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Abstract 
Genetic defects in AIPL1 cause a heterogeneous set of clinical conditions 

depending on the severity of the mutant alleles. Diseases can range from 

Leber Congenital Amaurosis (LCA), the severest form of early-onset retinal 

degeneration, to milder forms such as retinitis pigmentosa (RP) and cone-rod 

dystrophy. There is currently no effective treatment for LCA and inherited 

retinal dystrophies, which are the commonest cause of childhood blindness. 

AIPL1 is expressed primarily in retinal photoreceptors and is required for the 

biosynthesis of photoreceptor phosphodiesterase (PDE).  

This thesis describes a programme of work that examines the potential and 

efficacy of gene replacement therapy in the treatment of AIPL1- associated 

retinal diseases. It centres on the use of recombinant adeno-associated virus 

for the transfer of murine and human AIPL1 cDNA into photoreceptor cells. 

AAV-mediated gene replacement was assessed in two genetically 

engineered mouse models carrying null and hypomorphic alleles, Aipl1 -/- 

and Aipl1 h/h mice, which simulate retinal degenerations similar to human 

LCA and RP respectively. Three different rates of photoreceptor 

degeneration were simulated using the mouse models. To treat the different 

rates of degeneration, two pseudotypes of AAV (serotype 2 and 8) exhibiting 

different transduction kinetics were used for gene transfer. Substantial and 

long term rescue of the disease phenotype was seen as a result of Aipl1 

transgene expression mediated by AAV2/2 vector in Aipl1 h/h mice and by 

AAV2/8 in rapid degenerations in light accelerated Aipl1 h/h mice and in 

Aipl1 -/- mice. Thus, the results presented in this thesis validates the efficacy 

of AIPL1 gene replacement using AAV vectors in varying rates of 

degeneration that reflected the clinical spectrum of disease. This is the first 

study to report long-term rescue of a photoreceptor-specific defect and to 

demonstrate effective rescue of rapid photoreceptor degeneration. 

 

The development of an efficient therapy depends on the identification of 

patients and characterisation of disease phenotype. A panel of DNA samples 

from patients with LCA and early onset severe retinal dystrophy was 
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screened for mutations in the AIPL1 gene.  Patients identified with AIPL1-

associated disease demonstrated varying severity of disease from LCA to 

milder form of rod cone dystrophy. Clinical characterisation and imaging of 

the patients highlighted distinctive features which will direct future 

identification and molecular screening of patients. Residual retinal integrity 

and function in young patients and patients with milder phenotype suggests 

that AIPL1 defects may be amenable to treatment. 
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1 Introduction 
 

Gene technology has revolutionized the 21st century and soon, it will become 

an important influence on many sectors of our lives. Recently, developments 

in gene transfer technology have opened new doors, particularly in the 

medical field. These advances have lead to the potential of treating genetic 

and acquired diseases using gene therapy, thus establishing a promising tool 

for the development of new and effective treatment strategies for numerous 

diseases which are thus far incurable. Diseases which may benefit from 

gene therapy include cancer, certain infectious diseases, inherited disorders 

of the nervous system, haematological diseases and inherited retinal 

degenerations. Although the use of gene therapy to treat diseases has 

mainly been proven in animal studies, many of these treatments have now 

gone to clinical trials. It may be possible, in near future, to use gene therapy 

to treat diseases whose genetic defects have been identified.  One group of 

diseases which stand to benefit greatly from gene therapy is inherited eye 

diseases and the use of gene therapy in the treatment of ocular diseases has 

only recently been explored. 

 

The human eye is regarded as the most important sense organ since 85% of 

the information about our environment is perceived through the eyes. 

Inherited retina degenerations are one of the most common causes of 

blindness in the western world, for which currently no efficient treatment 

exists. The best characterised form of inherited retinal degenerations is 

retinitis pigmentosa (RP) with prevalence up to 1:3500 [54].  To date, many 

genes responsible for inherited retinal diseases have been identified, 

providing a basis for the development of gene-based treatment strategies.  

The unique properties of the eye that makes it particularly suitable as a 

model system for gene therapy. The eye is a small and highly 

compartmentalized organ with immune-privileged properties making it 

possible to deliver small volumes of viral vector precisely to obtain 

transduction of selected retinal cell types with minimal risk of systemic 

dissemination or invoking vector-directed immune responses. Its transparent 
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nature makes it  highly accessible and allows for non-invasive techniques to 

monitor and measure the effects of treatment such as retinal imaging, slit 

lamp biomicroscopy, electrophysiology and psychophysical tests [10,408]. As 

such, diseases of the eye are prime candidates for gene therapy 

approaches. 

 

The past decade has seen an exponential increase in advances in the field 

of molecular genetics, particularly in genotyping and diagnostic technology.  

The impact on the field of ophthalmology has been tremendous; the 

discovery of new disease genes has lead to better understanding of disease 

pathogenesis. The development and discovery of animal models has  

culminated in successful rescue of vision in some models of hereditary 

retinal dystrophies using gene replacement therapy.  This has occurred 

mainly in different studies of recessively inherited retinal dystrophies where 

the condition is caused by mutations resulting in the loss of function of an 

encoded protein. Insertion and subsequent expression of the therapeutic 

transgene was followed by observations of functional and morphological 

improvements, some of these effects were sustained over a long term. 

These studies have provided robust proof-of-principal for gene replacement 

therapy in recessively inherited retinal dystrophies which until now were 

untreatable, and justification to bring this research from the laboratory bench 

to the clinics in the form of human trials.  

 

Previously, preclinical studies of gene replacement therapy to treat retinal 

degeneration have found that photoreceptor cell defects were more difficult 

to treat. In an early study of gene replacement therapy using a mouse model 

of Retinitis Pigmentosa that carried a null mutation the Prph2 gene, 

subretinal delivery of an adenovirus carrying Prph2 transgene led to 

structural and functional improvement but the treatment did not affect the 

rate of degeneration [14]. With the improvements in vector design, functional 

improvement and a degree of photoreceptor rescue has been reported in a 

few animal models with defects in photoreceptor-specific genes such as 

RPGRIP, GUCY2D, ABCA4, and usherin [363,496] [281,518]. These defects 
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cause a spectrum of retinal disorders ranging from Lebers Congenital 

Amaurosis, Stargardt disease, and retinitis pigmentosa respectively.   

 

Gene replacement therapy have been more successful in conditions where 

the genetic defects originated in the retinal pigment epithelium such as  

RPE65, MERTK, and LRAT, all of which are causes of recessive hereditary 

retinal dystrophies [1,42,437,471]. RPE defects are generally easier to treat 

because the RPE forms a single layer of cells that are efficiently transduced 

by viral vectors, whereas many more photoreceptor cells are arranged 

multiple layers which makes gene transfer to these cells less efficient. Since 

each RPE cell is in contact with several photoreceptor cells, the transduction 

of a single RPE cell might protect or restore function to several photoreceptor 

cells, thus allowing for widespread correction of the defect. Furthermore, the 

photoreceptor cells in RPE-specific defects are primarily healthy and 

structurally intact despite the metabolic derangement. By correcting the 

metabolic derangement in the RPE, the function and survival of these 

photoreceptor cells may be restored.  

 

Clinical trials of gene replacement therapy treating patients with early onset 

severe rod cone dystrophy or Lebers Congenital Amaurosis caused by 

RPE65 mutations are currently in progress, one of these is being conducted 

by our group at the Institute of Ophthalmology.  Preliminary reports that have 

been recently published from these trials reported good safety profile of the 

treatment and limited improvement in retinal function. This will pave the way 

for more human trials in the future and as such further experimental studies 

in animal models are urgently required to evaluate the potential for benefit in 

retinal degenerations caused by other genes. It would be particularly 

desirable to be able to achieve robust long term rescue in a model with 

photoreceptor-specific gene defect since most inherited retinal dystrophies 

originate from photoreceptor defects and have been more difficult to treat. 

This would provide proof that photoreceptor-specific defects are amenable to 

treatment.  
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1.1 Aims and objectives  
 

1.The aim of this research project is to investigate the efficacy of gene 

replacement therapy for the treatment of a murine model of Type 4 Leber 

Congenital Amaurosis (LCA) due to a primary defect in a photoreceptor-

specific gene AIPL1.  

2. To evaluate whether AAV-mediated AIPL1 expression leads to structural 

and functional rescue of photoreceptors with subsequent prolongation of 

their survival in this model of severe retinal degeneration.  

3. To identify and characterise patients with mutations in AIPL1 through 

genetic screening of a panel of patients with Leber Congenital Amaurosis 

and early onset severe retinal dystrophies. This will also facilitate possible 

future translation of this gene-based treatment by identifying suitable 

candidates for clinical trials and establishing baseline clinical outcome 

measures. 

Therefore, we state that the null hypothsis is that AAV-mediated expression 

of AIPL1 does not lead to structural or functional preservation of 

photoreceptor cells and there is no increase in photoreceptor survival 

following treatment. 

 

1.2  The eye – structure and function 
 

The primary function of the eye is to respond to visual stimuli by converting a 

response to light into neuronal signals that are interpreted by the brain. To 

perform this sensory function, the eye carries out a variety of intricate cellular 

and molecular processes which are dependent on maintaining a tightly 

regulated microenvironment within the eye through the differentiated status 

of various cell types, vasculogenesis and modulation of the local immune 

system. The vast range of cell types within the eye reflects the diversity of 

function that is carried out in this small organ. Consequently, the eye is 

highly sensitive to genetic and environmental factors. Any slight changes in 
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the fine balance pattern of gene expression, subtle environmental insults and 

infections can lead to disease. The neurosensory retina in particular is the 

center of many genetic diseases, many of which lead to blindness. Despite 

increased knowledge of the aetiology and pathology of diseases, many 

ocular conditions, especially inherited eye diseases currently lack effective 

treatments. 

 

The differentiation of the retina during development involves the close 

interaction between two cell types: the photoreceptor cells and the retinal 

pigment epithelium (RPE) cells. Both cell types are dependent on each other 

during different developmental stages, by providing various survival, growth 

and differentiation factors. This close interaction is not only seen during 

development but also in the adult eye. Retinal physiology and morphology 

depends on the close interaction and communication of these two cell types 

and involves complex, cellular signaling pathways, the most important of 

which will be discussed in more details in the following chapters. 

 

The mammalian eye consists of concentric layers of tissues derived from 

three of the primitive embryonic layers: surface ectoderm and its derivative 

neural crest, neural ectoderm and mesoderm. Figure 1.1 illustrates the 

overall layered architecture of the eye, including a magnified view of the 

retina which is where the capture light photons, amplification and 

transduction of light signals to the visual cortex take place [142].  
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Figure 1.1 Structure of the eye 

A schematic diagram showing a vertical section through the human eye.   

(Adapted from McGraw-Hill) 
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1.2.1  The retina  
 
The retina is primarily divided into 2 distinct tissue compartments:  the inner 

or neurosensory retina, and the outer supporting layer of cells known as the 

retinal pigment epithelium (RPE). The neurosensory retina is a highly 

specialised laminated structure that perform the central functions in the 

phototransduction cascade and visual pathway. There are 10 histological 

layers in the retina as depicted in Figure 1.2. The outermost layer is a single 

layer of melanin-containing cuboidal cells known as the retinal pigment 

epithelium (RPE), and separates the neurosensory retina from the choroid.  
 

There are approximately 5 million RPE cells in the human retina which 

regulate the movements of nutrients and metabolites required for the 

maintenance of the photoreceptors throughout the interphotoreceptor 

matrix[449]. The basal aspect of the RPE lies on the connective tissue layer 

known as Bruch’s membrane. The apical aspect of the RPE has microvilli on 

its internal surface which invaginate the photoreceptor outer segments. 

Functionally, The RPE cells have vital roles in the maintenance of 

photoreceptor cells by ingesting and degrading the oldest outer segment 

discs of the photoreceptors [177]. They also contribute to the renewal of the 

retinoids in a series of reactions which are part of in the visual cycle. These 

RPE cells provide much of the trophic support required to maintain the 

photoreceptor cells in the form of various growth factors and components of 

the inter-photoreceptor matrix essential for the development and support of 

rods and cones [395]. The RPE is thus crucial for maintenance of the 

neurosensory retina and defects in RPE function give rise to various 

inherited and acquired retinal diseases; some of these diseases include 

important conditions such as age-related macular degeneration. 
 

The outer and inner segments of photoreceptor cells form the photoreceptor 

layer which lies internal to the RPE, and distal to outer nuclear layer. There 

are three layers of nuclei consisting of photoreceptor cell nuclei in the outer 

nuclear layer, the bipolar, horizontal and amacrine cells in the inner nuclear 

layer, and the ganglion cells layer which lies adjacent to the vitreous. 
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Photoreceptor cells, the rods and the cones share the same basic structure 

and are one of the most highly metabolic cell types in the body. All 

photoreceptor cells have light-sensitive visual pigments in their outer 

segment membranes, which after the absorption of a photon change their 

structure and thereby initialise the phototransduction cascade. Rods contain 

the pigment rhodopsin and are sensitive to conditions of dim light, thereby 

are responsible for scotopic (night) vision and peripheral vision. Cones 

contain different cone opsins depending on which sub-type of cone cell they 

belong to, and thus respond to bright light of varying wavelengths allowing 

colour vision. Rods dominate the photoreceptor cell population in the 

mammalian eye; there are approximately 18 times as many rods as cones in 

an adult human eye. In humans, cones are responsible for central visual 

acuity due to their spatial distribution (see below). The human retina contains 

3 types of cones, and, depending on the exact structure of the opsin 

molecule, are maximally sensitive to either long wavelengths of light (L-

cones, red light), medium wavelengths of light (M-cones, green light) or short 

wavelengths of light (S-cones, blue light). Rodents and most other 

mammalian species are di-chromatic, meaning they only have 2 types of 

cone cells that respond to medium-and short-wavelength light (M- and S- 

cones) [5,6]. Rods and cones in the photoreceptor layer are surrounded by 

the processes of specialized glial cells, Műller cells which are large glial cell 

types found in the inner nuclear layer and provide survival factors and 

nutrients for the inner retinal cells. The Műller cells are linked to each other 

by cellular tight junctions or zonula adherens comprised of foot processes of 

Műller cells known as the outer limiting membrane. This barrier is essential 

for the intra-neuroretina homeostasis. Between the layers of nuclei, are two 

layers of synapses, the outer and inner plexiform layers which form 

connections between the interneurons, photoreceptor cells and ganglion 

cells. The axons of the ganglion cells and astrocytes lie in the nerve fibre 

layer located internal to the ganglion cell layer and through which they join to 

the optic nerve. The inner limiting membrane, formed by Műller cells, is the 

innermost layer and separates the retina from the vitreous.  
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The average adult human eye has 5 million cone photoreceptors and 92 

million rod photoreceptors arranged in a non-uniform fashion across the 

scleral surface of the retina.[303] The distribution of photoreceptors varies 

between the central retina and the periphery. In the human retina, there is a 

central, pigmented portion of the retina called the macula which is enriched 

for cone photoreceptor cells. The macula measures approximately 5 mm in 

diameter and is located 3 mm lateral to the optic disc.  At the center of the 

macula area, the central portion of retinal tissue is referred to as the fovea 

centralis (Figure 1.3) which subserves the central vision and contributes 

most to visual acuity in humans because it contains the highest 

concentration of cone cells. There is a lack of rod photoreceptors at the 

fovea, cone cells are closely packed in the centre of the retina and the inner 

retinal cells here are displaced away from the underlying photoreceptors, 

allowing a greater proportion of incident light to be absorbed by the cells in 

this region. This also contributes to the increase in visual acuity in this central 

area. Towards the periphery, the density of cones decreases while the 

density of rods increases and is maximal in a 5 mm ring centered in the 

macula. Rodents and other mammals (other than non-human primates) lack 

a macula, with cones and rods more evenly distributed throughout the retina. 

Despite lack of an anatomically defined macula in rats and mice, the murine 

retina remains a useful model system in which human retinal disease can be 

studied. Many of the hereditary retinal disorders in humans have either a 

naturally-occuring equivalent in rodents, or have been created using 

transgenic, knock-out or selective gene ablation technologies [132].  Studies 

based on these animal models have provided valuable insights into the 

pathophysiology and mechanisms of these diseases in humans. However, 

the differences between human and animal retinal biology must always be 

borne in mind when extrapolating conclusions from animal experiments and 

applying these to the clinical scenario. 
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Mature photoreceptors are structurally and functionally polarized neurons 

with four separate domains comprising of outer and inner segments, a cell 

body that contains the nucleus and a synaptic region (Figure1.4). The light 

sensitive structures of the photoreceptors are the outer segments, that lie in 

the inter-photoreceptor matrix (IPM) between the apical microvilli of the RPE 

cells. In cones, the outer segments contain lamellae which are invaginations 

of the plasma membrane whereas rod outer segments contain dense stacks 

of membranous discs which are discrete from the plasma membrane.  

Inserted into cone lamellae and rod discs are the structural proteins 

peripherin-2 and rom-1, both of which are required for the formation and 

maintenance of outer segments. The discs and lamellae are formed 

constantly and act to enlarge the sensory surface. As the discs mature, they 

are diplaced distally and are phagocytosed by the RPE cells when they 

reach the tip of the outer segment. Incorporated into the rod photoreceptors 

membrane discs and cone lamellae are the light sensitive pigments 

rhodopsin and cone opsins respectively. These are the site of light 

absorption and phototransduction. The cilium connects the outer segment 

with the inner segment and is involved in the transport of proteins between 

the two. The inner segment is packed with a large number of mitochondria 

that provides the energy required for the process of phototransduction. The 

synapses hold vesicles, that distribute neurotransmitters after light 

excitement of the photopigment, thereby passing the signal on to bipolar 

cells in the inner nuclear layer. The flow of visual information in the retina can 

follow two paths: a direct path, from light receptors to bipolar cells to ganglion 

cells; and an indirect path, in which horizontal cells may be interposed 

between the photoreceptors and bipolars, and amacrine cells between 

bipolars and retinal ganglion cells. Horizontal cells, amacrine cells and 

interplexiform cells modulate the passage of impulses on their way from the 

photoreceptors to the ganglion cells. 

 
 

 

 



31 
 

 



32 
 

1.2.2  Phototransduction  
 

The steady state for rod and cone cells is one of depolarization (Figure 1.5); 

unstimulated photoreceptor cells have open cation channels that allow 

sodium and calcium to enter and potassium ions to exit the cell. The steady 

influx of sodium ions maintains an electrical membrane potential of -40 mV 

on the inner cell membrane.  At this resting membrane potential, the 

neurotransmitter glutamate is released into the synaptic space where it is 

bound by receptors on post-synaptic bipolar cells. Upon stimulation, rods and 

cone cells revert to a hyperpolarised state which leads to a reduction in 

neurotransmitter release into the postsynaptic space, and subsequently 

gives rise to a neural message that is sent to the brain via other neuronal 

cells of the retina.  

 

The first step of translating light energy into a biological signal involves the 

phototransduction cascade (Figure 1.6) in photoreceptor cells.This 

commences with the absorption of a photon by the visual pigments in 

photoreceptor cells. The visual pigments are the opsins (rhodopsin in rods 

and cone opsins in cones) which are G-protein coupled receptors, seven-

pass transmembrane proteins inserted into the membranes of outer 

segments discs. The opsins contain the chromophore, 11-cis retinal, a 

vitamin A-derivative which is bound at the seventh intradiscal domain of the 

opsin molecule (Figure 1.7). On the absorption of light, 11-cis retinal 

undergoes photoisomerization to all-trans retinal and releases from the 

opsin, triggering the conformational change in the opsin GPCR [213]. This 

conformation change initiates a complex intra-photoreceptor signaling 

pathway, the phototransduction cascade, which is finally converted and 

amplified into an electrical response which is passed on to retinal neurons 

and to the brain via the optic nerve (for reviews on phototransduction, see 

[66], and [26]). 
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The conformational change in rhodopsin produces an active form of protein, 

metarhodopsin II [43]. Metarhodopsin II is the binding site for regulator 

proteins such as transducin, rhodopsin kinase and arrestin [167]. Each light-

excited photopigment binds several molecules of transducin which results in 

a 102 to 103 amplification of the visual cascade. Transducin is a member of 

the guanosine-5'-triphosphate (GTP) binding protein (G protein) family that 

connect receptors with their second messenger pathway. On interaction with 

metarhodopsin II, transducin molecules exchange bound guanosine 

diphosphate (GDP) for guanosine triphosphate (GTP), forming an active 

GTP-transducin (Gα*) complex.  

 

The newly formed Gα* molecule is an activated complex which dissociates 

from rhodopsin and the inhibitory Gβγ dimer. The GTP-transducin complex in 

turn activates phosphodiesterase (PDE) by binding to the PDE inhibitory γ-

subunit. PDE enzyme is made up of three subunits, α, β and γ. The binding 

of the PDE γ-subunit results in the dissociation of the PDE α and β-subunits 

from the γ-subunit. The αβ PDE dimer hydrolyses cyclic guanosine 

monophosphate (cGMP) to 5’-GMP. In dark conditions, the cellular cationic 

channels in photoreceptor membranes are kept in an open state by bound 

cGMP. The decrease in intracellular cGMP following light exposure causes 

the cGMP-gated Na+/Ca+ channels to close [510]. This prevents influx of 

sodium ions into the rod cells, and causes hyperpolarisation of the surface 

membrane along the entire cell. This in turn results in the voltage-gated Ca2+ 

channels closing and a subsequent decrease in the intracellular calcium ion 

(Ca2+) concentration. As a result, the neurotransmitter glutamate, which is 

continuously released in unstimulated conditions, is prevented from being 

released. The drop in glutamate release by the photoreceptor cells upon light 

exposure is sensed by bipolar cells, which respond either by depolarising or 

hyperpolarising their own synaptic membranes, depending whether they are 

ON- or OFF-bipolar cells.  

 
To complete the phototransduction cascade, the photoreceptor must be 

returned to the dark state. This involves shutting down of the enzymatic 

cascade and restoration of intracellular cGMP levels (Figure 1.7). The low 
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intracellular Ca2+ concentration activates recoverin which in turn leads to the 

activation of rhodopsin kinase, a serine/thereonine kinase belonging to the 

G-protein receptor kinase family whose phosphorylation activity is limited to 

the active form of rhodopsin [291]. Metarhodopsin II is inactivated by the 

ATP-dependent phosphorylation by rhodopsin kinase which allows a second 

photorecovery protein, arrestin to bind. The binding of arrestin causes steric 

hindrance which prevents transducin to be bound to phosphorylated 

rhodopsin, thus halting downstream signalling in the phototransduction 

cascade [495]. The inactivated photopigment (phosphorylated rhodopsin) 

exchanges all-trans retinal for 11-cis retinal and releases arrestin.  

  

In order for photoreceptor cells to return to their ‘ground state’ of 

depolarisation following light stimulation, the cGMP-dependent Na+/Ca2+ 

channels need to reopen through the resynthesis of cGMP. The decrease in 

intracellular Ca2+ after photoexcitation causes activation of guanylate cyclase 

activating proteins (GCAP I and II). The GCAP proteins are part of the 

calmodulin-like superfamily of calcium-binding proteins [147]. At low calcium 

levels, the GCAP proteins bind to the intracellular domain of retinal guanylate 

cyclase or RetGC, thereby stimulating the resynthesis of cGMP by retinal 

guanylate cyclase. The increase in cGMP levels allows them to bind to the 

cationic channels to reopen the channels and subsequently return the 

photoreceptor to its initial depolarised state in the dark. The period of time 

following light-excitation where cells return to their ground state is known as 

recovery. 

 

A key feature of phototransduction is the amplification of signal that can be 

achieved during the various steps in the cascade. The isomerisation of one 

rhodopsin molecule leads to the activation of hundreds of transducin 

molecules. Each activated transducin molecule then activates PDE which 

hydrolyses several cGMP molecules and leads to hyperpolarisation of 

around 1 mV. These tiers of amplification result in the sensitivity of 

photoreceptor cells where only a few photons are required for phtoreceptors 

to become hyperpolarised.  
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1.2.3 The visual cycle 
 
The ability of photoreceptors to function during many hours of continuous 

illumination requires that the inactivated visual pigment be continuously 

regenerated. The inactivation of metarhodopsin II by its phophorylation and 

arrestin binding and subsequently by its thermal decay produces opsin 

apoprotein and all-trans-retinal. The conversion of all-trans-retinal back to 

11-cis-retinal requires a complex sequence of biochemical reactions 

involving several enzymes and retinoid binding proteins. Collectively, these 

reactions are known as the visual cycle or retinoid cycle and take place 

primarily in the retinal pigment epithelium (RPE). This cycle generates a 

supply of new 11-cis-retinal which recombines with free opsin within the rod 

and cone outer segments to reform light-sensitive visual pigments (rhodopsin 

in rods and cone opsin in cones).The resynthesis and recovery of 11-cis 

retinal during the visual cycle is important to maintain sensitivity of the visual 

system (for reviews, see [396],[246,255].  

 

The visual cycle (Figure 1.8) begins with the release of all-trans-retinal from 

metarhodopsin II and is transported out of the outer segment disc by the rim 

protein, ATP-binding cassette protein in the retina (ABCA4). In the 

photoreceptor cytoplasm, all-trans-retinal is converted to all-trans-retinol by a 

rod-specific dehydrogenase (t-RDH). All-trans-retinol is transferred to the 

RPE, bound to interphotoreceptor retinoid binding protein (IRBP). In the 

RPE, all-trans-retinol is then bound to the intracellular transporter protein 

CRBP1.  The all-trans-retinol bound to CRBP1 is esterified to form all-trans-

retinyl ester bylecithin retinol acyl transferase (LRAT), through the transfer of 

a fatty acid from phosphatidylcholine. The next reaction is the most important 

reaction for the whole cycle, this couples hydrolysis of the retinyl ester with 

all-trans to 11-cis isomerisation of retinol. The energy released by ester 

hydrolysis is used to power the isomerization. This reaction is mediated by 

the isomerohydrolase RPE65 [332,399]. Subsequent steps in the visual cycle 

involve the oxidation of the 11-cis-retinol to the aldehyde form, 11-cis-retinal 

by by 11-cis retinol dehydrogenase (c-RDH). In RPE cells, 11-cis-retinal is 

carried by cellular retinaldehyde-binding protein (CRALBP). To get across 
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the subretinal space, 11-cis retinal is bound to IRBP and transported into the 

photoreceptors, where it is bound to the photopigment apoprotein in the 

outer segment discs and forms part of the visual pigment.  
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The established visual or retinoid cycle described above is the only source of 

rod opsin regeneration. It also provides for some cone opsin regeneration as 

well. However, the majority of cone opsin regeneration occurs through an 

alternative pathway that involves interactions between cones and Muller cells 

(Figure 1.9)[25,304]. This alternative pathway was discovered following 

observations that photoisomerization rates in sunlight greatly exceeds the 

maximal rate of all-trans to 11-cis re-isomerization by the established retinoid 

cycle in RPE, and that cultured Muller cells were able to isomerize all-trans-

retinol to 11-cis-retinol [98]. The cone-specific retinoid cycle is dependent on 

3 unique enzymes, an all-trans-retinol isomerase, an 11-cis-retinyl synthase 

and an 11-cis-retinol dehydrogenase. In this cycle, all-trans-retinol leaving 

the photoreceptor cells is absorbed by Muller cells, where it is directly 

converted to 11-cis-retinol by all-trans-retinol isomerase. The isomerization 

of 11-trans-retinol to 11-cis-retinol is thought to be driven by mass-action 

through the activity of 11-cis-retinyl synthase, which uses palmitoyl-CoA as 

an acyl donor. The palmitoyl-CoA dependent synthesis of 11-cis-retinyl ester 

results in the removal of 11-cis-retinol from the reaction space so that the 

equilibrium between all-trans-retinol and 11-cis-retinol is shifted towards 11-

cis-retinol formation.  The formed 11-cis-retinyl ester is eventually hydrolysed 

by retinyl ester hydrolase to yield 11-cis-retinol, which is taken up by the 

cones. The all-trans-retinol and 11-cis-retinol within the extracellular space in 

transit between the cones and Muller cells are bound to IRBP. Inside cones, 

11-cis-retinol is finally oxidized to 11-cis-retinal by a cone-specific 11-cis-

retinol dehydrogenase. The cone-specific retinoid cycle works at 20-fold 

faster than the RPE-based visual cycle. The pathway can only be utilized by 

cones since rods are unable to oxidize 11-cis-retinol to 11-cis-retinal; this 

prevents isomerized retinoids from being utilized by rods under daylight 

conditions when rod vision is not very important. Through this cycle, rods 

also effectively contribute towards the regeneration of cone pigments by 

supplying all-trans-retinol substrate for the Muller cell isomerase. All of these 

features work to regenerate cone visual pigments more rapidly. This allows 

cone to dark adapt more rapidly than rods and also allows them to maintain 

an appreciable fraction of regenerated pigment even at high light intensities 

so that they remain responsive at almost any level of illumination[25]. 
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The physiological processes in the phototransduction and the visual cycle 

depend on the close cooperation between the neuroretina and RPE. Defects 

in RPE-specific genes can also have deleterious effects on photoreceptor 

cells and vice versa. There is consequently much overlap in the clinical 

presentation of diseases of the photoreceptor cells and the RPE. The 

importance of this interaction is reflected in different retinal disorders. For 

example, mutations in the photoreceptor-specific gene, ABCA4 cause a type 

of juvenile macular degeneration, known as Stargardt disease and presents 

an example where defects in photoreceptor cells leads to RPE toxicity and 

death which subsequently results in photoreceptor degeneration. The protein 

encoded by ABCA4 is a transporter protein responsible for the ATP-

dependent translocation of N-retinylidene PE, an intermediate in the visual 

cycle from the lumen of the outer segment discs to the photoreceptor 

cytoplasm. The loss of functional ABCA4 results in accumulation of these 

intermediates in the outer segment discs, high levels of which lead to the 

formation of lipofuscin. The outer segment are subsequently shed and 

phagocytosed by RPE cells, leading to the accumulation of toxic lipofuscin in 

the RPE. Patients with this type of disease present with visual loss due to 

loss of RPE caused by the accumulation of toxic lipofuscin in these cells 

[234]. 

 

Many of these defects leading to retinal degeneration are inherited. The 

current study is focused on one of these inherited retinal diseases that is 

caused by defects in a gene encoding a photoreceptor specific protein 

known as AIPL1. 
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1.3  Inherited retinal degeneration 
 

1.3.1  Background 
 

Inherited retinal dystrophies are a relatively common group of human 

diseases and include conditions such as retinitis pigmentosa (RP) and Leber 

Congenital Amaurosis (LCA). Approximately 1/3000 people worldwide are 

affected by inherited retinal degeneration. It is characterized by the 

progressive death of the photoreceptor cells leading to loss of vision, and 

there is currently no effective treatment available. Retinopathies are caused 

by defects in any of a number of genes and have been an area of much 

interest as photoreceptors are increasingly used as a model system for 

studying neuronal cell biology. The identification of new retinal genes has 

grown particularly over the last decade; to date over 197 chromosomal loci 

and 154 causal genes have been identified (www.sph.uth.tmc.edu/Retnet/), 

accounting for 50% of the genetic defects in patients (Table 1.1). 

Identification of these genes and elucidation of their functions have provided 

new insights into the understanding of disease pathogenesis and provided 

the impetus to develop gene-based treatment strategies. In the past decade, 

studies in animals have reported that some forms of inherited retinal 

dystrophies are amenable to gene therapy. Recently, three clinical trials 

treating a form of LCA using gene therapy have reported preliminary results 

indicating that the treatment was safe and may be beneficial [34,181,293].   

 

The hallmark of this group of diseases is the genetic and clinical 

heterogeneity. Many of the mutations causing retinal dystrophies affect 

proteins which are specifically expressed either in photoreceptor cells or the 

retinal pigment epithelium. The functions of these proteins are diverse, 

ranging from phototransduction, visual cycle, retinal metabolism, 

photoreceptor structure to photoreceptor-specific transcription factors. 

Although the primary cell affected in retinal degeneration is often the 

photoreceptor cell, defects in other cell types such as the RPE or Muller cells 

can lead to reduced photoreceptor function and their subsequent loss (for a 
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review, see [467]). The mechanisms by which these disease mutations lead 

to death of photoreceptor cells are not completely understood. However, it is 

thought that in all forms of retinal degeneration, photoreceptors die via 

apoptosis (see [469] for a review). Mutations in the same gene can result in 

different diseases and different genes can share similar phenotypic features. 

Furthermore, allelic heterogeneity has been described where the same 

disease alleles can give rise to different phenotypes in patients even within 

the same family [432,519] (for review see[101]). The genetic and phenotypic 

heterogeneity of these conditions make the classification of these disorders a 

challenging task. Clinically, the difficulties are the overlapping signs and 

symptoms of the genetically distinct conditions and the intra-and inter-familial 

variability, in patients with the same gene defect and even in patients 

carrying the same mutation. Even though retinal disorders have been 

identified since the 19th century, the immense  genetic and clinical 

heterogeneity present great challenges for gene identification, mutation 

analysis, genetic counselling and development of therapies.(for reviews see 

[16,54,95]). 

 

Retinal dystrophies can be classified according to their clinical phenotype, 

and now increasingly according to their underlying molecular defects. 

Inherited retinal dystrophies can be further sub-classified according to the 

exact cell type affected. Rod dystrophies are caused primarily by the 

disruption of function and/or death of rod cells, while the cone population 

remains largely intact.  Patients with rod dystrophies present with primarily 

night blindness and progressive loss of visual field. Similarly, cone 

dystrophies affect only cones, resulting in impairment of colour vision and 

visual acuity, but night vision and peripheral visual fields remain unaffected. 

Most of the inherited retinal dystrophies involve a degree of loss of both rods 

and cones, and are therefore called rod-cone or cone-rod dystrophies, 

depending on which photoreceptor subtype is primarily affected. Notably, in 

advanced stages of these retinal dystrophies, both types of photoreceptor 

cells are involved resulting in loss of central vision which is the primary cause 

of loss of quality of life in these patients. These conditions can be further 

classified according to whether these disorders present as stationary or 
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progressive conditions; stationary disorders are caused by dysfunctional 

photoreceptors and have a stable disease, while progressive disorders are 

being caused by death of photoreceptors due to their underlying mutations.  

 

The inherited retinopathies can be classified as autosomal recessive, 

autosomal dominant or X-linked disorders. The main types of hereditary 

retinal dystrophies include RP, infantile onset LCA, achromatopsia, 

Stargardt’s macular dystrophy and cone-rod dystrophies, and the 

commonest mode of inheritance in majority of these disorders is autosomal 

recessive.	   	  Table 1.1 summarizes the various disease genes according to 

sub-type of retinal degeneration they are associated with.  Retinitis 

pigmentosa is the commonest form of hereditary retinal dystrophy affecting 

1.5 million people worldwide [54]. However, it is the most severe form of 

inherited retinal blindness, LCA that has been the main focus of ocular gene 

therapy in the past decade. In treating this condition, it is hoped that this will 

enable further treatments to be developed for other forms of genetic eye 

diseases.  
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Table 1.1 1 Summary of the number of genes causing inherited retinopathies according to 
disease category. The table shows the number of loci and genes that have been found 
which are associated with the various types of inherited retinal disorders. (RetNet, last up-
dated 8 Jan 2010) 

Disorder Number of Loci Number of 
genes identified 

Retinitis pigmentosa, autosomal recessive 
 

25 22 

Retinitis pigmentosa, autosomal dominant 
 

17 17 

Retinitis pigmentosa, X-linked 
 

6 2 

Cone-rod dystrophy, autosomal recessive 
 

7 6 

Cone-rod dystrophy, autosomal dominant 
 

7 5 

Cone-rod dystrophy, X-linked 
 

1 0 

Leber congenital amaurosis, autosomal recessive 
 

12 12 

Leber congenital amaurosis, autosomal dominant 
 

2 2 

Congenital stationary night blindness, autosomal recessive 
 

6 6 

Congenital stationary night blindness, autosomal dominant 
 

1 1 

Congenital stationary night blindness, X-linked 
 

2 2 

Macular degeneration, autosomal recessive 
 

2 2 

Macular degeneration, autosomal dominant 
 

13 7 

Chorioretinal atrophy, autosomal dominant 
 

1 1 

Syndromic/systemic diseases with retinopathy, autosomal 
recessive 

30 24 

Syndromic/systemic diseases with retinopathy, autosomal 
dominant 

8 7 

Syndromic/systemic diseases with retinopathy, autosomal X-
linked 

3 2 

Bardet-Biedl syndrome, autosomal recessive 
 

12 12 

Usher syndrome 
 

11 9 

Optic atrophy, autosomal recessive 2 1 
 

Optic atrophy, autosomal dominant 3 1 
 

Optic atrophy, X-linked 
 

1 0 

Other retinopathies, autosomal recessive 
 

15 12 

Other retinopathies, autosomal dominant 
 

10 5 

Other retinopathies, X-linked 
 

8 7 

Other retinopathies, mitochondrial 
 

7 7 

Ocular-retinal developmental disease, autosomal dominant 
 

1 1 

Totals 
Autosomal recessive diseases:     106  genes identified 
Autosomal dominant diseases:      47 genes identified 
X-linked diseases:                          13 genes identified 
Mitochondrial and other:                  7 genes identified 

213 173 
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1.3.1  Leber Congenital Amaurosis  
 

LCA is the most severe form of retinal dystrophy, causing loss of vision 

before the age of 1 year and accounts for 5% of all inherited retinopathies. It 

is the commonest cause of congenital blindness in children accounting for 

10-18% of cases[426]; with a population incidence of about 1/30000 [235], 

approximately 200,000 children worldwide suffer from this hereditary retinal 

dystrophy. It was originally described by Theodore Leber in 1869 as a 

congenital form of retinitis pigmentosa, presenting with blindness at birth with 

an essentially normal retina in appearance, nystagmus and sluggish pupils. 

This clinical definition was later modified to include a non-recordable or 

extinguished electroretinogram by Franceschetti and Dierterle in 1956[143]. 

Compared with other retinal dystrophies such as RP, a greater proportion of 

the causative genes have been identified and there are more studies 

demonstrating genotype-phenotype association in LCA, allowing for the 

prediction of the affected gene from the phenotypic characteristics. As it is 

well characterised, LCA has been a focus for preclinical research and the 

development of treatments. It is the first form of retinal dystrophy for which 

clinical trials of gene therapy has been developed. Success in these trials will 

form a stepping stone for other retinal diseases to be treated with gene 

therapy. 

 

 

1.3.1.1  Molecular genetics of LCA      
 
LCA is a genetically and clinically heterogenous disease. To date, more than 

400 mutations have been identified in 14 genes associated with LCA (Figure 

1.10A)(for a review, see[101]). A small number of dominant cases of LCA 

has been reported, and are associated with 2 genes, CRX and IMPDH1 

[59,365,406,443].  Apart from these, mutations in 12 genes, GUCY2D, 

AIPL1, CRB1, RPGRIP, RPE65, RD3, RDH12, LCA5, CEP290, LRAT, 

TULP1 and MERTK have been found to be associated with the more 
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common type of autosomal recessive LCA. The relative disease load varies 

for different genes [95,235] and is shown in Figure 1.10A. Together, the 

currently known LCA genes account for 60-70% of the cases while the 

remaining 30% of cases await discovery [236]. CEP290(15%) GUCY2D 

(12%) and CRB1 (10%) are the most frequently mutated genes and account 

for a large proportion of LCA cases.  

 

LCA genes encode a wide variety of retinal proteins that participate in a 

plethora of retinal cycles and pathways (Figure 1.10B).  LCA-associated 

proteins such as GUCY2D (retinal guanylate cyclase) and AIPL1 are 

involved in the phototransduction pathway; GUCY2D (retinal guanylate 

cyclase) is an enzyme that resynthesizes cGMP required for the recovery of 

the dark state after phototransduction, while AIPL1 (aryl hydrocarbon 

receptor interacting protein-like 1) is involved in biosynthesis of 

phosphodiesterase. Three LCA genes encode proteins that play important 

roles in visual retinoid recycling; RPE65 encodes a microsomal protein 

involved in the isomerization of all-trans-retinol to all-cis-retinol, RDH12 

encodes a retinol dehydrogenase that catalyzes the reduction of all-trans 

retinal to all-trans retinol and protects cells against the leakage of toxic all-

trans retinal into the inner segments [290], and LRAT encodes a protein that 

catalyzes the synthesis of retinyl esters in the visual cycle and is a part of the 

process to recycle used all-trans retinal to the active chromophore 11-cis 

retinal [40,198].  Other genes are involved in the development of the retina 

such as CRX (cone-rod homeobox) which encodes a transcription factor that 

is crucial for outer segment development as it transactivates a number of key 

retinal proteins, while CRB1 (Crumbs homolog protein) is critical for 

photoreceptor morphology and retinal architecture by ensuring correct 

functioning in cell-to-cell adhesion, intercellular signalling and directional 

transport of molecules.  IMPDH1 directs the biosynthesis of guanine, a key 

component of DNA and cGMP which plays a vital role in phototransduction. 

Several LCA proteins localize to the connecting cilia of photoreceptors and 

are involved in protein trafficking such as RPGRIP (retinitis pigmentosa 

GTPase interacting protein1), CEP290 (centrosomal protein 290) and LCA5 

(lebercilin), highlighting the emerging role of the ciliary processes in the 
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pathogenesis of LCA. CEP290 likely participates in transport of 

phototrasduction proteins through the ciliary apparatus of the photoreceptor. 

Finally RD3 encodes a photoreceptor nuclear protein whose function is not 

yet known. 

 

 Recently, it has been suggested that phenotypes caused by mutations in a 

single gene become more severe when a mutation in an additional gene is 

also present and such additional gene is known as a modifier gene. 

Examples of modifier genes have been described in Stargardt’s disease 

[521] and Usher’s syndrome [3]. A systematic analysis of all known 

mutations in LCA genes revealed that a greater number of LCA patients 

carry a third variant or disease allele than might be expected by chance 

alone [519]. Family members who carried a third disease allele in another 

gene had a more severe phenotype than family members who did not carry 

this allele, suggesting that these alleles may act as genetic modifiers 

[432,519]. Clearly, the manifestation of the disease depends much on 

interplay between different genes or loci and also influences from by external 

factors such as the environment. 
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1.3.2.2 Clinical features and genotype-phenotype 
correlation in LCA 
 
As well as having diverse genetic causes, LCA is clinically heterogenous, 

making clinical diagnosis a difficult task for the practising ophthalmologist. 

The LCA phenotype overlaps with many other similar but separate retinal 

diseases, and several syndromic disease can have an “LCA-like ocular 

phenotype” that may initially present without the systemic features, but these 

develop and dominate the phenotype later on. The most important of these 

include Alstrom syndrome, Batten disease, Joubert syndrome, peroxisomal 

diseases and Senior-Loken syndrome. All of these syndromic diseases 

present in infancy like LCA with early central visual loss and nystagmus, but 

these children later develop the full syndrome with multisystem disorders. 

The underlying pathology, molecular defects, prognosis, inheritance and 

treatment of these overlapping syndromic and non-syndromic ocular 

diseases are entirely different from those of LCA. It is crucial to separate 

these overlapping eye diseases from LCA, and rapid and accurate clinical 

diagnosis is therefore essential. 

 

The classical LCA patient presents early in life, at about 6 weeks with 

severely reduced vision, nysytagmus, poor fixation, amaroutic pupils, 

oculodigital behaviour and the fundal appearance is frequently 

unremarkable. Manifest visual function and visual acuity in LCA patients can 

range widely, usually from 6/60 to light perception or no perception of light. 

Longitudinal studies of visual function in LCA patients performed before the 

disease gene were identified, found that patients fell into three categories of 

visual prognosis. The majority (75%) of LCA patients displayed a relatively 

stable course, a smaller group (15%) showing visual deterioration, and the 

smallest group (10%) had measureable improvement in function 

[61,149,184]. Later, it has been found that the natural history of visual 

function in LCA patients could be correlated with certain genotypes (Figure 

1.11). Patients with CEP290 and GUCY2D mutations appear to have poor 

but stable visual function [235]. LCA patients with AIPL1, RDH12 and 

RPGRIP1 mutations have progressively deteriorating visual function with age 
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[104,236]. Patients with CRB1 and RPE65 mutations exhibit mild 

improvements in early ages, but then decline mainly during school years 

after a period of stability [285,517]. The reason for this transient improvement 

is not fully understood but a part of it may be due to postnatal physiological 

cone maturation. At young ages, patients with RPE65 mutations also appear 

to have better visual function than is than is typically associated with other 

genetic forms of LCA, and a number of patients maintain some useful visual 

function beyond the second decade of life [468]. 

  

Fundal appearances range from essentially normal to peripheral 

pigmentation, vessel attenuation, and varying chorioretinal and macular 

atrophy. Other retinal features include pseudopapilloedema of the optic disc, 

maculopathy, macula coloboma, bone spicule pigmentation, nummular 

pigmentation, salt and pepper pigmentation, yellow confluent spots, white 

retinal spots, preserved para-arteriolar RPE (PPRPE) and Coats reaction. 

Despite the fact that hereditary retinal dystrophies and LCA gene defects 

converge on a limited number of apoptotic death pathways and that the 

highly specialized retina only has a limited number of injury responses, it 

appears possible to identify the causal gene based on the retinal appearance 

or a phenotypic parameter in certain cases. Genotype-phenotype 

correlations have been described in the retinal appearances and longitudinal 

changes in visual function [236]. These are summarised in Table 1.2. 

Patients with CRB1 mutations often have a thickened immature, poorly 

laminated retina on optical coherence tomography (OCT) scanning and 

evidence of PPRPE in the fundus [205]. Improving visual function and a 

translucent retina suggests RPE65 involvement [285], while a rapidly 

declining visual function and maculopathy suggests RDH12 [427]. Severe 

visual loss and an essentially normal retinal appearance suggests defects in 

either CEP290 [100] or GUCY2D[103], while severe visual loss with a 

pigmentary retinopathy suggests RPGRIP [103]. Figure 1.11 shows 

examples of the retinal appearances of LCA patients with defects in various 

genes, highlighting the retinal differences associated with the genotypes.  

 



54 
 

 

 

 

 



55 
 

 

Table 1.2   Summary of phenotype-genotype correlations in LCA 

  

 

Phenotype characteristic 

 

Probable gene defect 

Preserved para-arteriolar retinal pigment epithelium (PPRE) CRB1 

Nummular retinal pigment CRB1 

Thickened retina on OCT CRB1 

Coats-like vasculopathy CRB1 

Severe early visual loss with relatively normal fundus GUCY2D, CEP290 

Severe early visual loss, progressive course and retinal 
pigmentation 

RPGRIP1 

Severe early visual loss, keratoconus, variable maculopathy, 
optic disc pallor 

AIPL1 

Moderate visual loss, maculopathy CRX 

Early moderate visual loss with progressive deterioration, 
maculopathy, marked retinal pigmentation 

RDH12 

Relatively stable vision, blond fundus LRAT 

Transient visual improvement followed by decline, translucent 
RPE 

RPE65, LRAT 

Pseudopapilloedema LCA5 
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Electroretinography (ERG) is a method of recording mass retinal electrical 

impulses generated by photoreceptors in the retina on exposure to light 

stimulus and provides a measurement of the visual function in tested 

subjects. Indirectly, the ERG response gives an indication of the progress of 

photoreceptor cell loss over time (for a review, see {Holder, 2001 708 /id}) 

and can be used as an uninvasive means to monitor the effects of treatment 

over time. The electrical response generated by the retina in response to 

light is measured by the single flash electroretinogram which has 3 main 

components: The initial negative deflection is known as the a-wave and is 

generated by the depolarization of photoreceptors following the closure of 

cyclic GMP channels in the outer segments in response to photon capture. It 

reflects the level of phototransduction that occurs in the retina as a whole. 

The a-wave is followed by a large positive deflection known as the b-wave 

which is generated by Muller and bipolar cells in the inner nuclear layer. The 

b-wave amplitude depends on the degree of depolarization that has taken 

place in photoreceptors. Hence, the b-wave indirectly correlates with the 

number of functional photoreceptors in the retina. The final component of the 

ERG is the c-wave which is a positive signal that occurs near the end of the 

tracing and is largely elicited by the retinal pigment epithelium (RPE). The 

disappearance of the c-wave is an indication of the disturbed function of the 

RPE, and is often seen at an early stage a disease since RPE is integral to 

photoreceptor homeostasis. A series of little wavelets seen on the upslope 

between the a and b-waves of an ERG trace are known as oscillatory 

potentials. They represent postsynaptic neuronal activity in the inner retina, 

and reflect the health of the inner layers of the retina{Wachtmeister, 1998 

707 /id}.  In ERG analysis, the waveform amplitude and implicit time are 

normally measured. By varying the conditions of testing and adaptation, the 

ERG can measure rod and cone responses separately; the scotopic ERG 

which is performed after a period of dark adaptation measures rod responses 

and maximal combined response when elicited with a bright white flash, 

while the photopic ERG or flicker ERG isolates the cone responses.	   The 

ERG responses are classically absent or severely diminished in LCA 

patients. This is one of the basic features of the condition. ERG analysis of 

family members may also aid the identification of disease genes as cone 



58 
 

ERG dysfunction has been found in heterozygous carriers of GUCY2D 

mutations, and rod and cone ERG dysfunction has been found in 

heterozygous carriers of RPGRIP mutations. The advent of more detailed 

imaging technology has enabled further characterisation of retinal phenotype 

in LCA patients. Fundus autofluorescence measures lipofuscin accumulation 

in the RPE which is related to photoreceptor disc shedding. This allows for 

the visualization of disease-specific distribution of lipofuscin in the RPE 

which is not yet visible on ophthalmoscopy. Notably, reduced autofluoscence 

has been described in LCA patients with compound heterozygous or 

homozygous RPE65 mutations, suggesting a lack of lipofuscin manufacture 

due to the loss of normal functioning of the visual cycle.  

 

Optical coherence tomography (OCT) is a non-contact, non invasive imaging 

technique used to obtain cross-section images of the retinal architecture at 

much higher longitudinal resolution of about 10 µm  in the retina. It is a useful 

tool in determining the extent of retinal integrity in selected retinal 

dystrophies and the retinal response to the genetic lesion. Work by Jacobson 

et al.  using OCT imaging demonstrated that patients with RPE65 mutations 

had measurable outer nuclear layer (ONL) and many had normal foveal 

thickness [202]. This study showed that despite advanced age and visual 

loss, retinal dystrophy patients with RPE65 defects have viable 

photoreceptors and residual cone photoreceptor structure and function 

persisted for decades. This finding suggested that these patients may be 

amenable to gene replacement therapy and visual improvement may be 

observed if treatment was performed at an early age. The study was  

instrumental in supporting clinical trials of gene replacement therapy in LCA 

patients with RPE65 mutations. OCT studies of LCA patients with CRB1 

mutations on the other hand revealed a lack of normal retinal lamination, 

increased overall retinal thickness apart from the loss of the ONL at the 

foveal centre [205]. Similarly, LCA patients with RDH12 mutations had thick 

retinas with the same disorganised pattern which is evidently different from 

RPE65-associated disease [207]. These findings indicate that these patients 

may not be particularly suitable for gene therapy as there is early 

derangement of the retinal structure and lack of viable photoreceptor cells 
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remaining in the retina. LCA patients with RPGRIP mutations showed normal 

ONL measurements at the foveal centre, although measurements rapidly 

declined with increasing eccentricity from the fovea [206]. LCA patients with 

CEP290 mutations unexpectedly retained photoreceptors in the cone-rich 

fovea, despite severe visual loss [88], while patients with GUCY2D defects 

were found to contain intact cone photoreceptors up to 7 years of age [321]. 

LCA patients with mutations in other genes such as AIPL1, CRX, IMPDH1, 

LCA5 and RD3 have yet been analysed in the same way. These studies 

suggest that despite the presence of retinal modelling in LCA, viable 

photoreceptors appear to remain in certain forms of disease until relatively 

late in the disease process, providing a window of opportunity for therapeutic 

intervention. These types of genotype-phenotype studies must be viewed 

with caution, however, as the connection between gene defect and resulting 

phenotype is not straightforward. Environmental, genetic background, 

modifier alleles and overlap between gene defects affect this relationship, 

while different mutations in the same gene can give rise to different 

phenotype. The importance of genetic testing and being able to determine a 

molecular diagnosis in a complex and varied group of diseases such as 

retinal dystrophies is obvious. It allows for more specific characterisation of 

the disease than the clinical phenotyping can provide, facilitates information 

sharing, prognostication and helps to establish a genotype-phenotype 

correlation system. It will also aid in identifying new retinal genes and in the 

selection of candidates for gene-base treatments in the future.  

 

Histopathological studies of LCA in human tissue are scarce, understandably 

due to the difficulty in obtaining specimens. To date, only thirteen 

pathological specimens from LCA patients have been described in the 

literature and three possible disease categories have emerged from the 

analysis of these studies. Seven cases appeared to represent degenerations 

in which the photoreceptor, inner retinal layer and RPE layer showed 

extensive atrophy and gliosis [138,381,453]. Three cases appeared to 

represent aplasias, and showed complete absence of the photoreceptor 

layer or the presence of very unusual looking, primitive cuboidal cells in this 

layer [141,157,483]. Finally, a further three cases suggested biochemical 
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dysfunction or dysplasia as the disease process. In these specimens, almost 

the entire retina was retained; the inner retinal layers, the photoreceptor layer 

and the RPE appeared intact despite the fact that the globes came from 

adults who were blind from LCA since young [141,191,235,321]. Moreover, 

in six of the thirteen globes, the inner retina was essentially normal in 

appearance and architecture based on microscopic evaluations. These 

observations suggest that some forms of LCA may still respond favourable to 

treatment based on the presence of an intact retinal structure even in 

advanced stages of disease. Unfortunately, most of the cases in these 

studies were not genotyped, thus precluding any useful histopathology-

genotype correlations which may aid towards identifying the forms of LCA 

which may be amenable to treatment. 

 

1.3.2.3 AIPL1 mutations in inherited retinal dystrophies   
 
Mutations in the aryl hydrocarbon receptor-interacting protein-like 1 gene 

(AIPL1) are thought to cause approximately 7-8% of LCA worldwide 

[103,174,444]. The gene was discovered during an effort to identify and map 

genes expressed exclusively in the retina and pineal gland as candidates for 

inherited retinal degeneration. AIPL1 was mapped to chromosome 17p13.1, 

near the candidate region of several inherited retinal degenerations and was 

the fourth gene to be associated with LCA [440].  The AIPL1 gene 

encompasses six exons encoding a protein of 384 amino acids in length.  

The AIPL1 protein is found exclusively in photoreceptors [475] and recent 

studies have shown that AIPL1 is expressed in both rods and cones where it 

is essential for the survival and function of photoreceptors [65,232]. 

 

It has been suggested that AIPL1 could fulfil a molecular chaperone function 

for retinal protein folding [79]. By sequence comparison, AIPL1 is related to 

the FK-506-binding protein (FKBP) family which comprise the immunophilin 

superfamily of proteins[439], many of which function as specialised 

chaperones. The chaperone function of this protein family does not typically 

act at the step of initial polypeptide folding, but rather assist client proteins in 
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later stages of maturation, subunit assembly, transport and degradation 

[511]. Many such client proteins are components of signal transduction 

pathways. The protein sequence of AIPL1 includes three consecutive 

tetratricopeptide repeat (TPR) motifs, a 34-amino acid degenerate motif 

comprising of a pair of anti-parellel α-helices (Figure 1.13A). TPR domains 

act as molecular scaffolds mediating protein interactions and are conserved 

in structurally related proteins that participate in diverse biological functions, 

including the coordination of multiprotein complex assembly and protein 

translocation [55].  The presence TPR motifs makes AIPL1 more closely 

related to the larger members of the FKBP family (Figure 1.13B) such as 

FKBP52 , which forms a complex with the large heat shock protein Hsp90 

and functions as a specialised co-chaperone [511]. AIPL1 also shares 49% 

amino acid identity with aryl hydrocarbon receptor interacting protein (AIP), 

which is a known specialised chaperone required for bonding to aryl 

hydrocarbon receptor, a transcription factor that shuttles in and out of the 

nuclei [73,370]. These sequence similarities suggest that AIPL1 may also 

function as a specialised chaperone in photoreceptor cells, facilitating protein 

translocation and as a component of chaperone complexes. A 56-amino acid 

polyproline-rich sequence is present at the carboxyl-terminus of human 

AIPL1 protein (Figure 1.12B). This sequence forms a hinge region in the 

protein and is primate-specific. Sequence comparison between primate 

species suggest that there is a high amount of sequence conservation within 

this hinge region between primates (squirrel monkey, rhesus monkey, and 

humans). The function of this region is unknown but similar sequences are 

found in proteins acting in processes requiring rapid recruitment or 

interchange of several proteins, such as signalling cascades or initiation of 

transcription [223]. 
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Several possibilities have been proposed regarding the essential role of 

AIPL1 in the retina. Using yeast two-hybrid analysis, AIPL1 has been found 

to interact with Nedd8-ultimate buster protein-1 (NUB1), a ubiquitously 

expressed protein thought to play an important role in regulating cell cycle 

progression and cell signalling [7]. Through its association with NUB1, AIPL1 

has been predicted to be involved in the regulation of these events. While 

AIPL1 is predominantly cytoplasmic, NUB1 is predominantly nuclear. Co-

transfection of AIPL1 with GFP-tagged NUB1 demonstrated that AIPL1 is 

able to modulate the nuclear translocation of NUB1 from the nucleus to 

cytoplasm, and suppress the formation of inclusions by NUB1 fragments and 

redistribute these fragments in the cytoplasm [476]. Using site-directed 

mutagenesis, known pathogenic variants of AIPL1 were generated and co-

transfected into neuroblastoma cells to characterise the effect of these 

mutations on the ability of AIPL1 to modulate NUB1 localization and inclusion 

formation. This function of AIPL1 was shown to be severely compromised by 

the expression of some of the disease-associated mutant AIPL1 proteins 

such as the pathological mutation, W278X; other mutations such as R302L 

resulted in less efficient nuclear translocation of NUB1[476]. However, the 

impact of the AIPL1-specific NUB1 modulatory function on biological events 

downstream of NUB1 is unknown. 

 

Yeast two-hybrid analysis also demonstrated that AIPL1 is able to interact 

with and aid in the processing of farnesylated proteins in the retina [393].  

Farnesylation is a specific type of prenylation. In the retina, protein 

prenylation facilitates protein-protein and protein-membrane interactions, and 

is important for the maintenance of retinal and photoreceptor 

cytoarchitecture.  Inhibition of prenylation has been shown to cause 

photoreceptor outer segment degeneration [378]. The ability of AIPL1 to 

interact with and enhance the processing of farnesylated proteins is severely 

compromised by certain pathogenic mutations such as M79T and the non-

functional W278X.  Some AIPL1 mutants such as A197P, are partially 

defective in their ability to facilitate the processing of farnesylated proteins, 

but are functional with respect to their effect on NUB1. Other mutants such 

as R302L on the other hand, do not show any defect in protein farnesylation 
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but are compromised in NUB1 function. Retinal proteins which are known to 

be farnesylated include cGMP PDE-α subunit, transducin and rhodopsin 

kinase [23,148,200,252].  

 

Yeast two-hybrid studies however are not always reliable, and the findings 

from these in vitro studies of AIPL1 interactions do not appear to be 

supported by in vivo studies using animal models. Three mouse models of 

LCA have been generated with either complete or partial loss of AIPL1. Two 

Aipl1 -/- mouse strains carry targeted disruptions in the Aipl1 gene and 

produces no AIPL1 [119,392]. Retinal degeneration in these models is 

extremely rapid degeneration in this model (all photoreceptors are loss by 

three weeks of age). The other model, the Aipl1 h/h mouse contain an Aipl1 

hypomorphic mutation with reduced AIPL1 levels and has a slower rate of 

photoreceptor degeneration [282]. In both models, normal retinal histology 

and morphological photoreceptor development were observed at birth. 

Hence, despite evidence that seems to suggest a role for AIPL1 in cell cycle 

regulation and retinal development, the absence of gross abnormalities in 

young AIPL1-deficient mice indicate that AIPL1 is not essential for retinal 

proliferation or the commitment to photoreceptor cell fate. Moreover, retinal 

degeneration in both models did not begin until postnatal 8-10 days in the 

Aipl1 -/- mouse and 12 weeks after birth in the Aipl1 h/h model.  

