 

750 mM NaCI 

50 mM MOPS pH 7.0 

15 % Isopropanol 

0.15% Triton® X-100 

Qiagen Wash Buffer 

1M NaCl 

50 mM MOPS pH 7.0 

15% Isopropanol 

RIPA (radioimmunoprecipitation) Lysis Buffer 

150 mm NaCl 

1% (v/v) NP40 

0.5% (v/v) Sodium deoxycholate (DOC) 

0.1% (w/v) SDS 

50 mM Tris-HCl (pH 8.0) 

2 mM PMSF (Sigma) (added fresh each time) 

1/20 COmpletem Protein Inhibitor Cocktail 
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Ras IP buffer 

20mM Trish-HCI pH 7.5 

I mm EDTA 

1000mM KCl 

5mM MgCl2 

10% v/v glycerol 

1% v/v Triton X-100 

0.05% v/v 2-Mercaptoethanol 

On the day a dd 

5mM NaF 

0.2mM Na3VO4 

5µg/ml aprotinin 

5µg/ml leupeptin 

1mM Benzamidine 

1mM p-aminoethyl-benzyne sulforyl fluoride 

Ribonuclease A (RNase A) 

50 mg of ribonuclease A (Sigma) was dissolved in 1 ml of 10mM Tris-HCI pH7.5 and 

15mM NaCl to make a 10 mg/ml stock solution which was stored in single-use aliquots 

at -20 T. (Boiling to remove DNase was not recommended by the manufacturer). 

Reporter Lysis 5x Buffer 

This lysis buffer was purchased from Promega, UK as part of the luciferase assay kit. 

To use it was it was diluted with distilled water to make a lx solution. 

SDS Solution 

A 10% (w/v) solution of sodium dodecyl sulphate (SDS) was dissolved in water and 

stored at room temperature. 
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6X SDS-PAGE sample buffer 

750mM 0.5 M Tris pH 6.8 (33.3m1 in 50 ml total) 

30% Glycerol (15 ml in 50 ml total) 

6% 10% SDS (3g in 50m1 total) 

0.03% (w/v) Bromophenol blue 

60mM 2-mercaptoethanol (210.1 in 50m1 total) added just before use 

lOx SDS-PAGE Running Buffer 

720 g Glycine 

150 g Tris 

50 g SDS 

Made up to 5 litres with distilled water. 

lOx SDS-PAGE Transfer Buffer 

725 g Glycine 

145 g Tris 

Made up to 5 litres with distilled water. 

Stripping Buffer 

62.5 mM 15.5 ml of 1M Tris-HCI, pH 6.7 

100 mm 1.75 ml of ß-mercaptoethanol 

2% 5g SDS 

Make up to 250 ml in distilled water. 

Stripping Buffer, commercial 

Provided by Chemicon Internaional, USA 
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50x TAE (Tris-Acetate-EDTA) buffer 

242 g Tris base 

57.1 ml Glacial acetic acid 
100 ml 0.5 M EDTA, pH 8.0 

Make up to 1 litre with distilled water and adjust pH to about 8.5. Use at lx 

concentration. For making an agarose gel, 2 µl of 10 mg/ml Ethidium bromide solution 

per 100 ml was added to the 1x TAE. 

Tetracycline 

A 5mg/ml stock was made by dissolving tetracycline (Sigma) in 100% ethanol. The 

solution was used at a final concentration of 2µg/ml. 

Thrombin buffer 

50mM Tris-HCI, pH 7.5 

2.5mM CaCI2 

100mM NaCl 

5mM MgCI2 

Immediately before use add 

1mM DTT 

Tris/Sucrose buffer 

10mM Tris pH 7.4 

0.5mM EDTA 

0.3M Sucrose 

Tris/Sucrose buffer with NaCl 

10mM Tris pH 7.4 

0.5mM EDTA 

0.3M Sucrose 

0.5M NaCl 
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Tris Stock solutions 
Tris base was dissolved in water to provide 0.5 M, 1M and 1.5 M solutions which were 

pH adjusted with concentrated HCI. 

10x Tris Buffered Saline Tween (TBS-T) 

121 g Tris base 

36.53 g NaCl 

250 ml Tween-20 (Sigma) 

Adjust pH to 7.6 with about 60 ml HCl in a total volume of 5 litres. Used at lx 

concentration. 

Triton® X-100 

A 20% (v/v) stock solution in PBS was made and stored at room temperature 

Trypsin solution 
50 mM ammonium bicarbonate (500 µl of 0.1 M) 

25 i1 316 detergent (2%-0.05%) 

475 d Mi11iQ 

TE Buffer 

10 mm 1.0 ml of 1M Tris-HC1 pH 8.0 (sterile) 

1 mm 0.2 ml of 0.5 M EDTA, pH8.0 (sterile) 

Make up to 100 ml of sterile distilled water. 

Trypan Blue (Sigma) 

Trypan blue solution (0.4%) 

In 0.81% Sodium Chloride and 0.06% Potassium phosphate 

lOx TTBS 

0.5M NaC1 

20 mM Tri-HCI, pH 8.0 

0.1 % (v/v) Tween-20 

0.0111/0 NaN3 
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2x TYE Medium (per litre) 

1.6% (w/v) 16g Bacto-tryptone (Difco, USA) 

1% (w/v) lOg Bacto-yeast extract (Difco, USA) 

85 mM 5g NaCI 

The pH was adjusted to 7.4 and the solution autoclaved. This solution was prepared by 

the Ludwig washroom team. 

TYE Plates (per litre) 

1% (w/v) lOg Bactotryptone (Difco, USA) 

0.5% (w/v) 5g Bacto-yeast extract (Difco, USA) 

140 mM 8g NaCl 

1.5% (w/v) 15g Agar (Difco, USA) 

The pH was adjusted to 7.4 and the solution autoclaved and poured into tissue culture 

plates and stored at 4 °C. This solution was prepared by the Ludwig washroom team. 

TYE Ampicilin Plates (per litre) 

1% (w/v) lOg Bactotryptone (Difco, USA) 

0.5% (w/v) 5g Bacto-yeast extract (Difco, USA) 

140 mM 8g NaCl 

1.5% (w/v) 15g Agar (Difco, USA) 

50 pg/ml Ampicilin 

The solution was adjusted to pH7.4 and autoclaved. At 50°C, ampicillin was added to a 

final concentration of 75 pg/ml and the plates poured. The solidified plates were stored 

at 4°C not more than for one month. This was prepared by the Ludwig washroom team. 

U0126 

The MEK inhibitor U0126 was ordered from Calbiochem. 1mg of powder was 
dissolved in DMSO to give a stock concentration of 50mM. The solution was used 
immediately at a working solution of 20 µM. 
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Water 

Nanopure water (Type I) generated from the MilliQ water system was used for all 

procedures. 

oX174-HaeIII DNA Marker 

The OX174 DNA was digested with HaeIII to generate 11 fragments ranging in size 

from 72 to 1,353 bp This marker, supplied as a1 mg/ml solution, was used as a size 

standard for agarose gel electrophoresis. 

2.1.2 SDS-PAGE gels 

Resolving Gels Stacking 

6% 8% 10% 12% 4% 

Acryl/Bis 2 ml 2.7 ml 3.3 ml 4.0 ml 1.3 ml 

1.5 M Tris-HCl pH 8.8 2.5 ml 2.5 ml 2.5 ml 2.5 ml -- 
1.0 M Tris-HC1 pH 6.8 -- -- -- -- 2.5 ml 

10%SDS 100yl 100 PI 100 Pct 100/11 100ysl 

10%APS 100 PI 100µl 100 PI 100 PI 50p1 

TEMED 10 P1 8µl 5/41 5 pl 10/11 

Distilled Water 5.3 ml 4.6 ml 4.0 ml 3.3 ml 6.1 ml 

Total volume 10 ml 10 ml 10 ml 10 ml 10 ml 

All resolving and stacking gels were prepared using 30% acrylamide/bis-acrylamide 
(Acryl/Bis) 29: 1 (NBL, UK or BioRad, UK). Values given are per 10 ml of gel 

required. Abbreviations: Ammonium Persulphate (APS); N, N, N', N', -tetramethy- 
ethylenediamine (TEMED), Tris (Tris(hydroxymethyl) aminomethane), sodium dodecyl 

sulphate (SDS). 
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2.1.3. Antibodies 

Antigen Antibody Name Species Source 

ASPPI YX. 7 Mouse mAb Serum 

ASPPI LX054.2 Mouse mAb Serum 

ASPPI LX054.1 Mouse mAb Serum 

ASPPI ASPPI. 88 Rabbit pAb Serum 

ASPP2 DX54.10 Mouse mAb Hybridoma 

ASPP2 BP77 Rabbit pAb Serum 

CD-20 347673 Mouse-FITC Becton-Dickson (CA, USA) 

GST Z-5, sc-459 Rabbit pAb Santa Cruz (CA, USA) 

GST B-14, sc-138 Mouse mAb Santa Cruz (CA, USA) 

HA HA. II Mouse mAb Convance 

H/K-Ras 259 Rat mAb Santa Cruz (CA, USA) 

H/K-Ras 238 Rat mAb Santa Cruz (CA, USA) 

H-Ras R02102 Mouse mAb 
BD Transuction Laboratories 

(USA) 

iASPP iASPP Mouse mAb Serum 

K-Ras F234, sc-30 Mouse mAb Santa Cruz (CA, USA) 

MAPKI/2 K-23, sc-94 Rabbit pAb Santa Cruz (CA, USA) 

Mouse IgG Mouse IgG Mouse serum Sigma 

Mouse-IgG 715-095-151 Donkey-I 1TC Jackson Immunoresearch 

Mouse-lgG 715-035-151 Donkey-IIRP Jackson Imniunoresearch 

Mouse-IgG 415-005-100 Rat Jackson Immunoresearch 
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Mouse-IgG 415-005-166 Rat Jackson Immunoresearch 

p53 DO-1 Mouse mAb Hybridoma 

p53 DO-13 Mouse mAb Serum 

PCNA PC-10 Mouse mAb Hybridoma 

Phospho- 

MAPK 
9106 Mouse mAb Cell Signaling Technology 

Raf-1 C-12, sc-13 Rabbit pAb Santa Cruz (CA, USA) 

Raf-1 540 Mouse mAb Anogen (Ontario, Canada) 

V5 46-0705 Mouse mAb Invitrogen 

Rat-IgG 712-095-153 Donkey-FITC Jackson Immunoresearch 

Abbreviations - monoclonal antibody (mAb), polyclonal antibody (pAb), horse-radish 

peroxidase (HRP), Fluorescein isothiocyanate (FITC), Tetramethylrhodamine 

isothiocyanate (TRITC). 

Protein Molecular weight markers 

The RainbowT"' coloured protein molecular weight markers (14490-220000 kDa) were 

purchased from Amersham Life Science (UK). The prestained protein markers 
broadrange (#P7708S) were purchased from New England Biolabs 
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2.1.4. Plasmids 

Plasmid Name Relevant Information Source / Reference: 

ASPPI fragmen6- Human ASPPI bases 1074-3386 Susana Llanos 

PCDNA cloned into PCDNA3 

ASPPI fragmen8- Human ASPPI bases 2082-3386 Susana Llanos 

PCDNA cloned into PCDNA3 

ASPPI fragment Human ASPPI bases 1-308 cloned Alan Renton 

(1-308) into pCRT73 

ASPPI fragmentl- Human ASPPI bases 1-1074 Susana Llanos 

PCDNA cloned into PCDNA3 

ASPPI fragment2- Human ASPPI bases 1-2802 Susana Llanos 

PCDNA cloned into PCDNA3 

ASPPI fragment4- Human ASPPI bases 1074-2802 Susana Llanos 

PCDNA cloned into PCDNA3 

ASPP2 fragment Human ASPP2 bases 1-1080 Susana Llanos 

A-PCDNA cloned into PCDNA3 

ASPP2 fragment Human ASPP2 bases 360-925 Susana Llanos 

B-PCDNA cloned into PCDNA3 

ASPP2 fragment Human ASPP2 bases 925- 1128 Susana Llanos 

C-PCDNA3 cloned into PCDNA3 

ASPP2 Mutl Human ASPP2 containing a point Nadia Godin-Heymann 

(S698A)-PCDNA3 mutation at amino acid 698 from 

serine to alanine, cloned into 

PDNA3 

ASPP2 Mut2 Human ASPP2 containing two Nadia Godin-I leymann 
(S736A; S737A)- point mutations at amino acid 636 
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PCDNA3 and 737 from serine to alanine, 

cloned into PDNA3 

ASPP2 Mut3 Human ASPP2 containing a point Nadia Godin-Heymann 

(S827A)-PCDNA3 mutation at amino acid 827 from 

serine to alanine, cloned into 

PCDNA3 

CMV-Bam-Neo Empty vector, Neo-resistant, CMV Previously obtained by 

Xin Lu 

EXV-H-Ras Wild type H-Ras cloned in an EXV Chris Marshall 

vector 

EXV-H-Ras N17 Dominant negative H-Ras cloned in Chris Marshall 

an EXV vector 

p21-luc p53-responsive p21 promoter Bert Vogelstein 

linked to luciferase reporter 

pcDNA3 53BP2 Human 53BP2 driven by the CMV S. Fields (recloned by Shan 

promoter, has a T7 promoter Zhong) 

pcDNA3 ASPP1 ASPP1 driven by the CMV Shan Zhong 

promoter, has a T7 promoter 

pcDNA3 ASPP2 ASPP2 driven by the CMV Shan Zhong 

promoter, has a T7 promoter 

pCDNA3 E6 Adenoviral E6 driven by the CMV Tim Crook (recloned by 

promoter and has the T7 promoter Isabelle Campargue) 

pcDNA3 -iASPP Human iASPP driven by the CMV Isabelle Campargue 

promoter, has a T7 promoter 

pCDNA3.1- Human ASPP2 in reverse Giuseppe Trigiante 

anti-sense ASPP2 orientation driven by the CMV 

promoter and has the T7 promoter 

PCDNA3.11V5- Empty vector containing CMV and Invitrogen 

His-TOPO 7 promoter sites 
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pCMV ASPP2 ASPP2 driven by the CMV L. Naumovski 

promoter 

pCMV Bbp Human 53BP2 driven by the CMV L. Naumovski 

promoter 

pCMV E2F1 Human E2F1, driven by the CMV Kristian Helin (1993b) 

promoter 

pEFm. 6 Empty vector containing a EF la Richard Marais 

promoter. 

pEFm. 6 - Raf CX Activated Raf 1 cloned into the Richard Marais 

pEFm. 6 vector 

pEFm. 6 HA-H-Ras Activated H-Ras with an HA tag Richard Marais 

V12 

pEFm. 6 HA-K-Ras Activated K-Ras with an HA tag Richard Marais 

V12 

pEFm. 6-H-Ras Activated H-Ras with a point Richard Marais 

V12 mutation at codon 12 changing the 

glycine to a valine, cloned into the 

pEFm. 6 vector 

PGEX-2TK- ASPP2 (693-1128) tagged to GST Isabelle Campargue 

53BP2 

PGL3 Bax-luc bax promoter linked to luciferase Moshe Oren (original from 

reporter Miyashita et al., 1994b) 

PGL3 mdm2-luc p53-responsive mdm2 (P2) Karen Vousden (original 

promoter (intron 1) linked to from Zauberman et al., 
luciferase reporter 1995) 

PIG3-10mer-luc P53-responsive PIG3 promoter Matthias Dobelstein 

containing 10 repeats of p53 
binding sites linked to luciferase 

reporter 
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PIG3-15mer-luc P53-responsive PIG3 promoter Matthias Dobelstein 

containing 15 repeats of p53 

binding sites linked to luciferase 

reporter 

PIG3-17mer-luc P53-responsive PIG3 promoter Matthias Dobelstein 

containing l7repeats of p53 binding 

sites linked to luciferase reporter 

PIG3-luc p53-responsive PIG3 promoter Bert Vogelstein 

linked to luciferase reporter 

SN3 (CMV p53) Human p53 driven by the CMV Bert Vogelstein (Baker et 

promoter al., 1990) 

T7-p53 Human p53, driven by the T7 Previously obtained by 

promoter Xin Lu (re-cloned from the 

original SN3) 

All plasmids constructed by our laboratory were sequenced to confirm their identity. All 

cDNA encode human wild-type proteins unless otherwise stated. 

2.1.5. Cell lines 

Name Tissue Type/Origin 

SAGS-2 Human osteosarcoma; p53 null, truncated Rb 

H 1299 Human lung carcinoma; p53-null 

MCF7 Human Breast, wild type p53 
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U2OS Human osteosarcoma, wild type p53 

MEFs Mouse embryo fibroblasts prepared from ASPP2 

heterozygous crosses 

All cells except for MEFs were obtained from American Type Culture Collection 

(ATCC) and stored in liquid nitrogen until required. 

Constructed cell lines 

Name Description 

Tet off U2OS Human osteosarcoma, wild type p53, stably transfected 

with pTet-off plasmid 

ASPP2 -inducible clonw 25 Human osteosarcoma, wild type p53, stably transfected 

with pTet-off and ASPP2 plasmids. Provided by 

Yardena Samuels. 

Isolating Mouse Embryo Fibroblasts (MEFs) 

The mother mouse was sacrificed by the technicians in the animal house. She was 

brought to a tissue culture hood where she was attached securely with pins at her hands 

and feet with her stomach facing upwards and she was sprayed with ethanol profusely. 

The womb/stomach was cut open with scissors and the two placentas containing the 

embryos were pulled out and put in a 10 cm sterile dish with cold sterile PISS. With the 

help of two tweezers each embryo was dissected out of its placenta bag. The head of 

each embryo was removed and put in fixing solution. All red organs were removed and 

put in an eppendorf tube with lysate solution. The renlainings of each embryo was put 

in a clean 10cm dish and was cut tip with a scalpel until it was a monolayer. 2 ml of 

trypsin was added and the embryonic cells were put in the incubator for 30-45 minutes. 

12 ml of growth medium containing foetal calf serum was added to the trypsinized cells 

and resuspended gently. The resuspended cells were put in a I5 ml falcon tube. The 

supernatant was added to a 225cm flask (Corning Incorporated) and left overnight in the 

37 C incubator. Once confluent the mouse embryo fibroblasts (MEFs) were split 1: 3 
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and then frozen down. The red organs were used to determine the genotype of each 

embryo by PCR. 
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2.2. Methods 

2.2.1. Tissue Culture 

Basic Media 

RPMI 1640 and Dulbecco's Modified Eagle's Medium (DMEM) were from Gibco- 

BRL, UK and stored at 4 T. 

Media supplements 
Foetal calf serum (FCS) was purchased from PAA Laboratories and tested for its ability 

to support growth of various cell lines. It was heated inactivated for 30 minutes at 55 °C 

and stored at -20 °C in 50 ml aliquots. 

L-Glutamine was purchased from Gibco-BRL at a 200mM concentration stored at -20 
°C and used at a final concentration of 2 mM. 

Penicillin / Streptomycin were purchased from Gibco-BRL at 1000,000 unit/ml stored 

at -20 °C and used at a final concentration of 200 units/ml. 

Maintaining cell lines 

All the cell lines are cultured in the Complete Medium (DMEM or RPMI 1640) 

supplemented L-Glutamine, penicillin / streptomycin and 10% (v/v) of foetal calf 

serum) in the flasks or dishes (Falcon) maintained in the Heraecus incubator at 37 °C in 

the presence of 10% CO2. Medium was changed every 3-5 days depending on the cell 

lines. On reaching confluence, the cell were washed once with 1X PBS and incubated 

with 2-4 ml pre-warmed Trypsin-EDTA (Gibco, BRL) at 37 °C until the cells detached 

from the flasks or dishes. Trypsin was inhibited by addition of an appropriate volume of 

fresh growth medium and this culture was then seeded on to fresh flasks or dishes at the 

desired density. 

Freezing / Thawing of cells 

Cells were seeded the day prior to freezing at a density such that they would be 70% 

confluent on the day of freezing. Cells from the growing culture were detached by 

trypsinising with 0.5 ml Trypsin-EDTA then resuspended in 2 ml of freezing medium 
(10% v/v of DMSO, 90% v/v of FCS in DMEM) to the dilution around 1-5 x10' cells 
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per ml. 1 ml aliquots of the cells suspensions were transferred into 2m1 freezing 

ampoule (Corning). The vials then labelled and cooled at the rate of 1 °C per minute in a 

Nalgen Cryo 1 °C freezing container or in a tissue-insulated polystyrene box when 

placed in a -80 °C freezer (New Brunswick Scientific) for at least 24 hr before being 

transferred to liquid nitrogen tank for long term storage. 

To thaw cells from liquid nitrogen stock, vials were placed in the 37 °C water bath for 2 

minutes and then transferred to a 6cm or 10cm dish with the appropriate pre-warmed 

fresh growth medium and kept in the 37 °C incubator overnight for recovering. 

2.2.1. DNA Techniques 

Bacterial strains and culture 
The Escherichia coli strains DH5a or BL21 were used as host strains for plasmid DNA. 

Bacteria were cultured at 37 °C in 2X TY broth with appropriate antibiotic (such as 100 

yig/ml Ampicillin) according to resistance gene carried by the plasmid DNA for 

selection of transformed bacterium. Both the broth and the bacterial plates were 

supplied by the Laboratory services. 

Preparing competent bacterial cells 

A single colony of the required E. co1i strain was picked from 2x TY plate and 

inoculated in 3 ml 2x TY without any antibiotics and cultured at 37 °C with shaking 

overnight. 1 ml of this culture was use to inoculate a 500 ml 2x TY flask without 

antibiotics and incubated at 37 °C with shaking for about 2-3 hr, the OD at 600 nm was 

measured at appropriate intervals till reaches 0.95. The cells then were pelleted for 5 

minutes at 490 g (IEC PR-7000) at 4 °C and washed with 10 ml of sterile ice-cold 

solution containing 80 mM CaCl2 and 50 mM MgC12. The bacteria were pelleted again 

then resuspended in 10 ml sterile cold 0.1 M CaCl2 (to a final concentration of 5x 109 

cells /ml) and incubated on ice for 20 minutes. After the addition of sterile-filtered 50% 

glycerol, the bacteria cells were aliquoted into sterile Eppendorf tubes and snap frozen 

on dry ice/ethanol. The tubes were then stored at -70 °C. Freezing and thawing the same 

aliquot was avoided. 
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Transformation 

The competent cells were thawed on ice. The desired plasmid DNA (100 ng) was added 

to the vial of competent cells, and this was incubated on ice for 30 minutes. The bacteria 

were subjected to heat shock for 52 seconds at 42 °C in a water bath, then incubated on 

ice for another 2 minute. 500µl of 2x TY without antibiotics was added to the 

Eppendorf tube and left to shake at 37 °C for 30 minutes to 1 hr before plating on 2x TY 

plates with an appropriate antibiotic. Plates were then incubated at 37 °C overnight. 

Small scale preparation of plasmid DNA (mini-prep) 

A single bacterial colony was inoculated in 3 ml of 2X TY/antibiotic medium in a 

sterile test tube. The medium was shaken at 37°C for 16 hours then 2 ml was removed 

and centrifuged at 3000 rpm, at 4°C for 2 minutes (eppendorf 5417R centrifuge/F-45- 

24-11 rotor). The supernatant was discarded into bleach and the pellet resuspended in 

300 pl of Qiagen Solution 1. Subsequently 300 pl of Solution 2 was gently mixed in by 

inverting a few times and left for 5 minutes at room temperature. 300 pl of Qiagen 

Solution 3 was added on ice, mixed and left for 5 minutes. The mixture was then 

centrifuged (eppendorf 5417R centrifuge/F-45-24-11 rotor) at 14000 rpm at 4°C for 10 

minutes and the supernatant removed to a fresh eppendorf and mixed with 650 p1 of iso- 

propanol. The solution was inverted a few times to mix and then was centrifuged at 

14000 rpm for 10 minutes at 4°C. The supernatant was discarded carefully so as not to 

disrupt the pellet. 500 p1 of 70% ethanol was used to wash the pellet twice. The DNA 

was dried in a DNA speed vaccum (Savant DNA 10) at high speed and high 

temperature for 10 minutes. 50pl of TE buffer was added to resuspend the DNA pellet 

and the concentration measured by OD260 or gel analysis. 

Large scale preparation of plasmid DNA (maxi-prep) 

A single bacterial colony was inoculated in 5 ml of 2X TY/antibiotic medium in a 

sterile test tube, and shaken at 37°C for 4 hours. The resulting bacterial suspension was 

used to inoculate a 250 ml flask of 2X TY/antibiotic medium and shaken for a further 

16 hours at 37°C. The cells were spinned down at 3000g for 10 minutes at 4°C (Sorvall 

RC 5C Plus, rotor SLA-3000). The large scale DNA preparation was carried out 

according to Qiagen Qiafilter Maxi DNA kit protocol. 
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Phenol: chloroform extraction 

Phenol saturated in TE was mixed in a 1: 1 ratio with chloroform. The DNA solution to 

be purified was added to the phenol: chloroform solution at a 1: 1 ratio and vortexed. The 

aqueous phase containing the DNA was separated from organic phase containing 

impurities by centrifugation at 14000 rpm (Eppendorf Centrifuge 5415C) for 2 minutes 

at room temperature and transferred to fresh tubes. This procedure was carried out twice 

with phenol: chloroform and once with chloroform alone in the same way. DNA was 

precipitated from the aqueous phase solution by addition of 1/10 volume of 3M sodium 

acetate to a final concentration of 0.3 M followed by 70% of the total volume of 

isopropanol. The DNA was pelleted by centrifugation at 14 000 rpm for 30 minutes at 

4°C and washed twice with 70% of ethanol and air-dried before resuspension in an 

appropriate buffer (TE, pH 8.0). 

Concentration determination of DNA 

DNA preparations were diluted 1: 500 in double distilled H20(ddHZO) and the optical 

density (OD) at 260 nm was measured against a ddH2O blank in a spectrophotometer 

(Perkin Elmer). If a DNA preparation is pure, the ratio of OD 260/OD 280 should be 

around 1.8. In some cases, quantity and purity was also checked by running it on a 

agarose gel against a DNA marker of known quantity 

Agarose gel electrophoresis 
DNA samples were mixed with 5xDNA loading buffer to a final concentration of lx 

before being resolved on appropriate percentage of agarose gel according to the size of 

the DNA bands to be visualised. The gels were made with TAE buffer containing 

ethidium bromide and run at 60-80 V with DNA makers. The ethidium bromide- 

incorporated DNA bands were then visualised under UV-irradiation. 

Cloning 

DNA was subcloned following the standard method as described (Sambrook et al., 
1989). DNA was digested with suitable restriction enzymes and resolved on a gel. The 

required band was excised and purified using the Qiagen PCR purification kit. The 

DNA was then ligated into the linearised, dephosphorylated and purified vectors. 
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Restriction digestion of DNA 

1 pg of DNA was incubated with the appropriate amount of enzyme (5 U/ 1 pg of 

plasmid DNA) with the respective buffer in a reaction volume of 25 P1 and incubated at 

37 °C for 3 hours to overnight. Larger quantities of DNA were digested in scaled up 

procedures. 

Dephosphorylation 

Linearised vector DNA (2.5 pg) was treated with 5U / pg of plasmid DNA of calf 

intestinal alkaline phosphotase (CIAP) in the appropriate buffer in a total reaction 

volume of 50 p1. The reaction was incubated for 2 hours at 37 °C to remove 5' 

phosphate ends to prevent self-re-ligation. 

Ligation 

Ligations were set up with approximately 5 fold excess of insert DNA to vector, using 

T4 DNA ligase (400 U/1 yg recovered vector). Reactions were incubated at room 

temperature for 2 hours or overnight at 15 °C, then used to transform highly-competent 

bacteria cells (DH5a strain) which were then plated out on media with the selectable 

antibiotic. 

RNAi cloning 

RSUPPRESSOR vector 

All inserts in the pSUPPRESSOR vector start with the sequence TCGAG followed by a 

gene-specific insert 19-nucleotide sequence which is separated by a 9-nucleotide non- 

complementary spacer (ttcaagaga) from the reverse complement of the same 19- 

nucleotide sequence. All inserts end with a string of six T nucleotides. 

In the case of H-Ras-pSUPPRESSOR, the 19 nucleotides insert corresponds to 

nucleotides 299-315 downstream of the transcription start site. 

The H-Ras forward primer: TCGAG TC AAA CGG GTG AAG GAC TC ttcaagaga 

GA GTC CTT CAC CCG TTT GA ttttttt 

The H-Ras reverse primer: CTAG aaaaa TC AAA CGG GTG AAG GAC TC 

tctcttgaa GA GTC CTT CAC CCG TTT GA C 

In the case of K-Ras-pSUPPRESSOR, the 19-nucleotide insert corresponds to 

nucleotides 25-43 downstream of the transcription start site. 
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The K-Ras forward primer: TCGAG GTT GGA GCT GGT GGC GTA G ttcaagaga 

CTA CGC CAC CAG CTC CAA C ttttt 

The K-Ras reverse primer: CTAG aaaaa G TTG GAG CTG GTG GCG TAG 

tctcttgaa C TAC GCC ACC AGC TCC AAC C 

pSUPER vector 
The same inserts were used as for pSUPPRESSOR with the minor difference that the 

sequences have slightly different tags for the forward and reverse primers. The forward 

primer has the 5' tag GATCCCC before the appropriate gene insert, followed by the 

same non-complementary sequence (ttcaagaga) before the reverse complement of the 

sequence and ends with TI1TT GG AAA. The reverse primer has the tag AGC TTTT 

CC AAAAA, followed by the appropriate gene insert, including the non- 

complementary sequence, and ends with GGG. 

Site-directed mutagenesis 

Two complimentary oligonucleotides containing the desired mutation flanked by 

unmodified nucleotide sequence were synthesised. The mutants were made following 

the QuickChange® Site-Directed Mutagenesis Kit protocol (Stratagene). A series of 

sample reactions using various concentrations of dsDNA template ranging from 0-50ng 

was performed: 

Reagent Concentration 

lox reaction buffer 5 pl 

dsDNA template (53BP2) 0-50ng 

Primer 1 125 ng 

Primer 2 125 ng 

DNTP mix 1 PI 

ddH2O final volume of 50 pl 

Pfu turbo DNA polymerase 1 pl (2.5 Units/pl) 

The primers used to make ASPPI mutant (S671 A 

Forward: CTG CCA CGG CCA CTC GCC CCC ACC AAG CTC ACG 

Reverse: CGT GAG CIT GGT GGG GGC GAG TGG CCG TGG CAG 
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The primers used to make ASPPI mutant (S746A): 

Forward: ACC CCT TTC TAC CAG CCC GCC CCC TCC CAG GAC TCC 

Reverse: GAA GTC CTG GGA GGG GGC GGG CTG GTA GAA AGG GGT 

For ASPP1 mutants, the primers described above were set up in a PCR reaction: 

Temperature Time 

1 cycle 
94°C 2 minutes 

2-3 cycles 

94°C 1 minute 

35°C 1 minute 

68°C 10 minutes 

16-18 cycles 

94°C 1 minute 

58°C 1 minute 

68°C 10 minutes 

1 cycle 

68°C 20 minutes 

4°C 00 

The primers used to make ASPP2 mutant (S698A): 

Forward: CCT CGG CCA CTC GCC CCA ACT AAA TTA CTG CC 

Reverse: GG CAG TAA TTT AGT TGG GGC GAG TGG CCG AGG 

The primers used to make ASPP2 mutant (S736A. S737A): 

Forward: GG CCT CTA AAG AAA CGT GCG GCT ATT ACA GAG CCA GAG 

GGT CC 

Reverse: GG ACC CTC TGG CTC TGT AAT AGC CGC ACG TTT CTT TAG AGG 

CC 

175 



The primers used to make ASPP2 mutant (S827A): 

Forward: CT GAC ATG CCA GCT CCT GCT CCA GGC C17 GAT TAT GAG CC 

Reverse: GG CTC ATA ATC AAG GCC TGG AGC AGG AGC TGG CAT GTC AC 

For ASPP2 mutants, the primers described above were set up in a PCR reaction (note 

that the mutants were not made in full length ASPP2 but in ASPP2 fragment (694- 

1128)). 

