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ABSTRACT

This thesis first presents a relatively straight forward approach for detecting galaxy clusters using

spectroscopic data. A friend-of-friends algorithm based on that of Huchra & Geller (1982) is

implemented with linking parameters that take into account selection effects on the the 2dF-SDSS

and QSO (2SLAQ) Luminous Red Galaxy Survey (Cannon et al. 2006). The linking parameters are

constrained using a mock halo catalogue. The galaxy groups and clusters found with this method

have an average velocity dispersion of σv = 467.97 kms−1 and an average size of Rclt = 0.78

h−1Mpc. Cluster masses are estimated using the cluster velocity dispersions and appear consistent

with values expected for genuine structures.

The spectroscopic cluster catalogue is then used to calibrate and compare with a more complex

method for detecting clusters using photometric redshifts based on the method of Botzler et al.

(2004). The spectroscopic cluster catalogue can be reproduced by around 38% and up to 80% if

matching is made only to groups and clusters with six or more members. This code is also applied

to the Megaz-LRG DR7 catalogue (Collister & Lahav 2004) producing two catalogues. One that

appears to have a good level of completeness relative to the 2SLAQ spectroscopic catalogue.

A spectroscopic follow up of some preliminary results from the photometric cluster finder was

made using the Anglo-Australian Telescope, which show that the majority of the clusters analysed

are genuine and approximate masses can be estimated from the cluster velocity dispersions.

Finally, some initials results from on going work in the Dark Energy Survey collaboration are

presented, which cover simulated galaxy photometric redshift and colour analysis as well as cluster

detection.
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CHAPTER 1

INTRODUCTION

1.1 Prelude

Isaac Newton is famously quoted as writing that “If I have seen a little further it is by standing on

the shoulders of Giants” in a letter to Robert Hooke. Although it is debated wether or not Newton’s

comment was intended as derogatory or philosophical, it is a rather appropriate metaphor to the

world of science. Science is about contribution and collaboration. Despite the fact that there have

been certain special names who have made a rather significant contribution to science, science is

not about individuals. The work of any scientist would be impossible without thousands of years

of wisdom that has come before and science will continue to grow and evolve regardless of any

revolutionary individual contributions. The work presented in this thesis is a contribution, perhaps

a small one, but a contribution none the less.

This section gives a brief summary of the work of some of those ‘giants’ upon whose shoulders

we stand everyday, perhaps without even realising it.

1.2 Standard Model of Cosmology

This section outlines some of the principal concepts and equations that make up the standard

model of cosmology. It begins with a look at an expanding Universe (§1.2.1), followed by the

relations between the density and geometry of the Universe (§1.2.2), it then briefly describes current

measurements of the cosmological parameters (§1.2.3) and finishes by explaining some of the

methods that allow us to measure distance in a dynamic Universe (§1.2.4).

1
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1.2.1 The Expanding Universe

One of the major discoveries of the 20th Century was that our galaxy is not alone in the Universe.

Not only are there countless other galaxies beyond the Milky Way, but they are all appear to be

moving away from each other. This led to incredible realisation that Universe itself was expanding

(Hubble 1929).

1.2.1.1 Redshift

In 1848, French physicist Armand-Hippolyte-Louis Fizeau noticed that the shift in stellar spectral

lines could be attributed to the stretching of the light waves emitted by a star as it moves away from

us via the Doppler effect. In 1908, the term ‘red-shift’ was coined by American astronomer Walter

S. Adams to describe this process (Adams 1908).

Redshift is generally described as an effect whereby the light emitted by an object receding

along the line of sight appears to be shifted towards the red end of the electromagnetic spectrum.

The reverse process for objects moving towards us is called blueshift. We define the redshift, z, of

an object as

z =
λo
λe
− 1, (1.1)

where λo is the wavelength of light observed for the object and and λe is the wavelength of light

emitted by the object.

In 1868, British astronomer William Huggins used the redshift of a star moving away from

the Earth to determine its velocity (Huggins 1868). For small redshifts a linear proportionality to

velocity v can be used,

z =
v

c
, (1.2)

where c is the speed of light in a vacuum. This relation allows us to relate the redshifts that we can

observe for astronomical objects to their recession velocities.

1.2.1.2 Hubble’s Law

In first half of the 20th century, while working with the Hooker telescope at Mount Wilson in

California, American astronomer Edwin Powell Hubble made a series of discoveries that greatly

changed the way we view the Universe. Hubble discovered, first, that there exist galaxies outside of

the Milky Way and, second, these galaxies appear to be receding from us. This was a shocking
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Figure 1.1: Hubble diagram of distance (in Mpc) vs. velocity using five different measures of
distance (Freedman et al. 2001). The bottom panel shows the value of H0 as a function of distance.

revelation that contradicted the widely accepted belief that the Universe was static. Using a sample

of only 24 galaxies, Hubble (1929) found a linear relation between the distance and the velocities

of the galaxies. Recent studies using various different distance measures show this same trend seen

in fig.1.1 (Freedman et al. 2001).

Hubble’s law relates the recession speed, v, to the distance, d, of an object in the expanding

Universe via

v = H0d, (1.3)

where H0 is the Hubble constant,

H0 = 100 h km s−1Mpc−1. (1.4)
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Hubble’s law can also be rearranged to relate the redshift of an object to its distance using 1.2,

z =
H0d

c
, (1.5)

where the redshift is owing to the expansion of the Universe itself. This relation is only valid to

z ∼ 0.2 after which a more complicated approximation is required,

d =
cz

H0

(
1 +

1
2

(1− q0)z
)
, (1.6)

(Zeilik & Gregory 1998) where q0 is the current value of the deceleration parameter, q(t) = −äa/ȧ2,

and a(t) is the scale factor.

The scale factor is a term that represents the relative expansion of the Universe and can be

related to redshift via

z =
λo
λe
− 1 =

a(to)
a(te)

− 1, (1.7)

where to and te are the times of observation and emission respectively.

1.2.1.3 The Friedmann Equation

In 1922, Russian cosmologist and mathematician Alexander Friedmann derived a solution to

Einstein’s field equations for an expanding Universe (Friedmann 1922). This solution corroborated

Hubble’s later discovery that galaxies outside of our own appear to be moving away from us.

If one assumes a sphere expanding in an homogenous universe inside which the mass, M ,

remains constant. The acceleration due to gravity takes the form

R̈ = −GM(R)
R2

= −4π
3

GρR, (1.8)

where G is the gravitational constant, R is the radius of the sphere and ρ is the density within the

sphere. If the mass is conserved then

dM

dt
= −4π

3

(
R3dρ

dt
+ 3ρR2dR

dt

)
= 0 (1.9)

and therefore

dρ

dt
+ 3ρ

Ṙ

R
= 0. (1.10)

We define the Hubble rate, which measures how rapidly the scale factor a changes, as

H(t) =
ȧ

a
=
Ṙ

R
. (1.11)
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Therefore substituting 1.11 into 1.10 gives

dρ

dt
+ 3ρH(t) = 0, (1.12)

which is the Newtonian form of the fluid equation.

Multiplying equation 1.8 by 2Ṙ leads to

2ṘR̈ = −8π
3

GρRṘ. (1.13)

Integrating equation 1.13 gives

Ṙ2 =
8π
3

GρR2 + A, (1.14)

where A is a constant (Milne 1934). Dividing 1.14 by R2 gives

H(t)2 =
8π
3

Gρ+
B
a2
, (1.15)

where B=Aa2/R2. For B=0 we can define the critical density as

ρcrit =
3H(t)2

8πG
. (1.16)

The critical density is a measure of the density required to make a flat universe (§1.2.2). We can

now define the density parameter, Ω(t), as

Ω(t) =
ρ

ρcrit
. (1.17)

Hence we can see that

ρ(t) = Ω(t)
3H(t)2

8πG
. (1.18)

Substituting equation 1.18 at t = 0 into equation 1.15 gives

B = H2
0 (1− Ω0). (1.19)

Which leads to

H(t)2 =
8π
3

Gρ+
H2

0 (1− Ω0)
a2

. (1.20)

Thus the Friedmann Equation can be expressed as

H(t)2 =
8π
3

G
(
ρ(t) +

ρcrit − ρ0

a(t)2

)
, (1.21)
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(Dodelson 2003). This is arguably one of the most important equations in cosmology. This equation

determines the form of the scale factor, and thus the evolutionary history and fate of the Universe.

When derived from general relativity the Friedmann equation is often expressed in the more

general form,

H(t)2 =
8π
3

Gρ(t)− kc2

a2
+

Λc2

3
(1.22)

and is usually accompanied by the acceleration equation

Ḣ(t) +H(t)2 =
ä

a
= −4π

3
G
(
ρ(t) +

3P
c2

)
+

Λc2

3
, (1.23)

where k is term that describes the global curvature of the Universe, Λ is the cosmological constant

(§1.2.2) and P is the pressure. Combing 1.22 and 1.23 leads to the full fluid equation,

ρ̇+ 3
ȧ

a

(
ρ+ P

)
= 0. (1.24)

This is the equation that describes the evolution of density in the Universe.

1.2.2 Density and Geometry

With the realisation that the Universe is expanding, we are led to question what the fate of the

Universe will be. To answer this question we must first ask what the overall density and geometry

of the Universe is.

1.2.2.1 Density Parameters

The density parameter, Ω(t), which is defined by equation 1.17, can decomposed into individual

parts,

Ω(t) = ΩR(t) + ΩM (t) + Ωk(t) + ΩΛ(t), (1.25)

where ΩR is the radiation density, ΩM is the matter density, which consists of ordinary baryonic

matter and dark matter, Ωk is the spacial curvature density and ΩΛ is the vacuum density or

cosmological constant. Each of these components, which are discussed in the following subsections,

make up the Universe as we know it and therefore contribute to the total density. The Friedmann

equation (1.21) can also be expressed in terms of the full density parameter,

H(t)2 = H2
0 (ΩRa

−4 + ΩMa
−3 + Ωka

−2 + ΩΛ), (1.26)
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(Peacock 1999). At the present epoch, ΩR can be expressed as

ΩR ≡ ρR0

ρcr0
, (1.27)

ΩM can be expressed as

ΩM ≡ ρM0

ρcr0
≡ 8πGρ0

3H2
0

, (1.28)

ΩΛ can be expressed as

ΩΛ ≡ ρΛ0

ρcr0
≡ Λc2

3H2
0

, (1.29)

and Ωk, can be expressed as

Ωk ≡ kc2

H2
0a

2
0

. (1.30)

In general Ωk can be expressed in terms of ΩR, ΩM and ΩΛ via

Ωk = 1− ΩR − ΩM − ΩΛ, (1.31)

which shows that for a flat Universe (i.e. with no curvature, k = 0)
∑

i Ωi = 1 at all times.

1.2.2.2 Radiation

Soon after the Big Bang the Universe was dominated by radiation. Since we can observe a universe

full of matter, we need to understand how and when the transition from a radiation dominated to a

matter dominated universe occurred.

We can define the energy density of a relativistic gas, ε, as the sum over all frequencies of the

number density of photons of energy hν, N(ν), via

ε =
∑
ν

hνN(ν). (1.32)

(Longair 1998). If the total number of photons is conserved, as the Universe expands, then the

number density varies as N = N0(1 + z)3 = N0a
−3 and the energy of each photon varies as

ν = ν0(1 + z) = ν0a
−1. Therefore 1.32 becomes

ε =
∑
ν0

hν0N0(ν0)(1 + z)4 =
∑
ν0

hν0N0(ν0)a−4. (1.33)

From 1.33 we can see that ρR ∝ a−4. This is an important relation that tells us how the density of

radiation scales with time and since it scales as a−4 we can see that it becomes very small quite

quickly.



1.2. Standard Model of Cosmology 8

The StefanBoltzmann law, which relates the total energy radiated by a black-body to its

thermodynamic temperature, is given by

F = σT 4, (1.34)

where F is the flux and σ is the StefanBoltzmann constant, σ = 5.6704 × 10−8Js−1m−2K−4.

Therefore ρR ∝ T 4, which tells us that as the Universe expands, a black-body spectrum maintains

its form but the temperature changes as T ∝ a−1. The radiation density parameter can thus be

expressed as

ΩR =
ρR
ρcr

=
π2T 4

15ρcr
=

π2T 4
0

15ρcra4
, (1.35)

(Dodelson 2003).

In 1964, while working at Bell Laboratories, Arno Penzias and Robert Woodrow Wilson

fortuitously detected the microwave emission left behind by the Big Bang (Penzias & Wilson 1965).

The temperature of this emission, now formally known as the Cosmic Microwave Background

(CMB) radiation, can be accurately measured as T0 = 2.728K. From 1.35 we can see that at the

present epoch ΩR ' 5 × 10−5. Therefore a late times the radiation density parameter is often

neglected.

1.2.2.3 Baryons

The matter content of the Universe that is made up of atoms (i.e. in the form of stars, galaxies,

clusters etc.) is referred to as baryonic. This is an important definition in cosmology because the

majority of matter in the Universe cannot be observed directly and is referred to as dark matter. In

fact, the baryonic content of the Universe is only ∼ 5%.

In 1905, Albert Einstein showed that the energy of body can be related to its rest mass via

E2 = m2c4 + p2c2. (1.36)

where m is the rest mass and p is the momentum (Einstein 1905). As the Universe expands and

cools objects lose energy and exert less pressure, P , on their surroundings. Therefore, at late times

with low densities and non-relativistic matter, one can assume P ' 0 and thus from 1.24 we get

ρ̇

ρ
= −3

ȧ

a
. (1.37)

Equation 1.37 shows us that ρM ∝ a−3, which simply implies that the matter density scales with

volume. If we compare this to ρR ∝ a−4 we can see that matter density drops more slowly than

the radiation density, which explains the transition from a radiation dominated universe to a matter

dominated universe.



1.2. Standard Model of Cosmology 9

1.2.2.4 Dark Matter

In 1933, Swiss astrophysicist Fritz Zwicky noticed the effect of some unseen mass in the Coma

cluster (Zwicky 1933). He estimated that there should be ∼ 400 times more mass than is observed.

Around 40 years later Vera Rubin and Kent Ford measured the velocity curves of edge-on spiral

galaxies and found that most stars orbit the centre of the galaxy at the same speed (Rubin & Ford

1970). This discovery implied that there was a large amount of mass in the outer parts of galaxies

that was not observed. This missing mass is generally referred to as dark matter and is thought to

account for ∼ 23% of the Universe.

Since its discovery, there have been several models that have attempted to explain the nature

of dark matter, namely: Hot Dark Matter (HDM) models (Zel’Dovich 1970), which consist of

ultra-relativistic nonbaryonic particles, Warm Dark Matter (WDM) models (Pagels & Primack

1982), which consist of relativistic nonbaryonic particles, and Cold Dark Matter (CDM) models

(Peebles 1982), which consist of non-relativistic nonbaryonic particles. Today the most widely

accepted model is Cold Dark Matter. The term ‘cold’ is in reference to the thermal velocities of the

dark matter particles, which in this model are effectively zero.