 

Analysis of the null and hypomorphic mouse models showed that retinal 

degeneration in AIPL1 mutations is due to disturbance in the biosynthesis or 

stability of rod photoreceptor cGMP PDE (PDE6). Almost no PDE6 is found 

to accumulate in the Aipl1 -/- mouse [392]. In the Aipl1 h/h mouse, there is a 

decline in PDE level which is proportional to the reduction in the level of 

AIPL1, and all three subunits α, β and γ of PDE6 are similarly affected. This 

observation is highly specific for PDE, as analysis of a large number of other 

photoreceptor proteins found no change in their expression levels in the 

Aipl1 h/h mouse [282]. Analysis by semiquantitative RT-PCR found no 

substantial decrease in the mRNA levels of any of the PDE6 subunits, 

indicating that AIPL1 acted to modulate PDE6 levels at a post-translational 

stage. Given the homology of AIPL1 to other members of the FKBP family, it 
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would seem reasonable to presume that AIPL1 functions as a specialised 

chaperone to assist in PDE6 biosynthesis. As a specialised chaperone, it is 

likely that AIPL1 plays a role in the final maturation or trafficking step of 

PDE6 synthesis rather than as a folding accessory protein. In all the mouse 

models, it was shown that apart from PDE6, levels of expression and 

subcellular distributions of all other retinal proteins, including rhodopsin 

kinase and transducin which are normally farnesylated, were unaffected 

[282,392]. These observations thus rule out a generalized defect in protein 

farnesylation in mutant photoreceptors.  The link between AIPL1 and PDE6 

has since been further elucidated, despite the destabilization of PDE6 in the 

absence of AIPL1, AIPL1 is not involved in the synthesis individual PDE6 

subunits. AIPL1 has been found to interact with the α-catalytic subunit of rod 

PDE and is required for the proper assembly of functional PDE6 

subunits[240]. In the absence of AIPL1, rod PDE6 subunits are rapidly 

degraded by proteosomes. 

 

Recently, through the development of a novel transgenic mouse that 

expresses human AIPL1 solely in rod photoreceptor cells (tg hAIPL;Aipl1-/-), 

it was shown that AIPL1 was also crucial to the survival and function of cone 

photoreceptors[232].   Although the cones lacking AIPL1 in this transgenic 

model developed normally, they were not functional and eventually 

degenerate in the absence of AIPL1. The degeneration of cones in this novel 

model was however significantly slower in the presence of viable rods, in 

contrast to the Aipl1-/- mouse where rods also degenerate. Further analysis 

by demonstrated that cone PDE6 levels was severely reduced in the retinal 

extracts although cone PDE mRNA was not altered despite the lack of 

AIPL1. This indicated that the reduction of cone PDE6 levels occurred at a 

post-translational level, in a similar way seen in rods lacking AIPL1[282]. 

Since AIPL1-deficiency did not cause developmental defects in cones, the 

lack of cone function this model was thought to be due to disruption in 

phototransduction consequent to the severe reduction of cone PDE6. It has 

been suggested that the slow degeneration of cones in this model may be 

analogous to the cones in the fovea of patients with AIPL1 defects surviving 
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for a longer period of time[232]. This may offer an extended window for 

treatment that allows the preservation of cone vision. 

 

1.3.2.4 Molecular genetics of AIPL1 mutations  
 

Genetic defects in AIPL1 cause a heterogenous set of clinical conditions 

depending on the nature of the alleles.  AIPL1 mutations have been 

estimated to cause approximately 7% of recessive LCA cases [442] and 

have also been associated with cone-rod dystrophy and retinitis pigmentosa 

[103,441]. To date, at least 20 different disease-causing AIPL1 mutations 

have been identified (HGMD; www.hgmd.org). Often the variability in 

phenotype can be explained by the type of mutation. Some mutations lead to 

truncation of the reading frame and hence are expected to result in complete 

absence of a functional protein, such as nonsense mutations and splice site 

mutations. In these cases where there is no AIPL1 function, a severe 

phenotype results. On the other hand, missense mutations may not abolish 

protein function completely and may therefore be associated with a milder 

phenotype [8,393,476].  

 

Most of the gene defects in AIPL1 identified to date are homozygous or 

compound heterozygous mutations in an autosomal recessive pedigree.  A 

homozygous mutation is present when identical sequence variants are found 

in both alleles, while a compound heterozygous mutation comprises of two 

different sequence variants found in the maternal and paternal alleles of a 

particular gene. The difference between a compound heterozygote and 

digenic disease is that in digenic inheritance, mutation in a gene causes 

disease only in patients who also carry mutation in a diferent gene. Two 

large mutation analysis studies in patients with disease-associated AIPL1 

mutations have found that the W278X mutation comprised approximately half 

of the total disease alleles found [103,174].  If expressed, this allele would 

produce a severely truncated protein that is shorter than the wild-type AIPL1 

by 107 amino acids. The truncated protein includes only 20 of the 34 amino 

acids of the third TPR motif, a highly conserved region on the AIPL1 protein.  
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This mutation was originally identified in homozygous form in two 

consanguinous Pakistani families, a non-consanguinous family of European 

descent, and in compound heterozygous form in another European family 

[440] together with a 2-bp deletion in codon 336 (A336∆2 bp). This deletion 

resulted in a frameshift and a termination codon 47 amino acids later. A 

further study that screened AIPL1 in a large cohort of patients with a wide 

range of clinical diagnosis of inherited retinal dystrophies reported 

homozygous and compound heterozygous W278X mutation in non-

consanguinous European families; the W278X mutation was found in 

combination with a splice-site mutation (c.277-2A>G) and an amino acid 

substitution G262S [442]. Interestingly, the results from this study suggested 

that AIPL1 mutations may also cause autosomal dominant cone-rod 

dystrophy and retinitis pigmentosa [442].  The probands of two families were 

heterozygous for a 12 bp deletion (P351∆12 bp) within the sequence 

encoding the hinge region of AIPL1. The mutant protein hinge was predicted 

to lack four amino acids, this included two proline residues located at 

positions that were conserved across the primate species. This deletion 

occured adjacent to a predicted casein kinase II phosphorylation site, that 

might be involved in protein complex regulation [327]. This deletion was not 

found in control individuals and in the DNA from two unaffected individuals of 

the family. However, the pedigrees from these families were small and DNA 

samples from additional family members were unavailable. It would be 

important for additional studies to be performed on more autosomal 

dominant pedigrees with these clinical diagnoses to confirm the segregation 

of the mutation with retinal degeneration, and further expression studies 

would be helpful in determining the effect of the mutation on protein structure 

and function.  The function of the proline-rich region of AIPL1 is currently not 

known and the effects of mutations such as P351∆12, A336∆2 and P376S 

that are located within the hinge region are uncertain. Preliminary data 

suggests that a high amount of sequence conservation exists within the 

hinge region between the primate species. More importantly, this proline-rich 

region is only found in primates and therefore may have an important role in 

primate vision or in cone-rich retina. 
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1.3.2.5   The phenotype of LCA in patients with AIPL1                               

              mutations 
 

The phenotype of LCA in patients with LCA due to mutations in AIPL1 is 

relatively severe compared with that of most other forms of LCA [103]. 

Studies comprising of mutational analyses of AIPL1 mutations in patients 

with retinal dystrophies are relatively few in number and most of them include 

only small cohorts of patients. The largest study thus far was by Dharmaraj 

et.al., which described the phenotypic features of 26 probands with AIPL1-

related LCA [103]. Of these subjects, 17 probands were homozygotes and 9 

were compound heterozygotes, and the ages of the patients at examination 

ranged from 4 months to 57 years.  Visual acuities were severely reduced in 

these patients, ranging from 6/60 to light perception. The majority of the 

patients achieved only light perception (LP) by the time they reached the 

second decade, although there was one patient in the study who maintained 

vision of 6/360 at the age of 27 years. The youngest patient aged 4 months, 

was able to fixate and follow objects. Cycloplegic refraction showed that 

most of these patients had moderate hypermetropia, ranging from +3.00 to 

+7.00 dioptres [103].  A different study by Galvin et al. performed a mutation 

screen in a cohort of LCA patients across six genes and found that LCA 

patients with disease-causing sequence variations in AIPL1 had severely 

decreased vision at a younger age compared to other genotypes, although 

the number of patients identified with AIPL1 variation in this study was small 

(n=7) [151].  These findings were in keeping with findings of other reports 

[435,440]. Longitudinal evaluations of visual acuity in AIPL1 patients are very 

limited. It has been suggested that there is a progressive decline in visual 

acuity in many patients, usually over a 10-20 year follow up period [151]. A 

few patients, however,  mostly those with heterozygous mutations have been 

noted to have relatively stable vision. One of these patients was reported to 

maintain visual acuity of 20/200 after 16 years [151]. 

Features of night blindness and photosensitivity are variable in patients with 

AIPL1-related disease.  The study by Dharmaraj et al. reported night 

blindness or nyctalopia in approximately half of the patients with AIPL1 
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mutations, and photoaversion or photophobia was reported in only 15% of 

their patients. The study by Galvin et al. reported nyctalopia in almost all of 

the patients with AIPL1 mutations (6 out of 7), while less than half had 

photophobia. These findings were in contrast to a study by Hanein et al.  

which was a comprehensive mutation analysis of 6 LCA genes (GUCY2D, 

RPGRIP, AIPL1, RPE65, CRB1 and CRX) in a cohort of 179 unrelated LCA 

patients. Six patients (3.4% of cases) were found to have mutations in AIPL1 

in this study. Based on clinical observations, the authors divided LCA 

patients into 2 groups displaying either photophobia or night blindess.  

Features of photophobia but not night blindess at an early age were thought 

to be a feature of AIPL1 mutations.  Photophobia in early stages is also seen 

in other LCA mutations such as GUCY2D and RPGRIP. Although the precise 

underlying mechanism of photophobia in retinal dystrophies is not well 

understood, it has been suggested that the feature is related to cone 

dysfunction and is a hallmark in conditions with primary derangement of cone 

function such as cone dystrophies and achromatopsia.  

 

There is more consensus across various studies in terms of the fundal 

appearances associated with AIPL1 mutations.  At early ages, from birth to 

pre-school age, essentially normal retinas and maculae have been observed 

[103,151].  By school age, patients tend to develop diffuse hypopigmentation 

and RPE mottling primarily in the mid-peripheral retina (Figure 1.14A). In 

advanced disease, usually around the sixth and seventh decades of life, 

there is extensive bone-spicule pigmentary clumping, atrophy of the RPE 

and chorioretina, atrophic maculopathy, optic nerve pallor and attenuation of 

the retinal vasculature (Figure 1.14C and D) [103,151,435].  Some patients 

have also been described to have drusen-like deposits in the retina in the 

first and second decades of life (Figure 1.14B) [151]. Variable levels of 

maculopathy was observed in majority of patients. Early stages of 

maculopathy in the form of an indistinct foveal reflex may be seen in young 

children of school ages. Later, the maculopathy in patients can range from 

mild foveal atrophy to bull’s eye-appearing atrophic macular lesion to gross 

aplasia [103,151,435]. In the study by Dhamaraj et al, the youngest patient 

with macular atrophy was 8 years old [103]. Optic nerve pallor was noted in 
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all patients at later ages. Compared with other genotypes, a higher 

proportion of AIPL1 patients were found to have keratoconus and cataracts 

The types of lens opacities ranged from cortical to posterior subcapsular 

opacities[103,440].  The incidence of cataracts and keratoconus is increased 

with age; the youngest patient described with keratoconus and cataracts was 

10 years patient [103].  Visual fields and electroretinogram (ERG) are 

generally undetectable in patients with established AIPL-related disease. 

Figure 1.15 shows ERGs from an affected proband with homozygous W88X 

mutation and a heterozygous carrier parent of the patient. No measureable 

responses are seen in the affected patient, and both scotopic and photopic 

responses were equally extinguished (Figure 1.15A).  Although most 

heterozygous carriers of AIPL1 mutations are clinically normal, some ERG 

abnormalities have been reported in the form of reduction of rod b-wave 

amplitudes below the lower limit of normal (Figure 1.15B) [103]. No 

abnormalities have been reported in flicker and photopic ERGs in 

heterozygote carriers.  
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The large number of genes associated with retinal dystrophies makes 

genotyping a time-consuming task. However, genotyping is an essential step 

before any therapeutic approach can be established. One way of facilitating 

this is the establishment of phenotype-genotype correlations in order to direct 

molecular studies to the underlying gene in a new patient. With further 

studies and the use of more detailed imaging, it may be possible to 

distinguish different types of mutation within the same gene from the 

phenotype of patients, such as between missense mutation and null 

mutations which are likely to be phenotypically more severe. To date, no 

such correlation study has been performed. Although LCA phenotypes are 

variable and change with age, certain distinctive phenotypical features can 

be identified to suggest the underlying gene, and similarly, it may be possible 

to identify LCA patients who potentially have AIPL1 mutations from their 

clinical presentation. However, a genetic diagnosis will always be required to 

confirm the gene defect. 

 

Overall LCA patients with AIPL1 mutations appear to have a more severe 

disease with a progressive course compared to patients with other LCA gene 

mutations. The main challenge is to be able to identify patients with AIPL1 

mutations at a young age since characteristic features of the disease such as 

retinal drusen deposits, peripheral bone-spicule pigmentation, chorioretinal 

and macular atrophy and keratoconus mainly appear at later ages, while the 

appearance of the fundus is relatively normal early in life.  In these young 

patients, it is thus important is to establish an effective screening strategy 

that enables the identification of AIPL1 mutations. This may require a 

combination of clinical and molecular strategies. Part of this study is directed 

at addressing these issues in addition to providing further phenotype-

genotype data and the aetiology of AIPL1-related disease.  
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1.3.2 Photoreceptor cell death in inherited retinal 
dystrophies. 
 

It has been shown that photoreceptor cell death in inherited retinal 

degenerations occurs by apoptosis [380]. However, there is little known 

about the mechanisms that link the genetic defects in inherited retinal 

dystrophies and the subsequent death of retinal cells by apoptosis. 

Understanding the disease mechanism by which genetic mutations lead to 

apoptotic cell death in inherited retinal dystrophies such as RP and LCA may 

provide an insight into ways to intervene to prevent or delay photoreceptor 

loss.  

 

Apoptosis is one of the physiological processes required to control cell 

numbers in multicellular organisms and constitutes a controlled programme 

of cell death mediated by a signalling cascade involving the activation of 

caspase enzymes by proteolytic cleavage. The initial stimulus for the 

activation of this cascade can be intrinsic in response to damage within the 

cell such as in genetic retinal diseases, or extrinsic secondary to external 

insults or signalling from other cells (Figure 1.16). The homeostasis of 

intracellular Ca2+ levels in photoreceptor cells appear to be of central 

importance in the initiation of apoptosis in retinal dystrophies. In CNS 

diseases due to excitotoxic damage such as epilepsy and ischaemia, 

excessive synaptic release of glutamate leads to neuronal damage and cell 

death through Ca2+ disregulation and excessive influx of Ca2+  from 

overactivation of post synaptic receptors [27,515]. Forms of RP and inherited 

retinal dystrophies caused by mutations that ablate photoreceptor function 

completely are likely to cause cell death via calcium overload. These 

mutations create a metabolic state that can be equated to exposure to 

continuous darkness and hence the ‘equivalent dark’ hypothesis. An 

example in which elevated intracellular Ca2+ levels may lead to apoptosis in 

an inherited retinal dystrophy is the retinal degeneration (rd) mouse, a model 

of rapid retinal degeneration due to a null mutation in the Pde6b gene 

encoding β-subunit of phosphodiesterase (PDE). Loss of PDE activity results 
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in elevated levels of cGMP in the mutant retina and a continuous influx of 

calcium ions through the cGMP-and voltage-gated Ca2+ channels. This 

calcium overload eventually leads to apoptotic cell death in photoreceptor 

cells [123]. Mutations such as AIPL1[282], PDE6B [377] and PDE6A[414] 

which result in loss or disruption of PDE activity and GUCY1A[356] where 

enhanced guanylyl cyclase sensitivity leads to increased cGMP-gated 

channel activity, are also thought to cause photoreceptor degeneration due 

to high Ca2+ levels triggering the apoptotic process. 
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Another hypothesis to explain cell death in retinal dystrophies is the 

‘equivalent light hypothesis’ which postulates that certain mutations causing 

retinal dystrophies may cause constitutive overstimulation of the 

phototransduction cascade, resulting in signals being sent to the inner retina 

that are ‘equivalent’ to those sent in response to the detection of incident 

light [122,278]. The cell death in these circumstances could be similar to that 

seen in light damage models of RP, in which retinas exposed to either short 

intense intervals of light or prolonged low intensity light suffer loss of 

photoreceptors. Evidence has emerged from various models of RP that the 

equivalent light hypothesis may be the the main contributing factor to the 

degeneration seen in these forms of retinal dystrophies. One of the most 

convincing evidence to support the equivalent light hypothesis comes from 

the transgenic mouse model of LCA, the   Rpe65-/- mouse. The rod 

photoreceptors in Rpe65-/- mice behave as if they are in the presence of a 

continuous background light with reduced circulating current in response to 

light stimulation, reduced light sensitivity and accelerated turn-off of 

photoresponse [500]. The lack of RPE65 protein causes photoreceptor death 

through accumulation of opsin that is not bound to 11-cis retinal in outer 

segments which causes the constitutive activation of the phototransduction 

cascade and this effectively acts like an equivalent light background. Further 

support for the equivalent-light hypothesis comes from studies involving the 

arrestin knockout (Sag-/-) mouse and rhodopsin kinase knockout (Rhok-/-) 

mouse; the photoreceptors in these animals rapidly degenerated when the 

animals were placed in constant light too dim to produce degeneration in 

normal animals, but the degeneration was spared if the animals were kept in 

darkness [81,82,504]. The introduction of a second mutation that blocked the 

transduction cascade, through the mating of these animals (Rpe65-/-, Sag-/- or 

Rhok-/- mice) with another strain of mice that lacked the gene encoding the 

rod transducin α subunit, resulted in a protective effect where the double 

knockout animals were no longer sensitive to damage by moderate constant 

illumination [175,500], thus providing photoreceptor apoptosis was mediated 

by constitutive activation of the phototransduction cascade. Evidence from 

other models of retinal dystrophies also support the equivalent light 

hypothesis. Some mutant forms of rhodopsin are known to constitutively 
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activate transducin independent of light excitation [397,526]. Recessive 

mutations in the gene encoding the rod α subunit of the cGMP-gated channel 

[111] and retinal guanylyl cyclase (RetGC-1)[229,428] have been described, 

that  would be expected to lead to a lack of functional cGMP-gated calcium 

gated channels and calcium not being transported into the cell. This should 

lead to a permanent state of hyperpolarisation in the photoreceptor inner 

segments and consequently a signal equivalent to light being sent to bipolar 

cells. 

 

It has been hypothesized that constant hyperpolarisation may lead to 

cytotoxicity by two different mechanisms: an intrinsic mechanism that is a 

cell-autonomous intracellular pathway to cell death, and the other an 

extrinsic mechanism that involves other cell types. Intracellular responses 

from within cells that harbour mutations leading to an equivalent light signal 

could trigger apoptosis due to disturbances in intracellular calcium levels and 

oxidative stress. In the first, overstimulation of the phototransduction cascade 

by aberrant expression of genes result in calcium being no longer 

transported into the cell to maintain a depolarised ‘ground state’. As a result, 

there is a permanent state of hyperpolarization in the photoreceptor inner 

segment and glutamate is never released from the photoreceptors. The 

exact mechanism by which low Ca2+ concentration lead to apoptosis is not 

fully understood. Evidence shows that neurons appear to tolerate a Ca2+ 

concentration only within a restricted range [277], and the same situation has 

been proposed for photoreceptors. Cultured neurons deprived of growth 

factors can be rescued in a medium containing high K+ which has its effects 

by depolarizing the cells and opening voltage-gated Ca2+ channels, 

producing an increase in the intracellular free Ca2+ [144,145,338].  The 

suggestion that prolonged decrease in Ca2+ levels may trigger apoptosis is 

supported by the existence of  numerous mechanisms that photoreceptors 

have evolved for regulating the rate of phototransduction and maintaining 

Ca2+ concentration within certain limits; this includes the modulation of cGMP 

channels by calmodulin[192,193], regulation of Ca2+ concentration by the 

Na+/Ca2+K+ exchanger [424] and light-dependent translocation of transducin 

and arrestin to decrease activation in bright light [445,520]. It has been 
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proposed that mutations that cause equivalent light signals and those that 

disrupt photoreceptor function, may also lead to cell death through an 

increase in oxidative stress [469]. Due to the high density of mitochondria in 

the inner segments, photoreceptors are particularly sensitive to mutations 

that alter their metabolic requirements. Mutations that cause a reduction in 

metabolic activity lead to an increase in mitochondrial free radical production 

in the form of reactive oxygen species. This is because, whist other tissues 

are able to modulate their blood supply by vasoconstriction, the 

choriocapillaris that serves the retina is largely unable to constrict, meaning 

the same level of oxygen is supplied to photoreceptors despite their altered 

metabolic state. These reactive oxygen species induce oxidative damage to 

the mitochondria, resulting in cytochrome–c release and subsequent 

activation of caspase proteins, leading to apoptosis [165,214]. The second 

mechanism in which cells may die in response to an equivalent light signal 

involves secondary messengers being released by cells in the inner retina. 

Bipolar cells, Mϋller cells and ganglion cells secrete neurotrophic factors that 

promote the survival of photoreceptors under normal circumstances and 

following retinal injury [219,491]. In retina which has been exposed to light for 

long periods of time, it has been observed that activated microglia invade the 

degenerating photoreceptor layer and alter the expression of neurotrophic 

factors such as nerve growth factor (NGF), ciliary neurotrophic factor 

(CNTF), and glial cell line-derived neurotrophic factor (GDNF)[176]. 

Furthermore, microglia-derived factors influence the production of secondary 

trophic factors in Mϋller cell, suggesting that microglia-Mϋller glia cell 

interactions play a critical role during photoreceptor degeneration[176]. It has 

been hypothesized that these microglia may either exert a cytotoxic function 

by releasing reactive oxygen species, nitric oxide, or inflammatory cytokines 

that trigger an extrinsic apoptotic pathway in the 

photoreceptors[201,245,346], or modulate the secretion factors that normally 

promote photoreceptor survival [176]. 

 

 It has been observed that the microenvironment of the degenerating retina 

can exert a negative effect on surrounding cells, where healthy 

photoreceptors are known to die in the presence of mutant cells. This ‘by-
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stander effect’ suggests a non-cell autonomous mechanism for cell death, 

possibly involving secondary cells and their secreted factors [226]. Evidence 

for this by-stander effect comes from chimeric mice generated from albino 

Prph2Rd2/Rd2 mice and pigmented mice that were wild-type. Photoreceptors 

were found to degenerate not only in the regions overlying non-pigmented 

RPE, but also in regions overlying pigmented RPE, indicating that the 

photoreceptors that are genetically normal die in the presence of 

photoreceptors carrying RP-causing mutations [417]. A different example of 

non-cell autonomous cause of photoreceptor death is seen where the loss of 

rods is responsible for the cone cell death. The rod-derived cone viability 

factor which is normally secreted by rods, was found to enhance the survival 

of cone-rich retinal explants from rd1 mice in culture and in vivo when 

delivered subretinally into rd1 mice [266,331]. Thus by understanding the 

different mechanisms and pathways leading to apoptotic photoreceptor cell 

death, therapeutic intervention to prevent the loss of cells may be made 

easier. 

 

Following photoreceptor cell death in inherited retinal degeneration, it was 

previously thought that the neural network and cell population pattern in the 

inner retina was spared. It has become apparent that deafferentation of the 

neural retina invokes a series of changes known as remodelling, that these 

events commence even before there is any cell death and that neuronal 

remodelling is the common fate for all conditions with photoreceptor 

degeneration regardless of the initiating event or gene defect. Indications of 

altered circuitry in retinal degeneration have been documented as early as 

1974[241] but the concept of retinal remodelling did not take hold until later, 

when different studies described sprouting from various retinal cell 

populations including photoreceptors, bipolar and horizontal cells in a 

haphazard manner during photoreceptor degeneration [128,322,375,450-

452] and aberrant formation of new synapses in the degenerating retina with 

neuronal translocation, glial transformation and ectopic neurite complexes 

which were believed to be attempts by remaining neurons to find synaptic 

excitation [217,218,299]. Despite evidence of plasticity, this new circuitry was 

corruptive of retinal signal processing. The implications of retinal modelling 
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for therapeutic intervention would be significant as most current approaches 

such as cell transplantation and electronic implants are late-stage schemes 

and depend on the existence of an intact retinal architecture. This negative 

plasticity emphasizes the importance of early diagnosis and intervention to 

retard or prevent remodelling, and provides a compelling argument as to why 

gene therapy may be a more appropriate treatment for genetic retinal 

diseases.   

 

More pertinent to this study are the effects of remodelling in models of fast 

retinal degeneration and the implications of this on therapeutic strategies to 

treat rapid retinal degeneration. The rd1 mouse contains a nonsense 

mutation in ß subunit of phosphodiesterase (PDE) and exhibits rapid retinal 

degeneration, similar to that seen in Aipl1 -/- mice. Parallels can be drawn 

between the rd1 mouse and the Aipl1 -/- mouse in that both conditions result 

in loss of PDE function, elevated cGMP which is ultimately lethal to rods. The 

remodelling process has been examined in the rd1 mice and despite rapid 

rod degeneration, retinal modelling is slower than expected and is severely 

advanced at postnatal day 610 [218]. It is thought that the delay of late stage 

of remodelling is associated with persistence of residual cone photoreceptors 

[212] that provide a source of input to the neural retina and prevent complete 

early global remodelling. Since AIPL1 is expressed in both rods and cones, 

photoreceptor degeneration in the Aipl1 -/- mouse is much more rapid 

compared to the rd1 mouse. In rapid degenerations, gliosis and aberrant 

sprouting occur at a slower pace compared with the loss of photoreceptors. 

Hence, gene therapy may be effective if the treatment is administered before 

there is significant loss of photoreceptor cells in rapid degenerations. In slow 

degenerations, there is more time for reactive changes to occur in response 

to the gradual loss of photoreceptor function such that by the time the 

condition is detected, significant remodelling has taken place. Taking these 

factors into consideration, it would be reasonable to expect that the Aipl1 -/- 

mouse may respond well to gene therapy. Furthermore, cone death due the 

the absence of AIPL1 is inherently slow; this is seen in a novel transgenic 

mouse model tg hAipl1;Aipl1 -/- , in which rod photoreceptors were 

exclusively rescued by the expression of human AIPL1 and AIPL1-deficient 
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cones in this novel model degenerate at a much slower rate in comparison to 

the complete AIPL1 knockout model [232]. It was hypothesized that the 

reduced rate of cone photoreceptor degeneration in tg hAipl1;Aipl1 -/- mice 

was due to the expression of rod-derived cone viability factor from preserved 

rod photoreceptors and the maintainance of surrounding cell density  which 

supported  cone viability. In humans, the cone-rich fovea would be 

analogous to the slow-degenerating cones observed in the tg hAipl1;Aipl1 -/- 

mouse model since this area would be immune to the influence of rod cell 

death on cone survival in the absence of AIPL1. This is supported by results 

from an adult LCA patient with a mutation in AIPL1 who showed severe 

retinal degeneration and all survival cells appeared cone-like in 

morphology[478]. These observations suggest that the therapeutic window 

for gene therapy may be further extended in LCA patients, since the cone 

cells in the fovea may survive for a longer period of time. 

 

1.3.4      Animal models of inherited retinal dystrophies 
 

Much of the advances in ocular gene transfer and gene therapy would not 

have been possible without the availability of animal models. Animal models 

have been instrumental in advancing our understanding of genetic diseases 

processes. To develop a gene-based strategy and test the efficacy of the 

treatment requires an animal model with a mutation in the gene of interest. 

There are many naturally occurring and engineered animal models of RP 

and hereditary retinal dystrophies, most of which are rodents. However, 

some large animal models of retinal disease exist in the form of dogs, cats 

and pigs. Several considerations need to be taken into account when testing 

therapeutic strategies in animal models. The timescale of the degeneration 

needs to be factored in, degeneration which progresses too rapidly limits the  

window of opportunity for gene therapy to work while too slow a rate make 

assessments of efficacy difficult. The animal model chosen to investigate 

therapeutic strategies should reflect the human disease as closely as 
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possible and finally, the strategy to treat the disease should be cogniscent of 

the underlying disease mechanism. 

 

Although all vertebrate eyes are similar in structure and function, there are 

some differences depending on the life style and survival needs of various 

species. Whilst animal models are valuable model systems, they should only 

be seen as an approximation to the morphological, physiological and 

pathophysiological conditions of humans. Mice and rats have been used 

most extensively for various reasons including their short gestation time, the 

existence of several readily available retinal degeneration mutants, and the 

possibility to create transgenic animals by genetic modification. Although 

rodents are frequently the animals of choice in most experiments, the 

differences between rodent and human eyes can make interpretation of 

results obtained from the animal difficult. Rodents have only 2 types of cones 

which detect medium and short wave-length light, and are thus unable to see 

long-wave light. Each neural cell in the rodent retina is connected to a larger 

number of photoreceptors than those of the human retina, which increases 

sensitivity at the expense of acuity. Humans on the other hand, have 3 types 

of cones and higher cone density; in humans, 5 % of the photoreceptors are 

cones compared to only 1-2 % in rats and mice.  Another major difference is 

the lack of an anatomical macula or cone-rich region in rodents, while the 

macula is of utmost importance and subserves high acuity vision in humans 

and primates. Thus mutations leading to macular degeneration may be 

harder to study in rodents. As many animal models of disease differ in some 

aspects from their human counterparts, the study of therapeutic strategies 

need to account for these differences before conclusions from animal studies 

can be applied to clinical disease. Findings based on rodent models may 

need to be further validated in larger animal models with eyes that more 

closely resemble human eyes.  

 

Larger animal models of inherited retinal dystrophies exist and are 

particularly useful in establishing efficacy and safety parameters prior to 

human trials. Large animals such as pigs and dogs have the advantages of 

being anatomically more similar to the human eye. Even though the pig 
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retina lacks a foveal-macular region, the retina has a greater proportion of 

cones than the rodent retina. Given the strong similarities in phenotype to 

that of RP patients, the transgenic pigs provide a large animal model for 

studying retinal degeneration (especially cone degeneration) found in RP 

[271,371]. The canine retina has a similar composition and distribution of 

cones, and contains a cone-rich area called the visual streak, which shares 

some of the characteristics of the macula in humans[339]. The large size of 

the dog eye allows intraocular surgical procedures to be carried out more 

easily than in rodents and it also permits fundal examination of different 

retinal regions of the same eye.  Because the canine eye bears greater 

resemblance to human eye with respect to size and retinal morphology, 

retinal defects in dogs can provide useful animal model of disease for pre-

clinical studies of gene therapy. Primate eyes are the most similar to those of 

humans in many ways and possess a macula that is rich in cones. It has 

been shown that diurnal species, such as the rhesus monkey, have a fovea 

that consists of all three types of cones (red, green and blue). Macular 

changes that are similar to that in age-related macular degeneration in 

humans have been reported in the rhesus monkey[369]. Because of the 

similarity to humans, monkeys would be the animal model of choice to 

investigate such disorders. However, due the long lifespan of monkeys, 

retinal degenerations occur over a longer period of time compared to mice 

and rats, making experiments long lasting. Moreover, no primate models of 

inherited retinal dystrophies have yet been identified and characterized.  

 

The most widely studied naturally-occuring rodent models of RP are the rd1 

mouse and the retinal degeneration slow (rds) mouse.  The rd1 mouse was 

the first mammalian retinal degeneration model to be described [379]. Pittler 

et al identified the genetic defect causing photoreceptor degeneration in the 

rd mouse, a nonsense mutation in the phosphodiesterase beta-subunit gene 

(Pde6b) gene. This gene encodes the β-subunit of the rod cGMP 

phosphodiesterase (β-PDE). The phenotype in the rd1 mouse is extremely 

rapid degeneration with complete loss of rod photoreceptors by postnatal 

week 4, although cones survive slightly longer. Mutations in the human 



85 
 

homolog of Pde6b, mostly affecting the catalytic domain, have been found in 

patients with autosomal recessive retinitis pigmentosa, which bears 

phenotypic resemblance to that in the mouse apart from one feature [312]; 

the disease in humans presents later in life and has a slower time course. A 

further discrepancy is the fact that the mutations found in humans are mostly 

missense substitutions affecting the catalytic domain and result in reduced 

protein activity as opposed to the loss of protein function from the null 

mutation in the mouse model [312,377]. A model that is both genetically and 

phenotypically more similar to Pde6b mutations in humans is the rd10 

mouse,a hypomorphic Pde6b mutant which harbours missense mutation in 

exon 13 [359]. The mutation causes a partial loss of PDE acitivity and a 

milder phenotype than the rd1 mouse, and the rate of photoreceptor cell loss 

in the rd10 mouse is more comparable to that seen in human disease. 

  

The rds or Prph2 Rd2/Rd2 mouse is a naturally occurring mouse model that 

carries an insertional mutation in the peripherin/rds gene [288] which 

encodes peripherin-2, a photoreceptor-specific structural protein found in the 

outer segments of rods and cones. Peripherin is major structural component 

of the membranous discs within the outer segments. The lack of peripherin 

leads to the failure of disc morphogenesis and absence of outer segments 

from birth. As a result, phototransduction is greatly reduced and 

photoreceptors die although the mechanisms leading to this is not completely 

clear. Homozygotes show early onset retinal degeneration and an 

intermediate rate of photoreceptor cell loss, slower than the rd1 mouse but 

faster than many other models. The outer nuclear layer in homozygotes is 

reduced by 50% by 2 months of age and there is complete pan-retinal loss 

by 12 months of age[210]. The absence of peripherin/rds leads to rods 

without outer segments that eventually undergo apoptosis[129,415,416] and 

therefore have negligible rod function[404], but retain functioning cones 

although these have atypical outer segments [130]. The heterozygous 

animals exhibit haploinsufficiency and a much milder phenotype; they have 

disorganized outer segment whorls, the mice retain normal ERG amplitude 

levels until adulthood and have a later onset of phenotype with a much 

slower progression of degeneration with 50% of outer nuclear layer lost by 
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18 months[182]. Peripherin/RDS mutations in humans are associated with a 

variety of retinal dystrophies depending on the causative mutation, and do 

not show a straightforward dependence on the position of the mutation in the 

primary protein sequence or the type of mutation. Moreover, a single 

mutation may cause a spectrum of phenotypes ranging from different 

macular dystrophies and cone-rod dystrophies to autosomal dominant 

RP[56,319,372,376,490]. This phenotypic heterogeneity along with the 

anatomical differences make the interpretation of animal models of the 

human disease more complex. Despite this, animal models have still proven 

valuable, particularly given the high degree of identity of peripherin/RDS 

sequence between human and murine orthologs (the murine peripherin/rds 

gene is 91% identical to the human orthologue) [92,470]. Studies from 

animal models suggest that both haploinsufficiency and dominant negative 

mechanisms both play a role in human retinal dystrophies caused by 

peripherin/RDS mutations; phenotypes dominated by rod photoreceptor loss 

may be caused by a haploinsufficiency and/or dominant negative effect, 

while phenotypes with predominantly cone dysfunction appear to be due to a 

dose-dependent dominant negative effect[129]. The rds mouse represents a 

model for peripherin/RDS mutations in humans that lead to 

haploinsufficiency or loss of function phenotype. 

 

As well as several naturally occurring mouse models, there are several large 

animal models of inherited retinal dystrophies. In dogs, mutations have been 

identified in a number of genes including RPGR, PDE6B and CNGB3 

[368],[369] BEST1[170]). The RPE65-deficient dog, also known as the Briard 

dog has a homozygous 4-bp deletion within the Rpe65 gene and is a canine 

model of LCA type 2[4]. Affected dogs have congenital night blindness and 

various degrees of visual impairment under photopic illumination.  Along with 

the visual impairment, affected dogs have an abnormal ERG trace in keeping 

with severely depressed rod and cone-mediated responses. Morphologically, 

pathologic abnormalities were mainly confined to the RPE layer; electron 

microscopy studies of the retina demonstrated large, cytoplasmic lipid 

inclusions in the RPE, while photoreceptor outer segments appeared largely 

normal. No evidence of photoreceptor degeneration or cell death were seen 
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as indicated by the preservation of the outer nuclear layer thickness [4]. 

Difference however, exist between RPE65 mutations in humans and in the 

dog model; although the severe visual deficit early in life is similar in human 

and dog, the lack of ophthalmological signs of advanced retinal degeneration 

in the adult dog is unlike the human condition, and the course of the disease 

is stationary in the dog model while in humans, the disease progresses to 

severe visual impairment and blindess. These issues need to be taken into 

consideration when evaluating therapies in the experimental treatment of the 

disease. Apart from canines, other large animal models of RP and retinal 

dystrophies exist such as the feline models of LCA caused by mutations in 

CEP290[316] and CRX[317]. 

 

Genetic engineering has made possible the development of transgenic 

animals which are created using constructs that either disrupt, imitate or 

over-express the candidate gene in order to mirror the human form of the 

disease. To date, rodents and pigs have been bioengineered to create 

“knockout” models representing recessive diseases or “knock-in” models that 

provide models of dominant forms of retinal dystrophies. Knock-out models 

are created by causing a specific targeted disruption of an endogenous gene 

which results in the loss of the protein function. Knock-out mouse models 

have been generated to recapitulate human LCA or RP. Table 1.5 sumarizes 

the available natural and man-made mouse models of LCA to date. All 

human LCA genes have orthologues in mouse. Four mouse LCA genes 

(Cep290, Crb1, Rd3, Rpe65) have been found to contain naturally occurring 

mutations, while the others have been generated mostly by targeted 

disruption. Most of the knock out models of LCA genes exhibit severe retinal 

degeneration which parallel that seen in humans, with the exception of Crb1, 

Gucy2D and Rdh12. Different levels of gene disruption in the Aipl1 gene 

resulted in varying rates of photoreceptor cell loss. Two Aipl1 knockout 

(Aipl1-/-) mouse models have been created, both models are fully deficient in 

AIPL1 activity and exhibit very rapid photoreceptor degeneration [119,391].  

A relatively mild mutation was introduced in the Aipl1 gene by the insertion of 

a neomycin cassette in intron 2 of the gene to create a “knock-down” model, 

the hypomorphic (Aipl1h/h) mouse. This model which has reduced levels of 
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Aipl1 exhibits a much slower retinal degeneration and may represent milder 

forms of the disease [282]. The studies presented in this thesis focus on the 

two models of Aipl1-related retinal degeneration that, by virtue of their 

different kinetics of photoreceptor loss and are valuable tools in assessing 

the efficacy of treatment strategies. Further details of these models will be 

discussed in the following section. Knockout models have also been 

generated that mimic mutations found in RP and other types of retinal 

dystrophies. Rhodopsin knock-out (rhodopsin-/-) mice exhibit a 

morphological absence of rod outer segments and a fast degeneration. Rod 

photoreceptor cell loss occurs first, followed by cone degeneration which 

begins at about postnatal week 6. By 3 months of age, there is almost a 

complete loss of photorecetors with only single row of nuclei left in the outer 

nuclear layer which are thought to be residual cones[194]. Heterozygous 

rhodopsin knockout mice carrying one functional allele on the other hand, 

retain majority of their photoreceptors, although the inner and outer 

segments of photoreceptors were shorter and the level of rhodopsin in 

individual rod photoreceptor cell is reduced }[194][264]. Tulp1 knock-out  

(Tulp-/-) mice are another model of recessive RP, and exhibit mislocalisation 

of rod- and cone-opsins, accumulation of vesicles in the inter-photoreceptor 

matrix, and a relatively fast photorecetor degeneration that reaches end-

stage by 5 months of age [171].  Knockout mice lacking RPGR and RPGRIP, 

which encode proteins found in the photoreceptor connecting cilia, serve as 

models of X-linked and LCA respectively [189,524]. It has been subsequently 

shown that RPGR is a client protein of RPGRIP, which functions to anchor 

RPGR in the connecting cilium [190,524]. Consistent with the notion that 

RPGRIP subserves the function of RPGR in regulating protein trafficking 

across the connecting cilia, Rpgrip-/- mice exhibit a more severe disease 

than Rpgr-/- mice. This difference in phenotype in the mouse models 

analogous to clinical findings, where RPGR mutations in patients manifest as 

X-linked RP while the loss of RPGRIP leads to LCA in patients. 

 

Many transgenic models have been made that incorporate mutations in 

peripherin/rds and rhodopsin genes that are associated with dominant RP. 

Peripherin/rds (Prph2) transgenic mice have been generated which carry the 
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amino acid substitution P216L. The mutant P216L mutant protein does not 

preclude peripherin-2 tetramer formation but these tetramers are 

dysfunctional, probably due to hyperglycosylation of the protein [283,501]. 

Consequently, the phenotype caused by the P216L mutation is due to a 

dominant negative effect on rod outer segment structure.These animals 

exhibit a slow retinal degeneration and a phenotype similar to that of 

dominant RP caused by P216L mutation in patients [227]. Other transgenic 

mouse models with mutations in peripherin/rds include models that carry the 

C214S and R172W substitutions which cause late-onset autosomal 

dominant RP[412] and cone or cone-rod dystrophy in humans 

respectively[91,105]. Another transgenic mouse model carrying the L185P 

mutation in peripherin/rds exhibits haploinsufficientcy and is a model for 

digenic RP. In these mice, no photoreceptor degeneration is seen in 

Rom1(+/-)/peripherin/Rds(+/+) mice, but Rom1(-/-)/peripherin/Rds(+/+) mice 

show a mild photoreceptor degeneration[112]}[89,228]. Rhodopsin is both a 

key component of phototransduction and a structural protein for the outer 

segments. The underlying pathogenic process thus varies with the type of 

mutation. Most of the mutations produce a protein that is defective in folding 

or trafficking and has an inability to maintain outer segments[458]. The 

expression levels of wild-type rhodopsin need to be taken into consideration 

in rhodopsin disease models as overexpression of normal rhodopsin can 

also lead to photoreceptor degeneration. Numerous rhodopsin mutant 

animals have been described, most were generated as transgenic mice 

which carry one mutant rhodopsin allele in addition to two wild type alleles.  

Examples of rhodopsin transgenic models include the Q344Ter mouse in 

that the rhodopsin gene has a stop codon leading to a truncated protein. The 

result is mislocalised rhodopsin and a slow retinal degeneration, similar to 

that seen in patients [457]. Two rhodopsin transgenic rats are extensively 

studied; the S334Ter rat that has a rapid degeneration over the course of 

weeks [279] and the P23H rat that has a much slower degeneration which 

takes place over months [357]. Rats heterozygous for the P23H opsin allele 

lose around 50% of their photoreceptors at three months of age [357]. More 

recently, rhodopsin mutants which carry one mutant allele and one wild-type 

allele have been produced by crossing rhodopsin-transgenic with rhodopsin-
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knockout mice or by targeted insertion of a mutant allele into a specific locus 

(knock-in models). These animals have gene dosage and mutant to wild type 

ratios approximating those of human patients and are better representation 

of the human disease. 

 

A good animal model requires that it is representative of human disease in 

terms of the mutation that causes the disease and in the pathology and 

phenotypical features that follows. Many of the LCA mouse models such as 

Aipl1-/-, Cep290 (rd16), Rd3, Rpgrip1-/-, Rpe65 (rd12) and Rpe65-/-    

appear to mimic human LCA phenotype and demonstrate retinal 

degeneration at various rates (Table 1.3). Large animal models which bear 

greater resemblance to the human eye are excellent models for study; the 

Rpe65-deficient dog is an example which has been vital in providing proof-of-

principle of gene replacement therapy. Successful restoration of vision using 

AAV-mediated gene therapy has been reported in these dogs [2] and 

provided the drive for moving into clinical trials which are ongoing 

[34,181,293]. Undoubtedly, a large part of this is due to the fact the disease 

in the dog model resembles the human version in terms of anatomy and 

phenotype, and it is anticipated that similar benefits from treatment should 

follow. For treatment efficacy studies, a model that has an intermediate rate 

of degeneration is ideal, so that there is a window of opportunity for 

intervention and yet not so slow that evaluating the efficacy of the therapy 

becomes difficult.  Experiments in rodents have indicated that the fastest 

retinal dystrophies are the most difficult to treat successfully. Despite 

numerous attempts to treat the Pde6b-deficient rd1 mouse using gene 

replacement therapy mediated by a variety of viral vectors [50,216,247], 

effective rescue of this model has proved elusive. More convincing rescue 

has been reported in the rd10 mouse which has partial PDE6b deficiency 

and slower degeneration [359].  This difference in success may be in part 

due to the slower degeneration affording better timing for intervention. Since 

the rate of photoreceptor cell loss is in this model is more comparable to the 

human disease, these results indicate that patients with PDE6B mutations 

may also respond favourably. The Crb1, Rdh12 and Gucy2D knock-out mice 

demonstrate subtle degeneration and progress at a relatively slower rate 
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than in humans lacking these genes. The Rpgr -/- mice also demonstrate 

very slow degeneration of photoreceptor cells compared with that in 

human[189]. The Abca4-/- mouse model of Stargardt exhibits some features 

of the disease such as accumulation of lipofuscin in the RPE but does not 

have photoreceptor degeneration that is characteristic of the human 

form[494]. The milder pathology in these mice thus make it difficult to assess 

the effects of therapeutic intervention and also to extrapolate findings to 

humans. In the absence of larger animal models generated by genetic 

bioengineering, future clinical trials may have to proceed based on efficacy 

data in small animal models such as rodents. Comparison of the efficacy of 

treatment in mice, dog and humans from previous studies may help 

determine the suitability of mice as models of human retinal disease, while 

thorough characterization and careful selection of a model will facilitate 

translation of animal studies into clinical trials. 
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Table 1.3  Overview of all natural and man-made mouse models for LCA. 

Gene Mutated 
exons 

Method Degeneration of 
photoreceptors 

(age) 

Similarity to 
human LCA 

References 

Aipl1 1-2 KO +++, 7 weeks yes [119] 

 2-5 KO +++, 3 weeks yes [391] 

 Intron 2 KD +, 8 months no [282] 

Cep290 Del35-39 Natural 

(rd16) 

+++, 4 weeks yes [78] 

Crb1 3841delC Natural (rd8) + no [314] 

 1 KO +, 3-9 months no [473] 

 3(C249W) KI +, 24 months no [474] 

Crx 2-4 KO(-/-) +++, 2 weeks yes [150] 

  KO(+/-) ERG reduced, 2 

months 

no [337,375] 

Gucy2D 5 KO +, cone 

degeneration only 

no [509] 

Impdh1 9 KO unknown unknown [168] 

Lrat 1 KO ++, 6-8 weeks yes [41] 

Rdh12 1-3 KO +/-, 1 year No [290] 

 1-3 KO +/-, 7 months No [248] 

Rd3 3(R107X) Natural (rd3) ++, 15 weeks yes [146,276] 

Rpe65 1-3 KO ++, 15 weeks No [400] 

  Natural 

(rd12) 

++, 15 weeks Yes [360] 

Rpgrip1 Intron 14 

insertion 

KO +++, 2-3 months Yes [524] 

Tulp1 8-9 KO +++, 4 weeks Yes [195] 

 

KO, knock-out; KD, knock-down; KI, knock-in; - absent; +/- subtle; + moderate; ++ severe; 

+++ full degeneration.  
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1.3.4.1 The Aipl1-/- mouse model of retinal degeneration 
 
Two study groups have created mice with targeed disruption of the Aipl1 

gene[119,391]. Dyer et al. generated Aipl1-/- mice by targeted disruption of 

exon 1 and 2 using a 1.6kb DNA fragment containing neomycin 

cassette[119].  The Aipl1-deficiency in these mice led to early severe retinal 

degeneration, beginning at postnatal day 12 (P12) in a distinct central-

peripheral gradient: degeneration of the central retina was faster than 

degeneration in the peripheral retina. At this early stage, severe shortening 

of rod photoreceptor outer segments and disorganisation of the membranous 

discs were seen, cone photoreceptors were also morphologically abnormal 

and thinning of the outer nuclear layer was already noticeble compared with 

age-matched wild type mice. Synoptogenesis in the inner plexiform layer 

remained relatively intact, but the outer plexiform layer showed signs of 

disruption of synapse formation at this stage. Down-regulation of several rod-

specific markers such as Nrl and Nr2e3, and genes encoding PDEβ and γ 

subunits, and cGMP channel protein was detected at P15. In addition, there 

was also decreased expression of genes from the Wnt-frizzled signalling 

pathway that is involved in the regulation of retinal proliferation and cell fate 

determination. The central to peripheral pattern of photoreceptor 

degeneration progressed rapidly until there was almost total loss of 

photoreceptors by the time the Aipl1 -/- mice were 8 weeks old. Total 

photoreceptor cell count in Aipl1 -/- mice at this age was 13% of wild type 

counts, the contribution of cell loss was not solely from the loss of rods. The 

severe cell loss in the Aipl1-deficient mice corresponded to complete loss of 

photoreceptor function, indicated by absent a- and b-waves on ERG 

recorded from Aipl1 -/- mice (Figure 1.17C). Immunostaining of Aipl1 -/- mice 

retina at this age indicated a reduction of cones in addition to loss of rods 

and a potential expansion of bipolar cells. Although GFAP immunostaining 

showed a marked increase in Mϋller cell reactive gliosis, markers for other 

neuronal cell types showed no change in horizontal cells, amacrine or 

gangion cells. Despite the early onset of degeneration, the authors did not 

find evidence of abnormal cell death exceeding that of normal retinal 
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development nor defects in the generation of different cell types or 

differences in cell type proportion during early stages of retinal development. 

RT-PCR for markers of retinal cell proliferation and cell fate at P2 and P8 

demonstrated normal expression of markers of commitment to cell fate and 

retinal progenitor cell genes. The abscence of gross abnormalities in early 

stage retinas of the Aipl1 -/- mouse suggests that normal retinal development 

occurs in the background of Aipl1-deficiency, and that Aipl1 is not required 

for retinal proliferation or the commitment to photoreceptor cell fate despite 

its reported interaction with NUB1, a cell cycle regulatory protein[7,8]. A 

possible explanation could be the presence of protein redundancy in which 

there may be other proteins in the pathway that are performing 

compensatory roles in retinal proliferation[119]. Mice that were heterozygous 

for Aipl1 deficiency (Aipl1 +/- mice) were found to demonstrate some 

phenotype abnormalities; ERG recordings from Aipl1 +/- mice showed 

increased implicit time, indicating a delayed rod response on ERG (Figure 

1.17B).  

 

 

A                                              B                                          C 

 

Figure 1.17  Flash ERG of normal wild-type mouse (A), heterozygous Aipl1+/- (B) and 

homozygous Aipl1-deficient mouse (C)[119]. 
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This was similar to the observation that some patient carriers of AIPL1 

mutations demonstrate rod function abnormalities. Additionally, 8 week old 

Aipl1+/- mice had photoreceptor cell counts that were 80% of wild type 

indicating some degree of cell loss had occurred.Ramamurthy et al 

engineered  an Aipl1-/- mouse model by replacing exon 2 to 5 of Aipl1 gene 

with a neomycin-resistance gene vector [391]. In these Aipl1 null mutants, 

the retina was also observed to develop normally; no morphological 

developmental abnormalities were seen at birth and the formation of rods 

and cones were seen in the developing photoreceptor layer. At P8, when 

outer segments are being formed, electromicrograph studies of retinal 

ultrastructure of Aipl1-deficient mice did not show any difference from wild-

type retina, indicating that retinal development indeed occurs normally. The 

earliest sign of cell death was the presence of apoptotic nuclei in the outer 

nuclear layer seen at P9. By P11, outer segments of Aipl1-/- mice appear 

shorter, disorganised and fragmented. Light microscopy evidence of retinal 

degeneration was first seen at P12, with loss of photoreceptor cell layer 

which progresses rapidly. By P14, only half of the photoreceptor layer was 

left and the degeneration was completed by 3 weeks with total loss of the 

outer nuclear layer in these mice. The degeneration appeared specific to the 

photoreceptor layer, affected both rods and cones equally and was more 

severe in the central retina compared to the periphery. Up-regulation of 

GFAP was seen in the outer nuclear and plexiform layer, while the other 

retinal layers, inner nuclear layer and ganglion cell layer appeared unaffected 

at 3 weeks of age. 

 

To establish the relationship between AIPL1 and PDE, the authors quantified 

levels of PDE at P8 before any significant degeneration had occurred. Levels 

of all three subunits of PDE (α,β,γ) were reduced but the mRNA levels of all 

three PDE subunits were normal. Assay of PDE acitivity revealed no 

significant PDE activity in the Aipl1-/- mouse despite the presence of low 

amounts of PDE present. Additionally, levels of cGMP were elevated, a 

feature that precedes the retinal degeneration. The temporal and spatial 

course of the retinopathy in these Aipl1-/- mice closely resembles that of the 

rd1 mouse. However distinct differences exist:  in the rd1 mouse, the loss of 
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the PDE-β subunit gene causes reduced levels of PDE-β mRNA and 

complete loss of the PDE-β subunit affecting rod photoreceptors[373], in the 

Aipl1-/- mouse, PDE mRNA are normal but all three PDE subunits are 

destabilized by AIPL1 deficiency resulting in loss of PDE activity which leads 

to photoreceptor degeneration. While the Aipl1-/- mouse have no detectable 

ERG response from birth, the rd1 mouse produces no rod responses but has 

reduced responses generated by existing cones during early stages of retinal 

development.  

 

To date, the most common AIPL1 mutations in patients are premature 

termination mutations which are likely to be functionally null[7,103,222,440] 

and lead to LCA these severest phenotype. Both Aipl1 knockout mouse 

models phenocopy LCA patients with AIPL1 mutations, in whom there is lack 

of visual function very early in life and retinal degeneration occurs and 

progresses quickly. Similarly, whilst the heterozygous patient carriers of 

AIPL1 mutations have some rod function abnormalities, the heterozygous 

Aipl1+/- mouse also has an increased implicit time indicating a delayed rod 

response on ERG.The rapid degeneration of photoreceptor cells in the AIPL1 

null murine model poses logistical difficulties for a feasible gene therapy 

strategy. Compounded by the time lag required for AAV-mediated transgene 

expression, it was felt that there may not be an adequate window for 

effective therapeutic intervention in this model.  An alternative model that 

may better facilitate the assessment of gene replacement therapy is the Aipl1 

hypomorphic mouse (Aipl1h/h), which has a later onset and slower rate of 

photoreceptor degeneration, thus affording a larger time window of 

opportunity. 
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1.3.4.2 The Aipl1 h/h hypomorphic mouse model. 
 
Liu et al. generated an Aipl1  hypomorphic mouse (Aipl1h/h) in which AIPL1 

function was diminished but not extinguished in an attempt to study the 

function of AIPL1 in the retina in more detail[282].  The AIPL1 targeting 

vector was generated by cloning a neomycin-resistance gene marker flanked 

by genomic fragments of exon 1,2 and 3 into a targeting plasmid. This 

construct was used to insert the neomycin resistance cassette into intron 2 of  

the Aipl1 gene in the same orientation as the gene. The resultant mutant was 

a strong hypomorph in which the level of AIPL1 was decreased to 20-25% of 

that in wild-type mice. Levels of rod cGMP phosphodiesterase was reduced 

in parallel to 20% that of wild-type levels and all the three subunits (α,ß, and 

γ) of cGMP phosphodiesterase were similarly decreased. 

 

Photoreceptors in the hypomorphic mutant develop normally but degenerate  

at a later age due to AIPL1 deficiency. Morphological evidence of 

degeneration is not seen until 12 weeks of age. However under electron 

microscopy, an increase in pyknotic nuclei and some outer segment 

disorganization can be observed in the week before this. From 3 months 

onwards, there is steady degeneration with a reduction in photoreceptor 

layer thickness and outer nuclear layer. By 8 months, more than half of the 

photoreceptors are lost as seen by marked thinning of the outer segments 

and outer nuclear layers. Cone degeneration was not detected up to 11 

months of age. Full field flash ERG showed some changes in young mice (5-

6 weeks old) in the form of increased latency and mean gain of 

phototransduction compared to wild-type mice. The a and b-wave amplitudes 

were normal at early ages of the Aipl1 h/h mice but progressively decreased 

due to the outer segment shortening and loss of photoreceptors with time.  

The single rod responses to flash stimuli showed similar characteristics to 

the ERG findings of the mass photoreceptor response; maximal amplitude of 

single rod responses to flash stimuli in young mice achieved the same levels 

as wild type rods, but showed delayed onset and slower initial rise of the 

single photon response. However, the single photon response in mutant rods 
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continued to rise for a longer period, taking a longer time to peak and 

achieved larger final amplitude compared with that in wild type rods. Mutant 

rods also had increased flash sensitivity and slower recovery following 

phototransduction. The ERG changes were thought to reflect the 

physiological consequences in the in PDE reduction subsequent to the 

AIPL1 deficiency. In darkness, cGMP hydrolysis by PDE is balanced by its 

synthesis by guanylate cyclases[124]. The basal activity of PDE is decreased 

along with a fall in PDE concentration secondary AIPL1 deficiency. 

Decreased PDE activity leads to a reduction in cGMP hydrolysis and 

accumulation of free cGMP in photoreceptors, causing more cGMP channels 

to open and thereby increasing intracellular Ca2+ levels. This would then 

feedback to cause a decrease in guanylate cyclase activity and bring cGMP 

and Ca2+ to an elevated steady-state. The increase in latency representing 

the delayed initiation of the photoresponse was consistent with the delayed 

diffusional encounter of activated transducin with PDE due to the lower 

concentration of available PDE[254]. The reduction in the gain of 

phototransduction and slower rise in single photon response suggested that 

PDE was activated at a lower rate in mutant rods.  The slower recovery 

phase in dim flash responses and a higher sensitivity to light in mutant rods 

were also thought to reflect a reduction in basal PDE activity[351]. An 

understanding of the photoreceptor electrical response to light stimulation 

would provide a basis in interpretreting the ERG changes following gene 

replacement therapy in these animals (see later Chapter 3). 

Recenly, a study described a patient with later-onset retinitis pigmentosa with 

caused by compound heterozygous mutation consisiting of a null mutation 

and a missense mutation. The clinical features and visual loss in this patient 

was less severe and the progression of the disease was protracted with 

preservation of some vision into adulthood[204]. It is thought that the Aipl1 

h/h hypomorphic mouse is remisniscent of this subset of patients who have a 

milder disease due to AIPL1 mutations. 
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1.4    Gene Therapy   
 

1.4.1   The eye as a target for gene therapy 
 

The eye has a combination of unique properties that makes it particularly 

suitable as a model system for gene therapy. The level of understanding of 

the molecular pathology of the eye is advanced compared to that of many 

other organ systems and a large number of inherited ocular diseases have 

been described at the molecular level. Furthermore, a wide range of animal 

models are available for the development of experimental therapies. The 

highly compartmentalized anatomy of the eye facilitates accurate delivery of 

vector suspensions to specific tissues, while the transparent nature of the 

cornea and lens allow direct visualization to facilitate surgery and permit non-

invasive techniques to monitor and measure the effects of treatment such as 

using fundus photography, slit lamp biomicroscopy, electrophysiology and 

psychophysical tests [10,408]. 

 

It is thus possible to achieve precise targeting of vector to desired sites within 

the globe while minimising systemic dissemination. The globe is also easily 

accessible, meaning that therapeutic agents can be administered via 

intravitreal or subretinal injections without much disruption to other vital 

systems. Intraocular tissues comprise of small but stable populations of cells 

and may be transduced efficiently and by small volumes of vector 

suspension. The blood-retinal and blood-aqueous barriers maintain a degree 

of protection from immune responses directed against vector antigens that 

might otherwise invoke inflammation and limit transgene expression. 

Additionally, the eye has the ability to induce an immune-deviant response 

when exposed to new antigens and to suppress delayed-type 

hypersensitivity [22,49]. Finally, visual function as an outcome measure of 

any intervention is readily quantifiable using psychophysical and 

electrophysiological parameters common in standard clinical practice. As 

paired organs, the fellow eye can serve as a valuable internal control for 

experimental interventions. 
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1.4.2   Vectors for gene transfer to the retina 
 

A variety of viral and non-viral vectors have been tested for their ability to 

transduce various cells in the retina, in particular the photoreceptor cells and 

RPE which are the cell types most commonly affected in retinal 

degeneration. The choice of vector to be used in a particular gene therapy 

strategy is crucial to the success of the treatment and requires several 

factors to be taken into consideration. Longevity of transgene expression is 

an important factor in the choice of gene therapy vector for retinal dystrophy 

because the disease requires lifelong correction. The ideal vector should 

have low immunogenicity as strong host immune responses result in short-

term transgene expression [36,80](for a review, see also [436]. Since most 

cell types in the eye are non-dividing, integration of the vector DNA into the 

host genome is not essential for prolonged transgene expression. Moreover, 

integration could lead to adverse events as a result of insertional 

mutagenesis. Other desirable features of an gene transfer vector include 

cell-specificity where only targeted cells are transduced, have a large or 

unlimited cloning capacity, no toxicity and easy to production at high titres 

and purity.  