Temperature Time 

1 cycle 

95°C 30 seconds 
12-18 cycles 

95°C 30 seconds 
55°C 1 minute 

68°C 14 minutes 

I cycle 
68°C 7 minutes 

4°C 00 

The efficiency of the PCR reaction was analysed by gel electrophoresis and 1 µl of Dpn 

I restriction enzyme (10 units/µl) was added directly to each successful PCR reaction. 

The reaction mixtures were incubated for 1 hour at 37°C to digest the parental 

supercoiled dsDNA. 

An aliquot of the digested PCR product was used to transform super-competent bugs 

and maxi-prep the colonies containing the mutant DNA. 
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General conditions for PCR Cycles 

Temperature Time 

I cXcle 

94 °C 7 min 
35 cycles 

94 °C 30 seconds 

52 °C 40 seconds 

72 °C 2 mins/Kb 

1 cycle 
72 °C 10 min 

4 °C 00 

PCR products were resolved on a 1.5% agarose/TAE gel at 80V for 1-2 hrs. 

2.2.3. RNA Manipulations 

Total RNA was isolated using RNAzol'r"'B. Pellets of 10' cells were resuspended in 2m1 

of RNAzol'B (which contains guanidium thiocyanate for cell lysis). 0.2m1 of 

chloroform was added and the sample was vortexed before incubation on ice for 5min. 

After centrifugation at 12000g (4°C, 30min), an equal volume of isopropanol was added 

to aid precipitation of RNA. RNA quality was checked by electrophoresis on a 1% 

agarose/TAE gel. RNA was used in a cDNA synthesis reaction using the ProSTAR 

Ultra HF RT-PCR system (Stratagene). A 10ml reaction consisted of the following 

reagents: 

Reagent Concentration 

1OxRT buffer 10mM Tris-HCI (pH8.8), 50mM Kcl, % Triton® X-100 

dNTP's 1 mM each dNTP 

RNA 0.05mg/ ml 

Oligo(dT)15 Primer 0.6m1 

RNase-free water to 10 ml 
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These were incubated at 65°C for 5min. The reaction was then cooled at RT to allow the 

primers to anneal to the RNA. The following reagents are then added: 

rRNasin Ribonuclease 0.4 unit/ml 

inhibitor 

MMLV-RT 0.2 units/ml 

The tubes were then placed at 37°C and incubated for 30min. Each cDNA synthesis 

reaction was carried out in duplicate, with AMV reverse transcriptase omitted from one 

reaction as a control for genomic DNA contamination. cDNA was then stored at -20 °C 

until use. 

For the PCR reactions, 2ml of cDNA was used. All PCR reactions were carried out in a 

total volume of 25m1 with reagents (Stratagene, UK) at the following final 

concentrations: 

Reagent 

Primers 

cDNA 

MgC12 

dNTPs 

lOx Pfx amplification buffer 

Taq polymerase 

H2O 

Concentration 

2.2pmol 

2ml 

1mM 

200 mM 

2.5 ml 

0.1 ml (2.5 units/ml) 

up to 25 ml 

The PCR reactions were carried out using a Perkin-Elmer DNA thermal Cycler-480 was 

used to achieve denaturation, annealing and synthesis. 
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2.2.4. Protein Manipulations 

Affinity purification of phospho-specific antibody 
Using the peptide CPAPSpPGLDY (representing residues 824-832) with the serine 

phosphorylated as an immunogen, the rabbit polyclonal antibody S-4 which specifically 

recognizes phosphorylated ASPP2 at amino acid 827 was raised. 

0.5 g of epoxy-activated-sepharose-6B (Amersham Pharmacia Biotech) was washed 

with 50 ml of water 7 times (spinned at 3000 rpm, 5 mins in Beckman centrifuge) and 3 

times in 50 ml NaHCO3. The bed volume (approximately lml) was resuspended 1: 1 in 

NaHCO3.10 mg of peptide was then resuspended in 0.5 ml of 0.1 M NaHCO3, pH 9.0. 

The peptide was combined with the sepharose and left to rotate at 37 °C for 20 hours. 

The sepharose column was washed with 0.1 M NaHCO3 , pH 9.0 twice and was 

subsequently blocked with 5 ml of 0.1 M mercaptoethanol (diluted in water) for 2 hours 

at room temperature on a roller. The sepharose column was washed with three cycles of 

10 ml 0.2 M glycine, pH 2.8 followed by 10 ml of 0.1 M NaHCO3 + 0.5 M NaCl. 10 ml 

of serum from the final bleed was added to lml lOx TTBS and the serum was then 

clarified by centrifugation and filtered through 0.45tm filter. The antibody was 

absorbed by transferring the affinity resin to the tube (15 ml falcon tube) with the serum 

and left to rotate overnight at 4°C. The antibody and affinity column mixture was added 

to a poly-prep column (Bio-Rad) and the run-through serum was stored at 4°C. The 

column was washed extensively with lx TTBS until the flow-through had an OD280�m 

<0.01 (appromixately 200 ml). The antibody was then eluted with 5 ml of 0.2M glycine 

(pH 2.8) and neutralized with Tris-HC1 (pH 8.0). Fractions of approximately 500 µl of 

the eluted antibody were collected in 1.5 ml eppendorf tubes containing between 5-40 

µl of Tris-HCI (pH 8.0) (the optimum volume of Tris-HC1 (pH 8.0) to neutralize the 

glycine was measured just prior to elution). The first two fractions were pooled 

together, as were the third and fourth fractions. The pooled fractions were then dialized 

overnight in 5 liters of PBS at 4°C. NaN3 was added to the antibodies and they were 

stored at 4°C. The affinity column was washed extensively with 0.2 M glycine, pH 2.8 

and then washed extensively with lx TTBS, after which it was stored in TTBS and 

NaN3 at 4°C. 

179 



Sample preparation 
Cells grown in monolayers were washed three times with 1X PBS and lysed in RIPA 

lysis buffer, luciferase lysis buffer (Promega) or Ras IP buffer as indicated (150-250 µl 

per 10 cm dish). The cells were scraped with a sterile disposable cell scraper (Greiner) 

and transferred to an eppendorf tube and centrifuged at 14000 rpm, 4°C for 10 minutes 

(eppendorf 5417R). The resulting lysate was removed to a fresh eppendorf tube and the 

cell debris discarded. The lysate was removed for further analysis. 

Protein concentration determination 

The protein concentrations of cell extracts were determined using BioRad protein assay 

reagent system. 1 p1 of cell lysate was mixed with 150 pl of lx BioRad assay reagent 

and then measured at 595 nm in the spectrophotometer (Anthos Labtech instrument). 

All samples were measured in duplicates and the absorbance was compared against the 

standard curve made at the same time from known concentrations of bovine serum 

albumin (BSA; Sigma, UK) in the same solutions using the same method. 

Preparation of SDS-PAGE gels 
All plates were washed with water and detergent, dried and assembled in the casting 

trays (Pharmacia BioTech, UK). The acrylamide content of the gels varied between 8%- 

12% depending on the size of the protein of interest. The acrylamide gels were overlaid 

with 70% isopropanol solution and left to polymerise. After polymerisation, the 

isopropanol was removed and a 4% stacking gel was set with the appropriate number 

and size wells. 

SDS-polyacrylamide gel electrophoresis (PAGE) 

Known concentrations of protein were mixed with appropriate volumes of 5x SDS- 

PAGE Sample Loading Buffer and boiled for 5 min. Equal amounts of proteins were 
loaded in respective wells cast in the stacking gel. The resolving gels were made with 6- 

12% of polyacrylamide, depending on the size of the proteins to be resolved. The gels 

were resolved at 135 V for one hr in lx SDS PAGE running buffer using a Mighty 

Small II system (Hoefer) with a protein molecular weight marker 
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Immunoblotting 

Cell lysates in sample buffer were loaded onto gels and the proteins separated at a 

constant voltage of 100-250 V with a protein molecular weight marker (Rainbow 

markers, Amersham Life Science, UK or Prestained Protein Marker Broad Range, 

Biolabs). Equal amounts of protein were loaded in each lane as determined by the 

BioRad assay system, unless otherwise stated. After the samples were separated through 

the gel, the gel was transferred to a wet transfer unit and the proteins blotted onto nitro- 

cellulose membrane (Schleicher and Schull, Germany) for one-three hrs at a constant 

voltage of 55 V or 20V overnight in a Hoefer Transphor Electrophoresis unit. The 

membrane was then stained with Ponceau S solution to determine the success of the 

transfer of proteins and equal loading of the lanes. The membranes were then washed in 

water and incubated in 10% non-fat milk at room temperature for 40-60 minutes. The 

membranes were then ready to be probed with primary antibody at the recommended 

concentrations for 1-3 hr at room temperature or overnight at 4 °C. The blots were 

washed with large amounts of water before addition of the secondary HRP-conjugated 

antibody at the recommended concentration (generally 1: 2000) at room temperature for 

1 hr. After incubation with the secondary antibody the membrane was washed with 1x 

TBS-T extensively with repeated changes of TBS-T. The ECL was then performed 

according the manufacture's instructions (Amersham Life Science, UK). The membrane 

was covered with Saran Wrapm and exposed to Hyperfilm'"' (Amersham Life Science, 

UK) for varying lengths of time to obtain an optimal exposure. If reprobing with 

another primary antibody was required, stripping of blots was performed. Blots were 

incubated with stripping buffer and freshly added mercaptoethanol in a flat bottomed 

tray at 55°C on a shaker for 30 minutes or with the commercial stripping buffer 

(Chemicon Internaional, USA) for 15 minutes at room temperature. The blots were 

extensively washed with TBST and then blocked in 10% milk for 1 hour at room 

temperature. The blot was then reprobed with primary antibody as before. 
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Immunoprecipitation (with cell lysates) 

Cells grown in monolayers were washed three times with 1X PBS and lysed in NP40 

lysis buffer or Ras IP buffer with protease inhibitors (150-250 µl per 10 cm dish). The 

cells were scraped with a sterile disposable cell scraper (Greiner) and transferred to an 

eppendorf tube and centrifuged at 14000 rpm, 4°C for 10 minutes (eppendorf 5417R). 

The resulting lysate was removed to a fresh eppendorf tube and the cell debris 

discarded. The protein concentration was determined using the BioRad assay system. 

500-2000 pg of cell lysate was precleared with 40 Pl of 70% packed protein G beads 

(equilibrated in PBS buffer) for 30-60 minutes at 4°C on an eppendorf rotating wheel. 

The lysate was spinned at 14000rpm for 15 seconds and the supernatant was removed 

and replaced into a fresh tube. 20-40 p1 of antibody prebound to protein G beads was 

then added to the pre-cleared lysate. The mixture was left on an eppendorf rotating 

wheel overnight at 4°C. The protein G beads were collected by centrifugation at 3000 

rpm for 4 min and the supernatant discarded. The beads were washed with three 

successive changes of NP40 lysis buffer or Ras IP buffer. After removing as much 

residual supernatant as possible, the IP beads were mixed with 20-60 Pl of 5X sample 

buffer and heated at 96°C for 5 minutes. The beads were centrifuged at 14000 rpm for 

15 seconds and all or part of the sample loaded onto a SDS-PAGE gel. The separated 

proteins were Western blotted as described above. 

Protein staining on acrylamide gel 

Samples were resolved on an SDS-PAGE gel as described and the gel was then washed 

three times for 5 minutes with deionized water. Gelcode (Pearce, UK) was added to the 

gel (enough volume to cover it) and left to rock gently at room temperature for 15-90 

minutes, until the protein bands are visible. The gel was then washed extensively with 

large amounts of deionized water, then dried on a gel drier (BioRad, Model 443 or 583) 

for 60-90 minutes at 80°C. 

Small scale purification of GST-fusion proteins 

B121 or DH5a bugs were transformed with plasmids containing the GST-tagged gene of 
interest. The day after the transformation 3-6 colonies were picked and grown in 4 ml 
2x TYE and ampicillin. Protein expression was either induced in an aliquot of 1 ml with 
0.2mM IPTG (Sigma) for 2-4 hours or not induced as a control. The cells were pelleted, 
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sonicated and spun at 14 000rpm (5417R centrifuge) at 4°C for 10 minutes. 20 µl of the 

supernatant was added to 6x SDS-PAGE sample buffer and resolved on an acrylamide 

gel. A western blot was performed for the protein of interest and the colony expressing 

the largest amount of protein afer IPTG induction and having the least leakage was used 

for a large-scale purification. 

Large scale purification of GST-fusion proteins 

The colony of interest was grown in 250 ml 2xTYE with ampicillin overnight in a 

shaker at 37°C. The next morning the bacteria were divided 1: 10 and grown for 1 hour 

at 37°C. 0.2 mM IPTG was used to induce protein expression for 3 hours at 30°C. The 

cells were pelleted for 10 minutes at 4000g, 4°C (Sorvall RC 5C Plus, rotor SLA-3000) 

and resuspended in 50 µl per 1 ml of culture in either cold PBS or in the case of Ras in 

cold GST lysis buffer. The resuspended cells were sonicated (Sonicator Ultrasonic 

Processor XL, Heart Systems) 3 times for 45 seconds with 1 minute between each burst 

and kept on ice throughout sonication. The lysate was spun at 10 000g for 10 minutes at 

4°C and the supernatant was poured in a 15 ml falcon tubes. 500 d of Glutathionine 

Sepharose® 4B beads (Pharmacia Biotech AB, Sweden) were washed in PBS or GST 

lysis buffer three time (3000 rpm, 3 minutes in a 5417R centrifuge) and resuspended in 

500 µl of the appropriate buffer. The resuspended beads were added to the supernatant 

and inverted for 30-60 minutes at 4°C. After binding the beads were spun down, the 

supernatant removed and the beads washed 3 times with either 5 ml of PBS or GST 

lysis buffer without PMSF to remove unbound proteins. 

Removing purified protein from GST tag with thrombin 

Approximately 500 µl of the purified GST-protein attached to the Glutathionine 

Sepharose® 4B beads (Pharmacia Biotech AB, Sweden) were resuspended in an equal 

volume of thrombin buffer. Bovine thrombin (Sigma) was added at a concentration of 5 

units/ml and incubated with inversion overnight at 4°C. The beads were spun briefly 

and the supernatant was transferred to a fresh microfuge tube. The beads were washed 

with 500 µl of thrombing buffer and the supernatant was combined with the first 

supernatant. 10 µl of P-aminobenzamidine-agarose beads (Sigma) was added to the 

supernatant to remove the thrombin and the sample was incubated with inversion for 30 

minutes at 4°C. The beads were spun briefly and the supernatant transferred to a fresh 
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tube. The supernatant was then dialyzed overnight in 5 litres of dialysis buffer in the 

cold room. After dialysis, the supernatant was concentrated in centricon 10 tubes 

(Millipore) by spinning at 3700 rpm in Beckman Coultier for 65 minutes at 4°C. To 

collect the concentrated, cleaved purified protein the tubes were inverted and spun at 

2000 rpm for 2 minutes. A sample of each stage was resolved on an SDS-PAGE gel and 

stained with Gelcode (Perbio Science, UK) to check the efficiency of cleavage and 

removal of thrombin. 

Loading Ras with GDP/GTP 

2.5 µg of recombinant protein purified from Escherichia coli was incubated in a total 

volume of 320 µl assay buffer containing 2 iCi [3H] GDP or [3H] GTP in a water bath 

for 10 minuts at 30°C. 2 µl of each sample was put on a blot paper and was added to 5 

ml scintillation liquid (Ecoscint A, National Diagnostics), inverted several times and 

left to stand for 2 hours. Its tritium content was measured using the LS 6500 Multi- 

Purpose Scintillation Counter (Beckman Coulter, USA) to check the equal loading of 

GDP and GTP. 

2.2.5. Cell-based assays 

Cell transfection 

Adherent cells were split to a confluence of between 70-80% in fresh medium. 
Typically a 60 mm dish had 7x 105 cells of Saos2 or 4.5 x 105 of U2OS cells plated 24 

hours prior to the transfection procedure. 15-30 minutes before the transfection the 

medium on the dishes was replace with 2.5 ml of fresh medium. 2X HBS buffer was 
diluted in sterile water to a concentration of 1X and a volume of 250 PI per 60 mm dish 

placed in sterile eppendorf tubes. The required amount DNA was added using sterile 
Gilson tips and mixed thoroughly. To form the precipitate, 12.5 PI of 2.5 M CaC12 was 

added to the transfection mix and left at room temperature for 12-15 minutes. After this 

time the mixture was added drop-wise in the tissue culture hood to the cells and the 
dishes replaced in the incubator for 6 hours. The medium was removed and a wash of 
DMEM medium without fetal calf serum was applied to the cells. Finally 5 ml growth 
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tissue culture medium was added to each dish and the cells were left for 24 hours as a 

transient assay. 

Flow cytometry analysis 
The method was carried as described before (Hsieh et al., 1997a). Briefly, transfection 

was carried out using the calcium phosphate method. 2x 106 Saos-2 cells were seeded 

48 hours before transfection. They were transfected with the respective amounts of 

plasmid, normalised with empty vector and co-transfected with the selectable CD20 

marker with one control dish not transfected with CD20. After 36 hrs both attached and 

floating cells were harvested using 4 mM EDTA, washed and pelleted by centrifugation 

at 490 g. Cells were then resuspended in complete medium containing FITC-conjugated 

anti-CD20 antibody (Becton Dickson, CA, USA) and incubated for one hr on ice in the 

dark. The cells were then washed once with PBS and fixed with 70% methanol 

overnight at 4°C. The methanol was washed away and the cells resuspended in lx PBS 

containing propidium iodide (50 µg/ml) and RNase (100 µg/ml) (Sigma) in the dark for 

one hr at room temperature. The DNA content of all the cells were analysed by FACS 

(FACSort, Becton Dickson) as described [Hsieh et al., 1997 J. 

Immunocytochemistry 

Monolayers of cells were grown in on sterile glass coverslips in 24-well plates or 30 

mm dishes. The cells were washed with lx PBS and fixed with an appropriate volume 

of 4% para-formaldehyde for 15 minutes at room temperature and then washed in 1X 

PBS. 0.2% Triton-X100 in 1X PBS was used to permeabilise the cells for 2 minutes at 

room temperature and this was washed off with three washes of 1X PBS. Primary 

antibody was prepared in tissue culture medium containing azide at the appropriate 

concentration and added to the dishes for 1-3 hours at room temperature. The dishes 

were washed with 1X PBS and the secondary antibody of either anti-rabbit or anti- 

mouse FITC (Fluorescein isothiocyanate) or TRITC (Tetramethyl rhodamine 

isothiocyanate) prepared in tissue culture medium at the manufacturers recommended 

dilution (Jackson labs) and added to the dishes for 30-60 minutes. The cells were 

washed in 1X PBS and left to air dry. Citifluor shielding agent (Citifluor, UK) or 

mowiol was applied as a drop to the slide and the cover slips with the cells attached are 

placed on top (cells facing the citifluor/mowiol). A drop of immersion oil on top of the 
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cover slip allowed the immunocomplexes to be visualised using a fluorescence 

microscope (Nikon). Images were captured on film and thus presented. Alternatively, 

immunocomplexes were visualised using a converted fluorescence microscope. 

In vivo Transcription assays 
7x 105 Saos-2 cells or 4.5 x 105 U2OS cells were seeded in 60mm dishes and 

transfected 24 hrs later using the calcium phosphate precipitation method with the 

various expression plasmids, including a luciferase reporter plasmid. Twenty-four hours 

after transfection, cells were washed twice with PBS, lysed in 150 p1 lx Reporter Lysis 

Buffer, scraped with a sterile disposable scraper (Greiner) and put in an eppendorf tube. 

The lysate was left on ice for 15 minutes before spinning them at 14000 rpm for 30 

seconds. 20 p1 of supernatant was then placed in a wash tube (Sarstedt, Germany) and 

its luciferase activity measured in an automated Luminometer (AutoLumat LB 953, 

EG&G, Berthold) using the Luciferase Assay Kit (Promega, USA). The mean values 

were calculated from at least two independent experiments. 

Protein stability analysis by cyclohexamide treatment 

Cells were either transfected with the appropriate expression plasmids or treated with 

EGF and U0126 as indicated, the day prior to cyclohexamide treatment. 

Cyclohexamide was added to cells at a final concentration of 50 µg/ml in the 

appropriate medium. Cells were harvested and lysed with the Ras IP buffer (with 

protease and phosphatase inhibitors) at the time points indicated. A Western Blot was 

performed with an aliquot of the lysates as described above. 

Pulse-chase 

Saos2 were seeded in 10 cm dishes and transfected by calcium phosphate with V5- 

tagged ASPP2 wild type or mutant in pCDNA expression plasmids and K-RasV12 in 

pEF expression palsmids as indicated. 6 hours after transfection, the precipitated were 

washed and DMEM with 0.5% FCS was added overnight. The next morning a DMEM 

solution without cysteine, methionine or glutamine (Sigma) was complemented with 

non-radioactive glutamine and 35S-labelled Methionine and Cysteine (ICN Biomedicals) 

and at a final concentration of 145 µCi/ml. This solution was added to the Saos2 cells 
for 2 hours in a 37°C incubator with 10% carbon dioxide. The radioactive medium was 
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removed from the cells and the cells were washed 3x with PBS before adding normal 

DMEM with 0.5% FCS. Cells were harvested and lysed in luciferase buffer (Promega) 

at the times indicated. The lysates were pre-cleared with sepharose-G-beads for 30 

minutes at 4°C. Pre-bound V5-sepharose-G-beads were then added to the lysates for 2 

hours at 4°C to immunoprecipitate transfected ASPP2. The V5-G-beads were then 

retrieved and PC-10-sepharose-G-beads were added to the lysates for 1 hour at 4°C to 

immunoprecipitate endogenous PCNA. The beads were washed with three successive 

changes of NP40 lysis buffer. After removing as much residual supernatant as possible, 

the IP beads were mixed with 25 ycl of 5X sample buffer and heated at 96°C for 5 

minutes. The beads were centrifuged at 14000 rpm for 15 seconds and all or part of the 

sample loaded onto a SDS-PAGE gel. The separated proteins were Western blotted as 

described above. 

Ultraviolet light treatment (UV) 

Cells were grown to sub-confluency and the medium removed and retained in a tissue 

culture hood. The monolayer of cells was exposed to 10 J M2 of ultraviolet light using a 

spectrolinker XL-1500 UV crosslinker (Spectronics Corporation). The medium was 

replaced on the cells and the dishes were placed back in a 37°C incubator with 10% 

carbon dioxide. The cells were harvested after the appropriate time points. 

2.2.7. In vitro assays 

In vitro translation of plasmids 

In vitro transcription and translation of plasmids were performed using the Promega 

TNT® T7 Quick coupled Transcription /Translation system. A typical reaction was 

carried out using 40 yil of Reaction mix containing rabbit reticulocyte lysate, reaction 
buffer, all amino-acids (except methionine), RNase inhibitors and T7 RNA polymerase 

together with 1 pg of plasmid containing the T7 promoter. Either 2 pl of 35S-Methionine 

(for radio-labelled proteins) or 1 mM Methionine (for non-labelled proteins) was added 
to the reaction mix and made up to 50 pl with nuclease-free water. This was incubated 

at 30 °C for 60-90 min. 
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Preparation of Protein G beads 

Protein G SepharoseT"' 4 Fast Flow beads (Amersham Pharmacia Biotech AB, Uppsala, 

Sweden) were washed three times with excess volume of PBS then resuspended in PBS 

at a ratio of 1: 1. For immunoprecipitations, the G-beads were pre-bound to the required 

antibody by mixing 300m1 of the 50% slurry protein G -beads, 500ml of DMEM with 

10% serum and 30 ml ascites or the required amount of commercially-available solution 

in a 1.5 ml tube. This was incubated on a rotating wheel for at least 2hrs before the 

immunoprecipitation and then washed three times with PBS. 

In vitro binding assays 

The plasmids were in vitro translated as described above or the recombinant protein 

purified as described above. If the binding was between a cold in vitro translated protein 

and a radioactive in vitro translated protein, then 2µl of RNAse (100 [ug/ml, Sigma) and 

2 µI of DNAse (10 units/µl of DNAse I, Roche Diagnostics, UK) was added to 50 µl of 

the radioactive sample for 30 minutes at 30 °C before the two samples were mixed. 5-40 

141 of reactions lysates of each in vitro translated product were mixed and allowed to 

bind at 30 °C for 1 hour. For recombinant protein, 1.5 µg of protein was used. Lysates 

were pre-cleared using 30 µl of 50% G-bead slurry for 1 hr on a rotating wheel at 4 °C. 

The supernatant of the binding reaction was transferred to a fresh Eppendorf tube and 

30 µl of the pre-bound G-beads was added and left overnight on the rotating wheel at 4 

°C. The beads were pelleted by a 4min centrifugation at 3000 rpm (Microcentur, MSE) 

at 4 °C, and washed three times with 500 µl PBS buffer. The beads were resuspended in 

20-40 µl 5x SDS-PAGE sample buffer and boiled for 5 min to release the bound 

proteins, centrifuged briefly at 14 000 rpm (Eppendorf 5415C) and then loaded on an 

SDS-PAGE gel for analysis. 

Small scale in vitro phosphorylation assay 

Purified recombinant GST-ASPP2 (693-1128) was produced as described above at a 

concentration of 1mg/ml in lx kinase buffer. 3 µl of the lOx Tris solution (50mM Tris- 

HCl pH 7.5,0.1% mercaptoethanol) was mixed with 3 µl phosphatase inhibitor 

microcystine (final concentration 1 µM). Approximately 0.03 units of kinases p38 

SAPK, PKA, PB, MAPK1, p70 and p90 were added. In the case of PKB, 2 µl of 

188 



reduced glutathione (0.2 M) was also added to the tube. This solution was mixed with 

either 2 µg of GST-ASPP2 (693-1128), 2 µg of lmg/ml recombinant H2B or 2 µl of 

water. Water was added so that the total volume was 24 t1. Seperately, 6 p. l of a 1: 1 

ratio Magnesium Acetate-ATP (either cold or 32P-labelled at 500 cpm/pmol) was 

prepared and subsequently added to the kinase mixture and put in a waterbath at 30°C 

for 30 minutes. 10 µl of sample buffer and DTT (final concentration 25 mM) was added 

to stop the reaction. The samples were boiled for 2 minutes and resolved on an SDS- 

polyacrylamide gel. 

Large scale in vitro phosphorylation assay 

This assay was performed in an identical manner to the small scale in vitro 

phosphorylation assay except for the following: The 32P-labelled ATP had 

10000cpm/pmol and the final conentration used was 100 µM. Fewer kinases were used 

and they were used at a higher concentration, namely 0.15 units of PKA, 0.35 units 

MAPK1,0.1 units p38 SAPK and 0.3 units p90 rsk. After the 30 minute incubation in 

the 30°C waterbath the reaction was stopped with sodium dodecyl sulfate (final 

concentration 1%) and DTT (final concentration 25 mM). After boiling for 2 minutes, 

4-vinyl pyridine was added to a final concentration of 50 mM and the samples were put 

back in the 30°C waterbath for another 30 minutes. Sample buffer without any DTT was 

then added and the samples were resolved on an SDS-PAGE gel. The gel was stained 

with coomassie. To destain the gel, destaining buffer was added and heated for 20 

seconds, the gel was left for 2-3 minutes to incubate in the warm buffer and discarded; 

this was repeated approximately 6 times for full destaining of the gel. The gels were 

exposed with a film and the film directed where the bands were to cut them out of the 

gel. The samples were brought to the keratin-free area. lml of MilliQ was added to the 

gel fragments and left to shake for 15 minutes at room temperature. The supernatant 

was removed and 1 ml of 50% acetonitrile in water was added to the gel and left to 

shake for 15 minutes at room temperature. The supernatant was removed before adding 

1 ml of 0.1 M ammonium bicarbonate to the gel for 15 minutes at room temperature, 

shaking. The supernatant was once again removed and 1 ml of a solution containing 

0.05 M ammonium bicarbonate / 50% acetonitrile was added to the gel for 15 minutes 

at room temperature. The supernatant was removed and the gel mashed with a mini 

teflong stick (1 stick per sample). 1 ml of 100% acetonitrile was added for 5 minutes at 
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room temperature. As much of the supernatant as possible was removed before putting 

the sample in a speed vacuum for 5 minutes to dry. lml of the trypsin solution was 

added to 16 µl of trypsin. 200 µl of this was added to each desiccated gel and left at 

30°C at room temperature, stationary. Another 200 µl of the trypsin solution without the 

trypsin was added and the samples were left on a shaker overnight at 30°C. 

Detection of immuno-complexes 

For detection of non-labelled proteins, immunoblotting was used as detailed before. For 

detection of radio-labelled proteins, the gel was fixed in Fixer Solution for 15-30 

minutes at room temperature and then incubated for 30 min with Amplify" (Amersham 

Pharacia Biotech) solution also at room temperature. This was then dried on a gel drier 

(BioRad, Model 443 or 583) at 80 °C for 90-120 min before exposure to an X-ray 

sensitive film overnight or exposure to a phosphoscreen (Molecular Dynamics) which 

was then scanned on a phosphoimager (Molecular Dynamics) using STORM860 

software. 
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2.2.8. Data Analysis 

Quantification of intensity of western blot signal 
For quantification of the signal, the Genome' machine was used to digitally capture 

the image and quantification carried out using SynGene software (SynGene, UK). 

Relative values were assigned to each peak, corresponding to the intensity of the light 

emitted by the ECL method, by giving the background (vector only lane) a value of one. 

Computer images 

All autoradiographs were scanned using the UMAX power Look II scanner and the 

Adobe photoshop 5.5 software. Images were manipulated only as a whole size, 

brightness and contrast. No signal was modified in relation to the whole image. 

Data presentation 
The mean and standard deviation between experiments are presented where applicable. 
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Chapter 3 

Activated Ras binds to and stimulates the activity of ASPP1 and ASPP2 

ý. 

3.1 Introduction 

p53 is the most commonly mutated tumour suppressor protein thus far identified. Its 

role in preventing tumour formation has been highlighted by studies in a p53 knock-out 

mouse system where the mice were shown to develop spontaneous tumours at an early 

age (Donehower et al., 1992). The importance of p53 in protecting cells from 

uncontrolled proliferation also applies in humans: Li-Fraumeni disease is caused by a 

mutation in one of the alleles of p53 and affected individuals have a strong 

predisposition to develop cancers (Srivastava et al., 1990). 