CDM makes no predictions as to the actual nature of the dark matter particles. The three

principal candidates are WIMPS (Weakly Interacting Massive Particles, Freese 1986; Krauss et al.

1986), MACHOs (Massive Compact Halo Objects, Alcock et al. 1993a,b) and Axions (Peccei &

Quinn 1977; Efstathiou 1990; Kolb & Turner 1990). WIMPS interact through the weak nuclear

force and gravity, but since they do not interact through the electromagnetic force they cannot be

directly observed and therefore are very difficult to detect. MACHOs are objects composed of

normal baryonic matter, but emit little or no light (e.g black holes, neutron stars, brown dwarfs, etc.)

and are therefore also very difficult to detect. Axions are elemental particles, which are predicted

to have no electric charge, a very small mass and very little interaction with the strong and weak

forces. Axions are predicted to change to and from photons in the presence of strong magnetic

fields.

1.2.2.5 Curvature

One of the most important factors in determining the fate of the Universe is determining its geometry.

Knowing if we live in an open or closed Universe will tell us if it will expand forever or stop

expanding at some point and begin to contract.

The curvature term, k, in equation 1.30 can take one of three possible values, as seen in fig.1.2:
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k = 1
Ω>1

k = -1
Ω<1

k = 0
Ω=1

Figure 1.2: Different possible geometries of the Universe for different values of the curvature term,
k. k = 1 (Ω > 1) corresponds to a closed spherical Universe, k = −1 (Ω < 1) corresponds to an
open hyperbolic Universe and k = 0 (Ω = 1) corresponds to a flat Euclidean Universe.

k = 0 (Ω = 1), corresponding to a flat Euclidean Universe in which the sum of the angles of a

triangle is 180◦ and parallel lines remain parallel, k = 1 (Ω > 1), corresponding to a spherical

Universe in which the sum of the angles of a triangle is greater than 180◦ and parallel lines

eventually converge, and k = −1 (Ω < 1), corresponding to a hyperbolic Universe in which the

sum of the angles of a triangle is less than 180◦ and parallel lines eventually diverge.

1.2.2.6 Dark Energy and the Cosmological Constant

Recent observations of Type Ia supernovae have provided evidence that the Universe is accelerating

in its expansion (Perlmutter et al. 1998; Schmidt et al. 1998) as seen in fig.1.3. This is one the most

significant discoveries in cosmology, as far as what it implies. Several theories have been proposed

to explain the supernovae results, such as a modified theory of general relativity (e.g. Carroll et al.

2004) or the introduction of a cosmological constant, Λ.
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Figure 3: SN 1997ap at z = 0.83 plotted on the Hubble diagram from ref 5 with the five of
the first seven high-redshift supernovae that could be width-luminosity corrected and the 18
of the lower-redshift supernovae from the Calán/Tololo Supernova Survey that were observed
earlier then 5 days after maximum light. Magnitudes have been K-corrected and corrected
for the width-luminosity relation. The inner error bar on the SN 1997ap point corresponds
to the photometry error alone while the outer error bar includes the intrinsic dispersion of
SNe Ia after stretch correction. The solid curves are theoretical mB for (ΩM, ΩΛ) = (0, 0)
on top, (1, 0) in middle, and (2, 0) on bottom. The dotted curves are for the flat universe
case, with (ΩM, ΩΛ) = (0, 1) on top, (0.5, 0.5), (1, 0), and (1.5, −0.5) on bottom.

Figure 1.3: SN 1997ap at z = 0.83 plotted on a Hubble diagram with the five of the first seven
high-redshift supernovae that could be width-luminosity corrected and the 18 of the lower-redshift
supernovae from the Calán/Tololo Supernova Survey that were observed earlier then 5 days after
maximum light. Magnitudes have been K-corrected and corrected for the width-luminosity relation.
The inner error bar on the SN 1997ap point corresponds to the photometry error alone while the
outer error bar includes the intrinsic dispersion of SNe Ia after stretch correction. The solid curves
are theoretical mB for (ΩM ,ΩΛ) = (0,0) on top, (1, 0) in middle, and (2, 0) on bottom. The dotted
curves are for the flat universe case, with (ΩM ,ΩΛ) = (0, 1) on top, (0.5, 0.5), (1, 0), and (1.5,0.5)
on bottom (Perlmutter et al. 1998).

In addition to the supernovae problem, we live in a Universe that appears very much flat (or

critical) and yet, combing ordinary baryonic matter and dark matter, we can only account for 1/3 of

the critical matter density (Hinshaw et al. 2009). We can, therefore, only infer that there is some

other unknown entity that makes up the remaining 2/3 of the density in the Universe. This entity

has been dubbed dark energy and is believed to permeate all of space. Dark energy is believed to

take the form of either a cosmological constant or some type of scalar field (Peebles & Ratra 1988).

The cosmological constant was originally introduced by Albert Einstein to achieve a static

Universe with general relativity (Einstein 1917). He later abandoned this idea after Hubble’s

discovery that the Universe was expanding. More recently, Λ has been reintroduced and is currently

believed to be the most probable explanation for the accelerated expansion of the Universe and the



1.2. Standard Model of Cosmology 12

missing matter density (Riess et al. 1998).

Adopting the cosmological constant solves several problems but presents a new question in

understanding the source of this constant. One possible solution comes in the form of the vacuum

energy. In empty space (i.e. devoid of any particles) one would assume the energy to be zero.

This, however, would require us to know exactly the energy at a given time, which would violate

the uncertainty principle, ∆E∆t ≥ ~/2. Therefore, in realty, empty space must be full of virtual

particles that exist in particle-antiparticle pairs for extremely short amounts of time. The total

energy of these particles in called the vacuum energy.

Although we are not certain as to the true nature of Λ, we are sure about some of the properties

it must have. We observe that energy density in the Universe today is very close to critical. From

equation 1.24 we can see that the condition for constant energy density can only be satisfied if

P = −ρ (i.e. negative pressure). We can thus define the equation of state parameter w as

w ≡ P

ρ
, (1.38)

(Dodelson 2003). From 1.38 we can see that for a cosmological constant we require w = −1, for

matter we require w = 0 and for radiation we require w = 1/3. Using the relation ρΛ ∝ a−3(1+w),

we can constrain the value of ΩΛ by constraining w.

1.2.3 ΛCDM

The combination of a cosmological constant with cold dark matter (ΛCDM) is known as the

concordance model because, at present, it offers a picture the Universe that is consistent with

observations.

Observations of the cosmic microwave background by the Wilkinson Microwave Anisotropy

Probe (WMAP) provide the current constraints on the ΛCDM model parameters (Hinshaw et al.

2009). The basic results for WMAP 5-year data release are listed in table 1.1 and fig.1.4.

1.2.4 Distance Measures

With the knowledge that we live in an expanding universe, measuring the distances to distant

objects becomes very complicated. To this end, we employ various cosmological distance measures

that account for this fact. The following subsections list some of the methods commonly used to

measure the distance between points on cosmological scales as described in Hogg (1999).
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Figure 1.4: Pie charts of the constituents of the Universe today (top panel) and 13.7 Gyr ago (bottom
panel) based on WMAP data.
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Table 1.1: WMAP 5-year Data Results (Hinshaw et al. 2009). t0 is the age of the Universe and z∗
is the redshift of decoupling.

Parameter Best Fit (WMAP) Best Fit (WMAP+SNe+BAO)

H0 (kmMpc−1s−1) 71.9+2.6
−2.7 70.5±1.3

σ8 0.796±0.036 0.812±0.026

Ωb 0.0441±0.003 0.0456±0.0015

Ωc 0.214±0.027 0.228±0.013

ΩΛ 0.742±0.030 0.726±0.015

Ω 1.099+0.100
−0.085 1.0050+0.0060

−0.0061

t0 (Gyr) 13.69±0.13 13.72±0.12

z∗ 1090.51±0.95 1090.88±0.72

1.2.4.1 Comoving Distance

We define the line-of-sight comoving distance,DC , as the distance between two objects that remains

constant with the expansion of the Universe. This distance can be expressed as

DC =
c

H0

∫ z

o

dz′√
ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ

. (1.39)

We define the transverse comoving distance, DM , as the distance separating two objects at the same

redshift but separated on the sky. This distance can be expressed as

DM =


c

H0
√

Ωk
sinh[

√
Ωk

DCH0
c ] for Ωk > 0

DC for Ωk = 0
c

H0
√

Ωk
sin[
√| Ωk |DCH0

c ] for Ωk < 0

. (1.40)

1.2.4.2 Comoving Volume

We define the comoving volume, VC , as the volume measure in which the number density of objects

remains constant with redshift. We can express the comoving volume element, dVC , as

dVC =
c(1 + z)2D2

A

H0

√
ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ

dΩdz, (1.41)

where dΩ is the solid angle element. For Ωk = 0, we can see that

VC =
4π
3
D3
M . (1.42)
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1.2.4.3 Angular Diameter Distance

We define angular diameter distance, dA, as ratio of the transverse physical size of an object to its

angular size in radians,

dA =
l

θ
=

DM

1 + z
. (1.43)

where l is the size of an object and θ is the angle it subtends on the sky.

1.2.4.4 Luminosity Distance

The luminosity distance, Dlum, is defined as

Dlum ≡
√

L

4πS
, (1.44)

where L is the bolometric luminosity and S is the bolometric flux. Dlum can also be expressed as a

function of comoving distance or angular diameter distance,

Dlum = (1 + z)DM = (1 + z)2dA. (1.45)

1.3 Growth of Structure

Having discussed how the Universe as a whole grows and evolves, we can now turn out attention

to the formation of the structure we observe within the Universe. This section discusses the

mechanisms by which the initial perturbations in the density field grow, starting with a brief look at

inflation (§1.3.1), followed by a description of the linear model of growth (§1.3.2) and finishing

with look at the non-linear regime (§1.3.3).

1.3.1 Inflation

In 1981, American physicist Alan Guth proposed a theory in which the early Universe underwent a

short period of accelerated expansion or inflation (Guth 1981). It is predicted that this inflationary

period would have lasted some where between 10−36-10−34s and in this time the scale factor, a,

would have increased by a factor of as much as 1050. Guth (1981) attributes the source of inflation

to a scalar field that behaves like the vacuum energy (see §1.2.2.6) under certain circumstances,

which, if it had a much higher energy density than it does today, would cause the Universe to

expand exponentially. This theory addresses several key problems in cosmology, several of which

will be discussed in the following subsections.
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1.3.1.1 Flatness Problem

Current WMAP observations (see §1.2.3) show that we live in a Universe with Ω ' 1, which

implies at very early times (e.g. t < 10−6s) Ω ' 1 also. The problem we have is understanding

why immediately after the Big Bang the Universe would be so flat.

From equation 1.30, which shows that Ωk ∝ a−2, we see that inflation offers a rather simple

solution. Increasing the scale factor by 1050 would make Ωk ≈ 0 (Jones et al. 2006). Therefore,

inflation essentially flattens the Universe regardless of the initial value of Ωk.

1.3.1.2 Horizon Problem

Measurements of the CMB temperature show that it is uniform to one part in 105. The problem that

arises from this is that regions on the sky more than two degrees apart were separated by a distance

greater than the horizon distance at the time of last scattering (Jones et al. 2006). The horizon

distance is the distance a signal could travel through space in the time that the Universe has existed

and the time of last scattering or decoupling is the moment at which the expansion of the Universe

overtook the rate of Compton scattering producing the CMB we observe today. The question we

are left with is understanding how regions that have never been in contact are so uniform.

Inflation also provides a solution to this problem in suggesting that the regions we observe

today that appear homogenous were inflated beyond the horizon distance. Before inflation these

regions would have been in contact and thus been able to reach thermal equilibrium.

The comoving horizon is defined by

η =
∫ a

0

da′

a′
1

a′H(a′)
, (1.46)

where 1
aH is the distance particles can move in the period of one expansion and is called the

comoving Hubble radius. Most inflationary models operate at energy scales ' 1015 GeV, which

means that the scale factor at the end of inflation is given by ae ' T0/1015 GeV ' 10−28. The

number of time intervals in which the scale factor can grow exponentially by a factor of e, or e-folds

is given by

N = ln
(a2

a1

)
, (1.47)

which for ae ' 10−28 corresponds to N ' 60 e-folds.
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1.3.1.3 Monopole Problem

Grand Unified Theories (GUTs) are theories that attempt to unify electromagnetism, the strong

nuclear force and the weak nuclear force in the early Universe. One of the predictions of GUTs is

that at high temperatures heavy stable particles called magnetic monopoles should be produced in

large quantities. The problem that arises is that these particles have never been detected and the

standard Big Bang model cannot account for this fact.

Through inflation magnetic monopoles would be separated from each other as the Universe

expands making them extremely difficult to detect, potentially explaining the observed discrepancy

with GUTs.

1.3.1.4 Perturbation Problem

From the measurements of the CMB, we have learned that the early Universe was very smooth

with initial perturbations of only one part in 105. These perturbations are thought to be the seeds of

structure formation. What we need to understand is what the source of the perturbations is and how

they grew large enough for structure to form.

The proposed answer is that quantum fluctuations that occurred during inflation would have

grown until they surpassed the horizon scale at which point the fluctuation would no longer be able

smooth itself from one side to the other. This would cause perturbations to become ‘frozen in’,

while the Universe continued to grow (Jones et al. 2006). After inflation, the expansion rate of the

Universe slowed dramatically allowing the ‘frozen in’ density perturbations to re-enter the horizon.

Interestingly, the resulting density pattern from this process would give rise to the observed range

of clusters and superclusters.

This prediction of inflation is of most interest for this section as it provides a starting place

from which we can investigate the growth of structure in the Universe.

1.3.2 The Linear Regime

After the transition from a radiation dominated Universe to a matter dominated Universe we can

begin to model the matter content of the Universe as a fluid. This assumption allows us to trace the

evolution of the primordial density perturbations left over from inflation.
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1.3.2.1 Growth of Linear Perturbations

We model the Universe as a fluid with density ρ(x, t) and pressure P � ρ (Liddle & Lyth 2000).