 

1.4.2.1  Non-viral methods 
 

Gene delivery to target tissues in the eye can be achieved without the use of 

a viral vector, by either injecting or electroporating cells with naked plasmid 

DNA (for review see [384]). The main advantages of this are safety and 

biocompatibility, with little risk of inducing host immune response and the 

possibility of delivering large size DNA or multiple constructs to target 

tissues. Using direct injection of plasmid DNA into corneal stroma, localised 

reporter gene expression has been observed although this lasted less than 2 

weeks [358]. Transfection efficiency has been shown to improve substantially 

with adjunctive electroporation in several tissues [446]. Electroporation after 

intravitreal plasmid DNA injection resulted in efficient introduction of DNA into 

retinal ganglion cells (RGC) in vivo [102]. However, the value of this method 
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of gene delivery was limited by the transient gene expression which lasted 

only 21 days. Transfer of DNA into photoreceptor cells in vivo by 

electroporation is more readily achieved in immature retina. Subretinal 

injection of a GFP expression vector followed by electroporation into 

newborn mouse and rat retina resulted in highly efficient transfection of rod 

photoreceptors. The reporter gene expression was observed in 50% and 

80% of mouse and rat retinae respectively and seen up to postnatal 50 

days[305]. The gene transfer efficiency of this method of in vivo 

electroporation was sufficiently high to prove useful in functional analyses 

using DNA-based RNA interference (RNAi) vectors and reporter constructs 

carrying retinal cell-specific promoters or genes of interest. However, similar 

methods applied to adult mouse retina resulted in significantly fewer GFP-

positive cells and immunostaining revealed these cells to be mostly Mϋller 

glial cells[305]. It has been shown that it is possible to determine the cell 

types that are transduced by the route of administration of plasmid DNA prior 

to electroporation and that the transgene expression can be further specified 

by using plasmids containing tissue-specific promoters [220]. These 

techniques may be of use for in vivo analysis of gene regulation or promoter 

analysis but are inefficient for clinical applications due to their transient 

effect.  

 

Aside from electroporation, DNA can be delivered to cells in liposomes. 

Lipofectin or cationic liposome has been mainly used for gene transfer in 

vitro, but its ability to deliver DNA in vivo has been tested in tissues such as 

muscle [497]. Cationic lipids condense DNA and thereby protect it from 

degradation and facilitate endocytosis. In the eye, lipofection can lead to 

reporter gene expression in vivo; liposomal-mediated transfection has been 

reported in the cornea, trabecular meshwork and retina by various means of 

administration but the transfection efficiency remains inadequate compared 

to that of viral vectors and the effects are transient [31]. Novel transfection 

agents that incorporate ligands for specific cell-surface receptors have been 

developed, which allows receptor-mediated endocytosis of cationic liposome-

DNA complexes to increase transfection efficiency and specificity of cell 

types transduced [159].  
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In summary, non-viral methods offer potential for gene transfer without the 

complications that accompany viral vectors such as immunological response, 

toxicity and lower the risk of insertional oncogenesis. The main disadvantage 

of non-viral gene transfer approaches, however, is the poor efficacy and 

longevity to date in vivo.  For this reason, non-viral methods of DNA delivery 

may not be suitable for therapeutic uses, such as gene therapy of inherited 

retinal diseases. 

 

1.4.2.2 Adenovirus 
 

Adenoviruses are extensively exploited as gene therapy vectors because of 

their ability to efficiently tranduce a wide variety of cell types independent of 

cell cycle and to direct high-level transgene expression. In the eye, 

adenoviral vectors are capable of transducing a variety of cell types 

depending on the route of administration. Following subretinal delivery, 

adenoviral vectors are efficient at transducing the RPE and Muller cells 

[24,51,270], while intravitreal injection results in transduction of anterior 

segment tissues such as the iris, cornea endothelium and trabecular 

meshwork, and some limited transduction of retinal ganglion 

cells[187,215,302,334]. The transduction of photoreceptor cells by adenoviral 

vectors is poor. Higher levels of transduction are seen if the photoreceptors 

are in the process of development, such as in neonatal mice; or in the 

process of degeneration as in adult rds mice[270]. It is possible that the long 

densely packed outer segments and interphotoreceptor matrix in normal 

adult mouse retina may serve as a physical barrier virus-mediated gene 

transfer. As the photoreceptor outer segments in both the developing and 

pre-degenerate retina have shorter or absent outer segments, they may 

more accessible to the virus in these scenarios [270].	  The former finding is of 

limited clinical importance though, because photoreceptor cells in humans 

are fully developed at birth. The transduction profile of adenoviral vectors 

appears to be better suited for the treatment of RPE defects. Vollrath et al. 



103 
 

were able to show a restoration of phagocytosis and consequently an 

improvement in photoreceptor function and numbers in areas which had 

subretinal injection of rAd expressing MERTK gene in the RCS rat at 1 

month after treatment [482]. However, the survival of photoreceptors was not 

followed up for longer period, therefore it is unclear how long the 

improvements lasted. Adenoviral vectors may be particularly suited to deliver 

anti-angiogenic agents for the treatment of proliferative retinopathies 

because they preferentially transduced proliferative tissue following 

intravitreal delivery in animal models of proliferative retinopathy[334]. 

Additionally, adenoviral-mediated transgene expression was higher in the 

disease models than in wild type mice[334]. Adenoviral vectors have also 

been used in a Phase I clinical trial for choroidal neovascularisation 

associated with age-related macular degeneration (AMD) [67]. The gene 

transfer vector was an E1-, E3-, E4- deleted replication deficient adenovirus 

serotype 5 carrying the cDNA for human pigment epithelium-derived factor 

(PEDF), a potent anti-angiogenic protein. The trial was an open-label, dose-

escalation study, using low vector titres of between 1X106 and 10X109 to 

treat patients with severe neovascular AMD [398]. No adverse effects were 

reported and the treatment was well tolerated overall. The authors claimed 

that the treatment was effective in ameliorating vision in a number of patients 

[67], but the efficacy data were difficult to interpret since the number of 

patients in the study was small and the natural history of AMD patients’ 

visual acuity is such that some month-on-month improvement in outcome 

measure can be expected without intervention. 

 

While adenoviral vectors have certain advantages over other vector systems 

such as the ability to carry large inserts up to 48 kb, many limitations have 

also become apparent with their use, particularly in humans [68]. The main 

difficulty with adenoviral vectors is the issue of safety and lack of longevity of 

expression, due to the expression of viral genes from the vector backbone in 

the transduced cells. This induces an immune response againset transduced 

cells resulting in transient transgene expression and long term toxicity 

[221,353]. This problem renders these vectors unsuitable for many gene 

therapy applications in which long term transgene expression is desired. 
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Much work has been carried out to develop safer and more efficient 

adenoviral vector, by incorporating fewer viral genes in the recombinant 

virion [480]. The first generation vectors are deleted in the E1 region making 

them replication defective, and in the E3 regions which enable these vectors 

to carry DNA inserts of up to 7.5kb [164,382]. Newer ‘second-generation’ 

adenovirus have been engineered with additional deletions or mutations in 

the viral E2 and E4 regions, preventing transcriptional control of viral gene 

expression and viral genome replication respectively [20,486]. Despite this, 

the utility of first- and second-generation adenoviral vectors for ocular gene 

transfer remained limited due to the aggressive immune response triggered 

by these vectors in the eye. Following administration to the retina, T-cell 

mediated responses led to the loss of transgene expression just 3 weeks 

after treatment. Abrogation of immune response in nude mice which lack T-

cells population resulted in prolongation of transgene expression up to 3 

months after treatment [402]. Immune suppression by co-injection of a 

adenovirus encoding CTLA4-Ig, an immunomodulatory molecule that blocks 

stimulatory signals for T-cell stimulation, with an adenovirus carrying a 

reporter gene also led to longer reporter gene expression up to 18 weeks 

following treatment [11]. 

 

Further improvement in the safety and efficacy of adenoviral vectors came 

with the development of helper-dependent adenoviral vectors (HDAds, also 

referred to as gutless, gutted, mini, fully-deleted, high capacity, pseudo) 

which are deleted of all viral coding sequences. They contain only the viral 

inverted terminal repeats (ITR) and packaging sequences [233,354]. They 

retain the advantages of first generation adenoviral vectors in terms of high-

efficiency in vivo transduction and transgene expression, these HDAds are 

able to mediate high-level, longer term transgene expression in the absence 

of chronic toxicity [115,352,493]. Following subretinal delivery of 

encapsidated Ad mini-chromosomes carrying β-PDE, the transgene product 

has been found to persist in the form of mRNA for 18 weeks post-treatment 

and protein for up to 5 months in treated rd1 mice  [247]. Howver, there were 

problems associated with these techniques, such as contaminating helper 
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virus, vector instability and the emergence of replication-competent 

adenovirus [233,354,447].  

 

1.4.2.3  Lentiviral vectors 
 

Lentiviral vectors are being developed in ocular gene therapy because of 

their ability to infect non-dividing cells [481]. Lentiviruses are a subgroup of 

retroviruses which are RNA-based viruses that possess a reverse 

transcriptase, through which they are able to integrate their reverse-

transribed proviral DNA into host cell chromosomes. Retroviruses have 3 

transcription units - gag, pol and env and cis-acting RNA elements 

recognised by viral proteins that package the RNA into infectious particles. 

To generate recombinant retroviruses, the gag, pol and env are removed to 

give a carrying capacity of approximately 8kb; the gene of interest is cloned 

into a plasmid containing 3’- and 5’ long terminal repeat (LTR) sequences 

and the 350 bp ψ sequence required to package this recombinant genome, 

while the gag, pol and env genes are provided in trans in helper plasmids 

that are ψ-negative. The general advantage of retroviruses as vectors is the 

ability of these viruses to integrate efficiently into host cell genome, thus 

confering stable longterm transgene expression. However, retroviruses are 

only able to infect dividing cells as they gain access to the host cell 

chromosomes when the nuclear membrane dissolves during cell division. 

This limits the target tissues for which retroviral vectors can be used, making 

them unsuitable for use in the eye. 

 

While lentiviruses are similar to retroviruses in that they are both use RNA as 

their genomic nucleic acid, there are many distinguishing features that confer 

special advantages to lentiviral-based vectors. Lentiviral genomes encode 

additional genes such as rev, tat, vif, and vip that code for accessory proteins 

involved in the regulation of proviral gene expression.  They mediate 

transgene expression in quiescent or terminally differentiated cells as well as 

dividing cell types because their pre-integration complex containing the 

reversed transcribed cDNA is able to cross the host cell nuclear membrane 
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by active transport via nuclear pores during interphase [64]. Vectors from 

various members of the lentivirus family have been developed for gene 

transfer, including the human immunodeficiency virus type I and II (HIV1, 

HIV-2), equine infectious anaemia virus (EIAV), feline immunodeficiency 

virus (FIV), simian immunodeficiency virus (SIV) and bovine 

immunodeficiency virus (BIV) [83,197,284,328,462][196]. The most 

commonly used lentiviral vectors are based on the HIV1 which has a natural 

tropism for CD4+ T-lymphocytes.	   Tissue specificity or cellular tropism is 

determined by the surface glycoproteins on lentiviral envelopes. 

Pseudotyping results in lentiviruses expressing envelope proteins from other 

viruses on their surface, thus altering the expression of glycoproteins in the 

viral envelope and subsequently, lentiviral vectors can be modified to infect a 

broad range of cell types.  For gene therapy applications, HIV1 is most 

commonly pseudotyped with vesicular stomatitis virus surface protein (VSV-

G protein) because of the broad cell tropism; VSV-G envelope protein 

recognises a ubiquitous phospholipid in the cell membrane that enables the 

virus to infect different cell types. In the eye, subretinal delivery of HIV vector 

pseudotyped with VSV-G and driven by a ubiquitous cytomegalovirus (CMV) 

or spleen focus forming virus (SFFV) promoter results in reporter gene 

expression limited to the RPE [35].  Photoreceptor cell transduction has been 

reported when VSV-G pseudotyped vector is injected into neonatal mice, 

possibly because of better access of vector to photoreceptors whilst the 

retina is still developing [30,330]. However, the transduction efficiency in 

photoreceptors is poor compared with that achieved by AAV vectors (see 

section 1.4.2.4). Subretinal delivery of VSV-G pseudotyped SIV, FIV, and 

BIV vectors results in a similar pattern of transduction[84,117,462]. However, 

subretinal delivery of VSV-G pseudotyped EIAV results in some transduction 

of photoreceptor cells as well as efficient transduction of RPE cells [37]. 

 

The main safety concern when using HIV-based vectors in particular, is the 

possibility of generating wild-type viruses through recombination. The 

likelihood of this type of recombination depends on residual cis-acting 

sequences in the packaging plasmid, allowing some level of encapsidation, 

and on the extent of sequence homology between packaging and vector 
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constructs. This risk is minimized in newer generations of lentiviruses which 

have most of the viral genome deleted and the viral accessory proteins and 

envelope excluded from the production phase[118,528]. Third generation 

HIV-1 vectors are packaged by three non-overlapping expression constructs 

– two expressing HIV proteins and the other expressing the envelope of a 

different virus [225,307]. The development of self-inactivating viruses is 

another conceptual breakthough in which the transcriptional enhancer and 

promoter regions in the 3’U3 long terminal repeat (LTR) are deleted which 

prevents them from activating inappropriate transcription of genes 

downstream of the integration site. Following reverse transcription of the 

vector RNA, this modification is copied over into the 5’ LTR, thus causing 

inactivation of both LTRs in the integrated proviruses [329,423,527]. The 

resulting vector cannot be converted into a full length vector RNA in 

transduced cells, thereby reducing the risk of vector genome mobilization 

and also reducing the likelihood of enhancement or aberrant expression of 

surrounding cellular genes.	   

 

Although integration into the host genome has the advantage of being able to 

mediate long term gene expression, it increases the risk of insertional 

mutagenesis. This has lead to the development of non-integrating vectors 

that have comparable transduction efficiencies and persist as episomal 

double-stranded DNA circles that are capable of transducing non-dividing 

cells [287,411,479].	   These vectors are rendered integrase-deficient by the 

introduction of a point mutation in the integrase gene. Efficient and sustained 

transgene expression has been demonstrated using non-integrating lentiviral 

vectors in vivo in post-mitotic tissues such as the RPE, and at levels 

equivalent to that of their integration-proficient couterparts [507].  

 

Thus the newest lentiviral vectors incorporate additional safety features that 

may facilitate their clinical application given the improved safety profiles; the 

generation of self-inactivating, pseudotyped and integrase-deficient lentiviral 

vectors have been found to be effective in animal gene transfer studies. 

Lentivirus-mediated Mertk expression was shown to restore RPE 

phagocytosis, improve rod function on ERG and maintain outer nuclear layer 
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thickness in the Royal College Surgeon rat, a model of retinal degeneration 

[471]. However so far, the use of lentiviral vectors for gene therapy in the eye 

appears to be limited to gene correction in the RPE as that is the only cell 

type transduced with high enough efficiency for therapeutic purposes.  

Lentiviral vectors may be of use for the treatment of photoreceptor defects by 

mediating the delivery of secreted factors, such as neurotrophic or anti-

apoptotic factors to the RPE. 

 

1.4.2.4 Adeno-associated viral vectors 
 

Among all the vectors that have been used in the eye for gene transfer to the 

retina, vectors based on adeno-associated virus (rAAV) have emerged as 

the most promising in terms of efficiency and stability of gene transfer. 

Several main features of AAV that render them ideally suited for retinal gene 

therapy include the lack of pathogenicity, minimal immunogenicity, their 

ability to transduce non-dividing cells and their capacity to mediate long and 

sustained levels of therapeutic gene expression. They have been used to 

treat animal models of a wide range of retinal disorders from LCA and RP to 

autoimmune uveitis and neovascular 

disorder[14,29,32,34,62,250,251,280,301,311,335,363,390,403,464,525]. 

They have also recently been used in clinical trials for the treatment of LCA 

[34,181,293] (see later).   

  

Adeno-associated viruses are one of the smallest viruses with a non-

enveloped icosahedral capsid of approximately 22 nm. As they require a co-

infecting helper virus for replication to occur, adeno-associated viruses are 

categorised as dependoviruses that is naturally replication-deficient and non-

pathogenic. Wild-type AAV has a linear single-stranded DNA genome of 

about 4.8 kb which is composed of two open reading frames (ORFs) 

encoding capsid structural proteins (cap) and replication proteins (rep), 

flanked by two 145 bp inverted terminal repeats (ITRS). These ITRs are the 

minimal cis-acting elements necessary for viral genome integration, 

replication and packaging into the capsid shell. The virus does not encode a 
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polymerase and instead relies on cellular polymerase activities to replicate its 

DNA. The first ORF (rep) encodes four Rep proteins that are involved in 

replication of the viral genome, whereas the second ORF (cap) encodes 

three structural viral proteins (VP1, 2 and 3) which together assemble into 

near-spherical shell of 60 subunits with icosahedral symmetry. The genome 

of wild-type AAV is known to integrate into host chromosome DNA in a site-

specific manner; this integration occurs at a locus on human chromosome 19 

and is mediated by the AAV gene rep [244]. This property is lost in the 

recombinant vectors used in gene therapy due to the absence of the rep 

gene.  The recombinant virus, however, retains ability to integrate with low 

efficiency into heterogenous sites around host genome [38,345]. The 

recombinant AAV genome persists mostly as high molecular weight 

concatemers and stable long term transgene expression with rAAV is 

thought to be primarily due to these extra-chromosomal vector 

genomes[136,318]. Most of the time AAV vector genomes persist within cells 

as episomes, with only fraction of the genomes integrating into host 

genome[345]. Vector integration events are non random and tend to favour 

transcriptionally active regions of chromosomes[342-344], and have been 

observed in various experimental studies to occur either at non-homologous 

sites where DNA damage may have occurred[199,323] or by homologous 

recombination (for a review, see [438]). Concerns were raised when a study 

by Donsante et al. suggested that insertional mutagenesis resulting from the 

integration of AAV vectors was associated with tumorigenesis[107]. In this 

study, newborn normal mice and mice with the lysosomal storage disease 

mucopolysaccharidoses VII that received high-dose intravenous AAV vector 

expressing the human β-glucuonidase gene driven by a β-actin promoter and 

CMV enhancer, had increased incidence of hepatocellular 

carcinoma.[106,107]. These findings, however, need to be considered in light 

of the many studies using AAV vectors which have been done in rodents, 

dogs and primates where no increased in the incidence of tumours have 

been reported. Experimental factors which were unique to the study such as 

the treatment of very young mice, the particular strain of mice, the route of 

delivery, possible effects of the transgene and promoter-related effects may 

have contributed to the phenomenon. Large scale studies involving adult 
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mice or p53-deficient mice found no evidence for AAV-induced 

malignancies[44,45] and thus far, the bulk of experimental evidence suggest 

that tumours are not routinely observed following AAV vector administration. 

Furthermore, the favourable safety profile, minimal risk of germline 

transmission[425] and long-lasting transgene expression obtained in organs 

of animal models of human disease have lead to the initiation of several 

Phase 1 and 2 clinical trials with rAAV vectors[72,93,166]. Various diseases 

are being targeted including Parkinson’s disease, Alzheimer’s, muscular 

dystrophy, rheumatoid arthiris, cystic fibrosis, melanoma, α1-antitrypsin 

deficiency, haemophilia B (factor IX deficiency) [140,224,297], Factor XIII 

deficiency and RPE65-associated LCA[34,181,293] (for a review see [71] 

and [121]). In the context of ocular gene therapy, the issue of tumorigenesis 

is even less likely to be a concern, given the low dose of vector that is 

normally being delivered, the lack of systemic dissemination (see later), and 

so far, there has been no reports of ocular tumours or tumours elsewhere 

following intraocular AAV vector delivery. 

 

Recombinant AAV (rAAV) particles are generated by transfecting producer 

cells with a plasmid bearing a cloned rAAV genome flanked by the ITRs and 

a plasmid expressing rep and cap genes in trans (Figure 1.17). The ITRs 

contain all the cis-acting elements involved in genome rescue, replication 

and packaging. AAV is an inherently defective virus, its replication requires 

functions supplied by co-infection with helper viruses, such as adenovirus 

and herpesvirus[94,306]. In the absence of helper viruses or helper 

functions, the viral DNA can become integrated into host chromosomal 

genome to establish a latent infection[244]. AAV is capable of infecting both 

dividing and non-dividing cells, and has wide tropism allowing it to infect 

many cell types depending on the particular serotype[460,502]. To date, over 

100 AAV serotypes from different animal species have been 

isolated[152,153,336,422]. The different serotypes differ from each other in 

the sequence of their capsid protein. Recombinant AAV (rAAV) vectors used 

for gene therapy are mainly based on the serotype 2 (AAV2); this was the 

first human serotype described and the best characterised AAV serotype. 

Since the capsid protein of AAV is responsible for its tropism and hence 
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efficacy, a pseudotyping strategy was developed where ‘pseudotyped’ or 

hybrid AAV vectors encode rep from one serotype, usually AAV2, and the 

cap gene of a different serotype. Such hybrid virions produced in this 

instance contain genomes usually based on AAV2 and the capsid of a 

different serotype such as AAV5; in this instance, the chimeric AAV vector is 

designated AAV2/5 where the first number indicates the ITR of origin and the 

second denotes the capsid. The hybrid vectors generated in this way have 

expanded the available repertoire and cell tropism of AAV vectors, and 

additionally have the combined advantage of safety and long term 

expression of AAV2 and the improved in vivo efficacy and tropism of the 

novel serotypes. Cell-targeting strategies determine not only the cell types 

with which the vector interacts with but also the efficiency of the gene 

transfer process since processes related to virus uptake by cells and 

intracellular vision trafficking depend directly or indirectly on capsid 

conformation[133,135,180,466]. Apart from pseudotyping, other strategies 

for engineering custom-made capsids have been employed to further 

broaden the utility of AAV vectors to either transduce tissues that are 

refractory to naturally occurring AAV serotypes or to limit transduction to 

specific tissues. These include generating mosaic capsids (composed of a 

mixture of capsids subunits from different serotypes), chimeric capsids 

(containing capsid proteins that have been modified by domain or amino acid 

swapping between serotypes), targeting ligand insertion into the capsid, and 

recently, library selection and directed evolution have emerged as promising 

approaches to modulate AAV tropism[58,156,179,294,340,341,364,386] (for 

reviews, see [320,502,516]). In the context of ocular gene therapy, 

pseudotyping of vectors remains the most important strategy for targeting 

gene delivery to specific cell types. 
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In the eye, AAV 1 through 9 and two additional AAV capsids isolated from 

rhesus monkey, AAVrh8 and AAVrh10  have been evaluated in the retinas of 

rodents and primates[12,13,18,30,158,262,348,387,508]. Each cell type in 

the retina can be targeted by choosing the appropriate combination of AAV 

serotype, promoter and intraocular delivery route. In general, subretinal 

injections of AAV vectors lead to transduction of photoreceptors and RPE, 

while intravitreal injections transduce retinal ganglion cells. Table 1.4 

displays the transduction characteristics of pseudotyped rAAV in various cell 

types in the eye. The first AAV serotype to be tested in the retina was AAV 

2/2[13] and its transduction profile has been well established. Subretinal 

administration of AAV2/2 leads to transduction of photoreceptors and RPE 

cells, with an onset of transgene expression after 2-4 weeks and peaks at 4-

6 weeks after vector administration[12,13,30,47,139,262,389,409,418,459]. 

Intravitreal administration of AAV2/2 leads to transduction of ganglion cells, 

trabecular meshwork, cells of the inner nuclear layer including Müller cells 

[12,30,57,116,169,273,274,300].  Amongst the other AAV serotypes tested 

so far in the retina, AAV 2/1, AAV 2/6 and AAV2/4 are considered ideal for 

RPE gene transfer[30,461,489,508]. AAV2/5, AAV2/7, AAV2/8 and AAV2/9 

have been shown to be particularly promising for the delivery of transgene to 

photoreceptor cells, noteably the expression levels in photoreceptors 

mediated by AAV2/7 and AAV2/8 are six- to eightfold higher than AAV2/5, 

previously the favoured vector for photoreceptor gene 

transfer[18,286,348,508]. AAV2/9 additionally transduces Mϋller cells 

following subretinal delivery [18]. Following intravitreal injection, only AAV2/2 

and AAV2/8 have been observed to transduce retinal ganglion cells, with 

some transduction of Mϋller cells[19,262,460]. Anterior segment structures 

such as the trabecular meshwork, iris, corneal stroma and lens epithelium 

are more readily transduced by AAV2/7, AAV2/8 and AAV2/9 following 

intravitreal delivery[262]. Previous studies have suggested that the inability of 

many AAV vectors to effectively transducer the inner retina from an 

intravitreal injection is due to the barrier created by the inner limiting 

membrane. However, recent studies showed that AAVrh8 and AAVrh10, 

novel capsids isolated from rhesus monkey, are able to transduce amacrine 
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cells, horizontal cells and bipolar cells effectively following intravitreal 

delivery[158]. 

 

As well as tropism towards given cell types, the kinetics of transgene 

expression are also determined to some extent by the serotype. The time of 

onset of transgene expression differs for the various serotypes: subretinal 

injection of AAV-2/1, 2/7 and 2/8 results in early onset of transgene in mice 

within 5 days, AAV-2/5 around 1 week and AAV2/9 at 11 days, all of which 

are much faster in onset compared to AAV2/2[30,262,408,418]. The 

transduction efficiency and intensity of expression also vary amongst the 

different capsids, with newer AAV serotypes such as 2/7, 2/8 and 2/9 being 

more efficient and mediating higher levels of transgene expression compared 

to AAV2/2 or AAV2/5[18,262,348]. The pseudotyping approach may also be 

beneficial in evading neutralizing antibodies to capsid components in 

individuals seropositive for AAV2 or in those patients needing vector 

readministration.  
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Table 1.4   Different cellular tropism and expression kinetics based on serotype and 

delivery method in the mouse retina. 

	  

Delivery method rAAV 
serotype 

Onset period Cell types transduced 

Subretinal AAV2/1 Rapid, 3-4 days RPE 

Subretinal AAV2/2 Delayed, 2-4 wks PR, RPE, some RGCs 

Subretinal AAV2/4 2 weeks RPE 

Subretinal AAV2/5 Rapid 3-5 days PR, RPE 

Subretinal AAV5/5 Rapid, 3-5days PR, RPE 

Subretinal AAV2/6 Rapid, 3-5 days RPE 

Subretinal  AAV2/7 5 days PR, RPE 

Subretinal AAV2/8 Rapid, 1-5 days PR, RPE, Mϋller cells, RGC. 

Subretinal  AAV2/9 10-11 days PR, RPE, Mϋller cells. 

Intravitreal AAV2/2  Inner retina, RGC, some Mϋller cells, 
optic nerve fibers trabecular 
meshwork, small amount of ciliary 
body,  

Intravitreal AAV2/7  Anterior segment (TM, corneal 
stroma, iris, lens epithelium), small 
amount of ciliary body. 

Intravitreal AAV2/8  Inner retina, RGC, some Mϋller cells 
, anterior segment (TM, corneal 
stroma, iris, lens epithelium), small 
amount of ciliary body. 

Intravitreal  AAV2/9  Mϋller cells, anterior segment (TM, 
corneal stroma, iris, lens epithelium). 

Intravitreal AAVrh8  RGC, amacrine cells , horizontal 
cells, Mϋller cells 

Intavitreal AAVrh10  RGC, amacrine cells, horizontal cells, 
Mϋller cells, bipolar cells. 

Compiled from various publications.[12,18,30,158,262,348,408,460,508].  
PR – photoreceptor cells; RPE – retinal pigment epithelium; RGC-retinal ganglion cells. 
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One of the limitations of recombinant AAV is its small packaging capacity of 

4.7 kb which precludes many therapeutically important coding sequences. 

Emerging technologies in AAV vector design employing a split gene principle 

(trans-splicing AAV vector system) have allowed to assembly of large cDNAs 

in target cells by splitting the gene and cloning the fragments in 

independently into the rAAV genome. The AAV encoding the 5’ end of the 

gene is designed to possess a splice donor while the vector encoding the 3’ 

end possesses a splice acceptor. Following co-transduction of target cells by 

both vectors, head-to tail heterodimerization via intermolecular recombination 

between the two vector DNA molecules restores the full-length expression 

unit and results in the desired protein synthesis [505,506][253]. Its utility for 

therapeutic application has thus far been limited by its lack of efficiency. The 

efficiency of the process depends on the number of AAV genome copies 

entering the nucleus, and is increased in tissue systems where transduction 

occur through an enclosed space, such as the muscle or subretinal space, 

as this favours the entry of both vectors in the same cell[401]. The use of 

efficient AAV serotypes which mediate high levels of transduction further 

increases the efficiency of transplicing since there are more genome copies 

of the dual vectors per cell[508]. A recent study suggests that the limited 

capacity of AAV2 can be exceeded by AAV5[17]. Packaging of genes up to 

8.9 kb was shown to be possible using AAV2/5, and following intraocular 

delivery, the expression of the appropriate protein obtained and resulted in 

morphological and functional improvement in an animal model of retinal 

dystrophy[17]. Another new development in vector design is self-

complementary AAV vectors (scAAV), which uses the ability of AAV to 

package replicons half the size of wild-type DNA in the form of single-

stranded dimeric genomes with an inverted repeat configuration [308]. In the 

target cell, these self-complementary molecules fold back into double-

stranded forms without the need for de novo DNA synthesis or the annealing 

of complementary genome that occurs in conventional rAAV replication. Self-

complementary AAV has been shown to have faster initiation of gene 

expression in eyes that received subretinal injection of scAAV than titre- and 

serotype- matched single-stranded AAV [348]. Many also mediate higher 
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levels of expression although an expression cassette of only 2.4 kb can be 

used.  

 

The tissue-specific expression patterns, non-pathogenicity, together with the 

replication-deficient nature of AAV make this vector a safer and attractive 

alternative to other available vectors. Studies evaluating biosafety of rAAV 

have shown minimal systemic dissemination following intraocular 

administration and to date, there has been no reports of tumorigenesis or 

toxicity in the long term[45,333]. Biodistribution of rAAV in distant organs 

following intraocular delivery has never been reported[408]. Biodistribution 

studies of different rAAV serotypes delivered to the subretinal space or 

intravitreally in rats and dogs failed to detect vector sequences in liver or 

gonad samples, indicating that the risk of germ-line transmission of vector 

DNA is very low [383]. Following intravitreal injection, rAAV sequences were 

detected in the optic nerve and along the visual pathway in the brain, 

indicating that anterograde and transynaptic transport of rAAV is possible. 

High levels of green fluorescent protein (GFP) were found in the optic nerves 

and brains of mice and dogs following intravitreal administration and 

persisted for up to 6 months[116]. However, this risk appears to be reduced 

with subretinal injection - in another study, vector DNA was consistently 

detected along the visual pathway in the brains of rats and dogs following 

intravitreal injection of rAAV2/2, while subretinal injection resulted in 

detection of vector DNA in the optic nerve only [383]. There is also evidence 

that the potential for transynaptic transfer is higher with AAV8; subretinal 

delivery of an AAV2/8 vector carrying gfp gene in rats and dogs resulted in 

the transduction of not only the RPE and photoreceptor cells, but also of the 

inner nuclear layer, ganglion cells and in brain tissue along the visual 

pathway including the lateral geniculate nucleus and beyond that in dogs. 

[448].  Vector sequences were also found in various parts of the brain of the 

contralateral hemisphere after subretinal injection of AAV8 in dogs.  These 

findings highlight the importance of restricting expression of the transgene to 

the targeted tissues by using vector design which incorporate tissue-specific 

promoters and pseudotyping of rAAV vectors.  
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Compared to other viral vectors such as adenoviral vectors, rAAV is less 

immunogenic. However, more recent studies have shown that AAV is 

capable of stimulating an immune response that can inhibit the efficacy of 

repeated vector administration[298,488], although the route of administration 

and vector dose appear to be key elements in determining the degree of anti 

AAV immunity that is generated. A degree of humoral response to rAAV 

capsid proteins has been reported particularly following intravitreal delivery 

which was sufficient ot block vector expression upon readministration into the 

partner eye [269]. Subretinal delivery of rAAV is better tolerated, although 

there is a dose dependent effect [39]; low doses of rAAV2 did not lead to the 

development of neutralising antibodies in mice and transgene expression 

after readministration of the vector was achievable, whereas higher doses of 

vector lead to the induction of humoral responses which reduced the efficacy 

of repeated vector administration [21][39]. Immune responses to rAAV may 

be species-dependent; greater immune responses have been observed in 

large animal models such as dogs than in mice which have received the 

equivalent vector dose [45,46]. However attenuation of the immune 

responses can be achieved using transient immunosuppression, thereby 

permitting long-term transgene expression [33,48,286]. 

 

The potential of AAV vectors for the treatment of retinal disorders for ocular 

disorders has been extensively evaluated in a variety of animal models of 

dominant and recessive retinopathies (see section 1.4.3). The majority of 

retinal dustrophies are due to mutations in genes specifically expressed in 

photoreceptor cells. Since other vectors do not transduce photoreceptors 

effectively, AAV appears to be the most suitable vector for gene delivery to 

photoreceptors. AAV-mediated gene transfer has been evaluated a number 

of large animal models including dogs and primates, which better reflect the 

human eye in terms of anatomy, proportions and immunological responses 

and similar efficiency and stability of transduction have been observed 

[33,48,260,383]. Proof-of principle using AAV-mediated gene replacement 

for the treatment of LCA has been demonstrated in several animal models, 

including non-human primates [53,60,203,363,455,464]. Longer term studies 

in non-human primates and dogs have found no adverse effects on retinal 
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function or morphology and stable transgene expression in ocular tissues for 

up to 36 months following subretinaI injection of rAAV [261].The pre-clinical 

success, long lasting transgene expression mediated by AAV vectors and 

their favourable safety profile has made it the vector of choice in clinical trials 

for LCA [34,181,293] and so far, it has shown great promise in several of the 

concluded phase I clinical studies (see following section below). 	  

	  

	  

1.4.3  Gene therapy for inherited retinal dystrophies 
  
Due to the tremendous genetic heterogeneity associated with inherited 

retinal degeneration, different gene-mediated therapy strategies have been 

developed for treatment of inherited retinal degenerations. These causal 

mutations lead to disease through the loss of function of a mutated gene for 

example in autosomal recessive or X-linked recessive retinal degeneration, 

or through a toxic gain of function such as in autosomal dominant retinal 

degenerations. There are two broad strategies employed to rescue retinal 

cells from degeneration. The first is a specific gene targeted treatment in 

which the aim is the correction of the underlying gene defect. “Gene 

correction” may be achieved by augmenting the defective gene with a 

functional copy in the case of monogenic recessive diseases and 

haploinsufficiency, or by ablating the expression of the ‘toxic’ message from 

a dominant mutation. The second strategy involves a more generic approach 

and does not depend on the underlying defect. This entails the delivery of 

genes that express neurotrophic factors that help prolong photoreceptor 

survival [63,289]. The advantage of this approach is that it is not specific to 

the disease and can therefore be applied to many conditions, including 

disorders with a multifactorial aetiology. The disadvantage is that this 

approach has not been very effective to date and may have a better role as a 

supplementary treatment to gene replacement therapy in monogenic 

disorders. 
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1.4.3.1   Gene therapy for treatment of dominant diseases 
 

Autosomal dominant retinitis pigmentosa (AdRP) due to gain-of-function 

mutations in rhodopsin (RHO) is one of the common forms of RP and 

accounts for 30-40% of cases of adRP. Rhodopsin-based autosomal 

dominant RP (RHO-adRP) has considerable mutation heterogeneity, a 

situation that is mirrored in many dominantly inherited diseases. Hence, 

RHO-adRP has been frequently used as a model disorder for developing 

treatment for dominant diseases. In RHO-adRP, causal mutations can lead 

to the expression of mutant alleles that interfere with native wild-type alleles, 

hence producing a toxic gain of function[315]; studies in transgenic mice 

have shown that lower levels of mutant rhodopsin are associated with less 

severe disease [357]. The treatment of disorders that are associated with 

toxicity of a mutant allele require that the mutant gene must be repaired or 

silenced. Two strategies have been proposed for mRNA silencing. The first 

includes the use of allele-specific inhibitors that promote the degradation of 

only the defective mRNA and allow the expression of the normal allele that 

might be sufficient to maintain the function of the photoreceptor cells [275]. 

The second strategy is a mutation-independent approach where transcripts 

from both wild-type and mutant alleles are suppressed, and replaced by a 

non-silenced normal version [131]. Both approaches can be mediated by a 

variety of antisense inhibitors such as ribozymes, antisense oligonucleotides 

and small inhibiting RNA (siRNA). Ribozymes are catalytic RNA molecules 

that bind to specific mRNA sequences and catalyse the cleavage of that 

messages associated with the disease [108][374]. It has been established 

that ribozymes can limit gene expression by cleavage of targeted mRNA in 

vivo in the retina.  The P23H transgenic rat is a model for adRP and carries 

the most frequently found mutation in rhodopsin [113]. AAV delivery of 

ribozymes specific for the P23H transgene mRNA selectively knocked down 

the mutant mRNA in P23H transgenic rats and led to preservation of the 

photoreceptors for up to 8 months [109,267][258]. However, an optimal 

ribozyme cleavage site had been engineered into the transgene, enhancing 

the efficacy of the therapy. 
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The considerable heterogeneity of mutations in dominant disorders renders 

mutation-specific gene therapies neither economically nor technically 

feasible because this would require the development of a large number of 

mutation-specific inhibitors in order to be widely applicable. The use of allele-

independent RNA inhibitors is more realistic since a single reagent can be 

used against different mutations in the same gene. For optimal therapy, this 

should be accompanied by simultaneous provision of a replacement gene 

that encodes the wild-type protein but is resistant to suppression by utilising 

the degeneracy of the genetic code [355]. In vitro data have demonstrated 

that ribozymes directed against the 5’ untranslated region of rhodopsin 

mRNA could cleave all rhodopsin transcripts, mutant or wild-type, and that a 

rhodopsin gene designed not to be cleaved by these ribozymes could 

replace the ablated gene product [324]. In vivo efficacy was demonstrated 

when AAV2/5-mediated delivery of an allele-independent mouse-specific 

ribozyme targeting wild-type and mutant rhodopsin lead to partial rescue of 

photoreceptor function and structural preservation in P23H transgenic rats 

[162]. In vivo mouse rhodopsin mRNA levels were reduced by 46% following 

treatment. Since the P23H mutant transgene in the rat model was derived 

from a mouse genomic clone, a reduction in the mutant P23H trangene was 

obtained while the rhodopsin mRNA level (which was resistant to the 

ribozyme) was unchanged [162]. 

 

Despite these claims of success in the application of ribozymes in vivo, many 

researchers consider RNAi a more potent and durable approach. RNA 

interference (RNAi) involves the use of small interfering double-stranded 

RNA molecules (siRNA) which are able to mediate site-specific cleavage of a 

target mRNA molecule [120,268] by recruiting Dicer proteins to a multi-

protein complex known as RNA-induced silencing complex (RISC)[429]. A 

common way of using RNAi is to generate short-hairpin RNA (shRNA) 

molecules through transcription of DNA templates. Using a viral vector, the 

DNA template can be delivered to the target tissue; the shRNA is then 

transcribed and processed to siRNA [503]. Short-hairpin RNA have been 

shown to be effective in silencing more than 90% of mutant (P23H) 

rhodopsin transcript in vitro and in retinal explants [74,231]. In vivo, it has 
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been shown that rhodopsin can be effectively down-regulated with resultant 

decrease in retinal function and outer nuclear layer thickness by AAV2/5-

delivered rhodopsin-specific siRNA to the retina in wild type and 

heterozygous rhodopsin knockout mice [163] 

 

Both in vitro and in vivo validation of suppression and replacement strategy 

for RHO-adRP was demonstrated by O’Reilly et al. Using AAV2/5-mediated 

delivery of shRNA, approximately 90% in vivo suppression of RHO was 

obtained in mice which expressed a human transgene on Rho-/- background 

[313][355].. Using AAV2/5 vectors that express shRNA targeting RHO 

together with a codon-modified RHO replacement gene in vivo into the eyes 

of P23H+/- Rho+/- mice (expressing a mutant human RHO allele), therapeutic 

benefit was seen in the form of a 33% difference in outer nuclear layer 

thickness between treated and untreated eyes[355]. In another transgenic 

mouse model of adRP, the P347S mouse, AAV-mediated shRNA expression 

targeting RHO in the presence of expression of an endogenous mouse Rho 

gene that is refractory to suppression (due to divergence between mouse 

and human rhodopsin) resulted in improved retinal histology and function as 

assayed by ERG [76]. These studies thus demonstrate that RNAi-based 

suppression in conjunction with codon-modified gene replacement can lead 

to photoreceptor rescue as evidenced by structural and functional benefit 

following treatment in animal models of adRP.  

 

 

1.4.3.2 Gene replacement therapy for treatment of  
recessive diseases 

 

Early attempts at gene replacement therapy were not successful in rescuing 

phoptoreceptors in the rd1 mouse, a well characterised model of autosomal 

recessive retinitis pigmentosa and has a homozygous nonsense mutation in 

the gene encoding the β-subunit of rod cGMP phosphodiesterase, Pde6b. 

These experiments were performed using a variety of viral vectors including 

adenovirus [50], AAVs [216], gutted adenovirus [247], and lentivirus [463]. 
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The lack of rescue was largely due to the failure of adenovirus[51] and HIV-

1[463] to efficiently transduce photoreceptors. In a study using an AAV2 

vector, only faint β-PDE immunostaining and a slight shift in in vitro 

electrophysiological response was seen in the rd1 mouse following treatment 

[216]. It has been very difficult to rescue the rd1 mouse even with better AAV 

vectors such as AAV5 and AAV8.  However, gene replacement therapy has 

been more effective in rd10 mice, a hypomorphic Pde6b mutant with a 

missense mutation in exon 13.  The mutation causes partial loss of PDE 

activity and a milder phenotype than the mutation in rd1 mice. Loss of 

photoreceptor cells begins at P16 and is complete by P60. Dark rearing 

slows the degeneration by a further 4 weeks and allows the formation of 

outer segments that are not normally formed in either rd10 or rd1 mice. Pang 

et al. showed it was possible to preserve photoreceptors and retinal function 

following gene replacement therapy using an AAV2/5 vector. However, this 

was made easier by dark rearing the animals until vector administration at 

P14, and also for a further two weeks after treatment.  They were then 

exposed to light for one week before the effect of treatment was assessed 

[359].  

 

More convincing rescue was achieved in the rds mouse, another model of 

autosomal recessive RP, which is homozygous for a null mutation in the 

peripherin2 gene encoding a membrane glycoprotein essential for the 

formation of photoreceptor outer segment discs. Subretinal injection of AAV-

2 carrying a peripherin2 transgene driven by a bovine rhodopsin promoter 

resulted in the formation of discs and restoration of photoreceptor structural 

integrity [14] with some long term persistence of the structures which were 

detectable 42 weeks post-treatment. The structural rescue was accompanied 

by functional improvement seen on ERG responses [420] and improved 

central visual function seen on recordings from visually responsive neurons 

in the superior colliculus [421]. These studies provided the first indication of 

the potential for gene replacement therapy in the treatment of photoreceptor 

defects. Longer term studies however, found that the functional 

improvements were not maintained over time; the electrophysiological 

improvements appeared to peak six weeks after treatment and then 
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assumed a downward trend following that, although treated eyes retained 

statistically significant improvement in b-wave amplitude over uninjected 

eyes [419]. Longer term improvements in function were not sustained in this 

model, probably due to inapropriate levels of peripherin2 expression and the 

failure of the intervention to delay apoptotic photoreceptor loss.  

 

Gene replacement therapy for inherited retinal degenerations caused by 

RPE defects has generally been more successful. There are several 

postulated reasons as to why RPE defects are more amenable to gene 

therapy. The photoreceptors in RPE defects are inherently healthy and 

structurally intact and therefore, restoring function to the underlying RPE 

allows these photoreceptors to resume normal function. It is also possible to 

influence a wider area of photoreceptors by transducing the RPE as each 

RPE cell communicates with numerous photoreceptors. Extensive work has 

been carried out on models for Lebers Congenital Amaurosis (LCA), a 

severe early-onset form of inherited retinal dystrophy (see Chapter 1.3). In 

particular, success has been reported animal models of LCA caused by 

defects in an RPE-specific gene, RPE65. The RPE65 gene encodes a 

protein expressed in the RPE that is essential for the synthesis of 11-cis-

retinal in the retinoid cycle. Consequently, there is an inability to generate 

adequate visual pigment for initiation of phototransduction. These animal 

models with RPE65 defects have severely depressed dark and light ERG 

responses with poor vision from early life and are phenotypically similar to 

LCA caused by RPE65 mutation in humans. Mice with targeted disruption of 

RPE65 have a relatively slow photoreceptor degeneration, losing about 50% 

of photoreceptors at 4 months of age, reduced amount of opsin in 

photoreceptor outer segments and undetectable scotopic ERG from birth 

[400]. Treatment of RPE65-/- mice using AAV2/2 vector resulted in transient 

functional recovery of photoreceptors on but this was not accompanied by 

any delay in the photoreceptor degeneration[249]. Following improvements 

in the vector design, a different study demonstrated more substantial 

improvement in ERG following subretinal injection of AAV2/2 carrying chick 

β-actin driven human RPE65 cDNA although the follow up period was only 3 
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months and there was no assessments on the effect of treatment on the rate 

of photoreceptor degeneration[53]. 

 

Another mouse model with a naturally occurring homozygous null mutation in 

the murine Rpe65 gene is the rd12 mouse [360]. The retinal degeneration in 

this mouse model is similar to the genetically engineered model, 

approximately one-third of the outer nuclear layer is lost by 7 months of age. 

Subretinal delivery of AAV2/5 vector carrying the RPE65 transgene resulted 

in the normalisation of retinyl ester levels in the RPE, restoration of retinal 

morphology and significant delay of the photoreceptor degeneration. The 

improvement in morphology also correlated with dark- and light-adapted 

ERG responses being restored to wild-type levels and was accompanied by 

improvement in vision-dependent behaviour [361]. The first demonstration of 

long term success with the restoration of visual function was reported in a 

naturally-occurring canine model of Leber Congenital Amaurosis (LCA), due 

to RPE65 mutations[2,4]. Treatment of the Briard dogs with AAV-2 carrying 

normal RPE65 gene driven by chicken βactin promoter led to the restoration 

of visual function in treated eyes; a 16% improvement in scotopic and cone 

flicker ERGs was obtained in treated compared to uninjected eyes, and 

higher order visual function such as pupillometry and visual evoked cortical 

potentials demonstrated significant improvement in function in treated 

eyes[2].  Evaluation of the treatment up to 3 years post-injection showed long 

term preservation of the treatment[1]. Another study also studied the efficacy 

of AAV2 containing canine RPE65 driven by a CMV promoter delivered 

subretinally into the dog model [347]. Similar success in photoreceptor 

rescue was reported. To target transgene expression specifically to the RPE, 

a different study evaluated subretinal injections of AAV2/4 vector carrying a 

human RPE65 cDNA driven by a human RPE65 promoter in RPE65-/- Briard 

dogs and showed early restoration of rod and cone photoreceptor function 

which remained stable in the long term. Whereas all dogs that were treated 

at 8-11 months of age showed improvement, dogs that were treated at a 

later age of 30 months did not recover retinal function or vision, suggesting 

that there might be a therapeutic window for gene therapy to be successful in 

this model[260]. 
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Another form of RPE-based severe early-onset retinal dystrophy is caused 

by mutations in the MERTK gene. The RCS rat, is a well characterised 

recessive model of RP and has a null mutation in the receptor tyrosine 

kinase gene, Mertk which is exclusively expressed in the RPE [96].The 

defect results in the inability to phagocytose shed photoreceptor outer 

segments and the accumulation of the debris which subsequently leads to 

photoreceptor cell degeneration. Subretinal delivery of Mertk initially using 

recombinant adenovirus demonstrated functional recovery of phagocytosis 

and a temporary delay in photoreceptor degeneration [482]. Following both 

AAV-mediated [437] and lentivirus-mediated [471] Mertk gene delivery, 

treated eyes showed significantly higher numbers of photoreceptors and an 

increased ERG b-wave amplitude when compared to contralateral uninjected 

eyes. However the improvement in retinal function following treatment as 

assessed by ERG was transient; AAV-2 mediated Mertk delivery  resulted in 

significant improvement in ERG b-wave for only 9 weeks post injection [437], 

while lentiviral-mediated gene replacement improved ERG function for up to 

four months [471]. A more rapid initiation of transgene expression and better 

RPE targeting specificity of lentiviral vector were thought to account for the 

more superior therapeutic effect when using this vector. 

 

Together, all of these studies suggest that gene replacement therapy 

directed to the RPE represents a promising therapeutic strategy. The reports 

of efficacy, particularly in the Briard dog, showed proof-of-concept of the 

efficacy of gene replacement in RPE65 gene defects and provided the 

impetus for the start of the first human ocular gene therapy clinical trials, 

assessing gene replacement therapy in LCA patients with RPE65 mutations. 

This condition was chosen not only because of the impressive results from 

pre-clinical studies, but also because its characteristics enable rapid 

assessment of efficacy. Since photoreceptors in this condition are presumed 

to be healthy, gene replacement would be expected to improve vision owing 

to the restoration of absent photoreceptor function, whereas for many other 

retinal dystrophies, the aim would be to preserve vision by preventing 
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photoreceptor loss. In these trials, which are phase I studies, recombinant 

AAV 2/2 vector expressing human RPE65 cDNA driven by either a tissue-

specific [34] or constitutive promoter [181,293], was used to target retinal 

pigment epithelial cells in aldult patient subjects with relatively advanced 

disease. Differences that existed between the studies were in the type 

promoters used to drive transgene expression, vector titres, surgical 

protocols and functional assessments. Preliminary results from the trials 

demonstrated favorable safety profile of vector administration and lack of 

adverse reactions and toxicity [34,87,181,293]. Although there was no 

improvement detected in retinal function on electroretinography (ERG), two 

groups found improvements in subjective measures of vision such as visual 

acuity and navigational vision in dim illumination [34,293]. All three studies 

however detected improvements in retinal sensitivity using microperimetry, 

dark-adapted perimetry and pupillometry. The demonstration of improved 

retinal sensitivity but not by ERG suggests that the effects of treatment were 

relatively modest, which may be explained by the advanced stage of disease 

in the adult subjects[86,87][292]. Longer term evaluation showed that the 

functional amelioration seen in patients was stable and minimal evoked 

immunological responses was observed in the form of a transient rise in 

neutralising antibodes to the AAV capsid, which did not cause any significant 

loss of the treatment effect [434]. 

 

Although some forms of retinal dystrophies are caused by RPE defects, the 

majority of inherited retinal dystrophies originate from photoreceptor-based 

mutations. Gene replacement therapies have until more recently been more 

challenging for photoreceptor-specific defects due to the relative inefficiency 

of photoreceptor transduction and the fact that the defect is in the 

photoreceptor cell itself. Furthermore, for the treatment to be effective, highly 

efficient transduction over a wide area is needed as each photoreceptor cell 

needs to be transduced to prevent the death of photoreceptor cells.   Despite 

this, there have been few reports of therapeutic benefit following gene 

replacement therapy. Recently, gene replacement studies carried out in a 

mouse model of LCA due to mutations in RPGRIP reported improvement in 

the phenotype following treatment [363]. The RPGRIP gene encodes a 
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protein which localizes to the connecting cilium linking the inner to the outer 

segment and has a role in tethering RPGR to the cilium and also in outer 

segment disc morphogenesis. RPGR is required in the regulation of protein 

trafficking across the cilium. The RPGRIP mouse model has a rapid retinal 

degeneration which starts at postnatal day 15 and is almost complete by 3 

months of age. Subretinal injections of an AAV2/2 vector carrying an 

RPGRIP expression cassette that is driven by a photoreceptor-specific 

murine opsin promoter resulted in a restoration of RPGR and opsin protein 

localisation to the outer segments of photoreceptors. A significant slowing of 

photoreceptor loss in treated eyes was accompanied by electrophysiological 

improvements in scotopic ERG b-wave amplitudes at 5 months post injection 

[363]. Two animal models carrying null mutations in the Gucy2d gene have 

been used to evaluate gene replacement therapy, the naturally occurring 

GUCY1B chicken and the guanylate cyclase-1 (GC1) knockout 

mouse[172,496]. This gene is expressed in both rods and cones 

photoreceptors and encodes guanylate cyclase, an enzyme in the recovery 

phase of phototransduction whose role is to replenish cGMP stores after light 

exposure. Prehatch lentiviral-mediated transfer of bovine Gucy2d cDNA to 

the retina of these chicks restored visual function to these animal as 

evidenced by behavioural testing and ERG analysis, but did not preserve 

retinal structure in the long term[496]. The GC1 knockout mouse exhibits 

cone photoreceptor degeneration; the loss of cone function in this model 

precedes cone degeneration but the rod photoreceptors do not degenerate 

and continue to give rise to ERG responses to light due to the presense of 

GC2, a close relative of GC1 in the rod cells[90,509]. AAV2/2-mediated 

transfer of the Gucy2d to the post natal retinal of GC1 knockout mice 

restored light-driven translocation of cone arrestin but failed to restore cone 

ERG responses or prevent cone degeneration[172]. It was thought that the 

heterologous nature of the gene transfer using a bovine Gucy2d cDNA may 

be the reason for the incomplete success. A later study using AAV2/5 vector 

to mediate targeted delivery a murine version of Gucy2d to rod and cone 

photoreceptors of the postnatal GC1 knockout mouse demonstrated 

restoration of visual function and visually evoked behaviour[60]. Although the 

follow up period was short (3 months), evidence of restoration of cone-
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mediated function was seen following treatment in the form of improved ERG 

amplitudes, visual acuity and contrast sensitivity, while preservation of cone 

photoreceptors was seen with the restoration of normal cone arrestin 

distribution and increased cone cell density in treated areas[60]. 

 

Mutations in ABCA4 gene cause Stargardt disease, a form of autosomal 

recessive juvenile macular degeneration. The ABCA4 protein belongs to the 

ABC transporter family of proteins involved in the ATP-dependent transport 

of substrates across cellular membranes; the ABCA4 protein is responsible 

for the translocation of N-retinylidene-PE, an intermediate in the visual cycle, 

from the lumen of the disc to photoreceptor cytoplasm.  Although the ABCA4 

is expressed in the disc rims of photoreceptors outer segments, the disease 

phenotype originates from the loss of RPE due to the accumulation of 

lipofuscin in these cells [234]. Until recently, the ABCA4 cDNA was 

considered too large to be packaged into AAV vectors, which are the only 

vectors capable of efficiently transducing photoreceptors. However, recently 

it was found that vectors based on AAV5 can package large recombinant 

genomes up to 9 kb. This enabled gene replacement studies in an Abca4-/- 

mouse model of Stargardt disease; subretinal injection of an AAV2/5 vector 

carrying Abca4 lead to reduced lipofuscin content and improvement in retinal 

morphology and function for up to 5 months [17]. 

 

So far, most gene therapy strategies developed in rodent studies have 

focussed on conditions primarily affecting rod photoreceptors. This is likely 

due to the rod-rich nature of the rodent retina. However, recent advances in 

rodent ERG, a better understanding of the molecular processes in cone 

dystrophies and increasing use of large animal models have facilitated the 

study of gene therapy for inherited cone dystrophies. One such condition that 

is most likely to be amenable to gene therapy is achromatopsia, which is 

caused by mutations in any of the four causative genes known to date, 

GNAT2 which encodes the alpha subunit of cone transducin[238][15,410], 

PDE6C which encodes the catalytic alpha subunit of cone 

phosphodiesterase[77,465],  CNGA3 [239][499] and CNGB3 

[237][456,498][325]  which encodes the alpha and beta subunits of the cone 
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cyclic nucleotide-gated (CNG)channel located in the plasma membrane of 

the cone outer segment. AAV-mediated gene replacement has been shown 

to restore cone-mediated ERG responses to a mouse model of 

achromatopsia, the Gnat2cpfl2 mouse, which is homozygous for a nonsense 

mutation in Gnat2 [9]. Improvement in visual acuity was also observed using 

an optokinetic behavioural assay. More recently, cone-directed gene therapy 

using AAV2/5 vector was evaluated in two independent canine models of 

achromatopsia[242,243]. These naturally occurring dog models of 

achromatopsia result from either a missense mutation in exon 6 of CNGB3 or 

a genomic deletion of the entire CNGB3 gene[430].  Single subretinal 

injection of AAV2/5 containing the human CNGB3 driven by different 

versions of human red opsin promoter led to restoration of cone function in 

both CNGB2-mutant dog models as measured by flicker ERGs and recovery 

of day vision in treated animals[243]. The robustness and stability of the 

treatment effect was promoter and age dependent however, sustained 

rescue of cone function was only obtained using vectors that contained the 

long version of the red cone opsin promoter and in younger animals[243]. 

This study provided evidence that cone-specific disorders could be 

ameliorated using targeted AAV-mediated gene replacement and may hold 

promise for future therapy in humans. One step closer toward this direction 

has made in the form of AAV-mediated gene therapy to restore trichromacy 

in colour-blind primates [296]. Subretinal injection of AAV2/5 vector 

containing the human L-opsin gene under the control of the L/M opsin 

enhancer and promoter elements was delivered to adult primates with red-

green colour vision deficiency, thus co-expressing the L-opsin transgene 

within a subset of endogenous M-cones. At about 20 weeks following 

subretinal injection, treated primates showed a shift in spectral sensitivity 

measured on colour multifocal ERG towards long wavelength light which was 

accompanied by evidence of trichromatic colour vision behaviour. The 

improvement in colour vision appeared stable for over 2 years of follow up, 

and demonstrates the restoration of colour vision may be possible even in 

adulthood as the acquisition of new colour vision capacity did not appear to 

require a developmental process unlike that in monocular deprivation [296] 
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The experiments described above demonstrate that in many models of 

diseases caused by loss-of-function mutations, gene therapy is able to delay 

apoptotic cell loss. The best results in treating hereditary retinopahies to date 

are obtained using gene replacement strategies.  In other conditions where 

gene replacement may not be not possible or where there is no other 

available alternative, neuroprotection therapy may be used but the effects of 

this is often partial and transient.  

 

 

1.4.3.3 Neuroprotection and anti-apoptotic therapy for   
treatment of retinal dystrophies 

 

Although gene replacement and gene silencing strategies offer good 

prospects for the treatement of specific inherited retinal dystrophies, many 

other disorder, particularly inherited dystrophies that is advanced at birth, 

acquired and multifactorial conditions such as age-related macular 

degeneration (AMD) are less amenable to these corrective approaches. With 

the vast genetic heterogeneity of these conditions, the prospect of 

developing individualized corrective gene therapy strategies for patients with 

disorders due to rare mutations would be technically and economically 

unfeasible. Generic strategies do not correct the gene defect and hence do 

not cure the disease, but are aimed at secondary targets such as those 

involved in apoptosis or in modulating the microenvironment of 

photoreceptors in a manner that promotes cell survival in order to ameliorate 

condtion. Such approaches include the localized, targeted delivery of 

neurotrophic factors and antiapoptotic proteins with the aim of enhancing 

photoreceptor cell survival. 

 

Irrespective of the gene defect, the death of photoreceptors in inherited 

retinal dystrophies occurs through apoptosis. Since apoptosis is a final 

common pathway in all genetic diseases, this form of generic therapy would 

be applicable across the spectrum of retinal degenerations and does not 

require gene-specific treatments. Gene transfer of bcl-2, an antiapoptotic 
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gene has been shown to delay retinal degeneration in the rd mouse, an 

animal model of retinitis pigmentosa [52].  However,the rescue was only 

detectable histologically and lasted only 6 weeks after birth, indicating that 

the limited benefit conferred by the treatment was not sufficient to prevent 

further loss of photoreceptor cells. The X-linked inhibitor of apoptosis protein 

(XIAP) is a potent inhibitor of apoptosis and acts by inhibiting caspase 3, 7 

and 9 [265]. AAV-mediated delivery of XIAP to P23H and S334X rhodopsin 

transgenic rat models of retinitis pigmentosa was shown to inhibit caspase 

activity and delay photoreceptor cell loss. Six months post injection, the outer 

nuclear layer in treated eyes was almost twice the thickness of untreated 

eyes in both models. However, ERG functional improvements were observed 

in the P23H rat treated eyes but not in the S334X rats, indicating that 

increased survival of photoreceptor cells  which were non-functional in the 

latter did not lead to restoration of function. Although anti-apoptotic gene 

therapy approach would theoretically provide a more comprehensive 

treatment applicable to a wide range genetic of inherited retinal dystrophies, 

this study shows that not all forms of retinal dystrophies would respond to 

this form of treatment. Further evaluation is needed as to which disorders are 

better suited and whether there are other external factors that need to be 

taken into account that could determine the success of the treatment. 