In normal cells, p53 protein levels are low due to its short half-life. Stress signals, such 

as telomere erosion, hypoxia, loss of survival signals and DNA damage can result in 

increased p53 levels, which is mediated by post-translational modifications such as 

phophorylation, acetylation and sumoylation (Brooks and Gu, 2003; Meek, 1999; 

Melchior and Hengst, 2002; Xu, 2003). Oncogenes, such as Ras, myc and E1A are also 

known to activate p53 via their ability to induce the expression of Arf and prevent 

Mdm2 mediated protein degradation of p53 (de Stanchina et al., 1998; Palmero et al., 

1998; Zindy et al., 1998). 

Activated p53 is promiscuous in its responses to stress signals: it can induce 

differentiation, DNA repair and senescence. However the two most common responses 

are cell cycle arrest and apoptosis. Most of the p53-dependent responses are mediated 

by its ability to transactivate downstream effector genes by recognition of sequence- 

specific binding sites in their promoter region (Prives and Hall, 1999), although p53 can 
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also repress transcription of a number of genes (Ginsberg et al., 1991; Ho and 

Benchimol, 2003; Kley et al., 1992; Subler et al., 1992). p53 mediates cell cycle arrest 

by the transactivation of p21,14-3-3Q and GADD45 (El-Deiry et al., 1993; Hermeking 

et al., 1997; Kastan et al., 1992b) and others. The mechanisms of inducing apoptosis are 

less clear and several downstream effectors are involved, including BAX, PIGS, PUMA, 

FAS, NOXA, and PERP to name but a few. p53 has also been shown to induce apoptosis 

in a transcription-independent manner (Caelles et al., 1994; Haupt and Oren, 1996). 

Although p53 is the tumour suppressor protein most frequenly found to be mutated in 

cancers, its mutation rate varies between different types of human cancer ranging from 

5% in leukaemia to 70% in lung cancer to 100% in medullary breast cancer. In tumours 

carrying Ras mutations, p53 is generally mutated too, for example in pancreatic, colon 

and lung tumours. In colorectal tumour models, Ras mutation is an early event while 

p53 mutation occurs predominantly in metastatic tumours. This suggests that there 

might be a selective advantage in tumours expressing mutant Ras to inactivate the 

tumour suppression function of p53. 

Recent studies demonstrated that oncogenic Ras can induce senescence and this is 

mediated by p53 and its downstream target gene p21 (Pantoja and Serrano, 1999; 

Serrano et at., 1997; Weber et at., 1999). However the tumour suppression function of 

p53 is most closely linked to its ability to induce apoptosis. It remains unclear whether 

oncogenic Ras plays a role in regulating p53-mediated apoptosis. 

The mechanism by which p53 differentiates between different cellular responses 

remained elusive until the discovery of p53 co-factors that could stimulate specific p53- 
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responses. ASPP1 and ASPP2 are two of these co-factors that have been shown to 

increase p53 transactivation of its pro-apoptotic effectors specifically (Samuels-Lev et 

al., 2001). 

The ability of ASPP1 and ASPP2 to stimulate p53-dependent apoptosis requires full 

length proteins since mutants lacking the first 120 amino acids are unable to co-activate 

p53. A BLAST search was performed with the amino terminal region of the ASPP 

proteins and they were found to contain a putative Ras-association domain. In this 

chapter, I show that Ras can bind ASPP1 and ASPP2 and that, in so doing, it stimulates 

the ability ASPP to induce p53-dependent apoptosis. 
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3.2 Results 

3.2.1. The amino terminus region of ASPP2 is necessary for its full activity 

ASPP1 and ASPP2 are known to have several regions of amino acid homology. The 

carboxy terminus contains a proline-rich region, an ankyrin repeats and an SH3 domain. 

The latter two have been shown to interact with p53 in vitro and in vivo (Iwabuchi et al., 

1994; Samuels-Lev et al., 2001). The other region of homology between the two 

proteins is in their amino terminal domain. This region contains a predicted a-helix. 

Interestingly, this amino-terminal region of ASPP2 is necessary for its full activity as a 

mutant ASPP2 lacking the first 123 amino acids was not able to increase p53 

transactivation activity to the same extent as wild-type ASPP2 (figure 3.1). This 

confirms work that had previously done in our laboratory that also showed that an 

ASPP1 mutant lacking the amino terminal region is also not as active as the wild type 

ASPP1 in stimulating p53 transactivation (Samuels-Lev et al., 2001). 
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Figure 3.1 The amino-terminal 130 amino acids of ASPP2 is crucial for its full 

activity. (A) Schematic representation of ASPP wt (top fragment) and the mutant 
ASPP2 lacking the first 123 amino acids (ASPP2 0123), bottom fragment. Both 
fragments contain a proline rich region (PXXP), ankyrin repeats and an SH3 domain 
in their carboxy-terminus. (B). Saos2 cells were transfected in 6 cm dishes with 1 µg 
bax-luciferase, 50 ng p53 and 4 µg of ASPP2 wt or ASPP2 A123 as indicated. The 

cells were harvested and lysed with the luciferase lysis buffer (Promega) and a 
luciferase assay carried out. 
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3.2.2. The amino terminal regions of ASPP1 and ASPP2 contain putative Ras- 

association domains 

Since the amino terminal regions of ASPP1 and ASPP2 are crucial to their activity, it 

was interesting to know whether that region had any homology to known domains or 

proteins. The first 300 amino acids of ASPP2 were therefore subjected to an NCBI 

BLAST search. A Ras-association domain was shown to be homologous to the first 90 

amino acids of ASPP2, in a region of ASPP2 that shares high homology to ASPPI. The 

BLAST search revealed a list of proteins that also contained the Ras-association 

domain, two of which were RGL2 and AF-6. The Ras-association domains of RGL2 

and AF-6 were aligned with the first 90 amino acids of ASPP1 and ASPP2 using the 

CLUSTAL W option of the McVector programme (figure 3.2). The residues identical or 

similar in all four proteins were highlighted in grey. Both ASPP1 and ASPP2 clearly 

contain a putative Ras-association domain. The Ras-association (RA) domain of ASPP1 

contains 22% of amino acids identity and 12% similarity to the amino acid sequence of 

a consensus RA domain. Similarly, the RA domain of ASPP2 shares 24% identity and 

11% similarity to a consensus RA domain. 
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Figure 3.2 ASPPI and ASPP2 contain a putative ras-association domain in their 
amino-termini. The first 89 amino acids of ASPNI and ASPI'2 are aligned with the 
ras association domain (RAD) of the human RGL2 and A1=-6 proteins. Residues that 
are identical or similar in those four proteins are highlighted in grey. The figure 
reveals that ASPI I and ASPI'2 have homology to the RA domain of RGI. 2 and AF-6. 
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3.2.3. Ras mutation status in H1299, U2OS and Saos2 cells 

Before analyzing the effect of Ras on ASPP1 and ASPP2, the mutation status of Ras in 

the cell lines commonly used in the laboratory, namely H1299, Saos2 and U2OS, was 

checked. RNA was extracted from each cells line and cDNA synthesised by reverse 

transcription. PCR of both H-Ras and K-Ras was performed on the cDNA of all three 

cell lines as shown in figure 3.3 and the PCR product, corresponding to the translated 

region of the Ras cDNA, was sequenced. H-Ras was found to be wild type in the three 

cell lines, as was K-Ras in Saos2 and U2OS cells. The status of K-Ras in H1299 was 

not determined. 
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Figure 3.3 Ras Inutation stalus in H1299, Saos2 and U20S. (A) and (B) Total RNA was 
isolated 1'rom H1299, Saos2 and IJ02S and cl)NA was sýntheslsed bý reverse 
transcription. As a negative control, the identical procedure was pcrl'orrncd without any 
reverse transcriptasc. PCR of' H-ras (A) and K-ras (B) %vas peffornied on the RNA with 
reverse transcriptasc ("+") and without reverse transcriptase ("-") and the PCR products 
resolved on 2(7(, agarose gels. The lel't lane is the 100bp DNA marker and the right lane 

represents a PCR done in the same conditions but with a control plasmid instead of' 
cDNA. The IICR products frorn A and B %vcrc purified and sequenced. (C). The 

sequencing results ol'the 11CR products showing the wild tý pc vs rnutant status of' the H- 
ras and K-ras cDNA. PCR product arnplification of' K-ras 1'roin H1299 RNA %%as 
unsLiccessl'ul so its status in that cell line was not determined. All other PCR products 
shown in this figure were shown to be wild type. 
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3.2.4. The amino terminus of ASPPI binds directly to Ras-GTPpreferentially to Ras. 

GDP 

Since both ASPP1 and ASPP2 have a putative Ras-association domains, the next step 

was to see if they could associate with Ras. In order to see whether there was direct 

binding, the first 308 amino acids of ASPPI were expressed in a pCRT7 vector with a 

6x histidine tag and were purified using a nickel column, whilst recombinant GST-Ras 

was expressed in a pGEX vector and purified with glutathione beads. As the GST can 

bind some proteins non-specifically, the GST epitope was cleaved off from the 

recombinant Ras using thrombin and the thrombin was removed by aminobenzamidine- 

agarose beads. Proteins from the different steps in Ras production and purification are 

shown in figure 3.4A and B. Ras is known to be bound to either GDP or GTP in vivo 

and generally interacts with its substrates in its GTP-bound form. In order to imitate the 

in vivo binding, the purified recombinant Ras was loaded with tritium-labelled GDP or 

GTP. To check the efficiency of loading, an aliquot of the Ras-GDP and Ras-GTP was 

immunoprecipitated with a Ras antibody to remove all unbound nucleotides. The 'H 

guanine nucleotide content of the immunoprecipitates was measured as shown in figure 

3.4 C. To correct for the slightly different specific activities of the GDP and GTP 

nucleotides, the mole of GDP/GTP nucleotides loaded onto Ras was calculated and 

shown in figure 3.41). The loading of GDP and GTP on to Ras was comparable. This 

was necessary if the binding of the ASPPI fragment to Ras-GDP and Ras-GTP were to 

be compared. 

The amino terminal fragment of ASPPI (1-308) was mixed with Ras-GDP and Ras- 

GTP, and the V5 antibody against the tagged ASPPI was used to immunoprecipitate the 

proteins. More Ras-GTP was immunoprecipitated by ASPPI (1-308) than Ras-GDP 
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showing a specificity in binding (figure 3.4 E). Neither Ras-GDP nor Ras-GTP were 

immunoprecipitated in the control samples with no ASPPI (1-308) present. The bands 

representing Ras-GDP and Ras-GTP immunoprecipitated by ASPPI (1-308) were 

quantified as shown in figure 3.4 F. From this experiment, it can be concluded that the 

amino terminus region of ASPPI binds directly to Ras and has a higher specificity for 

Ras-GTP than for Ras-GDP. 
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Figure 3.4 hirified amino terinitm of ASPPI binds directly to Ras-GTP with a higher 

affiniiy than to Ras-GDP. (A). A plasmid encoding GST-ras was transformed in BL21 
cells. Protein expression was induced with IPTG and the protein purified with 
glutathione beads. GST-ras was cluted from the beads (lane 1). Thrombin was added to 
GST-ras to cleave the GST tag and aminobenzamidine-agarose beads was present to 
remove the thrombin. An aliquot of the beads containing thrombin and GST is shown 
(lane 2) as well as the supernatant containing purified ras (lane 3). Ras protein was 
subsequently dialyzed (lane 4) and concentrated using a centricon column. As expected 
there was no protein present in the filtrate of the centricon (lane 5) but the ras was 
concentrated in the remainer of the centricon (lane 6). Aliquots of all stages were 
resolved on 15% SDS-PAGE gels which was partially transferred onto nitrocellulose. 
The gel was then stained with gclcodc for total protein (A). The four lanes on the 
extreme right of the gel represents a titration of BSA protein to help approximate the 
ras concentration at the final step. (B). The nitrocellulose membrane was western 
blotted for ras using the anti-ras ROI-120 antibody. (C). Loading of Ras-GDP and Ras- 
GTP. Tritium labelled GDP or GTP was added to purified ras at 30'C. To check the 
efficiency of the ras loading, an aliquot was taken and immunoprecipitated with a ras 
antibody and washed extensively before being placed on a blot paper in scintillation 
liquid. The tritium counts are shown in graph (C). Since the tritium counts of the stock 
GDP and GTP were not equivalent, the moles of GDP and GTP loaded on ras were 
calculated and shown in (D). (E). Purified ras-GDP or ras-GTP was added to a purified 
fragment of ASPPI (1-308) tagged with a V5 epitope. The sample% were 
immunoprecipitated with a V5 antibody and the samples analyzed on an SDS-PAGE 
get. A western blot was performed with a Ras antibody and a V5 antibody to check the 
amount of ASPP1 fragment. As a control, ras-GDP and ras-GTP were 
immunoprecipitated with V5 in the absence of the ASPPI (1-308) fragment as shown 
on the last two lanes. (F). Ras-GTP was immunoprecipitated by ASPPI (1-308) with a 
higher affinity than ras-GDP. The signal of the band was quantified and the values 
shown as a bar graph. 
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3.2.5. Endogenous Ras binds the amino terminus ofASPPI in vivo 

To test whether Ras can bind the amino terminus of ASPP1 in cells, ASPPI fragments 

that either contained the amino-terminus or lacked it were transfected into cells and 

enclogenous Ras was immunoprecipitated. Western blot analysis showed that only the 

fragments containing the amino terminus, namely ASPPI full length, ASPPI (1-310) 

and ASPPI (1-897), were immunoprecipitated with endogenous Ras (figure 3.5). 

ASPPI (310-1090) did not associate with Ras. This confirmed the in vitro data showing 

that Ras binds ASPP1 in its amino terminus. 
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Figure 3.5 Endogenous Ras binds the amino-tertninus of ASPPI in vivo. (A). ASPPI 
fragments were constructed, each lacking different regions of the full length protein 
as shown in schematic representation. All ASPPI fragments are V5-tagged in their 
carboxy terminus. (B). The ASPPI fragments shown in A were transfected in Saos2 
cells and the lysates were immunoprecipitated with either ras antibody or a control 
IgG antibody. The immunopricipations were resolved on an SDS-PAGE gel. Western 
blotting was performed to detect ASPPI fragments with the V5 antibodies and Ras 
with R02120 antibOCIV. 
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3.2.6. Endogenous Ras stimulated with EGF binds ASPPI and ASPP2 

3.2.6.1 Ras stimulated with EGF binds ASPP2 in an ASPP2-inducible cell line 

As shown in figure 3.5, full length ASPPI was capable of binding endogenous Ras. 

Both ASPPI and ASPP2 contain the Ras-association sequence motif and have a high 

degree of sequence similarity in that region. To test whether ASPP2 is also capable of 

binding Ras in vivo, an ASPP2-inducible cell line was used. The cells were placed in 

medium with low serum to remove the background of Ras stimulation, and endogenous 

Ras was then "activated" with epidermal growth factor (EGF) and serum to switch it 

from its GDP to its GTP form. Since Ras-GTP bound the amino terminus of ASPP1 

with a higher affinity than Ras-GDP, it was hypothesised that endogenous stimulated 

Ras would bind ASPP2 with a higher affinity than non-EGF-stimulated Ras. The EGF- 

stimulated and non-stimulated cells were induced. for ASPP2 expression by removing 

tetracycline from the medium. The lysates were immunoprecipitated by anti-Ras 

antibody and western blot analysis showed ASPP2 was co-immunoprecipitated in 

ASPP2-induced lysates (figure 3.6). There was an increase in ASPP2 association with 

Ras after cells were stimulated with EGF and foetal calf serum (FCS), suggesting that 

ASPP2 also has a higher binding affinity to Ras-GTP than to Ras-GDP. 
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Figure 3.6 Endogenous ras bimis induced ASPP2 after EGF simulation. An ASIT2 
inducible cells line made in IJ20S cells with a tet-ol'f* systern was used. The induced 

and uninduced cells were either grown in low percentage serum lor 20 hours or 
grown in 10% FCS and EGF. The lysates were immunoprecipitated with anti-ras 
antibody (238) or as a control with a non-specific IgG antibody. A western blot was 
perl'ormed on the immunoprecipitatm the presence of' ASIIIY2 detected with the 
AS11112-specific 5410 antibody and H-Ras with the R02120 antibody. 
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3.2.6.2. Stimulated endogenous Ras binds endogenous ASPPI and ASPP2 

To test whether endogenous Ras can bind endogenous ASPP proteins, Saos2 cells were 

used to immunoprecipitate endogenous ASPPI and ASPP2. Since Ras in its active form 

has a higher affinity for ASPP than in its non-active form, starved cells and those 

stimulated with EGF and foetal calf serum (FCS) were compared. 

To test the binding of endogenous Ras and ASPP in Saos2 cells, the cells were either 

starved of serum overnight or stimulated with EGF and FCS overnight. ASPP1 and 

ASPP2 were immunoprecipitated with ASPP-specific antibodies. Endogenous Ras was 

detected by Western Blot and shown to have a higher affinity to ASPPI and ASPP2 

when stimulated with EGF and FCS (figure 3.7). ASPPI. bound more strongly to active 

Ras in these cells compared to ASPP2. 
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Figure 3.7 Endogenous ras hinds endogenous ASPPI and ASPP2 after EGF 

stimulation. Saos2 cells Nvere either starved overnight in 0. 
-5(7(, 

FCS or grown in 2017c 
WS and EGF overnight. Lysates were collected and immunoprecipitatcd ýý ith either 
the ASITI polýclonal antibody ASPPI. 8 or the ASIT2 polyclonal antibody bp77. A 
Western blot Nvas performed and the presence of Ras detected Nvith the R02120 
antikod\. The ASIT proteins were detected with LX054.1 that is known to cross- 
react \\ ith both ASPPI and AS11112. 
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3.2.7. OncogenicH-RasVI2 andK-RasV12 stimulate ASPPI andASPP2 activity 

3.2.7.1. ASPP2 activity is stimulated by oncogenic H-RasV12 and K-RasV12 

Given that ASPPI and ASPP2 have been shown to bind stimulated Ras in vivo, the next 

step was to see whether Ras had any effect on their activity. Since Ras in its GTP form 

is more likely to bind ASPPI both in vitro and in vivo, oncogenic Ras was used to test 

its effect on ASPP. A single point mutation of H-Ras and K-Ras in their codon 12 

changes their sequence from amino acid glycine to amino acid valine. This point 

mutation is sufficient to make the Ras protein constitutively bound to GTP, and 

therefore constitutively active (Reddy et al., 1982; Tabin et al., 1982; Taparowsky et al., 

1982). 

ASPP2 has been shown previously to increase p53 transactivation activity specifically 

on pro-apoptotic promoters. To test whether oncogenic Ras had any effect on ASPP2, a 

transactivation assay was performed with the pro-apoptotic bax-luciferase p53 reporter. 

Saos2 cells lacking endogenous p53 were transfected with p53 and ASPP2, in the 

presence or absence of K-RasV12 (figure 3.8A). It was clear from the luciferase counts 

that K-RasV12 can increase ASPP2 stimulation of p53 by approximately 2.5 fold 

(figure 3.8B). This increase of p53 activity by K-RasV12 was due to ASPP2 activity as 

K-RasV12 did not have a significant effect on p53 in the absence of transfected ASPP2. 

Although encoded by a different gene, H-Ras is very similar to K-Ras in its structure, 

function and signalling pathways. The effect of H-RasV12 on ASPP2 activity was 

therefore analyzed. A similar experiment to that described above was performed with 

H-RasV12 transfected instead of K-RasV12. As expected, H-RasV12 can increase 

ASPP2 activity to the same extent as K-RasV12 (figure 3.8E). 
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Mgure 3.8 H-rasV]2 and K-rasV]2 stimulate ASPP2 activity to the same extent. (A). 
Saos2 cells were transfected with 50 ng p53,4 tLg ASPF'21 and 1.5 lig K-rasV12 as 
indicated. All cells were co-transfected with bax-luciferase. The cells were harvested 

and lysed with the luciferase lysis buffer (Promega) and a luciferase assay carried out. 
The luciferase counts are shown. (B). An aliquot of luciferase samples from A were 
used for a western blot. ASPP-) was detected with the -5410 antibody, p-53 with DO- I 

and K-raV12 with R02-120 antibody. (C). The fold increase of p53 and ASPP12 

activity in the presence of K-rasV12 is shown. (D). Saos2 cells were transfected with 
50 ng p53,4 [tg ASPP'-) and 1.5 Rg of H-rasV12 as indicated. All cells were co- 
transfected with bax-luciferase. (E). The fold increase of p53 and ASPP2') luciferase 
activity in the presence of H-rasV 12 is shown. 
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3.2.7.2. Dominant negative H-rasNI 7 inhibits ASPP2 activity 

Interestingly, when a dominant negative form of H-Ras, known as H-rasN17, was 

transfected with ASPP2 and p53, the transactivation activity of p53 was inhibited 

(figure 3.9). This inhibition was via ASPP2 since H-rasN17 transfected alone with p53 

did not have such a strong inhibitory effect: H-rasN17 inhibited p53 and ASPP2 activity 

more than 4 fold whereas it inhibited p53 alone about 1.5 fold. The slight inhibition of 

p53 activity by H-rasN17 in the absence of exogenous ASPP2 might be via a low level 

of endogenous ASPP2. The fact that dominant negative Ras had an effect on ASPP2 

activity is consistent with it inhibiting endogenous Ras activity and endogenous Ras 

activity being necessary for ASPP2 stimulation of p53. Interestingly, when wild type H- 

Ras was co-transfected with ASPP2 and p53 it did not have any effect on their activity. 

The levels of Ras bound to GTP or GDP is tightly regulated in cells and increasing the 

amount of total Ras by transfection does not necessarily lead to increased levels of Ras- 

GTP in cells, which could explain why wild-type H-Ras had no effect on ASPP2 

activity. 
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Figure 3.9 Ont-ogenic H-rasV12 increases ASPP2 artivit 
,y 

whereas dominant 

negative H-RasNJ7 inhibits ASPP2 activiýv. Saos2 cells were transfected with 4 ttg 
ASPP12,50 ng p53 and 1.5 Rg H-ras wt, H-rasN17 or H-ra%V12 as indicated. All cells 
were co-transfected with I gg bax-luciferase reporter. The cells were harvested and 
lysed with the luciferuse lysis buffer (Promega) and a luciferase assay carried out. 
The value of ASPP22 and p53 are taken as 1.0 to see the effect of r-as on its activity. 
The mean values were derived from two different experiments. 
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3.2.7.3. Both ASPPI and ASPP2 are stimulated to the same extent by H-RasVJ2 and K- 

RasVl2 

Since both ASPP1 and ASPP2 bind Ras, it was hypothesised that oncogenic Ras could 

stimulate ASPPI activity as well as ASPP2. Saos2 cells were co-transfected with p53 

and ASPPI or ASPP2 in the presence or absence of H-RasV12 or K-RasV12. As is 

shown in figure 3.10A, both ASPPI and ASPP2 were stimulated by H-RasV12 and K- 

RasV12. Although it might seem that ASPPI was not stimulated to the same extent as 

ASPP2, this was due to the fact that ASPP1 was not as strong a p53-activator as ASPP2 

so the basal synergy with p53 was less pronounced: 5-fold synergy with ASPPI 

compared to 20-fold synergy with ASPP2 over p53 alone. In order to see the effect of 

H-RasV12 and K-RasV12 on ASPPI and ASPP2, the synergy of ASPPI/2 and p53 was 

taken to be 1 and the fold increase by oncogenic Ras calculated (figure 3.10Q. Both H- 

RasV12 and K-RasV12 stimulated ASPPI and ASPP2 activity to the same extent, 

namely 2.5-fold. 
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rasV12. (A). Saos2 cells were transfected with 50 ng p53 and 4 ýtg of ASPPI or 
ASPF"-. 1.5 tLg of H-rasV12 or K-rasV12 was co-transfected where indicated. All 
samples were co-transfected with bax-luciferase. The cells were harvested and lysed 
with the luciferase lysis buffer (Promega) and a luciferase assay carried out. (B). 
After 20 hours cell lysates were prepared. An aliquot was resolved on 10% SDS- 
PAGE gel for western blotting for ASPPI and ASPP22 with the V5 antibody, p53 with 
the DO-1 antibody and transfected H-rasV12 and K-rasV12 with the HA antibody. 
PCNA was used as a loading control (PC-10 antibody). The numbers above the gel 
are equivalent to the numbered samples shown in A. (Q. The left part of the graph 
shows the fold increase of ASPPI and p-53 in the presence of H-rasV12 and K- 
rasV 12. The right part of the graph shows the fold increase ot'ASPF"- and p53 in the 
presence of H-rasVl2 and K-rasV]2. The mean values are derived from three 
independent experiments for ASPPI and ASPF'21- 
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3.2.8. Oncogenic Ras does not confer increased reporter specificity to ASPP2 

ASPP1 and ASPP2 are known to induce p53 transactivation specifically on promoters 

of pro-apoptotic genes (Samuels-Lev et al., 2001). Since oncogenic Ras can increase 

ASPP activity, I tested whether only pro-apoptotic genes were stimulated by ASPP2 

and Ras. Three different p53 reporters were compared: bax-luciferase and PIG3- 

luciferase, both of which are pro-apoptotic, and Mdm2-luciferase which acts as a p53 

negative regulator and is not involved in apoptosis. Saos2 cells were transfected with 

ASPP2 and p53 in the presence or absence of wild-type H-Ras, dominant negative H- 

rasN17 and oncogenic H-RasV12 (figure 3.11A-C). Interestingly, with all three 

reporters dominant negative Ras was able to reduce ASPP2 activity and oncogenic Ras 

stimulated ASPP2 activity. Wild type H-Ras did not have any effect on ASPP2 and p53 

activity in any of the reporters. 

Oncogenic Ras stimulated ASPP2 activity 2-3 fold irrespective of the p53-reporter used. 

Although the fold increase of oncogenic Ras over ASPP2 and p53 was similar in all 

reporters used, the fold over p53 showed a difference in the reporters. For the pro- 

apoptotic reporters, the counts of co-transfected ASPP2, p53 and H-RasV12 was 

between 35-90 fold over the counts of p53 alone. This contrasted sharply with the 

Mdm2-reporter which had a mere 8-fold increase in the presence of ASPP2, p53 and H- 

RasV12 compared to p53 alone. Although the fold of ASPP2 stimulation by oncogenic 

Ras was always 2-3 fold, the intrinsic selectivity of ASPP2 for pro-apoptotic genes was 

retained (figure MID). As in the other experiments, the stimulation of p53 by 

oncogenic Ras was probably via ASPP2 since p53 without co-transfected ASPP2 was 

not stimulated to the same extent by oncogenic Ras. 
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Figure 3.11 H-rasNI 7 and H-rasV12 do not confer additional reporter specificity to 
ASPP2. Saos; 2 cclls wcrc transfcctcd with 4 gg ASPPI2 and 50 ng p53 in the presencc 
of 1.5 Rg of either H-ras wt, H-RasN 17 or H-rasV 12 as indicated. The cells were co- 
transfected with bax-luciferase (A), P103-luciferasc (B) or Mdm2-luciferase (C) 

reporters. The cells were harvested and lysed with the luciferasc lysis buffer 
(Promega) and a luciferase assay carried out. The values of p53 alone were taken as 
one and all other values are shown as a fold activation over p53 alone. (D) The values 
from graphs A, B, and C were consolidated on one graph. The value of the 
transactivation p53 alone is set as one. The fold activation over p53 is shown when 
ASPP-1 is co-transfected alone or with H-rasV 12. 
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3.2.9. ASPP2 stimulation of all p53 family members is increased in the presence of H- 

RasV12 

ASPP2 has been shown to synergize not only with p53, but also with the other two p53- 

familY members, p63 and p73 (Bergamaschi et al., 2004). It was therefore interesting to 

know whether oncogenic Ras could increase ASPP2 stimulation of all three p53 family 

members. To answer this question, the p63 and p73 splice variants that are 

transcriptionally active, namely p63y and p73a were used. p53 and both these splice 

variants are known to transactivate bax-luciferase (Shimada et al., 1999; Zhu et al., 

1998). These p53 family members were transfected in Saos2 cells in the absence or 

presence of ASPP2. As was shown in previous publication, ASPP2 can increase the 

transactivation activity of p53, p63y and p73ot. Interestingly, when oncogenic H- 

RasV12 was co-transfected, the bax-luciferase counts increased (figure 3.12) and the 

fold increase was similar for all three members of the p53 family. 

It is known that oncogenic Ras can stimulate Arf resulting in Mdm2 being unable to 

negatively regulate p53 (Palmero et al., 1998; Pomerantz et al., 1998). However, p63 

and p73 are not believed to be regulated by Mdm2 nor Arf. The fact that H-RasV12 can 

increase ASPP2 stimulation of all three p53 family members indicates that its effect is 

probably independent of Arf. 
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FIgure 3.12 Oncogenic H-rasV12 increases ASPP2 stimulation of all p53 family 

members. (A). SaOs2 cells were transfected with ASPP2 and co-transfected with p53, 
p63y or p73(x in the presence or absence of H-rasV12. All samples were co- 
tra, nsfected with bax-luciferase. The cells were harvested and lysed with the luciferase 
lysis buffer (Promega) and a luciferase assay carried out. (B). The samples shown in 
A were resolved on an SDS-PAGE gel and western blotting was performed. The 

numbers on the top of the gel represents the numered sample shown in A. The blot 

was probed with the V5 antibody to detect A SPP22, the HA antibody to detect p73 and 
H-rasV 12, the 4A4 antibody to detect p63, DO- I for p53 and PC- 10 for PCNA. (C). 
The graph shows the told increase over ASPF"- and the p-53-family members by H- 

rasV 12. 
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3.2.10. ASPP2 co-localizes with H-RasV12 and K-RasV12 

Since ASPP2 has been shown to associate with activated H-Ras, it is likely that they co- 

localize in cells. U20S cells were transfected with ASPP2 and either K-RasV12 or H- 

RasV12, and the cells were stained for the transfected proteins. ASPP2 was found 

predominantly in the cytoplasm and the plasma membrane, although some protein was 

occasionally seen in the nucleus. When Ras was co-transfected, ASPP2 and oncogenic 

Ras co-localized on the plasma membrane (figure 3.13). Interestingly, although Ras is 

known to be found predominantly at the plasma membrane, the staining of H-RasV12 

and K-RasV12 often showed diffuse staining throughout the cell, although it was 

particularly strong around the plasma membrane. 
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Figure 3.13 H-rasV12 and K-rasV]2 co-localize with k5PP2 on the cell nWmbrane. 
U20S cells were transfected with ASPP2 and H-rasV 12 or ASPPI- and K-rasV 12 (as 
shown on left lane). The cells were fixed and doublc-stained with the ASPF"- 
monoclonal mouse antibody 5410 and the Ras monoclonal rat antibody 259. The 
ASPP12 antibody was detected with TRITC label and the ras with FITC label. The 
staining was visualized by confocal microscopy. 
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3.2.11. K-RasV12 changes the sub-cellular localization qfASPPI 

Since both ASPPI and ASPP2 can associate with activated Ras and since ASPP2 can 

co-localize with Ras, it was expected that ASPPI would show a similar co-localization 

pattern with oncogenic Ras. However, ASPPI did not act like its family member 

ASPP2 in the presence of K-RasV12. ASPPI transfected alone gave a diffuse pattern 

throughout the cytoplasm with some small dots throughout. Unlike ASPP2, however, 

ASPPI was not present in the plasma membrane even when K-RasV12 was co- 

transfected. Surprisingly, the co-transfection of K-RasV12 led to a dramatic change of 

ASPPI sub-cellular pattern. ASPPI was still present in the cytoplasm but was expressed 

at higher levels and the cells stained much more brightly for ASPPI (figure 3.14). In the 

presence of oncogenic K-RasV12, the ASPPI proteins seemed to aggregate into 

doughnut-shaped patterns in the cytoplasm and perinuclear region. Merging the staining 

of K-RasV12 and ASPPI did not show co-localization. 