An element of gas then has position r(t) = a(t)x(t) and velocity u = ṙ. The acceleration of the

element is provided by the Euler equation( ∂
∂t

+ u · 5
)
u = −1

ρ
5 P −5Φ, (1.48)

where Φ is the gravitational potential, which satisfies the Poisson equation,

52Φ = 4πGρ. (1.49)

In spherical polar coordinates 1.49 becomes

1
r2

∂

∂r

(
r2∂Φ
∂r

)
= 4πGρ. (1.50)

We can define the differential form of of the continuity equation as

∂ρ

∂t
+ (5 · u)ρ = 0. (1.51)

In an unperturbed Universe starting from x = 0, from 1.50 we find

Φ =
2
3
πGρr2. (1.52)

With P = 0 and using 1.51, 1.52 and 1.23, 1.48 gives

∂u

∂t
= −4π

3
Gρr =

ä

a
r. (1.53)

This corresponds to a universe of pressureless matter (i.e. dark matter) undergoing Hubble expan-

sion. We can introduce small linear perturbations with

ρ(x, t) = ρ(t) + δρ(x, t), (1.54)

P (x, t) = P (t) + δP (x, t), (1.55)

Φ(x, t) = Φ(t) + δΦ(x, t), (1.56)

and

u(x, t) = u(t) + v = H(t)r + v. (1.57)

where v is the peculiar velocity. Introducing these perturbations into 1.48, 1.49 and 1.51 gives[ ∂
∂t

+ (u+ v) · 5
]
(u+ v) = −1

ρ
5 (P + δP )−5(Φ + δΦ), (1.58)
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52(Φ + δΦ) = 4πG(ρ+ δρ), (1.59)

and

∂(ρ+ δρ)
∂t

+ [5 · (u+ v)](ρ+ δρ) = 0. (1.60)

Subtracting the unperturbed quantities and ignoring the products of perturbations (e.g. δx · 5x),

we can see that the perturbed quantities satisfy

v̇ +Hv = −5 δΦ− 1
ρ
5 δP, (1.61)

52δΦ = 4πGδρ, (1.62)

and

δ̇ρ = −(5 · v)ρ− (5 · u)δρ. (1.63)

We can define the density contrast as δ(x) = δρ/ρ and using the reciprocal rule, d
dx

(
1

f(x)

)
=

− 1
f(x)2

df(x)
dx , 1.63 becomes

δ̇(x) = −(5 · v). (1.64)

Since we are dealing with an expanding Universe, it is convenient to use comoving coordinates

to express these equations. In comoving coordinates x = a(t)r and therefore

ẋ = ȧr + aṙ. (1.65)

Comparing this with 1.57 shows that

u(t) = ȧr, (1.66)

and

v = aṙ = au. (1.67)

Inserting 1.67 into 1.61 a using5 = 5ca
−1 gives

u̇+ 2Hu = − 1
a2
5c δΦ− 1

a2ρ
5c δP. (1.68)
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Inserting 1.67 into 1.64 gives

δ̇(x) = −(5c · u), (1.69)

and 1.62 becomes

52
cδΦ = 4πGδρa2. (1.70)

Taking the divergence of 1.68 and the derivative of 1.69 gives

5c · u̇+ 2H(5c · u) = − 1
a2
52
c δΦ−

c2
s

a2ρ
52
c δρ, (1.71)

where c2
s = δP/δρ is the adiabatic sound speed, and

δ̈(x) = −(5c · u̇). (1.72)

Combining 1.69, 1.70, 1.71 and 1.72 gives

δ̈(x) + 2Hδ̇(x) = 4πGδρ+
c2
s

a2ρ
52
c δρ. (1.73)

Taking a wave solution for δ(x) of the form δ(x) ∝ expi(k · r − ωt), where k is the comoving

wavevector,52ρ/ρ = −k2 and 1.73 becomes

δ̈(x) + 2Hδ̇(x) = δ(x)(4πGρ− k2c2
s). (1.74)

This equation is essential in the study of structure formation as it describes the growth of small

density perturbations.

1.3.2.2 Jeans’ Instability

In 1902, British astronomer James Hopwood Jeans determined the critical radius at which the

thermal energy in an interstellar dust cloud is countered by gravity, causing the cloud to collapse

(Jeans 1902). This critical radius is known as the Jeans’ length, λJ =
√

15kbT/4πGµρ. Jeans’

length also gives us a measure of the maximum scale for stable fluctuations at a given epoch,

λJ = cs(π/Gρ)
1
2 , where cs is the sound speed (Longair 1998).

For wavelengths smaller than λJ, perturbations are sound waves with

ω =
[
4πGρ0

(λ2
J
λ

)
− 1
] 1

2
. (1.75)

For wavelengths greater than λJ, the perturbations are unstable and for instabilities with λ� λJ,

we can ignore the pressure term in equation 1.74, which gives

δ̈(x) + 2Hδ̇(x) = 4πGρδ(x). (1.76)
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which can also be expressed as

δ̈(x) + 2Hδ̇(x) =
3Ω0H

2
0

2a3
δ(x), (1.77)

where

ȧ2 = H0

[
Ω0

(1
a
− 1
)

+ ΩΛ(a2 − 1) + 1
]
, (1.78)

(Longair 1998).

The general solution to equation 1.77 is of the form

δ(x, t) = A(x)δg(t) +B(x)δd(t), (1.79)

whereA andB are arbitrary functions of x, and δg(t) and δd(t) correspond to growing and decaying

modes respectively with

δg ∝ H(t)
∫ a

0
ȧ−3da, (1.80)

and

δd ∝ H(t) (1.81)

(Heath 1977; Carroll et al. 1992).

For a Universe with Ω0 = 1, 4πGρ = 2/3t and H = 2/3t, 1.76 becomes

δ̈(x) +
4
3t
δ̇(x)− 2

3t2
δ(x) = 0, (1.82)

which has a solution of the form δ(x) = atn. Substituting this into 1.82 gives

n(n− 1) +
4
3
n− 2

3
= 0, (1.83)

which has solutions n = 2/3 (growing mode) and n = −1 (decaying mode) (Longair 1998). For

the growing mode we can see that

δ(x) ∝ t 2
3 ∝ a(t), (1.84)

which implies that the density contrast scales with the Universe.
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1.3.2.3 Baryon Acoustic Oscillations

When the pressure term dominates over gravity and cs = kBT0
mpa

(adiabatic sound speed for an ideal

gas), equation 1.74 becomes

δ̈(x) + 2Hδ̇(x) +
(kBT0

mp

)(k2

a3

)
δ(x) ∼= 0 (1.85)

where kB is the Boltzmann constant (kB = 1.381× 10−23 JK−1) and mp is the mass of the proton

(mp = 1.673× 10−27 kg). 1.85 has solutions of the form

δ(x) = t−
1
6 e(± iω

3
lnt) (1.86)

where ω = 4k2

H2a3

(
kBT0
mp

)
� 1.

Equation 1.86 shows that δ(x) scales as t−
1
6 , which implies that oscillations in the baryon

density can be thought of as acoustic vibrations in a medium (Padmanabhan 1996).

After decoupling, these baryon acoustic oscillations (BAO) give rise to shells of baryonic matter

at a fixed radius, know as the sound horizon. CMB measurements provide the size of the sound

horizon at recombination to good accuracy and measurements of the clustering of galaxies can be

used to provide the present size of the sound horizon (Percival et al. 2010; Reid et al. 2010). In

this way, BAO can be considered a standard ruler in cosmology, which can be used to gain a better

understanding of the accelerated expansion of the Universe.

1.3.3 The Nonlinear Regime

Thus far, we have examined the growth of perturbations with a linear approximation, however

the equations of motion are nonlinear in nature (Peacock 1999). The full treatment of the growth

of perturbations or gravitational instabilities is more complicated, therefore we require more

sophisticated techniques to model them. There are some simplifications that can be made for certain

cases, which will be described in this section.

1.3.3.1 Spherical Collapse

An overdense sphere is a useful example for exploring the nonlinear regime, as it behaves in the

same way as a closed universe.

A gravitating sphere of mass, M , and radius, R, can be described by the Newtonian equation,

R̈ = −GM(R)
R2

. (1.87)
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Integrating equation 1.87 and assuming that mass does not change as a function of time gives

Ṙ2 =
2GM(R)

R
+ C, (1.88)

where C is a constant that determines the total energy of the sphere. If C> 0, the sphere will expand

forever, while if C< 0, the sphere expand for a period and at a certain value of R will begin to

contract. For collapse, the solution for the C< 0 case is the cycloid,

t = A(θ − sinθ), (1.89)

and

R = B(1− cosθ), (1.90)

where θ is the development angle (0 ≤ θ ≤ 2π), and A and B are constants. We define turnaround

at θ = π. This is the point at which the perturbation reaches its maximum expansion. Equations

1.89 & 1.90 can be expressed in terms of the turnaround time, tmax, and the maximum scale factor,

amax, which define the point at which expansion ceases and collapse begins via

t

tmax
=

1
π

(θ − sinθ), (1.91)

and

a(t)
amax

=
1
2

(1− cosθ). (1.92)

Fig.1.5 shows the evolution of three different scale factors (Liddle & Lyth 2000).

Expanding equations 1.91 & 1.92 to second order gives

t

tmax
=

1
π

(θ3

6
− θ5

120

)
, (1.93)

and

a(t)
amax

=
θ2

4
− θ4

48
. (1.94)

Taking the leading order term of 1.93 gives

θ2 =
( 6πt
tmax

) 2
3
. (1.95)

Substituting 1.95 back into 1.93 gives

θ2 '
( 6πt
tmax

) 2
3
[
1 +

1
30

( 6πt
tmax

) 2
3
]
. (1.96)
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Figure 1.5: The evolution of three different scales factors, the background, linear evolution and
non-linear collapse (Liddle & Lyth 2000).

Substituting 1.96 back into 1.94 gives the linearised scale factor

alin(t)
amax

' 1
4

( 6πt
tmax

) 2
3
[
1− 1

20

( 6πt
tmax

) 2
3
]
. (1.97)

The linear density contrast, δlin, is defined as

δlin =
ρ− ρ̄
ρ̄

=
(aback

alin

)3 − 1, (1.98)

where aback is the background evolution and

aback(t)
amax

' 1
4

( 6πt
tmax

) 2
3
. (1.99)

Therefore dividing 1.97 by 1.99 gives(aback

alin

)3 ' 1 +
3
20

( 6πt
tmax

) 2
3
. (1.100)

Substituting 1.100 into 1.98 gives

δlin =
3
20

( 6πt
tmax

) 2
3
. (1.101)
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We define turnaround as the point at which t = tmax. We can then see that the density contrast at

turnaround is

δturn
lin =

3
20

(6π)
2
3 = 1.06. (1.102)

If turnaround occurs at t = tmax then collapse occurs around t = 2tmax. We find the density contrast

at collapse is

δcoll
lin = δc =

3
20

(12π)
2
3 = 1.686. (1.103)

This value sets the perturbation threshold for the collapse of structure in the density field.

1.3.3.2 The Virial Theorem

In reality, density perturbations will not be spherical. In addition, full spherical collapse will never

occur because the kinetic energy of the infalling particles will be converted into random motions

(Peacock 1999). We can relate the potential energy of the collapsing particles to their kinetic energy

through the virial theorem.

The virial theorem describes objects in dynamical equilibrium under gravity. We define the

crossing time as

tcr =
R

< v >
. (1.104)

where R is the size of the system and < v > is the velocity dispersion. We can define the

acceleration of the ith particle due to all other particles as

r̈i =
∑
j 6=i

Gmj(rj − ri)
|ri − rj |3 , (1.105)

(Longair 1998). Multiplying 1.105 by miri gives

mirir̈i =
∑
j 6=i

Gmimjri · (rj − ri)
|ri − rj |3 . (1.106)

Summing over i, 1.106 can be expressed as

1
2
d2

dt2

∑
i

miri
2 −

∑
i

miṙi
2 = −1

2

∑
i,j
j 6=i

Gmimj

|ri − rj | . (1.107)

We define the total kinetic energy of the particles, T, as

T =
1
2

∑
i

miṙ
2
i , (1.108)
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and the gravitational potential energy of the system, U, as

U = −1
2

∑
i,j
j 6=i

Gmimj

|ri − rj | . (1.109)

Substituting 1.108 and 1.109 into 1.107 gives

1
2
d2

dt2

∑
i

miri
2 = 2T− |U|. (1.110)

We define the condition for statistical equilibrium as

1
2
d2

dt2

∑
i

miri
2 = 0. (1.111)

Therefore the Virial Theorem is expressed as

T =
1
2
|U|. (1.112)

If we assume the velocity distribution of galaxies is isotropic then

< v2 >= 3 < v2
‖ >, (1.113)

where v‖ is the velocity along the line of sight. If the velocity dispersion is independent of the mass

of the galaxies, the total kinetic energy becomes

T =
1
2

∑
i

miṙ
2
i =

3
2
M < v2

‖ >, (1.114)

where M is the total mass of the system. If the system is assumed to be spherically symmetric

|U| = GM2

Rcl
, (1.115)

where Rcl is the weighted mean separation of galaxies. We can therefore define the Virial Mass as

M =
3 < v2

‖ > Rcl

G
. (1.116)

From equation 1.112 we can see that Rvir = Rmax/2, which corresponds to θvir = 3π/2. We

can therefore express the density contrast at virialisation as

1 + δvir =
(6π)2

2
' 178Ω−0.7 (1.117)

(Peacock 1999).

From this analysis, we can assume that linear theory applies until δ(x) ∼ δc at which point

virialization occurs. δvir then distinguishes collapsed systems from those in the process of infall.
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Figure 1.6: N-body simulation of gas and stars (Springel & Hernquist 2003).

1.3.3.3 N -body Simulations

The most complete treatment of the growth of perturbations is provided by N -body simulations.

An N -body model simulates the effects of gravity and gas dynamics on a set of N discrete particles

in a box of a given size (e.g. fig.1.6). This technique was pioneered by Holmberg (1941), who used

37 lightbulbs to represent galaxies. The first direct computational implementation of an N -body

simulation was carried out by von Hoerner (1960).

The equation of motion for a given particle in the simulation is given by

d

dlna
(a2u) =

∑
Fkexp(−ik · x), (1.118)

where

Fk = −ik3ΩmHa
2

2k2
δk, (1.119)

(Peacock 1999).

One of the most significant N -body simulations in recent years was the Millennium Run, which

traced 21603 particles in a cubic region of the Universe over 2 billion light-years on a side (Springel

et al. 2005).
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Figure 1.7: Schematic of a smoothed density field with collapsed regions (Liddle & Lyth 2000).

1.3.3.4 The Press-Schechter Formalism

In 1974, William H Press and Paul Schechter introduced a theory that is very successful at

reproducing N-body simulations (Press & Schechter 1974). The theory states that if we smooth the

density field in the linear regime on a mass scale M , the fraction of space with δ(x) > δc will be in

the form of collapsed objects of mass greater than M (Liddle & Lyth 2000).

If we assume primordial density perturbations are Gaussian fluctuations, then we can locate

bound objects by smoothing (filtering) the initial linear density field. The probability that a point

belongs to a collapsed object is

P (δ > δc|Rf ) =
1
2

[
1− erf

( δc√
2σ(Rf )

)]
, (1.120)

where Rf is the characteristic length of the filter function and σ(Rf ) is the linear rms in the filtered

version of δ. Fig.1.7 shows a schematic of a smoothed density field with collapsed regions.

The total probability from equation 1.120 is only equal to 1/2. Therefore Press & Schechter (1974)

fudge in an extra factor of 2.