 

Neurotrophic factors such as fibroblast-growth factor (FGF), glial-derived 

neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) have been 

found to retard photoreceptor degeneration in several animal models of 

retinal degeneration [125,126,259,472].  To achieve longer term effect 

without the need for readministration, AAV-mediated expression of genes 

encoding neurotrophic factors has been widely studied. AAV2-delivered 

bovine FGF-2 has been found to increase photoreceptor survival for up to 4 

months post injection in the S334X transgenic rat model of dominant RP 

which expresses a mutant Rhodopsin allele. Thicker outer nuclear layer seen 

in treated eyes although this was not reflected in improved retinal function as 

assayed by ERG [256]. ERG amplitudes in treated eyes were better than 

non-injected eyes but showed no significant difference from eyes injected 

with a reporter gene. It has been suggested that some degree of 
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photoreceptor rescue could be injection-related in keeping with the theory 

that retinal injury also induces the release of survival factors [126]. Subretinal 

delivery of GDNF using AAV2 vector in the same animal model resulted in 

increased  photoreceptor survival with corresponding in ERG improvement in 

treated eyes [154]. It has been further shown that AAV-mediate expression 

of the gene encoding GDNF can enhance photoreceptor survival in two 

rodent models of retinitis pigmentosa, the Prph2rd2/rd2 mouse and the RCS 

rat, and affords additive improvement of retinal function when combined with 

gene replacement [63]. In this study, animals treated with the combination of 

gene replacement and GDNF had up to 50% higher ERG amplitudes than 

those give gene replacement alone. More importantly, no deleterious effect 

on retinal function was seen on ERG, unlike the paradoxical effects that have 

been reported with AAV-mediated expression of CNTF. 

 

Ciliary neurotrophic factor or CNTF has been shown to be a therapeutic 

neurotrophic agent, particularly as the delivery of the recombinant protein 

results in transient improvement of photoreceptor survival in rodent models 

of retinal degeneration [257,259]. AAV-mediated CNTF expression also 

resulted in slowing of photoreceptor cell death for up to 4 months in rodent 

models of RP such as Prph2rd2/rd2 mouse, P23H and S33ter rhodopsin 

transgenic rats [272]. However, despite the morphological protection seen 

following treatment, significant dose-dependent deleterious effects on retinal 

function were seen on ERG and behavioural tests [63] [309]. When 

administered in combination with AAV-mediated gene replacement therapy 

in Prph2rd2/rd2  mice, AAV2.CNTF delivery negated any improvement of retinal 

function by gene replacement therapy and furthermore, a marked decrease 

of 50% in ERG b-wave amplitude was seen following intraocular injection of 

AAV expressing CNTF into wild-type mice[420]. These data regarding 

vector-mediated CNTF delivery suggests that although CNTF exerts a potent 

effect on the survival of photoreceptors in retinal degeneration, there is a 

certain harmful effect exerted by this neurotrophic molecule that reduces 

overall retinal function. It has been suggested that the negative functional 

effects may be due to molecular changes and downregulation of 

photopigment expression as a consequence of long term activation of 
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signalling molecules downstream of CNTF [492]. Despite this, a recent 

phase I clinical trial of patients with end-stage retinitis pigmentosa 

demonstrated that a device that is implanted intraocularly and using 

encapsulated cell technology to deliver CNTF to the retina, is well tolerated 

for several months (the implants were removed after 6 months) [431]. This  

small scale clinical study showed that short-term CNTF delivery at low doses 

were well tolerated without any reports of negative effects on visual function. 

However, assessments of the impact on visual function were difficult to 

interpret due to the small number of patients involved and the study was not 

designed to test the efficacy of CNTF in preserving vision. As a result of the 

study, phase II/III trials have recently been initiated to investigate whether 

CNTF has any effects in prolonging visual function or improving 

photoreceptor function. 

 
Pigment epithelium-derived factor (PEDF) is a growth factor that has been 

shown to have neuroprotective properties using the recombinant protein in 

models of retinal degeneration [75] although such studies are relatively few. 

To circumvent the transient effects of PDEF due to its short half-live, viral-

mediated delivery of the protein has been used to study treatment effects. 

Benefit was observed when a lentivirus-mediated delivery of PEDF (using 

SIV.PEDF) into eyes of RCS rats showed significant preservation of 

photoreceptors  lasting up to 24 weeks post injection [328]. Histological 

analysis showed twice as many photoreceptor cells in the treated areas of 

the retina compared with untreated areas at 4 weeks post injection, while 

ERG assessment demonstrated a modest improvement with higher b-wave 

amplitudes in SIV.PEDF-treated eyes compared with SIV.lacZ-treated control 

eyes [328].  

 

Despite the encouraging aspects of these results in animal models, the 

clinical use of neurotrophic factors is thus far limited because the rescue 

effects appear to be partial and transient, and the mechanisms underlying 

the benefits afforded by these molecules are not yet fully understood. 

Ultimately, for long lasting improvement of a phenotype, it is necessary to 

prevent the death of the cells involved. Hence, using neuroprotection in 
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conjunction with gene replacement therapy could have a synergistic effect, 

as already shown in some studies above. Co-delivery of therapeutic genes 

and neurotrophic factors may result in a more effective treatment for retinal 

dystrophies in which gene replacement corrects the underlying pathological 

defect while neuroprotective agents protect against photoreceptor cell death. 

However, further studies using GDNF, PEDF, BDNF, CTNF and other 

neurotrophic factors are required before they can considered for clinical use 

alongside gene replacement in retinal dystrophies. 

 

 

1.5  Summary 
 
There has been major progress in the development of gene replacement 

therapy for inherited retinal dystrophies, made possible by technical 

advances in vector technology and better understanding of the underlying 

disease mechanisms and knowledge of potential difficulties surrounding 

gene transfer to specific retinal cells. This has led to successful rescue of 

retinal degeneration in various animal models, particularly of the forms of 

retinal dystrophies caused by RPE-specific defects. The recent positive 

preliminary results from the ongoing clinical trials of gene replacement 

therapy for RPE65 defects will undoubtedly pave the way and call for more 

gene therapy strategies for other retinal dystrophies to be developed and 

translated to clinical trials. As majority of inherited retinal dystrophies are 

caused by defects in photoreceptor-specific genes, it would be logical and 

crucial to focus the development of new gene therapy strategies for these 

disorders. These disorders have generally been more difficult to treat and 

have a variety of kinetics of photoreceptor degeneration. In such disorders, 

improved and very efficient viral vectors would be required and are most 

likely to be based on AAV vectors, which are the only vectors shown to 

transduce photoreceptor cells well. In line with these points, this study 

focuses on developing gene replacement strategy and assessing its efficacy 

to treat a form LCA and retinal dystrophies caused by mutations in a 

photoreceptor-specific gene AIPL1. Bearing in mind the difficulty in treating 
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photoreceptor defects, we will investigate the efficacy using mouse models 

which have either reduced or no Aipl1 expression and thus different rates of 

degeneration. In order to treat the different rates of degeneration, different 

serotypes of AAV vectors will be required. The experiments described in this 

study will form a comprehensive preclinical assessment of gene replacement 

therapy for AIPL1-associated retinal dystrophies and may also provide proof-

of-principle for clinical trials to treat these disorders. 
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2 Materials and methods 
 

2.1 Amplification of plasmid DNA in bacteria 
 

2.1.1 Transformation of competent cells 
 
For transformation DH5α™ competent cells  (Invitrogen Ltd., Paisley, UK) 

were thawed on ice. A 100 µl aliquot was incubated with the plasmid DNA 

(30minutes on ice) before heat shock at 42oC in a pre-warmed water bath for 

90 seconds followed by 120 seconds on ice. LB (Luria-Bertani) medium 

750µl was added at room temperature to the mix and incubated for 1 hour at 

37oC before spreading onto an LB agar plate containing 100 µg/ml ampicillin 

or kanamycin. Plates were incubated overnight at 37oC to allow growth of 

antibiotic-resistant colonies. LB agar plates were prepared using 14 g of 

Bacteriological agar (Oxoid Ltd.) per litre of water, 5 g/L yeast extract, 10 g/L 

tryptone (Oxoid Ltd), 10 g/L sodium chloride, and 100 µg/ml ampicillin or 

kanamycin.  

 

2.1.2 Amplification and recovery of recombinant plasmid 
DNA 

 
Bacterial colonies from agar plates were inoculated into 2.0 ml of LB medium 

containing 100 µg/ml ampicillin (1000X; Sigma Aldrich Company Ltd.) the 

following day and incubated at 37oC with gentle shaking at 1200 rpm 

overnight to allow growth. For small scale preparations, plasmids were 

recovered using QIAprep® Spin Miniprep Kit (Qiagen Ltd., Sussex, UK). For 

large scale preparations 200 µl of the 2 ml culture was used to inoculate a 

further 1000 ml LB medium and was incubated as described above. Plasmid 

DNA was recovered using QIAGEN® Plasmid Mega Kit (QIAGEN Ltd.). 
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2.1.3 Quantification of nucleic acid 
 
Nucleic acids produced with the QIAGEN Mega Kits were quantified using a 

Unicam UV 500 Spectrometer and the Nanodrop™ spectrophotometer. An 

absorption of 1 at OD260nm equals a concentration of 50 µg/ml double 

stranded DNA. Nucleic acids produced with QIAGEN Mini Kits were 

quantified on a 1% agarose gel. 

 

2.2 DNA analysis 
 

2.2.1 Restriction enzyme digestion 
 
Digestion of DNA was carried out in accordance to the manufacturer’s 

specifications (New England Biolabs Ltd., Herts, UK), in a 1X buffer with an 

excess of enzyme (5-10 U/µg DNA). 

 

2.2.2.  DNA electrophoresis 
 
DNA fragments were separated on a 1-1.5% (w/v) agarose gel using 1 X 

TBE buffer. Ethidium bromide 1 µl of 10 mg/ml concentration per 50 ml of 

gel) was added to enable visualization of DNA bands. A 1 kb DNA ladder 

(Bioline Ltd., UK) was simultaneously run to provide size markers. Samples 

were loaded using gel-loading dye (6 X; 0.25% (w/v) bromophenol blue and 

30% (v/v) glycerol in water). Gels were run using the voltage and duration 

required for the separation of the required DNA bands. Gels were 

photographed on an ultraviolet transilluminator. 
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2.3 Cloning and plasmid construction 
 

To create a recombinant virus for the purpose of gene transfer, most of the 

viral genome must be replaced with a recombinant genome carrying the 

therapeutic gene under the control of an appropriate promoter, which drives 

its expression in the right cell type and at an efficient level. The genes which 

encode viral capsid and are required for in-vivo replication need to be 

deleted to ensure that the recombinant virus does not invoke the an immune 

response which would lead to removal of transduced cells and short-lived 

transgene expression. Recombinant viruses are produced in-vitro and hence 

consideration needs to be given towards safety and purification issues. Risks 

of toxicity are minimized by ensuring through purification of the viral particles. 

Efficiency of gene transfer is optimized by ensuring that the recombinant 

viruses that is administered is of sufficiently high titres. 

 

2.3.1 Isolation of murine-AIPL1 cDNA 
 

The murine AIPL1 cDNA  (see appendix for cDNA sequence) was PCR 

amplified from murine cDNA. Primers used for PCR were : 

 

Maipl5 (5–GCCTGAACAAACCTCTCCCCTA)  

Maipl3 (5’-CCACCCAACCTAACCCAGTCTAAC) 

 

The PCR fragment obtained of 1016 bp in size was checked using restriction 

enzyme digests and sequenced after cloning into pGem-T easy (Promega, 

Madison, WI). 

 

2.3.2 Creating appropriate DNA fragments 
 
DNA fragments that were required for cloning were made using the 

appropriate restriction enzyme digests as indicated by respective plasmid 
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maps. Where possible, non-complemetary ends were created to enhance the 

efficiency and ensure the correct orientation of the transgene insertion. 

Where necessary, the vector molecule was pre-treated with calf intestinal 

alkaline phosphatase (New England Biolabs (UK) Ltd.) to remove 5’-

phosphate groups to prevent intra-molecular ligation. One microlitre of 

alkaline phosphatase was added after the restriction enzyme digest  and the 

mixture incubated at 37oC for 1 hour. Where a blunt ligation was necessary, 

the 5’ overhang was filled with 1µl Klenow fragment DNA-polymerase I (New 

England Biolabs (UK) Ltd.) in the presence of excess (0.5 mM) 

deoxynucletide triphosphates (dNTPs- Promega UK, Southampton, UK), 

both added after the restriction enzyme digest and incubated at room 

temperature for 15 minutes. These reactions were terminated by the adding 

of gel loading dye or where required, heating  for 20 minutes at 65oC. 

Samples were run on agarose gel and the required bands excised with a 

scapel under ultraviolet light. 

 

2.3.3 Isolation of DNA fragments from agarose gels 
 
DNA fragments excised from agarose gels were extracted from agarose 

using QIAquick™ Gel Extraction Kits (QIAGEN Ltd.) according to 

manufacturer’s specifications. DNA was eluted from the column using 50 µl 

of TE buffer (supplied by manufacturer). The concentration of the eluted 

sample was determined using the Nanodrop spectrophotometer. 

 

2.3.4 DNA ligation 
 
The ligation of gel purified DNA fragments was carried out at 16oC for 12-16 

hours, using T4 DNA ligase (New England Biolabs (UK) Ltd.) with supplied 

buffer at recommended concentrations and at insert to vector backbone 

molar ratio of 3 to 5. Where PCR fragments were ligated into pGEM®-T Easy 
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plasmids (Promega UK) ligations were performed according to 

manufacturer’s instructions. 

 

2.3.5 Checking cloned plasmids 
 
A 20 µl sample of the ligation mixture was transformed into and amplified in 

bacteria. Successful ligation was determined by obtaining the appropriate 

DNA bands following restriction enzyme digestion of the purified plasmid 

DNA. 

 

2.3.6 PCR and sequencing 
	  
To ensure that the isolated fragments have the correct sequence they were 

amplified using appropriate primers and cycling conditions. PCR reactions 

were performed in a total volume of 20 µl. 0.2 mM dNTPs (Promega UK), 25 

pM of each primer and 1 U of Taq polymerase (Promega UK), and 8 µl of 

buffer were mixed and DNA was added to a final DNA concentration of less 

than 10 ng/µl. The amplified fragments were then sequenced (MWG-

Biotech). 

 

2.4 Polymerase chain reaction (PCR) 
 
PCR reactions were performed in a volume of 30 µl using 0.33 mM dNTP 

(Promega UK), 0.5 µM of each primer and 1 U of Taq DNA polymerase 

(Promega UK), 0.5 mM Mgl2 and 8 µl of buffer supplied by the manufacturer. 

DNA was added to a final concentration of less than10 ng/µl. In each PCR 

run, an additional control reaction was made, to which no template DNA had 

been added. Reactions were cycled using a Techne Touchgene Thermal 

Cycler. The optimal annealing temperature for each primer set was 

calculated using the program PrimerSelect™ (DNASTAR Inc.) 
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Cycling conditions were based around the following: 

 Initial denaturation   5 minutes at 95oC 

 Denaturation   1 minute at 94 oC  

 Annealing   30 seconds at Ta  X  35 cycles 

 Extension    120 seconds at 72 oC  

 Final extension  10 minutes at 72 oC  

 

During the extension step, 1 minute was allowed for every kb of amplicon 

(minimum extension time 1 minute).  Five microlitres of each PCR reaction 

was analysed on an agarose gel. 

 

2.5 Tissue culture 
 

2.5.1 Cell lines and culture of cell lines 
 
The baby hamster kidney (BHK) cell line was obtained from European 

Collection of Animal Cell Cultures (ECACC, Porton Down, UK). BHK cells 

were grown in BHK-21 medium (Invitrogen Ltd) supplemented with 10% heat 

inactivated fetal calf serum (FCS), 5% tryptose phosphate broth (Invitrogen 

Ltd.), 5ml of 0.1 mg/ml streptomycin and 100 U/ml penicillin (Invitrogen Ltd.), 

5ml of 200 mM L-glutamine (Invitrogen Ltd.) and 4ml of 50 mg/ml geneticin 

G418 (Invitrogen Ltd.) were added to 500 ml of medium. 293T cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 

5 ml/500 ml of 0.1 mg/ml streptomycin and 100 U/ml penicillin and 10% FCS.  

Cells were grown in a Sanyo CO2 incubator at 37oC with 5% CO2. 

 

2.5.2 Passaging of cell cultures 
 
To ensure that cells were kept at an optimal density and to avoid overgrowth 

of cells, they were split every 2-3 days. Prior to splitting, the old medium was 

removed and plates were washed twice with sterile PBS (10 X phosphate 
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buffered saline tablets (Oxio Ltd.) dissolved in 1L sterile ddH 2O). Trypsin-

EDTA (Invitrogen Ltd.) approximately 1.0 ml for each 15 cm dish was added 

until all the cells were thinly covered. The plates were incubated at 37oC for 

15 minutes. The trypsinisation was stopped with the addition of FCS-

containing growth medium and the cells were split in the ratio of one in four.  

 

2.5.3 Long term storage of cell line 
 
Following trypsinization, the cells were pelleted by centrifugation and 5X106 

cells/ml  were resuspended in 1 ml growth media with 20% FCS and 10% 

dimethylsulfoxide (DMSO, Invitrogen Ltd.) and aliquoted to storage tubes. 

The tubes were cooled slowly to -70oC overnight in a box containing pre-

cooled isopropranolol. The next day, the cells were transferred to liquid 

nitrogen for long term storage. Frozen cells can be re-cultured by thawing the 

cryovials in a water bath at 37oC. Cells were then pelleted by centrifugation 

and the DMSO containing medium was removed. The process was repeated 

washing the cells with 1X PBS before resuspending them in the appropriate 

medium. 

 

2.6 Adeno-associated viral vectors 
 

2.6.1 Constructs 
 
The murine Aipl1 cDNA was PCR amplified from murine retinal cDNA using 

primers which have been designed to encompass the whole of the coding 

region. The PCR fragment obtained (1016 bases) was sequenced after 

cloning into pGem-T (Promega, Madison, WI) . The mAIPL1 cDNA was 

cloned between the CMV promoter and the SV40 polyadenylation site of the 

construct AAV-CMV-gfp [523] to form the construct AAV-CMV-Aipl1 (total 

length 5733 bases). The construct was then checked using a series of 

restriction enzyme digests StuI, KpnI  AccI, PstI and StuI and sequencing. 
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Refer to section 3.2 for details of cloning strategy and plasmid map.  

Recombinant AAV2 vector was generated from the murine construct , AAV2-

CMV-Aipl1.[523]. The human AIPL1 cDNA was also PCR amplified from 

human retinal DNA using primers which covered the whole coding region 

and included part of the untranslated regions at the 5’ and 3’ ends. The PCR 

fragment of 1215 bases was cloned into pGem-T (Promega Madison, WI) 

and checked by sequencing and restriction digests.  The AIPL1 cDNA was 

inserted into the parental plasmid AAV-CMV-gfp, replacing the gfp gene to 

generate the human construct AAV-CMV-AIPL1. For details of the cloning 

and plasmid map, please refer to section 3.8. The plasmid  containing human 

AIPL1 cDNA was packaged into AAV2 and AAV8 to generated two 

pseudotyped AAV viral vectors, AAV2-CMV-AIPL1 and AAV8-CMV-AIPL1, 

as described below. Recombinant AAV2 and AAV8 vectors were also made 

from the parental plasmid AAV-CMV-gfp for control experiments. 
 

2.6.2 Production of rAAV2  
 
Production of recombinant rAAV2/2 (AAV2/2) was carried out by co-

transfection of two plasmids in the presence of a helper virus in BHK cells as 

previously described [523]. Prior to the day of transfection, BHK cells were 

split and plated at concentration of 106 cells/150 mm dish and incubated 

overnight so that there was approximately 70% confluency on the day of 

transfection. Fourty dishes were used for large-scale preparation of rAAV 

particles. Recombinant AAV particles were produced using ITR-bearing 

plasmid containing AIPL1 transgene (described in section 2.6.1), the helper 

plasmid containing the rep and cap genes, pHAV 7.3, and the PS1 HSV 

helper virus. The construct plasmid containing AIPL1 and pHAV 7.3 helper 

plasmid were used to co-transfect BHK cells in a 1:1 ratio. Each 150 mm 

plate contained 30 µg of construct plasmid and 30 µg of pHAV7.3 (60 µg 

total/plate) in 10 ml Opti-MEM/plate. In a separate tube, 240 µg of a β-

integrin-targeting peptide use to improve the binding of DNA 

[(K16)GACRRETAWACG)], was mixed with 45 µl of Lipofectin reagent 

(Invitrogen Ltd., UK). The two tubes were mixed and incubated at room 
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temperature for 1 hour in order for the DNA to bind the Lipofectin-peptide 

complex. Old medium was removed from the plates and the plates were 

washed twice with Opti-MEM prior to the addition of the transfection solution. 

Then 12.5 ml of the transfection mix was added to each plate and the cells 

were incubated at 37oC for 4 hours. After that, the transfection solution was 

removed and replaced by normal growth medium containing PS1 HSV helper 

virus at MOI (multiplicity of infection= the ratio between the number of virus 

particles and the number of cells infected) of 10-20 infectious units. Cells 

were incubated at 37oC for 24 to 36 hours. At the completion of a lytic cycle, 

cells were collected and pelleted by centrifugation at 3000 g for 10 minutes. 

 

2.6.3 Purification of rAAV2  
 
Cells were harvested in batches of 10 plates, pelleted and resuspended in 5 

ml of DMEM. They were lysed by three cycles of freeze thawing between -

70oC and 37oC. Genomic DNA was removed by digestion with 50 U of 

endonuclease benzonase per millilitre of lysate at 37C for 30 min. The lysate 

was clarified by centrifugation at 3000 g for 15 min. The supernatant which 

contained the virus was retained and treated with 0.5% deoxycholic acid for 

30 min at 37oC and filtered through 5.0 and 0.8 µm syringe filters (Millipore, 

USA; SLSV R25 LS and SLAA 025 LS). After filtration, the supernatant was 

transferred onto a heparin-agarose column (Sigma, USA) which was first 

prewashed  with PBS-MK (1 X PBS, 2.5 mM KCL, 1 mM MgCl2). After the 

virus solution had run through, the column was washed  with 10 ml PBS-MK 

+ 0.1 M NaCl. Viral particles were eluted with 6 ml of PBS-MK + 0.4 M NaCl. 

The first 2 ml were discarded and the remaining suspension containing the 

purified virus was collected. The eluate was concentrated using Centricon 

100 columns (Millipore, USA) by centrifugation at 5000 xg for 25 minutes 

followed by a wash with PBS-MK. The Centricon columns were then turned 

upside down and the concentrated rAAV was spun into a collection tube. The 

average yield of the rAAV2/2 production protocol is approximately 100 µl of 

concentrated virus (1012 viral particles/ml) per 10 plates fo transfected BHK 

cells. The virus was then aliquoted and frozen at -80°C. 
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2.6.4 Production of rAAV8 
 

Production of recombinant AAV2/8 (rAAV2/8) was carried out by co-

transfection of three plasmids in 293T cells. In addition ot the pD10-based 

plasmids, pAAV (that carries rep and cap genes) and pHGTI (that carries 

helper accessory genes) plasmids were used in a CaCl2-based transfection. 

293T cells were seeded into 150 mm plates at a concentration of 106 

cells/plate. The plates were incubated overnight so that they reached 70% 

confluency the following day. The transfection medium was prepared using 

the following amounts: 

For 10 plates: 

pAAV8  -  100 µg 

pHGTI  -  30 µg 

pD10-RNAi  -  100 µg 

CaCl2 2.5M  -  1.25 ml 

dH2O  -  up to 12.5 ml 

The same amount in volume (i.e. 12.5 ml) of 2x HBS buffer was added 

dropwise to the plasmid solution followed by 25 ml of full DMEM medium. 

Five ml of the transfection solution was then added to the 293T plates 

without removing the old medium and the cells were incubated for 36 hours 

before scraping and harvesting in TD buffer.  

 

2.6.5 Purification of rAAV8  
 
The freeze-thaw cycles, benzonase and deoxycholic acid treatments were 

carried out in the same way as performed in the rAAV2/2 production. The 

lysate was then filtered through a 0.45 µm syringe filter before proceeding 

with the exchange chromatography purification using an ÄKTA™ prime 

FPLC apparatus (Amersham, UK) to bind the rAAB2/8 particles on an 

anionic sephacryl S300 and a POROS 50HQ column. The FPLC purification 

was carried out in Dr Amit Nathwani’s laboratory (UCL) with the assistance of 

Dr Jenny McIntosh. FPLC purification is carried out by binding the viral lysate 

first to the anionic column followed by the POROS 50HQ column and eluted 
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using an increasing salt gradient (Buffer A and B; see Buffers and solutions). 

Approximately 15 ml of eluate are produced by 100 plates which are 

subsequently concentrated in Centricon 100 columns to a final volume of 

approximately 200 µl. The virus was then aliquoted and frozen at -80°C. 

 

2.7 Titration of AAV particles 
 

2.7.1 Isolation of viral DNA from AAV particles 
 
Two aliquots of 1 µl and 5 µl were taken from the concentrated virus 

suspension produced in section 2.6. These samples were digested with 10 

µg (1 µl) of proteinase K (Promega UK) in 100 µl of 2 X Protein K buffer (100 

mM Tris (pH7.4), 50 mM EDTA and 0.5% SDS) and 99 µl or 95 µl ddH20 

respectively. The proteinase K digest was incubated at 56oC for 30 minutes.  

The DNA was subsequently precipitated by adding the following reagents in 

the order specified :  20 µg (1 µl of 20 mg/ml) glycogen (Sigma Aldrich 

Company Ltd), 1/10 volume (20 µl) of 3 M sodium acetate and 260 µl of pure 

ethanol. The mixture was incubated for 30 minutes at -20oC. DNA was 

pelleted by centrifugation at maximal speed 14000 rpm for  10 minutes. The 

supernatant was removed and the pellet was washed with 200 µl 70% 

ethanol and spun at maximal speed for 2 minutes and dissolved in  200 µl of 

0.4 M sodium hydroxide and 10 mM EDTA solution. 

 

2.7.2 Preparation of dot-blot 
 
A standard curve was prepared by making a dilution series of a plasmid 

containing the section of DNA that was to be used as a probe. Seven 

samples were usually prepared which ranged from 106 molecules to 1012 

molecules of plasmid in 10- fold serial dilutions. The samples were prepared 

with 0.4 M NaOH and 10 mM EDTA to a total volume of 200 µl. The samples 

from the dilution series and those from section 2.7.1 containing recombinant 

viral genomes were denatured at 95oC for 2 minutes and then immediately 
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cooled for 2 minutes on ice to prevent re-annealing. Dot-blots were prepared 

on pre-wetted 0.45 µm Hybond™- N+ membrane (Amersham Pharmacia 

Biotech, UK, Bucks,UK) – positively charged nucleic acid binding membrane 

-  in a dot blot manigold (Bio-Rad Laboratories Ltd., Herts, UK). Each well of 

the manifold was pre-washed with 200µl of ddH20 and vacuum dried. The 

denatured DNA samples were loaded and the vacuum reapplied until wells 

were empty. Then 200 µl of 0.4 M NaOH and 10 mM EDTA was added to 

each well. Excess solution was removed by applying vacuum and the 

membrane was dried between sheets of Whatman paper at 80oC for 120 

minutes. 

 

2.7.3 Preparation of probe 
 
The section of DNA to be used as the probe was excised from the plasmid 

with a restriction enzyme digest , separated on a gel and extracted from a gel 

fragment and resuspended in 50 µl of water. 35 µl of the resuspended DNA 

fragment was placed in a fresh eppendorf tube and denatured at 95oC for 2 

minutes. Immediately after, this was placed on ice for 2 minutes, 

subsequently spun down to collect the evaporated fluid from the lid.  A 

Neoblot biotinylated probe kit (Biolab) was used to label the probe according 

to manufacturer’s instructions. According to this, the components were 

added to the denatured DNA fragment in the following order: 10 µl of 5 X 

labelling mix supplied in the kit (contains random octamers), 5 µl dNTP mix 

(containing biotin-dATP), and 1 µl Klenow.i The mixture was incubated at 

37oC for 1 hour to overnight. The biotynylation reaction was terminated by 

adding 5 µl 0.2 EDTA pH8. The probe was subsequently precipitated by 

adding 5 µl 3 M NaOAc, 150 µl 100% ethanol and incubated at -20oC for 20 

minutes. After centrifuging at 14000 rpm for 10 minutes, this was washed 

with 70% ethanol, spun down and finally resuspended in approximately 20 µl 

of water or TE. Five microlitres of the probe was used for each dotblot and 

the remainder of the probe was stored at -20oC. 
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2.7.4 Hybridization of the probe to membrane 
 
The hybridization oven and hybridization bottles were preheated to 65oC for 

30 minutes before use. The membrane was wetted with ddH2O by allowing it 

to float on the surface of the ddH20  before submerging. The wetted 

membrane was placed in the pre-warmed hybridization bottle folded between 

hybridization mesh. The Church mix (pre-warmed to 65oC, 0.5 M sodium 

phosphate buffer, 7% w/v SDS, 0.01 M EDTA) was added to the 

hybridization bottle and the membrane pre-hybridised for 30 minutes in the 

hybridization oven. The biotinylated probe (section 2.7.3) was added to the 

Church mix and left to hybridise overnight at 65oC.  The membrane was then 

washed thrice with 50 ml of 33 mM NaPi buffer at 65oC. The third wash was 

left for 5 minutes at 65oC.  The membrane was placed in a plastic container 

filled with 20-30 ml of block solution (5% SDS, 125 mM NaCl, 25 mM NaPo4 

pH7.2) and incubated at room temperature on a shaking platform for 5-10 

minutes.  The membrane was subsequently processed using the CDP Star 

kit (Biolab), according to the instruction of the manufacturer as follows. The 

block solution was replaced with 20-30 ml of streptavidin diluted 1:1000 in 

block solution and incubated again at room temperature on a shaking 

platform.  Two 5 minute washes were then performed, each with wash 

solution I (which is 1 in 10 dilution of block solution) at room temperature on 

a shaking platform. The membrane was incubated with biotin-conjugated 

alkaline phosphatase that was available in a kit, Phototope-Star detection kit 

for nucleic acid (Biolab). The biotin-conjugated alkaline phosphatase was 

diluted 1:1000 in block solution and 15-20 ml of this dilution was used for the 

incubation for 5 minutes at room temperature with shaking. The membrane 

was washed once with block solution for 5 minutes at room temperature with 

shaking. Two further washes were performed with 20 ml of wash solution II 

(10mM Tris-HCL, 10mM NaCl, 1mM MgCl2 pH 9.5), each for 5 minutes at 

room temperature on a shaking platform. During the second and final wash, 

CDP-Star reagent (available in the Photope-Star Detection Kit for nucleic 

acids) was diluted 1:100 in 1 X assay buffer (comes in 25 X concentration) to 

make up a total of 2.5 ml. After the final wash, the membrane was placed 

facing upwards on a clear plastic sheet. The diluted CDP-Star reagent was 
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placed over the membrane, ensuring that all areas with dots were well 

covered. The blot was read on a chemi-luminescence reader at settings of 

470 nm, temperature  -25oC  and approximately 1-5 minute exposure time. 

 

2.8 Quantification of expression 
 

2.8.1 Total RNA isolation 
 

Whole retinas dissected from eye cups (quick frozen in liguid N2) were 

resuspended in 500 ml TRI-BD® reagent (Sigma, UK). Vigorous 

resuspension with a pipette (or a homogeniser) is essential to ensure 

breaking down of the cell wall. When the solution was homogenous, 200 µl 

chloroform was added and the samples were mixed by inversion. Straight 

after, the samples were centrifuged at 5000 xg for 15 minutes at 4°C. The 

clear top phase (containts RNA) was removed to another tube and the 

organic phases were kept for protein isolation (see 2.8.3). Equal amount of 

isopropanol was added to the clear phase and the samples were frozen for a 

minimum of 2 hours at -80°C. Overnight incubation at -20°C is favourable, 

however, because it increases the amount of RNA precipitation. Then, the 

samples were spun at 5000 xg for 10 minutes at 4°C. The supernatant was 

carefully decanted without disturbing the pellet. One ml of ethanol was added 

and the RNA pellets were spun at 5000 xg for 5 minutes at 4°C. The ethanol 

was removed and the samples were left to air dry for 5 minutes at room 

temperature. Each pellet was resuspended in 20 µl dH2O. Alternatively, the 

RNeasy Mini Kit (QIAGEN Ltd., UK) was used for RNA extraction of cell 

pellets according to manufacturer’s instructions. The RNA concentration was 

measured using a NanoDrop® ND-1000 spectrophotometer (LabTech Int., 

UK). Total RNA was stored at -80°C. 
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2.8.2 Generation of cDNA and relative quantification  
 

For cDNA generation the QuantiTect® Reverse Transcription Kit (QIAGEN 

Ltd., UK) was used according to manufacturer’s instructions. Briefly, the RNA 

samples were thawed on ice and up to 12 µl (or up to 1 µg) were added to 2 

µl of gDNA Wipeout Buffer. The reaction was made upto 14 µl with water and 

incubated at 42°C for 2 minutes. In a separate tube, 1 µl of Quantiscript 

Reverse Transcriptase, Ct4 µl of Quantiscript RT buffer and 1 µl of RT primer 

mix (containing random octamers and dT nucleotide mix) were mixed before 

adding them to the template RNA. The reaction tube (20µl final volume) was 

incubated at 42°C for 1 hour to enable reverse transcription, followed by a 3 

minute incubation at 95°C to inactivate the Quantiscript Reverse 

Transcriptase. The efficiency of the reaction provides a 1:1 conversion ratio 

of RNA:cDNA, hence up to 1 µg of cDNA was made per sample. Total cDNA 

was stored in -20°C. 

 

Fifty ng (or approximately 1 µl) of total cDNA from each sample was loaded 

onto a 96-well plate with 2X FastStart TaqMan® Probe Mastermix (ROX) 

(Roche, UK), forward and reverse primers for amplification of gene of interest 

(final concentration of 900 nM each), appropriate hydrolysis probe that binds 

the amplified area (final concentration of 250 nM; Roche, UK), ROX 

reference dye (final concentration of 400 nM; Roche, UK) and dH2O to make 

the final reaction volume up to 50 µl. The amount of cDNA template used in 

each reaction ranged from 5-500 ng with 50 ng being the usual loading 

amount. Quantitative real-time PCR was run on an ABI Prism 7900HT Fast 

Real-time Sequence Detection System (Applied Biosystems, UK) and the 

manufacturer’s software (SDS 2.2.2) was used to obtain Ct values for the 

reactions. The relative expression between comparable samples in relation 

to the expression of the gene of interest was calculated through the formula: 

2-∆∆Ct 
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2.8.3 Protein isolation and evaluation of sample protein 
content  

	  
Retinal tissue was dissected from whole eye cups and lysed using a 

commercial buffer (RIPA, Sigma Aldrich, Gillinghan, UK) with added 

protease inhibitor cocktail (Sigma Aldrich, Gillingham, UK). Cell membranes 

were disrupted using a sonicator with a micro-tip (Soniprep 150, MSE 

London UK). Lysates were stored at -80°C.  The concentration of protein in 

each sample was measured using a Lowry-based calorimetric protein assay 

done in triplicate (DC protein assay kit, Bio-Rad, Hemel Hempstead UK) 

compared to a bovine serum albumin standard curve. Samples were diluted 

in assay buffer to bring concentration to within linear portion of the standard 

curve (0.2-0.9 mg/ml). Measurement of optical density was performed using 

an ELISA reader (Emax, Molecular Devices Ltd, Berkshire UK) reading the 

absorbance at 650 nm. Equal amounts of protein were loaded in subsequent 

assays. 

 

2.8.4 Western Blot 
 
Polyacrylamide gels were made as two discontinuous gells, a 12% 

separating and a 4% stacking gel. Eight µg of each sample was made up to 

15 µl with 1X Laemni bugger and bromophenol blue was added to 0.05% 

concentration. The samples were boiled for 5 minutes and loaded on the gel 

together with a prestained molecular weight marker (Bio-rad,UK). The gel 

was run in Running buffer until bromophenol blue run out of the gel (200V for 

50 min). The glass plates were separated and the stacking gel removed. The 

separating gel was marked (cut at corner) and equilibrated in Transfer buffer 

for 20 minutes. Immobilon P membrane (Amersham, UK) was cut at the size 

of the gel and put in methanol for 15 sec. Then it was rinsed in water for 2 

min, and equilibrated in Transfer buffer for 5 minutes. The transfer formation 

was set up on the appropriate apparatus in the order: anode-Immobilon P- 

Gel-Cathode with 4 pieces of Whatman 3 MM paper in between. It was run 

for 30 minutes at 10 V. Immediately after transfer, the membrane was 

washed with PBS and immersed in methanol for 10 seconds. Then it was 
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dried on filter paper and blocked with Blocking solution for 2 hours at 4°C. 

The membrane was washed 3 times with PBS-T, and the 1° 

antibody/antibodies (rabbit anti-Aipl1 antibody, rabbit β-PDE antibody and 

mouse mononclonal anti β-actin antibody [Sigma] for loading controls) were 

incubated in Hybridisation solution at appropriate concentration overnight at 

4°C (see section 2.10.4 and 2.10 .5 for concentrations). The following day, 

the membrane was washed 3 times with PBS-T, then the horseradish 

peroxidise (HRP)- conjugated 2° antibodies (goat anti-rabbit IgG and goat 

anti-mouse IgG) were incubated in Hybridisation solution for 50 minutes at 

room temperature. The membrane was washed 3 final times with PBS-T and 

put on a plate. ECL reagents (ECL Plus Western Blotting Detection System, 

GE Healthcare) were mixed and added onto the membrane for 1 minute. The 

western blot was imaged using a UVIchemi Chemiluminometer (UVItec Ltd., 

UK). 

 

2.9 In vivo experiments 
 

2.9.1 Animals 
 
Aipl1 h/h knockdown mice that expressed lower than normal levels of AIPL1 

and Aipl1 -/- mice that were deficient in AIPL1 were used for this study. For 

control experiments, wild type C57B/6 mice were used. Treatment was 

performed only in one eye in each animal while the other eye served as an 

internal control in all experiments. This was to account for inter-animal 

variability in the rate of degeneration so that data were comparable. Each 

eye received two subretinal injections of viral suspensions or PBS, one in the 

superior hemisphere and one in the inferior hemisphere, as described in 

section 2.9.3. Subretinal injections were performed in 4-5 weeks old mice. 

Animals were sacrificed by exposure to carbon dioxide or cervical 

dislocation. All animals were cared for in accordance with the Animal 

Scientific Procedures Act 1986 and procedures were in accordance with the 

ARVO statement for the Use of Animals in Ophthalmic and Vision Research. 
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2.9.2 Animal anaesthesia 
 
For Intraocular procedures, animals were anaesthetised by intraperitoneal 

injections of Dormitor (1 mg/ml, Pfizer Pharmaceuticals, UK) and ketamine 

(100 mg/ml, Fort Dodge Animal Health, UK) mixed with sterile water in the 

ratio 5:3:42. Young mice weighing 200 g received 0.2 ml of the anaesthetic 

solution. After treatment, 1 % Chloramphenicol (FDC International Ltd., UK) 

was applied topically to the cornea. To reverse the anaesthesia, 0.2 ml of 

Antisedan (0.10 mg/ml), Pfizer Pharmaceuticals, UK) was injected 

intraperitoneally and the mice were placed into an oxygenated chamber on a 

heat mat until they regained consciousness. All animal anaesthesia and 

recovery were performed by the author. 

 
 

2.9.3 Subretinal injections  
 
In the Aipl1 h/h mice, subretinal injections were performed at postnatal age 

of 4 weeks, when animals were older and their eyes less susceptible to 

surgical trauma and significant photoreceptor cell loss has not yet occurred 

at this age. In the  Aipl1 -/- mice, subretinal injections were performed at 

postnatal day 12 due to the early onset of photoreceptor degeneration; at this 

age, the mouse retina is fully developed and the mice have opened their 

eyes thus facilitating subretinal injections and photoreceptor degeneration is 

not yet established at this stage. Animals were anaesthetised as described in 

in section 2.8.2 and pupils dilated with tropicamide 1% and phenylephrine 

2.5%. Subretinal injections were performed under the guidance of an 

operating microscope. The fundus was visualized by means of a contact lens 

system consisting of a drop of coupling medium solution    (Viscotears, 

Novartis Pharmaceuticals, UK) on the cornea and a glass coverslip placed 

against the cornea. A 10 mm, 34 gauge needle, mounted on a 5 µl Hamiton 

syringe (Hamilton, Bonaduz, Switzerland) was used to inject the vector 

suspensions intraocularly. The tip of the needle was guided underneath the 

coverslip, tangentially through the sclera at the equator of the globe to create 

a self-sealing tunnel into the subretinal space. Using direct visualization via 
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the microscope, it was possible to ascertain that the needle tip was in the 

correct space by bringing the needle tip into focus between the retina and the 

RPE. A volume of 1.5 µl of virus suspension containing around 108-109 

particles of rAAV was injected to produce a transient bullous retinal 

detachment which involved about 30% of the fundus in the superior 

hemisphere. A second injection was performed subsequently to produce a 

similar detachment in the inferior hemisphere. All animal subretinal injections 

were performed by James Bainbridge with the assistance of the author. 

 

2.9.4 Electroretinography method and analysis 
 
Electroretinography (ERG) from mice was recorded in a standardised fashion 

at various pre-determined time points. All animal ERGs were performed by 

the author. All animals were dark-adapted overnight (16 hours) prior to ERG 

recording. Animals were anaesthetized for ERG and pupils were dilated 

using tropicamide 1% (Chauvin Pharmaceuticals Ltd.)applied topically prior 

to recording. A water-based coupling medium (Viscotears, Novartis 

Pharmaceuticals Ltd., UK) was used to improve electrical contact with the 

electrode and keep the eyes moist during the recording procedure. All 

manipulations before ERG were performed under dim red light illumination. 

ERGs were obtained using commercially available systems, Toennies 

Multiliner Vision, (Jaeger/Tonnies, Wurzburg, Germany) and Espion ERG 

Diagnosys system (Diagnosys LLC, Cambridge UK). 

 

Ganzfeld ERGs were obtained from both eyes simultaneously using contact 

platinum corneal electrodes on each eye and one reference electrode placed 

sublingually. Midline reference and ground electrodes were placed 

subdermally in the center of the forehead and caudally. Electrode 

impedances were kept symmetrical and low between 5 and 10 kOhm. 

Scotopic flash intensity series was performed. Recordings were filtered from 

0-1 kHz with a sampling frequency of 5 kHz.   In all measurements, 400 ms 

of response was recorded. The first 10 ms of each recording was 

automatically used to zero the trace.  
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For scotopic flash recordings using the Tonnies Mulitliner Vision, single flash 

intensities were obtained at light intensities increasing from 0.1 mcds/m2 to 

3000 mcds/m2. Ten responses per intensity level were averaged with an 

inter-stimulus interval of 5 s (0.1, 1, 10, 100 mcds/m2) or 5 responses per 

intensity with 17 second interval (1000 and 3000 mcds/m2). Readings 

obtained were analysed with software provided from Tonnies Multiliner 

Vision.  For scotopic flash examination using Espion ERG Diagnosys 

system, a multiple flash intensity series was performed, with light intensity 

increasing from 0.001 cd.s/m2  to 5 cd.s/m2 (-3 to 0.5 log cd.s/m2). Ten 

(intensities < 1 cd.s/m2) or 5 (intensities ≥ 1 cd.s/m2) responses per intensity 

were collected and averaged for use in subsequent analysis.  

 

 

2.10 Histological methods 
 

For histological and immunohistochemistry analysis, mice were sacrificed at 

various pre-determined time points to examine for evidence of a therapeutic 

effect, which took into account the transduction kinetics of the vector being 

used, timing  of the subretinal injections and the rate of retinal degeneration 

in the animals. More specific details regarding exact time points used in the 

different experiments are described in Chapters 3 and 4. 
 

 

2.10.1 Paraffin wax sectioning 
 
Animals were sacrificed by exposure to CO2. Eyes were immersion-fixed in 

4% (w/v) paraformaldehyde overnight. Eyes were dehydrated overnight in a 

Leica Histokinette Processing machine and embedded in paraffin wax. 

Sections 7µm were cut using a microtome and stored at room temperature. 
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2.10.2 Cryosections 
 
Animals were sacrificed by exposure to CO2. Eyes that were designated for 

AIPL1 immunostaining were embedded directly in Optimal Cutting 

Temperature (O.C.T) medium (RA Lamb, E. Sussex, UK) and frozen in 

isopentane that had been pre-cooled in liquid nitrogen. Eyes which were 

designated for beta-PDE immunostaining were immersion-fixed in 4% (w/v) 

paraformaldehyde for 2 hours at room temperature. They were then 

cryoprotected by immersion in 20% (w/v) sucrose solution at 4C 

overnight..The eyes were then embedded in O.C.T. medium and frozen in 

isopentane which had been pre-cooled in liquid nitrogen. Specimens were 

stored at -80C and cut using a cryostat (Bright, UK) at thickness of 10-12µm. 

Sections were kept frozen at -20C until use. 

 

 

2.10.3 Staining of sections by haemoatoxylin and eosin 
 
Paraffin wax-embedded and cryosection specimens embedded in O.C.T 

were washed in xylene and alcohols to water. Sections were stained using 

haematoxylin for 5 minutes and washed in distilled water. Sections were then 

stained using eosin for 5 minutes and washed in distilled water. Slides  were 

then passed through increasing concentrations of alcohols to xylene and 

mounted in DPX. 
 

 

2.10.4 Immunohistochemistry of AIPL1  
 
Unfixed cryosection slides were air dried for 10 minutes. Slides were post-

fixed for 1-2 minutes with 2% (w/v) paraformaldehyde and then washed with 

PBS.  The slides were then incubated for 1 hour in blocking buffer (5% (v/v) 

normal goat serum (Dako Ltd) in 1%BSA/TBS (w/v) and 0.1% Triton-X100 at 

room temperature. Following this,the slides were incubated overnight with 

the primary antibody (anti-rabbit AIPL1 – gift from Tiansen Li) at a dilution of 
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1:2000 in blocking buffer at 4C. After 3 washes (10 minutes with TBS), the 

slides were then incubated with the secondary antibody, goat anti-rabbit 

Alexa-471 or Alexa-546 at a dilution of 1:500 in blocking buffer and left at 

room temperature for 2 hours. The slides were washed again three time (10 

minutes with TBS). Counterstaining of the nuclei was performed using Hoerst 

dye at dilution of 1:1000. Excess solution was removed and slides were 

mounted in fluorescent mounting medium (Fluormount, Dako), Sections were 

examined by fluorescent microscopy and images captured on Leica 500 

(Zeiss, Germany) digital camera and viewed on Adobe Photoshop software. 

Sections were also analysed by confocal microscopy. 

 

 

2.10.5 Immunohistochemistry of β-PDE in rod inner    
segments 

 
Cryosections which were designated for beta-PDE immunochemistry 

(section 2.9.1) were air dried for 10 minutes. The slides were then rehydrated 

for 5 minutes with water and incubated with blocking buffer consisting of 4% 

(v/v) normal goat serum and 1% BSA (w/v) for 1 hour at room temperature. 

The primary anti-rabbit β-PDE antibody (Affinity BioReagents, Neshanic 

Station, NJ), was applied at a dilution of 1:500 in blocking buffer and left to 

incubate overnight at 4C. On the next day, following 3 washes using the 

blocking buffer (3x 10 minutes), the slides were incubated with the secondary 

goat anti-rabbit antibody Alexa 594-conjugated streptavidin (Molecular 

Probes Europe, Leiden, The Netherlands) at a dilution of 1:500 in TBS for  2 

hours. The slides were then washed twice with TBS (2X 10 minutes) and 

Hoerst dye 1:1000 dilution in blocking buffer was applied. Following a final 

wash with PBS, slides were mounted with fluorescent mounting medium 

(Fluormount, Dako) and examined using fluorescent microscopy and images 

were captured on Leica 500 (Zeiss, Germany) digital camera and viewed 

using Adobe Photoshop software. Sections were also analysed by confocal 

microscopy 
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2.10.6 Confocal Imaging 
	  

Cryosections were analysed using the 3-laser ZEISS LSM 510UV Confocal 

Imager and its software was used to capture images at X40 and X60 

objective, at various thickness layers (Z-stack) of the section. The images of 

the Z-stack were either used individually or as projected composite of each 

other. 

 

 

2.10.7 Fixation of eyes for semithin and ultrathin 
sections 

 
At various time points mice were sacrificed and their eyes were immediately 

removed and orientated with a nasal stitch. Then eyes were immersion fixed 

in 3 % glutaraldehyde and 1 % paraformaldehyde buffered to pH 7.4 with 

0.07 M sodium cacodylate-HCl buffer (Karnovsky’s; 0.2 M 

(CH3)2AsO2Na.3H2O with 0.2 N HCl). After 12 hr the anterior part of the eye 

was removed by microdissection. The posterior segments were then 

osmicated for 2.5 hr in a 1% aqueous solution of osmium tetroxide, followed 

by a dehydration series through ascending alcohols (50 – 100%, 10 min per 

step). After 3 changes of 100% ethanol, specimens were passed through 

propylene oxide (3x 10 min) and left overnight in a 50:50 mixture of 

propylene oxide and araldite. Following a single change to fresh araldite (5 hr 

with rotation) the specimens were embedded in resin and cured for 48 hr at 

60ºC. 

 
 

2.10.8 Semithin sections 
 

Semithin sections were cut and stained by Dr. Emma West. Semithin 

sections (0.7 µm) were cut using a Leica ultracut S microtome fitted with a 

diamond knife (Diatome histoknife). Sections were stained with toluidine blue 

stain (25 ml 2 % hydrated sodium borate, 25 ml 100 % ethanol, 0.5 g 
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toluidine blue, SPI-ChemTM) and slides were mounted with DPX after the 

sections had dried. Sections were analysed using a Leitz Diaplan 

microscope for observation and imaged with a Leica DC 500 digital camera. 

 
 

2.10.9 Ultrathin sections 
 

The ultrathin sections were cut, stained and prepared for electron 

microscopy by Dr Peter Munro.  Ultrathin sections (50 nm) were cut using a 

Leica ultracut S fitted with a diamond knife for ultrathin sections (Diatome 

histoknife for ultrathin sections). Sections were taken of treated areas of 

retinae and collected onto grids. Sections were stained with uranyl acetate 

for 10 min and lead citrate for 7 min and then washed with dH2O. After the 

sections had dried they were analysed by electron microscopy (JEOL 1010 

TEM). 

 

 

2.11 Statistical Analysis 
	  

The choice of an appropriate statistical method is important to draw 

conclusions from data that are subject to experimental error. Generally, 

statistics yield the probability value for a particular result. In science, a 

probability (p) of 0.05 or less is usually accepted as convincing evidence that 

a particular outcome is significant and not due to chance.  

 

A “Student's t-test” can be performed knowing only the mean and standard 

deviation of two data sets. The Student's t-test determines a probability that 

two populations are the same with respect to the variable tested. The 

populations are assumed to follow a normal distribution (Gauss distribiution). 

For independent samples, as it was the case for most of the histological data 

presented in this thesis, an unpaired Student’s t-test was used (unless stated 

differently). This test compares two small, independent sets of data that do 

not have to have the same number of data points in each group and are 
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collected randomly. In order to evaluate the significance of the difference in 

number of surviving photoreceptor cells and retinal layer thickness between 

either non-dystrohic or dystrophic, treated or untreated animals, cell counts 

and thickness meassurements were carried out and on 10 sections per eye, 

in the middle of the superior injection site. Since the number of animals for 

each condition varied, the sets of data should to be regarded as randomly 

collected and independent.  Therefore an unpaired Student’s t-test was 

applied. 

 

For functional ERG results presented in this thesis, a paired Student’s t-test 

was performed. A paired t-test can only be applied if the numbers of points in 

each data set are the same, and if they are organised in pairs. Generally, it is 

used when measurements are taken from the same subject before and after 

manipulation, in this case the viral mediated expression of a transgene. 

Since ERG records electrical responses of both eyes simultanously, and 

recordings can be obtained at different time points over a period of time from 

the same animal, a paired Student’s t-test was used. For each animal, the 

height of b-wave amplitude of the ERG recording obtained at a flash intensity 

of 100 mcds/m2 was used for statistical analysis. The b-wave values (a-wave 

through to b-wave peak) of the treated (right) eye were paired with the 

untreated contralateral (left) eye to provide an internal control. A paired 

Student’s t-test was used to evaluate significance (p<0.05). This method 

controls for interanimal variance and test-retest variance present in rodent 

ERGs. 

 

2.12   Patient Screen 
	  

2.12.1  Patients and controls 
	  

The patient panel consisted of 309 probands with simplex and autosomal 

recessive retinal dystrophy who were ascertained from the medical retinal 

clinics at Moorfields Eye Hospital. The study was conducted in accordance 
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with the tenets of the Declaration of Helsinki and was approved by Moorfields 

Hospital Ethics Committee. All patients gave written informed consent to be 

included in the study and provided a blood sample for subsequent DNA 

extraction and DNA analysis.  

 

The control panel consisted of 96 control DNA samples originating from a 

normal population of randomly selected, non-related UK Caucasian blood 

donors. The panel (Human Random Control-1 DNA panel) was obtained 

from European Collection of Cell Cultures (ECACC). 

 

 

2.12.2 DNA isolation 
 

Blood samples were collected in EDTA tubes. DNA was extracted using a 

Nucleon Genomic DNA Extraction Kit (BACC2, Tepnel Life Sciences plc) 

following manufacturer’s instructions. Solution A provided by thew supplier 

was added to each sample and samples were shaken for 5 min. After 

centrifugation for 7 min at 5000xg the supernatant was carefully removed. 

Each pellet was then resuspended in 2 ml solution B, samples were 

transferred to a new tub and mixed with 450 µl of sodium perchlorate. Tubes 

were inverted several times in order to mix the samples and 1.5 ml 

chloroform was added. After mixing thoroughly 300 µl of Nucleon resin was 

added and samples were centrifuged for 5 min at 4000xg. The aqueous 

phase containing the DNA was transferred into a new tube and mixed with 6 

ml 100 % ethanol. After a 5 min spin the supernatant was removed and DNA 

pellets were washed with 500 µl 70 % ethanol. Samples were centrifuged 

again at 4000xg for 5 min, the ethanol was removed and pellets were air 

dried. The DNA was resuspended in 400 µl dH2O, rotated over night at 4°C 

to dissolve DNA, and stored at -20°C. 
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2.12.3 PCR 
	  
Primers were designed corresponding to intronic sequences for PCR 

amplification of all 6 exons of AIPL1. Sequences of primers used are listed 

below. All PCR reactions were performed in a total volume of 30 µl using 200 

µM dNTPs (Promega UK), 0.5 µM of each primer, 2 µM DNA, magnesium 

containing Optimase reaction buffer (Transgenomic UK) and 2.5 U TaqGold 

(Transgenomic UK). Reactions were cycled using a Techne Touchgene 

Thermal Cycler. The optimal annealing temperature for each primer set was 

calculated by using the program PrimerSelectTM (DNASTAR Inc.).  

 

Cycling conditions were as followed: 

Initial denaturation  5 min at 95°C 

Denaturation   1 min at 95°C 

Annealing   15 sec at Ta 

Extension   1 min at 72°C 

Final extension  10 min at 72° 

 
Table 1.1  Amplification of the human AIPL1 gene. Primer pairs were designed to cover 

the entire coding sequence and important intronic sequences of the human AIPL1 gene (see 

also Appendix). Primer sequences and annealing temparatures for PCR are summarised in 

the table. 

 

  

AIPL1 Forward primer 5’-3’ Reverse primer 5’-3’ Ta [°C] 

Exon 1 ACTGGAAGCAAAGGTGGATG GCCCATGCTAAAGTTGAATCT 54 

Exon 2 TGAACTGAGTGAGCTGACCC GAATAAGTTTGCAGGACTGGCTTTG 58 

Exon 3 CATAGTGAGGGAGCAGGATTC CATGGCTTATGAACCCTCTCG 56 

Exon 4 CTTGTCTGTATGCACTTGACCAG CAGGGAGAAGGTCAGCCATG 60 

Exon 5 GAAGTGGCGCTGACTCTGG CGGCTGGGTGGAGACAAG 56 

Exon 6 TTGAGGAAACCGAGGGATGG CAATCGAACCAGAAGTGACCAGG 60 

35 cycles 
	  	  	  
	  



164 
 

2.12.4 Gel electrophoresis 
 
Fragment size and purity of PCR reactions were controlled by gel 

electrophoresis. Samles were loaded onto a 2 % agarose gel made with 1% 

TBE buffer and 8 µl ethidiumbromide/200 µl total volume. The fragments 

were characterised under UV-light. 

 

2.12.5 ExoSapIT treatment 
 

Samples were processed for direct sequencing for characterisation. For each 

sample two reaction – one for the forward primer and one for the reverse 

primer – were set up. DNA fragments were purified by ExoSAP-IT® (Usb 

Corporation) treatment in a total volume of 18 µl using 2 µl (approximately 10 

ng) of the amplified DNA fragment and 0.5 µl ExoSAP-IT enzyme with sterile 

dH2O. The purification mix was incubated for 15 min at 37°C and then the 

enzyme was inactivated for 15 min at 80°C.  

 

2.12.6 Big Dye 
 

Samples were sequenced using a BigDye® Terminator v1.1 Cycle 

Sequencing Kit	   (Applied Biosystems). The Big Dye was diluted in 2.5 x Big 

Dye Buffer containing 200 mM Tris pH 8, 5 mM MgCl2 with sterile dH2O. To 

each ExoSAP IT treated sample 1 µl Big Dye v1.1 and either 1 µl (0.8 µM) 

forward or 1 µl reverse primer were added.  

Cycling conditions were as followed:  

30 cycles: 95°C for 30 sec 

  50°C for 30 sec 

  60°C for 4 min 
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2.12.7  Purification and sequencing 
 

Samples were then purified using Millipore MontageTM Cleanup Kit (Millipore 

Corporation). The total volume of samples was transferred to a Millipore 96 

plate and a vacuum (15 to 20 psi) was applied for 10 min. Each well was 

washed twice with 25 µl injection solution supplied by manufacturer. Between 

and after the washing steps a vacuum was applied. Another 25 µl of injection 

solution was added to each well, the plate was sealed and shaken for 5 min 

to recover the purified PCR samples. Samples were then transferred onto an 

ABI® 96 plate (Perkin Elmer, Warrington, UK) for sequencing. Samples were 

run over night on an ABI Applied Biosystems 373A DNA Sequencer. 

Sequences were analysed using the DNASTAR software package 

(DNASTAR Inc.). 
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2.13 Buffers and solutions 
 

Ampicillin (1000 x): 50 mg/ml ampicillin (Sigma-Aldrich Company Ltd.) in 

dH2O, sterile filtered, stored at -20°C 

 

Blocking solution (for Western Blot): 1X PBS, 3% BSA or non-fat dried milk 

solution,  0.5% Tween 

 

Big Dye Buffer (2.5 x): 200 mM Tris pH 8, 5 mM MgCl2 with sterile dH2O 

 

Buffer A (for AAV2/8 purification): 5.65 g Bis-Tris propane, 2.42 g Tris up to 1 

l with dH2O, pH 9;  filtered through 0.2 µm. 

 

Buffer B (for AAV2/8 purification): Buffer A + 175.32 g NaCl; filtered through 

0.2 µm. 

 

Church Buffer: 21 g of NaH2PO4, 48.55 g Na2HPO4, 70 g of SDS, 0.5 M 

EDTA and dH2O to 1 litre. 

 

DNA loading buffer (6 x): 0.25 % (w/v) bromophenol blue and 30 % (v/v) 

glycerol in water 

 

HBS (2x): 16 g NaCl, 0.74 g KCl, 0.2 g NaH2PO4H2O, 2 g Dextrose, 10 g 

HEPES, up to 1 l with dH2O, pH 7; filtered through 0.2 µm 
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LB growth medium: 14 g Bacteriological agar (oxoid Ltd.) per litre of water, 5 

g/l yeast extract, 10 g/l tryptone (Oxoid Ltd.), 10 g/l sodium chloride, and 50 

µg/ml ampicillin 

 

PBS (1 x): 85 g NaCl, 4.3 g KH2PO4, dH2O to 10 litres, pH 7.2 

 

PBS (tissue culture): 10 phosphate buffered saline tablets (Oxio Ltd.) 

dissolved in 1 l sterile ddH2O 

 

PBS-MK: 1 x PBS, 2.5 mM KCl, 1 mM MgCl2 

 

PBS-T: PBS 1x with 0.05 % (v/v) Tween-20. 