This result was unexpected as ASPPI and ASPP2 showed no difference in their activity. 

Both could bind activated Ras and both are activated to the same extent by H-RasV12 

and K-RasV12. There is little known in the literature about differences in the two 

proteins; the difference in sub-cellular localization after oncogenic Ras co-transfection 

may be due to unknown functional differences. 
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FIgure 3.14 ASPPI sub-cellular localization changes in the presence of K-rasV]2. 
U20S cells were transfected with ASPPI alone or ASPPI and K-rasV12 (as shown 
on left lane). The cells were fixed and double-stained with the V5 monoclonal mouse 
antibody against ASPPI and the Ras monoclonal rat antibody 259. ASPPI was 
detected with TRITC and ras with FITC. The staining was visualized by confocal 
microscopy. 
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3.2.12. Oncogenic Ras can transactivate pro-apoptotic genes via endogenous p53 and 

ASPP 

So far, the effect of oncogenic Ras on pro-apoptotic reporters has been demonstrated 

using exogenous ASPP and p53. To investigate whether oncogenic Ras can stimulate 

endogenous ASPP and p53 activity, a different system was used. MCF7 and U20S cells 

both contain wild-type p53 and are known to have reasonably high levels of 

endogenous ASPPI and ASPP2. Those cells were transfected with H-RasV12 and K- 

RasV12 in the presence of bax-luciferase in the case of MCM cells and with PIG3- 

luciferase in the case of U20S cells (figure 3.15A and B, respectively). Both oncogenic 

Ras genes were able to transactivate the p53 reporters. Interestingly, in the presence of 

published anti-sense ASPPI and anti-sense ASPP2 plasmids, the transactivation activity 

of oncogenic Ras was strongly inhibited, suggesting that it was activating the reporters 

via the ASPPI and ASPP2 pathways. To confirm this, the p53 viral inhibitor E6 was co- 

transfected and it too significantly reduced the oncogenic Ras transactivation activity. It 

has been reported that iASPP is an inhibitor of p53 by preventing its activation by 

ASPPI and ASPP2 (Bergamaschi et al., 2003b). To further test whether the oncogenic 

Ras could transactivate the pro-apoptotic reporters via ASPPI and ASPP2, the inhibitor 

iASPP was co-transfected and, as expected, it too inhibited the transactivation activity 

of H-RasV 12 and K-RasV 12. 

The anti-sense ASPPI and anti-sense ASPP2 plasmids have been shown to specifically 

inhibit ASPPI and ASPP2, respectively (Samuels-Lev et al., 2001). Anti-sense prevents 

the translation of the mRNA so it is expected that the ASPPI and ASPP2 expression 

levels would be decreased in the presence of anti-sense ASPPI and anti-sense ASPP2. 

To test this, the lysates from the transactivation experiment were used. Since the 
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transactivation lysis buffer is made with a weak detergent, both the supernatant and the 

resuspended pellet were analyzed by Western blot. Figure 3.15C showed that no 

difference in ASPPI and ASPP2 expression was detected after anti-sense transfection. 

This was most probably due to the fact that only a small percentage of the cells were 

transfected with anti-sense plasmids and the Western blot showed the ASPP levels from 

the total amount of cells. 
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Figure 3.15 H-raV12 and K-rasV12 activate endogenous ASPPI and ASPP2. (A) 
MCF7 cells were transfccted with 6 Rg anti-sense ASPPI or anti-sense ASPF'2), in the 
presence or absence of' 1.5 tig of H-rasV 12 or K-rasV 12. All cells were co-transfected 
with bax-luciferase reporter. The cells were harvested and lysed with the luciferase 
lysis buffer (Promega) and a luciferase assay carried out. (B) A similar experiment to 
A was performed in U20S cells with PIG3-luciferase reporter. The lysate was used 
l'or Western blotting and the presence of transfected H-rasV12 and K-rasV12 was 
detected with the HA antibody. (C) Ly%dtes I and 4-6 from B were Laken and the 
supernatant separated from the pellet. The pellet was further resuspended in Ix RIPA 
buffer. An equal amount of protein was loaded onto a 8% SDS-PAGE gel and 
western blotting was pcfformcd to detect ASPPI and ASPI"_ with the antibody 
LX054. I which is known to cross-react with both proteins. 
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3.2.13. Endogenous Ras is necessaryforfull ASPPI and ASPP2 activity 

3.2.13.1. Removing endogenous Ras by RNAi 

In order to examine the effect of endogenous Ras on ASPPI and ASPP2, H-Ras RNAi 

and K-Ras RNAi plasmids were constructed. Two forms of RNAi plasmids were made, 

one in the pSUPPRESSOR plasmid and the other in a pSUPER plasmid system that has 

been modified and used previously by members of our laboratory. In both cases, 

oligonucleotidenucleotides were made containing gene-specific inserts of 19 to 20 

nucleotide separated by a 9-nucleotide non-complementary spacer (ttcaagaga) from the 

reverse complement of the same nucleotide sequence. The same sequence of H-Ras and 

K-Ras was used to make the RNAi in both vector systems, namely the K-Ras sequence 

corresponding to nucleotides 25-43 downstream of the start site and the H-Ras sequence 

corresponding to the nucleotides 299-316 downstream of the start site. 

Cloning into the pSUPPRESSOR system required the oligonucleotide to have a mutated 

Sall site in its 5' end (figure 3.16A) and a HindIII site in its 3' end. The vector was 

digested with Sall and HindIII and the oligonucleotidenucleotides ligated into the 

vector. The presence of the ol i gonucleotidenucleoti des was identified by the inability of 

the plasmid to be cleaved by SaII after insertion. A similar system was used for Ras 

RNAi cloning into the pSUPER system with a BglIl mutated site in the 5' end of the 

oligonucleotide and a HindIII site in the 3' end of the oligonucleotide (figure 3.16B). 

The specificity of the two RNAi systems were tested by co-transfecting tagged HA-H- 

RasV12 and HA-K-RasV12 into cells, with the RNAi constructs (figure 3.1613). In the 

pSUPPRESSOR system, these oligonucleotides did not seem to have specificity as both 

H-RasV12 and K-RasV12 expression was reduced in the presence of H-Ras RNAi or 
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K-Ras RNAL The pSUPER system however was effective and specific: only the H-Ras 

pSUPER reduced H-Ras expression and only the K-Ras pSUPER reduced the K-Ras 

expression. Following these results, only the pSUPER system was used and all 

experiments done with Ras RNAi were done with the oligonucleotidenucleoti des cloned 

into the pSUPER vector. 
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Figure 3.16 Construclion of plasinids expressing H-ras RNAi and K-ras RNAi. (A) 
Cloning ras RNAi into pSUPPRESSOR vector. The sequence used to clone K-ras 
into pSUPPRESSOR was a 19-nucleotide sequence corresponding to nucleofides 25- 
43 downstream of the start site. Details of oligonucleotidc sequences are given in 
Materials & Methods. The H-ras RNAi construct has a 20-nucleotide sequence 
corresponding to the nucleotides 299-316 downstream of the start site. The 

oligonucleotides contain a mutated Sall site in their 5' end and a Hnd III site in their 
3' ends. The complementary oligonucleotides were first annealed and they were then 
ligated into the pSUPPRESSOR vector which had been digested with Sall and 
Hindill. The resulting constructs were digested with Sall. Those uncleaved by Sall 

contained the insert. One of each construct was selected (marked with a star) and 
used for further assays. The first lane shows a modifed pSUPPRESSOR (control) that 
can no longer be cleaved by Sall. The second lane shows a negative control: the 
parent pSUPPRESSOR that can be cleaved by Sall. 
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oligonucleotides were first annealed and they were then ligated into the pSUPER 
vector which had been digested with BgII and Hindill. The resulting constructs were 
digested with BgI 11. Those uncleaved by BgI 11 contained the insert. One of each 
construct was selected (marked with a star) and used for further assays. The first lane 
shows a modified pSUPPRESSOR (control) that can no longer be cleaved by Sall. 
The second lane shows a negative control; the parent pSUPPRESSOR that can be 
cleaved by Sall. 
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FIgure 3.16. (C) Checking RNAi efficacy. HA-H-rasV 12 or HA-K-rasV 12 were co- 
Lranslectcd with the H/K-nis pSUPER or H/K-ras pSUPPRESSOR constructs into 
Saos2 cells. 20 houn, after transfection lysates were prepared and the levels of 
transfectcd RasV 12 was detected by Western blot using anti-HA antibody. 
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3.2.13.2. Endogenous Ras is necessaryfor ASPP2 full transactivation activity 

To examine the effect of endogenous Ras on ASPP2 transactivation activity, ASPP2 

and p53 were co-transfected with H-Ras RNAi or K-Ras RNAL Two different p53 pro- 

apoptotic reporters were used, PIG3-luciferase (figure 3.17A) and bax-luciferase (figure 

3.17B). The synergy produced by ASPP2 and p53 being co-expressed was markedly 

reduced in the presence of H-Ras RNAi and modestly reduced by K-Ras RNAi, 

suggesting that endogenous H-Ras and K-Ras are necessary for full ASPP2 activity. 

Neither H-Ras RNAi nor K-Ras RNAi had any inhibitory effect on p53 alone, 

suggesting that the effect of endogenous Ras is via ASPP2. 
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FIgure 3.17 Endogenous ras is necessaryfor ASMfull transactivation activiq. (A). 
Saos2 cells were transfectcd with 4 [tg ASPI"2, a) ng p53 and 4 Rg H-ras RNAi or K- 
ras RNAi as indicated. All cells were co-transfected with PI G3- I Omer-] uciferase 
reporter. The cells were harvested and lysed with the luciferase lysis buffer (Promega) 
and a luciferase assay carried out. The upper panel shows the western blot of each 
luciferase sample represented in the lower panel. ASPP22, p53 and PCNA were 
detected by Western blot using the antibodies 54.10, DO-1 and PC-10, respectively. 
(B). The mean values are derived from three independent experiments. p53 and 
ASPF"_ are co-transfected with the PIG3-luciferase reporter in the presence or absence 
of H-ras RNAi and K-ras RNAi. The luciferase values with ASPP2') and p53 alone are 
taken as one. (C). Similar experiment to A with bax-luciferase as a reporter. 
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3.2.13.3. Endogenous Ras is necessary for ASPPI and ASPP2 apoptotic activity 

ASPPI and ASPP2 are known to induce apoptosis. Since endogenous Ras is necessary 

for ASPP2 transactivation activity it was hypothesised that endogenous Ras could also 

be necessary for ASPP2-dependent apoptosis. ASPPI and ASPP2 were therefore 

transfected into U20S and MCF7 cells (figure 3.18), both of which contain endogenous 

p53. As shown previously (Samuels-Lev et al., 2001) the percentage of apoptotic cells 

almost quadrupled in the presence of ASPPI or ASPP2. However, in the presence of H- 

Ras RNAi or K-Ras RNAi, the apoptotic activity of both ASPPI and ASPP2 was 

inhibited. 

Although the activity of ASPP2 on both the bax-luciferase and the PIG3-luciferase 

reporters was reduced by Ras RNAi (figure 3.17), the effect of Ras RNAj seen on the 

percentage of apoptotic cells was much greater. Neither H-Ras RNAi nor K-Ras RNAi 

were able to inhibit the transactivation activity of ASPP2 completely, however the 

apoptotic activity of ASPPI and ASPP2 was reduced almost to background levels by 

both H-Ras RNAi and K-Ras RNAL This might be due to the fact that many pro- 

apoptotic genes are transactivated before a cell undergoes apoptosis and a small 

reduction in the expression of several of these genes could accumulate and result in a 

significant overall reduction in apoptosis, as seen in figure 3.18. 
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Figure 3.18 Endogenoxv H-ras and K-ras can induce ASPPI- and ASPI-12-medidated 
al, )optosis. FACS analysis of' (A) U20S and (C) MCF7 cells trunsfected with 10 R8 
ASPPI or ASPP02 in the presence of 9 ttg H-ras RNAi or K-ras RNAL (B) and (D) 
Duplicates of each sample from U20S and MCF7 cells, respectively, were used for 
western blotting. ASPPI and ASPF"- were detected with the L-XO-54.1 antibody that 
cross-reacts with both proteins, and p5_3 and PCNA were detected with DO-1 and PC- 
10, respectively. These result-. are the averages of two independent experiments. This 
expenment was done in collaboration with Daniele Bergarnaschi. 
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3.2.13.4. Cisplatin-induced apoptosis requires endogenous H-Ras and K-Ras 

Cisplatin is a known DNA damaging agent and can induce apoptosis via the p53 

pathway (Fritsche et al., 1993; Fujiwara et al., 1994). It is known that ASPPI and 

ASPP2 are involved in cisplatin-induced apoptosis(Samuels-Lev et al., 2001). Since 

endogenous Ras was known to be required for exogenous ASPPI and ASPP2 apoptotic 

activity, I tested whether endogenous Ras was involved in cisplatin-induced apoptosis. 

To address this issue U20S and MCF7 cells were transfected with Ras RNAi and 

treated with cisplatin (figure 3.19). Both H-Ras RNAi and K-Ras RNAi reduced 

cisplatin-induced apoptosis by half. As a control the p53 inhibitor E6, anti-sense ASPPI 

and anti-sense ASPP2 were transfected before cisplatin treatment and they too reduced 

the percentage of apoptotic cells. Endogenous Ras therefore seems to be as necessary to 

cisplatin-induced apoptosis as endogenous ASPP1, ASPP2 and p53. 
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Figure 3.19 Endogenous H-ras and K-ras are necessar 
"v 

for cisplatin-induced 
apoptosis. (A) U20S and (B) MCF7 cells were transfected with 6 gg E6,10 Rg H- 

ras RNAi or K-ras RNAi, or 15 gg anti-sense ASPPI or anti-sense ASPP') and 
subsequently treated with 3.5 pg/ l. d cisplatin for 24 hours. Cells were collected for 
FACS analysis and the percentage of cells in SUb-G I shown above. This experiment 
was done in collaboration with Daniele Bergamaschi. 
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3.2.13.5. Endogenous Ras is involved in ASPP1- and ASPP2-mediated apoptosis in 

cells treated with cisplatin 

Although cisplatin can induce apoptosis in cells expressing p53, the percentage of 

apoptotic cells could be further increased in the presence of ASPPI and ASPP2 

(Samuels-Lev et al., 2001). Since endogenous Ras has been shown to be involved in 

ASPP-induced apoptosis (figure 3.18) and in cisplatin-induced apoptosis (figure 3.19) 

Ras RNAi might be expected to have a significant impact on cells transfected with 

ASPP and treated with cisplatin. Figure 3.20 illustrates that endogenous H-Ras and K- 

Ras are necessary for full ASPP1 and ASPP2 induction of apoptosis in both U20S and 

MCF7 cells treated with cisplatin. Removal of endogenous Ras by RNAi resulted in a 

significant reduction of apoptotic cells after ASPP transfection and cisplatin induction. 

When the expression levels of transfected ASPP were analyzed by Western blot it 

seemed that ASPPI levels increased when co-transfected with Ras RNAL This suggests 

that the inhibition of apoptosis by Ras RNAi was underestimated. ASPP2 levels 

however did not seem affected by Ras RNAi co-transfection. 
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FIgure 3.20 Endogenous ras is involied in ASPPI- and ASPP2-rnediated apoptosis in 
cells treated with cisplalin. (A) U20S and (C) MCF7 cells were transfected with 10 
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was done in collaboration with Daniele Bergamaschi. 
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3.3 Discussion 

Both ASPPI and ASPP2 have been shown here to bind activated Ras in vitro and in 

cells. Oncogenic H-Ras and K-Ras are able to increase ASPPI- and ASPP2-dependent 

co-activation of p53. Furthermore, endogenous Ras is shown to be necessary for full 

ASPPI and ASPP2 activity. 

3.3.1. ASPP1 and ASPP2 bind activated Ras in vitro and in vivo 

it has previously been shown that ASPPI- and ASPP2-dependent co-activation of the 

p53 pro-apoptotic response requires full length ASPP proteins because mutants lacking 

the amino terminus are unable to efficiently stimulate p53 (Samuels-Lev et al., 2001). 

This suggested a crucial role of the amino terminus of ASPP in regulating its activity. 

My BLAST search revealed that both ASPP proteins contained a putative Ras- 

association domain within their first 90 amino acids. A Ras-association domain is 

known to be present in several Ras and rap effectors, including AF-6, RaIGDS and RGL 

(Hofer et al., 1994; Ikeda et al., 1995; Kikuchi et al., 1994; Kuriyarna et al., 1996; 

Ponting and Benjamin, 1996). There are two groups of Ras effector proteins: those 

containing the Ras-binding domain, such as raf, and those containing the Ras- 

association domain. Although the sequence of the Ras-association domain is not 

homologous to the Ras-binding domain, the majority of hydrophobic residues 

conserved among Ras-association sequences are also conserved in Ras-binding 

sequences (Ponting and Benjamin, 1996). 

I have shown here that ASPPI and ASPP2 bind preferentially to activated Ras, both in 

vitro and in vivo. The ability to selectively bind active Ras is common for Ras effectors 

such as Raf, RaIGDS and P13K (Hofer et al., 1994; Ikeda et al., 1995; Kikuchi et al., 
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1994; Rodriguez-Viciana et al., 1994; Van Aelst et al., 1993; Vojtek et al., 1993). The 

fact that Ras can bind directly to ASPPI. and does so in a GDT/GTP dependent manner 

both in vitro and in vivo is a strong indication that the ASPP proteins might be novel 

effectors of Ras. 

3.3.2. Oncogenic H-RasV12 and K-RasV12 stimulate ASPPI and ASPP2 activity 

Once bound to its effectors, Ras activates them and leads to a downstream signaling 

cascade. Since ASPPI and ASPP2 are putative effectors of Ras, the effect of Ras on 

their activity was analyzed. Ras stimulates its effectors when in its GTP-bound form. As 

such, a constitutively active mutant was used to analyze the effect of Ras on ASPP 

activity. The most common mutation of Ras in turnours occurs in its twelve codon, 

resulting in a change of amino acid from glycine to valine. The RasV12 mutant is 

constitutively active due to a reduced GTPase activity (Sweet et al., 1984). 

H-RasV12 and K-RasV12 mutants were therefore tested for their effect on ASPPI and 

ASPP2 activity using transient transactivation assays. Both oncogenic Ras genes were 

found to stimulate ASPP activity approximately 2.5 fold. 

3.3.3. Oncogenic Ras increases ASPP2 stimulation ofP53 family members 

ASPPI and ASPP2 are able to increase the pro-apoptotic activity of other p53 family 

members, namely p63 and p73 (Bergamaschi et al., 2004). To investigate whether 

oncogenic Ras stimulates ASPP2 synergy with all p53 family members, oncogenic Ras 

was co-transfected with ASPP2 and either p53, p63 or p73. Oncogenic Ras was able to 

increase ASPP2 co-activation of p63 and p73 to the same extent as p53, namely 2.5 
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fold. The fact that oncogenic Ras can equally increase ASPP2 stimulation of each p53 

family member supports the suggestion that Ras does not stimulate p53 directly but 

does so via the ASPP protein. 

Ras is known to induce p53 activity via the stimulation of the Arf protein which inhibits 

Mdm2-mediated degradation of p53 (see section 1.4.5) (Pantoja and Serrano, 1999; 

Serrano et aL, 1997; Weber et al., 1999). Neither p63 nor p73 can be degraded by 

Mdm2 (Balint et al., 1999; Little and Jochemsen, 2001; Lohrum and Vousden, 1999). 

Therefore, the co-activation of these pro-apoptotic proteins by Ras is likely to be 

independent of Arf. This confirms ASPP as an intermediate in a new signaling pathway 

between Ras and p53. 

3.3.4. Endogenous Ras is necessary forfull ASPP1 and ASPP2 activity 

A dominant negative form of H-Ras known as H-rasN17, inhibits ASPP2 and p53 

synergy in a transient transactivation assay, suggesting that endogenous Ras is inhibited 

by the dominant negative Ras and raising the question of whether endogenous Ras has 

any effect on ASPPI and ASPP2 activity. To address this issue, H-Ras RNAi and K- 

Ras RNAi were constructed. 

The RNAi constructs used in this chapter were made against endogenous Ras. However, 

since only oncogenic Ras was available as a tagged version, oncogenic Ras was used to 

test the efficacy of the RNAi constructs. A tagged protein was necessary to allow 

detection of transfected Ras as levels of endogenous Ras are high. The H-Ras RNAi 

was not expected to differentiate between the oncogenic and wild-type version of H-Ras 

since the nucleotides selected for the construct represented the sequence 299-315 
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downstream of the start site whereas the single point mutation occurs at position 35. On 

the other hand, the K-Ras RNAi sequence, which represented nucleotides 25-43, 

overlapped with the point mutation situated at nucleotide 34. RNAi has been shown to 

be very specific with a single nucleotide difference capable of preventing its repression 

of the gene of interest (Brummelkamp et al., 2002). However the K-RNAi construct in 

pSUPER shown in this chapter was nonetheless capable of reducing K-RasV12 

expression specifically, compared to H-RasV12. We could expect that this K-Ras RNAi 

is capable of reducing wild-type RNAi in a more efficient manner, suggesting an 

underestimation of the repression by K-Ras RNAi in our system. 

Unfortunately, my transfection efficiency was too low to detect the effect of my RNAi 

constructs on endogenous Ras. In order to test the efficacy of the K-Ras RNAi and H- 

Ras RNAi on endogenous K-Ras and H-Ras respectively, these constructs could be 

transfected into cells with wild type endogenous Ras and the transfected cells selected. 

This can be done, for example, by magnetic selection of the transfected cells using a 

system such as MACS. An alternative method to see the effect of RNAi on endogenous 

Ras levels would be to infect cells using a retroviral system containing our RNAi 

construct. It would clearly be important to verify these conclusions in cell lines stably 

expressing Ras RNAL Alternatively, the RNAi efficiency could be tested by analyzing 

H-Ras and K-Ras mRNA levels; if the protein has a long half life, the effect of the 

RNAi might be seen more clearly at the mRNA rather than the protein level. 

Regrettably, due to time constraints, I have been unable to try these experiments. 

However, the data in this chapter shows that H-Ras RNAi and K-Ras RNAi both have 

an effect in our system, strongly suggesting that they have an effect on endogenous Ras 

expression levels. 
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Transactivation assays and FACS analysis showed that inhibition of the expression of 

endogenous H-Ras and K-Ras by RNAi resulted in a significant decrease in ASPPI and 

ASPP2 co-activation activity. This inhibition occurred both in the presence and absence 

of the DNA damaging drug cisplatin showing a propensity of Ras to inhibit ASPP in 

both a high and low apoptotic background. Cisplatin-induced apoptosis was decreased 

by Ras RNAi in the absence of exogenous ASPP. The possibility that this inhibition 

was via endogenous ASPP was supported by the decrease in cisplatin-induced apoptosis 

in the presence of ASPPI and ASPP2 anti-sense nucleotides. Unfortunately, we have 

been unable to construct an efficient RNAi against ASPP1 or ASPP2 in our laboratory; 

however, the anti-sense nucleotides used in these experiments have previously been 

shown to inhibit ASPPI and ASPP2 expression (Samuels-Lev et al., 2001). 

In the FACS analysis experiments looking at the effect of Ras RNAi on ASPPI and 

ASPP2 apoptotic activity, Western blots were performed to detect ASPPI, ASPP2 and 

p53 expression levels. Ras RNAi did not significantly affect ASPPI, ASPP2 and p53 

levels when co-transfected in the absence of cisplatin treatment. However, in cells 

which were transfected with ASPP and Ras RNAi and subsequently treated with 

cisplatin, the levels of transfected ASPPI increased significantly in the presence of both 

H-Ras RNAi and K-Ras RNAL This suggests that the inhibition measured of ASPPI 

activity by Ras RNAi was underestimated since the protein levels of ASPPI were 

higher in the presence of Ras RNAL ASPP2 and p53 levels, however were not 

significantly affected by the presence of Ras RNAL 
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3.3.5. Cell staining shows a difference in ASPPI and ASPP2 response to oncogenic 

Ras 

Both ASPPI and ASPP2 can bind activated Ras and both proteins are equally 

stimulated by oncogenic Ras and endogenous wild type Ras activity. It was therefore 

expected that ASPPI. and ASPP2 would have the same pattern of cell staining in the 

presence of oncogenic Ras. 

Interestingly, when ASPP1 was co-transfected with oncogenic Ras, its sub-cellular 

localization changed dramatically. The staining was much brighter than in cells not co- 

transfected with Ras and, when co-transfected with Ras, ASPP1 formed doughnut-type 

shapes in the cytoplasm. These unusual shapes did not localize with Ras and there 

seemed to be no co-localization between the two proteins. 

The lack of co-localization is very surprising as ASPPI. has been shown to bind in vitro 

and in vivo to Ras and the in vivo binding has shown that ASPPI has an even greater 

affinity to Ras than does ASPP2. One possibility for not seeing co-localization between 

ASPP1 and Ras might be due to the antibody used against ASPPI in the cell staining. 

ASPPI is tagged with a V5 epitope in the carboxy-terminus and the V5 antibody was 

used in the immunofluorescence assay. There is a possibility that ASPPI might exist as 

splice variants and some splice forms might lack the amino terminus region. Using the 

V5 epitope, only the ASPPI fragments with the carboxy-terminus present are 

recognized. Since the Ras-association domain of ASPPI is in its amino terminus only 

the ASPPI fragments containing this domain would associate with Ras. Therefore the 

immunofluorescence should be repeated with an antibody against ASPPI that has an 

epitope in the amino terminus part of the protein. The fact that ASPP2 is seen to co- 
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localize with Ras using the V5 antibody against the carboxy-terminus tag of ASPP2 

makes the above explanation unlikely, however, unless there is a difference in splice 

formation of ASPP1 and ASPP2. Very recent current work in our laboratory has 

revealed by Western Blotting that ASPPI has additional bands in some circumstances, 

although only one band for ASPP2 has only ever been seen. These results are 

preliminary and much work needs to be done before the presence of ASPPI splice 

variants can be confirmed. 

The difference in ASPPI co-localization after oncogenic Ras co-transfection remains a 

mystery. The increase in ASPP1 brightness correlates with the amount of oncogenic 

Ras co-transfected: the higher the levels of Ras transfected in the cell, the brighter the 

pattern of the ASPPI doughnut-like shapes. 

There is little known about the difference in ASPPI and ASPP2 function. Up to now 

both proteins seem to have the same effectors, namely the p53-family members, and 

they are both stimulated to the same extent by Ras. The expression levels in various 

tissues are also similar (unpublished data). However, it is clear that there is a functional 

difference between the two proteins as ASPP2 knock-out mice have a very strong 

phenotype (Vives et al., under review). It has also been shown that ASPPI and ASPP2 

have different binding affinities to a mutant form of p53: ASPPI cannot bind to 

p53(181L) or p53(181C) mutant p53 whereas ASPP2 does not differentiate between 

these mutants and wild type p53 in its binding affinity (Samuels-Lev et al., 2001). 

Although the difference in ASPPI and ASPP2 cell staining pattern in the presence of 

oncogenic Ras does not help to explain how these proteins differ, it does confirm that 

there is a distinction in the functions of ASPPI and ASPP2. The fact that higher 
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organisms carry both ASPPI and ASPP2 genes suggests that there must be an 

evolutionary reason to select for both genes instead of only one of them. Further 

research will undoubtly yield a functional difference between these two family 

members. 
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3.4. Seope of study 

ASPPI and ASPP2 are two new potential Ras effectors, binding Ras both in vitro and in 

vivo with a higher affinity for active Ras-GTP than for Ras-GDP. The ASPP proteins do 

so via their Ras-association domain which is present in their first 90 amino acids. As 

with many Ras effectors, Ras is capable of stimulating ASPP activity, shown here with 

transactivation assays. Both H-RasV12 and K-RasV12 oncogenic mutants can increase 

ASPPI and ASPP2 stimulation of p53 pro-apoptotic activity 2.5 fold. Oncogenic H- 

RasV12 can also increase ASPP2 stimulation of the p53 family members p63 and p73. 

Endogenous H-Ras and K-Ras have been shown to be necessary for full ASPPI and 

ASPP2 pro-apoptotic activities using Ras RNAi, in both transactivation and FACS 

assays. 

I have shown that ASPPI and ASPP2 can link the Ras and p53 signalling pathways. 

Unlike a pathway previously described where Ras has been shown to induce p53- 

dependent senescence via Arf (Pantoja and Serrano, 1999; Serrano et al., 1997; Weber 

et al., 1999), the pathway described in this chapter shows that Ras can stimulate p53- 

dependent apoptosis via the activation of ASPPI and ASPP2. 
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Chapter 4 

Ras stimulates ASPP1 and ASPP2 via the Raf-MEK-MAPK pathway 

4.1 Introduction 

Ras acts as a point of convergence linking various extracellular signals to a number of 

different signalling pathways. It responds to growth factors, cytokines, hormones and 

neurotransmitters via stimulation of cell surface receptors. Following the necessary 

stimulus, Ras becomes activated by guanine nucleotide exchange factors (GNEFs) 

which can replace the GDP nucleotide with a GTP nucleotide, resulting in an active 

form of Ras (Ma and Karplus, 1997; Wittinghofer and Pai, 1991). Once GTP-bound, 

Ras changes its tertiary structure with two regions displaced: the switch I and the switch 

11 regions. These are the regions that encompass the binding site to the effector proteins. 

Therefore, the interaction of Ras with its downstream effectors is only possible after the 

exchange of GDP for GTP. 

Biochemical analysis, genetic screening and yeast two hybrid screening in a variety of 

systems ranging from C. elegans, S. cerevisiae, Drosophila and human cells have led to 

the discovery of a number of downstream Ras effector pathways. The three most 

studied downstream effector pathways are the Raf-MAPK pathway, the phosphoinositol 

3-kinase (P13K) pathway and the RalGDS, although other putative downstream Ras 

pathways are currently under investigation, such as the pl. 20-GAP, AF-6, Norel. and 

PKCý. 