We define the fraction of haloes with mass greater than M as

F (> M) = 1− erf
( ν√

2

)
, (1.121)

where ν = δc/σ(M). The mass function is thus the comoving number density of haloes of mass
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Figure 1.8: Random trajectory taken by filtered field δ and a fixed point, as a function of filtering
radius R (Peacock 1999).

M ,

n(M) =
ρ̄

M

∣∣∣ dF
dM

∣∣∣, (1.122)

where ρ̄ = 3H2
0 ΩM/8πG is the mean comoving density. Multiplying 1.122 by M leads to

n(M) =
ρ̄

M2

∣∣∣ dF
dlnM

∣∣∣ =
ρ̄

M2

d

dlnM

[
1− erf

( ν√
2

)]
, (1.123)

which leads to the standard form of the mass function,

n(M) =

√
2
π

ρ̄

M2
ν
∣∣∣dlnσ(M)
dlnM

∣∣∣exp
(
− ν2

2

)
. (1.124)

In the limit of massive objects, the shape of the mass function is dominated by the exponential tail

in equation 1.124. This implies that the mass function is exponentially sensitive to the choice of

cosmological parameters, which makes it a powerful probe of cosmology.

If we examine the random trajectory of δ(R) in a sharp k-space filter (see fig.1.8), where R is

the filtering radius, we can calculate the probability that the δc threshold has never be crossed via

dPs
dδ

=
1√
2πσ

[
exp
(
− δ2

2σ2

)
− exp

(
− (δ − 2δc)2

2σ2

)]
. (1.125)

Integrating 1.125 gives the probability that δc has been crossed at least once,

1− Ps = 1− erf
( δc√

2σ

)
, (1.126)
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which is twice the value of equation 1.120 (Peacock 1999). This provides an justification of the

factor of 2 fudge originally introduced by (Press & Schechter 1974).

The Press & Schechter (1974) mass function has a tendency to over predict larges haloes and

under predict smaller ones. Therefore, Sheth & Tormen (1999) introduced a function that better fits

the observed mass distribution,

fST(ν) = A

√
αν2

2π

[
1 +

1
(αν2)p

]
exp
(−αν2

2

)
, (1.127)

where α = 0.707, p = 0.3 and A is determined by requiring that∫
nST(m)mdm = ρ̄ = 2

∫ ∞
0

ρ̄fST(ν)dlnν, (1.128)

which leads to

A =
1

1 + Γ(0.5−p)
2pπ

' 0.322184. (1.129)

1.3.3.5 Dark Matter Haloes

The spatial distribution of dark matter, as predicted by N -body simulations, can be described by an

NFW profile,

ρ(r|m) =
ρcritδc

r
rs

(
1 + r

rs

)2 , (1.130)

where ρcrit = 3H2

8πG is the critical density, rs = r200
c , δc is the characteristic overdensity and c is the

halo concentration. r200 is the radius at which ρ = 200× ρcrit (Navarro et al. 1996). This profile

shows that the density around a dark matter halo manly depends on its mass.

Spherical collapse shows that haloes form depending on the initial density field. Therefore, Mo

& White (1996) have shown that haloes trace the dark matter field with bias, b(M), given by

b(M) = 1 +
ν2 − 1
δc

. (1.131)

Equation 1.131 was later extended to a more general form by Sheth & Tormen (1999) to

b(M) = 1 +
aν2 − 1
δc

+
2p

δc[1 + (aν2)p]
, (1.132)

where a = 0.707 and p = 0.3 from numerical simulations.
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1.4 Cosmological Probes

One of the fundamental objectives in cosmology is developing statistical tools for probing the

various parameters that govern the state of the Universe. This section covers some of the techniques

employed to help us constrain these parameters starting with a look at the correlation function and

the power spectrum (§1.4.1), followed by an overview of the CMB (§1.4.2), then a brief description

of gravitational lensing (§1.4.3), an introduction to photometric redshifts (§1.4.4) and finally a

discussion about galaxy clusters (§1.4.5).

1.4.1 Correlation Function and Power Spectrum

The correlation function and power spectrum are helpful two-point statistics that describe the

fluctuations in the density field in the Universe.

1.4.1.1 The Two-Point Correlation Function

One of the most useful tools for describing the clustering of galaxies in cosmology is the the

two-point correlation function, ξ, which provides the excess probability of finding a galaxy at some

distance r from another galaxy. This is a generally useful statistical tool that was originally applied

to galactic data by e.g. Totsuji & Kihara (1969).

The two-point correlation function, or autocorrelation function when dealing with variations in

the the density field, δ(x) = ρ(x)/ρ̄− 1, is defined as

ξ(r) = 〈δ(x)δ(x+ r)〉. (1.133)

In cosmology, ξ(r) is defined by the probability of finding a pair of galaxies within the volume

elements dV1 and dV2 according to

dP = ρ2
0[1 + ξ(r)]dV1dV2, (1.134)

where ρ0 is the average density of the sample (Peacock 1999).

There are several techniques for statistically estimating ξ(r), each of which averages the counts

of pairs of n galaxies at a given scale in a box of a given size (Martı́nez & Saar 2003). The problem

that each of these techniques needs to address is the underestimation of the number of galaxy

pairs for those galaxies near the boundary of the box. The simplest estimator that incorporates

edge-correction is the natural estimator of Peebles & Hauser (1974),

ξ̂n =
DD

RR
− 1, (1.135)
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whereDD(r) is the number of pairs of galaxies andRR(r) is the number of pairs of random points,

each in the range [r, r + dr]. The standard estimator of Davis & Peebles (1983) was introduced to

improve edge-correction with

ξ̂s =
DD

DR
− 1, (1.136)

where DR(r) is the number of pairs between the data and random samples.

Later estimators were introduced by Hamilton (1993),

ξ̂Ham =
DD RR

DR2 − 1, (1.137)

and Landy & Szalay (1993),

ξ̂LS =
DD − 2DR+RR

RR
− 1, (1.138)

which only suffer from second-order bias effects.

Fig.1.9 shows and an example of the the two-point correlation function produced from SDSS

data by Eisenstein et al. (2005) using the Landy & Szalay (1993) estimator. The bump at 100 h−1

Mpc is a detection of the baryon acoustic oscillation (BAO) peak (see §1.3.2.3). This illustrates one

of the important uses of the correlation function as a cosmological probe.

1.4.1.2 Redshift-Space Distortions

When dealing with galaxy catalogues, it is convenient to separate the components of the distance

between galaxy pairs, r, into radial and perpendicular components π and σ respectively. Thus,

ξ(σ, π) shows the correlation in redshift space as shown in fig.1.10. Examining the correlation

function in this way enables one to identify the effects of redshift-space distortions, which are

caused by the peculiar velocities of galaxies not associated to the Hubble flow. The two significant

effects in redshift space are fingers of God (Jackson 1972), where long filamentary structures

pointing along the line of sight are observed as a result of the random velocities of galaxies in

clusters, and the Kaiser effect (Kaiser 1987), where a subtle flatting is observed in the correlation

function due to the velocities of galaxies bound to a central mass undergoing infall. The Kaiser

effect is a much smaller effect than fingers of God, but it can be distinguished by the fact that it

occurs on larger scales.

1.4.1.3 The Power Spectrum

Another useful cosmological tool is the power spectrum, which describes the power of fluctuations

on different scales in k-space as shown in fig.1.11. The power spectrum is directly related to the
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Figure 1.9: Large-scale redshift-space correlation function of the SDSS LRG sample. The error
bars are from the diagonal elements of the mock-catalog covariance matrix; however, the points
are correlated. The inset shows an expanded view with a linear vertical axis. The models are
Ωmh

2 = 0.12 (top line), 0.13 (second line), and 0.14 (third line), all with Ωbh
2 = 0.024 and

n = 0.98 and with a mild nonlinear prescription folded in. The bottom line shows a pure CDM
model (Ωmh

2 = 0.105), which lacks the acoustic peak. ξ(s) was computed using the Landy &
Szalay (1993) estimator. The bump at 100 h−1 Mpc is the acoustic peak (Eisenstein et al. 2005).

correlation function.

The Fourier transform pair in n-dimensions for x are defined as

F (x) =
( L

2π

)n ∫
Fk(k)e(−ik·x)dnk (1.139)

and

Fk(k) =
( 1
L

)n ∫
F (x)e(ik·x)dnx, (1.140)

(Peacock 1999).

The density field can be expressed as a sum via

δ(x) =
∑
k

δke
(ik·x) (1.141)

and since δ(x) is real, the correlation function (equation 1.133) can be expressed as

ξ(r) =

〈∑
k

∑
k′

δkδ
∗
k′e

i(k’−k)·xe(ik·r)

〉
(1.142)
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Figure 1.10: The redshift-space correlation function for the 2dFGRS, ξ(σ, π), plotted as a function
of transverse (σ) and radial (π) pair separation. The function was estimated by counting pairs in
boxes of side 0.2 h−1 Mpc (assuming an Ω = 1 geometry), and then smoothing with a Gaussian
of rms width 0.5h−1 Mpc. To illustrate deviations from circular symmetry, the data from the first
quadrant are repeated with reflection in both axes. This plot clearly displays redshift distortions,
with fingers of God elongations at small scales and the coherent Kaiser flattening at large radii
(Peacock et al. 2001).

(Longair 1998). All cross terms with k’6=k average to zero and 1.142 becomes

ξ(r) =
∑
|δk|2e(ik·r), (1.143)

which can be expressed in integral form as

ξ(r) =
V

2π2

∫
|δk|2e(ik·r)d3k. (1.144)

Since ξ(r) is real and defining the power spectrum P (k) = |δk|2, 1.144 becomes

ξ(r) =
V

2π2

∫
P (k)

sin(kr)
kr

4πk2dk. (1.145)

Comparing equations 1.139 and 1.145 shows that the power spectrum is the Fourier transform

of the correlation function. Therefore from equation 1.140, the power spectrum is defined as

P (k) =
1
V

∫
ξ(r)

sin(kr)
kr

4πr2dr. (1.146)
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Figure 1.11: The redshift-space power spectrum recovered from the combined SDSS main galaxy
and LRG sample, optimally weighted for both density changes and luminosity dependent bias
(solid circles with 1-σ errors) (Percival et al. 2007).

1.4.2 Cosmic Microwave Background

Soon after the Big Bang, the Universe was in a hot dense state in which photons regularly collided

with electrons. This process maintained the photons in a state of thermal equilibrium that corre-

sponds to uniform blackbody radiation. Around 380,000 years later (z = 1090.88±0.72, Hinshaw

et al. 2009) the Universe had cooled sufficiently for the photons to decouple from the electrons and

travel freely through space. These photons left over from last scattering are generally referred to as

the cosmic background radiation. At the present epoch this radiation corresponds to wavelengths in

the range 10−4 ≤ λ ≤ 10−1m and therefore is most commonly known as the cosmic microwave

background (CMB). The CMB radiation was first detected in 1965 by Arno Penzias and Robert

Woodrow Wilson (Penzias & Wilson 1965).
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Figure 1.12: Preliminary spectrum of the cosmic microwave background from the FIRAS instrument
at the north Galactic pole, compared to a blackbody. Boxes are measured points and show size of
assumed 1% error band. The units for the vertical axis are 10−4 ergs s−1 cm−2 sr−1 cm (Mather
et al. 1990).

1.4.2.1 CMB Temperature

The temperature of a blackbody spectrum can be related to the wavelength at which the maximum

intensity is emitted through Wien’s displacement law,

λmax =
2.898× 10−3

T
. (1.147)

Therefore, from equation 1.7 we can see that temperature of the CMB is related to the scale factor

via

T ∝ 1
a(t)

. (1.148)

Equation 1.148 indicates that the temperature of the CMB was much higher in the past than it is

today.

Measuring the spectrum of the CMB is difficult using ground based instruments as it peaks

around 1 mm and for wavelengths shorter than this atmospheric absorption becomes a major

obstacle. The Cosmic Background Explorer (COBE) was a NASA space based mission launched

in 1989 to measure the CMB across the whole sky using the DIRBE (Diffuse InfraRed Background

Experiment), DMR (Differential Microwave Radiometer) and FIRAS (Far InfraRed Absolute

Spectrometer) instruments (Boggess et al. 1992). The COBE FIRAS results revealed a near perfect

blackbody spectrum with temperature T = 2.725 K as shown in fig.1.12 (Mather et al. 1990).
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1.4.2.2 CMB Anisotropies

As mentioned in earlier sections the CMB appears smooth to one part in 105, however the tiny

anisotropies that can be observed below this scale are of the most interest for cosmology.

There are several sources for the anisotropies seen in the CMB temperature, which can be

divided into two classes: those that occurred at the time of last scattering or primary anisotropies and

those that occurred after the time of last scattering or secondary anisotropies. Primary anisotropies

include acoustic oscillations (see §1.3.2.3), the Sachs-Wolfe effect (Sachs & Wolfe 1967), which

is an effect whereby CMB photons are gravitationally redshifted, and Silk damping (Silk 1968),

which is an effect whereby acoustic oscillations with short wavelengths are effectively smoothed

out. The secondary anisotropies included effects such as the integrated Sachs-Wolfe (ISW) effect

(Hu & Dodelson 2002; Scranton et al. 2003), which is the result of gravitational shifting of CMB

photons after last scattering, and the Sunyaev-Zeldovich (SZ) effect (see §1.4.5.4).

CMB anisotropies were observed by COBE (Bennett et al. 1996), but improved resolution

from the Wilkinson Microwave Anisotropy Probe (WMAP) revealed a much richer distribution of

temperature fluctuations as seen in fig.1.13 (Bennett et al. 2003).

Analysis of the CMB anisotropies can be made by observing the angular power spectrum as

shown in fig.1.14, which shows the best fit ΛCDM model (solid red line) and the cosmic variance

expected for this model (grey shaded region) from Bennett et al. (2003). The x-axis in the angular

power spectrum is the multipole number, l, where l = 180◦

θ , and y-axis is the angular power given

by l(l + 1)Cl/2π.

Cosmic variance or sample variance is the statistical uncertainty introduced into cosmological

observations by the fact that we can only observe a fraction of the Universe at any given time,

which is particularly problematic when making observations on scales approaching the horizon

distance. Therefore, observations of the CMB power spectrum on large scales (low l) are dominated

by sample variance as shown in fig.1.14.

The first peak seen in the CMB anisotropy power spectrum is believed to be the result of

acoustic oscillations of the photon-baryon plasma in the Universe that occurred before decoupling.