 

Periodate lysine paraformaldehyde: 2% paraformaldehyde and 0.05% 

glutaraldehyde 

 

Proteinase K buffer: 100 mM Tris (ph 7.4), 50 mM EDTA and 0.5 % SDS 

 

Sodium cacodylate buffer (0.07 M): 0.2 M (CH3)2AsO2Na.3H2O with 0.2 N 

HCl 

 

Sodium phosphate buffer: 97.1 g Na2HPO4, 43.6 g NaH2PO4, pH 7.2 

 

TBE (50x):  242 g Tris, 57.1 ml Boric acid, 18.6 g EDTA, up to 1 l with H2O 
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Toluidine blue stain: 25 ml 2 % hydrated sodium borate, 25 ml 100 % 

ethanol, 0.5 g toluidine blue (SPI-ChemTM) 

 

Western blot sample buffer: 50%(v/v) 0.5 M Tris-Cl, pH6.8, 50% (v/v) 

glycerol, 10% (w/v) SDS, 0.5 M dithiothereitol, 40 mM bromophenol blue. 

 

Western blot gel buffers: Stacking gel- 0.5 M Tris-Cl, pH 6.8, 0.4% (w/v) 

SDS;  Running gel- 1.5 M Tris-Cl, pH 8.8, 0.4% (w/v) SDS). 

 

Western blot running buffer:  25 mM Tris base, 0.2 glycine,  0.1% SDS. 

 

Western blot transfer buffer:  192 mM glycine, 25 mM Tris base, 20% (v/v) 

Methanol, 0.2% (w/v) SDS. 
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3  AAV2/2 - mediated gene replacement 
therapy in the AIPL1 hypomorphic mouse 
 
 

3.1  Introduction 
  

The aim of the work described in this chapter was to determine the potential 

value of AAV2 vectors in alleviating a primarily photoreceptor-based retinal 

degeneration caused by defects in the AIPL1 gene. Inherited retinal diseases 

such as retinitis pigmentosa and LCA are characterised by progressive visual 

impairment due to photoreceptor cell loss. Most forms of inherited retinal 

dystrophies are caused by mutations in genes expressed in rod and cone 

photoreceptors or in the retinal pigment epithelium (RPE).[95][407] There is 

currently no cure for inherited retinal dystrophies. With the advances in gene 

transfer systems, gene therapy holds great potential for the treatment of 

inherited retinal diseases[2,9,12,326,363,455,464,471,496].The goal of a 

gene-based strategy to treat a genetic disease such as retinal dystrophy is to 

achieve efficient, long-term expression of the transgene using only a single 

administration of vector.  Many vectors based on different viruses such as 

adenovirus, herpes simplex virus and human immunodeficiency virus have 

been shown to mediate efficient gene transfer to the RPE [99].  However so 

far, the adeno-associated viral vectors has been particularly effective for 

retinal gene transfer  and are the only viral vector to efficiently transduce 

both RPE and photoreceptor cells. [13][418].[13,388,408]   

  

In this study, the goal is to treat a severe photoreceptor-specific 

degeneration and the efficient transduction of photoreceptor cells is of 

particular importance. Various serotypes of AAV have been isolated from 

non-human primate and human tissues and have different ability to 

transduce different retinal cell types in vivo.[30] [387][508]. Among these, 

AAV2/2 is the serotype most commonly used for the development of ocular 

gene therapy in the eye. Following subretinal administration, rAAV2/2 
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mediate gene expression in both photoreceptor and RPE cells while 

intravitreal delivery results in transduction of retinal ganglion cells. [178][300]  

Photoreceptor transduction by AAV2/2 is aided by the presence of heparan 

sulphate proteoglycan  and other coreceptors such as human fibroblast 

growth receptor 1 (FGFR1) and integrins αvß5 on the cell membrane. 

[385][454]  While there are some serotypes that transduce only the RPE, 

those that tranduce photoreceptor cells also tranduce the RPE.  

 

Despite this the availability of relatively efficient vector systems, rescue of 

retinal degeneration has achieved mixed success. Better outcomes have 

been generally seen in models of retinal degeneration in which there is an 

RPE defect caused for example by mutations in RPE65 and 

MERTK[1,437,471]. This is partly because even with currently available 

vectors, gene delivery to RPE cells is more efficient and widespread than to 

photoreceptors.  In addition, the photoreceptor cells in these conditions are 

inherently healthy despite the metabolic defect in the RPE and may respond 

very well to partial correction of RPE function.  Gene transfer approaches for 

photoreceptor-specific retinal degenerations have previously been more 

difficult, although there are now increasing number of studies reporting 

successful restoration of photoreceptor function and prolongation of 

photoreceptor survival [518][326] [363][9,243]. Another factor that might 

affect how amenable a mouse model may be to gene therapy is the speed of 

disease progression. The window of opportunity in a disease model is 

created by the balance between time for vector-mediated expression and 

rate of photoreceptor degeneration. This is particularly relevant to when sing  

AAV2/2 vectors. Transgene expression is detectable only at  2-3 weeks after 

subretinal injection, peaking after 6-8 weeks. [418] In slower retinal 

degenerations such as the Mertk and RPE65 mutations, there is a longer 

time window for the onset of transgene expression before a critical mass of 

photoreceptors have been lost. As a result, these diseases are generally 

easier to treat using AAV2/2 vectors.  In models of rapid degeneration, the 

onset and speed of disease precludes effective rescue by AAV2/2. An 

example is the rd1 mouse which is characterized by rod photoreceptor 

degeneration from P8 onwards and total loss of rod photoreceptors by 4 
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weeks of age, By the time maximal transgene expression is achieved in the 

target tissue at 6 weeks, most photoreceptor cells would have already been 

lost.  On the other hand, it may be difficult to detect any improvement and 

demonstrate effective rescue in retinal degenerations that are too slow. 

Following treatment with a therapeutic vector, any benefit would only become 

apparent once substantial cell loss has occurred in control eyes in 

comparison with treated eyes. An example is the RPGR murine model in 

which noticeable retinal degeneration is seen at 6 months of age and 

progresses slowly after[189]. As a result, any therapeutic effect would only 

be detected after more than 6 months following treatment. 

 

As described in previous chapters, there are currently 2 mouse models of 

AIPL1-related retinal degeneration, the Aipl1 knockout mouse model (Aipl1 -

/-) and the hypomorphic AIPL1 mouse model (Aipl1 h/h) in which there is 

reduced expression of AIPL1. Both models exhibit normal retinal histology 

and photoreceptor morphology at birth, and is followed by photoreceptor 

degeneration thereafter which occurs at different rates in each case. In the 

Aipl1 -/- mouse, photoreceptor degeneration is very rapid and completed by 

4-6 weeks (depending on the background strain) [391][119]. As a result, the 

treatment of this mutant may not straightforward due to the rapid nature of 

the retinal degeneration which is similar to the rd mouse in time course. 

Retinal degeneration in the Aipl1h/h mouse occurs over months rather than 

weeks and approximately half of photoreceptor cell loss is seen at 6-8 

months. The Aipl1 h/h mouse is a strong hypomorph in which the level of 

AIPL1 is decreased to 25% of wild-type and the level of cGMP PDE, a 

purported client protein is similarly reduced[282]. In this slower model, 

normal retinal development is also noted toprior to the onset of photoreceptor 

degeneration. Thus there is a rationale that replacing AIPL1 would prevent 

the catastrophic events that commit normal photoreceptors to the fate of cell 

death.  With a slower rate of degeneration, the hypomorphic Aipl1 mouse 

model might provide a better model to assess gene-based strategies since 

there is a much greater window of opportunity for therapeutic intervention 

exists. Thus, the hypomorphic model was chosen as the initial animal model 
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in which to assess the efficacy of gene replacement therapy for AIPL1 

deficiency. 

 

 

3.2    Cloning of AIPL1 construct 
 
To produce an rAAV2 vector expressing Aipl1 transgene, a construct was 

created by cloning the mouse Aipl1cDNA between the ITRs of the AAV2 

genome. The normal copy of murine Aipl1 cDNA was amplified from murine 

cDNA using primers which have been designed to encompass the whole of 

the coding region. A PCR fragment of 1016 bp which was consistent with the 

size of murine Aipl1 cDNA was isolated on gel electrophoresis. The Aipl1 

cDNA was cloned into the pGemT.Easy vector which contained the ampicillin 

resistance gene as a selection marker. The plasmid also contains a 

polylinker sequence that facilitates cloning since the PCR product is then 

flanked by a variety of different restriction enzyme sites. Following 

amplification of pGemT-Aipl1, the sequence of Aipl1 was checked using 

digestion with a series of restriction enzymes and sequenced to ensure that 

no mutations had occurred during amplification and isolation of the fragment. 

 

The rAAV backbone containing by the CMV promoter was obtained from 

another construct AAV-CMV-gfp. The restriction enzymes SacII and NotI 

were used to excise the gfp gene. The AAV backbone containing CMV 

promoter was extracted from gel as a 4642 bp fragment (Figure 3.1A). 

Similarly, the murine Aipl1 cDNA was excised from the plasmid PGemT-Aipl1 

using the same enzymes SacII and Not I and following separation by gel 

electrophoresis, a fragment of 1091 bp was obtained (Figure 3.1B). The 

murine Aipl1 fragment was then ligated into pD10 backbone between the 

CMV promoter and SV40 polyadenylation site to form a construct of 5733 bp 

termed AAV-CMV-Aipl1 (Figure 3.2). The ligation mix was transformed into 

DH5α cells and DNA was prepared from the colonies.  A total of 7 colonies 

were obtained and prepared to give 7 miniprep DNA samples. These DNA 

samples were checked using restriction digests with StuI and KpnI. Correct 
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fragments were found in 3 samples. These samples were checked with 

further restriction digests with AccI, StuI, PstI and StuI and correct fragments 

were obtained in all of them.  Finally, a DNA megaprep prepared from 

sample no.2. This was rechecked using restriction digests with AccI, StuI, 

KpnI and PstI (Figure 3.3) and also sequencedS. This construct would later 

be used to generate the recombinant AAV vector expressing Aipl1 for 

therapeutic assessment. 
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Figure 3.1.  Restriction enzyme digest. 

A) The ~ 4.6 kb AAV vector backbone  was isolated from the parental plasmid AAV-

CMV-Egfp. 

B) The ~1.0 kb murine  Aipl1 cDNA was isolated from PgemT-Aipl1 plasmid and 

cloned into the AAV backbone  to form the therapeutic construct AAV-CMV-Aipl1. 

Both restriction digests are flanked by1 kb DNA ladder (Bioline Ltd., UK) 
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Figure 3.2.  Map of the construct AAV-CMV-Aipl1.   

The transgene AIPL1 was cloned downstream of the CMV promoter fragment , followed by 

SV40 polyA signal and is flanked by viral ITRs . The total size of the construct was 5733 bp. 
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Recombinant AAV serotype 2(rAAV2) carrying the Aipl1 transgene was 

produced using a triple transfection method. Briefly, the method which is 

described in detail in section 2.6.2 uses four main components for the 

production of the rAAV vector. These are the rAAV plasmid, a replicating 

amplicon pHAV7.3 that contains the rep and cap genes and the PS1 HSV 

helper virus, and a packaging cell line. The rAAV constructs and pHAV7.3 

were used to co-transfect BHK cells in a 1:1 ratio. The cells were then 

incubated for 24 to36 hours with PS1 HSV helper virus at 37oC. Before the 

completion of the lytic cycle, the infected BHK cells were harvested and 

centrifuged to isolate the cell pellet.  Following resuspension of the cell pellet, 

the suspension underwent repeated freeze-thawing and enzymatic treatment 

to release the virus from cells. The lysate was purified using a heparin 

column to isolate rAAV2 particles. The molecular titre was determined using 

dot-blot analysis.  Concentration of the virus suspension was estimated by 

comparing to a dilution series, typical titres in this study were about  5 x 1011. 

(Figure 3.4) Two constructs were used to generate rAAV2 for this 

Figure 3.3. Restriction digest with 

AccI, StuI, PstI, KpnI of DNA 

megaprep from the colony 2 of 

ampicillin-resistant colonies of 

pD10-CMV-AIPL1. Correct fragments 

expected with AccI restriction digest 

were 341 bp and 5392 bp and  

expected fragments with StuI digest 

were 497 bp and 5236 bp. With PstI 

digest, fragments expected were 424 

bp,639 bp and 4604 bp while with KpnI 

digest, expected fragments were 580 

AccI StuI PstI KpnI 

 1000 bp 

 500 bp 

 5000 bp 
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experiment, AAV-CMV-Aipl1 and AAV-CMV-egfp. The AAV-CMV-egfp 

construct was a “parental” plasmid which had been previously generated. It 

was used in this study to serve as a negative control virus to verify treatment 

effects and to determine ether there was any toxicity or inflammation 

resulting from administration of the recombinant virus into the eye. 
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Figure 3.4. A chemiluminescence capture image of a dot blot for AAV2-CMV-

Aipl1  virus suspension.  

The serial dilution of a DNA probe of known concentration serves as a standard 

ladder. 1 µl and 5 µl of the virus suspension were loaded and the concentration 

estimated by comparing the chemilumincence intensity of the sample to the dilution 

series. In this case it was estimated that the virus suspension had a concentration of 

1 x 1011  particles /ml 
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3.3 Aipl1 transgene expression 
 

3.3.1    In vitro assessment of gene expression from AAV-
CMV-Aipl1 and AAV-CMV-eGFP 

 
In order to verify that the viral vectors AAV-CMV-Aipl1 and AAV-CMV-eGFP 

were expressing the genes of interest, both plasmid constructs and viral 

vectors were used to transfect and transduce 293T cells.  In a 24-well plate, 

50 000 293T cells were seeded per well. 1µg of each plasmid construct was 

used to transfect each well along with Lipofectin and peptide 6 in the ratio 

described in methods section. The transfection mix containing the plasmid of 

interest, lipofectin and peptide 6 in Optimem was incubated at 37oC for 4 

hours. After this, the transfection mix was replaced with cell culture medium 

and incubated overnight at 37oC. For infection, 1 µl of each viral suspension 

(1011 vp/ml) was added to each well of 293T cells. Replicates of twelve were 

made for plasmid transfection and virus transduction respectively. The next 

day, the cells were assessed for evidence of GFP expression.  Bright green 

fluorescence was seen in wells where 293T cells were transfected with the 

plasmid AAV-CMV-eGFP and cells infected with the virus suspension of the 

same vector (Figure 3.5). No fluorescence was observed in the negative 

control wells or wells which were transfected with AAV-CMV-Aipl1 plasmid 

construct. Since the AAV-CMV-Aipl1 construct does not contain the GFP 

transgene, expression of the transgene could not be verified by fluorescence 

microscopy.  Instead, the cells which had been transfected with AAV-CMV-

Aipl1 were collected 24 hours later and cells transduced with the vector 

suspension were harvested at 48 hours. These cells were lysed and 

sonicated, and the cell lysates were pooled together in their respective 

groups. A standard Western Blot analysis using an anti-Aipl1 antibody was 

performed on the cell lysates. This included negative control samples 

consisting of 293T cells that had not been treated.  A specific band of 

approximately 38 kDA corresponding to the size of murine AIPL1 was 

detected in transfection and infection cell lysates confirming the presence of 

A 
D C 
B 

B 
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the protein.  This observation validated the functionality of the plasmid 

construct and transgene expression from the viral vector (Figure 3.6). 
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Figure 3.5. In vitro study of gfp 

expression in 293T cells.  

A) Transfection of 293T cells 

with AAV-CMV-eGFP plasmid 

construct show green 

fluorescence 24 hours later. 

B) 293T cells show green 

fluorescence following 

infection with AAV-CMV-

eGFP virus suspension 

indicating transduction and 

expression  in cells. 

C) No green fluorescence was 

seen in the negative control 

well which was not 

transfected. 

D) 293T cells which were 

transfected with AAV-CMV-

Aipl1 plasmid construct did 

not show any green 

fluorescence. 

Figure 3.6. Western blot 

analysis of AAV2/2-CMV-

Aipl1 expression.   

 Lysates of 293T cells which 

were transfected with the 

plasmid construct AAV2/2-

CMV-Aipl1 and transduced 

with  AAV2/2-CMV-Aipl1 were 

subjected to western blot 

analysis. Band corresponding 

to the size of murine AIPL1 

protein (≈38kD) is seen in 

both transfected and 

transduced cell lysates. 
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3.3.2   Expression and subcellular localization of AIPL1 
in the retina following injection with AAV2-CMV-Aipl1 
 

The viral vectors were injected subretinally as described in the methods 

section into 4- week old Aipl1 h/h mice. Each injected eye received 2 

subretinal injections of virus suspension, one in the superior hemisphere of 

the retina and another in the inferior hemisphere. The volume of virus 

suspension per injection was 1.5 µl of virus suspension at a concentration of 

1 x 1012 vp/µl.  Each Aipl1 h/h mouse was received injections in one eye 

only, leaving the contralateral eye as an internal control. A total of 3 mice 

received subretinal injections for this purpose.  Twenty-eight weeks after 

injections, these mice were culled and the eyes were taken and analysed for 

evidence of Aipl1 expression.  

 

At 28 weeks after subretinal injection of AAV2-CMV-Aipl1, the treated and 

untreated eyes of Aipl1 h/h mice taken for immunohistochemistry. The eyes 

were embedded unfixed in optimal cutting temperature (OCT) medium and 

frozen, and then cryosectioned. Immunofluorescence analysis using an anti-

AIPL1 antibody was performed on cryosections of matched injected and 

uninjected Aipl1 h/h retinas and wild type retinas (Figure 3.7). To ensure that 

comparisons were made at the same levels in each of these eyes, the optic 

nerve was used as a reference point and sections which passed through the 

optic nerve were used for analysis. Analysis of retinas of Aipl1 h/h mice 

following injection of the therapeutic vector revealed an increased 

immunofluorescence with AIPL1 antibody in the layer located at the distal 

border of the outer nuclear layer corresponding to photoreceptor inner 

segments. This was consistent with the description of AIPL1 immunostaining 

in the retina from a previous study[282], and is similar to that seen in the wild 

type retinas albeit at a lower level. In contrast, uninjected control Aipl1 h/h 

retinas showed marked thinning of outer and inner nuclear layer  and weak 

immunofluorescence for AIPL1. These data showed that subretinal injection 

of  the AAV2-CMV-Aipl1 vector resulted in efficient gene transfer and correct 

expression and localization of AIPL1 in the retina. AIPL1 
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immunofluorescence was also seen in the RPE layer of Aipl1 h/h retinas 

injected with the therapeutic vector, while this was absent in untreated Aipl1 

h/h and wild type retinas. This ectopic expression in the RPE layer is further 

verification of vector-driven Aipl1 expression in the retina.  Under the control 

of a ubiquitous promoter such as CMV, subretinal delivery of AAV2 results in 

transduction of both photoreceptor cells and the RPE. 
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Figure 3.7. Expression and subcellular localization of AIPL1 in Aipl1 h/h retina 

following injection with AAV2-CMV-Aipl1 

 

Treated Aipl1 h/h retina shows strong AIPL1 immunofluorescence (green) localized mainly to 

the inner segments (IS) in keeping with AIPL1 expression in vivo. The pattern of staining is 

similar to that seen in wild type retina. In contrast, uninjected AIPL1 h/h retina showed not 

only lower levels of AIPL1 immunofluorescence, but also reduced outer nuclear layer 

thickness.. Sections are counterstained with Hoechst nuclear dye in blue. 
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3.3.3  Quantification of Aipl1 transgene expression in vivo 
 

The levels of Aipl1 transgene expression following subretinal injection of 

AAV-CMV-Aipl1 into Aipl1 h/h mouse retina was assessed by comparing 

levels of transcript between vector-treated eyes and untreated eyes using 

quantitative PCR. 

 

At 28 weeks post injection, eyes were taken from Aipl1 h/h mice that 

received unilateral subretinal injections of vector and from wild type mice. 

The neuroretina was dissected out from each of these eyes. Total RNA was 

isolated from the three pairs of treated and untreated Aipl1 h/h neuroretinas 

and from wild type neuroretinas, and reversed transcribed to obtain cDNA. 

Quantitative PCR was performed on the cDNA from these samples as 

described in the methods section. Since the Aipl1 h/h mouse model is a 

knockdown model in which the level of Aipl1 expression in the retina is 

reduced rather than extinguished, untreated eyes would not be expected to 

show an absence of Aipl1 expression.  Hence, in order to verify the 

functionality of the therapeutic vector, it was necessary to quantify the levels 

of Aipl1 expression in eyes that received subretinal delivery of the vector and 

compare these relative to the levels in untreated eyes.  

 

Levels of Aipl1 expression in treated Aipl1 h/h eyes were found to be 

consistently higher compared with paired untreated eyes(Figure 3.8a). The 

mean relative levels of Aipl1 expression in treated Aipl1 h/h eyes were more 

than 9 times of the mean relative levels in untreated eyes (Figure 3.8b). 

Compared with wild type eyes, the mean relative levels of expression in 

treated eyes were approximately 50% of wild type levels at 28 weeks 

following subretinal injection of AAV-CMV-Aipl1 vector (Figure 3.8b), while in 

untreated eyes the level of Aipl1 expression was 5% of wild type. Treatment 

with the viral vector therefore resulted in an increase in Aipl1 expression of 

about 45% of wild type levels. The double subretinal injections of vector 

performed in each eye would expose approximately 60% of total area of the 

retina to the vector. Taking into consideration that the transduction efficiency 
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of  AAV2/2 vector is known to be about 40-50%,  it would seem that the 

levels of expression of Aipl1 might be close to wild type levels in 

photoreceptor cells that were transduced successfully following subretinal 

injection of rAAV2/2 vector.  
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A 

Figure 3.8. Quantitative PCR for Aipl1 in treated and untreated retinal samples at 

28 weeks following subretinal injection with AAV2/2-CMV-Aipl1. 

A) The relative levels of Aipl1 expression in treated and untreated retinas from 3 

procedured aminals are shown. Error bars indicate standard deviation. 

B) Mean relative expression of Aipl1 in treated retinas were approximately 50% of 

wild type levels while in untreated retina this was approximately 5% of wild type. 

A 

0 

20 

40 

60 

80 

100 

120 

WT Treated Untreated 

WT 

Treated 

Untreated 

mean relative quantification 

%
 o

f W
T 

le
ve

ls
 

B 

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

Treated no.1 Untreated 
no.1 

Treated no.2 Untreated 
no.2 

Treated no.3 Untreated 
no.3 

re
la
tiv
e!
"#
$#
"%!

Relative quantification % 

A 

F



188 
 

3.4  Effect of AIPL1 expression on rod 
phosphodiesterase (PDE), a client protein. 
 

3.4.1   Immunohistochemical analysis of AIPL1 and β-
PDE in wild type mouse retina. 
  
In the Aipl1 h/h mouse, there is a decline in phosphodiesterase (PDE) level 

proportional to the reduced level of AIPL1[282]. This effect is highly specific 

for PDE, as analysis of a large number of photoreceptor proteins found no 

change in their expression levels in the hypomorphic mutant [282]. Hence, it 

has been hypothesized that AIPL1 is a specialized chaperone evolved to 

assist in photoreceptor PDE biosynthesis at a post-translational level. 

Phosphodiesterase is a key phototransduction enzyme in the retina and any 

effective therapy should aim to restore PDE biosynthesis, through 

reconstituting AIPL1 function, to a level sufficient to sustain photoreceptor 

function and survival. In view of this, we wanted to investigate the effect of 

rAAV-mediated AIPL1 trangene expression on PDE expression and 

localization in transduced photoreceptors. In order to determine changes in 

PDE levels following subretinal injection of the vector, we evaluated the 

levels of β-PDE and AIPL1 using confocal microscopy. As shown in section 

3.3.3, AIPL1 is  normally localized mainly to in the inner segments of the rod 

photoreceptors, although some weak immunostaining for AIPL1 can be seen 

in the photoreceptor cell body and spherules [475].  In healthy 

photoreceptors, PDE is localized to the photoreceptor outer segments.  

 

Immunostaining of β-PDE was first optimized in wild type mice retina so that 

a standard protocol could be established and a baseline pattern of double 

immunofluorescence for AIPL1 and PDE can be obtained. Since the protocol 

for AIPL1 immunostaining required that retinal sections were fixed as lightly 

as possible, the β-PDE immunostaining was optimized using unfixed retinal 

cryosections so that co-staining for the two proteins could be undertaken 

later. Eyes from wild-type mouse were extracted and immediately frozen in 
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OCT and then cryosectioned. The slides were divided into 3 groups: Group A 

– wild type retina immunostained with anti-AIPL1 antibody followed by a 

green secondary antibody, no second primary antibody followed by a red 

secondary antibody; Group B- wild type retina in which anti-AIPL1 antibody 

was not applied, then followed by a green secondary antibody, then anti β-

PDE antibody followed by a red secondary antibody; Group C 

immunostained with anti-AIPL1 antibody, followed by green secondary 

antibody and then with anti β-PDE antibody followed by a red secondary 

antibody (protocols are described in section 2.9).  

 

In group A, following immunostaining of wild type retina with anti- AIPL1 

antibody, green immunofluorescence is seen mostly at the inner segments of 

photoreceptors with some staining detected in the cell bodies and the 

synaptic spherules in the outer plexiform layer (Figure 3.9 A). There was no 

red immunofluorescence detected as the anti β-PDE antibody was not 

applied in these samples.  In group B, immunostaining with β-PDE antibody 

was present in the outer segments of photoreceptors as indicated by red 

immuofluorescence (Figure 3.9 B). Concurrent immunostaining for AIPL1 

and  β-PDE displays the correct localization of each protein with respect to 

each other (Figure 3.9 C), where there is a distinct layer of green and red 

immunofluorescence next to the outer nuclear layer representing the 

presence of AIPL1 and β-PDE respectively . The yellow fluorescence seen 

between the outer and inner segments is a result of an small degree of 

overlap of the AIPL1 green immunofluorescence and PDE red 

immunofluorescence. More importantly, this also showed that there was no 

non-specific binding of the red secondary antibody to the anti-AIPL1 antibody 

and vice versa since both of the primary antibodies were raised in rabbit. 
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Figure 3.9. Anti-AIPL1 and anti-PDE 

immunofluorescence in wild-type retina.  

 

Confocal microscopy of wild type mouse 

cryosections immunostained with  anti-

AIPL1 antibody only (Group A),; anti-βPDE 

only (Group B), and sequentially with anti-

AIPL1 antibody and anti-PDE antibody 

(Group C). 

 

A) Wild type retina immunostained with 

rabbit anti- AIPL1 antibody and 

Alexa- 488 goat anti-rabbit 

secondary (green); then TBS 

followed by Alexa-546 goat anti-

rabbit secondary antibody (red). 

 

B) Wild type retina immunostained with  

initially with TBS followed by Alexa-

488 goat anti-rabbit secondary 

antibody (green); then with anti- 

βPDE antibody followed by Alexa-

546 goat anti-rabbit secondary (red) 

 

C) Wild type retina immunostained 

sequentially with anti- AIPL1 

antibody followed by Alexa-488 goat 

anti-rabbit secondary antibody 

(green); then with anti- βPDE 

antibody and Alexa-546 goat anti-

rabbit secondary antibody (red). 
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3.4.2   Immunohistochemical analysis of AIPL1 and β-
PDE in Aipl1 h/h following gene transfer. 
 

Retinas of Aipl1 h/h mice received subretinal injection of AAV2-CMV-Aipl1  

were co-immunostained for AIPL1 and β-PDE at 28 weeks to assess if there 

were any differences in the levels and localization of these proteins.  

Representative paired retinal sections of treated and untreated eyes 

following treatment were co-immunostained for AIPL1 and β-PDE (Figure. 

3.10).  

 

Without treatment, retinas of Aipl1 h/h mice showed only weak green 

immunofluorescence for AIPL1 in the inner segments. Red 

immunofluorescence for β-PDE was reduced and mislocalized to the inner 

segment in untreated eyes resulting in overlapping of red and green 

immunofluorescence (Figure 3.10). Following treatment with AAV2-CMV-

Aipl1, substantially increased AIPL1 immunofluorescence (green) was seen 

and accompanied by  increased immunofluorescence for ß-PDE (red). More 

interestingly, a shift in the subcellular localization of β-PDE was seen in 

treated retinas:  it appeared to be restored to the outer segments of 

photoreceptors (Fig. 3.10 B). The relative amount and localization of AIPL1 

and β-PDE in treated eyes appeared similar to that seen in wild type sections 

(Fig. 3.10 C). These results indicate that not only the amount of β-PDE but 

also its subcellular localization is dependent on AIPL1. This association 

between the correct localization of β-PDE and AIPL1 has not been reported 

before. It is thus likely that the stability of PDE is dependent on AIPL1 and it 

suggests that AIPL1 functions in the final maturation step of PDE 

biosynthesis, as a molecular chaperone for the folding and/or cellular 

translocation of cGMP PDE. 
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Figure 3.10.  Confocal images of double immunofluorescence microscopy for AIPL1 

and β-PDE in AAV2-CMV-Aipl1 treated and untreated retinas of Aipl1 h/h mice at 28 

weeks post injection.  

Representative paired treated and untreated retinal cryosections from Aipl1 h/h mice were 

co-immunostained for AIPL1 and β-PDE, and imaged using confocal microscopy. 

Comparison of untreated and treated eyes of Aipl1 h/h mice showed restoration of the 

normal localization of ß-PDE in the outer segments.  

(A) In untreated retina, ß-PDE immunofluorescence (red) colocalizes with AIPL1 

immunofluorescence (green) in the photoreceptor inner segments (IS). 

(B) Following subretinal injection of AAV2-CMV-Aipl1, ß-PDE immunofluorescence is 

translocated to the outer segments (OS) in the treated retina. Hence in treated 

retina, AIPL1 immunofluorescence in the inner segment is separate from ß-PDE 

immunofluorescence in the OS, which is similar to that found in wild type retina. 

(C) Co-immunostaining of AIPL1 and β-PDE in wild type retina shown for comparison. 

 

Cell nuclei were counterstained with Hoechst dye 33342 (blue).  

INL- inner nuclar layer; ONL – outer nuclear layer; IS –inner segments; OS –outer segments.  

 

 

 

 



193 
 

3.5   Effects of AAV-mediated Aipl1 transgene 
expression on retinal morphology 
 

3.5.1   Analysis of retinal histology in Aipl1 h/h retina 
following treatment with AAV2-CMV-Aipl1 and in untreated 
retina 
 

Following the verification of the vector and that the Aipl1 transgene was 

expressed in treated murine retina, the next step was to evaluate the effect 

of the treatment on retinal morphology and whether retinal degeneration was 

being prevented or delayed. Sixteen Aipl1 h/h mice received subretinal 

injections of AAV2-CMV-Aipl1 viral vector. To achieve the maximal total area 

of treatment, the virus suspension was injected into the superior and also in 

the inferior hemisphere of the retina, using an injection volume of 1.5 µl viral 

suspension to create an area of bullous retinal detachment. Each injection 

created temporary bullae which covered 30-40% of the fundus. By injecting 

in 2 hemispheres, approximately 70% of the retina is exposed to the virus. In 

each animal, only the right eyes received subretinal injections and the left 

eye was left untreated to serve as an internal control, to eliminate external 

confounding factors which could influence the rate of photoreceptor cell loss 

and the considerable variation in the rate of retinal degeneration that exist 

even between animals from the same litter due to an inherent biological 

variability. The mice were injected at 4 weeks of age and this time point was 

selected based on the observation that the Aipl1 h/h mouse has a relatively 

slow degeneration in comparison to the null mutant and injecting very young 

mice would cause relatively more damage to the retina. Since the first signs 

of degeneration are only seen at 12 weeks and AAV2/2 vectors are known to 

give rise to transgene expression approximately 3-4 weeks following 

injection, we assumed that the delivery of the viral vector at 4 weeks of age 

should allow enough time for transgene expression to occur before there was 

significant photoreceptor degeneration; in this case we  would expect  to see 

Aipl1 expression by 8-9 weeks of age. Maximal expression would be 
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expected to occur at about 3 months after injection, when the mice are 16 

weeks old. 

 

Two of the procedured animals were sacrificed at 8, 16 and 28 weeks 

respectively following subretinal injection.  The eyes of these mice were 

orientated and fixed in paraffin before being sectioned and stained with 

haematoxylin and eosin. Adult wild type mice were sacrificed and eyes 

similarly processed for histological comparison. Using light microscopy, we 

examined these eyes for evidence of retinal degeneration at the various time 

points (Figure 3.11). At the age of 12 weeks (8 weeks following subretinal 

injection), no differences were seen in treated and untreated eyes and there 

was no evidence of any disorganization of the retinal architecture. At 20 

weeks of age (16 weeks following subretinal injection), untreated eyes had 

noticeable thinning of the ONL and disruption of layered structure of the 

retina. Treated eyes at 20 weeks of age had relatively well preserved ONL 

and INL thickness, although there were some early signs of disorganization 

of the retinal architecture. At 32 weeks of age (28 weeks following subretinal 

injection), clear retinal degeneration was observed in untreated eyes, as 

indicated by the collapse of the retinal layers and substantial loss of ONL. 

Treated eyes at this time point had relatively well preserved retinal 

architecture and although some thinning of the ONL was seen, ONL loss in 

treated eyes was noticeably less compared with untreated eyes.   
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Figure 3.11. H&E comparison of representative matched pairs of treated and untreated 

Aipl1h/h eyes at 8,16 and 28 weeks following subretinal injection of AAV2/2-CMV-AIPL1. 

Treated and untreated Aipl1 h/h retina at 12 weeks of age (8 weeks post injection) had no obvious 

signs of retinal degeneration. At 20 weeks of age (16 weeks post injection), the signs of 

degeneration become more evident in the untreated eye with progressive thinning of the outer and 

inner nuclear layers. By 32 weeks of age (28 weeks post injection),  a substantial difference is seen 

between the treated and untreated eye in terms of disorganization of the retinal architecture and 

thinning of the ONL and INL that is more marked in the untreated retina. For comparison a wild-

type retina at 9 weeks of age is shown. The retina in AIPL1 h/h animals appears to develop 

normally. 
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3.5.2   Morphometric analysis of the rate of retinal 
degeneration following gene transfer. 

 

To quantify the extent of photoreceptor cell rescue in treated eyes compared 

with untreated eyes, morphometric analysis was performed on retinal 

sections by counting the number of photoreceptor cell nuclei in the ONL 

(Figure 3.12). Retinas were taken at 28 weeks post-injection for sectioning. 

Cryosections were taken at various depths and each eye had been 

orientated during embedding in such a way that when cryosectioned, each 

section spanned over the superior and inferior retina which were the sites of 

injection. The cryosections were immunostained for photoreceptor nuclei with 

propidium iodide (PI) and imaged using the confocal microscope. To 

standardise measurements and eliminate any bias, only sagitally orientated 

central retina sections that passed through the optic nerve head were 

selected for this analysis.  

 

Eyes from a total of seven animals were analysed. For each eye, three3 

central retinal sections were selected that appeared to pass through the optic 

nerve head. In each retinal section, images were captured from each side of 

the optic nerve head so that a total of two images were obtained from each 

section. Hence, a total of six confocal images of the retina were obtained for 

each eye. Standardized confocal images of photoreceptor nuclei under the 

same magnification were captured in the area between the ora serrata and 

optic nerve head approximating to the middle of the injection site.  The nuclei 

in the outer nuclear layer in this area were counted by a single masked 

observer. Figure 3.12 illustrates the method of assessment and 

representative retinal sections from treated and untreated eyes. 

Photoreceptor nuclei which appeared less than 25% complete were not 

counted. The photoreceptor cell count for each eye was determined by 

averaging the cell counts from each confocal image of the particular eye. 

Mean number of photoreceptor nuclei was obtained for each of the 6 treated 

eyes and 6 matched untreated eyes. To control for inter-animal variation in 
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the rate of degeneration, a paired t-test was performed between the 

photoreceptor cell counts in the treated and untreated eyes of each animal.  
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Figure 3.12. Method for assessing number of photoreceptors in outer nucler layer (ONL) in 

treated and untreated retina. 

Sagittally orientated central sections that passed through the optic nerve head (ONH) were used. At 

about midway between the ONH and ora serrata, high power images of the ONL were captured on 

each side of the ONH using the same magnification (X40). The photoreceptor nuclei in these images 

were counted by a single observer. 
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Confocal images of representative retinal sections of treated and untreated 

eyes are shown in Figure 3.13. Treated retinas had substantially thicker ONL 

compared with untreated retinas. Statistical analysis showed that the mean 

number of photoreceptor cell nuclei in treated eyes of Aipl1 h/h mice (n=7) 

was found to be 41 % higher than in the untreated eyes (mean photoreceptor 

cell count in treated eyes = 479.3 ± 16.6 versus untreated eyes = 339.3 ± 8.2 

; p=0.0003) (Figure 3.14A). Preservation of photoreceptors in treated eyes 

was observed in all of the seven animals that were assessed as each animal 

had significantly greater number of photoreceptors in treated compared with 

untreated contralateral control eyes (p≤0.05) (Figure 3.14B). However, the 

ONL cell count following treatment with the therapeutic vector was lower 

compared with age-matched wild type eyes (p=0.02), indicating that although 

retinal degeneration was slowed, it was not halted and there was still 

ongoing photoreceptor cell loss (Figure 3.14B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



200 
 

	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ONL 

 

Figure 3.13. Confocal images of paired retinal sections of treated and untreated eyes 

from 3 representative animals that were assessed for morphometric analysis.  

The number of nuclei in the outer nuclear layer were counted in each of these images by a 

masked observer. The paired statistical analysis of the mean number of outer nuclear layer 

nuclei showed significant differences between treated and untreated retinas. 
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Figure 3.14 Graphs of mean ONL cell counts . 

(A)  Graph comparing mean ONL cell counts of 7 animals. Treated eyes have significantly higher 

mean ONL cell counts compared with untreated eyes indicating preservation of photoreceptor cells 

following subretinal injection of AAV2-CMV-Aipl1. However, treated eyes have lower ONL count 

compared with age-matched wild type eyes. 

(B)  ONL cell counts at 32 weeks of age (28 weeks post injection) for the right and left eyes of each 

individual animal is shown. There is a consistently higher cell count seen in the right treated eyes of 

each animal which is statistically significant (p<0.005). 

B 
Mean ONL cell count in individual animals at 28 weeks 

post injection 

Individual Aipl1h/h mouse that received AAV2-CMV-Aipl1 

A Mean ONL cell count at 28 weeks post injection  
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3.6  Effects of AAV2-mediated Aipl1 expression 
on retinal function in Aipl1 h/h retina. 

 
Histological analysis and quantification of the outer nuclear layer suggested 

that photoreceptor cell loss was significantly delayed following treatment with 

AAV2-CMV-Aipl1. AAV2-mediated Aipl1 expression led to the correction of 

β-PDE mislocalization in Aipl1 h/h retina. Consequently, the cellular biology 

of individual photoreceptor cells was restored, and the survival of 

photoreceptor cells was prolonged. It was thus important to ascertain 

whether this preservation of photoreceptor cells following treatment would 

have an effect on retinal function which could translate into visual 

stabilization or improvement.  

 

Current established literature has defined a role for AIPL1 in rod and cone 

photoreceptor cells and therefore the retinal disease due to AIPL1 gene 

mutations is attributed to an insufficiency of rod and cone PDE 

biosynthesis[282][232][240]. An effective therapy for this condition should 

aim to restore rod and cone PDE biosynthesis by reconstituting AIPL1 

function. Since rods represent the majority of the population of 

photoreceptors in the murine retina[211][514], we looked for improvement in 

retinal function following AAV-mediated gene delivery by assessing rod 

photoreceptor function. Measurements that usually are recorded for a 

selected ERG signal are the amplitude and implicit time. In this study, the 

responses from rod photoreceptors were evaluated by analyzing the 

amplitudes of a and b-waves of dark-adapted ERGs that have been recorded 

from Aipl1 h/h mice. The a and b-wave amplitudes were chosen as the 

outcome measure of retinal function. The a-wave is generated by 

photoreceptors and thus is a direct reflection of photoreceptor response. 

However,  it is very much smaller in size and is more difficult to record 

accurately especially with a machine with limited sensitivity. The b-wave is 

much larger in amplitude and easier to record and measure. Although the b-

wave is generated by the inner retina, the amplitude of the response relies 
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on the extent of the a-wave response and provides an indirect reflection of 

photoreceptor cell activity. 

 

3.6.1  ERG intensity series following treatment with 
AAV2-CMV-Aipl1   
 

To evaluate the effect of AAV-mediated Aipl1 expression on retinal function, 

dark-adapted, scotopic ERG recordings were obtained from 16 Aipl1 h/h 

mice that received unilateral subretinal injection of AAV2-CMV-Aipl1 (titre of 

1 x 1011 viral particles /ml) at 4 weeks of age. Only right eyes were injected, 

leaving the left eye as an internal control. The internal control is provides a 

means for paired analysis that would eliminate any bias caused by inter-

animal variation that may occur within an ERG recording session. Scotopic 

ERG responses were recorded using a series of flash intensities consisting 

of 0.1, 1, 10, 100, 1000 and 3000 mcds/m2 flashes via a stimulating Ganzfeld 

bowl.  Control injections with PBS were carried out in 5 Aipl1 h/h mice, and 

similarly subretinal injections of a control virus AAV2-CMV-gfp were 

performed on 6 Aipl1 h/h mice under the same circumstances.  

 

Simultaneous bilateral recordings were performed to optimize comparison of 

treated and untreated eyes, and ERG recordings were performed after a 

period of dark adaptation at regular intervals of 4 weeks, 8 weeks, 12 weeks, 

16 weeks, 20 weeks, 24 weeks and 28 weeks post injection.  Statistical 

analysis was performed on data obtained at flash intensities of 100 and 1000 

mcds/m2. The responses to flashes of intensities of 100 and 1000 mcds/m2 

from the eyes of treated and control animals were chosen for several 

reasons. At flash intensity of 100 mcds/m2, a purely rod response is 

obtained.  At intensity of 1000 mcds/m2, responses from both rods and cones 

are recorded and provides an indication of the overall retinal function.  

 

Representative ERG recordings from a single Aipl1 h/h mouse at 20 weeks 

post-injection (Figure 3.15A) and ERG waveforms at 28 weeks post-injection 

are shown in Figure 3.15B. Compared with untreated eyes, the ERG 
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amplitudes in treated eyes were substantially higher. Oscillatory potentials, 

representing post-synaptic neuronal activity in the inner retina, were more 

obvious in the treated eye but reduced in the untreated eye. There was a 

general improvement in the shape of the ERG trace following treatment in 

that the ERG tracing resembled that of a wild type mouse ERG while the 

tracing from the untreated eye was flattened, indicating diminished 

responses. The ERG intensity series recorded from eyes that received 

subretinal injections of the control virus AAV-CMV-gfp or PBS similarly 

showed diminished responses (Figure 3.15C).The improvement in ERG 

recordings hence was a result of AAV-mediated Aipl1 expression since 

injections of GFP control vector or PBS did not alter the size of the ERG 

response or shape of the trace. 
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Figure 3.15. Functional rescue assessed by ERG analysis following subretinal injection 

of AAV2-CMV-Aipl1.  

(A) ERG intensity series of the treated and untreated eye of a 24-week old Aipl1 h/h 

mouse at 20 weeks following treatment. ERG traces shown in each chart were 

recorded at intensities of 0.1, 1, 10, 100, 1000, and 3000 mcds/m2. The treated eye 

maintains substantially larger amplitudes and oscillatory potentials, while in the 

untreated eye, there is loss of amplitude even at higher flash intensities. The ERG 

intensity series from a wild type animal is shown for comparison. 

(B) Representative ERG waveforms at 28 weeks post-injection from the treated and 

untreated eyes of an Aipl1 h/h mouse. A wild type waveform is shown for comparison. 

The treated eye shows a discernible a-wave and a higher b-wave compared to the 

untreated eye. 

(C) Injection of PBS and control vector AAV2-CMV-gfp did not lead to any improvement 

in the ERG recordings suggesting that the improvement in treated eyes was due to 

the AAV-mediated expression of the Aipl1.  

	  

A Aipl1 h/h untreated Aipl1 h/h treated 

B 

Wild type 
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3.6.2   ERG timecourse and statistical analysis ERG 
amplitudes.  
 
 A series of ERG recordings were obtained from the treated and untreated 

eyes of an Aipl1 h/h animal at various follow up time points following 

subretinal injection of AAV2-CMV-Aipl1 (Figure 3.16). This flash intensity 

was chosen because the electrical response of both rods and cones are 

obtained and this allows the analysis of the overall rescue of photoreceptor 

cells.	  Over the 28 week period, the untreated eye showed a steady decline in 

a-wave and b-wave amplitude, whereas the treated eye showed stabilization 

of amplitude and waveform. Differences in improvement between the treated 

and untreated eyes are more apparent from 12 weeks post injection onwards 

(Figure 3.16). The treated eye consistently maintained higher amplitudes 

throughout the follow-up period. At the final time point of 28 weeks post 

injection when the animal was 32 weeks of age, the ERG response from the 

untreated eye was markedly reduced or almost flat, while the treated eye still 

had good ERG responses, indicating rescue of photoreceptor function by the 

AAV-mediated transgene expression. This suggested that not only there 

were more photoreceptor cells present in the treated eyes compared to 

untreated eyes but that the surviving photoreceptor cells also retained 

normal function. The degeneration of photoreceptors appeared to be slowed 

by the treatment. 
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Figure 3.16  ERG time course.  

Representative ERG traces from a single Aipl1 h/h mouse taken at various ages of 8 weeks (4 

pi),16 weeks (12 weeks pi), 24 weeks (20 weeks pi) and 32 weeks (28 weeks pi) following 

subretinal injection of AAV2-CMV-Aipl1  is shown. Averaged responses at a flash intensity of 

1000 mcds/m2 were recorded simultaneously from both treated and untreated eyes of the same 

Aipl1 h/h mouse following treatment.  From 12 weeks post injection onwards, a noticeable 

difference in the amplitude and shape of the trace between the two eyes is seen. ERG 

amplitudes from the untreated eye diminish with time, whereas ERG responses are maintained 

in the treated eye. 

* pi- post injection 

Aipl1 h/h treated Aipl1 h/h untreated 

* 
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Statistical analysis of the ERG recordings was performed to ascertain 

whether the differences in amplitudes between treated and untreated eyes 

were significant. Average ERG a-wave and b-wave amplitudes of treated and 

untreated eyes were calculated for the various time points at flash intensities 

of 100 mcds/m2 and 1000 mcds/m2.  At each time point assessed, there was 

considerable inter-animal variation in the ERG amplitudes in the untreated 

eyes of individual Aipl1 h/h mice, indicating an element of variability in the 

rate of photoreceptor degeneration in this model. Furthermore, the ERG 

results of the same cohorts of animals varied substantially between recording 

sessions, suggesting inter-session variability. In view of this variation, paired 

t-tests were used to analyse the mean a-wave and b-wave amplitudes 

between treated and untreated eyes at the various time points from 4 to 28 

weeks (Figure 3.17 and Figure 3.18). Analysis of mean a-wave amplitudes 

showed that treated eyes maintained higher amplitudes compared with 

untreated eyes, this difference was statistically significant (p≤0.05) from 20 

weeks post injection onwards up to the final time point of 28 weeks post 

injection (Figure 3.17). At 20 weeks post injection, the mean a-wave 

amplitude in treated eyes (n = 15; mean = 109.6±20.4 µV) was 

approximately 38% higher than that in untreated eyes (n = 15; mean = 

79.2+33.8 µV). Mean b-wave analysis was performed at flash intensities of 

100 mcds/m2 and 1000 mcds/m2 representing rod response and maximal rod 

and cone response respectively (Figure 3.18A and B). At a flash intensity of 

100 mcds/m2, mean b-wave amplitudes in treated eyes were consistently 

higher compared with untreated eyes and this difference was statistically 

significant at 20 weeks post injection and 28 weeks post injection 

(p≤0.05)(Figure 3.18A). At 1000 mcds/m2, b-wave amplitudes were 

significantly higher in the treated compared with the untreated eyes at 20, 24 

and 28 weeks post-injection (p≤0.05) (Figure 3.18B). There was an initial 

increase in ERG amplitudes from birth until adulthood (8 weeks) that 

reflected normal development in mice. Four weeks after vector 

administration, there was a reduction in b-wave amplitudes in treated eyes 

that was probably due to injection-related trauma. However, from 20 weeks 

post injection onwards, b-wave amplitudes were significantly higher in 

treated compared with untreated eyes (p≤0.05), a difference which remained 
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consistent up to the final time point of 28 weeks post injection. The mean b-

wave amplitude at flash intensity of 1000 mcds/m2 in treated eyes (n = 15; 

mean = 295.3±13.6 µV) at 20 weeks post injection was approximately 20% 

higher than in untreated eyes (n = 15, mean = 243.6 ± 15.6 µV).  

	  

In the group of PBS-injected animals, no significant differences were seen in 

the b-wave amplitudes between injected and uninjected eyes at flash 

intensity of 100 mcds/m2 and at 1000 mcds/m2 (Figure 3.19). These results 

suggest that there were no detrimental effects despite the trauma of 

subretinal injections to the eye. In the group of Aipl1 h/h mice that received 

unilateral subretinal injections of the control virus AAV2-CMV-gfp however, 

the injected eye had significantly lower b-wave amplitudes than the 

uninjected eye (Figure 3.20). Previous experience in our laboratory have 

found that that vector-mediated gfp expression did not result in loss of ERG 

amplitude nor any inflammatory or toxic effects due either to the transgene or 

rAAV vector. It is thus likely that this finding may have been caused by 

external confounding factors such as the quality of the virus purification. 

Impurities in the viral prep can result in toxic effects thereby decreasing the 

ERG response in the injected eyes.  Alternative, it may suggest that Aipl1 h/h 

mice are particularly sensitive to gfp expression. More significantly, the 

observations from both PBS-injected and AAV2-CMV-gfp injected eyes 

indicate that the therapeutic effect seen from AAV2-CMV-Aipl1 injected eyes 

is a result of the Aipl1 transgene expression and not due to the effects of the 

surgical procedure or the vector itself. 
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Figure 3.17.  Mean ERG a-wave amplitudes at flash intensity of 1000 

mcds/m2 in Aipl1  h/h mice that received subretinal injections of AAV2-

CMV-Aipl1.   

Treated eyes maintained higher ERG a-wave amplitudes compared with 

untreated eyes. Statistical differences in a-wave amplitudes were seen when the 

mice were 24 weeks old and upwards (at 20 weeks post-injection onwards) 

(p≤0.05). Error bars, ±SEM. 
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Figure 3.18  Mean ERG b-wave amplitudes  in Aipl1  h/h mice  that received subretinal 

injections of AAV2-CMV-Aipl1.  

The mean b-wave amplitudes and standard error of the mean (SEM) of treated and untreated 

eyes are shown at various time points after treatment. Statistical significance of the difference 

between the treated and untreated eyes was determined using a paired t-test. 

(A) At a flash intensity of 100 mcds/m2, treated eyes had consistently higher b wave 

amplitudes compared with untreated eyes. The difference was statistically significant when 

the mice were 24 weeks and 28 weeks old (at 20 weeks and 28 weeks post injection 

respectively) (p<0.05). 

(B) At  flash intensity of 1000 mcds/m2, statistical significance was obtained at more time 

points. B-wave amplitudes of treated eyes were significantly increased from the age of 24 

weeks onwards (at 20 weeks post injection onwards) (p<0.05).  

. 

A 
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Figure 3.19  Mean ERG b-wave amplitudes in Aipl1  h/h mice at various time points 

following subretinal injections of PBS.  

At flash intensities of 100 mcds/m2  and 1000 mcds/m2, no significant differences in b-

wave amplitudes were found comparing injected and uninjected eyes . Error bars, ±SEM. 
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Figure 3.20 Mean ERG b-wave-amplitudes of Aipl1 h/h mice at various time points 
following subretinal injection of control virus AAV2-CMV-gfp.  

 

 At flash intensities of 100 and 1000 mcds/m2, ERG b-wave amplitudes of injected eyes 

were significantly lower than b-wave amplitudes of uninjected eyes. Error bars, ±SEM. 
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An initial transient increase in ERG b-wave amplitude was seen up to 8 

weeks post injection (or 12 weeks in age) in both treated and untreated eyes 

of Aipl1 h/h mice. This observation is most likely to be due to a manifest 

developmental phase that exists in mice, during which the ERG b-wave 

amplitude initially increases, together with a reduction in the implicit time. 

This physiological phenomenon has been previously described in young 

mice [209]. However, to exclude the possibility that this observation might 

have been caused by variation in recording conditions between ERG 

sessions, a control experiment was performed to compare the ERGs over 

time in Aipl1 h/h mice and wild type mice.  Two age groups of Aipl1 h/h mice, 

one group aged 6 weeks (n=3) and another group aged 12 weeks (n=3) were 

selected along with a control group consisting of wild-type C57B/6 mice (n=4) 

aged 5 weeks. ERG recording was performed on the 2 groups of Aipl1 h/h 

mice and the control group of wild type mice at various time points, each 

separated by an interval of 1 or 5 weeks.  At each time point, all three groups 

of animals underwent ERG recording at the same session. The ERG 

recordings was performed under similar conditions as described for the 

previous experiments and by the same operator.  A total of 5 sessions of 

ERG recording was performed and the mean b-wave amplitudes of the right 

and left eyes of each group is shown in Figure 3.21.  A large amount of 

variation in b-wave amplitudes was seen between the animals during a 

single ERG recording session. This is indicated by the standard deviation 

which amounted to a substantial proportion of the mean b-wave amplitude in 

some sets of the data. There was also a degree of variability seen in the 

amplitudes obtained from the same animal during different recording 

sessions; although it is difficult to tell whether the variability between different 

recording sessions is significant, other data from our laboratory has shown 

that this is less substantial at higher flash intensities of 1000mcds/m2 and 

above. The phenomenon of an initial transient improvement in b-wave 

amplitudes was observed in all 3 groups of animals, in both right and left 

eyes (Figure 3.21).  The ERG b-wave amplitudes of the young Aipl1 h/h and 

wild-type mice increased from the age of 4 weeks up to 12-13 weeks, 

whereas the older Aipl1 h/h mice showed a decrease in amplitude during the 

same recording sessions. These observations support the fact that this is a 
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physiological phenomenon seen in young animals rather than caused by 

external factors affecting the different recording sessions. 
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Figure 3.21.  Mean ERG b-wave amplitudes of Aipl1 h/h  mice and wild type mice of 

different ages.  

 Graphs showing the b-wave amplitudes of right and left eyes of 2 groups of AIPL1 h/h mice 

(young and old) and control wild-type C56B/6 mice.  ERG recordings were taken at 5 

different time points, indicated by 5 sets of data in each graph. Each set of data in each 

group of animals were recorded at a single sitting. The x-axis indicated the age of the 

respective animals at each ERG time point.  Error bars- represent standard error of the 

mean. 

A) In the young group of Aipl1 h/h mice, an initial increase in b-wave amplitude with 

age is seen from 6 weeks up to 14 weeks of age. 

B) In the older group of Aipl1 h/h mice, b-wave amplitude is stable from 12 weeks until 

16 weeks of age. From 16 weeks onward, a decrease is observed which is due to 

the onset of retinal degeneration. 

C) In wild type mice, a similar initial increase in b-wave amplitude is seen from 5 weeks 

of age onwards up to 13 weeks of age. 
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 3.7  Effects of overexpression of Aipl1 in the 
retina. 

 

Vector-mediated expression is unlikely result in physiological levels of 

expression in target cells since this is an artificial system that is subjected to 

various external factors, and additionally may cause  expression in other cell 

types that do not normally express the transgene especially if expression is 

driven by a strong ubiquitous promoter. Therefore, there may be 

overexpression or mis-expression of a transgene following gene replacement 

therapy. In our experiments, AAV-mediated Aipl1 expression was driven by a 

CMV promoter and we observed Aipl1 expression in the RPE in addition to 

photoreceptor cells. Since Aipl1 is not known to be naturally expressed in 

RPE cells, we sought to investigate whether the anomalous expression 

would have any deleterious effects, and whether higher than normal levels of 

Aipl1 expression would be detrimental to photoreceptor cells.Six wild type 

adult C57B/6 mice received unilateral subretinal injections of the therapeutic  

AAV2-CMV-Aipl1 vector into the right eyes. These animals were assessed 

using electroretinograms at 4 weekly intervals and were sacrificed 28 weeks 

later. The treated and untreated eyes of these animals were retained and 

processed for immunohistochemistry analysis and also for light microscopy 

to look for any alterations in retinal morphology. 

 

Figure 3.22 shows representative ERG recordings from a treated and 

untreated eye of a wild type animal 24 weeks after treatment. The ERG 

traces in treated and untreated eyes have similar b-wave amplitudes and 

waveform.  Mean b-wave amplitudes of treated and untreated eyes at 

various time points were obtained and analysed statistically (Figure 3.23). At 

both flash intensities of 100 mcds/m2 and 1000 mcds/m2, there were no 

significant differences in the b-wave amplitude between treated and 

untreated eyes of these wild type mice.  These findings indicate that 

overexpression of Aipl1 in photoreceptors and RPE did not affect retinal 

function adversely. 
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Immunostaining with an AIPL1 antibody showed AIPL1 immunofluorescence 

mainly in the inner segments of photoreceptors and some in the outer 

plexiform layer in injected and uninjected wild type eyes (Figure 3.24 A). 

However in the treated eyes, there was additional immunofluorescence in the 

RPE layer although to a lesser degree, suggesting that Aipl1 was also being 

expressed in RPE cells. Light microscopy of H&E sections of treated and 

untreated retina from these wild type mice did not reveal any noticeable 

differences in terms of the overall retinal architecture and the outer nuclear 

layer thickness (Figure 3.24 B), suggesting that additional expression of 

Aipl1 in photoreceptor cells and in the RPE did not have deleterious effects 

on retinal morphology or photoreceptor cell survival. The photoreceptor cell 

nuclei in the outer nuclear layer were counted in 5 animals using the same 

method as described in section 3.5.2. Representative confocal images of the 

retina from an injected and uninjected eye of a single animal showed no 

obvious differences in the quantity of photoreceptor nuclei (Figure 3.24 C). 

Paired t-test did not reveal any significant differences between the mean 

photoreceptor cell count of eyes that received subretinal injection of AAV2-

CMV-Aipl1 and uninjected eyes (Figure 3.24 D). 
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Figure 3.22. ERG intensity series of treated and untreated eyes of a wild type 

mouse receiving unilateral subretinal injection of AAV2-CMV-Aipl1.  

The ERG was recorded at different light intensities at a single time point of 24 weeks.  

The b-wave amplitude and the shape of the trace were normal and there was no 

noticeable difference in amplitudes between the treated  and untreated eye. 
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Figure 3.23  Mean b-wave amplitude for wild type mice which received unilateral 

subretinal injection of AAV2-CMV-Aipl1.  

At flash intensities of 100 mcds/m2 and 1000 mcds/m2 , no significant difference was 

found between treated and untreated eyes (P>0.05) Error bars, ±standard error of the 

mean.  
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Figure 3.24. Morphological assessment and photoreceptor cell count of wild type mice 

receiving unilateral subretinal injection of AAV2-CMV-Aipl1. 

(A) AIPL1 immunofluorescence is seen at the mostly at inner segment of injected and 

uninjected wild type eyes, but there is also AIPL1 imunofluorescence  in the  

RPE layer of injected eyes which is not present in uninjected eyes, due to AAV2-

mediated transduction.  ONL, outer nuclear layer; INL, inner nuclear layer, is, inner 

segment. 

(B) Histological analysis of H&E retinal sections showed no noticeable difference in 

morphology and retinal architecture between injected and uninjected WT eyes. ONL, 

outer nuclear layer; INL, inner nuclear layer; is, inner segment; os, outer segment 

(C)&(D) Quantification of the outer nuclear layer did not reveal any statistical difference in 

mean photoreceptor cell count comparing injected and uninjected eyes. 

is- inner stress; os- outer segment; INL-inner nuclear segment; ONL-outer segment. 
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 3.8  Cloning of the human AIPL1 construct 
 

In the interest of future clinical application, a therapeutic construct that might 

be used in clinical studies was developed by substituting the mouse Aipl1 

cDNA within the expression cassette with a human AIPL1 cDNA.  The 

human AIPL1  transcript is 2970 bp with 6 exons providing a coding region of 

1155 bp. The 384 amino acid human AIPL protein has 3 tetratricopeptide 

(TPR) repeat domains and a polyproline rich region at the C-terminus (Figure 

3.25A). Mouse Aipl1 has a smaller transcript with a size of 1076 bp 

consisting of 6 exons and a shorter coding region of 987 bp (Figure 3.25B). 

Comparing the human AIPL1 protein to the mouse protein, an 86% identity 

was found and 96% level of similarity between the two species, indicating 

that most of the AIPL1 protein is highly conserved across species (Figure 

3.26). The highly conserved region includes the 3 TPR domains that are 

thought to be important in mediating protein-protein interactions. The human 

AIPL1 protein has an additional 56 amino acid proline-rich region at the C-

terminus that is only found in primates, thus absent in the mouse. Its role in 

protein function is not yet understood. 
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Figure 3.25 Comparison of human and mouse AIPL1 transcripts.  