Ras-GTP has been shown to bind P13K and activate its pl. 10 catalytic domain 

(Rodriguez-Viciana et al., 1996; Rodriguez-Viciana et al., 1994). P13K acts as a lipid 
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kinase that phosphorylates phosphoinositides at the 3' position of the inositol ring, 

resulting in a phosphotidyl inositol (3,4,5)-triphosphate (Ptdlns[3,4,5]P3) lipid. P13K 

activity can lead to Akt/PKB stimulation which is believed to be mediated by PKB 

binding to the Ptdlns[3,4,5]P3via its PH domains (Franke et al., 1997a; Franke et al., 

1997b; Klippel et al., 1997). Much interest has been shown in PKB function as studies 

have indicated that it plays a crucial role in Ras-mediated survival (Addison et al., 1990; 

D'Mello et al., 1997; Dudek et al., 1997; Kauffmann-Zeh et al., 1997; Khwaja et al., 

1997; Kulik et al., 1997; Yao and Cooper, 1995). 

The presence of RalGDS as a Ras effector of Ras suggests cross-talk between the 

various Ras family proteins. RalGDS is a guanine nucleotide exchange factor for the 

two Ras-related proteins RaslA and RalB. Ras-GTP can therefore lead to stimulation of 

RaIA and RalB via the RalGDS effector pathway (Urano et al., 1996; Wolthuis et al., 

1998). 

The most studied downstream signalling pathway of Ras is the Raf-MEK-MAPK 

phosphorylation cascade. Active Ras-GTP but not Ras-GDP can bind to Raf directly 

(Van Aelst et al., 1993; Vojtek et al., 1993; Wame et al., 1993; Zhang et al., 1993) and 

recruit it to the plasma membrane (Leevers et al., 1994; Stokoe et al., 1994). Raf-I 

contains a Ras-binding domain (RBD) within its residues 51-131 through which it 

interacts with Ras (Clark et al., 1996; Nassar et al., 1995; Vojtek et al., 1993). Once Ras 

and Raf-I have associated, a second RBD present in Raf-I contacts Ras-GTP. This 

second contact site is within the cysteine-rich domain (CRD) of Raf-I (Brtva et al., 

1995; Drugan et al., 1996; Mott et al., 1996). Ras alone is not, however, sufficient to 

fully activate Raf. The phospho-serine binding protein 14-3-3 is thought to regulate 
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Raf-I catalytic activity (Fantl et al., 1994; Freed et al., 1994) and the presence of the 

anionic membrane phospholipid, phosphatidylserine, can bind and activate Raf-I via its 

CRD domain (Ghosh et al., 1994). Mutational analysis has shown that tyrosines 

phosphorylated at residues 340 and 341 leads to enhanced Raf-I catalytic activity 

(Marais et al., 1995). 

Once active, Raf can phosphorylate and activate MAPK extracellular signal-regulated 

kinase, also known as MEK (Ahn et al., 1991; Cowley et al., 1994; Dent et al., 1992; 

Gomez and Cohen, 1991; Huang et al., 1993; Kosako et al., 1992; Kyriakis et al., 1992; 

Nakielny et al., 1992). In turn, MEK can then phosphorylate and activate the two 

mitogen-activating protein kinases, MAPKI. and MAPK2, also known as ErkI and Erk2 

(Crews et al., 1992; Kosako et al., 1992; Matsuda et al., 1992). Activated MAPKs 

homodimerize and translocate to the nucleus (Khokhlatchev et al., 1998), where they 

can phoshorylate and stimulate a range of substrates such as p90 S6K and transcription 

factors, including Elk-I and Ets-2 (Chen et al., 1992; Marais et al., 1993; Marshall, 

1995). These transcription factors regulate the expression of immediate-early genes 

such as c-fos, eventually leading to proliferation. 

Although downstream signalling pathways of Ras are often involved in growth, 

differentiation or survival, Ras is also known to regulate apoptosis. MEKKI can bind 

Ras in a GTP-dependent manner and is activated by Ras under stress conditions. Once 

active, MEKKI can activate its downstream effector JNKK, also known as SAPKK, 

which in turn activates and phosphorylates JNK/SAPK (Derijard et al., 1994; Minden et 

al., 1994; Yan et al., 1994). In turn JNK/SAPK can activate a number of transcription 

factors such as c-Jun and ATF-2. Both these transcription factors are involved in 
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inducing apoptosis (Chen et al., 1996b; Verheij et al., 1996; Xia et al., 1995). Although 

the Raf-MAPK pathway is usually seen to regulate growth and proliferation, the reality 

has been shown to be more complex with the discovery that the same pathway can also 

induce apoptosis (Kauffmann-Zeh et al., 1997). Yet another Ras effector, Norel, has 

also been shown to induce apoptosis in response to Ras (Khokhlatchev et al., 2002) 

Ras is therefore upstream of many different pathways and its activation can result in a 

wide range of responses such as growth, proliferation, differentiation, senescence and 

apoptosis. The response to Ras activation is thought to depend on various factors such 

as the duration of extracellular factor stimulation and cell type. Much is still unknown 

about which response Ras will stimulate once activated. 

I have shown in the previous chapter that ASPPI and ASPP2 activity are stimulated by 

Ras. In this chapter the signalling pathway leading to ASPP stimulation by Ras is 

investigated. ASPPI and ASPP2 are shown to be stimulated by the Raf-MEK-MAPK 

pathway and to be phosphorylated both in vitro and in vivo by MAPK, resulting in 

increased ASPP protein stabilitY. 
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4.2 Results 

4.2.1. Ras activates ASPP2 via the Rafpathway 

The most studied downstream signaling pathway of Ras is the Raf-MAPK pathway. To 

ascertain whether Ras can activate ASPP directly or whether it does so via the Raf 

pathway, an activated form of Raf known as Raf CX was used. The Raf CX form 

contains an artificial CAAX motif in its carboxy terminus which signals for 

isoprenylation, resulting in the protein being localized to the cell membrane therefore 

rendering it active. 

Co-transfection of ASPP2 and p53 with Raf CX in Saos2 cells leads to an increase in 

Bax-luciferase activity (figure 4. IA). This increase in p53 transactivation activity is 

probably via the ASPP2 protein as p53 co-transfected with RafCX alone does not have 

any increase in activity. RafCX can increase ASPP2 and p53 activity to the same extent 

as oncogenic H-RasV12 and K-RasV12 do, namely 2-2.5 fold, suggesting that 

oncogenic Ras activates ASPP via the Raf pathway (figure 4. ID). 
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Figure 4.1 Activated Raf increases ASPP2 activity to a sintilar extent as oncogenic 
ras. (A) Saos2 cells were transfected with 4 ttg ASPP'21, -50 ng p-5-1 and 1.5 gg RafCX 
expression plasmids as indicated. All samples were co-transfected with Bax- 
luciferase. The cells were harvested and lysed with the luciferasc lysis buffer 
(Promega) and a luciferase assay carried out. (B) The Bax-luciferase value of p53 and 
ASPFI2 co-transfected was arbitrarily assigned as a value of 1.0 to allow estimation of 
the effect of RafCX. (C) Part of the lysates from A was subjected to western blotting 

and ASPPI-) was detected with the 5410 antibody, Raf with the C-12 antibody and p53 
with the DO-1 antibody. (D) Comparing the effect of Raf on ASPP-) and p53 with the 
effect of oncogcnic H-ras and K-ras. The value of p53 and ASPT-r- co-transfcctcd with 
Bax-lucifcrase is taken as a value of 1.0 to allow estimation of the effects of RafCX, 
H-rasV 12 and K-rasV 12. This is an average of at least three independent experiments. 
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4.2.2. ASPPI and ASPP2 have putative MAPK phosphorylation sites 

Raf is upstream of the MEK-Erk (also known as MAPKK-MAPK) signalling cascade 

(Howe et al., 1992; Kyriakis et al., 1992). MAPK substrates have a consensus 

phosphorylation site as follows : Pro-Xaan-Ser/Thr-Pro , where Xaa is a neutral or basic 

amino acid and n=I or 2 (Alvarez et al., 1991; Gonzalez et al., 1991). The sequences 

of ASPPI and ASPP2 were inspected for MAPK phosphorylation consensus sites 

(figure 4.2). 

ASPPI and ASPP2 were found to have two putatitve MAPK phosphorylation sites at 

regions of high homology between the two proteins. The first site is at amino acids 671 

and 698 for ASPPI and ASPP2, respectively, and the second putative phosphorylation 

site is at amino acids 746 and 827 for ASPPI and ASPP2, respectively (figure 4.2). All 

four putative MAPK phosphorylation sites are serine residues. 
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Figure 4.2 ASPPI and ASPP2 contain two putative MAPK phosphor 
- 
vlation sitcs. 

Both ASITI and ASIT2 have two putative phosphorylation sites in their C-tcri-ninas 

and both sites are situated in regions of' homology between the two proteins. The first 

putative MAPK phosphorylation site ol'ASIIIII is at arnino acid 671 and the second is 

at amino acid 746. The first putative phosphorylation site of' ASPI'2 is at amino acid 
698 and the second one at amino acid 827. All lour putative MAPK phosphorylation 
sites are serines. 
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4.2.3. ASPP2 is phosphorylated in vitro by MAPK 

To perform in vitro phosphorylation assays on ASPP2, purified recombinant ASPP2 

was needed. Since full length ASPP2 was too large to make a recombinant protein, the 

carboxy terminus of ASPP2 (amino acids 693-1128) containing both putative MAPK 

phosphorylation sites was purified as a GST-tagged fragment from E. coli using 

glutathione beads (figure 4.3A). 

The recombinant ASPP2 fragment was then mixed with recombinant MAPKI or p38 

SAPK (provided by Dario Alessi's laboratory at the university of Dundee) in the 

presence of 32p_labelled ATP. Figure 4.3C shows that the ASPP2 fragment (693-1128) 

was significantly phosphorylated by MAPKI compared to phosphorylation by p38 

SAPK. Phosphorylation of histone 2B substrate by both kinases confirmed that MAPKI 

and p38SAPK were active (figure 5.7). The MAPKI. phosphorylated fragment of 

ASPP2 was excised from the SDS-PAGE gel and purified, and its radioactivity 

measured (figure 4.3D). The fragment was subsequently digested with trypsin and then 

fractioned on a high performance liquid chromatography (HPLQ C-18 column. An 

acetonitrile gradient was used to elute the trypsinized fragments : the smaller, 

hydrophilic fragments were eluted first and the larger hydrophobic fragments were 

eluted as the acetonitrile gradient increased. All phosphorylated fractions were expected 

to be 32p labelled. To identify the phosphorylated fractions, the 32p content of each 

fraction was measured as they were eluted from the column and the cpm noted. A graph 

showing the cpm counts of the fractions showed two radioactive peaks (figure 4.3E). 

The fractions representing these radioactive peaks were analyzed by the mass 

spectrometer service at the Protein Phosphorylation Unit, University of Dundee, to 

measure their molecular mass. 
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Using a programme that could predict the mass and sequences of the ASPP2 fragments 

after digestion with trypsin, the phosphorylated fractions were matched to the 

appropriate sequences. The first radioactive peak eluted from the HPLC column was 

found to be the linker region between the GST tag and the recombinant ASPP2 

fragment. The second radioactive peak corresponded to a fragment of the same mass as 

the fragment containing the second putative phosphorylation site, namely serine 827. 

However, because of the unusually large size of the radioactive peptide fraction due to 

the lack of trypsin recognition sites, Edman degradation was not performed so there was 

no confirmation that it was the serine 827 that was phosphorylated. Nonetheless, 

computer analysis showed no other putative MAPK phosphorylation sites in the large 

fraction representing the second radioactive peak and it was therefore assumed that it 

was serine 827 that was phosphorylated in vitro by MAPK. 
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Figure 4.3 ASPP2 is phosphor 
' 
vlated in vitro by MAPK (A) The carboxy terminus of 

ASPP2 (693-1128) was expressed as a GST-fusion protein in BL21 cells and purified 
with giutathionc sepharosc beads. The protein was elutcd off the beads using 
glutathione at either 2mM or I OmM and the samples were collected after each of the 
four washes with glutathionc (labelled 1-4). An aliquot was collected, run on an SDS- 
PAGE gel and the total amount of protein was detected by coomassic staining. 
Samples 1,2 and 3 from 2mM glutathione and I and 2 from lOmM glutathione were 
pooled and dialyzed in water. The protein was then concentrated and resuspended in 
ix kinase buffer. (B) The pooled samples were analyzed by western blotting before 
(1) and after (3) dialysis and GST-ASPP22 (693-1128) was detected with a 5410 

antibody against the carboxy-terminus of ASPPI An aliquot of elution 3 from lOmM 
glutathione shown in (A) was run on lane 2. (C) An in vitro phosphorylation assay 
was perforined with 32p labelled ATP as described in Materials and Methods with the 
recombinant ASPP'21 fragment in the presence of recombinant p38 SAPK or MAPK 
The phosphorylated ASPP12 fragment was resolved on an SDS-PAGE gel, transferred 
onto nitrocellulose and the ATP levels detected by autoradiography. (D) The intensity 
of the phosphorylated ASPF2 fragment was measured using the GcncTools from 
SynGene programme and represented on a bar graph. (E) The MAPK phosphorylatcd 
ASPIY-) fragment was trypsinized and chromatographed on a Vydac CM column (E, 
bottom panel). The radioactive peptides were measured by mass spectrometry. The 
first peak was shown to represent the GST linker region whereas the second 
represented a region of equal mass to the fragment containing the serine 927. 
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4.2.4. ASPP2 is phosphorylated in vivo by MAPK 

4.2.4.1. Phospho-specific antibody against ASPP2 

A synthetic peptide encoding amino acids 824-832 was made by Masahiro Okuyama 

(Wolfson Institute for Biomedical Research, London), with the serine 827 containing a 

phosphate group, and used as an antigen to raise antibodies in mice and rabbits against 

phosphorylated ASPP2 (figure 4.4A). 

A polyclonal antibody designated S-4 was obtained and purified by affinity column 

purification. The phosphorylated ASPP2 peptide (824-832) was attached to an epoxy- 

activated-sepharose column and the antibody serum passed through the column. The 

column was washed extensively with TTBS until all non-specific, unbound proteins 

were eluted, as measured by absorbance 280nm (figure 4.4B). The antibody was then 

eluted with glycine and fractions collected. The first 2 fractions were pooled together as 

were the 3rd and 4th fractions. The concentration of antibody eluted per fraction was 

measured using coomassie by comparing IgG intensity levels to known BSA 

concentrations (figure 4.4Q. 

To test the efficacy of the purified phospho-specific antibody, a non-radioactive in vitro 

phosphorylation assay was performed on the purifed ASPP2 (693-1128) with 

recombinant MAPKI in the presence or absence of ATP. The samples were resolved on 

an SDS-PAGE gel and the phospho-specific ASPP2 antibody was used in Western blot 

to detect ASPP2 phosphorylated in vitro. As shown in figure 4AD, the phospho-specific 

antibody recognised phosphorylated ASPP2 specifically. 
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Figure 4.4 S-4 is a phosphospecific anlibod 
,v 

that recognizes ASPP2 phosphorylated 
at serine 827 (A) A phospho-peptide representing amino acids 824-832 of ASPP02 
was synthesized with the serine 827 containing a phosphate group. A cysteine was 
added to the amino-terminus of the peptide. This peptide was used to raise antibodies 
in mice and rabbit. (B) A polyclonal antibody labelled S-4 raised against the synthetic 
phosphopeptide was affinity purified with the phospho-peptide column. After adding 
the serum to the affinity resin column, the column was washed cxtensivcly with 
TTBS. The flow-through of these washes was collected and the protein concentration 
measured by absorbance at 280nm. After 6 washes all non-specific protein had eluted 
off the column. The antibody was then eluted with 0.2M glycine (pH 2.8) and 
neutralized with Tris-HCI (pH 8.0). The first two fractions were pooled and the third 
and fourth fraction were also pooled. The two pooled sets of eluate were dialyzed 
with PBS overnight. (C) 10 td of the two pooled sets of elutions were resolved on an 
SDS-PAGE gel, as were the eluted fractions 5,10,15,20,25 and 30. A titration of 
BSA of known concentration was resolved on the right-hand side of' the gel. The 
protein content of the gel was detected by coomassie blue staining. (D) An in vitro 
phosphorylation assay was performed on the ASPP22 fragment (693-1128) using 
recombinant MAPK in the presence or absence of non-radioactive ATP. 300ng of the 
recombinant GST-ASPP'2) fragment was resolved on an SDS-PAGE gel and western 
blotted with the purified S4 phospho-specific antibody. Total ASPP2 (693-1128) 
content was detected by the 5410 antibody. 
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4.2.4.2. ASPP2 is phosphorylated in vivo by MAPK 

Saos2 cells were grown in low serum for 50 hours to remove all background stimulation 

of Ras, after which the cells were stimulated with epidermal growth factor (EGF) and 

20% foetal calf serum (FCS) at various times to activate the indogenous Ras-Raf- 

MAPK pathway. EGF is known to stimulate MAPK activity via the Ras-Raf pathway in 

a very rapid and transient manner (Hunter et al., 1985). MAPK stimulation by EGF 

could be detected using a phosphorylation specific antibody against MAPK; MAPK 

was seen to be phosphorylated 30 minutes after EGF stimulation (figure 4.5A). 

Since endogenous ASPP2 is present at low levels in cells, an immunoprecipitation was 

performed to facilitate its detection. ASPP2 immunoprecipitations were Western 

blotted and the phosphorylation state of ASPP2 detected using the purified phospho- 

specific antibody S-4 against phosphorylated serine 827 mentioned above. One hour 

after EGF stimulation and 30 minutes after MAPK activation, ASPP2 was found to be 

phosphorylated in vivo (figure 4.5B). The phosphorylation of ASPP2 was rapid and 

transient as 3 hours after EGF stimulation phosphorylated ASPP2 was barely detectable. 

An polyclonal antibody against ASPP2, known as bp77, was used as a control to detect 

the total amount of ASPP2 immunoprecipitated. Although there was some variation in 

the total amount of ASPP2 detected, transient phosphorylation of ASPP2 was clearly 

observed (figure 4.5B). 
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Figure 4.5 ASPP2 is phosphorvlated in vivo hv MAPK. Saos2 ccl Is %%, ere starved of 
serum for 50 hours and then stimulated with 20'7c WS Lind EGF. At the indicated 

times, cells were harvested and Iysates prepared. (A) 50 jig of' input protein was 
resolved on a 15% SDS-PAGF gel. Western blotting wws performed %% ith an antibodý 
against phosphorylated MAPK (upper lane). The blot Nvas then rcprobcd with an 
antibody against total MAPK (bottom lane). (B) 4 Ing of lysatc Was 
immunoprccipitatcd %%ith the monoclonal 5410 antibod% a, gainst ASIT2. The 
immunoprecipitates were resolved on an 8% SDS-PAGF gel Lind wcstcrn blotting 

was performed with the polyclonal phospho-specific S-4 antibody (upper Ianc). The 
blot was then reprobcd for total ASIT2 content with the polýclonal bp77 antibody 
(bottom lane). 
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4.2.5. Endogenous MAPK activity is necessary forfull ASPP activity 

4.2.5.1. MEK inhibitors U0126 and PD 98059 reduce ASPP2 activity 

ASPP2 has been shown to be activated by oncogenic and endogenous Ras and this is 

thought to be via the Raf-MAPK pathway. ASPP2 has also been shown to be 

phosphorylated by MAPK in vitro and in vivo. To test whether MAPK activity can 

stimulate ASPP2, ASPP2 and p53 were transfected in Saos2 cells with the p53 pro- 

apoptotic reporter Bax-luciferase; the cells were then treated with the MEK inhibitors 

U0126 (Favata et al., 1998) and PD98059 (Pang et al., 1995). Figure 4.6 shows a 

marked decrease in ASPP2 and p53 transactivation activity in the presence of both 

- U0126 or PD98059 compared to the control cells treated with DMSO. 

The fact that ASPP2 activity is reduced in the absence of endogenous MAPK activity 

correlates with the previous observation that removal of endogenous Ras by RNAi 

could reduce ASPP activity. The inhibition of Bax-luciferase activity is consistent with 

endogenous Ras activating ASPP2 via the MAPK pathway. 

A Western blot was performed to check the expression level of transfected ASPP2 and 

p53. Interestingly, the ASPP2 levels are markedly decreased in the presence of U0126. 

This will be discussed further in this chapter (section 4.2.5) 
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Figure 4.6 Endogenous MAPK is required for full ASPP2 artivit 
'v 

(A) Saos2 cells 
were transfected with 4 [tg ASPIPI-I and 50 ng p53 expression plasmids as indicated, 

together with I [tg bax-luciferasc. After transfection, the cells were treated with either 
20 ItM U0126 or DMSO as a control for 20 hours. The cells were hat-vested and 
lysed with the luciferase lysis buffer (Promega) and a luciferase assay carried out. The 
luciferase counts were read and shown as a bar graph. The values shown are means 
derived from three independent experiments. (B) Aliquots of the luciferase samples 
were used for western blotting to detect ASPP12 with the V5 antibcKiy, p53 with the 
DO-I antibody, phosphorylated MAPK with the phospho-spccific MAPK antibody 
and total MAPK protein as a control. (C) Identical experiment as in A except that 
Saos2 cells were treated with IOORMPD98059orDMSOasacontrol. 
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4.2.5.2. Constructing ASPP2 phosphorylation mutants 

In order to ascertain which phosphorylated amino acids of ASPP2 are necessary for its 

stimulation by Ras-Raf-MAPK, phosphorylation mutants of ASPP2 were constructed. 

As there are two putative MAPK phosphorylation sites, namely amino acids 698 and 

827, both those serines were mutated to alanine to determine which one had a crucial 

role in ASPP2 stimulation by MAPK. 

The mutants were constructed by site-directed mutagenesis using the carboxy-terminal 

fragment of ASPP2 (amino acids 693-1128) as a template (figure 4.713). A titration of 

the template was used for the PCR (figure 4.7D) and the mutated ASPP2 fragment was 

purified. The next step involved inserting the amino terminus fragment of ASPP2 (I- 

692) into the construct, resulting in full length ASPP2 with site-directed mutagenesis 

(figure 4.7Q. In order to do so, the full length wild-type ASPP2 was digested with 

EcoRI and the amino terminal fragment purified from the gel. The mutated carboxy 

terminal fragments were also digested with EcoRI to make linear constructs into which 

the amino terminal fragment could be ligated (figure 4.7E). The full length ASPP2 

mutant constructs were sequenced and shown to contain the derived mutation but no 

other change in sequence (data not shown). 
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Figure 4.7 Construction of plasmids expressing AýP]12 phosphorylalion mutanis. (A) 
Schematic representation of the construction of ASPP2 mutants expression plasmids. 
The homologous region in the amino terminus is shown, as is the proline rich region 
(PXXP), the ankyrin repeats and the SH3 domain. The two putative MAPK 
phosphorylation sites are shown (serine 698 and serine 827). Both of these putative 
phosphorylation sites were mutated to alanine as described in Materials & Methods. 
(B) The mutations were introduced by site-directed mutagenesis in the ASPP2 
fragment representing amino acids (aa) 693-1128 and nuclcotides (nc) 2079-3384. 
(C) Schematic representation of the ASPFr2) amino-terminus fragment (amino acids I- 
693, representing nucleotidcs 1-2079) subsequently added to the mutated carboxy- 
terminus fragment. 
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vialion mulanis, continued (D) Site-directcd mutagcnesis 

of ASPP21 fragment (nucleotides 2079-3384, representing amino acids 693-1128). A 
titration of' template was performed and the lanes marked with a star %vere the 
fragments chosen to continue the site-directed mutagenesis. (E) Full length ASPI102 
was digested with EcoRl as were the mutated and wild-type ASPP21 fragments 
(nucleotides 2079-3384, representing amino acids 693-11; 8). All digests were 
resolved on a 1% agarose gel. The digested fragment of' ASPP'2) representing the 
nucleotidcs 1-2079 (amino acids 1-69-3) ran at 2kb and was purified from the gel. The 
digested bands representing the wild-type and mutants I ragments (2079-3384 
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purified. (F) An aliquot of the purified fragments was resolved on a gel to check the 
efficacy of' the purification. The amino-terminal fragment ol'ASPP-) was then ligated 
into the carboxy-tcrminal %vild-type and mutant fragments of' ASPP2 to produce full 
length wild-type and mutant ASPP2. 
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4.2.5.3. RqfCX stimulation ofASPP2 is via ASPP2 phosphorylation at serine 827 

To test which putative MAPK phosphorylation site in ASPP2 is involved in the Ras- 

Raf-MAPK stimulation of ASPP2, the activity of the wild-type and mutant ASPP2 were 

compared. ASPP2 wild-type and mutants were transfected into Saos2 cells; all mutants 

were able to synergize with p53 in a transactivation assay as effectively as ASPP2 wild- 

type (figure 4.8A). 

When Raf CX was co-transfected with p53 in the presence of ASPP2 wild-type or 

mutants a difference was observed with the ASPP2 (S827A) mutant. Whereas ASPP2 

wild-type, and ASPP2 (S698) activity was increased 2.5 fold in the presence of RafCX 

and p53, ASPP2 (S827A) did not stimulate p53 activity further when co-transfected 

with RafCX. This strongly suggests that ASPP2 stimulation by RafCX is via its 

phosphorylation at serine 827. 
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Figure 4.8 ASPP2 (S827A) does not respond to Raf CX stimulation (A) Saos2 cells 
were transfected 4 Rg of ASPP2 wild-type, ASPP2(S698A) or ASPFI-I(S827A) in the 
presence or absence of 50 ng p53, as indicated. All cells were co-transfected with I 
[Lg Bax-luciferase. The cells were harvested and lysed with the luciferase lysis buffer 
(Promega) and a lucil*crasc assay carried out. (B) The same experiment as A was 
performed with 1.5 Rg RafCX co-transfected as indicated. The luciferase value of 
ASPP21 and p53 were taken as one to see the fold increase by RafCX. The mean 
values shown are derived from three independent experiments. 
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4.2.5.4. K-RasV12 stimulation of ASPPI is via ASPP1 phosphorylation on serine 746 

Since ASPPI and ASPP2 are homologous in the regions of both putative MAPK 

phosphorylation sites (figure 4.2), and since an ASPP2 phosphorylation mutant is no 

longer responsive to RafCX, the effect of ASPPI phosphorylation on its activity was 

investigated. Two phosphorylation mutants of ASPPI were constructed at the serines 

671 and 746, corresponding to the two putative MAPK phosphorylation sites. Site- 

directed mutagenesis was performed using full length ASPPI as a template and titrating 

the amounts of template in the PCR reactions (figure 4.913). The large 8.7kb PCR 

products were purified and sent to be sequenced. Both ASPP1(S671A) and 

ASPPI(S746A) mutants were found to have incorporated the intended mutations but no 

other mutations were present in their sequence (data not shown). 

ASPPI wt, ASPPI(S671A) and ASPPI(S746A) were co-transfected with p53 in the 

presence or absence of K-RasV12. As shown previously (figure 3.10) K-RasV12 could 

increase ASPPI wild-type stimulation of p53 in a transactivation assay more than 2- 

fold. ASPPI (S671A) had similar activity to its wild-type counterpart both in the 

presence and absence of oncogenic K-RasV12. However, the ASPPI (S746A) 

phosphorylation mutant that had its second putative MAPK site mutated to alanine was 

no longer responsive to K-RasV12 stimulation. Therefore, phosphorylation of ASPP1 at 

amino acid 746 is necessary for its stimulation by K-RasV 12. 

Aliquots of the transactivation assay lysates were used to perform a Western blot to 

detect expression levels of transfected ASPPI, p53 and K-RasV12 (figure 4.91)). 

ASPPI and wild-type and mutants were all expressed at similar levels. This confirms 
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that the difference in the response of the ASPPI (S747A) to Ras is due to the difference 

in its intrinsic activity rather than its expression levels. 

Interestingly, ASPPI wild-type and ASPPI (S671A) levels were increased in the 

presence of K-RasV12, whereas ASPPI (S746A) levels were not affected by co- 

expression of K-RasV12. This point will be pursued further in the latter parts of this 

chapter. 

Thus, both ASPPI and ASPP2 have a MAPK phosphorylation. site, at amino acids 746 

and 827 respectively, that needs to be phosphorylated for full stimulation of the proteins 

by the Ras-Raf-MAPK signalling pathway. 
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Figure 4.9 ASPP1 phosphorylation mutant S746A does not respond to K-rasV12 
slirnulativn (A) The two putative MAPK phosphorylation sites at amino acids 671 and 
746 were mutated to alaninc by oligonuclcotidc-dirccted mutagcncsis, using the 
cDNA as a template. The Ras association domain (RA), proline rich region (PXXP), 
ankyring repeats and SH3 domain are shown as indicated. (B) Full length ASPPI was 
used as a template for PCR with primers containing the desired mutation. The left 

panel shows the PCR of ASPPI(S67]A) and the right panel shows the PCR of the 
ASPPI(S746A) mutant. The arrows indicate the band of interest which was purified. 
The mutants were subsequently sequenced. (C) Saos2 cells were transfected with 4 
[tg of wild-type ASPPI or phosphorylation mutants ASPPI in the presence of 50 ng 
of p53 and 1.5 Rg K-rasV12 as indicated. All samples were co-transfected with Bax- 
luciferase. The cells were harvested and lysed with the luciferase, lysis buffer 
(Promega) and a luciferase assay carried out. The luciferase counts are shown as a bar 
graph. The mean values are derived from three independent experiments. (D) An 
aliquot of each luciferase lysate was used for western blotting which was probed with 
V5 antibody against ASPPI, DO-1 antibody against p53, HA antibody against K- 
ras V 12 and PC - 10 agai nst PCNA. 
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4.2.5.5. ASPP2 (S82 7A) does not synergize with p53 to induce apoptosis 

Since phosphorylation of ASPP2 on its residue 827 by MAPK can increase its ability to 

enhance p53 transactivation, the effect of ASPP2 phosphorylation on apoptosis was 

analyzed. ASPP2 wild-type is known to synergize with p53 in induction of apoptosis 

(Samuels-Lev et al., 2001). To compare ASPP2 mutant activity with that of ASPP2 

wild-type, p53 was transfected into Saos2 cells in the presence of either ASPP2 wild- 

type or mutant and the percentage of sub-Gl content measured. As shown in figure 

4.10, ASPP2 (S827A) was unable to synergize with p53 to increase its apoptotic 

activity. 
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Figure 4.10 ASPP2 (S827A) does not synergizze with p53. I ttg of p53 was co- 
transfected with 10 Rg of ASPFY2 wild-type or ASPF'_) (S827A) expression plasmids. 
Cells were collected for FACS analysis and the percentage of cells in sub-GI shown 
above. This experiment was done in collaboration with Danielc Bergamaschi. 
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4.2.6. K-RasV12-dependent change ofASPP1 sub-cellular localization is mediated by 

MAPK activity 

In chapter three, we have seen that oncogenic Ras can induce a change in ASPPI 

localization (figure 3.14). In light of the Ras-Raf-MAPK pathway stimulating ASPP 

activity, the role of this signalling pathway in the Ras-dependent change of ASPP1 sub- 

cellular localization was investigated. If the change of ASPPI localization is mediated 

by the downstream Ras effector MAPK, it is expected that the activated Raf-CAAX will 

have the same effect on ASPPI as K-RasV12 did and that the MEK inhibitor U0126 

would prevent the change induced by K-RasV12. 