The predicted shape of the angular power spectrum depends on cosmological parameters,

which is significant because it means that measurements of the CMB angular power spectrum

can essentially be used to constrain all the cosmological parameters simultaneously (Jones &

Lambourne 2004). The locations of the peaks in the angular power spectrum are particularly

sensitive to the curvature of the Universe. This is owing to the fact that if the Universe is flat, CMB
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Figure 1.13: A comparison of the COBE 53 GHz map (Bennett et al. 1996) with the W-band
WMAP map. The WMAP map has 30 times finer resolution than the COBE map (Bennett et al.
2003).

photons that start traveling along geodesics parallel to each other will remain parallel always, while

if the Universe is not flat, CMB photons that start traveling parallel to each other will eventually

diverge. If the Universe is closed this effect will shift the peak to larger angular scales (lower l) or

if the Universe is open the peak will be shifted to smaller angular scales (higher l). The magnitude

of this effect depends on the comoving angular diameter distance to the surface of last scattering,

which is smaller for a closed universe and larger for an open universe (Dodelson 2003). Current

measurements of the angular power spectrum of the CMB suggest that the Universe is in fact

extremely close to flat.

1.4.3 Gravitational Lensing

In the early part of the 20th century, Albert Einstein predicted, from his general theory of relativity,

that the path that light travels could be bent near massive objects like the sun by more than twice

the amount predicted by Newtonian physics (Einstein 1915a,b). This is caused by the curvature
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Figure 1.14: The WMAP angular power spectrum. (top:) The WMAP temperature (TT) results
are consistent with the ACBAR and CBI measurements, as shown. The best fit running index
ΛCDM model is shown. The grey band represents the cosmic variance expected for that model. The
quadrupole has a surprisingly low amplitude. Also, there are excursions from a smooth spectrum
(e.g., at l ≈ 40 and l ≈ 210) that are only slightly larger than expected statistically. (bottom:) The
temperature-polarization (TE) cross-power spectrum, (l + 1)Cl/2π (note that this is not multiplied
by the additional factor of l). The peak in the TE spectrum near l ∼ 300 is out of phase with the TT
power spectrum, as predicted for adiabatic initial conditions. The antipeak in the TE spectrum near
l ∼ 150 is evidence for superhorizon modes at decoupling, as predicted by inflationary models
(Bennett et al. 2003).
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Figure 1.15: Diagram of angles involved in gravitational lensing.

of space-time around the massive object. This prediction was confirmed a few years later by

Dyson et al. (1920), which gave rise to the idea that large bodies could act as gravitational lenses.

Gravitational lensing is divided into two classes, strong gravitational lensing and weak gravitational

lensing, which are discussed in the following subsections.

1.4.3.1 Strong Lensing

From general relativity the deflection of the position of a background object due to the bending of

light by a point mass, M , is

α =
4GM
ξc2

(1.149)

where ξ = Ddθ is the distance of closest approach as shown in fig.1.15. This figure shows the

angle separating the true position of an object from it apparent position on the sky, where Ds is the

distance to the object being lensed, Dd is the distance to the lensing source and Dds is the distance

from the lens to the object.

Given that all angles are small, θ can be expressed as

θ =
(4GM
c2D

) 1
2
, (1.150)

where D =
(

4GM
c2

)
.
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Equation 1.150 implies that objects with masses M ∼ 1015M�, which is the size of large

galaxy clusters, at cosmological distances can result in large ring shaped images around the lensing

source known as Einstein rings (Longair 1998). This effect was originally detected back in the 19th

century (Lynds & Petrosian 1986; Soucail et al. 1987a,b). Observations of these rings can reveal

information about the dark matter content and halo structure of lensing objects, and help constrain

cosmological parameters (Suyu et al. 2010).

1.4.3.2 Weak Lensing

We define the surface mass density, Σ, which is the mass density projected onto a plane perpendicu-

lar to the incoming light ray as

Σ(~ξ) =
∫
ρ(~ξ, z)dz (1.151)

(Bartelmann & Schneider 2001). For a thin lens approximation, the deflection angle then becomes

~̂α =
4G
c2

∫
(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′2. (1.152)

We can then define the dimensionless convergence, κ, as

κ(~θ) =
Σ(Dd

~θ)
Σcr

, (1.153)

where Σcr is the critical density defined as

Σcr =
c2Ds

4πGDdsDd
. (1.154)

Equation 1.152 can thus be expressed as

~α(~θ) =
1
π

∫
κ(~θ)

~θ − ~θ′
|~θ − ~θ′|2

d2θ′2, (1.155)

and we can define the deflection potential, ψ, as

ψ(~θ) =
1
π

∫
κ(~θ)ln|~θ − ~θ′|d2θ′2. (1.156)

Finally, we define the lens equation from fig.1.15 as

~β = ~θ − ~α(~θ) = ~θ − Dds

Ds

~̂α( ~Ddθ). (1.157)

The distortion between a lensed and an unlensed systems is described by a Jacobian matrix of

the form

Aij =
∂βi
∂θj

= δij − ∂αi
∂θj

= δij − ∂2ψ

∂θiθj
=

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 , (1.158)
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Figure 1.16: Distortion of images due to gravitational fields.

where δij is the Kronecker delta and γ = γ1 + iγ2 are the components of the shear, which are

related to the deflection potential via

γ1 =
1
2

(ψ11 − ψ22) (1.159)

and

γ2 = ψ12. (1.160)

The images are thus distorted in shape and size as they travel through gravitational fields.

Fig.1.16 shows a diagram of the distortion of the path light travels due to gravitational fields.

The shape distortion is due to the tidal gravitational field, described by the shear, γ, whereas

the magnification is caused by both isotropic focusing caused by the local matter density, κ, and

anisotropic focusing caused by shear (Bartelmann & Schneider 2001).

1.4.4 Photometric Redshifts

Redshifts are an important tool for probing cosmology (§1.2.1). A redshift can be used to convert

the apparent properties of an object to its intrinsic properties. Normally spectroscopic redshifts are

used to study objects, however measuring redshifts spectroscopically for a large number of galaxies

is an arduous and time consuming process. This task becomes even more difficult when taking

spectra of distant objects that require long exposure times. For this reason a method for estimating

redshifts using broad-band photometry is often employed when spectroscopic data is not available.
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Figure 1.17: DES+Vista JHK photometric filters.

The redshifts obtained by this method are referred to as photometric redshifts and are advantageous

in that they can be measured significantly faster than spectroscopic redshifts. More importantly, the

imaging detectors used to measure photometric redshifts also observe a larger fraction of the sky

than spectrographs allowing a greater number of objects to be measured simultaneously. These

benefits do, however, need to be weighed against the drawback that uncertainties in photometric

redshifts are around two orders of magnitude higher than in spectroscopic redshifts. This difference

in accuracy stems from the fact that spectroscopic redshifts are measured by observing the shift

of an absorption line, emission line or broad band feature of known wavelength. The photometric

passband for this same region would cover a much broader range of wavelengths and this makes

determining the the shift in wavelength about a hundred times more uncertain as shown in fig.1.17.

1.4.4.1 Estimation Methods

Baum (1962) conceived the first method for measuring photometric redshifts. He observed the

magnitudes, in several different filters, of a sample of elliptical galaxies in the Virgo cluster and

Abel 0801. These magnitudes were converted to fluxes using

Ff = F010
−mf
2.5 , (1.161)
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where mf is the apparent magnitude, Ff is the flux (units W Å−1 m−2) and F0 is the zero-point

flux of the filter system (units W Å−1 m−2), (Gwyn & Hartwick 1996). The resulting fluxes

were then plotted against the wavelengths for the corresponding filters to produce low resolution

spectral energy distributions (SEDs). By measuring the displacement in the SEDs relative to each

other, Baum was able to determine the photometric redshifts for Abel 0801 and the Virgo cluster.

Different approaches to those used by Baum were later devised by many other authors (e.g. Koo

1985; Loh & Spillar 1986; Connolly et al. 1995).

Koo (1985) devised a method that consists in plotting the photometric data in a colour-colour

diagram along with a series of lines of constant redshift or iso-z lines. He was then able to determine

the redshift for a galaxy by finding the closest matching iso-z line.

The two principal techniques that have been developed for measuring photometric redshifts

require either fitting the observed photometric data for the galaxies to template spectra or calibrating

the photometric data against a spectroscopic training set.

In the template fitting technique, originally proposed by Loh & Spillar (1986), the photometric

data obtained are converted into SEDs. A selection of model SEDs or template spectra are produced

spanning a range of galaxy types and redshifts relevant to the galaxies being studied. The closest

matching model spectrum for a particular galaxy is determined by minimising χ2. The redshift for

that galaxy can then be defined as the redshift of its corresponding model spectrum. This method

is widely used because it requires only a small sample of template spectra, however the accuracy

of the results obtained is directly related to the degree to which the template spectra represent the

target data. Some examples of photometric redshift estimators currently in use that employ template

fitting are HyperZ (Bolzonella et al. 2000), Le Phare (Ilbert et al. 2006) and ZEBRA (Feldmann

et al. 2006).

The most empirical method for measuring photometric redshifts was developed by Connolly

et al. (1995). This method requires a relatively large training set of galaxies with accurately known

photometry and spectroscopic redshifts. The redshift z can then be expressed as a function of the

galaxy magnitudes, m, and weights, w, via

z = f(m̄, w̄). (1.162)

Once a relation between the magnitudes and redshifts is established the photometric data from

galaxies with unknown spectroscopic redshifts can be used to estimate their redshifts. This technique

has the advantage of being very simple and not making any assumptions regarding a galaxys SED

or evolution. The difficulty encountered when using this technique is that it can only be applied
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to galaxies that are sufficiently sampled in the training set. An example of a code that uses this

technique is ANNz (Collister & Lahav 2004).

1.4.4.2 ANNz

ANNz is a software package that uses an Artificial Neural Networks (ANN) to estimate photometric

redshifts. An ANN is a method of non-linear statistical data modelling. The most common ANN,

which is used in ANNz, is known as a multi-layer perceptron (MLP). Typical MLPs consist of a

set of nodes forming an input layer, a series of hidden layers of computation nodes and an output

layer (see fig.1.18). The architecture of a typical ANN can be denoted by Nin : N1 : N2 : ... : Nout

where Nin is the number of nodes in the input layer, Nout is the number of nodes in the output layer

and Nn is the number of nodes in the nth hidden layer. ANNz takes as inputs the magnitudes, mi,

of a given galaxy in a number of different filters and produces as a single output, the photometric

redshift of that galaxy.

The nodes in each layer are connected to all the nodes in adjacent layers. These connections

carry a weight, wij , and the conjoint weights comprise a vector, w, which is to be optimised. The

output of the network is determined by calculating the activation function, gj(uj), that is defined at

each node with argument

uj =
∑
i

wijgi(ui). (1.163)

Before an ANN can output a desired quantity from the given inputs it must be trained to

model the dependency between the inputs and the output. ANNz is trained by minimising the cost

function,

E =
∑
i

(zphot(w,mk)− zspec,k)2, (1.164)

where zphot is the photometric redshift, zspec is the spectroscopic redshift, m is the magnitude and

w are the weights. An additional quadratic cost term is added to equation 1.164 to ensure that the

weights do not become too large. The extra term is

Ew = β
∑
i,j

w2
ij . (1.165)

To avoid over-fitting to the training set the cost function is evaluated on a separate validation set

after each iteration. ANNz also assess the variance imposed by the network and photometric noise.

This ensures that ANNz is an effective tool for estimating photometric redshifts. It should be noted

that ANNz requires a large training set, which is representative of the objects being studied.
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Figure 1.18: A schematic diagram of a multi-layer perceptron, as implemented by ANNz, with
input nodes taking magnitudes mi = −2.5 log10 fi in various filters, a single hidden layer, and
a single output node giving redshift z (Collister & Lahav 2004). Each connecting line carries a
weight wij . The bias node allows for an additive constant in the network function defined at each
node. More complex networks can have additional hidden layers and/or outputs.

1.4.5 Galaxy Clusters

Groups and clusters of galaxies are the largest gravitationally bound structures in the Universe and

because of this they are of particular interest in cosmology. By detecting and examining galaxy

clusters we gain insight into the content of matter and its distribution in the Universe. Investigating

how the mass function of galaxy clusters changes with time provides an effective method for

constraining cosmological parameters (Press & Schechter 1974; Peebles 1993). One could even

point out that clusters are of interest as our own Milky Way galaxy forms part of the Local Group

along with objects such as Andromeda, and the large and small Magellanic clouds.

Clusters can range from groups of only a few galaxies to massive structures with thousands

of galaxies like the Vigo and Coma clusters. In general clusters tend to have sizes of the order

rclt ≤ 10 Mpc regardless of the number of galaxy members, with richer clusters being more densely

packed.
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Table 1.2: Abell richness classes.

Richness Class Number of Members

0 30-49

1 50-79

2 80-129

3 130-199

4 200-299

5 ≥300

1.4.5.1 Early Catalogues

One of the most significant figures in cluster science was the american astronomer George Ogden

Abell. Using the 48-inch Schmidt telescope at the Palomar Observatory in California, Abell sur-

veyed around three quarters of the sky. The Palomar Sky Survey obtained 879 pairs of photometric

plates over a seven year period, which Abell used to search for rich clusters by eye, where rich

clusters were defined as reliable bound structures (Abell 1958). A later survey was conducted in the

southern hemisphere using as twin 48-inch Schmidt telescope at the Siding Springs Observatory

in New South Wales (Abell et al. 1989). There are 4073 clusters in the combined survey results.

Abell used the following selection criteria to define a rich cluster:

• Richness Criterion. Clusters must have 50 members in the magnitude range m3 to m3 + 2,

where m3 is the magnitude of the 3rd brightest galaxy member in the cluster. Clusters

satisfying this criterion were divided into six richness classes as shown in table 1.2.

• Compactness Criterion. Galaxies are only counted towards the cluster richness if they are

within a distance of 1.5h−1Mpc of the cluster centre. The cluster redshift is estimated from

the magnitude of the 10th brightest member, m10.

• Distance Criterion. Clusters should be in the redshift range 0.02 ≤ z ≤ 0.2. The lower

limit is set because clusters with redshifts lower than this spanned more than one photographic

plate and the upper limit is set by the magnitude limit of the survey, mr = 20. Abell also

divided clusters into seven distance classes as shown in table 1.3.

Another import cluster catalogue was produced by Swiss astronomer Fritz Zwicky while

working at the California Institute of Technology in the 1960s (Zwicky et al. 1961, 1963, 1965,
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Table 1.3: Abell distance classes.

Distance Class Magnitude Range (m10)

0 13.3-14.0

1 14.1-14.8

2 14.9-15.6

3 15.7-16.4

4 16.5-17.2

5 17.3-18.0

6 ≥18.1

1966; Zwicky & Kowal 1968; Zwicky et al. 1968; Zwicky & Zwicky 1971). Zwicky’s catalogue

contained 9700 clusters that were selected using criteria similar to those employed by Abell.

Clusters were required to have 50 members in the magnitude range m1 to m1 + 2, where m1 is the

magnitude of the brightest galaxy member in the cluster. Galaxies were required to lie within the

range where the projected density of galaxies is twice that of the neighbouring field. Zwicky did

not place any constraint on the cluster redshifts.