Both human and mouse transcripts contain 6 exons and 3 tetratricopeptide domains encoded by 

exons 3, 4 and 5 which are highly conserved across species. The human AIPL1 transcript is 

larger than the mouse. Additionally, the human transcript contains untranslated regions at the 5’ 

and 3’ ends and a 56-amino acid polyproline sequence encoded by exon 6.  

Human  

AIPL1 
transcript 

Exon 1 Exon 4 Exon 2 Exon 5 Exon 6 Exon 3 
A 

B 
Mouse  

Aipl1 
transcript 

Exon 1 Exon 2 Exon 3 Exon 5 Exon 4 Exon 6 
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Figure 3.26. Comparative analysis of human AIPL1 to mouse Aipl1. 

Protein sequence of the human AIPL1 is compared to mouse AIPL1 which shows 

that the two proteins are 87% identical and share a 96% homology.  

Score =  606 bits (1562),  Expect = 2e-171 
Identities = 286/327 (87%), Positives = 316/327 (96%), Gaps = 0/327 (0%) 
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The human AIPL1 cDNA was cloned from commercially available retinal 

cDNA using primers which amplified the entire coding region of AIPL1.  The 

sequence of the 5’primer was GGTGAGATTATCTCCGCCTGTGCTG and 3’ 

primer was CCTCAGGGGGCTCAGTGC. A PCR product of 1215 bp was 

obtained, which contained the coding region of AIPL1 and included a part of 

the untranslated regions at the 5’ and 3’ ends. The PCR product was gel 

purified and ligated into pGemT-easy vector to produce a construct of 4232 

bp that was named pGemT-huAIPL1. The resulting plasmid was used to 

sequence the human AIPL1 cDNA to ensure that no sequence changes had 

occurred during amplification and isolation of the fragment, and also to 

ascertain the orientation of the gene in the plasmid. After the sequence was 

confirmed, we used restriction enzymes SpeI and NotI to excise AIPL1 from 

pGemT-huAIPL1 in which a fragment of 1238 bps was obtained (Figure 

3.27). We digested the parental plasmid pd10-CMV-egfp with NheI and NotI 

to extract a fragment of 6115 bp containing the AAV backbone (Figure 3.27). 

The AAV backbone was ligated with the human AIPL1 fragment to produce 

the therapeutic construct AAV-CMV-AIPL1 carrying the human cDNA (Figure 

3.28). This construct was checked by restriction digests and direct 

sequencing to ensure that the transgene within it was correct (Figure 3.29). 

Recombinant AAV2 was produced from the therapeutic construct containing 

the human transgene using the same method as described previously and 

the titre of the resultant virus suspension obtained was determined to be 5 x 

10 11 vp/ml.   
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Figure  3.27.  Cloning of human therapeutic construct.  

	  
The pGemT-huAIPL1 plasmid was digested with SpeI and NotI to 

isolate the ~1.2 kb AIPL1 fragment. The parental plasmid pd10-CMV-

egfp was similarly digested with NheI and NotI to excise the ~4.5 kb 

AAV backbone containing the ITRs. The two fragments were 

subsequently ligated together to form the therapeutic construct AAV-

CMV-AIPL1. 
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Figure 3.29. Check restriction digests 

of AAV-CMV-AIPL1.    

 The therapeutic construct AAV-CMV-

AIPL1 was digested with restriction 

enzymes to check that appropriate 

fragment sizes were obtained. In lane 1, 

the construct was digested with XhoI 

and the expected fragments of  ~ 4.9 kb 

and 850 bp were obtained. In lane 2, 

the construct was digested with SmaI 

and the expected fragments of ~ 3.4 kb, 

1.6 kb and 720 bp were obtained. 

 

Figure 3.28. Map of the construct 

AAV-CMV-AIPL1.                                               

The human transgene AIPL1 was 

cloned downstream of the CMV 

promoter fragment, followed by SV40 

polyA signal and is flanked by two viral 

ITRs . The total size of the construct 

was 5819 bp. 
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3.9  Assessment of function following AAV2/2-
mediated expression of human AIPL1 in the Aipl1 h/h 
mouse retina. 
 

To test whether any beneficial effects might be obtained by the expression of 

a human AIPL1 transgene, a group of Aipl1 h/h mice (n=10) received a 

subretinal injection of AAV2-CMV-AIPL1 in one eye, leaving the other eye to 

serve as an internal control using the same injection method as described 

before. All injections were performed by the same individual as for previous 

experiments. The animals were subjected to regular electrophysiological 

assessments in the form of scotopic ERG recording at various time points, 

starting from 4 weeks post injection onwards. The follow up period in these 

animals included long term time points up to a year to see whether any 

beneficial effects were sustained.ERG recordings were obtained 

simultaneously from both eyes using the similar method described 

previously. Analysis of functional outcome was performed on scotopic ERG 

b-wave amplitudes at flash intensities of 100 mcds/m2  and 1000 mcds/m2 .    

 

Figure 3.30 shows the mean scotopic ERG  a-wave and b-wave amplitudes 

of Aipl1h/h mice injected with AAV-CMV-AIPL1. Treated eyes consistently 

maintained higher mean ERG b-wave amplitudes compared with untreated 

eyes throughout the follow up period at flash intensities of 10 mcds/m2 amd 

1000 mcds/m2 (Figure 3.30 A and B). There was statistically significant 

difference between treated and untreated eyes from 16 weeks post injection 

onwards up to 50 weeks (paired Student’s t-test p ≤ 0.05). At the final time 

point of 50 weeks post injection, the mean b-wave amplitude in treated eyes 

(n=10, mean = 194.6 ± 25.2 µV) was 57% higher than the mean b-wave 

amplitude in untreated eyes (n=10, 123.98 ± 20.42 µV) at a flash intensity of 

1000 mcds/m2. AAV-CMV-AIPL1 treated eyes also showed significantly 

higher a-wave amplitudes than in untreated eyes between 16 and 50 weeks 

post injection (p ≤ 0.05) (Figure 3.30 C).  
 



230 
 

 
	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

A 

B 

Figure 3.30 A & B. Mean ERG b-wave amplitudes for Aipl1 h/h mice following 

subretinal injection of AAV2-CMV-AIPL1. 

At flash intensities of 100 mcds/m2  (A) and 1000 mcds/m2 (B), the mean b-wave 

amplitudes in the treated eye are significantly higher than those of the untreated eye 

from 16 weeks onwards. At 50 weeks post injection, there was still a significant 

difference (p ≤ 0.05) between the treated and untreated eye indicating beneficial long 

term effect of the treatment. Statistical analysis was performed using paired t-test. Error 

bars , ± SEM.	  
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Figure 3.30 C. Mean ERG a-wave amplitudes for Aipl1 h/h mice following subretinal 

injection of AAV2-CMV-AIPL1.  

AAV-CMV-AIPL1 treated eyes showed significantly higher a-wave amplitudes than 

untreated eyes between 16 and 50 weeks post injection (p ≤ 0.05). Error bars, ±SEM. 
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3.10  Morphological analysis following AAV2/2-
mediated expression of human AIPL1 in the Aipl1 h/h 
mouse retina.  
 

3.10.1  Light and electron microscopy of retinal sections.  
 

To determine the effects of AAV2/2-mediated human AIPL1 gene expression 

in Aipl1 h/h retina, the retinal morphology was assessed by light microscopy 

and electron microscopy. Treated eyes had received double subretinal 

injections of the therapeutic vector in the superior and inferior hemisphere of 

the eye.  Animals (n=2) were sacrificed 52 weeks after treatment, the eyes 

were enucleated and processed for semithin and ultrathin sections (methods 

described in sections 2.9.6). Prior to fixation and embedding, the eyes were 

carefully orientated using a stitch through the conjunctiva on the nasal aspect 

of the eyes. The eyes were fixed in Karnovsky’s fixative, and the cornea and 

lens were removed the next day. Using the nasal suture, the eyes were 

embedded sagittally so that sectioning occurred in the vertical plane and the 

retinal sections contained the superior and inferior retina which were the 

areas of treatment. Semithin sections (0.7 µm thick) were cut from treated 

and  untreated eyes and stained with toluidine blue for light microscopy. 

Ultrathin sections (0.07 µm thick) were cut of the corresponding areas and 

following sequential contrast processing, they were analysed using a 

transmission electron microscope. 

 

For histological analyses, semithin sections of treated and untreated eyes 

were examined with light microscopy (Figure 3.31). The untreated retina 

showed substantial loss of photoreceptor cell nuclei, disorganization and 

shortening of the outer segments (Figure 3.31 A). In contrast, the retina of 

treated eyes had considerably more photoreceptor cell nuclei; since there 

was an evidently thicker outer nuclear layer compared with untreated eyes 

(Figure 3.31 B). The photoreceptor outer segments were longer and more 

densely packed and arranged in a more organized fashion. The outer 
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nuclear layer was uniformly preserved throughout the whole circumference of 

the treated eye.  
 

 Ultrastructurally, substantial differences were seen in the morphology of 

photoreceptor OS. In the untreated retina, the number of photoreceptor OS 

were substantially reduced, markedly shortened and form disorganized 

rounded whorls (Figure 3.32 A). The OS disk membranes contained inside 

these photoreceptor OS were also disorganized, less tightly packed and 

there was a loss of the normal laminar arrangement (Figure 3.32 D). 

Vacuolar inclusions containing debris material was present in the IS region of 

the retina (Figure 3.32 D). The contact between the RPE and photoreceptor 

OS was also abnormal and reduced. Intervening vacuoles could be seen 

between OS tips and RPE cells. In contrast, in treated Aipl1 h/h retina, 

photoreceptor OS were elongated and the membranous OS disks had a 

regular and densely packed laminar arrangement (Figure 3.32 B), that was 

similar to that seen in wild-type mice (Figure 3.32 C). The photoreceptor OS 

in the treated retina maintained close contact with the RPE and showed 

normal interdigitation with the microvilli (MV) of RPE (Figure 3.32 E). The IS 

also appeared more normal and contained numerous mitochondria (Figure 

3.32 E). 
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Figure 3.31. Semithin light micrographs of treated and untreated retina 52 weeks following  

subretinal injection of AAV2-CMV-AIPL1. The samples were taken from a single Aipl1 h/h 

animal. Higher magnification images are shown in the centre. 

 

(A) Semithin light micrographs of representative Aipl1 h/h retina treated 52 weeks after 

subretinal injection of AAV2-CMV- AIPL1 shows preservation of photoreceptors. This is seen 

throughout the superior and inferior sections of the retina which are the treated areas. On 

higher magnification, it is clear that the outer nuclear layer in the treated retina is significantly 

thicker and the photoreceptor outer segments are longer and densely packed, indicating that 

AIPL1 replacement prolongs photoreceptor survival.  

 

(B) Semithin light micrographs of the corresponding untreated Aipl1 h/h retina shows loss of the 

outer nuclear layer thickness throughout the entire retina. Higher magnification image shows 

that loss of photoreceptor nuclei and also outer segment length and density 
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Figure 3.32. Electron microscope (EM) analysis of retinal tissue samples taken from a single 

Aipl1 h/h mouse at 52 weeks after subretinal injection of AAV2-CMV-AIPL1 (light microscopy 

of retina from the same animal is shown in Figure 3.33).  

(A)   In untreated Aipl1 h/h retina, the photoreceptor outer segments (OS) appear 

shortened, rounded and folded over. The membranous disks inside the outer segments 

were disorganized and formed whorls instead of stacks. 

(B)      Treated Aipl1 h/h retina shows relatively well organised and densely packed outer 

segment membranous disks, resembling those of wild-type retina shown in (C).  

(C)      Wild type mouse retina is shown for comparison. The outer segments in wild type 

retina is long containing membranous disks organized in a laminar fashion. 

(D)      Compared to treated retina, the untreated retina has very few outer segments and 

photoreceptor cell nuclei (PR). The inner segments are interrupted by multiple debris-

filled vacuoles (D). 

(E)      Outer segments and photoreceptor cell nuclei in the treated Aipl1 h/h retina are 

numerous and show normal interdigitation with the RPE microvilli (MV), indicating that 

there is normal functional interactions between the outer segments and RPE. The inner 

segments (IS) are also densely packed and contain numerous mitochondria. 
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3.10.2    Quantification of the outer nuclear layer in Aipl1 
h/h mice following subretinal injection of AAV2-CMV-AIPL1 
 

To assess the effect of AAV-mediated human AIPL1 gene replacement in 

Aipl1 h/h retina and also to determine whether there is sustained and long 

term photoreceptor cell survival, quantification of the outer nuclear layer was 

performed. Six of the Aipl1 h/h mice that received unilateral subretinal 

injection of AAV2-CMV-AIPL1 were sacrificed at 50 weeks post injection and 

cryosectioned. Centrally located retinal sections that passed through the 

optic nerve and spanned the treated areas in superior and inferior 

hemispheres of the retina were selected for outer nuclear layer 

quantification. The retinal sections were stained with propidium iodide and 

imaged with confocal microscopy. The method of quantification was the 

same as described in the previous section (section 3.5.2). The photoreceptor 

cell count for each eye was determined by averaging the cell counts from 

each confocal image of the eye. To control for inter-animal variation in the 

rate of degeneration, a paired t-test was performed comparing the mean 

photoreceptor cell count in the treated and untreated eyes.  

 

Representative confocal images of retinal sections from treated and 

untreated eyes of a single animal at 50 weeks post injection are shown in 

Figure 3.33 A. The outer nuclear layer in the treated retina is noticeably 

thicker than the contralateral untreated eye. Paired analysis of the mean 

photoreceptor cell count of all the treated and untreated eyes in the group of 

animals (n=6) showed that treated eyes had 73% more photoreceptor cells 

than untreated eyes at 50 weeks post injection (p=00006). Mean 

photoreceptor cell count in treated eyes was 463.5 ± 19.8, while in untreated 

eyes the mean photoreceptor cell count was 267.4 ±13.9 (p = 0.00006) 

(Figure 3.33 B). It has been reported that approximately half of the 

photoreceptor cells are lost by 8-9 months in the Aipl1 h/h mouse. This is 

evident in untreated Aipl1 h/h eyes where the outer nuclear layer cell count is 

approximately half of that in wild type. The mean photoreceptor cell count in 

treated eyes were also less than in age-matched wild type eyes (Figure 3.33 
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B),  indicating that there was still ongoing degeneration in the treated eyes.  

However, this difference did not achieve a level of significance (p=0.05). 

Treated eyes at 50 weeks post injection had 13% fewer photoreceptor cells 

than wild type eyes, while untreated eyes had lost about 50% of 

photoreceptor cells compared with wild type. Hence, despite evidence of 

ongoing degeneration, AAV2-mediated expression of the human AIPL1  

have slowed down the rate of degeneration in the treated eyes. This was a 

consistent result in all of the animals that were assessed, as the 

photoreceptor cell count in the treated eye of every animal was significantly 

higher than in the untreated eye (Figure 3.33 C).  
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Figure 3.33. Quantification of the outer nuclear layer (ONL) in Aipl1 h/h mice following 

subretinal injection of AAV2-CMV-AIPL1. 

 

(A)Representative confocal images of retinal sections taken from treated and untreated eyes 

from a single animal at 50 weeks following injection with AAV2-CMV-AIPL1. The treated retina 

has a substantially thicker ONL compared with the untreated retina 

(B)Quantification of the photoreceptor nuclei in the ONL showed that the mean photoreceptor 

cell count in treated eyes (n=6) were significantly higher that untreated eyes (p=0.00006). 

However the level of ONL count in treated eyes were lower that those of wild type eyes. 

(C)There was consistency in the preservation of photoreceptor survival across all the animals 

that were assessed. In each mouse, the treated eye has significantly higher ONL count than the 

untreated eye. 
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3.11   Discussion 
 

In this chapter a detailed assessment of the duration and extent of the 

morphological rescue and functional benefit following AAV-mediated gene 

replacement therapy in Aipl1 h/h mouse was presented. The preservation of 

retinal function and morphology was observed up to a year. This is the most 

significant rescue of a retinal degeneration to date. It is also the first study to 

demonstrate effective long term rescue for a photoreceptor-specific defect 

which are generally difficult to treat. The results presented provide further 

evidence to support gene therapy approaches for the treatment of severe 

inherited retinal dystrophies. 

 

There are three goals that gene-based treatments for autosomal recessive 

retinal conditions should aim to achieve; the expression of a normal copy of 

the defective gene leading to the production of the key protein, restoration of 

function to disabled cells and ultimately the prevention of progressive cell 

death or retinal degeneration as a result. To produce an effective long-term 

therapy, degeneration must be prevented. Our therapy addressed the first 

two goals where by subretinal delivery of AAV2-CMV-Aipl1 and AAV2-CMV-

AIPL1 resulted in increased production of AIPL1 in photoreceptor inner 

segments and subsequently the restoration of normal cellular biology and 

function that was substantiated by the translocation of PDE from inner to the 

outer segments. As a result, retinal degeneration was significantly slowed. A 

concomitant stabilization of ERG amplitudes was also seen in treated eyes 

following subretinal injection of the therapeutic vector. ERG b-wave 

amplitudes were significantly higher in eyes treated with AAV2-CMV-Aipl1 or 

AAV2-CMV-AIPL1 compared with untreated, PBS-injected or AAV2-CMV-gfp 

injected eyes. The presence of OPs on ERG traces of treated eyes implies 

appropriate retinal function.  After treatment with the therapeutic vectors, the 

pattern of the ERG response to a series of increasing stimuli resembled that 

of normal animals, with increasing b-wave amplitudes and decreasing b-

wave latencies indicating successful functional rescue at the time point 

assessed. We observed improved photoreceptor cell survival, preservation of 
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outer segment morphology and stabilization of retinal function. Both 

therapeutic constructs, one containing the murine Aipl1 cDNA and the other 

containing the human AIPL1 cDNA were similarly effective. This is not 

surprising since AIPL1 is highly conserved between species; there is 96% 

similarity and 86% identity between the murine and human cDNAs. 

 

AAV-mediated gene replacement therapy resulted in significant preservation 

of photoreceptors and retinal function in Aipl1 h/h mice one year after 

treatment – the latest time point examined. This is the most sustained rescue 

of a photoreceptor-specific gene defect reported to date. Previous gene 

replacement therapy studies targeting photoreceptor cell defects did not 

include such long term time points. [50][463][14][363][496]  The most 

sustained rescue reported previously was following AAV-mediated gene 

replacement therapy in an RPGRIP mouse model [363]. This study 

demonstrated functional and histological improvement for up to 5 months. 

 

Although significantly better than in untreated eyes, AAV-mediated gene 

replacement did not completely prevent loss of photoreceptor cells. The 

mean ERG b-wave amplitude in AAV2-CMV-Aipl1-treated eyes at 7 months 

after treatment was approximately 85% that in wild type mice at that age 

(data not shown). The mean b-wave amplitude in untreated Aipl1 h/h eyes at 

7 months however was about 60% of wild type, indicating that the 

degenerative process was very slow. Morphologically, at 28 weeks following 

injection, treated eyes show a 14% loss of photoreceptor cells from age-

matched wild type eyes, while untreated eyes showed 40% loss from wild 

type eyes. In animals that were treated with the human construct, treated 

eyes at 50 weeks following treatment showed a 13% loss of photoreceptor 

cells from wild type levels while untreated eyes had approximately 50% less 

photoreceptor cells than wild type eyes.  Although retinal degeneration was 

not completely prevented following treatment, photoreceptor loss was 

significantly delayed with the rate of degeneration substantially reduced in 

treated eyes to the magnitude of 3-4 fold. Furthermore, in animal which were 

treated with the human construct, the difference in photoreceptor cell count 

between treated eyes at 50 weeks post injection and wild type did not reach 
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statistical significance (p=0.05). Considering that transduction of the retina is 

usually incomplete following subretinal injections, this suggests that the 

expression of AIPL1 in treated areas has a substantial effect in arresting the 

degeneration. 

 

There may be several reasons why photoreceptor degeneration proceeds 

despite treatment. Firstly, only two-thirds of the retina, at most, is transduced 

following double subretinal injections into an eye and hence the transduction 

efficiency have not have been adequate. Considering that the transduction 

efficiency of AAV2/2 is not 100 %, the final area of the retina that is 

transduced is likely to be about 50-70 % and may have been insufficient to 

ultimately prevent degeneration in treated areas. Secondly, the late onset of 

AAV2/2-mediated expression compromises its efficacy. By the time maximal 

transgene expression is attained, the retinal degeneration in the Aipl1 h/h 

mouse may be already significantly advanced. The animals were injected at 

P28 and AAV2/2-mediated transgene expression would be expected to 

commence 3-4 weeks later.  ERG recordings from 8 week old Aipl1 h/h mice 

are already lower than age-matched wild type mice[282], suggesting that 

damage to photoreceptors has commenced by the time the treatment takes 

effect.  The residual one-third of the retina consisting of degenerating 

photoreceptor cells may further contribute to ongoing loss of photoreceptor 

cells by creating negative impact on photoreceptor survival in treated 

regions. Changes in degenerating photoreceptors are likely to generate a 

microenvironment that has a negative influence on the survival of healthy 

cells. The phenomenon of non cell- autonomous degeneration in which the 

loss of trophic factors normally produced from rods [185][413]  or the release 

of toxic substances from rod cell death[226][405] has been frequently 

described and observed in other retinal dystrophies such as retinitis 

pigmentosa . In these conditions, cone loss is invariably seen even though 

the primary genetic defect and cell death is in rod photoreceptors. Lastly, the 

levels of expression in terms of gene copies per photoreceptor cell that is 

mediated by AAV2 may have been insufficient, despite the use of a 

ubiquitously expressed constitutive promoter that drives strong transgene 

expression. AAV2/2 vectors are known to target RPE and photoreceptor 
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cells, with a higher tropism for RPE cells than photoreceptors. In comparison 

to other AAV pseudotypes such as AAV5 and AAV8, the maximal levels of 

transgene expression from  AAV2 vectors known to be lower as a result of 

fewer copies of the transgene per cell [348]. Hence, on a single cell basis, 

the expression levels mediated by AAV2 may not be adequate to achieve full 

correction of the cellular defect or restore normal cellular function and 

subsequently stem the retinal degeneration process.  

	  

Interestingly, the morphological rescue of Aipl1 h/h retinas was better than 

might have been expected given the relatively modest functional 

improvement in ERG amplitudes between treated and untreated eyes. This 

may be due to the unusual phenotype of the Aipl1 h/h mice. It has been 

previously shown that Aipl1 h/h rods have a higher sensitivity to light 

compared with normal rods photoreceptor cells, and require fewer photons to 

elicit a response[282][295]. They manifest supra-normal ERG when young, 

presumable because of a larger than normal dark current due to higher free 

cGMP levels. The restoration of functional AIPL1 in Aipl1 h/h rods would 

therefore, result in correction of this abnormality so that photoresponses 

become more similar to that of wild type photoreceptors with a reduction in 

the altered sensitivity of Aipl1 h/h rods. Hence, it is likely that the relative 

modest difference in ERGs compared with difference in photoreceptor 

preservation seen after treatment is partly due to a reduction in ERG 

amplitudes as a result of a reduction in photoreceptor hypersensitivity 

following gene transfer. 

 

An initial increase in ERG amplitudes was observed in treated and untreated 

eyes as well as in the wild type control group.  This initial increase occurred 

from 4 weeks post injection up to about 8 weeks post injection. Similar 

observations of ERG amplitude rise was also seen in the control experiment 

which recorded ERGs from unprocedured Aipl1 h/h mice of various ages and 

wild type mice. This confirmed that the phenomenon was unrelated to the 

treatment or the surgical procedure. A physiological increase in ERG 

responses have been described in young mice, normally occurring from birth 
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up to postnatal age of 12 weeks[209].  It is thought to reflect the normal 

development in mice.  In AAV-CMV-gfp treated Aipl1 h/h mice, ERG b-wave 

amplitudes in injected eyes were lower than in uninjected eyes. This may be 

due to a particular batch of viral prep that contained impurities that might 

have attenuated the ERG responses, since the laboratory has extensive 

experience with intraocular administration of AAV vectors and has rarely 

observed toxic effects following injection of vectors expressing gfp. 

 

A number of studies have suggested various roles for AIPL1 in the retina. It 

was originally suggested that AIPL1 may have a role in development as a 

result of its putative interactions with NUB1 [7], but this is unlikely since both 

Aipl1 -/-  and  Aipl1 h/h have normal architecture prior to the onset of 

degeneration [282,391]. Biochemical studies using a yeast two-hybrid screen 

suggested AIPL1 may have a general role in enhancing the protein 

farnesylation in the retina. Among the retinal proteins known to be 

farnesylated are PDE α-subunit, γ-transducin, and rhodopsin kinase. 

However, this hypothesis did not appear to be supported by the findings that 

levels of rhodopsin kinase and transducin were unaffected  in Aipl1 -/- mice 

[391]. Further assessment of candidate retinal proteins in the Aipl1 -/- and 

Aipl1 h/h mouse found that cGMP-PDE was the only protein in which all 

three α,ß and γ subunts were absent or reduced in levels, suggesting that 

cGMP-PDE is a specific client protein of AIPL1[282][391]. This study 

confirms that  that AIPL1 and cGMP-PDE are intricately linked. We found 

that cGMP-PDE, in particular the β-subunit of PDE was mislocalized to 

photoreceptor inner segments in untreated AIPL1 h/h eyes when the animals 

were examined at 28 weeks following subretinal injection in the other eye. In 

the contralateral treated eyes of these animals, the β-PDE signal was 

present in the photoreceptor outer segments suggesting that AIPL1 could 

indeed be a molecular chaperone ensuring PDE translocation to the outer 

segments. The fact that photoreceptor cell loss in the Aipl1 h/h mouse 

proceeds slowly and outer segments are present for most of the 

degeneration makes it possible to compare and localize β-PDE expression in 

the outer segments of treated and untreated eyes. In the Aipl1 -/-  mouse, 

retinal degeneration is too rapid for this analysis since most of the 
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photoreceptor cells and outer segments have been lost in the untreated eye 

by the time vector-mediated expression of AIPL1 commences in the treated 

eye. Hence AIPL1 may protect PDE subunits from proteosomal degradation 

or assist in the assembly or folding of the PDE holoenzyme whereby only 

properly protein is transported to the outer segments. The exact molecular 

mechanism and relationship between AIPL1 and cGMP PDE remains to be 

elucidated. Precise regulation of cGMP synthesis and cGMP PDE 

degradation is critical to the health of photoreceptors and mutations which 

disrupt the balance between the two, result in dysregulation and 

degeneration of these cell [127]. Mutations in the PDE6B gene encoding the 

ß-subunit of cGMP PDE lead to abnormal increases in cGMP and 

subsequent photoreceptor death. Mutations in retGC1 impair synthesis of 

cGMP, leading to a state equivalent to sustained photo-excitation and 

photoreceptor cell death [127][428][366]. Similarly, one of the most important 

consequences of mutation in AIPL1 is likely to be the effect on cGMP PDE 

levels, leading to photoreceptor dysfunction and rapid retinal degeneration. 

This however, may not be the only function of AIPL1 in the retina or the  

only mechanism of cell death due to loss of AIPL1. Further studies are 

required to fully elucidate the exact role or AIPL1 in the retina. 

 

In patients, AIPL1 defects present as a clinical spectrum and present with 

LCA as well as cone-rod dystrophy and juvenile retinitis pigmentosa 

[103][442]. This variability in phenotype may be explained by the nature of 

the mutations. To date, 20 disease-causing mutations in AIPL1 have been 

reported (HGMD; www.hgmd.org). Out of these, five of them are likely to 

lead to complete loss of AIPL1 function; four are nonsense mutations 

resulting in a severely truncated protein and one affects the splice site in 

intron 2 leading to a frame shift. The other mutations comprise of missense 

mutations in the N-terminal or the tetratricopeptide domains and deletions in 

the C-terminal region. In vitro assays have shown that many of these 

mutations did not lead to loss of AIPL1 expression or abolished protein 

function completely [7,393,476]. It is also likely that there are other variants 

that give rise to an altered protein with reduced function. Hence, it is possible 

that AIPL1 mutations results in a partial as well as complete loss of function 
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of the protein. Efficient rescue of the Aipl1 h/h mouse suggests that patients 

with mutations that do not lead to complete loss of AIPL1 function might 

respond particularly well to gene replacement therapy.  
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4.  Gene replacement therapy in rapid 
retinal degenerations due to AIPL1 
deficiency 
 
 

4.1   Treatment of retinal degeneration in Aipl1 
h/h murine model under light acceleration 
 
Following evidence of significant rescue in the Aipl1 h/h mouse using AAV2/2 

vector encoding both the murine and human AIPL1 gene, we proceeded to 

determine whether we can rescue photoreceptor cells in a faster 

degeneration using AAV-mediated gene replacement  and by accelerating 

the photoreceptor cell loss in Aipl1 h/h mice. The rate of retinal degeneration 

in the Aipl1 h/h mice has been observed to increase by 2-3 fold by keeping 

the animals in constant white light illumination (personal communication from 

Tiansen Li, Massachussetts Eye and Ear Infirmary). The mechanism of the 

acceleration of retinal degeneration under light in these mice is not known 

but is thought that this could be related to the light-induced increase in 

mitochondria free radical production and oxidative stress. To ensure that a 

more rapid onset of gene expression from the AAV vector was obtained, we 

produced AAV2/8 pseudotyped vector containing the murine Aipl1 cDNA 

under the control of the ubiquitously active cytomegalovirus (CMV) promoter. 

The therapeutic construct was developed in Chapter 3 (section 3.8) by 

cloning the murine Aipl1 cDNA between the ITRs of the AAV2 vector 

genome, and we packaged this therapeutic construct using AAV8 capsid to 

produce AAV2/8-CMV-Aipl1. The murine cDNA was chosen to give the best 

possible chance of a rescue and to reduce the risks of rejection and protein 

incompatibility. 

 

As is the case with all viral vector systems, the choice of an appropriate 

promoter is important to achieve efficient expression of a transgene. The 
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CMV promoter is a strong viral promoter that is ubiquitously active. AAV2/8-

CMV-Aipl1 was produced using a triple plasmid transfection method in 293T 

cells (described in Chapter 2) and purified using ion exchange 

chromatography. The resulting virus preparation was concentrated with 

Centricon 10 columns (Millipore, Bedford, MA), washed in PBS, and 

concentrated again to a volume of approximately 100-150 µl. Control AAV2/8 

virus was also produced from the AAV-CMV-egfp construct (described in 

Chapter 3) to generate AAV2/8-CMV-egfp vector. This control vector will 

serve to verify AAV2/8 expression in photoreceptor cells and to control that 

any beneficial effect is due to the expression of the transgene rather than the 

administration of an AAV vector. Viral particle titres were determined by 

comparative dot-blot DNA prepared from purified viral stocks and defined 

plasmid controls. Purified vector concentrations used for all experiments 

were of 1-2 X 1012 viral particles/ml (Figure 4.1).   
 

A total of 23 Aipl1 h/h mice received subretinal injections of AAV2/8-CMV-

Aipl1 at postnatal week 4. As in previous experiments, subretinal injections of 

the vector were administered to each treated eye in the superior and inferior 

hemisphere; each subretinal injection amounted to a volume of 1.5 µl. Only 

one eye in each Aipl1 h/h mouse was treated, leaving the contralateral eye to 

serve as an internal control. At 1 week after subretinal injection, the 

procedured mice were moved to a room with constant ambient white lighting. 

Care was taken to ensure all cages received equivalent amounts of light 

exposure, by placing them on racks of equal height and at the same level to 

each other. All cages consisted of transparent perspex plastic material to 

allow maximal light penetration into the cages and any large housing material 

was removed from the cages. Another group of Aipl1 h/h mice (n=9) received 

subretinal injections of the control vector AAV2/8-CMV-egfp while a group of 

C57BL/6 mice (n=10) received subretinal injections of the therapeutic vector. 

These control groups of animals were also subjected to the same conditions 

as the procedured Aipl1 h/h mice and were placed into constant white 

ambient light conditions at 1 week following subretinal injections. All animals 

were examined histologically to investigate the effects of treatment on retinal 

morphology after period of 5 months. To follow the course of degeneration 
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and the effects of gene replacement, retinal function was assessed using 

ERG recording at regular intervals over the same period of time. 
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4.2  Effects of AAV2/8-mediated Aipl1 
expression on retinal function in light accelerated 
Aipl1 h/h retina. 
 

The effects of AAV2/8-mediated gene replacement was evaluated in Aipl1 

h/h mice (n=23) that received subretinal injection of AAV2/8-CMV-Aipl1 in 

one eye at 4 weeks postnatally. These mice were place in continuous white 

light illumination at 1 week following subretinal injection, to accelerate the 

retinal degeneration. Retinal function was assessed through scotopic ERG 

analysis recorded simultaneously from the treated and untreated eyes of 

treated Aipl1 h/h mouse. To determine whether preservation of retinal 

function was achieved as a result of treatment with the therapeutic AAV2/8-

CMV-Aipl1 vector, ERG intensity series were performed on each treated 

Aipl1 h/h mouse at regular intervals of 4-6 weeks following subretinal 

injection until the final time point of 21 weeks. Before recording the ERGs, 

the animals were dark adapted for at least 16 hours.  

 

After 3 months of constant light, ERG amplitudes in untreated eyes 

decreased to half that in wild type mice (Figure 4.2).   Although the retinal 

degeneration progressed at a faster rate, photoreceptor rescue was still 

obtained. When the group of AAV2/8-treated Aipl1 h/h mice that underwent 

light acceleration was compared with the AAV2/2-CMV-AIPL1 treated mice 

Aipl1 h/h mice that did not undergo constant light exposure, larger 

differences between treated and untreated eyes in terms of functional and 

morphological (described in Section 4.4) outcome measures were obtained 

in the light exposed animals. Figure 4.3 shows an ERG intensity series of a 

procedured animal recorded simultaneously from the treated and untreated 

eye at 2 different time points.  At 5 weeks post-injection, differences between 

the ERG amplitudes in treated eyes and untreated eyes were already seen; 

treated eyes had higher amplitudes than untreated eyes. By 21 weeks, the 

ERG responses were lost in the untreated eye, while the treated eye 

maintained substantial ERG amplitudes and showed increasing responses 
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elicited by the increasing light stimuli. Normally shaped waveforms, similar to 

that of wild type mice, were recorded from treated eyes while from untreated 

eyes, the ERG was virtually undetectable. Oscillatory potentials on the 

ascending limb of the ERG b-wave and increasing in size with brighter stimuli 

were seen in treated eyes but not in untreated eyes, indicating an overall 

improvement of retinal activity.  

 

Maximal rod/cone responses were measured at flash intensity of 1000 

mcds/m2 at  4-6 weekly intervals following treatment in the light accelerated 

Aipl1 h/h mice over a period of 5 months. Figure 4.4 shows ERGs at a single 

flash intensity of 1000 mcds/m2 obtained at different time points from a single 

animal treated with AAV2/8-CMV-Aipl1 and subjected to constant light 

exposure. The traces were recorded simultaneously from the injected (right) 

and uninjected (left) eye. Over time, the ERG amplitudes in the untreated 

eye decreased rapidly and disappeared completely by 21 weeks. The ERG 

amplitudes in the treated eye was maintained throughout the follow-up period 

and remained substantially higher than in untreated eye at the final time point 

of 21 weeks after treatment, suggesting that photoreceptor survival was 

prolonged following treatment with AAV2/8-CMV-Aipl1.  
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The average b-wave amplitudes of the ERG recordings were evaluated 

statistically by using a paired Student’s t-test (Figure 4.5).  At 2 weeks post 

injection, ERG b-wave amplitudes in untreated eyes appeared higher than in 

treated eyes, although this difference was not statistically significant. This 

observation may be due to a temporary negative effect from the subretinal 

detachment induced by the procedure and is a well described phenomenon. 

Between 2 weeks and 5 weeks post injection, there was a large decrease in 

ERG amplitudes, indicating an acceleration of the retinal degeneration as a 

consequence of continuous light exposure. The apparent improvement in the 

ERG amplitudes between weeks 5 and 14 was thought to be due to variation 

occurring between recording sessions. 

 

The AAV2/8-CMV-Aipl1 treated eyes showed significantly higher b-wave 

amplitudes than the contralateral untreated eyes at time points up to 21 

weeks after injection (Figure 4.5). Compared with the Aipl1 h/h mice treated 

with AAV2/2 vector in the previous chapter, the difference in mean b-wave 

amplitude between treated and untreated eyes was greater in mice that 

received AAV2/8 therapeutic vector. Statistical significance was also 

observed at much earlier time points (9 weeks onwards) in this group. At 

both flash intensities of 100 mcds/m2 and 1000 mcds/m2, mean b-wave 

amplitudes in treated eyes were significantly higher than in untreated eyes 

from 9 weeks following injection onwards (p<0.05). At 21 weeks post-

injection, mean b-wave amplitude at flash intensity of 1000 mcds/m2 in 

treated eyes (n=20; mean = 87.3 ± 5.4 µV) was 130% higher than in 

untreated eyes, p=0.0006 (n=20, mean = 41.5  ± 4.2 µV). Analysis of the 

mean ERG a-waves showed that treated eyes also had significantly higher a-

wave amplitudes compared with untreated eyes (Figure 4.6). Statistically 

significant differences were seen at earlier time points from 5 weeks post 

injection onwards up to the last time point of 21 weeks post injection. At 21 

weeks post injection, mean ERG a-wave in treated eyes was 16.8 ± 2.3 μV 

(n=20) while in untreated eyes it was 8.9 ± 2.8 μV (n=20). 
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4.3  Effects of AAV2/8-mediated Aipl1 
expression on retinal morphology in light accelerated 
Aipl1 h/h retina. 

 
Morphological analysis was performed to investigate the effects of treatment 

on photoreceptor cell loss over time. Specifically, the effects on retinal 

structure and photoreceptor ultrastructure following treatment was examined 

using light microscopy of semithin sections and electron microscopy 

respectively. Light accelerated Aipl1 h/h mice that received subretinal 

injection of AAV2/8-CMV-Aipl1 were sacrificed at 10 weeks and 21 weeks 

post injection (n=2) and semithin sections were taken throughout the each 

treated and untreated eye. To assess whether the rescue effect was 

localized to areas adjacent to the injection sites, sagitally orientated cross 

sections of the eye were taken to encompass the superior and inferior 

hemispheres of the retina, which were the sites of subretinal injections. Eyes 

were taken, carefully orientated with a stitch through the conjunctiva and 

fixed in Karnovski fixative. Cornea and lens were removed the following day 

and the eyecups were processed for electron microscopy (EM). Semithin 

sections (0.7 µm thick) were taken and stained with toluidine blue. For 

electron microscopy analysis, treated areas were identified by orientating 

eyes so that superior and inferior sections of the retina were examined and 

70 nm thick ultrathin sections were then taken of these areas. Eyes were 

also taken from age-matched wild type mice for semithin and ultrathin 

sections as positive controls.  

 

Comparison of treated and control eyes showed a reduction in the loss of 

photoreceptor cells in treated eyes at different time points (Figure 4.7). At 10 

weeks following treatment with AAV2/8-CMV-Aipl1, a substantial difference 

can already be seen between treated and untreated eyes. Comparing the 

midzone area between the ora serrata and optic nerve ie. approximate 

equivalent areas in treated and untreated eyes, the number of photoreceptor 

cells in treated eyes was substantially greater than in untreated eyes at 10 
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weeks post injection. This difference became more marked with time. At 21 

weeks, untreated eyes showed an absence of the outer nuclear layer, no 

photoreceptor cells or outer segments could be found and the inner nuclear 

layer was seen lying adjacent to the RPE layer (Figure 4.7). In contrast, 

treated eyes showed preservation of the outer nuclear layer; photoreceptor 

cells were found in treated eyes along with numerous outer segments as 

seen on light micrographs (Figure 4.7).  To assess the overall effect of 

treatment on the rate of degeneration, we examined the morphology of the 

whole retina in the vertical meridian from the ciliary body in the superior 

hemisphere to the equivalent in the inferior hemisphere of treated and 

untreated eyes (Figure 4.8). Untreated eyes showed complete loss of the 

ONL by 21 weeks and this finding was uniform throughout the eye (Figure 

4.8). On the other hand, the preservation of ONL in treated eyes appeared to 

be present throughout the whole of the eye as depicted in the sagittally 

orientated cross sections of the eye, indicating that the effect was not a 

localized or patchy phenomenon (Figure 4.8).  
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Ultrastructural features of treated and untreated eyes were examined on 

electron microscopy. AAV2/8-treated eyes in Figure 4.9A showed presence 

of numerous OS, although these were substantially shorter compared with 

those of animals that did not undergo light exposure in Chapter 3 (section 

3.10). The membranous disks in these OS were dense but less well-

organized. The close relationship between OS tips and the RPE was 

maintained and the OS tips were seen invaginating the microvilli (MV) 

(Figure 4.9A).  Photoreceptor cells and IS in treated eyes had normal 

morphology. Numerous mitochondria could be seen in the metabolically 

active IS (Figure 4.9B). In contrast, no photoreceptor cells or OS could be 

seen in untreated eyes (Figure 4.9C and D).  The INL and bipolar cells were 

seen to lie adjacent to the RPE. There was loss of RPE microvilli and many 

intervening debris-containing vacuoles (D) could be seen in the untreated 

retina (Figure 4.9D).  
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4.4  Morphometric analysis of light accelerated 
degeneration in Aipl1 h/h retina following AAV2/8-
mediated gene expression. 
 

To assess the extent of photoreceptor cell survival after AAV2/8-mediated 

Aipl1 gene replacement, quantification of the outer nuclear layer was 

performed. Whole eyes were taken from Aipl1 h/h mice (n=7), that had been 

exposed to constant white light, for 21 weeks following subretinal injection of 

AAV2/8-CMV-Aipl1. This time point corresponds to the final time point of 

ERG analysis that was described in earlier sections.  The method used for 

the preparation for retinal sections for outer nuclear layer quantification has 

been described in section 3.5.2.  Centrally located retinal sections that 

passed through the optic nerve and covered the superior and inferior retina 

were selected for outer nuclear layer quantification. These were stained with 

propidium iodide and images of the photoreceptor layer between the ora 

serrata and optic nerve head was taken using the confocal microscope.  For 

each treated or untreated eye, 3 centrally located retinal sections were 

selected for imaging; 2 confocal images were taken from each side of the 

optic nerve in each retinal section.  The photoreceptor cell count for each eye 

was determined by taking the average of the cell counts from each confocal 

image of that eye.  To control for inter-animal variation in the rate of 

degeneration, a paired t-test was performed when comparing the mean 

photoreceptor cell count in the treated and untreated eyes in this group.  

 

Figure 4.10A shows confocal images of the outer nuclear layer from a single 

light accelerated Aipl1 h/h mouse at 21 weeks after treatment with AAV2/8 

vector. The treated eye has preservation of the outer nuclear layer with many 

more photoreceptor nuclei compared with the contralateral untreated eye in 

which the outer nuclear layer is largely absent or reduced to a single cell 

layer.  Statistical analysis showed a significant difference between the mean 

outer nuclear layer cell count in treated eyes compared with untreated eyes 

(p=0.0007) (Figure 4.10B). The mean number of photoreceptor nuclei in 
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treated eyes was 120% higher than in untreated eyes. The mean 

photoreceptor cell count in treated eyes was 202.1 ± 20.2 (n=7) while in 

photoreceptor count in untreated eyes was 90.64 ± 23.0 (n=7) at 21 weeks 

post injection.  There was consistent protection in all of the animals that were 

assessed: in each individual animal that was examined, significant 

photoreceptor cell preservation (p<0.05) was seen in the treated eye 

compared with the contralateral untreated eye (Figure 4.10C).  We compared 

the outer nuclear layer cell count between untreated eyes in light accelerated 

Aipl1 h/h mice with age-matched untreated eyes of Aipl1 h/h mice that did 

not undergo light exposure and found that the rate of retinal degeneration in 

light-exposed eyes was substantially accelerated by 3-4 times. At 21 weeks 

post injection, the mean outer nuclear layer in untreated light accelerated 

Aipl1 h/h retina was 90.64 ±23.0, while the mean outer nuclear layer cell 

count in  untreated eyes without light exposure at  22-24 weeks was 342.7 ± 

11.3, (n=7). Treatment with AAV2/8 vector resulted in significant prolongation 

of photoreceptor survival, but it did not halt the degenerative process 

altogether.  Compared to age-matched wild type eyes which had also been 

subjected to constant light exposure, the mean photoreceptor cell count in 

treated eyes was significantly lower (p=0.00008).  Treated eyes at 21 weeks 

post injection had 54% less photoreceptor cells than age-matched and light 

exposed wild type eyes. Untreated eyes had lost about 80% of photoreceptor 

cells compared to wild type by this time point.            
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4.5   Effect on AAV2/8-mediated Aipl1 expression 
on the levels of cGMP phosphodiesterase 
 

In view of the link between AIPL1 and cGMP phosphodiesterase (PDE), we 

proceeded to investigate whether AAV2/8-mediated gene expression had 

any effects on the levels of cGMP PDE on treated retina. In animal models of 

Aipl1 deficiency such as the AIpl1 -/- and Aipl1 h/h mouse, cGMP PDE is the 

only known retinal protein that lost or reduced respectively[391][282], 

suggesting that AIPL1 is a specialized chaperone for rod PDE. While mRNA 

levels of PDE6B are not affected in these animal models of Aipl1deficiency, 

the level of PDE protein is absent in the Aipl1 -/- mouse and severely 

reduced in the Aipl1 h/h mouse, indicating that Aipl1 has post-transcriptional 

effects on cGMP PDE. 

 

To investigate the effect of AAV2/8-mediated Aipl1 expression on β-PDE 

levels, eyes were taken from 3 procedured Aipl1 h/h mice that received 

unilateral subretinal injections of AAV2/8-CMV-Aipl1 and reared in constant 

light exposure. The mice were sacrificed at 21 weeks post injection and the 

treated and untreated eyes from each animal was enucleated and eye cup 

dissection was performed. The retina was dissected out from the choroid and 

sclera and manually homogenised and sonicated. A total of 6 retinal 

homogenates consisting of treated and untreated retina from 3 procedured 

Aipl1 h/h mice were obtained. Western blot analysis was performed on these 

retinal homogenates from procedured Aipl1 h/h mice and also on retinal 

homogenates from wild type controls.  

 

Immunoblotting with a β-subunit specific PDE antibody showed that β-PDE 

was present in treated eyes but were severely reduced or absent in 

untreated eyes (Figure 4.11A). Quantification of the immunoblotting results 

showed that β-PDE levels in treated eyes were significantly higher than in 

untreated eyes (p=0.02). At 21 weeks post injection under constant light 

acceleration, the mean levels of β-PDE in treated eyes were 65% of that in 

wild type retina. In untreated retina, β-PDE levels were 10% of that in wild 
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type retina (Figure 4.11B). Since treated eyes at this time point contained 

approximately half the normal number of photoreceptor cells following Aipl1 

gene replacement therapy, the level of β- PDE in each cell might be similar 

to that in wild type photoreceptors if adjustment was made for the number of 

cells. 
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4.6   Effect on subretinal injection of control 
vector AAV2/8-CMV-gfp in Aipl1 h/h mice with light 
acceleration.  
 
There have been studies suggesting that mechanical injury can lead to 

expression of neurotrophic factors [69,70,491]. Consequently, surgical 

manipulation of the retina including subretinal surgery may result in some 

short term negative effects such as trauma, or positive effects such as 

possible trauma-induced neuroprotective effects. To determine whether any 

positive improvements in AAV2/8-CMV-Aipl1 injected eyes were due induced 

by the surgical procedure or the AAV virus itself, rather than by Aipl1 

transgene expression, a further group of 10 Aipl1 h/h mice received 

subretinal injection of a control virus, AAV2/8-CMV-gfp in one eye only. The 

contralateral eyes were not treated to serve as negative controls.  The 

animals were also subjected to constant light exposure from 1 week after the 

subretinal injections and ERG recordings were performed at various time 

points to monitor the effects of the procedure. 

 

Statistical analysis of the mean b-wave amplitudes showed that there was no 

significant difference between treated and untreated eyes at any time point 

(Figure 4.12) The results obtained at flash intensities of 100 mcds/m2  and 

1000 mcds/m2  did not differ substantially. Overall, the b-wave amplitudes for 

both injected and uninjected eyes continued to decrease over time. This was 

due to the ongoing retinal degeneration caused by the underlying genetic 

defect. These findings indicate that delivery of a non-therapeutic vector has 

no influence on photoreceptor survival over the long term.  
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4.7   Effect of AAV2/8-mediate AIPL1 
overexpression. 

 
While most other AAV serotypes preferentially transduce the RPE following 

subretinal delivery, a select few such as AAV serotypes 2,5,7,8 and 9 

transduce both photoreceptor cells and the RPE after subretinal 

administration[28,508][18]. In many gene transfer studies, AAV2/5 was 

considered to be the most efficient vector for photoreceptor gene transfer 

before the discovery of novel serotypes such as AAV 7,8 and 9[18]. These 

novel serotypes are far more superior in terms of transduction efficiency and 

also mediate several fold higher levels of transgene expression. In contrast 

to AAV2/2 and AAV2/5 which have a higher tropism for the RPE, AAV2/8 

demonstrates equal tropism for RPE and photoreceptor cells and results in 

6-8 fold greater transgene expression in photoreceptor cells[18][348]. 

Consequently, AAV2/8 and AAV2/7 (AAV2/9 is less effective than the former 

two serotypes) are thought to be the most suitable vectors for treating 

photoreceptor gene defects[18], which cause the majority of hereditary 

retinal dystrophies. In this study, we elected to use AAV2/8 in combination 

with a CMV promoter, and we rationalized that the levels of AAV2/8 

mediated Aipl1 expression would be expected to exceed endogenous levels. 

 

It would be important to determine whether overexpression of Aipl1 in the 

retina would affect retinal function, and also whether the expression of Aipl1 

in cells such as the RPE that do not normally express Aipl1 has any 

deleterious effects. To do this, 7 wild type C57B/6 mice received subretinal 

injections of AAV2/8-CMV-Aipl1 in one eye only. Functional assessments 

were performed at regular time points using dark adapted scotopic ERG 

recordings obtained simultaneously from injected and uninjected eyes. A 

representative ERG intensity series from a wild type mouse at 24 weeks 

following injection of AAV2/8-CMV-Aipl1 is shown in Figure 4.13A. The 

amplitudes and waveform of the ERG recordings did not differ substantially 

between injected and uninjected eyes. Statistical analysis of the mean b-

wave amplitudes showed no significant difference between injected and 
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uninfected eyes (Figure 4.13B). After ERG recordings, all animals were 

sacrificed and their eyes processed for semithin sections. The retinal 

morphology and histology of eyes which received the vector injection was 

normal and similar to the contralateral eyes which were uninjected (Figure 

4.14). These findings indicated that the high levels of AIPL1 expression in 

the retina and the additional Aipl1 expression in the RPE cells had no 

negative effects. 
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4.9   Effects of AAV2/8-mediated gene 
replacement in the Aipl1 -/- mice  

 
Since an AAV2/8 vector proved effective for mediating gene replacement 

therapy in the light accelerated Aipl1 h/h model, we proceeded to evaluate 

the efficacy of AAV2/8-CMV-Aipl1 mediated gene replacement therapy in 

mice that are completely deficient in AIPL1. The Aipl1 -/- mouse is 

homozygous for a targeted disruption in Aipl1 and has an extremely fast 

degeneration, in which complete loss of photoreceptor cells is seen by 3 

weeks of age (see chapter 1). Because of the early onset of photoreceptor 

degeneration, these animals were treated at an earlier age,at postnatal day 

12 (P12).  A total of 6 Aipl1 -/- mice received subretinal injections of AAV2/8-

CMV-Aipl1. Each animal received double subretinal injection in the superior 

and inferior hemispheres of the retina in one eye only, with the contralateral 

eye left uninjected as an internal control. Following subretinal injections,  

assessments of retinal function in the form of ERG and morphological 

analysis  of histology and immunohistochemistry were performed at earlier 

timepoints, given the rapid nature of the degeneration. To compare the 

efficacy of AAV2/2 and AAV2/8, a further group of Aipl1 -/- mice received 

with subretinal injections of AAV2/2-CMV-Aipl1. 

 

Immunohistochemistry of treated and untreated Aipl1 -/- retina was 

performed at 16 days post injection, when the mice were 28 days old (Figure 

4.15). In untreated Aipl1 -/- mice the ONL is completely absent, but in mice 

that had received AAV2/8-CMV-Aip1, we observed a thick ONL with good 

preservation of retinal layers. Strong immunofluorescence for AIPL1 was 

seen in the inner segments, accompanied by strong immunofluorescence for 

β-PDE in the outer segments of treated retina.  In contrast, AIPL1 and β-PDE 

immunofluorescence were both absent in untreated eyes (Figure 4.15).  

 

Semithin sections of retina were taken from 4 week old mice at 19 days post 

injection (Figure 4.16). These sections showed that treatment with the vector 

resulted in substantial preservation of photoreceptor cells. In untreated eyes, 
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no photoreceptor cells or outer segments could be seen. The inner nuclear 

layer was seen lying adjacent to the RPE in untreated eyes and there was 

marked retinal thinning. In contrast, treated retina exhibited the presence of 

long, densely packed outer segments and showed good preservation of the 

outer nuclear layer of about 6-7 rows of photoreceptor nuclei.  

 

ERG recordings are normally extinguished by P18 in the Aipl1 -/- mouse. 

ERG analysis was performed on the procedured mice at 16 days following 

subretinal injection with AV2/8-CMV-Aipl1 when the animals were postnatal 

28 days. Single flash scotopic and photopic responses were recorded 

simultaneously from treated and untreated eyes of each animal (Figure 

4.17A).  Scotopic and photopic ERG responses from untreated eyes showed 

flat ERG tracings. In contrast, treated     Aipl1 -/- eyes exhibited good 

scotopic and photopic ERG amplitudes approximately 2 weeks after 

treatment (Figure 4.17). The difference in mean scotopic ERG b-wave 

amplitudes between treated and untreated eyes was statistically significant 

(p=0.03; mean b-wave treated = 243.5 ± 67.2 µV, mean b-wave untreated = 

6.25 ± 3.9 µV, n=4). Further ERG analysis was performed at later timepoint 

of 6 weeks post injection when the animals were approximately 8 weeks old. 

At this timepoint, treated eyes continued to maintain significantly higher ERG 

b-wave amplitude compared to untreated eyes (p=0.006; mean b-wave 

treated = 234.7 ± 51.1 µV, mean b-wave untreated = 28.8 ± 5.6 µV, n=6).  At 

3 months post injection when the animals were 14 weeks old, untreated eyes 

had no ERG response (mean b-wave untreated = 0 µV, n=3), while treated 

eyes showed a substantial ERG response (mean b-wave treated = 181.7 ± 

39.4 µV, n=3 ).These findings indicate that early treatment using AAV2/8-

CMV-Aipl1 is able to significantly improve photoreceptor function and delay 

retinal degeneration in the Aipl1 -/- mouse.  ERG analysis of Aipl1 -/-  mice 

injected with AAV2/2-CMV-Aipl1 did not show any evidence of photoreceptor 

rescue (Figure 4.17B). These mice were also injected at the same time point 

of P12 and neither the treated nor untreated eyes showed any ERG 

responses at P28 (16 days post injection). 
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4.10   Discussion 
 

The window of opportunity in a disease model is created by the balance 

between time required for vector-mediated expression and the rate of 

photoreceptor degeneration. In models of rapid degeneration, gene 

replacement therapy using AAV2/2 vectors is unlikely to be successful since 

most of the photoreceptors are lost before sufficient transgene expression 

can take place.  By choosing a more suitable, faster vector to treat a rapid 

degeneration, the window of opportunity for intervention can be increased. 

This study describes the first use of an AAV2/8 vector to treat a murine 

model of retinal degeneration. Compared with AAV2/2 (described in Chapter 

3), AAV2/8 is much more efficient at transducing the retina. We evaluated 

gene replacement therapy using AAV2/2 and AAV2/8 vectors and found that 

the most effective rescue was achieved using AAV2/8 vector.  

 

Under constant light exposure, the Aipl1 h/h mice exhibited a more severe 

and accelerated form of retinal degeneration; a 2-3 fold increase in rate of 

degeneration is seen with loss of 85% of photoreceptor cells by 5 months. 

This suggests the photoreceptor cells in Aipl1 h/h mice could be more 

sensitive to light damage, as wild type mice kept under identical conditions 

showed no increased loss of photoreceptor cells. For effective treatment of 

this animal model, a vector with faster transduction kinetics was required. 

Normally, all photoreceptor cells are lost by the time Aipl1 -/- mice are 3 

weeks old. Following AAV2/8-mediated gene replacement in Aipl1 -/- mice, 

there was significant preservation of photoreceptor cells and retinal function 

for over 3 months. This represents the most effective rescue of a rapid retinal 

degeneration to date.  To ensure adequate transgene expression before a 

critical mass of photoreceptor cells were lost, the Aipl1 -/- mice were treated 

at a much younger age, at postnatal day 12. In doing so, the potential benefit 

of gene transfer had to be weighed against the risks of retinal damage from 

surgical manipulation in younger mice. At P12, mice have a fully developed 

retina and have opened their eyes, thus facilitating subretinal injections. 

AAV2/8-mediated gene expression should occur by P15-P16, at this time 

there would still be surviving photoreceptor cells in Aipl1 -/- mice. Superior 
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results using AAV2/8 may have resulted from its higher transduction 

efficiency and higher levels of maximal transgene expression which have 

been previously described [18,348]. More importantly, the rapid onset of 

gene expression may have been vital in preserving photoreceptor cell 

survival in the Aipl1 -/- mouse. We observed photoreceptor rescue with 

AAV2/8 but not with titre-matched AAV2/2 in the Aipl1 -/- mouse, this is most 

likely because photoreceptor degeneration would have been completed by 

the time maximal transgene expression was achieved with AAV2/2. 

 
In the experiments described in this study, we injected a single eye of each 

animal with a therapeutic vector, leaving the contralateral uninjected eye to 

serve as an internal control during follow up assessments. Similar studies by 

other groups have used control injections (subretinal injections of a control 

vector) into the contralateral eye to detect trauma-induced neuroprotective 

effect. Since the statistical significance in differences between treated and 

untreated eyes were of such large magnitude and seen at long term time 

points, it is unlikely that hypothetical surgically-induced neuroprotection has 

any major contribution to differences observed. Whilst injection of a control 

vector into the contralateral eye will allow assessment of the therapeutic 

transgene in isolation, it is important to leave the contralateral eye as an 

untreated control as the aim of this study is to provide a tangible 

improvement in retinal function and morphology after treatment, which also 

includes the delivery of the treatment. Moreover, injecting the contralateral 

eye may increase the risk of creating false positive results, where injection of 

therapeutic vector results in better function than control injections, and also 

in an undetected worsening because of trauma-related decrease in retinal 

activity. Therefore, we injected one eye only in each animal with the 

therapeutic or control vector. In the control group of animals consisting of 

Aipl1 h/h mice that received unilateral subretinal injection of AAV2/8-CMV-

gfp or AAV2/2-CMV-gfp, there was no significant differences seen in ERG 

amplitudes or cell count when comparing the injected eye with the 

contralateral uninjected eye. Further groups of animals comparing injections 

of PBS with untreated eyes (section 3.6.2), showed that injection-related 

trauma had no significant positive effect on retinal function.  
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Because AIPL1 is required for the biosynthesis/stability of PDE, no PDE 

accumulates in the photoreceptors of Aipl1 -/- mice and the decline in PDE 

levels is proportional to the reduced level of AIPL1 in Aipl1 h/h mice. 

Elevated PDE levels would be ameliorative to the downstream effects of 

disease at the molecular level in this disease model, and therefore would be 

expected to alleviate the disease phenotype. Hence, in preclinical animal 

studies, a useful and quantifiable outcome measure which is predictive of 

successful treatment would be an increase in PDE levels in rod 

photoreceptors of treated animals. Treatment with AAV2/8-CMV-Aipl1 in light 

accelerated Aipl1 h/h mice led to increased production of AIPL1 in 

photoreceptor cells and subsequently increased levels of cGMP-PDE in 

photoreceptor cells as demonstrated on Western blotting (Section 4.6), and 

localised correctly to photoreceptor outer segments.  In contrast, untreated 

eyes had almost undetectable PDE levels. The difference in PDE levels 

between treated and untreated eyes may partly be due to the loss of 

photoreceptor cells in untreated eyes. At 21 weeks post injection, the mean 

level of PDE in treated eyes was 65% of wild type while untreated eyes had 

10% of wild type levels. In order to compare the levels of PDE expression in 

single photoreceptor cells with and without treatment, the data was corrected 

for the average number of cells in the treated and untreated eyes at that time 

point. The PDE expression levels in the samples were normalized to total 

protein content in the eye (β-actin was used as normalization standard) and 

hence, is proportional to the number of photoreceptor cells present. Using a 

photoreceptor-specific protein such as alpha-transducin as normalization 

standard, it would have been possible to directly compare the levels of PDE 

expression in photoreceptor cells. 