ASPPI sub-cellular localization was seen to differ substantially in the presence of K- 

RasV12, resulting in globular doughnut-like shapes in the cytoplasm after K-RasV12 

co-transfection compared of the usual diffuse pattern ASPPI. Raf-CAAX co- 

transfection with ASPPI resulted in an identical change of localization of ASPPI as 

seen with co-transfection with K-RasV12. When cells co-transfected with K-RasV12 

and ASPP1 were treated with the MEK inhibitor U0126, the ASPPI sub-cellular 

localization reverted back to that seen with ASPPI transfected alone, in the absence of 

K-RasV12 (figure 4.11). Therefore, the K-RasV12-dependent change in ASPPI 

localization is mediated via the MAPK activity. 
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Figure 4.11 K-rasV12 effect on ASPPI change of cellular localization is dependent 

an MAPK activity. (A) U20S cells were transfected with ASPPI alone (left panel) or 
ASPPI and activated RafCX (right panel). The cells were stained with the V5 

antibody to detect ASPPL (B) U20S cells were transfected with ASPPI alone or 
ASPPI and K-rasV12 in the presence or absence of 20 ftM of' the MAPK inhibitor 
U0126. The cells were fixed and double-stained with the V5 monoclonal mouse 
antibody (ASPPI) and the Ras monoclonal rat antibody 259. ASPPI was detected 
with TRITC and ras with FITC. The cells were visualized by confocal microscopy. 
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4.2.7. Endogenous ASPPI does not change localization after EGF stimulation 

To test the effect of endogenous Ras on endogenous ASPPI cellular localization, 

normal human fibroblasts (NHF) were used since primary cells have been shown to 

have high levels of endogenous ASPPI. NFIF cells were grown in low serum overnight 

to remove background stimulation of endogenous Ras and then stimulated with EGF for 

0,15,30 and 60 minutes. After the indicated times the cells were fixed and stained with 

the ASPPI antibody LX054.2 which is specific to ASPPI and recognizes the epitope in 

the amino-terminus of ASPPI (figure 4.12). Confocal microscopy was used to visualize 

ASPPI with the use of the Z-stacking option. This allowed the viewing of a 0.2[tm thick 

section of the cell, to see any possible shuttling in and out of the nucleus. 

To test the efficacy of EGF to stimulate the Ras-Raf-MAPK pathway in these cells, the 

cells were stained at the different time points with an antibody against the 

phosphorylated form of MAPK. Unfortunately, the antibody used, although working 

well for Western blotting, did not seem to pick up any signal in the cell staining assay 

(data not shown). It was therefore inconclusive whether EGF was able to stimulate Ras 

effectively in this experiment. 
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Figure 4.12. ASPPI does not change its localization in Normal Human Fibroblasts 

after EGF stimulation. Normal human fibroblasts (NHF) cells were starved of serum 
overnight and then stimulated with EGF for the time points indication. At the 
indicated time, the cells were fixed and stained with LX054.2 against endogenous 
ASPPL The three columns represent three different stainings for ASPPL The cells 
were visualized by confocal microscopy. 

280 



4.2.8. ASPP2 is stabilized by th e Ras-Raf-MAPK path way via ph osph orylation at its 

setine 827 

In the transactivation assays performed so far, it is noticeable in Western blots that 

ASPPI and ASPP2 expression levels increased in the presence of oncogenic H-RasV12 

or K-RasV 12 (figure 3.1013). Interestingly, although ASPPI wild-type protein levels are 

increased in the presence of oncogenic Ras, ASPPI (S746A) does not have increased 

protein levels in the presence of K-RasV12 (figure 4.91)). This mutant form of ASPPI 

is the one that is not stimulated by oncogenic Ras. It was also observed that ASPP2 

protein levels were markedly decreased in the presence of the MEK inhibitor U0126 

(figure 4.613). These observations led to the hypothesis that the Ras-Raf-MAPK 

signalling pathway might stimulate ASPP activity by increasing its protein stability. 

4.2.8.1. Oncogenic H-RasV12 stabilizes ASPP2 wild-type but not ASPP2 (S827A) in the 

presence of cycloheximide 

To test the effect of oncogenic Ras on ASPP2 stability, ASPP2 wild-type was 

transfected into Saos2 cells in the presence or absence of H-RasV12.16 hours after 

transfection, protein synthesis was inhibited by the drug cycloheximide. Lysates were 

collected at various time points after cycloheximide addition and the levels of ASPP2 

were detected by Western blotting. 

In the absence of H-RasV12, ASPP2 levels were seen to be significantly reduced by 6 

hours, suggesting a short half life. However, in the presence of H-RasV12, the stability 

of ASPP2 seemed to be increased as the levels of ASPP2 protein were similar 6 hours 

after cycloheximide addition to those at time 0 of cycloheximide addition (figure 

4.13A). This suggests that H-RasV12 could increase the half-life of wild-type ASPP2. 

281 



When the ASPP2 (S827A) mutant that can no longer be phosphorylated by MAPK was 

transfected, a similar rate of degradation was seen compared to wild-type ASPP2. 

Unlike wild-type ASPP2, however, H-RasV12 did not seem to stabilize the ASPP 

(S827A) protein levels (figure 4.1313). 

It can therefore be concluded that H-RasV12 increases ASPP2 wild-type stability and 

does so via MAPK phosphorylation of the ASPP2 serine 827. 
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Itg of' the Iýsatcs were resokcd on an SDSTAGE gel and westan blotting was 
performed with the V5 antibody to detect transi'ccted ASPP'2 and the HA antibody to 
detect transl'ccted H-rasV 12. Anti-actin antibody NvaS used as a loading control. 
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4.2.8.2. Pulse chase analysis shows that oncogenic H-RasV12 increases ASPP2 wild- 

type protein levels but not those ofASPP2 (S827A) 

As an alternative to cycloheximide inhibition, a pulse-chase experiment was conducted 

to analyse ASPP2 protein stability. Saos2 cells were transfected with ASPP2 wild-type 

or ASPP2 (S827A) in the presence or absence of K-RasV12.12 hours after 

transfection, the cells were pulsed with "S-labelled methionine and cysteine for two 

hours. The radioactive medium was then washed off and replaced with unlabelled 

medium. The cells were lysed at 0,6 and 24 hours after the radioactive medium was 

removed. An immunoprecipitation was performed for transfected ASPP2 using the V5 

antibody. After the ASPP2 immunoprecipitation, the supernatants were transferred to a 

fresh tube and endogenous PCNA was immunoprecipitated as a control. 

The immunoprecipitations were resolved on SDS-PAGE gels and the gels were fixed, 

amplified and dried before being exposed to a phosphoirnager screen. Detection of the 

"S-labelled ASPP2 and PCNA are shown in figure 4.14A. The stability of ASPP2 wild- 

type and ASPP2 (S827A) mutant was similar when transfected alone. When K-RasV12 

was co-transfected with ASPP2 wild-type, there were much higher levels of ASPP2 

wild-type protein expression at time 0 compared to cells transfected with ASPP2 alone. 

Quantification of the intensity of the bands showed that there was almost twice as much 

ASPP2 protein when co-transfected with K-RasV12 at time 0 compared to ASPP2 alone 

at time 0 (figure 4.1413). The protein levels of ASPP2 in the presence of K-RasV12 at 

times 6 and 24 hours were similar to those of ASPP2 in the absence of K-RasV12. 

Unlike ASPP2 wild-type, ASPP2 (S827A) protein levels were not affected by the 

presence of K-RasV12. 
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Figure 4.14 Pulse chase of ASPP2 wl and ASPP2 (S827A) in Me presence or absence 
of K-rasV12. (A) Saos2 cells were transfected with ASPI"_ wild-type or 
phosphorylation mutant ASPP21 (S827A) in the presence or absence of K-rasV 12.12 
hours after transfection, the cells were pulsed for two hours- with 145 RCi/Ml 35S_ 
labelled methionine and cysteine. The cells were then washed with PBS and 
unlabelled medium was added to the cells. At the indicated times the cells were lysed 

and the lysates were first pre-cleared with G-beads then immunoprecipitated with the 
V5 antibody against transfected ASPI"_ for 2 hours. The lysates were then 
immunoprecipitated with the PC-10 antibody against PCNA as a control. The 
immunopiecipitates were resolved on SDS-PAGE gels, fixed, amplified and dried 
before being exposed on a phosphoirnager screen to detect the labelled proteins. The 
upper panel shows the ASPF"2 proteins immunoprecipitated with the V5 antibody and 
the lower panel shows the immunoprecipitated PCNA protein. (B) The intensity of 
the bands were measured and represented on the graph. The X-axis represents the 
time after the cells were pulsed with -1-5S-labelled methionine and cystein and the Y- 
axis shows the relative amount of protein. 
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4.2.8.3. Endogenous ASPP2 requires endogenous MAPK activityfor its stability 

Whilst all the previous systems used involved transfected ASPP2, the stability of 

endogenous ASPP2 was of particular interest. Since oncogenic Ras seems to affect 

transfected ASPP2 stability via serine 827 phosphorylation, the effect of endogenous 

MAPK activity on endogenous ASPP2 stability was investigated. To compare the effect 

of active and inactive MAPK on ASPP2, MCF7 cells were stimulated with EGF to 

activate the endogenous Ras-Raf-MAPK pathway and ASPP2 stability was analysed in 

the presence of cYcloheximide. To detect endogenous ASPP2 levels, ASPP2 was 

immunoprecipitated. The stability of endogenous ASPP2 is shown in the upper panel of 

figure 4.15A. The levels of activated MAPK were detected using the phospho-specific 

MAPK antibody. 

A parallel experiment was carried out simultaneously with cells treated with the MEK 

inhibitor U0126 at the same time as cycloheximide. The stability of ASPP2 was thus 

tested with or without active MAPK. In the presence of U0126, MAPK was no longer 

phosphorylated, as expected (figure 4.15, bottom panels) and the stability of ASPP2 

was significantly decreased (figure 4.15, upper panels). Quantification of the intensity 

of the bands clearly showed a difference in ASPP2 stability when MAPK was active 

compared to when MAPK was inactivated by U0126 (figure 4.15C). 

These results indicate that endogenous ASPP2 protein expression can be stabilized by 

Ras-MAPK activity via the phosphorylation of ASPP2 at serine 827. 
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Figure 4.15 MAPK acfiviýy is necessar 
- 
yfior endogenoiLv k5PP2 slability. MCF7 cells 

were starved of serum for 24 hours in 0.5% FCS. They were then treated with 50 

[tg/ml cycloheximide (CHX) and 20% FCS and EGF, without U0126 (A) or with 
U0126 (B) for the time indicated. 4mg of lysate was used for immunoptecipitation 

with the monoclonal 5410 antibody against ASPP02. The immunoprecipitate was 
western blotted and ASPlY2' was detected with the polyclonal bp77 antibody (top 

panel). The amount of antibody used for the immunoprccipitation was detected with 
secondary mouse anfibody (second panel from the top). 00 [tg of input was western 
blotted and phosphorylated MAPK was detected with phospho-specific MAPK 

antibody (third panel from the top) and the total MAPK was detected with a MAPK 
antibody (bottom panel). (C) The intensity of the ASPP22 protein immunoprecipitated 

was quantified and the bands atO hours of CHX addition was setas 100 for both cells. 
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4.2.9. ASPP2 is not necessaryfor MAPK activation in MEFs 

It is not uncommon to find positive or negative feedback loops after stimulation of 

proteins. To test whether that is the case for ASPP2 stimulation by MAPK, the effect of 

ASPP2 on MAPK activity was investigated. Mouse embryo fibroblasts (MEFs) were 

isolated from wild-type mice and ASPP2 knockout mice, grown for a few passages and 

then starved in 0.5% FCS for 24 hours to remove stimulation of endogenous Ras. The 

Ras-Raf-MAPK pathway was then activated with 20% FCS and epidermal growth 

factor (EGF) for 5 to 60 minutes (figure 4.16). Lysates were collected and Western 

blotting was performed to detect MAPK stimulation, using a phospho-specific MAPK 

antibody. 

MAPK was stimulated 5 minutes after EGF treatment as seen by its phosphorylation 

status. No significant difference in the kinetics of MAPK stimulation was observed 

between the ASPP2 wild-type and knockout MEFs. The only difference between the 

knockout and the wild-type MEFs was that the basal level of MAPK phosphorylation 

after serum starvation was higher in the knockout MEFs, although EGF stimulated 

MAPK with the same kinetics irrespective of the genotype. 
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Figure 4.16. ASPP2 is not necessarvfor MAPK activition in MEFs. ASPP2 knockout 
MI-Ts and N% ild-typc MEFs were isolated 1'rom mice. ']'he cells were starvcd of' serurn 
for 24 hours then treated with EGF and 20% FCS l'or the times indicated. Lysatcs 
%vcre collected and resolvcd on a Western Blot which was probed with a phospho- 
specific MAPK antibodý (upper panel). The blot was subsequcntly probed with an 
antibody against total MAPK (lower panel). 
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4.2.10. Doxorubicin induces apoptosis partially via the MAPK pathway 

ASPPI. and APP2 are known to induce p53-mediated apoptosis in a number of cell lines 

(Samuels-Lev et al., 2001). Apoptosis induced by chemotherapy drugs in a p53- 

dependent manner can be further induced by overexpressing the ASPP proteins or can 

be inhibited by removing endogenous ASPP using anti-sense oligonucleotides 

(Samuels-Lev, 2001 #2662; and personal communications). The results shown in this 

thesis suggest that the Ras-Raf-MAPK pathway can mediate ASPPI and ASPP2 

stimulation of p53-dependent apoptosis. It was therefore hypothesised that p53- 

dependent apoptosis induced by chemotherapy drugs such as doxorubicin might be 

partially mediated by the Ras-Raf pathway. 

To test this hypothesis MCF7 cells, containing wild-type p53, were treated with 

doxorubicin for 24 hours in the presence or absence of the MEK inhibitor U0126. 

FACS analysis showed that U0126 had little effect on cells not treated by doxorubicin 

but could reduce by 30% doxorubicin-induced apoptosis (figure 4.17). 
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Figure 4.17 MAPK inhibitor U0126 reduces doxorubicin-induced apoplosis in 
MCF7 cells. MCF7 cells were treated with 4mM doxorubicin (doxo) and 20 [LM 
U0126 for 24 hours as indicated. The floating and adhering cells were fixed, stained 
with propidiurn iodide and analyzed by FACS. (A) Histogram plot showing the cell 
cycle profile of MCF7 cells. The percentage of apoptotic cells was measured by 
accumulation of cells with a sub-G I DNA content (cells in MI region). (B) Bar graph 
representing the relative percentage of sub-01 cells. The mean values were derived 
from two independent experiments. 

291 

0m FL2-A 



4.2.11. ASPP2 (S827A) co-localizes with K-RasV12 

ASPP2 wild-type has been shown to associate and co-localize with oncogenic Ras 

(figure 3.13). In this chapter we have revealed that ASPP2 is downstream of the Ras- 

Raf-MAPK pathway and that phosphorylation of ASPP2 by MAPK is necessary for its 

full activity. 

It is unclear whether ASPP2 binds Ras before being phosphorylated by MAPK or as a 

consequence of MAPK phosphorylation. To address this issue, cell staining was 

performed on ASPP2 (S827A) mutant that cannot be phosphorylated by MAPK. The 

ASPP2 phosphorylation mutant co-localized with oncogenic Ras to the same extent as 

ASPP2 wild-type, in both the plasma membrane and the perinuclear region (figure 

4.18). This suggests that non-phosphorylated ASPP2 could associate with Ras. 
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ASPP2 
(S827A) K-RasV 12 merged 

ASPF"2 (S827A) 
+ K-RasV 12 

ASPP2 (S827A) 
+ K-RasV 12 

Figure 4.18 ASPP2 (S827A) phosphoiýylation mutant co-localizes with K-rasV]2. 
U20S cells were transfected with 4 Rg ASPF"2 (S827A) and 3 gg K-rasV12 
expression plasmids per 3cm dish. After transfection the cells were starved of serum 
for 20 hours. The cells were then fixed. The V5 antibody was used to detect 
transfected ASPP21 mutant and the 259 antibody was used to detect transfected K- 
ra. sV12. ASPF"2 was stained in red with TRITC and K-rasV12 in green with FITC. 
The cells were visualized by confocal microscopy. The two rows represent two 
different sets of staining of mutant ASPFI-) and K-msV 12. 
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4.3 Discussion 

In this chapter the pathway involving Ras stimulation of ASPPI and ASPP2 was 

investigated. Ras was found to stimulate ASPPI and ASPP2 activity via the Ras-Raf- 

MEK-MAPK phosphorylation cascade resulting in MAPK phosphorylating ASPPI and 

ASPP2. Phosphorylation of ASPP2 by MAPK resulted in increased stability of ASPP2 

protein. 

4.3.1. Ras stimulates ASPP2 via the Rafpathway 

To investigate whether Ras could stimulate ASPPI and ASPP2 directly or whether this 

stimulation was via the Raf downstream effector pathway, an active form of Raf was 

used. Raf-CAAX contains the membrane localization signal of K-ras4B and is 

constitutively active, not requiring Ras stimulation for its activity f Leevers, 1994 

#2798). In this chapter Raf-CAAX has been shown to stimulate p53 pro-apoptotic 

transactivation activity via ASPP2. The fact that ASPP2 is stimulated by Raf-CAAX to 

the same extent as it is by oncogenic H-RasV12 and K-RasV12 is strongly supportive of 

ASPP2 being stimulated by RasV12 via its downstream effector Raf CAAX. 

4.3.2. ASPP2 is phosphorylated by MAPK in vitro and in vivo 

Raf is upstream of a phosphorylation cascade that involves Raf activation of MEK by 

phosphorylation (Ahn et al., 1991; Cowley et al., 1994; Dent et al., 1992; Gomez and 

Cohen, 1991; Huang et al., 1993; Kosako et al., 1992; Kyriakis et al., 1992; Nakielny et 

al., 1992), followed by MEK activation of MAPK by tyrosine and threonine 

phosphorylation (Crews et al., 1992; Kosako et al., 1992; Matsuda et al., 1992). MAPK 

is a serine/threonine kinase and is known to phosphorylate a number of downsteam 
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effectors such as Rsk, p62TCF, NF-IL6, c-myc, Elk-I and Ets-2 (Chen et al., 1992; 

Gille et al., 1992; Marais et al., 1993; Marshall, 1995; Nakajima et al., 1993; Seth et al., 

1992). Sequence alignments and point mutation analysis of MAPK substrates lead to 

the discovery of the MAPK consensus phosphorylation site (Alvarez et al., 1991; 

Gonzalez et al., 1991). Analysis of ASPPI and ASPP2 protein sequence pointed to two 

putative MAPK phosphorylation sites in each of the two proteins. Both these putative 

phosphorylation sites were present in regions of high homology between ASPPI. and 

ASPP2. However, following an in vitro phosphorylation assay, only the second putative 

MAPK phosphorylation site was shown to be phosphorylated by recombinant MAPK1. 

Phosphorylation on serine 827 of ASPP2 by MAPK was confirmed using a phospho- 

specific antibody against ASPP2: endogenous Ras stimulation by EGF resulted in 

MAPK activation, followed shortly by ASPP2 phosphorylation in vivo. Since the 

antibody specifically recognizes the phosphorylated serine 827 of ASPP2 and that is the 

site shown to be phosphorylated by MAPK in vitro, we concluded that ASPP2 was 

phosphorylated on serine 827 in vivo by MAPK. Thus, ASPP2 is a novel MAPK 

effector. 

Active MAPK can phosphorylate its substrates both in the cytoplasm, such as Rsk, or in 

the nucleus, such as Ets-2 and Elk-1. As ASPP2 is also present in both the cytoplasm 

and the nucleus, MAPK could theoretically phosphorylate ASPP2 in either of those 

cellular compartments. It would be interesting to see by immunofluorescence whether 

these two proteins co-localize and if so, where. As the association of the two proteins is 

likely to be transient, a time course after MAPK stimulation would be necessary for this 

experiment. 
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4.3.3. MAPK activity is necessaryforfull ASPPI and ASPP2 activity 

Since ASPP2 was shown to be phosphorylated in vivo by MAPK, the functional 

significance of this signal was investigated. To do so, U0126 and PD98059, known 

MAPK inhibitors, were used (Favata et al., 1998). Blocking endogenous MAPK by 

U0126 or PD98059 showed a marked reduction in ASPP2 activity, similar to that seen 

when endogenous Ras was inhibited by RNAi (chapter 3). This would suggest that 

endogenous Ras stimulation of ASPP2 is via MAPK activation. ASPP2 phosphorylation 

mutants confirmed that it was indeed phosphorylation of serine 827 by MAPK that 

mediates ASPP2 stimulation by Raf-CAAX. 

Since ASPP2 phosphorylation at serine 827 is required for Ras-Raf-MAPK stimulation, 

it was surprising that the ASPP2 (S827A) was able to transactivate p53 to the same 

extent as ASPP2 wild-type and the control mutant. However, this could be explained by 

the conditions used to perform the experiment: in order to see the effect of Raf-CAAX 

on ASPP2 activity, the cells were grown in 0.5% FCS to remove background 

stimulation of Ras. Therefore, in those conditions, there is low endogenous Ras activity 

and as a consequence low amounts of phosphorylated ASPP2. Thus, in the absence of 

Ras stimulation, ASPP2 (S827A) has a similar activity to ASPP2 wild-type. Only when 

MAPK is activated and phosphorylates ASPP2 can a difference be seen between the 

activity of the ASPP2 phosphorylation mutant at serine 827 that cannot be 

phosphorylated and that of the wild-type, phosphorylated ASPP2. Indeed, in conditions 

where endogenous Ras was stimulated by 10% FCS, a difference was seen in the 

activity of ASPP2 (S827A) compared to ASPP2 wild-tYpe: only ASPP2 wild-type was 

able to synergyze with p53 to induce apoptosis (figure 4.10). 
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The MAPK phosphorylation site of ASPP2 is homologous to a putative MAPK 

phosphorylation site in ASPPI. Mutagenesis was performed on ASPPI to generate two 

phosphorylation mutants. A transactivation assay showed that ASPPI wild-type and 

ASPPI (S671A) responded to K-RasV12 stimulation but ASPPI (S746A) was unable to 

be stimulated by K-RasV12. Thus, the ASPPI and ASPP2 MAPK phosphorylation site 

is conserved and MAPK phosphorylation at serine residues 746 and 827, respectively, 

results in increased pro-apoptotic activity. 

The model discussed in Samuels-Lev et al. suggests that ASPP2 interacts with p53 to 

increase its binding to pro-apoptotic reporters (Samuels-Lev et al., 2001). In order for 

this to happen, ASPP2 is expected to be present in the nucleus with active p53. 

However ASPP2 is predominantly found in the cytoplasm with some minimal presence 

in the nucleus and little evidence has been found so far about its cytoplasmic-nuclear 

shuttling. One model could be that the Ras-Raf-MAPK stimulation of ASPP2 would 

lead to its shuttling into the nucleus after phosphorylation on serine 827 as has been 

shown to be the case for other downstream Ras-Raf-MAPK signalling effectors such as 

Rsk (Chen et al., 1992). Up to date, however, no difference in ASPP2 localization has 

been observed in the presence of oncogenic Ras. Nonetheless, one would expect that 

ASPP2 presence in the nucleus could be a transient process as it would eventually lead 

to apoptosis by p53-dependent transactivation of pro-apoptotic genes and would 

therefore have to be tightly regulated. One possibility could be that ASPP2 activity is 

regulated by nuclear export, such as is the case with p53 (Roth et al., 1998). Therefore 

to observe the presence of ASPP2 in the nucleus after Ras-MAPK activation, ASPP2 

nuclear export should be inhibited, such as by using for example the CRM-1-mediated 

nuclear export inhibitor, leptomycin B. Figure 4.5 shows that ASPP2 is phosphorylated 

297 



one hour after EGF stimulation in Saos2 cells so a time course based around that time 

point could be used to test ASPP2 shuttling to the nucleus. 

Although no difference has so far been seen in ASPP2 cellular localization following 

oncogenic Ras stimulation, the same has not been true for ASPPL As mentioned in 

chapter 3, K-RasV12 co-expression results in a significant change in ASPPI 

localization, forming large, brightly stained, doughnut-like shapes. The ASPPI- 

containing globules are present in the cytoplasm and often seen in the perinuclear 

region. As ASPPI is known to be stimulated by Ras via the Raf-MEK-MAPK pathway, 

we investigated whether the change in ASPPI immunofluorescence was due to the 

MAPK pathway. Addition of U0126, the MAPK inhibitor, showed that the change in 

ASPPI cellular localization following oncogenic Ras stimulation was indeed caused by 

endogenous MAPK activity. Although Ras can stimulate ASPPI and ASPP2 pro- 

apoptotic activity to the same extent, and does so via the Raf-MEK-MAPK 

phosphorylation cascade resulting in MAPK phosphorylation of both proteins at a 

homologous serine, there seems to be a difference in the extent of ASPPI activation 

compared to ASPP2 as seen by cell staining. 

To investigate whether endogenous Ras could lead to a change in cellular localization 

of endogenous ASPPI, normal human fibroblasts (NHF) were used. ASPP1 levels are 

very low in turnour cell lines and endogenous protein levels cannot be visualized by cell 

staining in those cells. Primary cells such as NHF, however, have higher levels of 

endogenous ASPPI and ASPP2. This suggests that turnour cells selectively reduced 

ASPPI and ASPP2 expression levels. Since ASPP proteins are tumour suppressor 

proteins, a reduced expression of ASPP would allow turnour cells clonal selectivity. 
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NHF cells also have wild-type Ras expression. Thus NHF cells were used to test the 

effect of endogenous Ras on ASPPI staining. Stimulation of NHF with EGF did not 

show any change in ASPPI localization. For the reasons mentioned above, this 

experiment should be repeated in the presence of the nuclear export inhibitor, 

leptomycin B, to counteract any possible shuttling that might prevent visualization of 

ASPPI nuclear transportation after Ras stimulation. Alternatively, subcellular 

fractionation could be used to detect an increased presence of ASPP in the nucleus 

following Ras stimulation. 

4.3.4. MAMphosphorylation of ASPP2 increases its stability 

, When ASPPI or ASPP2 were co-transfected with either H-RasV12 or K-RasV12, 

Western blotting consistently showed that ASPP expression levels were slightly 

increased compared to samples that were not co-transfected with oncogenic Ras. 

However, the mutant ASPPI (S746A) that couldn't be stabilised by K-RasV12 did not 

have its expression levels increased in the presence of K-RasV12 (figure 4.9Q. This 

suggested that oncogenic Ras might increase ASPPI and ASPP2 activity by affecting 

the post-translational modification pattern of these proteins. This trend was confirmed 

when the U0126 MAPK inhibitor was used to reduce ASPP2 activity: Western blotting 

showed that transfected ASPP2 levels were markedly decreased in the presence of 

U0126 compared to control samples. Thus, we hypothesised that Ras could stimulate 

ASPP activity by affecting its expression levels and that this effect was mediated by the 

Raf-MEK-MAPK signalling pathway. Therefore we suggested ASPPI and ASPP2 

phosphorylation by MAPK on serines 746 and 827, respectively, could lead to increased 

ASPP stability. 
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To test this hypothesis ASPP2 was transfected in the presence or absence of H-RasV12 

and its stability measured after the addition of the translation inhibitor, cycloheximide. 

ASPP2 levels were seen to be increased by H-RasV12. In samples without H-RasV12 

co-transfection, ASPP2 half-life seemed to be around 6 hours whereas in samples co- 

transfected with H-RasV12 the ASPP2 levels at 6 hours had not diminished. 

Confirming that the induction of ASPP2 stability by Ras was via ASPP2 

phosphorylation, oncogenic Ras was unable to increase protein levels of the ASPP2 

(S827A) phosphorylation mutant. It could therefore be concluded that oncogenic Ras 

increased ASPP2 protein levels by phosphorylation. 

There are two possible mechanisms that could explain ASPP2 increased expression by 

Ras. One could be via an increased rate of ASPP2 translation and another could be by 

increasing ASPP2 protein stability. Literature has given many examples of protein 

phosphorylation leading to increased protein stability whereas little is known about 

translation regulation, especially caused by change in phosphorylation status. In order to 

differentiate between the two possible mechanisms that Ras could use to increase 

ASPP2 expression levels, a pulse-chase experiment was done. Cells were pulsed with 

"S-labelled methionine and cysteine for two hours and chased with normal non- 

radioactive medium for 0,6 or 24 hours. This method allowed us to differentiate 

between the Ras effect on ASPP2 being caused by an increase in translation or an 

increase in ASPP2 stability: protein translation should not be affected by pulsing the 

cells but protein stability can be monitored. Unfortunately the endogenous levels of 

ASPP2 were too low to see any labelled protein after immunoprecipitation. Therefore 

we transfected ASPP2 in Saos2 cells in the presence or absence of K-RasV12 and 

looked at the levels of transfected ASPP2 over time. 
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The results shown in figure 4.13 are difficult to decipher. On one hand there was a 

significant increase in ASPP2 protein expression after K-RasV12 co-transfection at time 

0, which was not seen with the phosphorylation mutant ASPP2 (S827A). On the other 

hand, 6 hours after chasing, the ASPP2 levels were identical in cells co-transfected with 

K-RasV12 compared to those transfected alone. There are different possible 

interpretations to these results. One interpretation is that K-RasV12 can decrease 

ASPP2 protein stability as the rate degradation was steeper when ASPP2 was co- 

transfected with Ras. Another interpretation could be that K-RasV12 increased ASPP2 

stability. The cells were pulsed for two hours which would be a sufficient amount of 

time to show a significant difference in protein levels of ASPP2 if K-RasV12 increased 

its stability, as seen at time 0. It would then be expected that ASPP2 would be 

negatively regulated by another mechanism in the long term which would explain its 

decreased expression levels over time. If this second theory is correct, then we would 

expect that a shorter pulse foll owed by shorter time points would show ASPP2 levels at 

time 0 to be equivalent in the presence and absence of Ras, and ASPP2 to be stabilized 

in a short time course when co-transfected with K-RasV12 compared to ASPP2 alone. 

Although the experiment with a shorter pulse and shorter time points was attempted, 

due to technical problems experienced no conclusion could be made. 

Whether K-RasV12 leads to increased ASPP2 stability or to decreased ASPP2 stability, 

what could be concluded is that its effect on ASPP2 is mediated by ASPP2 

phosphorylation on serine 827 because the effect of K-RasV12 is abrogated in the 

phosphorylation mutant. 
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To address the issue of Ras stabilization of ASPP2 further, an experiment was done 

looking at endogenous ASPP2 and endogenous Ras. Since the effect of Ras stability on 

ASPP2 was shown to be mediated by MAPK phosphorylation, the MAPK inhibitor 

U0126 was used. MCF7 cells were starved and then stimulated with EGF in the 

presence qf cycloheximide. In parallel, U0126 was added to an identical sample so see 

the effect of MAPK on ASPP2 stability. Since endogenous ASPP2 levels are low in 

cells, an immunoprecipitation was performed to detect the ASPP2 signal. The stability 

of endogenous ASPP2 was clearly shown to be decreased in the presence of U0126. 