Both of these catalogues were produced by eye and therefore include many bias effects. Later

methods, which incorporate automated algorithms, were developed to remove subjectivity in cluster

detection. Some of these techniques are described in the following subsection.

1.4.5.2 Optical Detection Methods

Because of the vast amount of photometric data that is available now and that will be obtained by

current and future surveys, the development of optical detection methods of clusters of galaxies is

essential. There are, however, numerous different ways to approach this problem, some of which

are discussed below. A good review of optical cluster detection is provided by Gal (2006).

One of the simplest techniques for finding clusters in optical data is counts in cells. This

method has been applied to cluster detection by Couch et al. (1991) and Lidman & Peterson (1996)

with data at z ∼ 0.5. Counts in cells looks for enhancements above the mean background of the

galaxy surface density in a cell of a given area. This enhancement or contrast is defined as

σcl =
Ncluster −Nfield

σfield
, (1.166)

where Ncluster is the number of galaxies in the cell corresponding to the cluster, Nfield is the number
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of mean background counts and σfield is the variance of the field counts for the same area. Clusters

are identified by setting a detection threshold on the density contrast, and constraining the magnitude

range and cell size. The counts in cells method is simple in concept and application, but cannot be

applied to deep surveys.

Another straightforward approach is the smoothing kernel, which takes a weighted average

of all the points in a sample. A simple version of this technique, which did not take into account

redshift effects, was applied to cluster finding by Shectman (1985). A more sophisticated adaptive

kernel method was later implemented by Silverman (1986) in which the kernel size varies as a

function of the local density.

The Silverman (1986) method initially produces a pilot estimate, f(x), of the galaxy density at

each point, x, in the map and applies the smoothing kernel via

λi =

[
f(x)
g

]−α
, (1.167)

where g is the geometric mean of f(t) and α sets the variation of the kernel size with density. The

adaptive kernel estimate is then obtained via

f̂(x) = n−1
n∑
i=1

h−2λ−2
i K{h−2λ−2

i (x−Xi)}, (1.168)

where h is the bandwidth and K is the kernel (Gal 2006). Clusters can then be identified from peaks

in the density map using a source extraction code such as SExtractor (Bertin & Arnouts 1996). The

smoothing kernel technique is most applicable to shallow surveys with poor photometry.

One of the most successful cluster finding algorithms is the matched filter. This technique

examines the distribution of cluster galaxies in space and luminosity at different redshifts. Postman

et al. (1996) used this method to find 79 clusters in a region of 51deg2 in the Palomar Distant

Cluster Survey (PDCS). In the Postman et al. (1996) code the distribution of galaxies per unit area

and magnitude is expressed as

D(r,m) = b(m) + ΛclP
( r
rc

)
φ(m−m∗), (1.169)

where b(m) is the background density, Λcl is the cluster contribution, φ(m−m∗) is the differential

luminosity function, P
(
r
rc

)
is the projected radial profile, rc is the characteristic cluster radius and

m∗ is the characteristic galaxy luminosity. Using this model, a likelihood, L, can be defined of the

form

lnL ∝
∫
P
( r
rc

)φ(m−m∗)
b(m)

D(r,m)d2rdm. (1.170)
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Clusters are detected by finding the redshift at which this likelihood is maximised. One of the

benefits of this approach is that the richnesses are provided in the process of detecting the clusters.

In addition, this method can be applied to deep surveys when the photometry is good, however it is

limited in that it relies on fixed analytic luminosity functions (Gal 2006).

An extension to the matched filter method was later introduced by Kepner et al. (1999), which

could be applied to data sets with spectroscopic or photometric redshifts. This Adaptive Matched

Filter (AMF) method evaluates the likelihood at each galaxy position to determine if there is a

cluster centred on this point at a given redshift. AMF was found to be better a determining cluster

properties but less good at actually detecting them than the standard matched filter technique.

Kepner et al. (1999) proposed a hybrid approach whereby clusters are found using the standard

matched filter and the properties of these clusters are then determined with AMF.

An important observational effect that can be used for cluster detection is the cluster red

sequence (CRS). The CRS is a tight relation seen in colour-magnitude space, which shows that

cluster ellipticals are the reddest objects at all redshifts as illustrated in fig.1.19. Gladders & Yee

(2000, 2005) used this relation to find galaxy clusters by assigning survey galaxies to colour slices

and applying a smoothing kernel to produce surface density maps in which they could identify the

peaks.

Another approach that also takes into account the CRS relation is maxBCG, which was

principally developed to find clusters in SDSS data (Annis et al. 1999; Hansen et al. 2005; Koester

et al. 2007). Brightest cluster galaxies (BCGs) have predictable colours and magnitudes out to

z ∼ 1. The likelihood as a function of redshift is calculated for each BCG in a survey via

Lmax = maxL(z) = max(LBCG+logNgal), (1.171)

where LBCG is the likelihood, at z, that a given galaxy is a BCG, based on its colours and luminosity,

and Ngal is the number of galaxies within 1h−1Mpc with colours and magnitudes consistent with

the CRS. Cluster candidates are selected from peaks in the Lmax distribution. This method produces

very reliable results out to z ∼ 0.3 after which the CRS becomes less prominent.

Techniques that make no prior assumptions about the colours, size or shapes of the clusters

are Voronoi tessellation and friends-of-friends (or percolation). These two methods are only

interested in the distribution of galaxies relative to each other in a given sample.

The Voronoi tessellation technique (hereafter VT) is named after the Russian mathematician

Georgy Voronoi (also known as Dirichlet tessellation after German mathematician Lejeune Dirich-

let) is a method of decomposing a set of points in a plane. The decomposition is performed by
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Figure 1.19: Colour magnitude diagrams of classified galaxies for a selection of WINGS-NIR
clusters. The relatively thin red cluster sequences confirm the accuracy of the photometry provided
by SExtractor. There are also indications of red sequences for the field galaxies at bright magnitudes,
indicating the presence of background clusters at higher redshift (Valentinuzzi et al. 2009).

defining lines that bisect each of the points, which will result in any one point surrounded by three

or more distinct points being enclosed in a cell as can be seen in fig.1.20. VT can be applied to a

variety of different fields for many purposes. Ramella et al. (2001), Kim et al. (2002) and Lopes

et al. (2004) used VT to search for clusters of galaxies. This is possible by taking a two-dimensional

selection of galaxies (i.e. galaxies within a limited redshift interval) and using their positions in

right ascension and declination to define points on a plane. Cells are defined around each of the

points in the plane, the areas of which are can be inverted to provide the local densities. Galaxy

clusters can then be identified by setting a density threshold and by determining the probability

that an overdense region is just a random fluctuation. The regions of high density will consist of a

group of small adjacent cells (e.g. the dark patches seen in fig.1.20).

One of the benefits of using VT to find galaxy clusters is that VT is non-parametric and does

not smooth data therefore clusters are identified irrespective of their shape. This means that VT is

sensitive to both symmetric and irregular clusters (Ramella et al. 2001).

The friends-of-friends (FoF) method simply links together galaxies that are separated by a
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x (degrees)

Figure 1.20: Voronoi tessellation of a galaxy field (Ramella et al. 2001).

distance less than some threshold. This technique has been applied to find structure in N -body

simulations by (Davis et al. 1985; Efstathiou et al. 1988) and redshift surveys (Huchra & Geller

1982; Ramella et al. 2001). The Huchra & Geller (1982) algorithm was created to search for clusters

of galaxies in the magnitude limited CFA1 redshift survey (Huchra & Geller 1982; Huchra et al.

1983; Geller & Huchra 1983). This code calculates the projected distance between all galaxies in a

given survey via

Dij = 2 sin(
θij
2

)
vi + vj

2H0
, (1.172)

where θ is the angular separation between two galaxies. Galaxies are linked to each other if they

satisfy

Dij ≤ DL(vi, vj ,mi,mj), (1.173)

and

|vi − vj | ≤ VL(vi, vj ,mi,mj), (1.174)

where DL and VL are the thresholds in distance and velocity respectively, and m are the galaxy

magnitudes. Clusters are identified when the number of friends in a group candidate exceeds

some threshold. The threshold values are chosen depending on the properties of the galaxies

in the catalogue. For simplicity DL and VL can be set as fixed values, however this may lead
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to some selection effects being ignored. Huchra & Geller (1982) chose to adopt a method that

compensates for the variation in the sampling of the galaxy luminosity function as a function

of redshift. Assuming the luminosity function is independent of redshift and position, and also

assuming that at larger distances only fainter galaxies are missing, the thresholds can be taken as

DL = D0

[ ∫Mij

−∞ Φ(M)dM∫Mlim

−∞ Φ(M)dM

]− 1
3

(1.175)

and

VL = V0

[ ∫Mij

−∞ Φ(M)dM∫Mlim

−∞ Φ(M)dM

]− 1
3

, (1.176)

where Φ(M) is the luminosity function. This algorithm is commutative which means that a unique

group catalogue is created from any galaxy catalogue using any set of selection parameters.

A variation of the Huchra & Geller (1982) algorithm was later developed by Botzler et al.

(2004), which can be applied to surveys with photometric redshifts. This code compensates for the

large errors associated with photometric redshifts by dividing the entire survey into thin redshift

slices and running the FoF on each slice independently. The group candidates in each redshift slice

with galaxies in common are then merged to identify the galaxy clusters.

1.4.5.3 Galaxy Cluster Masses

In order to constrain cosmological parameters using galaxy clusters it is first necessary to determine

their masses, however the mass of a cluster is not directly observable and therefore we have

to resort to some form of observable mass proxy. Various methods exist for the non-trivial

problem of estimating the masses of clusters of galaxies each of which have certain advantages and

disadvantages. This subsection discusses how cluster masses can be obtained from the dynamics of

the cluster galaxies, the cluster X-ray temperatures and the lensing of background galaxies by the

cluster.

Dynamical mass estimates of galaxy clusters have been made as early as the 1930s (Smith

1936; Zwicky 1937). In section 1.3.3.2 it was shown that under the assumption of virial equilibrium

(equation 1.112) an estimate for the mass of a cluster can be obtained using the velocity dispersion

of the cluster galaxies and their mean separation as shown in equation 1.116, which can also be

expressed as

M =
3πN
2G

∑
i V

2
zi∑

i<j 1/R⊥,ij
(1.177)
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where Vzi is the line-of-sight velocity relative to the centre of the cluster and R⊥,ij is the projected

separation of the cluster galaxies (Heisler et al. 1985). Although this approach is relatively straight

forward and easy to implement, its reliability is questionable as interloping galaxies can significantly

change the cluster velocity dispersion and hence the cluster mass. Another problem with using

dynamical mass estimates is that it is difficult to know if one is obtaining a uniform sampling of the

cluster potential with just the galaxies (Borgani 2006).

Another important tracer of cluster masses are X-Ray temperature maps. In the 1970s the

UHURU X-ray observatory detected strong X-ray emission from rich galaxy clusters, the source

of which is believed to be Bremsstrahlung emission from hot intracluster gas. This emission is

significant because it is a powerful probe of cluster properties.

The intracluster gas can be assumed to be in hydrostatic equilibrium according to

dp

dr
=

GM(< r)ρ
r2

, (1.178)

where p is the gas pressure given by the ideal gas law,

p =
ρkBT

µmH
, (1.179)

mH is the mass of hydrogen and µ is the mean molecular weight of the gas (Longair 1998).

Combining 1.178 and 1.179, and differentiating gives

M(< r) = −kBTr
2

GµmH

[
d(logρ)
dr

+
d(logT )
dr

]
, (1.180)

which shows that the mass of the cluster can be determined if density and temperature as a function

of r are known. These quantities can be obtained from the Bremsstrahlung spectral emissivity,

κν =
1

3π2

Z2e6

ε3
0c

3m2
e

( me

kBT

) 1
2
g(ν, T )NNee

− hν
kBT , (1.181)

where Ne and N are the number densities of electrons and nuclei respectively, Z is the charge of

the nuclei, ε0 is the vacuum emissivity and g(ν, T ) =
√

3
π ln

(
kBT
hν

)
is the Gaunt factor. Therefore,

X-ray maps like those obtained by Jones & Forman (1984) (fig.1.21) and Böhringer (1995) can be

used to determine the mass of galaxy clusters. This method is advantageous in that it probes the

full cluster potential. Drawbacks for using X-ray emission are that obtaining accurate temperature

measurements can be difficult because of effects like cooling flows in the central regions of galaxy

clusters, which give rise to a mix of temperatures and densities at a given radius (i.e. multiphase

IGM) (Peacock 1999). Additionally, X-ray telescopes tend to have either high angular resolution
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Figure 1.21: The X-ray morphology of several clusters of galaxies. Contours of constant X-ray
surface brightness are shown superimposed on optical images of the clusters. (Top left), the
prototypical irregular nXD cluster A1367. (Top right), the irregular XD cluster A262. (Bottom left),
the regular nXD cluster A2256. (Bottom right), the regular XD cluster A85, showing the X-ray
emission centred on the cD galaxy (Jones & Forman 1984).

and low spectral resolution or vice versa, where one would ideally prefer high resolution for both

in order to precisely measure the X-ray emission along many lines of sight (Longair 1998).

Probably the simplest method for measuring cluster masses is through gravitational lensing.

If a cluster of galaxies produces a large arc through strong lensing (see §1.4.3.1) the mass can be

estimated via

M ≈ 1.1× 1014M�

( θarc

30”

)2( DdDds

Ds × 1 Gpc

)
, (1.182)

where θarc is the distance of the arc from the cluster centre, and Dd, Dds and Ds are the angular

diameter distances from the observer to the lens, from the observer to the source and from the lens

to the source respectively (Bartelmann & Narayan 1995). It should be noted that equation 1.182

assumes a smooth spherically symmetric mass distribution and therefore does not take into account

the effects of asymmetry or substructure in clusters.

Another way to use gravitational lensing to estimate cluster mass is by measuring the weak

lensing shear signal (see §1.4.3.2). Kaiser & Squires (1993) showed that the convergence, κ, and
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shear components, γ1 and γ2, are related via e.g.

κ(θ) = − 1
π

∫
d2θ′

[
D1(θ − θ′)γ1(θ′) +D2θ − θ′)γ2(θ′)

]
, (1.183)

where D1(θ) = (θ2
1 − θ2

2)/|θ|4 and D2(θ) = 2θ1θ2/|θ|4 (Bartelmann & Narayan 1995). The

convergence can be related to the surface mass density, Σ(Rθ), as shown in equation 1.153 and

hence an estimate of the mass within r200 (the radius at which the mean density is 200× ρcrit) can

be made via

M200 =
∫ 2π

0
dθ

∫ r200

0
RdR Σ(R, θ), (1.184)

(Metzler et al. 1999). Therefore, cluster mass estimates can be made simply by measuring the

shear of background galaxies gravitationally lensed by the cluster. This approach does not make

any assumptions about the dynamical or thermodynamical state of the cluster and therefore maps

the mass distribution directly. Weak lensing mass estimates, however, can be biased by the effects

of infalling matter onto the cluster. Another significant limitation for using gravitational lensing

to determine cluster masses is the mass-sheet degeneracy. This degeneracy arises from the fact

that, in the absence of redshift information, the convergence, κ, can only be determined up to a

transformation κ→ λκ+ (1− λ), where λ is an arbitrary constant (Falco et al. 1985; Schneider

& Seitz 1995). This means that the lens observables do not indicate how much of κ is due to

the mass-sheet. Some methods have been proposed to break this degeneracy, but in general only

for supercritical lenses (e.g. Bradač et al. 2004). This indicates that better mass estimates can be

obtained for stronger lensing systems.