 

In the studies presented here and the preceding chapters, ubiquitously active 

CMV promoter was used to drive transgene expression. The advantage of a 

ubiquitous viral promoter such as CMV is its high expression levels, the 

ability to drive expression in both rods and cones and its wide use in animal 

studies. For clinical application, a tissue-specific promoter would be more 

appropriate because patients may have deleterious effects secondary to 
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ectopic expression of the transgene. Particularly in situations where 

photoreceptors are the targets for gene delivery, a non-specific promoter 

would also result in the ectopic expression of the transgene in the RPE. This 

could have unknown long term effects, and is therefore undesirable for 

clinical gene therapy in humans. It has been recently shown that AIPL1 is 

essential for the viability and function of cone photoreceptors as well as rods, 

and that photoreceptor disease due to AIPL1 gene mutations is caused by 

an insufficiency of rod and cone PDEs [232]. Thus an effective therapy for 

this condition should aim to restore rod and cone PDE biosynthesis, through 

reconstituting AIPL1 function to a level sufficient to sustain photoreceptor 

function and survival. The ideal vector design for AIPL1 gene therapy should 

be one with well-defined promoter/enhancer elements with uniform, 

photoreceptor-specific transcriptional activity and target both rods and cones 

in order to fully restore retinal function. AAV vectors have a relatively small 

carrying capacity for foreign DNA that typically does not exceed 4.5 kb. The 

limited carrying capacity of AAV vectors dictates that such promoters ideally 

be short, no more than several kilobases in length, to allow for packaging of 

the transgene. A number of promoters such as the derivatives of rod and 

cone opsin promoters have been validated as efficient and specific for driving 

expression in rods and cones respectively[160,161,263,487]. More recently, 

a human rhodopsin kinase promoter fragment was characterised and shown 

to be relatively small in size [512,513]. Packaged into an AAV2/5 vector, the 

rhodopsin kinase promoter was shown to be specifically active in both rods 

and cones but not in the RPE or the inner retina, driving expression at a 

relatively high level [230]. For human gene therapy purposes, constructs 

incorporating promoters such as these may be more suitable for AAV-

mediated gene delivery. A further issue of importance in the context of 

human gene therapy is the level of expression that is produced from the 

therapeutic vector. Ideally, the level of vector-mediated expression should 

closely match that of endogenous levels. This can be addressed by choosing 

a suitable promoter and one that is human-derived (see Chapter 5 Final 

discussion).  
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Combining the results from this chapter with those in the previous one, we 

demonstrated that mouse models of AIPL1 deficiency with very different 

rates of disease progression respond favourably to AIPL1 gene replacement 

therapy. AAV-mediated transene expression in the Aipl1 murine models 

appears stable and the efficacy of rescue long-lasting. In the hypomorphic 

mutant, AAV2/2 and AAV2/8 mediated gene expression remained in the 

retina at 50 weeks and 21 weeks post injection respectively and the 

photoreceptor cells were well maintained at that age. Similarly, in the Aipl1 -/- 

model, AAV2/8 mediated delivery of the AIPL1 gene appears to be stable for 

at least 3 months, which is the latest time point examined. The results 

together provide further evidence to support gene replacement  therapy for 

the treatment severe inherited retinal dystrophies caused by defects in 

AIPL1.  
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5  Screening of patients with early-
onset severe retinal dystrophy for 
mutations in AIPL1 and characterization of 
the phenotype 
 

5.1   Introduction 
 
Mutations in AIPL1 have been estimated to account for approximately 7% of 

LCA cases [442]. The phenotype of AIPL1 mutations is variable as it has 

also been associated with autosomal dominant cone-rod dystrophy and 

juvenile retinitis pigmentosa [103,440,442]. The development of potential 

targeted therapies for the treatment of degenerative retinal diseases has 

heightened the necessity for accurate molecular diagnoses. There is a need 

for a comprehensive molecular screen not only to establish the causative 

gene for the possibility of treatment in the future and further the 

understanding of the molecular pathways involved in the pathogenesis of the 

retinal disease, but also to distinguish between the types of degenerative 

retinal diseases.   Ultimately, the vector system and gene therapy strategies 

developed in preceding chapters to target photoreceptors and prevent 

photoreceptor degeneration in the animal models of AIPL1–deficiency are 

aimed at treating RP and LCA due to mutations in AIPL1. The results 

presented in chapters 3 and 4 suggest that defects within this gene are 

suitable targets for the development of gene therapy approaches in patients. 

Any therapeutic intervention is more justified in a severe disease where the 

potential benefits far outweigh the risks; patients with AIPL1- related retinal 

degeneration generally have a severe phenotype with peripheral field loss 

and frequently also involvement of central vision causing marked visual loss 

early in life. In order to move AAV-mediated photoreceptor gene transfer 

from bench to bedside, identification of patients and characterization the 

disease caused by mutations in AIPL1 is required.  The identification of the 
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molecular basis of LCA is challenging, given the high genetic heterogeneity 

of LCA and the absence of clinical landmarks in most cases that may help 

distinguish one form of LCA from another.  The molecular diagnosis and 

systematic clinical characterization of patients is instrumental for the 

selection of appropriate patients for gene therapy clinical trials and will 

enable the natural history and phenotype of the disease to be better 

established, especially since this is still not well ascertained. Additionally, this 

will contribute towards determining clinical baselines and assessment targets 

to guide treatment and facilitate genetic counseling of candidate patients. 

 

 

5.1.1    Mutations of AIPL1 
 

To date, there are 22 known disease-causing mutations in AIPL1 but it is 

anticipated that there may be more mutations to be discovered by screening 

a wider population that includes patients with LCA and early onset retinal 

dystrophies. Table 5.1 summarizes the currently known disease-causing 

mutations and polymorphisms in AIPL1 (http://www.retina-

international.com/sci-news/aipl1mut.htm).  
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Table 5.1. AIPL1 mutation database. Current known mutations and benign variants of AIPL1 

updated from March 2009. (extracted from HGMD) 

Phenotype Exon Base change Protein Description Accession 
number 

ADCRD 6 del 1053-1064 Pro350∆12 12 base pair deletion 
within hinge region. 

CD003288 

LCA4   1 c.40A>G Lys14Glu Missense mutation. CM034773 

LCA4 2 c.116C>A Thr39Asn Missense mutation CM034201 

LCA4 2 c.126T>A Cys42X Nonsense mutation. CM042287 

LCA4  2 c.211G>T Val71Phe Missense mutation. CM040669 

LCA4 2 c.236T>C Met79Thr Uncommon missense 
mutation. 

CM003225 

LCA4 2 c.244C>T His82Tyr Misssense mutation. CM034202 

         LCA4 2 c.264G>A Trp88 X Nonsense mutation. CM003226 

LCA4 Intron 
2 

c.277-2A>G IVS2-2A>G Splice site mutation. CS003285 

LCA4 3 c.286G>A Val 96 Ile Uncommon missense 
mutation. 

CM003227 

LCA4 3 c.341C>T Thr114 Ile Missense mutation. CM003228 

LCA4 3 c.401A>T Tyr134Phe Missense mutation. CM042288 

LCA4 4 c.487C>T Gln163 X Nonsense mutation. CM003229 

LCA4 4 c. 589G>C Ala197Pro Missense mutation. CM003230 

LCA4 5 c.715T>C Cys 239 Arg Missense mutation. CM000002 

LCA4 5 c. 784G>A Gly262Ser Missense mutation. CM003231 

LCA4 6 c.809G>A Arg270His Missense mutation CM074007 

LCA4 6 c.834G>A Trp 278 X Nonsense mutation. CM000003 

LCA4 6 c.905G>T Arg 302 Leu Missense mutation. CM003232 

LCA4 6 del1010-1011 Ala336∆2 2 base pair deletion. CD001471 

LCA4 6 ins12bp1122-
1123 

Pro374ins12
bp 

12 base pair insertion CI056866 

LCA4 6 c.1126C>T Pro376Ser Missense mutation. CM003233 

Polymorphism 1 c.111T>C Phe 376Phe   
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Polymorphism 2 c.234C>T Ser 78 Ser   

Polymorphism 2 c.267C>T Cys 89 Cys   

Polymorphism 3 c.300G>A Leu 100 leu   

Polymorphism 4 c.516T>C His 172 His   

Polymorphism 4 c.651G>A Pro 217 Pro   

Polymorphism 4 c.765T>C Asp 255 Asp   
 

 

 

 

To date there have been three large studies of AIPL1 mutation analysis in 

LCA patients. In the first study, AIPL1 mutations were found in 11 families 

following screening of 118 probands [442] In another study, a comprehensive 

mutational analysis of all LCA-associated genes in 179 unrelated LCA 

patients identified AIPL1 mutations in 6 (3.4%) patients [174]. Finally, the 

largest study described 26 probands with AIPL1 mutations from a cohort of 

303 unrelated patients (8.6%)[103]. The majority of the AIPL1 alleles which 

have been identified so far represent null (nonsense, frameshift, or severe 

splice site) mutations.  Most of the current reported disease-causing AIPL1 

mutations appear to lie within the sequences encoding the 3 tetratricopeptide 

repeat (TPR) motifs which are regions of high sequence conservation across 

different species. A nonsense mutation in the TPR III domain (W278X) is the 

most frequently reported mutation in LCA patients. It was originally found in 

consanguineous Pakistani families and may represent a founder 

mutation[97,440,442]. Despite the lesser degree of conservation in the 

proline-rich region, a 4 amino acid deletion in this hinge region P351^12bp 

has been reported in 2 unrelated patients with autosomal dominant cone-rod 

dystrophy and juvenile retinitis pigmentosa [442] suggesting that AIPL1 

mutations may also account for other types of inherited dystrophies.  

  

Patients with AIPL1-related LCA have been described in current literature to 

have a particularly severe phenotype, characterized by marked early visual 

impairment, non-detectable fields and ERGs, optic disc pallor, maculopathy 



291 
 

in most patients, peripheral bone-spicule-like pigmentation. There is also a 

significant prevalence of keratoconus and cataracts [103]. Some of the 

mutations lead to a truncation of the reading frame and are not expected to 

produce a functional protein. Other reported mutations such as missense 

mutations may not abolish protein function completely and may produce a 

milder phenotype. A small number of patients with milder disease than LCA 

associated with AIPL1 mutations have been reported.  In a previous study, 

screening of a large cohort of retinal degeneration patients led to the 

observation that three probands from two families had a heterozygous 12 bp 

deletion in AIPL1. They were diagnosed with cone-rod dystrophy and 

juvenile RP but their phenotypic details were not provided[441]. Another 

recent study identified an individual with compound heterozygous mutaton in 

AIPL1 who had a later-onset protracted course of disease and was 

diagnosed with retinitis pigmentosa[204]. Thus further screening of a large 

cohort of patients with RP or cone-rod dystrophy may identify more such 

patients with residual AIPL1 function.  

 

Patients who are homozygous or compound heterozygous for a null mutation 

are reported to have more severe disease than patients who are 

homozygous for missense mutations. In a study of 26 probands with AIPL1 

mutations, 2 patients who were compound heterozygotes for missense 

mutations T114I and P376S retained visions of 20/400 and had moderate 

retinopathy while 9 patients who were homozygous for W278X had vision of 

hand motion or light perception and severe retinopathy[103].  In another 

study which identified 7 AIPL1 patients from a cohort of 110 LCA patients, 

patients with heterozygous missense mutations were found to have better 

visual acuity[151]. Compared to the other LCA genotypes, there is a high 

prevalence of maculopathy in patients with AIPL1 mutations[103]. This may 

not be surprising as AIPL1 is also expressed in cones and is necessary for 

the continued survival of cone photoreceptors[232] .  More interestingly, the 

majority (11 out of 16) of patients noted to have macular atrophy harboured a 

premature stop codon mutation in either homozygous or heterozygous 

states.  The authors of the study noted there was a high incidence of 

keratoconus noted in patients with a homozygous sequence change and 
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suggested that this observation may be significant. The presence of 

significant keratoconus may be associated with severe mutations as most of 

these patients the study also had severe macular involvement and 

pigmentary retinopathy. There have also been individual reports describing 

unusual notable phenotype found in patients with AIPL1 mutations such as 

abnormal retinal vascular morphology [183]. 

 

Aside from the phenotypic variability seen in AIPL1 patients with different 

mutations, variability has been reported even when there is a common 

molecular genetic aetiology in a family.  In a study of 4 consanguineous 

Pakistani families with a severe form of LCA due to a homozygous nonsense 

mutation in AIPL1, W278X, a spectrum of clinical findings were observed 

among the affected family members; vision ranged from hand motions to no 

perception light, variable fundal findings with different severity of retinopathy 

and maculopathy, and variable findings of keratoconus, even amongst 

members of similar ages [97]. The basis of this phenotypic variability within a 

mutation has not been completely understood, but environmental influences 

and possibly other modifier alleles may contribute to these observations. 

 

5.2   Aims 
 
This chapter aims to investigate the prevalence of sequence variants in 

AIPL1 in a large cohort of DNA from patients with LCA or autosomal 

recessive severe childhood-onset retinal dystrophy, and to compare this with 

that seen in the normal population. By screening these patients for mutations 

in AIPL1, we hope to identify more patients, report any novel mutations and 

characterize the clinical features associated with the mutations. This project 

would aims to identify the subset of patients that would be candidates for 

gene therapy. For this purpose, a panel of 309 probands diagnosed with LCA 

or early-onset retinal dystrophy (EORD) was screened for mutations in AIPL1 

using a combination of microarray LCA chip analysis (Asper-Ophthalmics) 

and direct sequencing. Patients with early-onset retinal dystrophy or EORD 
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are defined as those patients with severe visual loss in early childhood 

before the age of 5. Sequencing of the total patient panel and half of the 

control panel was performed by the author. Help was obtained with 

segregation analysis and sequencing of part of the control panel from Dr Jill 

Cowing, Dr H Tran and Dr D MacKay.   

 

5.3  Patient panel and demographics  
 

In order to identify patients and families with mutations in AIPL1, mutation 

screening was performed on patients enrolled in a genetic database at 

Moorfields Eye Hospital. The genetic database used in this study consisted 

of patients who have been diagnosed with LCA or with EORD and were 

identified through the genetic ophthalmology clinics and medical retina clinics 

at Moorfields Eye Hospital. This database included a clinical spectrum of 

patients with classical LCA whose severe visual impairment was present 

from infancy, to patients who presented later in childhood and may have 

overlapping features with retinitis pigmentosa clinically classified as EORD 

(severe retinal dystrophy symptomatic before the age of 5 years old with an 

abnormal electroretinogram at the time of diagnosis). The inclusion criteria 

were: clinical diagnosis of LCA or a severe retinal dystrophy that was 

symptomatic in childhood, severely reduced or absent ERG at diagnosis and 

autosomal recessive inheritance. Patients with other known ophthalmological 

or systemic diseases that share features with LCA or a family history 

suggestive of autosomal dominant or X-linked recessive disease were 

excluded. Research procedures were in accordance with institutional 

guidelines and the Declaration of Helsinki. Ethics committee approval was 

obtained. All patients and parents were provided with information sheets 

before informed consent was obtained from all patients or their legal 

guardians for the provision of clinical information and blood samples for DNA 

extraction and analysis. All patients also underwent detailed phenotyping 

which included clinical ophthalmological examination via slitlamp 

biomicroscopy and indirect ophthalmoscopy, diagnostic electrophysiology, 



294 
 

OCT, Goldmann perimetry, fundus imaging, fluorescein angiography and 

autofluorescence and measurements of visual acuity and color vision. 

Optical coherence tomography (OCT) is a non-contact imaging technique 

that produces high resolution cross sectional images of the retinal 

architecture based on the differences in optical reflectivity of the different 

layers. Using time delays in reflected signals, the distance or thickness 

between different layers of ocular tissues can be measured. The 

ophthalmological examinations were conducted by R.Henderson, P. Moradi 

and colleagues at Moorfields Eye Hospital. 

 

The patient panel consisted of 309 probands who have a clinical diagnosis of 

LCA or EORD, including rod-cone dystrophy and retinitis pigmentosa. The 

number of DNA samples that were screened and analysed was 326, this 

consisted of DNA samples from 309 probands and the remaining 17 DNA 

samples were from relatives of probands who agreed to be part of the study. 

Amongst the probands, majority, 70% (217/309) of the DNA samples were 

from Caucasian subjects, of either British or other European backgrounds, 

21% (64/309) were of Asian extraction, mostly Pakistani or Indian, 3% 

(10/309) were of Middle-eastern extraction, 1.6% (5/309) were African, 0.6% 

(2/309) were Chinese and the remainder were of mixed backgrounds (Table 

5.3). The control panel consisted of 96 control DNA samples originating from 

a control population of randomly selected, non-related UK Caucasian blood 

donors (ECACC Human Random Control-1 DNA panel). 

 

Of the 309 probands in the panel, 26% were offsprings of consanguineous 

marriages. One hundred and fourty-nine (149) probands have a diagnosis of 

LCA, 29 had a diagnosis of early onset retinal dystrophy, 67 were diagnosed 

as rod-cone dystrophy, 25 were diagnosed with retinitis pigmentosa and 39 

with cone-rod dystrophy (Table 5.4).  
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Table 5.2 Table showing the demographic breakdown of the patient population. 

Ethnic group number percentage 

Caucasian (British, 

European, Iranian) 

217 70% 

Asian (Pakistani, Indian, 

Bangladeshi) 

64 21% 

Middle-eastern 10 3% 

African 5 1.6% 

Chinese 2 0.6% 

Mixed 

background/unknown 

11 3% 

total 309 100% 

 

 

 

 
Table 5.3  Details of the LCA and EORD patient cohort.  

Summary of the clinical diagnosis and mean age of diagnosis and onset of disease in the 

panel of   patients . 

Diagnosis Patients 
(n) 

Mean age at 
diagnosis 

(y) 

Mean age at onset 
of symptoms 

(y) 
LCA 

EORD 

Rod-cone dystrophy 

Retinitis pigmentosa 

Cone-rod dystrophy 

Total 

149 

 29 

 67 

 25 

 39 

309 

1.0 

3.8 

5.0 

10.7 

5.1 

0.4 

1.8 

2.1 

7.3 

3.5 

 

Abbreviations: LCA-Leber Congenital Amaurosis; EORD-early onset severe retinal 

dystrophy 
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5.4  Patient screen and sequencing strategy 

 
A two-stage screening strategy was used. First pass screening for mutations 

in AIPL1 was performed using the microarray LCA chip analysis (Asper-

Ophthalmics, Tartu, Estonia). Following LCA chip analysis, samples that had 

not returned any sequence variants or samples that returned only one allelic 

change on the chip were further analysed by sequencing. The DNA samples 

were sent to Asper Ophthalmics by R Henderson and P Moradi. The LCA 

disease chip allows the rapid screening of 423 likely disease-associated 

sequence variants in the 10 out of 13 genes known to be associated with 

LCA or early onset retinal dystrophy. These are AIPL1, RPGRIP1, GUCY2D, 

RPE65, CRX, CEP290, RDH12, LRAT, MERTK and TULP. The chip 

currently contains 32 AIPL1 sequence variants, although not all of these 

sequence variants are listed in official mutation databases.  A list of the 

AIPL1 sequence variants that are contained in the LCA disease chip is 

shown in Table 5.4. DNA samples that did not return any mutations in any of 

the LCA genes using the microarray disease chip or samples in which only 

one AIPL1 disease allele was found were subjected to bidirectional 

sequencing of AIPL1, in order to identify any novel mutations or the 

possibility of a second allele in the latter. The entire AIPL1 coding sequence 

was assayed, including the intron/exon junctions. 

 

Direct sequencing of AIPL1 was performed on genomic DNA extracted from 

peripheral blood leukocytes of patients’ blood samples according to methods 

previously described (Chapter 2). The DNA samples were subjected to PCR 

to amplify the coding exons of AIPL1, except for exon 6 in which only the 

coding part of the exon was amplified. The primers used were designed to 

encompass the entire coding sequence and the flanking the splice acceptor 

and donor sites of each coding exon. Since the promoter region for AIPL1 is 

currently unknown, it was not possible screen this region in the sequencing 

of the gene. The primer sequences are listed in Chapter 2 (see section 

2.11.3). PCR conditions for each pair of forward and reverse primer were 

optimized prior to sequencing of patient DNA and this is listed in Section 
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2.11.3 along with the annealing temperatures. Figure 5.1A shows the results 

of the primer optimization for each exon using normal control DNA. The 

fragment of appropriate sizes were obtained for each individual exon and the 

respective annealing temperatures for each exon is shown.  For each patient 

DNA sample, the 6 coding exons of AIPL1 were amplified and the PCR 

products were checked by gel electrophoresis for specificity and quality. 

Figure 5.1B shows an example of the gel electrophoresis of the PCR 

products of exon 2 from patient DNA samples. Only samples which yielded a 

clean, specific PCR band of the predicted size were subsequently subjected 

to direct sequencing. The adenine (A) of the start codon (ATG) of the AIPL1 

cDNA was assigned as nucleotide 1.  

 

Once a sequence variant is identified, it was determined whether it is 

disease-causing or a polymorphism using the following attributes which 

increase the probability that a sequence variation causes a defect in the 

resulting protein: 1) the predicted effect of the base pair change on the 

protein product; changes such as deletions, frameshifts, splice site mutations 

and nonsense mutations were considered definite null mutations and 

therefore may have more detelerious effects, while mutations such as 

missense mutations or in-frame deletions or insertions may still result in 

some residual protein function. For other sequence variants, a web-based 

protein prediction program was used to help distinguish the benign from 

deleterious effects of a new mutation. 2) The relative frequency of the 

sequence variant in LCA patients versus normal controls. A sequence 

variation was considered likely to be pathogenic when it was found 

exclusively in patients and not in 192 chromosomes from 96 control DNA 

samples (although caution has to be taken when considering an infrequent 

allele), whereas >1% frequency in the controls were likely to be 

polymorphisms. 3) The identification of two pathogenic alleles. 4) Appropriate 

co-segregation of the mutant allele in the affected and non-affected members 

of the families. 5) Conservation of the mutant codon or protein residue 

across other species. The reference sequence for sequence analysis was 

taken from the Genbank reference sequence (accession number 

NM_014336.3). NCBI Reference Sequence: NP_055151.3 
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Table 5.4  List of AIPL1 sequence variants contained in the LCA microarray chip by Asper-

Genetics. A total of 32 different sequence variants is screened for by the chip. 

 

Gene 
 

Exon 
 

nucleotide change 
 

amino acid change  
 

AIPL1 1 41A>G K14E 
AIPL1 2 97 ins 8bp (GTGATCTT)  FS 
AIPL1 2 112delC;111C>T  R38fs;F37F 
AIPL1 2 116C>A 739N 
AIPL1 2 126T>A C42X 
AIPL1 2 157C>T R53W 
AIPL1 2 211G>T V71F 
AIPL1 2 236T>C M79T 
AIPL1 2 244C>T H82Y 
AIPL1 2 264G>A W88X 
AIPL1 2 265T>C C89R 
AIPL1 2 268G>C D90H 

AIPL1 IVS2-2 277-2A>G Premature 
stop/frameshift/deletion 

AIPL1 3 286G>A V96I 
AIPL1 3 341C>T T114I 
AIPL1 3 401A>T Y134F 
AIPL1 3 423G>T/C Q141H 
AIPL1 3 461 T>C L154P 

AIPL1 IVS3+1 IVS3+1 G>A Premature 
stop/frameshift/deletion 

AIPL1 4 487C>T Q163X 
AIPL1 4 538G>A V180I 
AIPL1 4 589G>C A197P 
AIPL1 4 617T>A I206N 
AIPL1 5 715T>C C239R 
AIPL1 5 733_735 del E245del 
AIPL1 5 769 del 9bp (CTCCGGAC) frameshift 
AIPL1 5 784G>A G262S 

AIPL1           6 IVS5-10_786 del Premature 
stop/frameshift/deletion 

AIPL1 6 834G>A W278X 
AIPL1 6 905G>T R302L 
AIPL1 6 1008 del 2bp (AG) frameshift 
AIPL1 6 1126C>T P376S 
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1

	  

2

	  

Figure 5.1A. Optimization PCR of primer pairs for each AIPL1 
exon. Single PCR band of expected size were obtained for each 
exon. The respective optimal annealing temperatures for each exon 
is shown 

Figure 5.1B. Gel electrophoresis of PCR samples of patient DNA for 
exon 2. After PCR amplification of PCR samples were analysed by gel 
electrophoresis. An example of PCR samples of exon 2 is shown. Expected 
bands size was approximately 400 bp. Each lane represents PCR sample of 
one patient DNA. M denotes marker. Numbers 1 to 17 indicates respective 
PCR samples. 
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5.5  Results 

 

5.5.1   Comparative analysis of AIPL1 mutations 
 

LCA chip analysis was performed on all of the 326 DNA samples that were  

obtained from the patient panel of 309 probands and 17 relatives. Bi-

directional sequencing was performed on 153 proband DNA samples of all 6 

exons of the AIPL1 gene including splice-site junctions. These samples 

consisted of DNA from patients in whom a molecular cause had not yet been 

identified for their disease. Of the 153 samples that were sequenced, 129 

consisted of samples that have been screened using the LCA chip prior to 

sequencing and did not return any mutations; 9 samples returned one allelic 

change on the LCA chip; and 15 samples had not been screened on the LCA 

chip prior to sequencing. Bi-directional sequencing of AIPL1 was also 

performed on the control panel consisting of 96 control DNA samples.  

 

The LCA chip identified AIPL1 disease-associated variants or mutations in 

17/326 of DNA samples, giving a positive hit rate of 5% for AIPL1. This is 

similar to the hit rates reported by other studies using the LCA chip and the 

mutation frequency in LCA [103][519]. Homozygous mutations were found in 

4 (1.2%) patients and compound heterozygous mutations in 3 (0.9%) 

patients, and a further 10 (3.0%) patients had a single allelic change 

identified (Table 5.5). Of the patients with only one allelic change, a second 

allele was identified in another LCA gene using the same array (RPGRIP, 

RDH12, CRB1) in 5 patients. Direct sequencing identified 21/153 (14%) 

patients with AIPL1 mutations or missense changes (Table 5.5). Of these, 4 

(2.6%) patients had homozygous mutations, 8 (5.2%) were compound 

heterozygotes and 8 (5.2%) had one allelic change.  
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Table 5.5  Comparison of  mutation screening by Asper LCA chip and direct sequencing.  

The number of disease-associated variants and novel non-conservative variants in AIPL1  

detected by Asper LCA chip and by direct sequencing . 
Method Samples 

detected 
(n) 

Homozygous Compound 
heterozygous 

Single mutation 

 

Asper LCA chip 

Direct sequencing 

 

17/326(7%) 

21/153(14%) 

 

4(1.2%) 

4(2.6%) 

 

3(0.9%) 

8(5.2%) 

 

10(3.0%) 

8(5.2%) 

     

 

 

 

A total of 39 sequence variants (reported and unreported) were found on 

sequencing of the patient samples, of which 26 have not been reported 

before (Table 5.6). None of the novel variants were found on sequencing of 

the control DNA. Sequencing of the panel of 96 control DNA samples 

identified 15 sequence variants, of which 10 have not been previously 

reported. A comparison of the number of sequence variants identified in the 

patient panel and the normal control panel is presented in Table 5.6. Overall 

sequencing of the 153 probands revealed AIPL1 variants (reported and 

unreported) in at least one allele in 109 (69%) subjects. Sequencing of 

normal controls identified AIPL1 sequence variants in 36/96 (39%) samples. 

A summary of the predicted effects of the novel variants found on 

sequencing of the patient and normal panel is shown in Table 5.7. Twenty-

five different novel AIPL1 variants were found.  Silent mutations make up the 

majority (13/26), followed by missense mutations (9/26), frameshift (2/26) 

and splice (1/26) mutations. An overview of all the sequence variants 

identified by direct sequencing of AIPL1 in the patient samples is presented 

in Table 5.8.  The sequence variants which were found by sequencing AIPL1 

in a panel of normal DNA are presented in Table 5.9. These results suggest 

that AIPL1 may be polymorphic in the general population, and sequence 

variants appear to be more common in the population of patients with 

childhood retinal dystrophies. The number of synonymous and non-

synonymous single nucleotide polymorphisms observed per patient would 
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indicate that changes in AIPL1 sequence are more common than expected.  

Furthermore, many of these changes have not been investigated at 

biochemical level and the functional effect of these changes is unknown. 

 

 

 
Table 5.6 Summary of findings from sequencing of patient panel of LCA and childhood 

retinal dystrophies and sequencing of normal controls.   

Numbers in parenthesis () indicated number of samples found in the category of sequence 

variant
 

 

 
Table 5.7 Predicted effects of novel variants found through sequencing of the patient panel 

of LCA and childhood dystrophies and sequencing of normal controls. 

Numbers in parenthesis () indicated number of samples found in the category of sequence 

variant
 

 

 
 

 

 

 

DNA panel Total no. 

variants found 

Reported 

mutations 

Polymorphisms  No. of novel 

variants  

 

Patient(153) 

Control  (96) 

 

39(109) 

15(36) 

 

7(19) 

0 

 

6(121) 

5(92) 

 

26(67) 

10(35) 

     

DNA panel No. of novel 

variants 

Missense 

mutations 

Frameshift 

mutations  

Splice 

site 

Silent 

mutation 

 

Patient(153) 

Control  (96) 

 

26(67) 

10(35) 

 

10 

0 

 

2 

 

1 

 

13 

10 
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Table 5.8  AIPL1 sequence variants found on sequencing the patient panel of LCA and 

childhood-onset retinal dystrophies. A detailed analysis of the sequence variants found in 

AIPL1 mutation screening of the DNA from the in LCA genetic database, summarizing all the 

sequence changes found in the study. Novel changes are indicated in black colour, known 

mutations in red and known polymorphisms are in green. 

Exon Base 
change 

Codon Protein Effect No. in patients No in 
controls 

Ex 1 c.51G>A CTG>CTA Leu17Leu Silent mutation 1 het 0 

 c.1-106C >A Intronic  May affect 
promoter  

6 hets; 1 hom 0 

Ex 2 c.268G>C GAC>CAC Asp90His Rare variant 24 hets; 4 hom 24 

 c.111C>T TTC>TTT Phe37Phe Polymorphism 5 hets; 1 hom 4 

 c.264G>A  Trp88X Termination 2 hom 0 

Ex 3 c.439C>T CTG>TTG Leu147Leu Silent mutation 2 hets 0 

 c.390C>A CAC>CAA His130Gln Missense 
mutation 

1 het 0 

 c.277-10A>G IVS2-10A>C  Polymorphism 15 hets; 27 hom 28 

 c.277-30insG IVS2-30insG  Silent mutation 1 het 0 

 c.300A>G CTA>CTG Leu100Leu Polymorphism 21 hets; 34 hom 28 

 c.286G>A GTC>ATC Val96Ile Missense 
mutation 

5 hets 0 

 c.341C>T 

 

ACA>ATA Thr114Ile Missense 
mutation 

1 hom  

Ex 4 c.555A>G GGA>GGG Gly185Gly Silent mutation 1 het 0 

 c.592T>A TCT>ACT Ser198Thr Missense 
mutation 

5 hets 0 

 c.487C>T CAG>TAG Gln163X Termination 1 hom 0 

 c.641A>G AAG>AGG Lys214Arg Missense 
mutation 

1 het 0 

 c.593C>T TCT>TTT Ser198Phe Missense 
mutation 

1 het 0 

 c.466-2A>G IVS3-2A>G  Affect splicing 2 het 0 

 c.642+48G>A IVS4+48G>A  Silent mutation 4 hets; 30 hom 0 
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 c.466-26T>C IVS 3-26T>C  Silent mutation 9 hets; 5 hom 18 

Ex 5 c.784+8G>C IVS5+8G>C  Silent mutation 5 hets 0 

  c.672insC   Frameshift 3 hets 0 

 c.643-33C>T IVS4-33C>T  Silent mutation 22 hets; 10 hom 7 

 c.784+26G>C IVS5+26G>C  Silent mutation 4 hets 0 

 c.651A>G CCA>CCG Pro217Pro Polymorphism 16 hets; 51 hom 53 

 c.784+18G>A IVS5+18G>A  Benign variant 3 hets; 1 hom 0 

Ex 6 c.834G>A TGG>TGA Trp278X termination 2 hets; 2 hom 0 

 c.853G>A/ 
c.854C>A 

GCG>AAG Arg285Gln Missense 
mutation 

1 het 0 

 c.894G>C CAG>CAC Gln298His Missense 
mutation 

1 het 0 

 c.905G>T CGC>CTC Arg302Leu Known 
mutation 

6 hets; 2 hom 0 

 c.971G>T CGG>CTG Arg324Leu Missense 
mutation 

1 het 2 

 c.1003ins G   frameshift 1 hom 0 

 c.1032A>G GCA>GCG Ala344Ala Silent mutation 3 hets 0 

 c.1038A>G TCA>TCG Ser346Ser Silent mutation 3 hets 0 

 c.1076C>T TCT>TTT Ser359Phe Missense 
mutation 

1 het 0 

 c.1091C>G GCA>GGA Ala364Gly Missense 
mutation 

1 het 0 

 c.1097C>G CCC>CGC Pro366Arg Missense 
mutation 

2 hets 0 

 c.1126C>T CCG>TCG Pro376Ser Known 
mutation 

3 hets 0 

 c.1162A>G  non 
coding 
exon 

Silent mutation 1 het 0 



305 
 

 
Table 5.9   Summary of changes found in mutation screening of normal DNA samples. 

 

 

 

 

 
 

 

 

 

 

Exon Base change Protein Effect No. in control 

Ex 1 c.1-45 C>A   Non reported variant  2 hets  

Ex 2 c.97-16C>T   Non reported variant 1 het  

 c.111C>T  phe37phe  Non reported silent mutation  4 hets  

 c.267C>T  cys89cys  Reported polymorphism  4 hets  

 c.268G>C  Asp90His  Reported  polymorphism 24 hets; 5 homo  

Ex 3 c.277-10A>G   Reported  polymorphism    22 hets;6 homo  

 c.300A>G  Leu100Leu  Reported  polymorphism 24 hets ; 4 homo  

Ex 4 c.466-26T>C   Non reported variant  18 hets  

 c.484G>A   Non reported variant  2 hets  

Ex 5 c.651A>G  pro217pro  Reported  polymorphism    15 hets ; 38 homo  

 c.643-33 C>T   Non reported variant  7 hets  

 c.678G>A  Glu226Glu  Non reported variant 3 hets ; 1 homo  

Ex 6 c.1005C>A  Pro335Pro  Non reported  variant 2 hets  

 c.1110A>T  Pro370Pro  Non reported  variant 1 het  

 c.1023G>A  Glu341Glu  Non reported  variant   3 hets ; 1 hom  
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5.5.2   Identification of patients with AIPL1 mutations. 
 

A summary of patients who are homozygous or compound heterozygous for 

pathogenic sequence variants in AIPL1 identified through mutation screening 

are shown in Table 5.10 to Table 5.12. Patients are divided into 3 groups: 

Patients with definite AIPL1-associated disease, patients with likely AIPL1-

associated disease and patients with possible AIPL1-associated disease.  

 

A total of 11 patients were identified with 2 confirmed mutations and 

therefore have definite AIPL1-associated disease (Table 5.10). The 

sequence changes were verified using bi-directional sequencing and 

segregation analysis.  Five of these patients were found to have 

homozygous null mutations, and three patients were homozygous for 

missense mutations. One patient was compound heterozygous mutation for 

a missense mutation and a splice-site variant, one patient had a compound 

heterozygous mutation for a missense mutation and a novel nonsense 

variant, and a further patient was compound heterozygous for different 

missense mutations. 

 

Table 5.11 summarises the patients who are likely to have AIPL1-associated 

disease. These patients were compound heterozygous for missense 

substitutions, some of these were novel sequence variants. Some of these 

patients are awaiting further confirmation on segregation analysis and 

verification of the pathogenicity of the novel variants. 

 

A further 8 patients were found to have one allelic mutation in AIPL1, and 

therefore may possibly have AIPL1-related disease. This group is 

summarized in Table 5.12. Three patients in this group had another mutation 

found in another gene (RDH12, RPGRIP1). 
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Table 5.10. Patients with disease-causing mutations in AIPL1.  

A summary of patients who are homozygous or compound heterozygous for pathogenic sequence 

variants in AIPL1 identified through mutation screening are displayed.  The mutations have been 

confirmed with sequencing and segregation analysis.   

LCA-Lebers Congenital Amaurosis; EORD- early onset retinal dystrophy. 
* - denotes a novel mutation. 

 

 
 
 
 

 
 
 
 
 

DNA	   Mutations	   Segregation	   Diagnosis	   ethnicity	   consa
nguini
ty	  

Asper/se
quenced	  

9728	   W278X	  hom	  	   Mother	  is	  het;	  no	  
father	  DNA	  

LCA	   African	   no	   A	  

07582	   W278X	  hom	   Mutation	  
segregates	  
	  

LCA	   Caucasian	   No	   A,S	  

14777	   Q163X	  hom	   Mutation	  
segregates	  

LCA	   Middle-‐
east	  

yes	   A,S	  

14001	   W88X	  hom	  	   Affected	  sister	  
	  

LCA	   Pakistani	   Yes	   A	  

15000	   W88X	  hom	  	  
	  

Sister	  to	  14001	   LCA	   Pakistani	   Yes	   A	  

14874	   IVS2	  277-‐2A>G	  splice	  
G262S	  

Mother	  has	  splice	  
mutation	  only	  

LCA	   British	   no	   A,S	  

13484	   P376S	  hom	   Mother	  is	  het;	  no	  
father	  DNA	  

LCA	   African	   no	   A,S	  

13052	   T114I	  het	  
P376S	  het	  

Mutation	  
segregates.	  

EORD	   African	   no	   A,S	  

13412	   R302L	  hom	   Mutation	  
segregates.	  
Affected	  sis	  is	  hom	  
and	  mother	  is	  het	  

LCA	   Iranian	   Yes	   A,S	  

31895	   V71F	  het	  
W72X*	  

Mother	  has	  V71F;	  
Father	  has	  W72X	  

LCA	   Israeli	   no	   A,S	  

15618	  
	  

R302L	  hom	   Mutation	  
segregates	  

EORD	   Indian	   No	   A,S	  
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Table 5.11. Patients with likely disease-causing mutations in AIPL1.  

Summary of patients who have 2 or more non-conservative sequence variants in AIPL1 

identified through mutation screening.  The mutations are awaiting confirmation with 

segregation analysis and verification of the pathogenicity of the novel variants. 

LCA-Lebers Congenital Amaurosis; EORD- early onset retinal dystrophy. 

 

	  

	  

 
 
 
 
 
 
 
 
 
 
 
 

DNA	   Mutations	   Segregation	   Diagnosis	   ethnicity	   consa
nguini
ty	  

Asper/se
quenced	  

14651	   T114I	  het	  
T47R	  het*	  
A285Q*	  
A313S	  het*	  

One	  parent	  has	  
T114I	  het	  

LCA	   Asian	   Yes	   A,S	  

13163	   S198T	  het	  *	  
R270L	  het	  *	  

No	  DNA	  from	  
family	  	  

EORD	   Caucasian	   no	   A,S	  



309 
 

 
Table 5.12. Patients with one mutation found in AIPL1.  

Summary of patients who have been found to have one mutation or non-conservative 

sequence variant in AIPL1 identified through mutation screening.   

LCA-Lebers Congenital Amaurosis; EORD- early onset retinal dystrophy; RP- retinitis 

pigmentosa. 

	  

 
 
 
 
 
 

DNA	   Mutations	   Segregation	   Diagnosis	   ethnicity	   consa
nguini
ty	  

Asper/se
quenced	  

13353	   R302L	  het	   Unaffected	  sister,	  
brother	  and	  parent	  
are	  het	  for	  this	  

LCA	   Iranian	   no	   A,S	  

6604	   P376S	  het	   Mother	  is	  	  P376S	  het	   EORD	  
	  

African	   no	   A,S	  

13232	   W278X	  het	  
RDH12	  

Father	  has	  W278X	  het	  
	  

EORD	   British	   yes	   A,S	  

13278	   Y134F	  het	   Father	  has	  Y134F	  het	   LCA	   Banglades
hi	  

yes	   A,S	  

14351	  
	  

R302L	  het	   Father	  is	  het	  for	  this	   EORD	   Pakistani	   yes	   A,S	  

14341	   R302L	  het	  
RPGRIP	  
homozygous	  
c.1107delA	  

Unaffected	  father	  has	  
R302L	  hom	  	  	  

LCA	   Pakistani	   Yes	   A,S	  

15324	   Y134F	  het	   Mother	  is	  	  Y134F	  het	   LCA	   Caucasian	   No	   A,S	  
	  

10759	   R302L	  het	  
RDH12	  29del3bp	  
het	  

Father	  has	  R302L	  het	   LCA	   Indian	   no	   A,S	  

13026	   P376S	  het	  
RDH12	  IVS2-‐12T>G	  

No	  DNA	  from	  family	   RP	   Carribean	   no	   A,S	  
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5.5.3  Determination of significance of novel sequence 
variation. 

 

A sequence variation is likely to be pathogenic when it is found exclusively in 

patients and not in at least 192 chromosomes from 96 control DNA samples. 

We screened control DNA samples by direct sequencing and were able to 

determine the allele frequency of any sequence variant in control subjects.  

 

To determine whether a sequence variant is likely to be disease-causing, it is 

important to establish whether the sequence variants are likely to be harmful 

to protein function or structure.  Functional analysis is not always available to 

investigate the effect of a missense variant on protein activity. To ascertain 

the likelihood whether a missense substitution was likely to be detrimental, a 

prediction of the functional effect of a novel missense variation was made by 

using information from the characteristics of the amino acid substituted, 

comparing interspecies amino acid conservation using ClustralW {Chenna, 

2003 1010 /id} and protein structural information  using  Uniprot.   

 

In-silico prediction of novel and some known missense mutations on AIPL1 

protein function was performed using three protein function prediction 

software packages : Polyphen [394], SIFT [349] and PMut [134] . All three 

prediction software packages have been previously applied to various 

disease-gene models [350]. Table 5.13 shows the results of in-silico analysis 

of known missense mutations and novel variants that were found in patients 

with AIPL1-associated disease. 

 

Figure 5.2A and B shows the amino acid alignment of AIPL1 between 

different species and the protein sequence comparison of AIP, another 

member from the FKBP protein family which shares homology with AIPL1. 

The positions of highly conserved residues are shown. Sequence 

comparison across different species and with AIP shows that there is a high 

degree of conservation of the protein sequence, particularly within the TPR 

domains which are sites of protein interaction. Figure 5.3 shows a schematic 
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structure of AIPL1 and the relative locations of the disease-causing 

mutations found in this study. The results of the in-silico analysis and 

conservation analysis are further discussed in the context of individual 

patients below. 
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Table 5.13. In-silico prediction of known mutations and novel sequence variants.  

*Denotes	  novel	  sequence	  variant	  

SIFT	  -‐	  http://sift.jcvi.org/)	  –	  cut	  off	  is	  at	  0.05.	  	  <0.05	  predicted	  to	  have	  a	  deleterious	  effect.	  
>0.05,	  the	  change	  is	  predicted	  to	  be	  tolerated.	  	  The	  higher	  the	  value,	  the	  less	  functional	  
impact	  the	  substitution	  is	  likely	  to	  have.	  	  

Change	  	   SIFT	  	   Polyphen	  	   pMUT	  	  

	   Prediction	  	   Tolerance	  
index	  	  

Prediction	  	   PSIC	  
score	  
differe
nce	  	  

NN	  
output	  	  

Reliability	  	   Prediction	  	  

V96I	  	   Tolerant	  	   0.20	  	   Benign	  	   0.067	  	   0.0794	   8	   Neutral	  

T114I	  	   Tolerant	  	   0.19	  	   Benign	  	   0.179	  	   0.7499	   5	   pathological	  

Y134F	  	   Tolerant	  	   0.26	  	   Benign	  	   1.133	  	   0.0715	   8	   Neutral	  

G262S	  	   Tolerant	  	   0.86	  	   Benign	  	   1.166	  	   0.3055	   3	   Neutral	  

R302L	  	   Tolerant	  	   0.16	  	   Benign	  	   1.086	  	   0.8448	   6	   Pathological	  

P376S	  	   Intolerant	  	   0.00	  	   N/D	  	   N/D	  	   0.7874	   4	   Pathological	  

A285Q*	   Tolerant	   0.11	   Benign	   1.153	   0.9286	   8	   Pathological	  

S198T*	   Tolerant	   0.44	   Benign	   0.025	   0.2553	   4	   Neutral	  

A313S*	   Tolerant	   0.11	   Benign	   0.878	   0.2607	   4	   Neutral	  

V71F*	   Intolerant	   0.00	   Damaging	   3.664	   0.6540	   3	   Pathological	  

R270L*	   Intolerant	   0.00	   Damaging	   2.726	   0.8584	   7	   Pathological	  

T47R*	   Intolerant	   0.04	   Damaging	   2.726	   0.7359	   4	   Pathological	  
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PolyPhen	  algorithm	  http://genetics.bwh.harvard.edu/pph/	  index.html).	  Polyphen	  
evaluates	  the	  location	  of	  the	  substitution	  and	  the	  function	  of	  that	  region	  and	  whether	  the	  
substitution	  is	  likely	  to	  affect	  the	  three-‐dimensional	  structure	  of	  the	  protein	  (PSIC	  Score).	  
Scores	  greater	  than	  2.0	  indicate	  probably	  damaging	  to	  protein	  function,	  scores	  of	  1.5–2.0	  
as	  possibly	  damaging,	  and	  scores	  of	  lower	  than	  1.5	  as	  benign.	  

pMUT	  .	  NN=	  neural	  network	  values	  from	  0-‐1.	  	  >0.5	  is	  predicted	  as	  a	  disease	  associated	  
mutation.	  Reliability	  =	  values	  0-‐9.	  	  >5	  is	  the	  best	  prediction	  

N/D	  	  -‐	  Polyphen	  was	  unable	  to	  calculated	  for	  this	  position	  as	  it	  lies	  in	  the	  poly	  proline	  
domain	  and	  this	  region	  only	  occurs	  in	  primates	  
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Figure 5.2 A.  Comparative amino acid alignment of AIPL1 in different species. 

Identical residues are in background white. Residues which are completely conserved are 

highlighted in blue. Residues which at which similar changes are allowed are in turquoise 

background.  Non conserved residues are in highlighted in green. Tetratricopeptide domains 

(TPRs) are indicated in red background. 
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Figure 5.2B  Amino acid alignment between AIPL1 and AIP from the FKBP immunophyllin family.  

Completely conserved residues are highlighted in background green. Conservative amino acid 

changes in background blue. Positions in which there are different residues are in background white 
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5.6  Patients with definite AIPL1-associated 
disease 
 

5.6.1  Molecular analysis 
 
Two patients (DNA no. 9728 and 07582) were found to carry homozygous 

nonsense mutations c.834G>A (Trp278X) in exon 6.  This mutation was also 

present in compound heterozygous form in one proband (DNA no.13225) . 

This sequence variant changes the TGG codon encoding tryptophan into a 

premature stop codon TGA at position 278 of the amino acid chain, and 

effectively deletes the hinge domain on each AIPL1 allele. When expressed, 

this allele is predicted to encode a severely truncated protein. It is the most 

frequent mutation described in AIPL1 patients and has been reported in 

several families from different ethnic backgrounds around the world including 

Pakistani, American, French and Spanish [440].[95,103]. Two patients (No. 

14001 and 15000) were homozygous for nucleotide substitution c.264G>A 

(Trp88X). This mutation was first described in an affected proband from a 

Bangladeshi family [442]. If expressed, these alleles are predicted to encode 

an AIPL1 protein truncated by more than two-thirds and lacking all three 

tetratricopeptide domains which are central to the protein function. Patient 

14777 was found to have a homozygous C to T nucleotide substitution at 

position 487 which changes the codon for glutamine into a termination codon 

at position 163 of the amino acid chain (Gln163X). This is a known mutation 

which was first reported in homozygous form in affected individuals from a 

Palestinian family.[442]. If expressed, these alleles would encode an AIPL1 

protein truncated by more than half, with the resulting protein lacking 

tetratricopeptide domains II and III. All three nonsense mutations resulted in 

null. This matches the phenotype that is seen in these patients and all of 

these patients were clinically diagnosed with LCA.  

 

Patient 14574 is compound heterozygous for 2 known mutations; c.277-

2A>G and c.784>A (G262S). The first mutation affects the canonical splice 
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acceptor site of intron 2 which may result in the loss or reduced specificity of 

the splice site.  The consequences can be catastrophic, ranging from a 

premature stop codon, loss of an exon or insertion of an intron or loss of the 

reading frame and is likely to prevent functional protein biosynthesis. The 

second mutation is a missense substitution of glycine for serine at position 

262 of the amino acid chain, and has been described as an disease-causing 

mutation in compound heterozygous form along with W278X in a patient with 

LCA [442]. This substitution is located in the main backbone of the AIPL1 

protein sequence and at a position which is conserved across different 

species (Figure 5.2A). Both glycine and serine have different side-chain 

groups and this substitution could thus result in a significant change in 

protein function. Co-segregation studies showed that the both mutations 

were on separate alleles; the patient inherited the c.277-2A>G mutation from 

his mother and G262S from his father. Patient 14874 was diagnosed with 

LCA.  The case histories of the patients mentioned are detailed in the 

appendix. 

 

Patient 31895 was found to have a novel null mutation W72X and a 

missense substitution V71F.  The valine at residue 71 is conserved across 

different species and lie in the N-terminal immunophilin domain. Mutations in 

this domain have been linked to LCA. Segregation analysis confirmed that 

the mutations were located on separate alleles, the mother was a carrier for 

V71F and the father was heterozygous for the null mutation W72X. The 

patient was diagnosed with LCA at the age of 2 years (see appendix 1 for 

case history). Patient 13052 was compound heterozygous for 2 mutations, 

c.341C>T (Thr114Ile) and c.1126C>T(Pro376Ser). The compound 

heterozygous amino acid substitution of both Thr114Ile and Pro376Ser has 

been previously described in an affected proband from an African-American 

family who had a clinical diagnosis of LCA.[442]. The amino acid sequence 

alignment of AIPL1 shows, that the threonine at position 114 is located in a 

region that is fully conserved between the human, chimpanzee, mouse, rat, 

and cow proteins (Figure 5.2a). Comparison of the sequence alignment 

between AIPL1 and AIP shows that only a conservative change occurs at 

this position (Figure 5.1b). Furthermore, the amino acids threonine and 
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isoleucine have different chemical properties; threonine is a polar and 

hydrophilic amino acid while isoleucine has an aliphatic side group and is 

hydrophobic and water-insoluble. The T114I is a known mutation and has 

been described to be associated with LCA in previous literature [442][440].  

Protein prediction analysis revealed conflicting results: SIFT and Polyphen 

predicted that the change was  benign, while pMUT revealed the mutation to 

be pathological. It is possible that the T114I constitutes a mild mutation. Our 

patient was diagnosed with less severe disease of rod-cone dystrophy (see 

appendix 1 for case history), and retained some vision in adulthood (see later 

section).  

 

Three patients were found to carry homozygous missense mutations; patient 

13484 was found to homozygous for P376S, and patients 13412 and 15618 

were both found to be homozygous for R302L and were not related to each 

other and were from different famil and ethnic backgrounds(see appendix 1 

for respective case histories). The c.1126C>T(P376S) mutation was first 

described in an African-American child diagnosed with LCA who was 

compound heterozygote for 2 amino acid substitutions, T125I and P376S 

[442]. Our patient 13484 who has a homozygous P376S mutation was also 

diagnosed with LCA. The P376S mutation represents a non-conservative 

substitution from proline, a non-polar hydrophobic amino acid with a rigid 

structure conferred by a secondary amine side group linked to the α-amino 

group, to serine which is a hydrophilic, polar amino acid. Due to the 

differences in the chemical and physical properties of the proline and serine, 

this missense substitution would result in major changes in the properties 

and function of the AIPL1 protein. This was also supported by protein 

prediction analysis, the substitution was found to be intolerant when applied 

to SIFT and pMUT software. These findings indicate that the P376S mutation 

is very likely to be disease-causing. 

 

The c.905G>T (R302L) substitution in patients 13412 and 15618, was first 

described as a disease-causing homozygous mutation in a proband with 

LCA from an Indian family [442]. Similarly in this study, both patients 13412 

and 15618 were diagnosed with LCA. The arginine residue at position 302 is 
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conserved between human, squirrel monkey, chimpanzee and rhesus 

monkey AIPL1 and therefore is thought to be disease-causing. Furthermore, 

it was not found on sequencing the normal control panel. It is interesting 

however  to note that the arginine at this position is not conserved between 

human and rat and mouse AIPL1 (Figure 5.2A). The functional effect of the 

substitution was not unlikely to be harmful according to SIFT and polyphen 

protein prediction software, but is damaging according to pMUT analysis. Co-

segregation study of the mutation with the phenotype in the original family 

described in the published study was not performed. In this study, we found 

a homozygous R302L change in the unaffected father (clinical state to be 

further confirmed) of another proband carrying a heterozygous mutation. 

Hence it may be possible that this sequence could represent a rare benign 

variant. Both missense mutations P376S and R302L are located within the 

hinge region of AIPL1. This C-terminal polyproline-rich region is only present 

in primate AIPL1 and cross-species comparative analysis of the protein 

sequence indicate that there is a high level of sequence conservation within 

the hinge region between primates (chimpanzee, baboon, rhesus monkey 

and humans). There is evidence to suggest that the polyproline-rich region 

performs an essential function in normal primate vision since reported 

mutations have been identified in this region which cause the severe 

phenotype of LCA [442][440]. Furthermore, two deletion mutations located  in 

this region (A336∆2 and P351∆12)  have been associated with cone-rod 

dystrophy and juvenile RP [442].   Further studies in determining protein 

function is will be necessary to establish the role of the hinge region in AIPL1 

and its significance to vision.  

 

Yeast 2-hybrid screens have demonstrated interactions between between 

AIPL1 and NUB1 [7], a protein implicated in regulation of proteolysis, and 

also between AIPL1 and farnesylated proteins[393].  AIPL1 modulates the 

subcellular localization of NUB1, from the nucleus towards the cytoplasm, 

and behaves in a chaperone-like manner to suppress the formation of 

inclusions arising from NUB1 fragments and redistribute these in the 

cytoplasm [476]. This ability requires the C-terminal region of AIPL1 to be 

intact. Based on these observations of interactions, studies have attempted 
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to characterize various sequence changes at a bio-molecular level by 

determining the effects AIPL1 sequence changes on AIPL1 function with 

respect to the NUB1 translocation or farnesylation, and protein solubility. 

Various mutant forms of AIPL1 were tested and these included W278X, 

G262S and R302L relevant to this study. Many of the mutant forms of AIPL1 

were SDS-soluble (non-solubility is an indication of protein non-function) and 

had similar subcellular distribution compared to wild-type AIPL1, with the 

exception of W278X and R302L. W278X formed SDS-insoluble cytoplasmic 

inclusions, suggesting that the mutant protein undergoes misfolding and 

aggregation, and is therefore non-functional. It was also shown that W278X 

completely defective with respect to modulating the nuclear translocation of 

NUB1. R302L was shown to have reduced activity with respect to modulation 

of NUB1 transocation and subcellular distribution. The G262 mutation on the 

other hand, was found to be hyperactive  in the modulation of NUB1 nuclear 

translocation, and it has been suggested that the basis of disease in this 

case may involve the interaction of AIPL1 with an alternative binding partner 

[476].  There is little evidence however, that NUB1 interaction with AIPL1 is 

physiologically relevant to the role of AIPL1 in the retina. It is therefore 

unclear whether the yeast 2-hybrid screen is informative with regards to the 

pathogenesis of LCA. 

 

Another functional study showed that various mutations in AIPL1 lead to 

various degrees of abolishment of AIPL1 interaction with farnesylated 

proteins, with W278X having the most severe effect [393]. Interestingly, 

R302L substitution did not appear to affect the interaction between AIPL1 

with farnsylated proteins [393], despite being less active with respect to its 

modulation of NUB1 translocation. The conflicting findings on biomolecular 

characterization indicate that AIPL1 may have complex functions involving 

multiple binding partners. Furthermore, strong evidence has emerged from 

animal models indicating that AIPL1 is critical for the biosynthesis of rod and 

cone PDE and that retinal degeneration seen in AIPL1 mutations is not due 

to any defect in farnesylation. In vivo expression studies using animal models 

would be able to provide better evidence of whether a sequence variant is 

pathogenic.  
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5.6.2  Genotype-phenotype correlation 
 

The clinical characterisation of disease due to AIPL1 mutations is important 

for assessment of any future therapies. Clinical assessment of the affected 

individuals included fluorescein angiography, electrophysiology, Goldmann 

perimetry, OCT and autofluorescent imaging. This section aims to describe 

the phenotypic features and clinical subtypes associated with AIPL1 

mutations and observe possible differences and similarities in the expression 

of fundus changes and disease severity between different mutations. The 

phenotype of 11 patients of different ethnic origin with confirmed mutations in 

AIPL1 is described. A summary of the phenotypic characteristic of patients 

with AIPL1-associated disease is shown in Table 5.15 
 

Out of the 11 probands with confirmed AIPL1 mutations, 9 had a clinical 

diagnosis of LCA and 2 were diagnosed with a milder disease of early onset 

rod cone dystrophy (EORD). All of the patients apart from one presented with 

poor vision and nystagmus. Amongst those diagnosed with LCA, the age of 

onset of disease, or the age at which visual difficulties were noticed ranged 

from birth to 6 months of age,  all of the probands were noted to have a 

visual problem before the age of 1 year. The onset of visual symptoms were 

considerably later in the two patients diagnosed with EORD, at ages of 2 

years and 6 years. The patients were examined at various ages, depending 

on when they were referred to the clinic.  

 

Visual acuities were found to vary between probands and ranged from 

logMAR 0.5 to light perception. Most patients had severe loss; six patients 

had light perception, two patient had counting fingers vision and one had 

hand motion vision in one eye. Three patients had measurable vision. 

However, comparison of the visual acuities and clinical features between the 

different mutations should take into consideration the fact that the probands 

were examined at different ages; many of them were seen as adults when 

the condition had progressed to advanced stages. Cycloplegic refractions 

performed in 5 out of 11 patients showed moderate myopia in 2 (-1.50D to -
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3.00D), high myopia in one (-8.50D) and two patients had moderate 

hypermetropia (+3.00D to +5.00D). Astigmatism was frequently noted in 

these patients.  Photoattraction (staring at lights) was reported in 3 patients 

and photoaversion in 1. Nyctalopia (night blindness) was reported in 4 

patients, while about half of the patients had some form of strabismus. All 

except for 1 patient had nystagmus and amaurotic pupils, the exception 

being the patient with clinically EORD who had reasonable remaining vision. 

 

Some form of cataract was seen in majority of patients (6 of 11 patients); 

lens changes included both cortical and posterior subcapsular opacities. 

However, cataracts appeared to be a later finding as the patients who had 

cataracts were in their late adolescence or adulthood. The youngest patient 

noted to have cataracts was 17 years old. Contrary to findings reported by 

Dhamaraj et al. [103] who found that cataracts and keratoconus were 

observed only in patients who were homozygous for AIPL1 mutations, we 

found cataracts in patients had homozygous and compound heterozygous 

AIPL1 mutations.  

 

Retinal findings were notable for pigmentary retinopathy and retinal drusen-

like deposits. Eight out of 11 patients with AIPL1-related disease had some 

form of pigmentary retinopathy that ranged from mild midperipheral bone 

spicule pigmentation to severe pigmentary clumping and chorioretinopathy 

(Figure 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.13). Most of these patients with 

pigmentary retinopathy were examined in late adolescence and adulthood. 

Three patients did not have any clinically evident retinal pigmentary changes 

; 2 of these patients were examined at the early ages of 2 and 7 years and 

were noted to have essentially normal-looking retinas (Figure 5.10 – fundal 

photo was taken later when patient turned 5 years old, and 5.11), one patient 

was aged 22 when examined and was found to have clinically unremarkable 

retina and macula. White drusen-like deposits at the level of the retina was 

observed in 2 patients around their second decades of life (Figure 5.4 and 

5.8).  
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Some form of maculopathy of variable appearance was noted in 8 out of 11 

(64%) patients. The maculopathy ranged in appearance from mild foveal 

atrophy with variable degrees of macular mottling to aplasia (Figure 5.4 to 

5.12). The severity of maculopathy appeared to increase with age; severe 

macular atrophy was seen mostly in older patients aged 17 years upwards. 

In the young patients aged 5 and 7 years, no clinically evident maculopathy 

(Figure 5.10) was seen in former, while an abnormal foveal reflex which may 

represent an early stage of maculopathy was seen in the latter aged 7 

(Figure 5.11). Exceptions to this were patients 13052 and 13412 who were 

aged 27 and 18 respectively in whom no obvious macular atrophy was seen 

at clinical examination despite their age (Figure 5.9 and 5.12). Patient 13052 

had a clinical diagnosis of EORD, a milder form of disease with later onset 

and slower progression and retained relatively good vision into adulthood. 