This proves that endogenous MAPK activity is necessary for ASPP2 stability. 

Although there have been some contradictions in the results presented so far, the 

overwhelming majority of results suggest that ASPP2 is stabilized in the presence of 

Ras, via the Raf-MEK-MAPK pathway. The controversy stems from the pulse chase 

result, which was inconclusive, and the fact that Ras RNAi was shown, in one 

experiment, to lead to increased ASPPI (but not ASPP2) expression levels (figure 

3.20). This effect of Ras RNAi on ASPPI was only seen when the cells were treated 

with cisplatin but not when the cells were left untreated. However, all other results 

indicated that endogenous and oncogenic Ras lead to increased ASPP stability: co- 

transfection of oncogenic Ras with ASPPI and ASPP2 invariably lead to increased 

ASPP protein levels; the MAPK inhibitor U0126 lead to reduced ASPP2 levels; and 

cycloheximide experiments with transfected and endogenous ASPP2 showed an 

increase in stability caused by oncogenic and endogenous Ras activity. Taken together, 

we can conclude that Ras does indeed lead to increased ASPPI and ASPP2 stability via 

their phosphorylation by NMPK. 
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4.3.5. ASPP2 is not necessaryfor MAPK stimulation in MEFs 

Stimulation of proteins is often a tightly controlled process. It is not uncommon to have 

either positive or negative feedback loops to allow the necessary response needed for a 

particular stimulus. Stimulation of ASPP2 by the Ras-Raf-MEK-MAPK pathway has 

been demonstrated in this chapter. To assess whether ASPP2 could itself have an impact 

on the MAPK activity, resulting in a feedback mechanism, ASPP2 knockout MEFs 

were used. Stimulation of endogenous MAPK by EGF and FCS showed no difference 

in the kinetics of MAPK phosphorylation between wild-type MEFs and ASPP2-null 

MEFs, suggesting that ASPP2 is downstream only, and not upstream of MAPK. 

However, MAPK showed higher basal levels of phosphorylation in ASPP2-knockout 

cells compared to those with ASPP2 wild type. This suggets that ASPP2 might actually 

inhibit MAPK phosphorylation at basal levels, and therefore might act in a negative 

feedback loop with MAPK. 

Studies with ASPP2 knockout mice showed a very strong phenotype, particularly in the 

brain, which is found to be significantly enlarged compared to wild-type mice (Virginie 

Vives, unpublished data). Thymocytes from these knockout mice also showed a 

difference in apoptotic activity compared to thymocytes from wild-type mice, 

suggesting ASPP2 plays a crucial role in regulating apoptosis in those cell lines 

(Virginie Vives, unpublished data). However, no difference in phenotypes was observed 

in MEFs when comparing ASPP2 knockout and wild-type. This suggests that ASPP2 

does not play a major role in MEFs. In order to fully investigate the effect that ASPP2 

could have on MAPK, a cell line should be used where ASPP2 is known to have a 

physiological effect. Therefore, to fully evaluate whether ASPP2 has an effect on 

MAPK activity, a similar experiment to that shown in this chapter should be performed 
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in thymocytes or brain tissue, comparing MAPK stimulation in ASPP2 knockout and 

wild-type cells. 

4.3.6. Endogenous MAPK activity is necessary forfull apoptotic response to 

doxorubicin 

ASPPI and ASPP2 are known to increase apoptosis in response to chemotherapy drugs 

(Samuels-Lev et al., 2001). Since MAPK has been shown to be upstream of ASPP1 and 

ASPP2, the effect of MAPK activity on doxorubicin-induced apoptosis was 

investigated. Doxorubicin is a strong inducer of apoptosis and ASPP1 and ASPP2 are 

known to be involved in its apopotic pathway. This has been shown using anti-sense 

ASPPI and ASPP2 which significantly reduced doxorubicin-induced apoptosis, as 

measured by flow cytometry (Dr Bergamaschi, personal communication). To test 

whether MAPK is involved in doxorubicin-mediated apoptotic signalling, doxorubicin 

was used to treat MCF7 cells, in the presence or absence of U0126, a MAPK inhibitor. 

U0126 was shown to reduce by 20% doxorubicin-mediated apoptosis. This suggests 

that MAPK activity is necessary for a full doxorubicin-induced apoptotic response. 

Previous work however, has shown that the Ras-Raf-MAPK pathway could inhibit 

doxorubicin-induced apoptosis (Kwok et al., 1994; Nooter et al., 1995). 

The Ras-Raf-MEK-MAPK pathway is known to induce a number of different 

responses, such as proliferation, differentiation and apoptosis. Its actual response 

depends on a number of different factors such as duration of extracellular signalling and 

cell type. Another factor that might affect the response after Ras-Raf stimulation might 

be the expression level of the downstream targets of MAPK. ASPPI and ASPP2 are 

known to be at reasonably high levels in MCF7 cells, it is therefore not unexpected that 
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MAPK activation will stimulated the ASPP to induce apoptosis. In cells with low ASPP 

expression, activation of ASPP by MAPK might be insignificant and the Ras-Raf- 

MAPK response might therefore not lead to apoptosis but to proliferation or 

differentiation. Thus the expression levels of ASPPI and ASPP2 might be another 

factor to take into account when predicting the response induced by the Ras pathway. 

4.3.7. ASPP2 (S827A) co-localizes with K-RasV12 

So far, there seems to be two events linking ASPP2 and Ras. Firstly, ASPP2 can bind 

activated Ras and secondly, ASPP2 is stimulated by the downstream effector of Ras, 

MAPK. It is unclear whether ASPP2 binds Ras prior to its phosphorylation by MAPK 

or as a consequence of its phosphorylation. To address this issue, cell staining was 

performed with the ASPP2 (S827A) mutant that cannot be phosphorylated by MAPK. 

ASPP2 (S827A) was seen to co-localize with Ras to the same extent as wild-type 

ASPP2, in both the plasma membrane of U20S cells and in the perinuclear region. This 

strongly suggests that ASPP2 phosphorylation by MAPK is not necessary for its 

binding to Ras. Whether ASPP2 binding to Ras is necessary for its stimulation by 

MAPK remains to be investigated. 
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4.4. Scope of study 

In this chapter we have dissected the mechanism for Ras stimulation of ASPPI and 

ASPP2. ASPPI and ASPP2 are stimulated by the Ras-Raf-MEK-MAPK signalling 

pathway. ASPP2 has been shown to be a substrate to the MAPK kinase both in vitro 

and in vivo. MAPK phosphorylation is necessary for full ASPP activity and it has been 

shown to phosphorylate ASPPI and ASPP2 on their serines 746 and 827, respectively. 

Phosphorylation of ASPP2 by MAPK leads to increased stability of ASPP2. The 

increased protein stability of ASPP2 following Ras-Raf-MAPK stimulation could 

explain the results in the previous chapter where Ras was seen to increase ASPPI and 

ASPP2 activity. Thus, a novel downstream substrate of the Raf-MAPK phosphorylation 

cascade has been discovered. 
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Chapter 5 

Regulation of ASPP1 and ASPP2 activity 

5.1 Introduction 

ASPPI and ASPP2 proteins increase p53 pro-apoptotic activity (Samuels-Lev et al., 

2001). Since the presence of functional ASPP proteins could lead to an increase in 

apoptosis, it is likely that the activity of these proteins will be tightly regulated. In this 

chapter I examine potential mechanisms by which ASPPI and ASPP2 activity can be 

regulated. 

In chapter 3, ASPPI and ASPP2 are shown to contain the Ras-association domain in 

their amino terminus. This region is necessary for full ASPP function. The first part of 

this chapter will describe how deletion mutants were used to investigate in more detail 

what role these amino-termini have in ASPP function. 

Post-translational modification is a common mechanism by which protein function is 

regulated. The most well-studied modifications are phosphorylation, acetylation and 

ubiquitination. These modifications allow rapid induction or inhibition of a protein's 

activity and are used for signals to be transduced from one protein to another resulting 

in a rapid cascade and amplification of signalling. Post-translational modifications are 

particularly common in proteins regulating cell cycle and in those sensing stress signals. 

p53 is known to be regulated by a multitude of modifications, including 

phosphorylation, acetylation, ubiquitination and sumoylation (Brooks and Gu, 2003; 

Melchior and Hengst, 2002; Xu, 2003). p53 is an unstable and inactive protein in 

normal cycling cells. However after DNA damage or other stress signals it is stabilized 
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and activated by an array of modification. Phosphorylation of p53, which occurs on a 

number of residues in its amino and carboxy terminus, has been shown to stabilize the 

protein and increase its activation, as does acetylation in the carboxy-terminus of p53 

(Brooks and Gu, 2003; Xu, 2003). Ubiquination, mediated by the p53 negative regulator 

Mdm2, however, results in p53 export from the nucleus and increased degradation 

(Haupt et al., 1997; Kubbutat et al., 1997; Kubbutat et al., 1998; Roth et al., 1998). As 

expected, p53 post-translational modifications are tightly controlled as they can lead to 

either cell cycle arrest, apoptosis or allow the cell to continue cycling. 

Not only is p53 function affected by post-translational modifications, but other proteins 

that regulate p53 are also subject to post-translational modifications that can affect their 

function. For example, Mdm2, the most well-studied p53 negative regulator, is subject 

to phosphorylation. As mentioned in section 1.4.5, when unmodified, Mdm2 can inhibit 

p53 activity by exporting p53 to the cytoplasm and directing its degradation by 

ubiquitination. Mdm2 has been shown to be phosphorylated by a number of kinases 

such as DNA-PK, ATM, Akt, p38 SAPK and Cdk (Alarcon-Vargas and Ronai, 2002; 

Khosravi et al., 1999; Maya et al., 2001; Mayo and Donner, 2001; Mayo et al., 1997a; 

Zhang and Prives, 2001). Phosphorylation of Mdm2 by these kinases results in 

reduction of its stability and therefore leads to increased p53 stability and activity, with 

an overall increase in p53-dependent cell cycle arrest or apoptosis. 

ASPPI and ASPP2 are known positive regulators of p53 and can specifically promote 

p53-dependent transactivation of pro-apoptotic genes. As with all elements of the p53- 

signalling pathway, their function is thought to be tightly regulated. It was therefore 

hypothesised that ASPP function, like that of p53 and Mdm2, might be regulated by 
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post-translational modifications, such as phosphorylation. I have shown in chapter 4 

that ASPP2 can indeed be phosphorylated by MAPKI and that this phosphorylation 

increases its activity by stabilizing the protein. In the second part of this chapter, I 

examine other putative ASPP2 kinases and whether they can affect ASPP2 function. 
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5.2. Results 

5.2.1. The amino terminus ofASPP2 stimulatesp53 activity 

In chapter 3 it was shown that the amino terminus of ASPPI binds Ras. It is unclear 

whether ASPP binding to Ras occurs before or after ASPP stimulation by Ras through 

the Ras-Raf-MAPK pathway. Cell staining data suggested that phosphorylation by 

MAPK was not necessary for ASPP2 to associate with oncogenic Ras (figure 4.18). 

To analyze this further, ASPPI and ASPP2 deletion constructs expressing only the 

amino termini were used (figure 5.1). These fragments were expected to compete with 

full-length ASPP to bind to Ras, and therefore act as dominant negatives. I hypothesised 

that, if ASPP binding to Ras is necessary for its stimulation by the Ras-MAPK pathway, 

the presence of these amino terminal fragments would inhibit MAPK activation of 

ASPPI and ASPP2. If, however, ASPP binding to Ras has no direct consequence on 

MAPK stimulation of ASPP, then the presence of these amino terminal fragments 

would have no effect on ASPP-dependent stimulation of p53. 

To test which scenario occurred in cells, Saos2 cells were transfected with p53 

expression plasmids in the presence or absence of ASPP2 (1-360) expression plasmids. 

This fragment was expected to compete with endogenous ASPP2 to bind to endogenous 

Ras. Unexpectedly, p53 transactivation activity was shown to be increased by the 

ASPP2 (1-360) fragment (figure 5.2). This result was reproducible and seen in several 

independent experiments. 
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Figure 5.1. Schematic diagrarn of inotue and hionan ASPPI and ASPP2 deletion 
ftagnients. Deletion mutants were made of ASPPI and ASPFv-) as indicated in 
mammalian expressing pCDNA3 plamids. The prefix "h" stands for human and "in" 
for mouse. Construction of these plasmids was done by Dr Susana Llanos and Alan 
Renton, as described in Materials & Methods. 
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C. ) 

p53 

Figure 5.2. ASPP2 (1-360) increases p53 activity. 50 ng of pCDNA wild type p53 was 
transfected into Saos2 cells in the presence or absence of 2 [tg ASPI12 (1 -3 -60). 1 [tg Bax- 
luciferase was transfected per 6 cm dish. The cells were harvested and lysed with the 
luciferase lysis buffer (Promega) and a luciferase assay carried out. The mean values 
were derived from two independent experiments. 
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5.2.2. The amino terminus qfASPPI or ASPP2 stimulates p53 activity viafull-length 

ASPPI and ASPP2 

To test whether the effect of the amino terminal fragments of ASPP stimulated p53 

directly or via full-length ASPPI and ASPP2, these fragments were co-transfected full- 

length ASPP and p53 (figure 5.3). Co-transfection of ASPPI (1-358) increased p53 and 

ASPPI full-length synergy significantly. Similarly, co-transfection of ASPP2 (1-360) 

increased p53 and ASPP2 synergy. 

In this experiment p53 did not synergize greatly with ASPPI nor ASPP2 when co- 

transfected in Saos2 cells. However, the presence of both the amino terminus fragment 

and the full-length ASPP proteins greatly enhanced p53 transactivation activity. The 

ASPPI (1-358) and ASPP2 (1-360) stimulation of p53 was dependent on full-length 

ASPP since the deletion fragments alone did not stimulate p53 to the same extent. 

ASPPI (1-358) even inhibited p53 activity in the absence of full-length ASPPI 

although this experiment was only performed once and needs to be repeated. 
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Figure 5.3 The anzino-terinini of ASPPI and ASPP2 slinudate p53 andfull length 
ASPPI aim] ASPP2 Iransaclivalion aclivily. (A) Saos2 cells were transfected with 4 
tig ASPPI and 50 ng p53 in the presence or absence of' 2 tLg ASPPI (1-358) in 
pCDNA expression plasmids. (B) Saos2 cells were transfccted with 4 tLg ASPFI-), 50 
ng p53 and 2 Rg N-terminus ASPP-) ass indicated. All samples were co-transfcctcd 
with bax-lucifcrase reporter. The cells were harvested and lysed with the luciferase 
lysis buffer (Promcga) and a luciferase assay carried out. Values shown are fold over 
p53 + ASPP02. The mean values were derived from two independent experiments. 
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5.2.3. Only the amino terminusfragments of human and mouse ASPP can stimulate 

p53 andfull-length ASPP2 activity. 

The amino terminus of ASPPI and ASPP2 contain the Ras-association domain. Mouse 

ASPP2 is highly homologous to human ASPP2 and the Ras assocating domain of 

human ASPP2 is conserved in the first 90 amino acids of mouse ASPP2 (figure 5.4A). 

To test whether the effect previously seen by the ASPP2 (1-360) fragment was specific, 

the experiment was repeated using the ASPP1 (1-358) fragment, the mouse amino 

terminal fragment mASPP2 (39-383) and the human ASPP2 (1-360) cloned in two 

different vectors, one 9EIO-tagged and one V5-tagged. All four amino terminal 

fragments increased p53 and ASPP2 synergy significantly (figure 5.4B). Both the 

human and mouse ASPP2 amino terminal fragments increased p53 and full-length 

ASPP2 activity to a larger extent than the ASPPI (1-358) fragment. 

To confirm that this effect was specific to the amino-terminus fragments of ASPP, the 

carboxy-terminal fragments of human ASPPI (1003-1090) and mouse ASPP2 (917- 

1125) were tested. The carboxY terminal fragments did not increase ASPP2 and p53 

synergy (figure 5.4B). Therefore, the increase in ASPP2 and p53 activity is specific to 

the amino terminus fragments of ASPPI and ASPP2. 
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Figure 5.4. Hwnan ASPPI (1-358), huinan ASPP2 (1-360) and "louse ASP112 (59-383) 
can increase p53 and ASPP2 transactivation activity. (A) Alignment of the ras- 
association domain of human and mouse ASPPI2. (B) Saos2 cells were transfected with 4 
[tg of ASPPI-I and 50 ng ofp53 in the presence of 2 gg of ASPPI and ASPP2 deletion 
fragments. Fragments with the prefix "h" arc human and those with the prefix "m" are 
mouse. All deletions fragments are tagged in their carboxy terminus with either 9EIO or 
V5 as indicated. 
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5.2.4. ASPP2 (1-360) stimulates ASPP2 wild type and ASPP2 (S827A) to the same 

extent. 

In chapter 4,1 showed that Ras induces ASPP2 phosphorylation on serine 827 via its 

downstream effector MAPK. Since the amino terminal fragments of ASPPI and ASPP2 

act via full-length ASPPI and ASPP2, I investigated whether the amino terminal 

fragment of ASPP2 increases the activity of full-length ASPP2 wild type to the same 

extent as the phosphorylation mutant ASPP2 (S827A). 

Co-transfection of the deletion fragment ASPP2 (1-360) in Saos2 cells with p53 and 

full-length ASPP2 wild type or the phosphorylation mutant ASPP2 (S827A) expressing 

plasmids, showed that both the wild type and the mutant forms of ASPP2 were 

stimulated by the fragment ASPP2 (1-360) to the same extent (figure 5.5). 

This suggests that the stimulation of ASPP2 by its amino terminus fragment is not 

dependent on ASPP2 phosphoryalation state at serine 827. Therefore, MAPK 

phosphorylation of ASPP2 and ASPP2 stimulation by its amino terminus fragment are 

two independent events. 
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Figure 5.5. ASPP2 (1-360) stimulates ASPP2 wild ýype and ASPP2 (S827A). Saos2 
cells were transfected with 4 gg ASPP-) wild type or ASPP21 (S827A), 50 ng ofp53 and 
2 gg of ASPP'21 (1-360) expression plasmids. All samples were co-transfected with 
bax-luciferasc. The cells were harvested and lysed with the luciferasc lysis buffer 
(Promega) and a luciferase assay carried out. The mean values were derived from two 
independent experiments. 
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5.2.5. ASPP2 is the putative substrate of several kinases 

Previous work in this thesis has shown that ASPP2 is a substrate for MAPK 

phosphorylation. Phosphorylation is a post-translational modification that allows a rapid 

induction or inhibition of a protein's activity and allows a signal to be amplified as it 

passes along a signalling cascade. Phosphorylation is therefore a common form of 

regulation, and is particularly frequent for proteins involved in cell cycle control. 

It was of interest to determine whether ASPP2 could be phosphorylated by kinases 

other than MAPK. A search was done with the amino acid sequence of ASPP2 using the 

web-site http: //scansite. mit. edii/. This analysis revealed that ASPP2 is a putative 

substrate for a number of different kinases. Figure 5.6 shows the list of putative ASPP2 

kinases after a medium stringency search. The right-hand column indicates the residue 

within the consensus sequence that is the putative phosphorylation site for a particular 

kinase. In some cases, a particular kinase has several potential phosphorylation sites in 

ASPP2. The middle column shows the probability of the highlighted residue being 

phosphorylated: the lower the percentile, the higher the probability that ASPP2 might 

be phosphorylated by that particular kinase at that particular site. It can be seen that 

kinases Abl, MAPKI, PDKI, PKA and PKCc have a high probability of 

phosphorylating ASPP2. 

319 



kinase percentile position 

AN kinase 0.593% Y645 
AN SH3 0.095% P872 
Abl SH4 0.414% P500 
Akt kinase 0.824% S1126 
Amphiphysin SH3 0.680% P360 
ATM kinase 0.466% T614 
ATM kinase 0.588% S423 
ATM kinase 0.779% S96 
Cdc2 Kinase 0.324% S673 
Cdc2 Kinase 0.754% S698 
Cdk5 kinase 0.875% S698 
Cdk5 kinase 0.875% S673 
Cortactin SH3 0.036% P503 
Cortactin SH3 0.156% P870 
Cortactin SH3 0.278% P696 
Cortactin SH3 0.324% P360 
Crk SH2 0.957% Y869 
CrK SH3 0.957% Y869 
DNA PK 0.029% P500 
DNA PK 0.595% S96 
Erkl 0.111% S698 
Grb2 SH2 0.368% Y710 
Grb2 SH3 0.342% P872 
Grb2 SH3 0.922% P870 
Intersectin SH3A 0.145% P503 
Itk SH3 0.263% P500 
Itk SH3 0.565% P357 
Itk SH3 0.845% P578 

. 
Itk SH3 0.933% P871 

kinase percentile Positior 

Nck SH2 0.892% Y869 
Nick 2nd SH3 0.416% P868 
p38 MAPK 0.220% S673 
p38 M"K 0.668% S698 
p38 MAPK 0.668% T586 
p38 MAPK 0.994% S556 
p85 SH3 mode2 0.940% P360 
PDKI Binding A 0.062% D1067 
PDKI Binding A 0.629% D461 
PDKI Binding B 0.984% T614 
PDZ class 1 0.146% S1126 
PDZ (nNOS) class 1 0.084% S1126 
PICA 0.111% S737 
PKA 0.890% S736 
PKA 0.890% S296 
PKCalpha/beta/gamma 0.631% T474 
PKCalpha/beta/gamma 0.863% S100 
PKC epsilon 0.031% S737 
PKC epsilon 0.034% 7758 
PKC epsilon 0.421% T603 
PKC epsilon 0.558% S458 
PKC mu 0.432% S726 
PKC mu 0.535% 7757 
PKC mu 0.615% S934 
PKC zeta 0.348% S1126 
PLCg N-terminal SH2 0.438% Y791 
PLCgSH3 0.967% P871 
Shc PTB 0.596% Y869 

. 
Src SH3 0.551% P500 

Figure 5.6. Putative ASPP2 kinases. The amino acid sequence of ASPP2 was used to 
search for putative phosphorylation sites of kinases with the scansite search engine. 
The search was done at medium stringency. The percentile shows the probability of 
the kinase phosphorylating ASPP2 at that site; the higher the percentage, the lower 
the probability. The columns on the right of the tables show the position and the 
residue of ASPP2 that could phosphorylated by the given kinase. 
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5.2.6. ASPP2 is phosphorylated in vitro by p9Orsk, PKA and p38 SAPK 

A selection of kinases identified by the search (PKA, PKB/Akt, p38SAPK/MAPK, and 

MAPK1) were examined for their potential to phosphorylate ASPP2 in vitro. In 

addition, two other kinases, p70 S6 kinase and p90 rsk, that were not identified by the 

search were also analyzed for their potential to act as ASPP2 kinases. These kinases 

were chosen for the in vitro phosphorylation assay due to the fact that they were readily 

available in the laboratory of Dario Alessi (University of Dundee). 

The recombinant GST-ASPP2 (693-1128) fragment was used as a substrate. This 

contains the majority of the putative phosphorylation sites. Histone 2B was used as a 

positive control as it is a substrate for a wide range of kinases in vitro, and MAPKI was 

also used as a positive control for ASPP2 phosphorylation. Figure 5.7 shows that 

ASPP2 (693-1128) was phosphorylated by MAPKI as expected , as well as p90, PKA 

and p38SAPK. PKB was unable to phosphorylate the ASPP2 fragment although it was 

still active, as seen by the histone 2B phosphorylation. It remained inconclusive whether 

p70 S6K could phosphorylated ASPP2 in vitro as it did not phosphorylate its positive 

control histone 2B. 
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Figure 5.7 ASPP2 (693-1128) is phosphor 
* 
vlated in vitro by a variet 

"v 
of kinases. A 

GST-ASPlI2 (693-1128) fragment was expressed in B1,21 cells and purified a,, 
described in Materials & Methods. ASPI12 (693-1128) was used as a substrate for an 
in vitro phosphorylation assay by the kinases MAPIK, p70, p90, PKA, PKI3 and 
p38SAIIK. As a negative control no substrate was used and Histonc 2B (H2B) Nvas 
the substrate for the positive control. 32l)-lahclled ATII was added to the kinase assay 
and the labelled proteins wcre resoINcd on SDS-PAGE ocls and visualized by 

autoradiograph. 
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5.2.7. PKA phosphorylates ASPP2 in vitro on serine 737 

A large-scale in vitro phosphorylation. assay was performed with the most efficient 

ASPP2 kinases: PKA, p38 SAPK, MAPKI and p90 rsk, in the presence of 32 P-labelled 

ATP (figure 5.8A). The phosphorylated ASPP2 (693-1128) fragments were resolved on 

an SDS-PAGE gel and excised following which their radioactivity content was 

measured (figure 5.813). The ASPP2 fragment phosphorylated by PKA had high levels 

of incorporated 32p, suggesting that PKA is an efficient kinase for ASPP2 

phosphorylation. The excised PKA-phosphorylated fragment was subsequently digested 

with trypsin and then fractionated on a high performance liquid chromatography 

(HPLQ C-18 column. In a similar experiment to that described in 4.2.3, an acetonitrile 

gradient was used to elute the trypsinized fragments. All fractions were measured for 

their radioactivity as shown in figure 5.8C. Fractions representing the two radioactive 

peaks, fraction 103 and the combined fractions 124/125, were collected and were 

analyzed by the mass spectrometer service at the protein phosphorylation unit, 

university of Dundee, to measure their molecular mass. 

323 



A. 

2 

C. 

20000 

15000 

10000 

c3. 

5000 

I(X) 

I 50 

0 u 03 

0 

103 124/125 

Figure 5.8. PKA phosphor 
' 
Ylates ASPP2 in vitro with high activit 

' 
Y. (A) large-scale in 

vitro phosphorylation assay of ASFI2I (693-1128). The intensity of the bands was 
quantified and is shown in (B). The PKA-phosphorylated ASPF"_ (693-1128) fragment 

was trypsinized and the peptides separated with a high performance liquid 

chromatography (HPLQ using increasing amounts of acetonitrile. The fractions were 
collected and their radioactivity measured, as shown by the black peaks. The 
radioactive peaks represented fractions 103 and 124/125. 

B. 

cpm counts 
acetoni ttile gradient 

324 

PKA p38 MAPKI p9O 



Using a programme that could predict the mass and sequences of the ASPP2 fragments 

after digestion with trypsin, the phosphorylated fractions were matched to the 

appropriate sequences. The second radioactive peak eluted from the column after PKA 

phosphorylation matched the peak found after MAPK phosphorylation of ASPP2 (693- 

1128) and also represented the linker region between the GST-tag and the ASPP2 

recombinant protein (figure 5.9B). The fraction representing the first radioactive peak, 

namely fraction 103, was measured and found to represent the residues 735-744 of full- 

length ASPP2. The estimated mass of that peptide was 1903.8915 as calculated by the 

computer programme, and the actual mass measured by mass spectrometry was 

1903.8177. To confirm that it was indeed the ASPP2 fragment representing amino acids 

735-744, the fraction was sequenced using the Edman degradation technique and each 

amino acid was measured for its radioactivity (figure 5-9A). Thus we conclude that 

PICA could phosphorylate ASPP2 at serine 737 in vitro. 
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Figure 5.9. PKA phosphorylates ASPP2 (693-1128) in vitro on residue 737. The 
radioactive fractions were collected and measured by mass spectrometry. (A) Mass 
spectrometry analysis and Edman degradation showed that fraction 103 contained the 
serine 737 phoshorylated by PKA. The graph shows each residue from the fraction 
labelled with its amino acid composition and its sequence number. The values shown 
under the graph represents the expected mass of the fraction after phosphorylation (1? 0ý 
and the actual ("found') mass. (B) Fractions 124/125 represented the linker region 
between the GST-tag and the ASPP2 fragment, and was phosphorylated on residue 230. 
As with A, the values shown under the graph represents the the expected mass of the 
fraction after phosphorylation (POý and the actual ("found') mass. 
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5.2.8. ASPP2 (S736,737A) phosphorylation mutant is as active as ASPP2 wild type 

To test the effect of PKA on ASPP2 in vivo, an ASPP2 phosphorylation mutant was 

constructed with the two serines at positions 736 and 737 mutated to alanine (figure 

5.10A). Since PKA was shown to phosphorylate serine 737 in vitro, this was thought to 

inhibit any effect PKA might have on ASPP2 activity. 

5.2.8.1. Construction of ASPP2 (S736,737A) phosphorylation mutant 

The mutant was constructed by site directed mutagenesis using the carboxy-terminal 

fragment of ASPP2 (693-1128) in a pCDNA3 vector as a template (figure 5.1013). A 

titration of the template was used for PCR and the mutated carboxy terminal fragment 

of ASPP2 was purified (figure 5.1013). The amino terminus fragment of ASPP2 (1-692) 

was isolated from a full-length ASPP2 construct by EcoRI digestion. It was then 

inserted into the EcoRI-digested mutant construct, 5' of the carboxy terminal fragment 

of ASPP2 (figure 5.1013). This resulted in a full-length mutant ASPP2, as shown 

schematically in figure 5.10C. The full-length APP2 (S736,737A) mutant was 

sequenced and shown to contain the wanted mutation but no other change in sequence 

(data not shown). 
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FIgure 5.10. Construclion of ptastnids expressing an ASPP2 phosplior 
' 
vlation inutam 

(it the PKA site. (A) Schematic representation of plasmids encoding mutant ASPIY-7. 
The homologous region in the amino terminus is shown, as is the prolinc rich region 
(PXXP), the ankyrin repeats and the SH3 domain. The putative PKA phosphorylation 
site that was mutated to alanine (serines 736 and 737) is shown. The mutations were 
introduced by site-directed mutagenesis in the ASPP'2) fragment in a pCDNA vector 
(described in Materials & Methods) representing amino acids 693-1128 and 
nucleotides 2079-3384, as shown schematically in figure (B) 

. (C) Schematic 

representation of the amino-terminus fragment (amino acids 1-693, representing 
nucleotides 1-2079) subsequently added to the mutated carboxy-terminus fragment. 
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Figure 5.10. Constructing (if plasinids exIvessing an ASPP2 I)hosphorvlation mulant 
at the PKA site, continued. (D) Site-directed mutagenesis was performed by W_R on 
ASPP02 (693-1128) in a pCDNA template to produce the S7_36,737A mutant. The first 
lane shows the I kb DNA marker and the second lane the control pBluescript 
template. The last four- lanes show mutagenesis PCR products performed with a 
titration of template, as indicated (E) Full length ASPP2 was digested with EcoRl as 
were the mutant and wild type ASPI102 fragments (nc 2079-3394, representing amino 
acids 693-1128). All digests were resuloved on a 1% agarose gel. The digested 
fragment of' ASPP21 representing the nuclcotides 1-2079 (amino acids 1-693) wzLs 
purifcd from the gel. The dogested nainds representing the wild-type and mutant 
fragments (nucleotides 2(Y79-3384 representing amino acids 693-1128) were also LI 
purified. 
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5.2.8.2. ASPP2 (S736,737A) is as active as ASPP2 wild type in inducing p53 

To test the activity of ASPP2 (S736,737A), the phosphorylation mutant was co- 

transfected with p53 and compared to ASPP2 wild type co-transfection with p53. 