1.4.5.4 The Sunyaev-Zeldovich Effect

An independent method for detecting and estimating the mass of galaxy clusters is through their

hot gas component via the Sunyaev-Zeldovich (SZ) effect (Sunyaev & Zeldovich 1970, 1980). The

SZ effect is the result of CMB photons being Compton scattered by hot electrons in the intracluster

medium. To second order there is a net gain of energy for these photons, which causes distortions

in the CMB spectrum as it is shifted to slightly higher energies (Longair 1998). The observed

distortion in the Rayleigh-Jeans tail of the CMB spectrum is given by

∆Iν
Iν

= −2y, (1.185)

where y is the Compton scattering optical depth,

y =
∫ (kBTe

mec2

)
σTNedl. (1.186)
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Figure 1.22: The distribution of galaxy luminosities or masses as modelled by the Schechter
luminosity function assuming different power law indices (Schneider 1996).

Current surveys such as that being carried out at the South Pole Telescope (SPT) are searching

for clusters of galaxies using the SZ effect in the hope of constraining the dark energy equation of

state (Vanderlinde et al. 2010).

1.4.5.5 Mass-to-Light Ratio

The luminosity function, φ, is an important astronomical property that describes the comoving

number density of galaxies as a function of luminosity. The Schechter luminosity function is

defined via

φ = φ∗
( L
L∗

)−α
e−( L

L∗ )dL

L∗
, (1.187)

where L∗ is the characteristic luminosity of a galaxy, φ∗ is a normalisation factor, where e.g.

φ = (0.0140 ± 0.0017)h3 (Stromlo-APM redshift survey, Loveday et al. 1992), and α sets the

slope of the luminosity function as seen in fig.1.22 (Schechter 1976).

The Schechter function is a good description of the luminosities of cluster galaxies and it has

been shown that there is no variation in the luminosity function as a function of richness (Colless

1989). There are, however, some departures from the Schechter function for the brightest and

faintest ends of cluster luminosity functions.

Mass-to-light ratios give a simple measure of how well the luminosity of an object traces it’s

total mass. This relationship is essential for cosmology as we can only infer the mass of objects

from their observable properties and in order to determine the matter content of the Universe

we require accurate mass estimates for astronomical objects, particularly large structures like

clusters. The mass-to-light ratios of clusters have been used to constrain Ωm using the Oort limit
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(e.g. Carlberg et al. 1996). Typical virial mass-to-light ratios of galaxy clusters are in the range

200 ≤Mv/L ≤ 400 hM�L−1
� (e.g. Zwicky 1933).

1.4.5.6 Observable-Mass Distribution

In order to use galaxy clusters in the context of cosmology, one generally aims to measure the mass

function, dn/dM , of these structures, which due to its exponential sensitivity to cluster masses is a

potentially powerful probe of cosmological parameters (see §1.3.3.4). The mass of galaxy clusters,

however, is not directly observable. Therefore, what one can actually measure in a given survey is

the surface density of clusters (or cluster counts), dN/dz, which can be related to the mass function

via e.g.

dN

dz
= ∆Ω

dV

dzdΩ
(z)
∫ ∞

0
φ(M, z)

dn

dM
dM (1.188)

where dV/(dzdΩ) is the comoving volume, ∆Ω is the angular sky coverage of the survey and

φ(M, z) is a selection function that describes how the number of objects observed relates to the

mass given by

φ(M, z) =
1
2

(
erf
[M −Mlim(z)

δMlim(z)

])
, (1.189)

where Mlim(z) is the limiting mass of the survey (Battye & Weller 2003). Battye & Weller (2003)

relate this limiting mass to the limiting flux of an SZ survey to obtain a relationship between cluster

masses and the temperature of the gas contained within the cluster, which unlike the mass is a

directly observable property.

This relationship between cluster observables and cluster mass is known as the observable mass

distribution, P (Mobs|M), which can be assumed to be given by a Gaussian distribution in lnM ,

P (Mobs|M) =
1√

2πσ2
lnM

exp[−x2(Mobs)], (1.190)

where

x(Mobs) ≡ lnMobs − lnM − lnMbias√
2πσ2

lnM

, (1.191)

Mobs is the observed mass, M is the true mass, Mbias is the mass bias and σ2
lnM is the mass variance

(Lima & Hu 2005).

In order to exploit the exponential sensitivity of the mass function, P (Mobs|M) has to be

determined to high accuracy. Therefore, the uncertainty in P (Mobs|M) limits the power of clusters
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to constrain cosmological parameters. Methods for constraining the observable-mass distribution

involve employing computational simulations, which suffer from missing gas, star formation and

AGN physics, and cross-correlation between lensing, microwave, optical and X-ray surveys, which

propagate systematic errors in all of the surveys used (Lima & Hu 2004).

1.4.5.7 Fisher Information

One way of obtaining information about cosmological parameters from cluster counts is with a

Fisher matrix. The Fisher information matrix is a method for measuring the amount of information

that an observable variable X contains about an unknown parameter θ upon which the probability

of X depends. The general form of the Fisher matrix is

Fij =
〈∂2log L(X|θ)

∂θi∂θj

〉
. (1.192)

For cluster counts, if one ignores mass observable relation errors and scatter, the Fisher matrix can

take the form

Fij =
n∑

α=1

∂∆Nα

∂θi

∂∆Nα

∂θj

1
∂∆Nα

, (1.193)

where ∆Nα is the number of clusters in the interval ∆z and θ are cosmological parameters (e.g.

Tang et al. 2008).

In order to use the cluster counts in this way the observable mass distribution has to be

margianalised over and hence becomes a nuisance parameter in the Fisher matrix. It is therefore

essential to calibrate this parameter in some way.

1.4.5.8 Self-Calibration

The observable-mass distribution can be self-calibrated using a counts-in-cells analysis, where the

volume of a given survey is divided into small cells and the sample variance from these cells is used

to calculate the halo bias (Lima & Hu 2004; Wu et al. 2010). The mean number of cluster counts,

m̄, and the mean cluster bias, b̄, for a given bin are calculated using the mass function, dn/dlnm,

the halo bias, b(M), and the observable-mass distribution, P (lnMobs|lnM), via e.g.

m̄ = Vc

∫
dlnM

dn

dlnM
〈φ|lnM〉 (1.194)

and

b̄ =
Vc
m̄

∫
dlnM

dn

dlnM
b(M)〈φ|lnM〉, (1.195)
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where Vc is the volume of the cell,

〈φ|lnM〉 =
∫
dlnMobsP (lnMobs|lnM)φ(lnMobs), (1.196)

and φ(lnMobs) is a binning function equal to one inside the bin and zero outside the bin (Wu et al.

2010). From this, the sample variance for a given cell i can be calculated using

Sij = 〈(mi − m̄i)(mj − m̄j)〉 = m̄im̄j b̄ib̄jσ
2
Vc , (1.197)

where σ2
Vc

is the variance of the dark matter density fluctuation in volume Vc. The model parameters

can then be constrained using a Fisher matrix of the form

Fαβ = m̄T
,αC−1m̄,β +

1
2

Tr[C−1S,αC−1S,β], (1.198)

where the indices α and β correspond to cosmological parameters as in the previous subsubsection

plus the nuisance parameters arising from self-calibration of the mass observable relation, and

C = diag(m̄) + S (Lima & Hu 2004). Thus, since the sample variance depends on both the

cosmology and the observable-mass distribution, the source of “noise” actually contributes to the

signal and the constraints on P (lnMobs|lnM) are improved.

1.4.5.9 Scaling Relations

Various techniques are employed to determine what the observable-mass distribution for galaxy

clusters should be. One relatively straightforward method is to obtain scaling relations that show

how a given cluster observable changes as a function of cluster mass. Two standard scaling relations

used in cluster cosmology are the mass-luminosity relation and the mass-richness relation.

The mass-luminosity relation is a trend that relates the mass of a cluster to its luminosity,

which in most cases will be the X-ray luminosity. There is a well established relation LX − Tα,

where α ' 2.5− 3, between the X-ray luminosity and temperature of a cluster as shown in the left

panel of fig.1.23 (Xue & Wu 2000; Borgani 2006). As shown in section 1.4.5.3, X-ray temperatures

can be used to estimate cluster masses and therefore a similar trend is seen between cluster mass and

X-ray luminosity as shown in the right panel of fig.1.23 (Reiprich & Böhringer 2002). This relation

is useful because we can only observe the temperature profiles of the brightest and largest clusters.

One potential difficulty with this approach is that other sources of X-ray emission such as active

galactic nuclei (AGN) can be very difficult to remove from data depending upon the resolution

of the instrument used. This can add uncertainty into the mass-luminosity relation, although it is

usually believed to be on the few percent level (Mantz et al. 2008).
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Figure 1.23: Left Panel: LX − T relations for 184 clusters (open circles) and 38 groups (filled
squares). The dotted and solid lines are the best ODR fitted relations to the group and cluster
samples, respectively (Xue & Wu 2000). Right Panel: Gravitational mass−X-ray luminosity
relation (solid line) for the extended sample of 106 galaxy clusters. The dashed line gives the best
fit relation for the 63 clusters included in HIFLUGCS (filled circles only). The bisector fit results
are shown. One-σ statistical error bars are plotted for both axes, however, only the mass errors are
larger than the symbol sizes (Reiprich & Böhringer 2002).

A similar relationship can be found between the flux of the SZ effect, Y , and the X-ray

luminosity as shown in fig.1.24 (Diaferio et al. 2005). Therefore, Y can be related to cluster mass

in the same way as the X-ray luminosity.

The mass-richness relation simply relates the mass of a cluster to the number of galaxies

contained within the cluster. The difficulty with this is obtaining an accurate richness measurement

for each cluster. One method, proposed by Longair & Seldner (1979), to determine cluster richnesses

involves measuring the amplitude of the galaxy-cluster centre correlation function, Bgc, for each

cluster. This parameter scales as the net counts of galaxies normalised by the luminosity function

and spatial distribution of the cluster galaxies. The mass then relates to the richness via M ∝ B3/γ
gc ,

where γ accounts for the possible unknown evolution of the mass-richness relation, as shown in

fig.1.25 (Yee & Ellingson 2003). Employing this approach requires choosing an appropriate galaxy

luminosity-function and taking into account background corrections.

The principal difficulties with using any scaling relation are: gaining a clear understanding

on how the given relation evolves with redshift, taking into account dynamical processes such as

on-going mergers and incomplete virialization and non-gravitational heating mechanisms such as

AGNs and SNe. This is one of the main systematic issues when using clusters for cosmology.
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Figure 1.24: Central peak of the Comptonization parameter map vs. the X-ray bolometric luminosity.
The dots are the simulated clusters, the open and solid circles with error bars the cluster sample
of McCarthy et al. (2003) and Cooray (1999), respectively. The solid line is the best fit to the
simulated clusters and the two dotted lines show the ±3σ range from the best fit. The two dashed
lines are the best fits to the observed samples. The steeper dashed line is the fit to the sample of
McCarthy et al. (2003). (Diaferio et al. 2005).

Figure 1.25: M200 vs Bgc. The dashed line shows the best fitting power law. MS1455+22 is
indicated as an open triangle (Yee & Ellingson 2003).
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1.4.5.10 Cosmological Constraints from Galaxy Clusters

In the unperturbed universe, scales less than∼ 10 hMpc−1 have already gone non-linear (Dodelson

2003). This means that estimating the abundance of objects like galaxies, which arise from

fluctuations on scales ∼ 1 hMpc−1, is very difficult. Clusters of galaxies, on the other hand,

arise from scales of the order of 10 hMpc−1, which implies that predicting the abundance of

clusters can tell us a lot about cosmology as their growth is predominantly determined by linear

gravitational processes (Mantz et al. 2008). It has been shown that the virial mass of a rich cluster

(e.g. ∼ 5× 1014 M�) is very similar to the mass enclosed within a sphere of radius 8h−1Mpc in

the unperturbed universe. Therefore, the current abundance of clusters gives a measure of σ8, the

rms density fluctuations in spheres of 8h−1Mpc.

In addition to σ8, the cluster mass function also gives a measure of the total density of matter

in the Universe, Ωm. Recent constraints on these two parameters from galaxy clusters using the

mass function are provided by e.g Gladders et al. (2007); Mantz et al. (2008); Rozo et al. (2010).

Mantz et al. (2008) obtain values of Ωm = 0.28+0.11
−0.07 and σ8 = 0.78+0.11

−0.13 using X-ray data from

the Massive Cluster Survey (MACS), the local Bright Cluster Sample (BCS) and the ROSAT-

ESO Flux Limited X-ray (REFLEX) sample as shown in fig.1.26. Gladders et al. (2007) use the

Red-Sequence Cluster Survey (RCS) to derive values of Ωm = 0.30+0.12
−0.11 and σ8 = 0.70+0.27

−0.15.

Rozo et al. (2010) use the Sloan Digital Sky Survey (SDSS) maxBCG cluster catalogue to obtain

values of Ωm = 0.265± 0.016 and σ8 = 0.807± 0.020, which are consistent with current WMAP

constraints Ωm = 0.274± 0.013 and σ8 = 0.812± 0.026 (Hinshaw et al. 2009).

One of the principal goals of modern cosmology is to determine the value of the dark energy

equation of state parameter, w (see §1.2.2.6). The evolution of the the mass function, n(M, z),

is governed by the growth of structure in the Universe and is therefore sensitive to w. Current

and future surveys plan to use baryon acoustic oscillations, weak gravitational lensing, type

Ia supernovae and galaxy clusters to constrain w. The largest weakness in using clusters as a

cosmological probe is the uncertainty in the mass calibration, which at present is worse than∼ 10%.

In order for clusters to compete with the other cosmological probes mentioned, this uncertainty

needs to be improved to ∼ 1% (Albrecht et al. 2006; Peacock et al. 2006).

This thesis is focused on the optical selection of galaxy clusters, which is useful for studying

the properties of the structures individually or as potential probe of cosmology.
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Figure 1.26: Joint 68.3 and 95.4 per cent confidence constraints on Ωm and σ8 for a ΛCDM model
from MACS (red), BCS (blue) and REFLEX (green) individually, and their combination (purple)
using standard priors. Note that only the 95.4 per cent confidence regions are visible for the
individual BCS and REFLEX data sets (Mantz et al. 2008).