Patient 13412 was diagnosed with LCA with onset of visual problems at the 

age of 2 months. However, he may have a slower course of disease 

progression, as he retained slightly better vision in adulthood when 

compared to the other adult patients. The youngest patient with macular 

atrophy in our study was 17 years old (patient 14874, Table 5.14, Figure 

5.7). It is also interesting to note that patients with homozygous null 

mutations appear to have more severe macular atrophy; amongst the adult 

probands, patients who had severe macular atrophy carried homozygous 

nonsense mutations, W278X and W88X. On the other hand, patient 14874 

who had moderate macular atrophy and carried compound heterozygous 

mutations that included a splice site mutation and a missense mutation, and 

patients with missense mutations exhibited milder maculopathy or none at all 

(patients 13052 and 13412). An exception is patient 13484 with homozygous 

P376S who had severe macular atrophy (Figure 5.8). This may be due to 

influences from other environmental factors or genetic modifiers resulting in a 

more severe phenotype.  Varying degrees of optic nerve pallor were noted in 

majority of older patients who were in their second or third decades of life. In 

children, the optic nerve head largely appeared normal. 

 

 



325 
 

 



326 
 

 



327 
 

 



328 
 

 



329 
 

 



330 
 

 



331 
 

Goldman visual field (GVF) assessments were available on one patient only 

(Table 5.14). Most of the other patients either had visual acuities that were 

too poor for any visual field assessments or were too young to be able to 

cooperate with perimetry assessments. The Goldman visual field of patient 

13052, who has a clinical diagnosis of EORD, showed severe constriction of 

the central visual field to a residual central field of 10 degrees, and temporal 

sparing of the peripheral fields in each eye (Figure 5.14). Electrodiagnostic 

analysis were obtained in 9 out of 11 patients. Majority of the patients 

showed no measurable rod or cone responses indicating severe generalized 

retinal dysfunction, and where recorded the visual evoked potentials (VEP) 

were markedly reduced (Table 5.15). Only three patients, 13484, 13052 and 

15618 had residual ERG responses, although these were significantly 

reduced.  Different ERG responses were observed between the right and left 

eyes of patient 13484 (Figure 5.15). In the right eye, full field ERG and rod 

ERG responses were subnormal with markedly reduced a and b-wave 

amplitudes; cone flicker ERG was markedly delayed and subnormal. In the 

left eye, no detectable ERG responses could be recorded. The findings in the 

right eye were in keeping with a generalized retinal dysfunction affecting the 

rods more than cone systems. The retinal dysfunction in the left eye was so 

severe that no definite electro-retinal activity could be detected. The pattern 

ERG was undetectable in either eye, indicating severe bilateral macular 

involvement. Patient 13052 and 15618 had residual scotopic ERG and full 

flash ERG responses, although the amplitudes of these were markedly 

attenuated. Cone flicker ERGs were subnormal and delayed . There was 

some preservation of macular function in patient 13052, as shown by the 

presence of PERGs, although they were very reduced. These findings were 

in keeping with a rod-cone dystrophy with some residual macular function 

The PERG was undetected in patient 15618. 

 

OCT gives the possibility of in vivo histological examinations and can be 

used to generate topographical maps or cross-sections through specific 

areas of the retina. It is clinically useful for imaging selected retinal 

dystrophies and the retinal response to the genetic lesion. OCT imaging was 

obtained in 4 out of 11 patients. Generalised retinal thinning and decreased 
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foveal thickness was observed in all 4 patients, although in one patient the 

outer nuclear layer was clearly present at the fovea and retinal lamination 

was seen  (patient 31895, Figure 5.16).  

 

Fundus autofluorescence measures lipofuscin accumulation in the RPE and 

allows for the visualization of the accumulation and distribution of lipofuscin 

in the RPE, which is often not yet visible on ophthalmoscopy. It is known that 

loss of autofluorescence occurs in regions with chronic photoreceptor loss, 

due to absent outer segment turnover by the RPE. We performed fundus 

autofluorescence testing to determine which retinal areas had experienced 

severe photoreceptor degeneration. Autofluorescence imaging was 

performed in 4 patients with null and missense mutations (Figure 5.17); three 

of these patients had clinical LCA while one was diagnosed with EORD. 

Fundal autofluorescence imaging in patient 31895 appeared relatively 

normal, corresponding to their unremarkable macular findings on fundal 

examination. All of the other patients showed loss of autofluorescence 

peripherally beyond the vascular arcades, but variable preservation of 

autofluorescence was seen within the central macular area. A degree of loss 

of autofluorescence in the central foveal region was observed in patients 

14874 and 9728. These areas of reduced signal corresponded to areas of 

macular atrophy seen on slit-lamp biomicroscopy (Figure 5.17). Patient 

13052 showed patchy areas devoid of autofluorescence which was 

particularly marked at the fovea and perifoveal area; these areas of signal 

loss were consistent with areas of marked chorioretinal atrophy at the 

macula. There were also with scattered areas reduced signal in a bone 

spicule-like conformation, which were due to masking of autofluorescence by 

the presence of retinal pigmentation. 
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5.7  Patients with likely AIPL1-associated 
disease 

 
A summary of the phenotypic characteristic of patients with who are likely to 

have AIPL1-associated disease is shown in Table 5.17.  These patients have 

been identified to have 2 or more non-conservative sequence variants, some 

of the variants are novel changes and the pathogenicity of these changes is 

therefore uncertain. At the time of writing, segregation analysis was in 

progress for patient 14651; DNA has been obtained from the parents and 

work is in progress to sequence the sample. We were unable to obtain DNA 

from any family members of patient 13163 for segregation analysis.  

 

Patient 14651 is of Asian origin, specifically Indian in descent, and was from 

a consanguineous family. Four different mutations were identified in this 

patient, 3 of which have not been previously described. Segregation studies 

found that her mother carried one of the novel sequence variant T47R, while 

the mutation T114I and novel variants A313S and A285Q were inherited 

from her father. None of the novel variants were found in the control panel. 

The sequence variants T47R and A285Q are both located at highly 

conserved residues across different species (Figure 5.1).  The change from 

threonine amino acid at position 47 of the AIPL1 protein to arginine 

represents in a change from an uncharged, hydrophobic amino acid to a 

charged amino acid with basic properties; the drastic differences in amino 

acid properties would be predicted to have significant effects on the protein 

function as a result. This was also supported by protein prediction analysis 

which found the sequence change to be damaging by three different 

algorithms  (Table 5.13). Similarly, the change from alanine at position 285 to 

glutamine represents a major change in amino acid properties; alanine is 

small, hydrohobic amino acid, while glutamine is hydrophilic and has a large, 

uncharged polar amide side chain. The residue at position 285 is also 

located within the tetratricopeptide domain that is one of the main interacting 

sites. Hence any significant changes in amino acid residues are likely have a 
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major impact on protein function. This sequence change was predicted to be 

benign on SIFT and Polyphen but was found to be pathological in pMUT 

analysis.On the other hand, novel sequence variant A313S is located at a 

position where conservative substitutions are allowed (Figure 5.1). As both 

alanine and serine are similar in size and have uncharged side chains, the 

substitution would represent a conservative substitution. Protein prediction 

analysis (Table 5.14) further supported that the A313S sequence change 

was likely to be benign. Sequencing of parental DNA confirmed that the 

sequence variants which may have detrimental effects (T47R, A285Q and 

T114I) were located on different alleles. It is therefore very likely that patient 

14651 has a defect in AIPL1 function that is responsible for the retinal 

dystrophy.  

 

Patient 13163 was found to have 2 novel sequence variants, S198T and 

R270L. In-silico analysis of the S198T revealed that the substitution was 

unlikely to be damaging and comparison of the AIPL1 protein sequence 

across species  showed that the residue at position 198 was not a conserved 

residue. It was therefore unlikely that this substitution would lead to any 

significant detrimental effect on AIPL1 function. The R270L change on the 

other hand was potentially harmful based on prediction studies, and the 

residue was also located in a highly conserved region within the third 

tetratricopeptide domain. However, as there was no DNA available from 

family members, it was not possible to ascertain whether the sequence 

variants found segregated with the disease. Given that only one of the 

variant could be potentially harmful and was identified in heterozygous form, 

it was therefore unlikely that this would result in a defect in AIPL1 function. 

  

Phenotypically, patients 14651 and 13163 had clinically different diagnosis. 

Patient 14651 was diagnosed with LCA, presenting with severe visual loss at 

an early age. Clinical examination showed relatively normal fundal findings 

with no obvious signs of maculopathy (Figure). Her scotopic ERG and flash 

ERG responses were undetectable while her cone flicker responses showed 

severe delay and reduction in amplitude. Pattern ERG responses although 

present, were also severely reduced. Patient 14651 had a less severe 
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disease,early onset rod-cone dystrophy, and retained some degree of vision 

going into the third decade of his life. He presented to the eye clinics as an 

adult and despite his age, the fundal findings were unremarkable, with no 

intra-retinal pigmentation or macular atrophy. Electrodiagnostic testing 

showed reduction of the rod responses more than cone responses in 

keeping with a rod-cone dystrophy. Pattern ERG responses were normal. 
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5.8  Patients with possible AIPL1-associated 
disease 
 
In 9 unrelated probands, only one disease allele was found (Table 5.18). 

First pass screening of these DNA samples using the LCA chip returned one 

heterozygous mutation in AIPL1 and no other hits in the other LCA genes 

with the exception of patient 14341. Direct sequencing of AIPL1 failed to 

identify a disease-associated mutation on the second allele. There are 

several possible explanations that could account for the disease in these 

patients. Given that all the coding regions of exons were sequenced 

including splice site junctions, it is unlikely that a second exonic or splice site 

mutation in AIPL1 was left undetected. It remains possible that promoter or 

regulatory sequences of the gene contained yet unidentified mutations as the 

intronic regions and 3’-untranslated regions in exon 6 were not screened by 

our method. A large gene rearrangement or hidden mutation the unscreened 

region could also be complicated with these variants. A possible digenism 

could provide an explanation for this; digenic inheritance exists where a 

particular mutation in a gene causes disease only in patients who also carry 

a mutation in a different gene. However, digenic disease is rare and is 

occasionally found in proteins that function as a dimer or have a close 

interacting partner, such as peripherin and ROM1 or RPGRIP and RPGR. 

Since AIPL1 is not known to associate closely with another protein for its 

functions, it is unlikely that digenism is a factor in these cases. Alternatively, 

it is entirely possible that AIPL1 is not responsible for the retinal dystrophies 

in these patients and that there is a different causative gene that is yet 

unidentified.  

 

Another plausible explanation is that these alleles may act as genetic 

modifiers, modulating the phenotypic expression of the disease and leading 

to varied photoreceptor degeneration despite the same genetic background. 

The existence of modifier genes has been suggested by the fact that a 

higher amount of LCA patients carry a third allele than what would be 

expected by chance only [519], and further supported by the observation that 
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even within a single family, members who carry a third allele in a second 

gene presented with a more severe phenotype than members who did not 

carry the third allele [519][432]. Due to constraints on time and resources, it 

has not been possible to carry out sequencing of the other known LCA genes 

on these patients. One patient (patient 14341) was also included in a 

different mutation study and was found to have a homozygous deletion in 

second LCA gene, RPGRIP. It has been observed in many different 

recessive disorders, that only about 70% of the molecular defects can be 

identified [114]. 

 

In this group of patients, a range of clinical diagnosis was seen, ranging from 

LCA, EORD to RP (Table 5.18). Compared to the group of patients who had 

definite AIPL1-associated disease, over half of the patients in this category 

had a less severe disease such as EORD and RP. Six out of 9 patients had 

measureable vision at clinical examination, although it should be noted that 

most of them were seen at earlier ages. Fewer patients (3 out of 9) had a 

pigmentary retinopathy or a maculopathy, while only one patient with EORD 

presented with both retinal pigmentary clumping and macular atrophy. 

Fundal picture of the fundus of patient 13353 who has a heterozygous 

R302L change is showen in Figure 5.14. 
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5.9  Discussion 
 

This study presents a detailed clinical and molecular report of a series of 

patients affected by a severe inherited retinal dystrophy possibly due to 

mutations in the AIPL1 gene and represents a comprehensive analysis of 

AIPL1 in a patient cohort and a control population.  

 

Common to the other studies in existing literature, AIPL1 mutations have 

been mainly associated with LCA with a recessive inheritance pattern, 

although there has been one report linking the gene to juvenile RP and 

dominant cone-rod dystrophy[97,442]. In this study, we screened 309 

unrelated probands using the LCA chip and sequenced 153 DNA samples 

from this panel that had not returned a molecular diagnosis following the first 

pass screening using the LCA chip. The patient panel consisted of patients 

with a range of early onset inherited retinal dystrophies to determine whether 

AIPL1 mutations may cause other forms of retinal degeneration and also to 

determine the relative contribution of AIPL1 mutations to severe inherited 

retinal dystrophies.  In our study, likely disease-causing AIPL1 mutations 

were found in 12/309 probands, giving a prevalence of 4% in patients with 

various early onset retinal dystrophies, including LCA. In previous studies, 

AIPL1 has been estimated to cause approximately 7% of LCA cases 

worldwide[440,442]. 

 

Phenotypic variability has been well established in LCA patients: 

heterogeneity is seen in retinal appearance, refractive errors, nyctalopia, 

manifest and longitudinal changes in visual function, cataracts and 

keratoconus.  The retinal appearance can vary considerably between the 

different LCA genotypes, although there are gene-specific phenotypic 

features that have been observed in LCA (for further information, please 

refer to Chapter 1, section 1.3.2.2).  Previous published phenotype-genotype 

studies of AIPL1 mutations have been based on cohorts of patients with 

LCA. Compared to the other LCA genes, AIPL1-related LCA have been 

described to be particularly with severe visual loss, pronounced macular 
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involvement and optic nerve pallor. Our study found that AIPL1-associated 

retinal disease is clinically variable; patients identified with AIPL1 mutations 

ranged from less severe early onset retinal dystrophy to LCA. This suggests 

that there may be a spectrum of disease associated with AIPL1 mutations 

and it may be possible that screening for AIPL1 mutations in a different 

patient panel of recessive RP may reveal mutations associated with other 

categories of inherited retinal dystrophies. Since our mutation screen was 

performed on a panel of patients with severe early onset retinal dystrophy, it 

is understandable that the phenotype seen in the patients who were 

identified with AIPL1 mutations would be severe in nature.  The patients in 

this study with LCA and AIPL1 mutations have a severe phenotype which is 

in keeping with other series with AIPL1 phenotypic data[174][103][151][310]; 

these patients had unmeasureable vision, significant maculopathy and some 

degree of optic disc pallor in adulthood. In established disease, patients with 

AIPL1 mutations also develop significant pigmentary retinopathy. Features of 

pronounced atrophic maculopathy, optic disc pallor and significant peripheral 

retinal pigmentation appear to be unique to AIPL1 mutations and distinguish 

this from the other genotypes; while patients with GUCY2D and RPGRIP1 

mutations appear similar to the AIPL1 phenotype in terms of markedly 

decreased vision, visual fields and ERGs, phenotypical differences exist in 

terms of macular atrophy, pattern of pigmentary changes, cataract and 

keratoconus which are more frequent in AIPL1	   patients[367][104][110]. 

Macular atrophy has been reported in majority of patients with CRX-related 

LCA, but unlike in AIPL1 mutations, pigmentary retinopathy is not a 

prominent feature in CRX mutations[208][433][443][522]. Patients with 

RPE65-related LCA are also clinically distinguishable from patients with 

AIPL1 mutation; the RPE65 phenotype is associated with measurable visual 

acuities, better visual fields and ERGs than the AIPL1 phenotype.  Peripheral 

retinal changes are subtle in RPE65 mutations, and macular atrophy are not 

a feature[285][468]. Patients with LCA due to RPE65 mutations often 

experience transient visual improvement in childhood followed by 

deterioration later in life, while the visual function in AIPL1 patients have 

been described to progressively decline[285][103].  Since most of the 

patients in this study were examined at later ages, conclusive observations 
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regarding the visual evolution of patients with AIPL1 mutations could not be 

made from this.   

 

In addition to peripheral retinal pigmentation and macula atrophy, other 

significant posterior pole findings included various degree of RPE and 

choriocapillaris atrophic changes and drusen-like intraretinal white dots. 

Three patients (27%) with AIPL1 mutations had drusen-like intraretinal 

deposits in their first and second decades of life. While extensive pigmentary 

changes and peripheral chorioretinal atrophy have been frequently described 

in other studies[440][435], intraretinal drusen-like deposits in association with 

AIPL1 mutations have only been reported in one other study thus far [151]. 

Other genotypes which have been associated with white retinal deposits 

include RPE65, RPGRIP and CRB1. Neither nyctalopia nor photoaversion 

were frequently reported in this series and refractive findings showed 

moderate myopia and hypermetropia being equally common in patients. This 

differed from observations in other series of AIPL1 mutations which 

described photoaversion and moderate hypermetropia as common findings 

in these patients.  Anterior segment signs were significant for cataracts and 

keratoconus, about 55% of patients in this series had a combination of 

cataracts and keratoconus, which is in keeping with most other series with 

AIPL1 phenotype data [174] [103][151][310]. One study has further described 

the association of cataracts and keratoconus with homozygous mutations 

only[103], but this has not been observed in this study in which cataracts 

were also seen in patients with compound heterozygous mutations. Many 

retinal and anterior segment signs were more prevalent with increasing age; 

peripheral retinal pigmentation, chorioretinal atrophy, macular atrophy were 

not seen before the first decade in this series but became increasingly 

prevalent after the second decade. The association of cataracts and 

keratoconus with other retinal dystrophies and LCA have been well 

documented beyond the second decade of life in patients[184][137]. In this 

study, cataracts and keratoconus were noted before the second decade in 

some patients and were more prevalent with age. Unlike other published 

series, assessments of perimetry, autofluorescence and OCT were included 

to further define the phenotype. The findings from these ancillary tests 
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supported the clinical phenotype, with marked peripheral visual field loss and 

retinal thinning due to primary photoreceptor degeneration. However, it 

should be noted that majority of the clinical characteristics described on 

clinical examination and imaging studies relate to changes seen in older 

patients; most fundal findings begin to appear after the first decade of life. 

The identification of young patients with AIPL1 mutations remains a 

challenge as there are minimal clinical signs, particularly within the first year 

of life.  

 

Despite the clinical heterogeneity, we found that the severity of disease and 

certain phenotypic features may be predicted from the underlying mutation. 

Patients with homozygous null mutations were found to have a more severe 

disease, in terms of retinal pigmentation and macular atrophy. Patients with 

missense mutations may have a less severe disease due to residual protein 

function, with better residual vision, slower progression and later onset of 

maculopathy and present clinically as early onset retinal dystrophy. This may 

be due to residual AIPL1 function from missense mutations, and may be 

analogous to the hypomorphic Aipl1h/h mouse. Variation in clinical severity 

has also been observed with other LCA genes; RPGRIP1, CRB1, TULP1 

and RPE65 have been reported to cause either LCA or an acquired, later-

onset rod-cone dystrophy[173][155]. It has been suggested that a more 

severe retinal dystrophy such as LCA may result from an excess of null 

alleles when compared to other less severe dystrophies such as retinitis 

pigmentosa.  

 

A particular problem highlighted in this study which may render the 

identification of AIPL1 patients difficult is the uncertainty surrounding the 

pathogenicity of the mutations and difficulty in ascertaining the true nature of 

sequence variants. This is compounded by the polymorphic nature of the 

gene, as revealed by the sequencing of both patient and control panels. 

Some of the published mutations have been shown not to have any 

deleterious effects on functional studies [476][393][7], and consequently it 

may be possible that some of the reported mutations in genetic databases 

may not be true mutations. This is particularly pertinent to the R302L 
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substitution which was previously described as a pathogenic mutation. Our 

study indicates that this may be questionable as we identified an unaffected 

relative who carried the homozygous mutation. Furthermore, our analysis of 

the predicted functional effects of the missense substitution using protein 

function prediction software showed that it was not deleterious.  This 

substitution was however not found in our screening of the control panel and 

was found in the panel of probands with an allele frequency of 1.6% and 

mostly in individuals of Asian ethnic origins. It is thus possible that R302L 

represents a rare ethnic polymorphism. 

 

It is difficult to be certain that the AIPL1 mutations are disease-causing 

without performing biochemical and functional analysis of the mutant protein. 

Future work is required in this aspect, and in vivo functional assessment of 

the mutations in question is preferable to in vitro studies. This could be 

performed by creating a transgenic mouse by injecting a construct carrying 

the point mutation of interest into fertilized wild-type mouse oocytes and 

breeding the founders into mice lacking Aipl1 (Aipl1 -/- ) to produce mice with 

the transgene against an Aipl1 -/- background. A more elegant method that 

better replicates the condition in human mutations would be to create a 

“knock-in” mouse using a targeting construct that carries the particular point 

mutation as this would result in the altered gene being inserted in the specific 

locus and thus subjected to the normal regulatory mechanisms of 

expression. Histopathogical studies of the retina for signs of photoreceptor 

degeneration and electrophysiological assessment of these genetically 

engineered animals will confirm the disease-causing potential of these 

specific mutations. Alternatively, an easier and more readily available 

analysis would be to inject an AAV vector expressing the mutant AIPL1 gene 

into Aipl1 -/- mice and examining the treated animals for signs of 

photoreceptor rescue. Any improvement in ERG or morphology would 

indicate that the mutations were probably benign. Due to constraints on time 

and resources, it was not possible to pursue this line of investigations in this 

study, and therefore certain assumptions had to be made in order to be able 

to draw some conclusions to the findings. As we have found disease-

associated mutations, segregating among families, with no other change in 



350 
 

the gene sequence and are absent from ethnically matched control subjects, 

it was reasonable to consider these as possible disease-causing mutations.  

 

Despite the availability of genotyping microarrays for LCA, the genetic 

heterogeneity of this condition continues to pose a significant challenge to 

clinicians. Identification of genotype-phenotype correlations in LCA and other 

retinal dystrophies would help to suggest the causal gene and refine the 

molecular screening strategy. The molecular characterization of LCA is 

important for genetic counseling and also with the advent of gene therapy 

trials, for identification of suitable candidates for potential therapy. With more 

correlation studies, it may become easier to use objective data such as the 

presence of key physical signs to implicate certain genes over others in the 

pathogenesis. The clinical characterization of disease in this study such as 

visual acuity, signs in the anterior and posterior segments are helpful in 

identifying patients with AIPL1 mutations and are important to allow for the 

interpretation of any future therapies. The identification of patients with milder 

phenotype due to AIPL1 mutations might provide a wider therapeutic window 

for preventative intervention. However, the prevalence of clinical signs varies 

with age and is subjected to environmental influences, genetic background 

and modifier alleles. All of these should be taken into consideration to 

facilitate the accurate assessment of patients. 
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6.   Final Discussion 
 

The last twenty years have seen enormous growth in the understanding of 

the molecular and histopathological basis of inherited retinal degeneration. 

Many of the causative genes have now been identified, providing an impetus 

to develop gene-based treatments to treat retinal degeneration and improve 

photoreceptor survival. Replacement gene therapy mediated by AAV vectors 

appears to be the most promising potential therapy for retinal degenerations, 

especially for those severe forms such as LCA which are unlikely to respond 

to more conservative forms of treatment. Following landmark preclinical 

studies demonstrating long term functional improvement as a result of gene 

replacement of RPE65 in a dog model of LCA, three clinical trials of ocular 

gene therapy have commenced to treat early-onset severe retinal 

degeneration in patients with defects in the RPE65 gene The preliminary 

success reported from these studies will undoubtedly pave the way for more 

clinical trials to treat other forms of retinal dystrophies. Hence, there is an 

urgent need to identify other candidate disorders suitable for translation from 

the laboratory to human clinical trials. These are most likely to be conditions 

where gene therapy has proven to be efficacious in an animal model 

equivalent. 

 

The selection of a genetic disease for gene therapy clinical trials will depend 

on a variety of clinical and experimental criteria. The disease must be caused 

by loss-of-function mutations for gene replacement therapy to be applicable. 

Most the severe inherited retinal diseases such as LCA and early onset 

retinal dystrophies are caused by recessive mutations of retinal genes 

leading to the loss or relative lack of the encoded protein product . 

Replacement of these genes would restore the target protein and correct the 

deficiency in affected cells. Similarly, the retinal degeneration secondary to 

AIPL1 mutations is caused by the loss or reduction in AIPL1 protein. 

Replacement of AIPL1 in photoreceptor cells led to increased AIPL1 protein 

levels and correction of the downstream effects shown by increased PDE 

biosynthesis and the translocation of cGMP PDE to the outer segments.   It 
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is also important that the rate of progression of the disease enables a rapid 

read out of the outcome of treatment. The severe nature of AIPL1-related 

retinopathies both in human and mouse would provide a clear indication of 

any benefit following therapeutic gene delivery in the form of either an 

improvement in retinal function or vision, or the delay in progression of 

photoreceptor cell loss. However, this could also act as a double-edged 

sword since experimentally, animal models of rapid retinal degeneration 

have previously been difficult to rescue. With advances in vector technology 

and  the availability of faster and more efficient AAV serotypes such as 

AAV2/8, the prospects of treating such rapid retinal dystrophies has 

improved. That AAV2/8-mediated gene replacement was effective in 

rescuing such rapid retinal degeneration in the Aipl1 -/- mouse indicates that 

the rapid retinal degeneration in LCA patients may also respond favourably 

to treatment. Clinically, the prevalence of the disorder is important in 

determining the potential value of a therapeutic strategy. Treatment for 

conditions which have higher prevalence would make patient recruitment 

easier and have greater clinical impact compared to a rare disease. The 

prevalence of LCA caused by AIPL1 mutations is approximately 7%, which is 

a significant portion of cases when compared to the contribution of other 

known LCA genes[442][103][101]. This is similar to the prevalence of LCA 

cases associated with RPE65 mutations which currently being treated in 

clinical trials. The contribution of AIPL1 to retinal diseases is likely to be even 

higher as it has also been described to cause other types of retinal 

dystrophies such as juvenile cone-rod dystrophy and milder forms of early 

onset retinal dystrophies [103,442].  

 

The function of the transgene product may also dictate the efficacy of gene 

replacement therapy. High efficiency of gene transfer may not be essential 

for conditions where the transgene encodes for secreted protein; expression 

in a few target cells might be sufficient for effective treatment while useful 

therapy may also be achieved by transducing cell types that do not normally 

produce the protein. On the other hand, in conditions where the encoded 

protein is essential for the survival and function of photoreceptor cells such 

as a transcription factor or a phototransduction protein, effective therapy 



353 
 

would require the transgene to be delivered specifically to each targeted cell 

type and ideally to mediate transgene expression at physiological levels. 

Since AIPL1 is essential for PDE biosynthesis and photoreceptor cell 

survival, the treatment of AIPL1-related retinopathies requires specific and 

efficient delivery of the therapeutic gene to individual photoreceptor cells. 

AAV2/2 and AAV2/8 were chosen as vectors because of their capability to 

transduce photoreceptors following subretinal delivery. While AAV2/2 was 

able to slow photoreceptor degeneration in the Aipl1 h/h mouse, it was 

unsuccessful in rescuing the Aipl1 -/- model. Switching from AAV2/2 to 

AAV2/8 vector that carried the same expression construct resulted in strong 

therapeutic rescue in the null model.  This observation indicates that in a 

severe disease, a faster, more efficient vector with high expression levels is 

needed. 

 

The availability of an animal model that accurately reflects the disease in 

patients is a critical factor in the development of a treatment strategy. 

Success in treating an animal model that mimics the human disease 

provides strong justification in moving a therapeutic strategy to the clinic, as 

exemplified by the RPE65 treatment trials. In humans, genetic defects in 

AIPL1 give rise to a heterogeous set of clinical conditions[103,440,442] that 

is also reflected in the genetically engineered mouse models of AIPL1  

deficiency.  The Aipl1 -/- and the Aipl1 h/h mice mirror the clinical disease 

spectrum, and are reminiscent of LCA and RP respectively, while the light-

accelerated Aipl1 h/h mouse with an intermediate disease severity is similar 

to patients with early-onset retinal dystrophy. However, one of the 

requirements for the ease of translation to clinical trials is that any new 

therapeutical strategy must be shown to be efficacious in an eye similar to 

that of humans. So far, there are only a few naturally occurring large animal 

models of retinal dystrophies. The naturally occuring RPE65-deficient dog 

has been a critical factor in moving gene replacement therapy from 

preclinical studies to current ongoing clinical trials[2] [260]. Mouse models on 

the other hand, are not limited by the availability of naturally occurring 

models and many gene defects can be recreated in mice by targeted gene 

disruption. In the absence of larger animal models, either naturally-occurring 
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or artificially generated, future clinical trials may have to proceed based on 

efficacy data from murine studies alone.  

 

 A central issue for any human gene therapy intervention is the assessment 

of the risk to benefit ratio. AAV vectors are frequently used in human clinical 

trials, it is therefore vital to evaluate the risks of its use for personnel involved 

in handling the vector either in research or clinical trials as well as for the 

patients and their future offsprings. Thus far, AAV has shown to have an 

excellent safety profile;  preclinical studies have consistently demonstrated 

the lack of toxicity, minimal inflammatory and immune responses to the 

vector and negligible systemic dissemination to distant organs following 

intraocular delivery. In the recent phase I human ocular gene therapy trials, 

three different groups of investigators have reported the lack of any clinically 

significant adverse effects from the surgical procedure and the absence of 

systemic dissemination, suggesting that any extraocular leakage of vector 

from the subretinal space was minimal [34,181,293] There was no significant 

intraocular inflammatory responses to vector injection and no sustained 

reduction in visual function despite the temporary retinal detachment in the 

patients one year after treatment. However, the long term ocular and 

systemic safety of the procedure in humans will only be known after further 

follow up in the later stages of the trials. Apart from the obvious risks 

associated with a viral vector, other hazards that need to be taken into 

consideration include the effects of transgene overexpression. This is less 

likely to cause any toxicity or adverse effects where the biological function of 

the protein does not require its levels to be within a narrow range. In our 

study, we showed that AIPL1 overexpression did not result in deleterious 

effects. The ectopic expression of AIPL1 in the RPE by AAV2/2 vector driven 

by the ubiquitous CMV promoter did not have any negative effects on 

photoreceptor function or survival. As the exact function of AIPL1 is yet 

completely understood, it is difficult to hypothesize on the effects of AIPL1 

overexpression on the retina. AIPL1 is intricately linked to cGMP PDE, a 

multimeric protein composed of subunits α,β and γ and is specifically 

required for the proper assembly of PDE subunits[240].  The lack of toxicity 
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from AIPL1 overexpression may be due the possibility that its function is 

limited by the availability of cGMP PDE. 

 

The translation of a gene-based strategy into clinical trials also depends on 

the availability of a suitable vector.  To be effective, gene therapy to the 

retina initially requires specific and efficient vector that can mediate 

widespread transduction of the target cells. It is then possible to tailor gene 

expression to the appropriate levels and spatial patterns through the use of 

specific promoter elements. It is also vital that the chosen vector for the 

treatment of inherited retinopathies is able to mediate long term expression 

of the transgene without integration into the host genome since the treatment 

of these disorders necessitate lifelong correction. For this purpose, AAV 

vectors which have considerably lower immunogenity appear to be the best 

suited vector for gene delivery. Together with the immunopriviliged properties 

of the eye, AAV vectors have been able to confer long term transgene 

expression lasting many years without integration into the host genome.  In 

our study, transgene expression and therapeutic effect appeared to be long 

lasting and without the need for retreatment. In Aipl1 h/h mice that received 

subretinal injection with therapeutic AAV2/2 and AAV2/8 vectors, sustained 

transgene expression and photoreceptor rescue was noted up to over 1 year 

and 5 months post injection respectively. AAV2/8-mediated delivery of AIPL1 

in the null mutant, Aipl1 -/- mouse, appeared to be stable for at least 3 

months post injection, the latest time point examined. These were the latest 

time point examined in the study following which the animals were culled to 

allow for histological examination. In order to appreciate the full durability of 

the therapeutic effect, further similar experiments to examine the point of 

decline in transgene expression with a longer period of follow up would be 

required. The main drawback of AAV which often limits its use for gene 

transfer is its small packaging capacity of 4.7 kb and its slow onset of 

expression after transduction. For the purpose of AIPL1 gene replacement, 

the restricted carrying capacity of AAV is less of an issue since both the 

murine and human AIPL1 cDNA are less than 3 kb in size. Faster onset and 

efficiency of in vivo gene transfer was obtained with the use of AAV2/8, 

which was subsequently used to treat faster photoreceptor degeneration. 



356 
 

The use of various AIPL1 mouse models of different disease severity in this 

study highlights the importance of timing of gene transfer in relation to the 

disease course, the onset and levels of expression in determining the 

success rate of the treatment. As demonstrated in the difference in efficacy 

comparing AAV2/2 and AAV2/8 vector in the rapid models, these factors 

need to be tailored according to the characteristics and rate of progression of 

the particular condition. 

 

Thus, AIPL1-related retinal dystrophy has progressed through many of the 

steps towards a treatment strategy, from gene identification[440][442] 

followed by clinical characterisation of disease[103][151][485][362] and to 

increased understanding of the molecular 

mechanism[477][282][391][240][295][186] and then now to proof-of-concept 

studies in animal models. The success of gene therapy in correcting the 

disease phenotype in Aipl1-deficient and hypomorphic mice described in the 

preceding sections suggests that human AIPL1-related retinopathies may be 

amenable to treatment and supports the further development of this 

preclinical work to clinical trials. This proof-of-concept study was reinforced 

by another recent work which targeted both rods and cones and rescued 

both photoreceptors following AAV-mediated Aipl1 replacement in Aipl1- 

mutant mice[455]. In justifying a clinical trial, a key question that is posed is 

whether the phenotype of human disease is similar enough to that in the 

animal models and hence, if it is realistic to expect comparable treatment 

benefits in humans to that already seen in the animal models.  Despite the 

similarities in phototransduction defect and severe phenotype in both the 

murine models of Aipl1 and PDE6β deficiency, the human equivalents of 

these genetic defects reveal dramatic differences. In contrast to patient with 

AIPL1-related LCA who have severe early visual impairment, patients with 

autosomal recessive RP due to PDE6β mutations maintain good visual 

acuity until later in life. While the rd1 mouse may not completely mirror the 

human disease, the Aipl1mutant models are consistent with the human 

condition; the Aipl1 -/- mouse has an early and severe degeneration which is 

phenotypically similar to patients with AIPL1-related LCA, and the Aipl1 h/h 
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hypomorphic mutant is reminiscent of the subgroup patients with autosomal 

recessive rod-cone dystrophy that have been described in this study and in 

another recently published study[204]. The main difference between human 

and mouse that need to be considered is anatomical distinction between the 

rod-dominated mouse retina and the human retina that has central cone-rich 

foveal region as this may impact on the treatment strategy. Since AIPL1 is 

essential for the maintenance and survival of both rods and cones[282][232], 

much of the severe visual impairment in patients with AIPL1-related disease 

is due to cone dysfunction and loss. Hence, in treating patients, it is even 

more vital that gene delivery vectors should target both rods and cones 

photoreceptors. By using a rhodopsin kinase promoter to drive transgene 

expression in an AAV vector, a recent study targeted and rescued both rods 

and cones in various Aipl1 mutant mice[455]. Extrapolating these findings, it 

would be reasonable to expect that foveal cones in the human retina would 

benefit from such AAV-mediated gene delivery that targeted both types of 

photoreceptor cells. However, further verification of the rhodopsin kinase 

promoter may be indicated as recent studies have suggested that its ability 

to transduce both photoreceptor cell types may differ in between species[46].  

 
The next important question to be answered is whether there is residual 

retinal architecture and viable photoreceptors in AIPL1 patients to afford a 

reasonable chance of success. The current information available on the 

retinal phenotype of AIPL1-related LCA patients is limited; there are a few 

short clinical descriptions that accompanied the reports of molecular 

identification[441][440], clinical evaluations of AIPL1 patients specifically or 

along with other genotypes[151][103][310][362][485][204] and rare reports 

bearing some histopathological descriptions of donor retinal tissue. 

Frequently described clinical findings included severe visual impairment even 

at very young ages, no visual fields, non-detectable electroretinograms, 

pigmentary retinopathy and atrophic maculopathy. The only two histological 

studies currently available described the paucity of photoreceptors and 

predominance of retinal gliosis with sparing of the RPE layer and Bruchs 

membrane in associated with AIPL1related disease[183][478]. However, it 

should be pointed out that these histological studies were performed in the 
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same adult patient with already advanced disease. While most patient 

studies relating to AIPL1 mutations to date have mostly described clinical 

features seen on eye examination, the advent of new non-invasive imaging 

techniques and psychophysical tests provide another dimension in 

phenotype characterisation of patients.  An single description of the OCT 

scan in a 22-year-old LCA patient with AIPL1 mutation showed abnormal 

retinal laminar architecture[362]. A recent study of provided detailed 

descriptions of retinal structure and function using autofluorescence imaging, 

OCT, pupillometry, perimetry and electrophysiology and on AIPL1 patients 

ranging from 16 to 40 years of age[204]. Findings revealed extensive loss of 

foveal cones and extrafoveal photoreceptors that was more severe with age, 

while variable thickening of the inner nuclear layer was seen that was 

suggestive of retinal remodeling[204]. Perimetry and pupillometry confirmed 

retained rod function in patients, some of whom were in the third and fourth 

decades of life. Some patients even had pupillary light reflexes which were 

within the normal range of responses. More significantly, this study also 

described a patient with retinitis pigmentosa associated with AIPL1 

mutations. This patient had a much later-onset protracted course of disease; 

the onset of symptoms was noted from the first decade of life and retained 

macular photoreceptors was seen up the the sixth decade of life. The 

authors from this novel study implied that given the severity of disease and 

loss of the cone-rich foveal ONL in AIPL1 LCA patients, there may be limited 

response to gene replacement therapy. However, it should be pointed out 

that these findings are indicative of adult patients who already have 

established disease. Our study suggests that macular and foveal 

photoreceptors and RPE remain relatively well preserved in early childhood 

ages, this is particularly highlighted in patient 31895 who was examined at 

the age of 7 years; well preserved autofluorescence at the fovea and 

surrounding macular regions were seen and were almost normal in 

appearance, while OCT scanning revealed present retinal lamination and 

foveal and parafoveal ONL. Evidence of detectable ONL in young human 

retina despite early absence of rod and cone photoreceptor function by ERG 

would support the hypothesis that visual loss in early stages is due to rod 

and cone dysfunction, possibly from a phototransduction defect given the 
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connection with cGMP PDE. Uncorrected, this persistent derangement in 

phototransduction and continuing loss of PDE may later on lead to a rapid 

photoreceptor apoptosis and secondary retinal degeneration. Studies of the 

various mouse models of AIPL1 deficiency appear to support this theory, 

given that normal retinal architecture were observed in young mice 

regardless of the rate of degeneration. Hence, while adult LCA patients may 

not fully respond to gene replacement therapy due to advanced disease, our 

findings suggest that young patients might be amenable to treatment and 

that treatment should be administered in very early ages for maximal 

therapeutic benefit.  A further group of patients who would stand to respond 

favourable to gene-base treatment are the patients who have a milder and 

later onset of retinal dystrophy associated with AIPL1-mutations. To date, 

there are only four patients described as having a different diagnoses other 

than LCA that is associated with AIPL1 mutations; three of these had a 

heterozygous 12 bp deletion in AIPL1 and were diagnosed with cone-rod 

dystrophy and juvenile retinitis pigmentosa[442], while one patient was 

recently described with later-onset retinitis pigmentosa and carried 

compound heterozygous null mutation and a missense mutation (W278X and 

G122R)[204]. Our study identified a further two patients with milder disease 

of rod-cone dystrophy associated with AIPL1 mutations, and suggest that 

there may be a further subset of patients with diagnoses other than LCA due 

to AIPL1 mutations.   Screening of a large cohort of patients with the clinical 

diagnoses of RP or rod-cone dystrophy for AIPL1 mutations have yet been 

undertaken and would be a worthwhile endeavor. Similarly, more studies in 

young children with AIPL1 mutations are needed and will be crucial in 

characterising the retinal structure and function in this age group and also in 

providing further indication of the success gene-based treatment in these 

patients. 

  

There are further issues to be considered in setting up a clinical trial to treat 

AIPL1 patients: who would be suitable target patients to be treated first, and 

what would be the best strategy identify candidate patients for treatment? 

Given the difficulty in obtaining ethical approval for carrying out trials in 

young patients, the group of patients with milder AIPL1 disease may serve 
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well as initial candidates in a gene therapy trial. The slower rate of disease 

and preservation of cones and rods well into adulthood may offer good 

potential of a treatment benefit, although it may take a longer period of time 

to demonstrate this. Ultimately, the goal would be to treat young patients with 

LCA who stand to benefit the most if the treatment is successful. The 

potential for therapeutic application in humans depend the identification of 

candidate patients. One of the major foreseeable obstacle is the identification 

of candidate patients in a timely fashion, particularly the patients with LCA. 

The AIPL1-LCA phenotype has several distinctive features such as the 

severity of visual impairment, retinal bone-spicule pigmentation, atrophic 

maculopathy and an association with keratoconus. However, many of these 

features are age-dependent and it can be difficult to distinguish between the 

different genotypes since the retina responds in similar ways to insults. 

Furthermore, the retina is almost always normal in appearance in very young 

patients with various forms of retinal dystrophies including LCA, regardless of 

the underlying gene mutation. While visual acuity and signs in the anterior 

and posterior segments may be helpful in selecting the genes or loci most 

likely to be implicated, molecular screening remains the mainstay of 

establishing definitive diagnosis, which is a pre-requisite to treatment. 

Specific to AIPL1 mutations, molecular diagnosis need to be undertaken as 

early as possible and preferably in early childhood. In the hospital setting, it 

may be necessary to consider screening offsprings of patients with family 

history of LCA or severe inherited retinopathies and young children or infants 

presenting with impaired vision for AIPL1 mutations. For cost effectiveness in 

a large gene therapy program involving the treatment of several different 

gene defects, first pass screening using the LCA chip will indicate the 

underlying gene involved, and should be followed by resequencing to confirm 

the mutations. Where there is high clinical suspicion of AIPL1-related 

disease, patients should be sequenced directly, this is now made easier with 

the availability of resequencing chips which will enable high volume rapid 

sequencing of patient DNA. 

 

There is now robust proof of efficacy from this preclinical study and recently 

others to justify clinical trials to treat patients with AIPL1 mutations.  Human 



361 
 

gene replacement therapy offers these patients the best possibility of 

alleviating a disease that is currently incurable and that has invariably dire 

consequences.  For these patients, the benefits of treatment clearly outweigh 

the risks. Following on from this, there are now efforts in progress to develop 

a clinical grade vector and the infrastructure for an AIPL1 clinical trial, which 

could be expected to commence in the next five years. 
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Appendix: 
 
Patient clinical histories and pedigree (where available) 

 

Patient 9728 

Patient 9728, of African origin, was the product of a consanguineous 

marriage between first cousins. Apart from visual problems, he also suffered 

from autism and epilepsy.  He was diagnosed with LCA and was first 

examined at the age of 19 years old. At that time, he was only able to 

perceive light. His fundal appearances showed bilateral bone spicule-like 

peripheral pigmentation, attenuated blood vessels and macular scarring. 

However, due to difficulties with cooperation, electrophysiology studies were 

not performed. Autofluorescence imaging showed generalised reduction of 

autofluorescence at the fovea and peripheral retina with some residual signal 

in the parafoveal region inside the major vascular arcades. 
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Patient 07582 

Patient 07582 was a male Caucasian patient from South Africa who was first 

seen in 2002 at the age of 19 years old. Severe visual loss was noted since 

birth and a non-progressive course was described. He did not suffer from 

any other medical or systemic problems apart from visual symptoms.  There 

was no history of consanguinity and no other family members were affected. 

At the time of examination, he was only able to perceive light in both eyes. 

There was bone-spicule peripheral retinal pigmentation, central foveal 

atrophy and attenuation of the retinal vasculature in both fundi. Both optic 

discs appeared normal. Electrophysiology performed at the time of 

assessment showed severe loss of rod and cone ERG responses. The ERG 

results of patient 07582 are in keeping with the clinical diagnosis of Lebers 

Congenital Amaurosis, with severe macular involvement. The rod-specific 

ERG and pattern ERG (PERG) were not detectable and the bright flash 

"mixed" ERG was severely reduced. Single flash cone ERGs (photopic) and 

30 Hz flicker ERG showed severely reduced and delayed amplitudes.  
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Patient 14777 

Patient 14777 was from a consanguineous middle-eastern family in Dubai 

whose parents were first cousins. He was diagnosed with LCA at the age of 

18 months. At 3 months of age, he was noted to have nystagmus, a 

convergent squint and poor vision, and later night blindess and peripheral 

field loss. He presented to the eye clinics at the age of 2 years old. Clinical 

examination at that time showed relatively normal-looking fundus and optic 

disc bilaterally. Electrophysiology tests revealed no detectable scotopic or 

photopic ERG amplitudes. He was too young to cooperate with Goldman 

perimetry assessment, while OCT and autofluorescence imaging did not 

reveal anything specific changes. 

 

 

 

 

 

 

 

 

 

 

Patient 14000 

Patient 14000 was first seen at the age of 30 years, and presented with a 

history of nystagmus, nyctalopia and strabismus which was noted from birth. 

Her parents were first cousins and she also had an affected sister. Her visual 

acuities at presentation were only perception of light in the right and left 

eyes. Clinical examination showed intra-retinal pigmentation, attenuated 
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blood vessels and macular atrophy. Both optic discs appeared pale 

indicating optic atrophy. There were also signs of posterior subcapsular 

cataract and keratoconus affecting the right eye. She was diagnosed with 

LCA. Electrodiagnostic tests showed no recordable activity for maximum 

flash ERG, pattern ERG, photopic ERG and 30 Hz flicker ERG. Goldman 

perimetry, OCT and autofluorescence imaging were not performed on this 

patient.  

 

 

Patient 15000 

Patient 15000, an affected sister of patient 14000, is 2 years older. She was 

also noted to have poor vision and nystagmus shortly after birth and later on 

was diagnosed with LCA. At the time of examination, she was 36 years old 

and was unable to perceive light. Clinical examination showed findings in 

keeping with end-stage retinal degeneration, with widespread intraretinal 

pigmentation, bilateral pale discs, severely attenuatied vessels and bilateral 

macula coloboma. There was also posterior subcapsular cataract and 

keratoconus in one eye. Electrodiagnostic tests detected no rod or cone 

responses.  
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Patient 14874 

Patient 14874 came from a non-consanguinous white family and diagnosed 

with LCA. He first presented with poor vision and nystagmus at 6 months of 

age. His parents noticed that he was attracted to bright lights as a child and 

later found that he had poor night vision and sluggish pupils. When he was 

seen in the eye clinic at the age of 17, he was only able to perceive light in 

both eyes. He had posterior subcapsular cataracts and moderate myopia. 

Fundal examination showed retinal pigmentary changes and RPE atrophy in 

the periphery. Although his optic discs appeared healthy, there was bilateral 

early macular atrophy and attenuation of retinal vessels. OCT scan showed 

reduction of foveal thickness and thinning of the macular area in both eyes. 

Autofluorescence imaging showed reduced autofluorescence at the fovea. 

Electrodiagnostic studies showed that both scotopic and photopic ERG 

responses were non detectable. 

 

 

Patient 13484 

Patient 13484 was of African-Carribean descent and has an affected sister 

(patient 6604). Both of them were diagnosed with rod-cone dystrophy. There 

was no history of consanguinity. At 2 months of age, patient 13484 was 

noted to have poor vision, nystagmus and nightblindness. As a child, she 

noted to have a habit of eye-rubbing (oculodigital sign), a divergent squint 

and photoaversion (dislike of light). When she presented to the eye clinic at 

19 years of age, she had heavy pigment clumping in the mid-peripheral 

retina with RPE atrophy, attenuation of retinal vessels and macular atrophy. 

Her visual acuity was logMar 1.6 in the right eye and no perception of light in 

the left eye. Scotopic and photopic ERGs was present although severely 

reduced in the right eye, while the left eye had no detectable ERG response. 

There was no detectable pattern ERG.  
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Patient 13052 

Patient 13052 is of black African origin and her family came Sudan. There 

was no history of inter-related marriages in the family. She was diagnosed 

with rod-cone dystrophy, and was noted to have poor vision and night 

blindness since birth. As a child, she was always attracted to light 

(photoattraction). She first presented to the eye clinic at the age of 27 years; 

she was only able to perceive light in her right eye but had a visual acuity of 

logMar 0.9 in the left eye. Her pupillary reaction was normal and she did not 

have any nystagmus.  Clinical examination showed that her fundal 

appearances were similar to that of advanced retinitis pigmentosa with 

peripheral bone spiccule-like pigmentation, pale optic discs, attenuated blood 

vessels and an epiretinal membrane at both macula. Over the follow up 

period of 10 years, she developed posterior subcapsular cataracts, 

progressive RPE atrophy, white retinal dots and macula pigmentation and 

atrophy. Goldman perimetry showed severe constriction of her visual fields to 

only 5 degrees of horizontal and vertical fields in each eye with preservation 

of the temporal islands. Optical coherence imaging (OCT) showed thinning of 

the retina from the nasal aspect to the fovea while fundus autofluorescence 
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imaging  using the scanning laser ophthalmoscope (SLO) showed patchy 

areas of hyper and hypofluorescence throughout the fundus. ERG 

assessment was not available on this patient.  

 

 

 

 

 

 

 

 

Patient 13412 

Patient 13412 is from an Iranian family with a long history of consanguineous 

marriages in the family. He is related to another patient (No. 13353) as first 

cousins, who has a heterozygous Arg302Leu mutation. Patient 13412 was 

diagnosed with LCA when at the age of 2 months, he was noted to have poor 

vision and nystagmus and later developed a divergent squint. There was a 

history of poor vision in the family, he had an affected brother and 2 first 

cousins who were diagnosed with LCA (including patient 13353) and another 

first cousin who was diagnosed with rod-cone dystrophy. At the time of 

examination, he was 18 years old. His visual acuities were counting fingers 

bilaterally and there was a roving nystagmus. Both of his fundi appeared 

unremarkable on ophthalmoscopy and there was some optic disc pallors. 

Electrophysiology testing revealed severe reduction in scotopic and photopic 

responses. OCT imaging revealed thinning of the retina and fovea. 

Autofluorescence and goldman perimetry was not performed in this patient. 
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Patient 31895 

Patient 31895 is from a family from Israel, whose parents are not related to 

each other. He was noted to have poor vision and nystagmus at the age of 6 

months. There was no family history of blindness or other eye conditions. He 

was diagnosed with LCA at the age of 7 years. Initial ERG performed at the 

age of 3 years showed moderate to severely reduced rod and cone 

responses which was suggestive of widespread retinal degeneration. The 

ERG was repeated again at the age of 7 and showed non-detectable 

responses under all stimulus conditions. Clinical examination and details 

were recorded at the age of 7 years. His visual acuities then were hand 

movements in the right and left eye respectively. There were abnormal foveal 

reflexes bilaterally but no evidence of macular atrophy or pigmentation. 

There was no obvious peripheral retinal pigmentation or any cataract or 

keratoconus. Autofluorescence imaging showed relatively normal level of 

autofluorescence at the macula. OCT scanning revealed thinning of the 

retinal layers although foveal outer nuclear layer appear to be present. 
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Patient 15618 

Patient 15618 is of Indian descent from a non-consanguinous family. The 

onset of his visual symptoms were at the age of 6 years where, his parents 

noticed that his eyes were ‘wobbly’ and that he was having difficulties seeing 

objects. He also developed a divergent squint. He was examined at the age 

of 21 years and his visual acuities at examination was logMAR 1.3 OD and 

hand movements OS. Fundal examination showed bone spicule retinal 

pigmentation in the mid to peripheral retina and peripheral RPE atrophy. 

There were signs of RPE mottling and pigmentation at the macula and the 

optic discs appeared pale. Electrodiagnostic testing showed marked 

reduction of scotopic and photopic responses, worse in the left eye which 

was in keeping with EORD. OCT, autofluorescence and perimetry were not 

performed. 
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Patient 14651 

Patient 14651 is from an Asian background and whose parents are first 

cousins. She was noted to have poor vision at the age of 6 months, 

accompanied by nystagmus and a squint. There was no previous family 

history of any eye problems or blindness. She was examined at the age of 3 

and recorded visual acuities of counting fingers in both eyes. Fundal 

examination showed unremarkable findings in the retina and macula. ERG 

showed non-detectable photopic and scotopic responses in keeping with 

LCA. 
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Patient 13163 

Patient 13163 is from a Caucasian background and a non-consanguinous 

family. Poor vision and nystagus was noted at the age of 6 months. She later 

developed a squint. A diagnosis of EORD was made at the age of 3 year. 

Clinical examination was performed at the age of 29 years old. Her vision 

recorded then was logMAR 0.96 in the right and left eye respectively and she 

was moderately myopic with astigmatism but there was no signs of 

keratoconus. Fundal examination revealed bilateral pale discs and 

attenuated blood vessels but there were no obvious retinal pigmentary 

changes. OCT imaging showed normal retinal thickness and layered 

architecture. ERG responses showed absent rod responses and minimal 

cone responses. . 
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Patient 6604 

Patient 6604 is the younger sister of patient 13484. They both share the 

same mother, but have different fathers. Patient 6604 was noted to have 

poor vision, eye-rubbing, nystagmus and dislike of bright lights at the age of 

2 months. She presented for clinical examination at an earlier age of 8 years 

old, during which she was found to have pigment clumping in the peripheral 

retina, RPE atrophy, white dots and macular pigmentation and atrophy. She 

was diagnosed with rod-cone dystrophy. Her visual acuity was better 

compared with her sister’s, achieving logMar 0.7 (oculus dexter, right) and 

logMar 0.8 (oculus sinister, left). Electrophysiology assessment showed 

absent rod and cone ERG responses and significantly delayed 30 Hz flicker 

ERG with low amplitude. 

 

 

 

Patient 14351  

Patient 14351 was diagnosed at the age of 2 years with early onset retinal 

dystrophy. He presented with visual loss, nystagmus, field loss and 

nyctalopia when he was 2 years old, and came from a consanguineous 

family where his parents were first cousins. There were no other affected 

family members. At the time of clinical examination, he was 5 years old; his 

visual acuities were 1.0 OD and OS and ophthalmoscopy showed a relatively 

unremarkable fundus. Unfortunately, electrophysiology testing, OCT and 

visual fields information were unavailable on this patient. 
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Patient 10759  

Patient 10759 was noted to have poor vision and nystagmus  from birth. Her 

parents are from Indian descent and there is no history of consanguinity.  

She has a non-affected older brother. She was diagnosed with LCA at the 

age of 6 months, after electrodiagnostic testing showed non-detectable 

scotopic or photopic responses. She demonstrated a dislike for light and later 

developed a left divergent squint. She was examined at the age of 1 year. 

On examination,her vision was hand movements in the right and left eye 

respectively. There were no pigmentary changes in the retina or any macular 

abnormality found. Her anterior segments were unremarkable and there 

were no signs of cataracts or keratoconus. 

 



375 
 

Patient 13026  

Patient 13026 was from a white Caucasian background and there was no 

family history of consanguinity. Clinically, she was diagnosed with early 

onset retinal dystrophy after she was found to have poor vision and 

nystagmus shortly after birth and showed an aversion to light 

(photoaversion). When she was examined at the age of 9 years, she had 

visual acuities of 3/60 bilaterally with posterior subcapsular cataracts. Her 

fundi had moderate peripheral pigmentation accompanied by pale optic 

discs. There was involvement of the macular. No data was available on 

electrodiagnostic studies or perimetry. 
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List of Abbreviations 
aa       amino acid 

AAV   adeno-associated virus 

ABCR   ATP-binding cassette transporter 

Ad   adenovirus 

AdRP   autosomal dominant retinitis pigmentosa 

AIPL1   aryl hydrocarbon receptor-interacting protein-like 1 
(human) 

Aipl1   aryl hydrocarbon receptor-interacting protein-like 1 
(mouse) 

AMD   age-related macular degeneration 

ArRP   autosomal recessive retinitis pigmentosa 

ATP   adenosine-5’-triphosphate 

BDNF   brain-derived neurotrophic factor 

bFGF   basic fibroblast growth factor 

β-PDE   β subunit of the rod cGMP phosphodiesterase 

BHK   baby hamster kidney cells 

bp   base pair 

BRB   blood retina barrier 

BSA   bovine serum albumin  

cAMP   cyclic AMP 

cc   connecting cilium 

cDNA   coding deoxyribonucleic acid 

CEP290  centrosomal protein 290 

cGMP   cyclic GMP 

CMV   cytomegalovirus promoter 

CNTF   ciliary neurotrophic factor 

CNS   central nervous system 
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CNV   choroidal neovascularisation 

CRB   Crumbs homolog protein 

CRBP   cellular retinol-binding protein 

CRX   cone-rod homeobox 

DMEM  Dulbecco’s Modified Eagle Medium 

DMSO  dimethylsulfoxide 

DNA   deoxyribonucleic acid 

ds   double stranded 

EAM   encapsidated adenoviral mini-chromosome 

EAU   experimental autoimmune uveoretinitis 

EIAV    equine infections anaemia virus 

gDNA   genomic deoxyribonucleic acid 

eGFP   enhanced green fluorescent protein 

ELISA   enzyme-linked immunosorben assay 

ERG   electroretinogram 

FCS   fetal calf serum 

FGF   fibroblast growth factor 

FIV   feline immunodeficiency virus 

GCAP   guanylate cyclase activating protein 

GCL   ganglion cell layer 

GDNF   glial-derived neurotrophic factor 

GDP   guanosine-5’diphosphate 

GFAP   glial fibrillary acidic protein 

GFP   green fluorescent protein 

GMP   guanosine 5’-monophosphate 

GTP   guanosine 5’-triphosphate 

GUCY2D  guanylate cyclase-1 
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HIV   human immunodeficiency virus 

HSV   herpes simplex virus 

IL   interleukin 

ILM   internal limiting memebrane 

IMPDH1  inosine monophosphate dehydrogenase 1 

INL   inner nuclear layer 

IPL   inner plexiform layer 

IPM   inter photoreceptor matrix 

IRBP   interphotoreceptor retinoid-binding protein 

IS   inner segments 

ITR   inverted terminal repeats 

kb   kilobase 

kDA    kilodalton 

l    litre 

LCA   Leber Congenital Amaurosis 

LRAT   lecithin-retinol acyltransferase 

LTR   long tandem repeats 

m    meter 

m-    milli 

µ    micro 

MERTK  mer-receptor tyrosine kinase 

MOI   multiplicity of infection 

mRNA   messenger RNA 

miRNA  microRNA 

MV   microvilli 

NAD+, NADH	   o xidized and reduced nicotinamide–adenine dinucleotide	  
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NADP+, NADPH	  	  	   oxidized and reduced nicotinamide–adenine dinucleotide 
phosphate 

NFL   nerve fiber layer 

NO   nitric oxide 

NOS   nitric oxide synthase 

OCT   optical coherence tomography 

O.C.T   optimal cutting temperature 

ORF   open reading frame 

ONL   outer nuclear layer 

OP   oscillatory potential 

OPL   outer plexiform layer 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PDGF   platelet derived growth factor 

PDE   phosphodiesterase 

PEDF   pigment epithelium derived factor 

PFA   paraformaldehyde 

PR   photoreceptors 

Prph2   peripherin” 

R*   metarhodopsin 

rAAV   recombinant AAV 

RCS   Royal College of Surgeons 

rd   retinal degeneration 

RDH   retinol dehydrogenase 

rds   retinal degeneration slow 

retGC   retinal guanylate cyclase 

RGC   retinal ganglion cells 
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RHO   rhodopsin 

RISC   RNA induced silencing complex 

RK   rhodopsin kinase 

RNA   ribonucleic acid 

RNAi   RNA intereference 

ROM-1  retinal outer segment membrane protein-1 

ROS   reactive oxygen species 

RP   retinitis pigmentosa 

RPE   retinal pigment epithelium 

RPGR   retinitis pigmentosa GTPase regulator 

RPGRIP  RPGR-interacting protein 

RT   reverse transcriptase 

scAAV  self complementary AAV 

SCID   severe combined immunodeficiency 

shRNA  short hairpin RNA 

siRNA    short interfering RNA 

SIV   simian immunodeficiency virus 

ss     single stranded 

TNF   tumor necrosis factor 

TULP1  tubby-like protein 

UTR   untranslated region 

VEGF   vascular endothelial growth factor 

vp   viral particles 

VSV-G  vesicular stomatitis virus G-protein 

WPRE  Woodchuck hepatitis virus post-transcriptional element 

w/v   weight/volume percent or mass/volume percent 

XIAP   X-linked inhibitor of apoptosis protein 
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