Figure 5.11 shows no difference in the stimulation of p53 transactivation activity 

between ASPP2 wild type and ASPP2 (S736,737A). 
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Figure 5.11. ASPP2 wild type and ASPP2 (S736A, S737A) have similar activity. 
Saos2 cells were transfected with 50 ng of p53 and 4 jAg of ASPPI-) wild type or 
ASPP- (S736,737A). Bax-luciferusc was co-transfected in all samples. The cells were 
harvested and lysed with the luciferase lysis buffer (Promcga) and a luciferase assay 
carried out. The luciferase counts are shown. The p-5-3 values were arbitrarily taken as 
1.0 to scc the cffect of ASPf"2 on its activity. 

331 

vector p-53 ASPF"- ASPfy-l ASPF"- ASPfy2l 
wt (S737,737A) wt (S737,737A) 



5.2.9. Forskolin stimulates both ASPP2 wild type and ASPP2 (S736,737A) activity 

As seen with the ASPP2 (S827A) mutant defective in the MAPK phosphorylation site, 

basal activity could be similar to that of wild type ASPP2 and only under certain 

conditions can a difference be perceived in the mutant and wild type activity. If PKA 

phosphorylates ASPP2 in vivo, the situation where the difference between ASPP2 wild 

type and ASPP2 (S736,737A) would be most apparent would be those in which 

endogenous PKA is activated. 

Forskolin is a well-known activator of PKA. It stimulates adenylate cyclase to release 

increasing amounts of cAMP resulting in PKA activation (Metzger and Lindner, 1981; 

Seamon and Daly, 1981). Forskolin was therefore used to stimulate endogenous PKA. 

Saos2 cells were transfected with p53 and ASPP2 wild type or ASPP2 (S736,737A) in 

the presence or absence of forskolin. Forskolin increased p53 transactivation activity on 

the bax-luciferase reporter markedly. Stimulation by forskolin was via ASPP2 as it only 

had a slight stimulatory activity on p53 alone but a considerable stimulatory effect on 

p53 and ASPP2 (figure 5.12A). This suggested that PKA is an upstream, positive 

regulator of ASPP2. As well as stimulating p53 and ASPP2 wild type, forskolin was 

able to extensively stimulate p53 and ASPP2 (S736,737A) phosphorylation mutant. 

Although it seemed from the luciferase counts that ASPP2 (S736,737A) was not 

stimulated by forskolin to the same extent as ASPP2 wild type was, this was due to the 

fact that in this particular experiment the mutant ASPP2 did not synergize with p53 as 

effectively as did wild type ASPP2. To determine whether there was any difference in 

forskolin stimulation of ASPP2 wild type and ASPP2 mutant, the value of p53 and 

ASPP2 were arbitrarily put as 1.0 (figure 5.1213). This allowed analysis of effect of 
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forskolin on p53 and ASPP2 activity. Indeed, forskolin stimulated ASPP2 wild type and 

ASPP2 (S736A, S737A) equally well and showed no preference for ASPP2 wild type. 

Thus, although PKA can stimulate ASPP2, it does so via a mechanism independent of 

phosphorylation on residues 736 and 737. 
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FIgure 5.12.77w PKA activator forskolin stimulates ASPP2 wild type and ASPP2 
(S736,737A). (A) Saos2 cells were transfected with 50 ng of p53 and 4 Rg of ASPP2 wild 
type or ASPP`-I (S736,737A). The cells were treated with 20 RM forskolin or DMSO as a 
control. Bax-luciferase reporter was ck)-transfected in all samples. The cells were harvested 

and lysed with the luciferase lysis buffer (Promega) and a luciferasc assay carried out. The 
luciferase counts are shown. (B) The value ofp-53 and ASPF2 was arbitrarily taken as 1.0 to 
see the effect of forskolin on its activity. 
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5.3. Discussion 

5.3.1. The amino termini ofASPPI and ASPP2 stimulatefull-length ASPPI and 

ASPP2 activity 

In chapter 3 it was demonstrated that ASPP1 and ASPP2 bind activated Ras in vivo via 

the Ras-association domain of the ASPP proteins in their amino termini, at amino acids 

1-90.1 have also shown, in chapter 4, that ASPPI and ASPP2 are stimulated by MAPK 

phosphorylation on their serines 746 and 827, respectively. Understanding how these 

two pathways are linked is crucial. One possibility is that ASPPI and ASPP2 bind Ras- 

GTP, following which the Raf-MAPK pathway is activated and ASPPI and ASPP2 are 

phosphorylated resulting in increased activity. Alternatively, ASPPI and ASPP2 may be 

phosphorylated by MAPK, following which they bind activated Ras. Yet a third, albeit 

less likely possibility, is that ASPP binding to Ras is not linked to its phosphorylation 

by MAPK. To test these hypotheses, deletion fragments of ASPPI and ASPP2 were 

used to compete with full-length ASPP binding to Ras. If ASPP binding to Ras is 

necessary for its stimulation by MAPK, it would be expected that the presence of the 

deletion mutants of ASPP would prevent ASPP stimulation by MAPK. If, however, 

ASPP binding to Ras is not necessary for its stimulation by MAPK, then the deletion 

fragments would have no effect on ASPP stimulation by MAPK. 

Unexpectedly, ASPP2 (1-360) fragment increased p53 activity at least two fold. This 

stimulation of p53 was probably via endogenous ASPP since the ASPP2 (1-360) 

stimulation of p53 was significantly enhanced in the presence of exogenous ASPP2: 

whereas ASPP2 (1-360) stimulated p53 alone two-fold, it stimulated p53 and ASPP2 

together more than five-fold. Both ASPPI (1-358) and ASPP2 (1-360) could stimulate 

exogenous ASPPI and ASPP2, respectively. The amino terminus fragment of ASPP2 
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(1-360) could stimulate full-length ASPP2 independently of MAPK phosphorylation 

since no difference was observed between the ASPP2 (S827A) phosphorylation mutant 

and ASPP2 wild type. 

In all the experiments where ASPPI (1-358) and ASPP2 (1-360) were able to increase 

full-length ASPPI and ASPP2 activity, p53 did not synergyze significantly with 

ASPPI/2. This lack of synergy might be linked to the fact that a significant amount of 

DNA was transfected - it has often been observed that the more DNA transfected, the 

lower the synergy. Although ASPPI/2 were not as active on their own, they were still 

responsive to the amino terminal fragments. 

The effect of the amino terminal fragment of ASPPI and ASPP2 is not yet understood. 

Since these fragments contain the Ras-association domain, it is possible that they act by 

associating with Ras. One possible theory is that Ras acts as a negative regulator of 

ASPPI and ASPP2 by binding to them. Therefore deletion fragments that compete with 

full-length ASPPI/2 to bind to Ras could increase the activity of full-length ASPP 

proteins by preventing their binding to Ras. In this scenario, Ras would act as both a 

positive and negative regulator of the ASPP proteins: it would inhibit ASPP activity by 

binding to them and stimulate ASPP activity via the Raf-MAPK phosphorylation 

cascade. An integral part of this hypothesis is that the amino terminus fragments of 

ASPPI and ASPP2 bind Ras. This could be shown by co-immunoprecipitating Ras and 

these deletion fragments. Another experiment that could confirm the competition 

binding theory is to see if increasing amounts of amino terminus fragments reduced 

full-length ASPP binding to Ras. 
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We have shown that full-length ASPP2 activity can be stimulated equally well by either 

human or mouse ASPP2 amino terminal fragments. As stated earlier, mouse and human 

ASPP2 are highly homologous and both contain the Ras-association domain in their 

first 90 amino acids. The amino terminus fragment of mouse ASPP2 used in the 

experiments shown in this chapter consists of residues 39-383. This fragment therefore 

does not contain an intact Ras-association domain, but is nonetheless able to stimulate 

full-length ASPP2 activity. This strongly suggests that the Ras-association domain of 

ASPPI and ASPP2 is not involved in the stimulatory activity of the amino terminus 

fragments. 

ASPPI and ASPP2 both contain a putative alpha helix domain in their first 300 amino 

acids. Alpha helix domains are known to be involved in protein-protein interactions. It 

is therefore possible that ASPPI and ASPP2 amino terminal fragments can relay their 

stimulatory activity to full-length ASPP not by competitively binding Ras via the Ras- 

association domain, but by binding some other protein via their alpha helical domain. 

These amino terminal fragments might even be able to form heterodimers with full- 

length ASPP1 and ASPP2. This can easily be tested with both in vitro and in vivo 

binding assays. It is not uncommon that binding of two proteins to each other can result 

in a change of the three-dimensional structure of one or both proteins. If the amino 

terminal fragments of ASPPI/2 bound full-length ASPPI/2, it would not be unlikely 

that the full-length ASPP proteins change their conformation as a consequence of the 

binding, therefore resulting in higher stimulatory effects. Since the putative alpha-helix 

domain is in the amino terminus of ASPPI and ASPP2 and the p53-binding domain is 

in their carboxy-terminus, binding to the deletion fragments should not inhibit binding 

to p53 and might possibly enhance it by allosteric effects. 
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5.3.2. ASPP2 is a putative substrate to PKA kinase 

Putative ASPP2 kinases were searched for by entering the protein sequence of ASPP2 

on the web-site http: //scansite. mit. edu that can recognize consensus phosphorylation 

sites. A small-scale screen was then performed by in vitro phosphorylation assays with 

a selected group of kinases. PKA was found to have a high probability of 

phosphorylating ASPP2 from the web-based search and in vitro phosphorylation 

confirmed that it phosphorylated a recombinant ASPP2 (693-1228) fragment with high 

activity. Using high performance liquid chromatography (HPLC) and mass 

spectrometry analysis, the residue of ASPP2 phosphorylated by PKA in vitro was found 

to be serine 737. 

A construct was made of ASPP2 with the serine residues 736 and 737 mutated to 

alanine residues, preventing phosphorylation of ASPP2 on these sites in vivo. This 

phosphorylation mutant was found to have a similar activity to wild type ASPP2 in a 

transactivation assay. It is possible that ASPP2 phosphorylation mutant and wild type 

differ in their activity but their difference can only be seen under certain conditions. 

Assuming ASPP2 is activated by PKA by phosphorylation, a difference in the activity 

of wild type and phosphorylation mutant would only be seen when there is a high level 

of PKA stimulation. Thus forskolin was used to stimulate PKA. 

Forskolin is a well-studied activator of adenylate cyclase. Its presence in cells leads to 

higher amounts of cAMP followed by increased PKA activity. When endogenous PKA 

is stimulated by forskolin, ASPP2 activity increases significantly and ASPP2 together 

with p53 transactivate the bax-luciferase reporter four-fold more effectively than in the 

absence of forskolin. Thus, PKA is an upstream positive regulator of ASPP2. 
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As PKA was shown to phosphorylate ASPP2 in vitro at serine 737 and PKA can 

stimulate ASPP2 in vivo, we tested whether this in vivo stimulation was via ASPP2 

phosphorylation at serine 737. Unexpectedly, forskolin activated ASPP2 (S736,737A) 

phosphorylation mutant as efficiently as it did ASPP2 wild type. Therefore PKA- 

dependent stimulation of ASPP2 occurs independently of the phosphorylation status at 

serine 737. 

Both in vitro phosphorylation data and the scanmotif web-site support the candidacy of 

PKA as a potential kinase for ASPP2. The medium-stringency search suggested that 

PKA phosphorylates ASPP2 with a high probability. Nonetheless, the list of putative 

phosphorylation sites on ASPP2 based on consensus sequences is not necessarily the 

best form of prediction. The medium stringency search showed MAPKI/Erkl as a 

putative kinase for ASPP2 phosphorylation. This has proven to be correct, as shown in 

chapter 4. However, the search analysis also revealed that the site of ASPP2 to be 

phosphorylated by MAPK was serine 698. In fact, both in vitro and in vivo data 

presented in chapter 4 proved that MAPK phosphorylates ASPP2 on serine 827 only. 

Although these web-based searches for potential kinases are a good indication of 

kinases involved in the regulation of a particular protein, their suggestions should be 

taken cautiously. 

Thus, the amino terminal fragments of ASPP and PKA have been found to be involved 

in ASPP regulation. Although I have shown in this chapter that they increase ASPPI 

and ASPP2 activity markedly, the mechanism by which they regulate the ASPP proteins 

still requires some investigation. 
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Chapter 6 

Final Summary and Discussion 

6.1. ASPPI and ASPP2 are novel Ras effectors 

In its activated, GTP-bound form, Ras can recruit to the membrane and bind to an array 

of effector molecules, such as Raf, P13K and RalGDS. As a consequence of their 

binding to Ras and their translocation to the plasma membrane, these effector proteins 

are activated and are then able to stimulate their own downstream effector molecules, 

leading to a variety of cellular responses. As well as these three well-characterized Ras 

effectors, many other proteins have been suggested to be putative Ras effectors. In most 

of these cases, however, their binding to Ras has been shown mainly in over-expression 

experiments or yeast two-hybrid binding assays and, to date, few results of functional 

significance have been discovered as a results of their binding Ras. 

It is known that the amino terminal regions of ASPPI and ASPP2 are necessary for 

their full activity (Samuels-Lev et al., 2001). By subjecting this amino-terminal region 

of the ASPP proteins to a BLAST search, I found that both ASPPI and ASPP2 contain 

a putative Ras-association domain (RA) in their first 89 amino acids. This RA is also 

present in some of Ras effectors such as RaIGDS, AF-6 and Norel, and it mediates the 

interaction between these effectors and Ras (Hofer et al., 1994; Kikuchi et al., 1994; 

Kuriyarna et al., 1996; Ponting and Benjamin, 1996; Spaargaren and Bischoff, 1994; 

Vavvas et al., 1998). This led me to hypothesise that ASPPI and ASPP2 might interact 

with Ras. In accordance with this supposition, I have demonstrated that the amino 

terminus of ASPPI can bind Ras directly, both in vitro and in vivo. The significance of 
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this interaction was confirmed when endogenous ASPP1 and ASPP2 were shown to 

bind endogenous Ras, after cells were stimulated with serum and growth factors. 

For ASPPI and ASPP2 to be Ras effectors, their activity must be stimulated after 

binding to Ras. Previous work in our laboratory has shown that ASPPI and ASPP2 can 

co-activate p53 transactivation of apoptotic genes specifically (Samuels-Lev et al., 

2001). 1 therefore used both luciferase transactivation assays and FACS analysis as 

means to measure Ras effect on the ASPP proteins. Tumour-derived, mutant H-RasV12 

and K-RasV12 can both consistently increase ASPP1 and ASPP2 stimulation of p53 by 

2-3 fold and inhibition of endogenous H-Ras or K-Ras by RNAi was sufficient to 

significantly reduce ASPP-mediated apoptosis in a p53-dependent manner. Therefore, 

not only can oncogenic Ras stimulate ASPP pro-apoptotic activity, but endogenous Ras 

is required for the full potential of ASPP-mediated apoptosis. It would be interesting to 

test whether oncogenic N-Ras can stimulate ASPPI and ASPP2 to the same extent as its 

family members, H-Ras and K-Ras. 

Thus, ASPPI and ASPP2 have all the hallmarks of novel Ras effector proteins: they 

bind Ras directly through their RA domain, interact with Ras in vivo and their activity is 

stimulated by active Ras. 

341 



6.2. ASPPI and ASPP2 are novel MAPK substrates 

Since Ras is upstream of a number of different pathways, I enquired whether ASPPI 

and ASPP2 activation by Ras might be mediated by one of these downstream pathways. 

Indeed, I discovered that activated Raf could stimulate ASPP activity to the same extent 

as oncogenic Ras, strongly suggesting that Ras activation of ASPP is mediated by the 

Ras-Raf pathway. In accordance with ASPP being regulated by the Ras-Raf pathway, 

both ASPPI and ASPP2 contain a conserved MAPK phosphorylation site. I have shown 

that MAPK phosphorylates ASPPI and ASPP2 in vitro and in vivo, on serines 746 and 

827, respectively, and that phosphorylation of these serines by MAPK results in 

increased ASPP activity. 

MAPK is known to have several substrates, both in the cytoplasm and in the nucleus. 

MAPK phosphorylation of the transcription factors TCF and Ets2 in the nucleus results 

in an increase of their transactivation activity (Gille et al., 1992). On the other hand, 

phosphorylation of the kinase Rsk by MAPK in the cytoplasm, results in Rsk 

translocation to the nucleus where in can then phosphorylate and activate the 

transcription factor CREB (Xing et al., 1996). Thus, MAPK phosphorylation of its 

substrates can increase their transcriptional activity and induce their translocation from 

the cytoplasm to the nucleus. 

In the case of ASPPI and ASPP2, however, MAPK was shown to increase their activity 

by other means: MAPK-mediated ASPP phosphorylation led to an increase in ASPP2 

protein levels. This suggests that MAPK can stimulate its substrates by increasing their 

stability, and consequently, their activity. Nonetheless, it is still possible that MAPK 

phosphorylation of ASPPI and ASPP2 might have more than a single effect and that, 
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following phosphorylation, the ASPP proteins can translocate to the nucleus. So far, 

ASPPI and ASPP2 have only rarely been shown to be present in the nucleus by cell 

staining, although their presence on the promoters of p53 pro-apoptotic target genes has 

been observed by chromatin immunoprecipitation (ChIP) analysis (Samuels-Lev et al., 

2001). Activating MAPK by oncogenic Ras transfection or by endogenous Ras 

stimulation has not revealed any change of ASPPI and ASPP2 localization into the 

nucleus. However, it is possible that the conditions tested could be improved and the 

effect of MAPK on ASPP localization should be tested using protease inhibitors, 

nuclear export inhibitors and/or caspase inhibitors. Since it is common for protein- 

protein interaction to be regulated by phosphorylation, it is also possible that MAPK 

phosphorylation of ASPPI/2 could potentially affect their ability to bind p53. This 

could be tested by comparing the effectiveness of co-immunoprecipitating p53 with 

either wild-type or phosphorylation mutant ASPP following Ras stimulation. One 

would expect that in a situation where the ASPP proteins bind p53 with higher affinity, 

they would have an increased ability to co-activate p53 pro-apoptotic function. This 

could provide another possible explanation for ASPP increased activity following 

MAPK phosphorylation. 

We know that MAPK phosphorylation of ASPPI and ASPP2 leads to an increase in 

their protein levels. However, this needs not be an exclusive mechanism for MAPK to 

increase ASPP activity; it is possible that MAPK can regulate ASPP at many different 

levels, as is the case with Mdm2 regulation of p53. 

343 



6.3. Linking the two pathways - is there a feedback loop? 

So far, I have shown that ASPPI and ASPP2 are direct effectors of Ras and that they 

are also downstream targets of the Raf-MAPK pathway. This poses a paradox - how 

can ASPP be immediately downstream of Ras and simultaneously downstream of 

MAPK? One possible explanation for this apparent inconsistency is that ASPP is 

involved in a feedback loop. One such model would be that, following phosphorylation 

by MAPK, ASPP would then bind Ras and either stimulate its activity or inhibit its 

activity, depending on whether it is a positive or negative feedback. 

To try to investigate this issue, ASPP2-null mouse embryo fibroblasts (MEFs) were 

used to test whether ASPP had any effect in Ras stimulation of MAPK. Figure 4.16 

showed that Ras was able to stimulate MAPK phosphorylation with similar kinetics in 

the presence or absence of ASPP2. However, interestingly, the basal level of MAPK 

phosphorylation was higher in ASPP2 knockout cells. One possible explanation might 

be that ASPP2 could be involved in a negative feedback loop with the Raf-MAPK 

pathway. Thus, following Ras-Raf-MAPK activation, ASPP2 would be transiently 

stimulated and would prevent its further stimulation by inhibiting MAPK activity. In 

this circumstance, ASPP2 would not get stimulated sufficiently to co-activate p53. 

However, in cases where Ras is constitutively activated, ASPP2 would have no effect 

on diminishing the MAPK signal and it would therefore be fully activated to induce 

p53-dependent apoptosis (figure 6.1). It is not uncommon that some Ras effectors are 

only partially stimulated by normal Ras and fully stimulated by oncogenic Ras, as seen 

with P13K (McCormick, 1999; van Weering et al., 1998). In this scenario, it would be 

expected that phosphorylated ASPP2 has a higher affinity for Ras than non- 
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phosphorylated ASPP2, since it would onlY act in a negative feedback loop as a result 

of its own activation. 

Nonetheless, the idea that ASPP2 might act in a negative feedback loop with Ras 

following its phosphorylation by MAPK is speculative. Both ASPP2 wild-type and 

phosphorylation mutant can co-localize with Ras at the plasma membrane. An 

immunoprecipitation would be critical to determine whether Ras associates 

preferentially to the phosphorylated or non-phosphorylated form of ASPP2, therefore 

resolving the issue of whether ASPP needs to be activated by MAPK prior to binding 

Ras. 

There are many Ras mutants that can specifically bind to some of its effectors and not 

others (White et al., 1995). It would be worthwhile to screen these mutants for their 

binding to ASPPI and ASPP2. If a Ras mutant that can no longer bind to ASPPI/2 but 

can still activate the Raf-MAPK pathway can be identified, it would be very useful to 

test whether ASPP is involved in a feedback loop with the Raf-MAPK pathway; if 

ASPP can negatively regulate the MAPK pathway then the mutant Ras would stimulate 

MAPK more efficiently than normal, activated Ras. Conversely, if ASPP positively 

regulates the MAPK pathway, then the mutant Ras would be less effective in 

stimulating MAPK. 
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Figure 6.1. Modelfor Ras-ASPP2 negative feedback. The Ras-Raf-MAPK 
pathway stimulates ASPP2 activity by phosphorylation. Activated ASPP-) 
can then bind to Ras and prevent its further activation of the Raf-MAPK 
pathway, thereby acting in a negative feedback loop. 
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6.4. A novel pathway for Ras-mediated apoptosis 

As a result of Ras binding and activation of its effectors, a number of different 

responses can occur. Paradoxically, Ras has been shown to induce cell proliferation and 

cell cycle arrest; survival and apoptosis. The choice of response following Ras 

activation is at least partially dependent on cell types and cell context. 

As mentioned in section 1.7.10, Ras can induce apoptosis in a number of different 

contexts. The most prominent pathway involved in Ras-mediated apoptosis is the Raf- 

MAPK pathway. So far, however, no clear mechanism has been established to explain 

how the Raf-MAPK pathway could induce apoptosis. Here, I identify ASPPI and 

ASPP2 as downstream effectors of the Ras-Raf-MAPK pathway and propose that the 

ASPP proteins act as a link between Raf-MAPK and apoptosis. 

Other downstream Ras effectors have been proposed to mediate apoptosis. Nore I is the 

most recently discovered Ras effector involved in Ras-mediated apoptosis 

(Khokhlatchev). Although endogenous Norel. was shown to be in complex with 

endogenous Ras after cells were stimulated with serum, the rest of the study was done 

with overexpression systems. The authors clearly demonstrated that oncogenic K- 

RasV12 and a mutant form of oncogenic H-RasV12 (H-rasGV12, E37G) could 

stimulate apoptosis. However, they were unable to provide a mechanism related to the 

Norel/Mstl pathway. Similarly, the MEKK-JNK pathway is also known to induce 

apoptosis following Ras stimulation, but the mechanism involved is still unclear. Thus, 

ASPPI and ASPP2 provide the first clear mechanism of Ras-mediated apoptosis. 
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The P13K downstream effector of Ras has been shown to be involved in survival 

signalling. It is known that the survival signals of the P13K-PKB pathway could 

counterbalance the apoptotic signals of the Raf-MAPK pathway. It would be interesting 

to investigate whether the P13K pathway could inhibit the Raf-MAPK-ASPPI/2 

apoptotic pathway. Preliminary data using an activated form of the p110 catalytic 

subunit of P13K were inconclusive: pl. 10 alone could stimulate p53 activity 

significantly in transactivation assays, and therefore its effect on ASPP co-activation of 

p53 was not observed. Additionally, Saos2 cells transiently transfected with p53 and 

ASPP2 and treated with the P13K inhibitor LY294002 showed inconsistent effects using 

a luciferase reporter system (data not shown). 

Ras is known to stimulate p53 activity (see section 1.8). Through the induction of Arf 

and PML, Ras most commonly stimulates p53-mediated cell cycle arrest in primary 

cells, not apoptosis (Ferbeyre et aL, 2000; Kamijo et al., 1997; Pomerantz et al., 1998). 

However, it is not uncommon for oncogenes to induce p53-mediated apoptosis: EIA, 

E2FI and myc can all three induce apoptosis in a p53-dependent manner (Debbas and 

White, 1993; Hermeking and Eick, 1994; Qin et al., 1994; Wagner et al., 1994; Wu and 

Levine, 1994). In this thesis, I present a novel pathway in which Ras stimulates p53, not 

to induce cell cycle arrest, but to stimulate apoptosis. The ability of oncogenes to 

stimulate cell cycle arrest or apoptosis allows the cell to have a fail-proof system. Thus, 

following activation of an oncogene, instead of inducing the cell to proliferate in an 

uncontrolled manner, oncogenes would activate tumour suppressor proteins, which 

would then prevent the cell from replicating its damage. Although cell cycle arrest and 

apoptosis are both efficient manners by which cells can prevent propagation of their 
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damage, apoptosis is irreversible and therefore the more effective of the two 

mechanisms. 

Hence, the presence of a mutant Ras would stimulate ASPPI and ASPP2 via the Raf- 

MAPK pathway. The activated ASPP proteins would then be in a position to co-activate 

p53 to induce apoptosis (figure 6.2B). In cells where p53 or the ASPP proteins are 

inactivated by mutation or by reduced expression, oncogenic Ras would then be able to 

induce uncontrolled growth (figure 6.2Q. One would therefore expect that a cell 

harbouring an activating mutation of Ras would select for an inhibitory mutation of 

either p53 or ASPP. Indeed, in colorectal cancer, K-Ras mutation occurs predominantly 

before p53 mutation (Kinzler and Vogelstein, 1996). In accordance with this model, 

p53-null fibroblasts are highly susceptible to Ras transformation (Hicks et al., 1991). It 

would be interesting to test the levels of ASPPI and ASPP2 in turnours that contain a 

mutant Ras and wild-type p53; if this model is correct, we would expect to find either 

inactivating mutations of ASPP or reduced expression of these proteins in these 

turnours. So far, ASPP has rarely been found to be genetically altered (Mori et al., 

2000) but its expression is reduced in many human breast carcinomas containing p53 

wild-type (Samuels-Lev et al., 2001). 

To further analyze the role ASPP plays in Ras transformation, ASPP2-nuIl MEFs can be 

used. Preliminary studies have shown that there is a difference in colony formation 

following infection of oncogenic Ras in MEFs with wild-type ASPP2 compared to 

ASPP2-null MEFs (data not shown). This is in accordance with the model that ASPP2 

plays a role in inhibiting Ras transformation. 
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Figure 6.2. Om., ogenit- Ras indtues apoptosis in an ASPP- and p53-dependent 
manner. (A) Normal Ras stimulates normal growth and does not stimulate ASPPI/2. 
(B) Oncogenic Ras stimulates ASPPI and ASPF121 to co-activate p53 and induce 

apoptosis. (C) In cells with either reduced levels of ASPP expression or p53 
mutations, oncogenic Ras is no longer able to induce apoptosis in an ASPP- and p53- 
dependent manner and will therefore stimulate uncontrolled growth. 
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The inhibitory member of the ASPP family, iASPP, does not contain the RA domain 

nor does it contain the conserved MAPK phosphorylation site. Unlike ASPPI and 

ASPP2, iASPP inhibits apoptosis (see section 1.6.2). It is therefore not surprising that 

the pro-apoptotic Ras-Raf-MAPK pathway cannot activate it. 

The overall effect of Ras on p53 activity may be dependent on a balance between the 

different pathways linking the two proteins. Arf and ASPP can induce p53-mediated 

cell cycle arrest and apoptosis, respectively, following Ras stimulation. Which of these 

pathways Ras uses to stimulate p53 might depend on the levels of the Arf and ASPP 

proteins in the cells. Both Arf and ASPP can be inactivated in many turnours, leaving 

Ras little choice as to what pathway to stimulate p53 activity (Samuels-Lev et al., 2001; 

Sherr and Weber, 2000). Similarly, induction of apoptosis by the Ras-Raf-MAPK- 

ASPP pathway could be counterbalanced by the Ras-P13K-PKB path way-med i ated 

survival signals. This could tilt the balance towards cell cycle arrest rather than 

apoptosis (figure 6.3). 
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Figure 6.3. Ras stimulates p53 to induce cell cycle arrest and apoplosis. Ras can 
stimulate Arf to induce p53-dependent cell cycle arrest. It can also stimulate ASPPI 
and ASPF'-1 to induce p53-depcndent apoptosis. Through its Pl3KJPKB pathway, 
Ras can inhibit p53-mediated apoptosis. The cnd response of Ras stimulation 
depends on the balance of all these different pathways. 
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6.4. Therapy 

p53 plays a central role in preventing tumour formation and its pathway is inactivated in 

a large proportion of turnours, either at the level of p53 itself or at its upstream 

regulatory and downstream effector levels. Intact p53 pathways in turnours are 

exploited by many current therapies to induce apoptosis of tumour cells. Although 

tumour cells have sufficient survival signals to allow them to proliferate, they have a 

lower apoptotic threshold than normal cells. This can be explained by the fact that many 

oncogenes can stimulate apoptosis as well as proliferation. 

Therefore stimulation of the Ras-ASPP-p53 pathway in tumour cells could provide an 

important incentive for the cell to undergo apoptosis. Many turnours contain oncogenic 

Ras; if those turnours have wild-type p53 but low levels of ASPP proteins, then 

introduction of ASPPI. and ASPP2 could be sufficient to induce apoptosis. Similarly, if 

turnours cells have oncogenic Ras and mutant p53 but high levels of wild-type 

ASPPI/2, then introduction of wild-type p53 could specifically lead to apoptosis. Such 

strategies would take advantage of the Ras-Raf-MAPK-ASPP-p53 pro-apoptotic 

pathway to induce apoptosis in tumour cells, thereby improving the patient's outcome. 

As Albert Camus said: "rhere is only one serious philosophical problem. It is suicide. 

To judge whether life is or is not worth living". In the case of turnour cells, it is 

beneficial for the whole organism if they choose to die. 
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6.5. Summary of achievements in this study 

In this thesis I have described how ASPPI and ASPP2 are regulated by Ras. I have 

shown that ASPPI and ASPP2 are novel Ras effectors: they bind directly to Ras via 

their amino terminal region, both in vitro and in vivo, and their pro-apoptotic activity is 

stimulated by oncogenic Ras. Additionally, endogenous Ras is necessary for full 

ASPPI/2-dependent apoptosis and cisplatin-induced apoptosis. I have also shown that 

ASPPI and ASPP2 are activated by the Raf-MEK-MAPK downstream effector pathway 

of Ras, and that MAPK directly phosphorylates the ASPP proteins at their carboxy- 

terminal region. Phosphorylation of ASPPI and ASPP2 by MAPK results in increased 

protein levels and, consequently, an increase in their activity. I have also briefly 

investigated other mechanisms of ASPP regulation, namely PKA and ASPP deletion 

fragments. 
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