1.5 Thesis Outline

Chapter two introduces a cluster finding algorithm based on that of Huchra & Geller (1982), used

to find structure in the 2dF-SDSS and QSO (2SLAQ) Luminous Red Galaxy Survey. This chapter

is based on Farrens et al. (2010). A description is provided of the simulated catalogues used to

constrain the free parameters in the code and justification of the choices made. Finally, an analysis

of the resulting catalogue is given, which includes looking at the two-point correlation function, the

mass estimates of the clusters and an inspection of SDSS images.

Chapter three follows up on chapter two by presenting the ability of the cluster finder to be

applied to 2SLAQ photometric data using a method based on that of Botzler et al. (2004) and

comparing these results with the spectroscopic results from the previous chapter. This chapter is

based on Farrens et al. (in prep). Having deduced the reliability of the photometric version of the
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code, it is then run of the Megaz-LRG catalogue, a larger sample of LRGs. Finally, the results for

both photometric 2SLAQ and Megaz-LRG catalogues are analysed.

Chapter four presents a description of the spectroscopic observations obtained at the Anglo-

Australian Observatory in September 2007 of a selection of Megaz-LRG cluster candidates. This is

followed by a description of the reduction and redshifting of the data. The chapter concludes with

an analysis of the reduced data.

Chapter five provides a brief introduction to the Dark Energy Survey (DES). This is followed

by a description of my involvement in the project, which consists mainly with the analysis of the

colours, photometric redshifts and clustering in DES simulated catalogues.

Chapter six presents the conclusions of the thesis and my plans for future work.



CHAPTER 2

OPTICAL CLUSTER DETECTION I:

SPECTROSCOPIC FRIENDS-OF-FRIENDS

Abstract

A catalogue of galaxy groups and clusters is presented that was selected using a friends-of-friends

algorithm with a dynamic linking length from the 2dF-SDSS and QSO (2SLAQ) luminous red

galaxy survey. The linking parameters for the code are chosen through an analysis of simulated

2SLAQ haloes. The resulting catalogue includes 313 clusters containing 1,152 galaxies. The galaxy

groups and clusters have an average velocity dispersion of σv = 467.97 kms−1 and an average

size of Rclt = 0.78 Mpc h−1. Galaxies from regions of one square degree and centred on the

galaxy clusters were downloaded from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6).

Investigating the photometric redshifts and cluster red-sequence of these galaxies shows that the

galaxy clusters detected with the FoF algorithm are reliable out to z∼0.6. Masses are estimated

for the clusters using their velocity dispersions. These mass estimates are shown to be reliable by

comparing them with the 2SLAQ mock halo masses. Further analysis of the simulation haloes

shows that clipping out low richness groups with large radii improves the purity of catalogue from

52% to 88%, while retaining a completeness of 94%. Finally, the two-point correlation function of

the cluster catalogue is tested. A best-fitting power law model , ξ(r) = (r/r0)γ , with parameters

r0 = 24±4 Mpc h−1 and γ = −2.1±0.2 is found, which are in agreement with other low redshift

cluster samples and consistent with a ΛCDM universe.

The work presented in this section is based on work presented in Farrens et al. (2010) in

MNRAS.

66
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2.1 Introduction

Galaxy clusters are the largest bound objects in the Universe and are important structures for

examining the distribution of matter and how this evolves with time. Investigating how the

mass-function of galaxy clusters changes with time provides an effective method for constraining

cosmological parameters (Press & Schechter 1974; Peebles 1993; Weller et al. 2002; Weller &

Battye 2003; Haiman et al. 2001).

The first galaxy cluster was unknowingly detected by Charles Messier, who recorded the

positions of 11 nebulae in the Virgo cluster in the 18th century. Later evidence for the existence of

clusters of galaxies was provided in the work of Harlow Shapley and Adelaide Ames in the 1930s

(Shapley & Ames 1932). They severely undermined the idea that galaxies are randomly distributed

throughout the Universe. Probably the most significant figure in the pioneering of galaxy cluster

detection was George Abell (Abell 1958). Abell surveyed around three quarters of the sky using

photographic plates, which meant that he had to identify the locations of galaxy overdensities by

eye. To avoid including field galaxies Abell defined galaxy clusters as regions 1.5 Mpc h−1 in

radius (the Abell Radius) containing fifty or more galaxies that are no more than two magnitudes

fainter than the third brightest member of the group. Remarkably, later studies have confirmed

a large number of Abell’s clusters as being genuine bound structures. Due to the simplicity of

this two-dimensional approach, however, serious problems can arise from e.g. inhomogeneities,

photometric errors and projection effects. Bahcall & Soneira (1983) found an excess of power in

the angular correlation function using Abell clusters and van Haarlem et al. (1997) show, using

N-body simulations, that ∼ 1/3 of Abell’s clusters have incorrect richness estimates and ∼ 1/3

of Abell richness class R ≥ 1 clusters are missed. Around thirty years after Abell’s work hybrid

photo-digital surveys were able to improve upon the photographic plate method for detecting

clusters of galaxies (Maddox et al. 1990). It was, however, the advent of digital CCD surveys

that brought about significant advances, a good example being surveys such as the SDSS (York

et al. 2000), 2dFGRS (Colless 1999), 6dF (Jones et al. 2006) and the ongoing GAMA (Driver

et al. 2008). Large sky surveys like SDSS signify a major step forward in obtaining galaxy data,

however analysing that data can be approached and interpreted in many different ways. Automated

algorithms supply a means of reducing subjectivity in the analysis of large data sets. Finally, the

availability of increasingly detailed simulations in recent years has enabled more powerful tests of

the completeness and reliability of cluster catalogues.

In the last few decades many different algorithms have been developed to find galaxy clusters.
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The Counts in Cells method (Couch et al. 1991; Lidman & Peterson 1996) looks for enhancements

of galaxy surface density in a given area. Percolation methods group together galaxies that are

separated by a distance on the sky less than a given threshold distance (Efstathiou et al. 1988;

Davis et al. 1985; Dalton et al. 1997; Ramella et al. 2002). This technique was originally applied

to redshift surveys by Huchra & Geller (1982). An extended version of Huchra and Geller’s

friend-of-friends algorithm was later developed to deal with photometric redshifts by Botzler et al.

(2004). The changes implemented in the extended friend-of-friends algorithm were necessary to

account for the large errors associated with photometric redshifts (Botzler et al. 2004). Matched

Filter techniques model the spatial and luminosity distributions of galaxies in a cluster to generate a

cluster likelihood map (Postman et al. 1996; Kim et al. 2002). Voronoi Tessellation decomposes the

galaxies in a region of space into discrete points surrounded by cells facilitating the identification

of overdensities (Kim et al. 2002; Lopes et al. 2004; Ramella et al. 2001). Another method is to

look for a Red Sequence in the colour-magnitude relation of galaxy clusters (Gladders & Yee 2000;

Koester et al. 2007). The Cut and Enhance method makes colour and colour-colour cuts to produce

subsamples of galaxies in different redshift ranges (Goto et al. 2002). A review of various methods

and techniques used for the optical detection of galaxy clusters is provided by Gal (2006).

The Percolation or friend-of-friends (FoF) algorithm is the cluster finding method of interest

for the purposes of this paper. The 2dF-SDSS and QSO (2SLAQ) Luminous Red Galaxy Survey,

which is subset of photometrically selected luminous red galaxies (LRGs) from SDSS (Cannon

et al. 2006), is a good starting place for the use of the FoF algorithm because of its relatively small

size and the abundance of both spectroscopic and photometric data available.

This chapter is the first of two exploring galaxy clustering in the 2SLAQ catalogue and will

focus on utilising the spectroscopic data available in the catalogue. The second chapter, based on

Farrens et al. (in prep), will investigate detecting clusters using photometric redshifts estimated

from the SDSS photometry in the 2SLAQ catalogue and compare the results with those provided

in this chapter. This comparison will demonstrate the reliability of the FoF technique to detect

clusters with photometric redshifts on a consistent data set. If one is to do Cosmology with galaxy

clusters large data sets are required. The fastest way of obtaining this data is through photometric

surveys. Upcoming surveys like the Dark Energy Survey (DES), Euclid and Planck will obtain such

photometric data for large numbers of galaxies across the sky and since it is not feasible to obtain

spectra for all of these objects within the observing time frames, it is therefore necessary to develop

reliable methods for detecting clusters using photometric data. Photometric cluster catalogues made

from surveys such as these can cover a larger volume than spectroscopic catalogues and can thus be
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used to probe the shape of the mass function at higher masses.

The following section provides some background on the 2SLAQ survey. Section 2.3 describes

the Huchra and Geller Friends-of-friends method in detail and how the algorithm was implemented.

Section 2.4 provides a description of the mock catalogue used to calibrate the linking parameters.

Section 2.5 presents the resulting groups and clusters found using the FoF algorithm and the analysis

made on these results. Finally section 2.6 shows the 2-point correlation function of the clusters. A

sample of the cluster catalogue is presented at the end of this chapter.

2.2 The 2dF-SDSS and QSO (2SLAQ) Luminous Red Galaxy Survey

2SLAQ is a spectroscopic survey of around 15000 potential luminous red galaxies (LRGs) in the

redshift range 0.45 ≤ z ≤ 0.7 (Cannon et al. 2006). The target LRGs were selected photometrically

from the Sloan Digital Sky Survey (York et al. 2000). 2SLAQ also includes a lower resolution

survey of faint quasi-stellar objects (QSOs) or quasars. Observations began in March 2003 using

the Two-degree Field instrument (2dF) on the 3.9m Anglo-Australian Telescope.

The 2SLAQ criteria for selecting galaxies from the Sloan Digital Sky Survey consisted in

placing limits on the magnitudes, colours and star-galaxy separations of the SDSS data. The

magnitude limits were imposed by requiring that

17.5 ≤ ideV −Ai < 19.8 (2.1)

and

ifibre < 21.2, (2.2)

where ideV is the total magnitude based on a fit of each galaxy to a de Vaucouleurs profile and Ai

is the extinction in the i-band. These limits enabled the selection of bright LRGs out to z ∼ 0.8

and eliminated objects too diffuse to produce useful spectra. The colour cuts were such that

0.5 < g − r < 3.0, (2.3)

r − i < 2.0, (2.4)

c‖≡0.7(g − r) + 1.2(r − i− 0.18) > 1.6 (2.5)

and

d⊥≡(r − i)− (g − r)
8.0

> 0.5, (2.6)
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where c‖ eliminates later-type galaxies and d⊥ selects early-type galaxies at increasingly high

redshift. Equations 2.3 and 2.4 ensure that only objects near the main locus of LRGs are selected.

The star-galaxy separation criteria was

ipsf − imodel > 0.2 + 0.2(20.0− ideV ) (2.7)

and

radiusdeV (i) > 0.2”, (2.8)

where ipsf is the i-band magnitude of an isolated star fitted with a point spread function (PSF)

model, imodel is the model i-band magnitude, which is a good proxy for the PSF, and radiusdeV

is the de Vaucouleurs radius, which is the effective radius in the model magnitude. These limits

eliminate the majority of stellar contamination.

2.3 Friends-of-Friends Method

2.3.1 The Huchra & Geller Friends-of-Friends Algorithm

The Huchra & Geller friends-of-friends algorithm was developed to search for clusters of galaxies

in the magnitude limited CFA1 redshift survey (Huchra & Geller 1982; Huchra et al. 1983; Geller

& Huchra 1983). This technique is commutative and utilises only a galaxy’s right ascension,

declination and redshift to detect structure by finding galaxies that are separated by a distance

less than some threshold, DL, and that have a velocity difference less than some threshold, VL.

The threshold values are chosen depending on the properties of the galaxies in the catalogue. For

simplicity DL and VL can be set as fixed values, however this may lead to some selection effects

being ignored. Huchra & Geller (1982) adopt a method that compensates for the variation in the

completeness of the galaxy luminosity function as a function of redshift.

2.3.2 Choice of Dynamic Friends-of-Friends Linking

The friends-of-friends algorithm used in this chapter follows the Huchra & Geller (1982) method in

most respects. The only difference lies in the linking parameters, which change with the surface

number density of galaxies at a given redshift. This dynamic linking length is more appropriate

to this sample of galaxies as is does not assume a magnitude limit pre-selection, which would

remove large numbers of galaxies usable for cluster detection and prevent any clusters at the highest

redshifts from being found. The choice of this type of linking parameter has the drawback of



2.3. Friends-of-Friends Method 71

Figure 2.1: Fluxogram of the FoF algorithm with dynamic linking length. Based on Huchra &
Geller (1982).

allowing for a more complex selection function that will render interpretation less straight forward.

A fluxogram of the Dynamic Friends-of-Friends (hereafter DFoF) algorithm is shown in fig.2.1.

Following the steps shown in fig.2.1: First the initial values of linking length, R0, redshift

linking, z0, and the minimum number of galaxy members needed to form a group/cluster, Nmin,

are chosen. To compensate for selection effects, R0 is varied via equation 2.9,

Rfriend(z) ∝ R0

(
dN

dz

dz

dV

1
Asky

)− 1
2

, (2.9)

where z is redshift of each galaxy for which the variable linking length is calculated, dN(z)/dz

is the surface number density of galaxies in the redshift range covered by the galaxy catalogue

(zmin ≤ z ≤ zmax), dV /dz is the differential comoving volume and Asky is the fraction of sky area
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covered in the catalogue relative to the total sky area. Note that the limits zmin and zmax can be

modified if one does not wish to use the full redshift range of the catalogue. z0 is converted into a

velocity linking parameter, vfriend(z), via equation 2.10,

vfriend(z) =
z0c

2(1 + z)
, (2.10)

where c is the speed of light. The factor of 2 in the denominator accounts for the fact that we want

to be able to link galaxies that have velocities approaching along the line of sight to those that have

velocities receding along the line of sight. vfriend(z) will therefore be representative of the velocity

of dispersions of the clusters being examined.

A galaxy i is selected from the catalogue that has not yet been assigned to a group and lies in

the redshift range zmin ≤ z ≤ zmax. The projected distance between galaxy i and second galaxy j,

Dij , is calculated using

Dij = cos−1(sin(δi)sin(δj) + cos(δi)cos(δj)cos(αi − αj)) (2.11)

where α and δ are right ascension and declination respectively.

The two galaxies are linked together (i.e. are friends) if they satisfy the conditions

Dij ≤ Rfriend(z) (2.12)

and

|vi − vj |
2

≤ vfriend(z). (2.13)

A group-candidate k is formed that includes galaxy i and its friends. A search is then made

around the galaxies linked to i. This process is repeated until no further friends are found. The

group-candidate k is defined as a real group if it satisfies equation

Nk ≥ Nmin (2.14)

For the purposes of this paper Nmin ≥ 3. This is a reasonable assumption when dealing with LRGs,

which are not common objects.

2.4 Mock Catalogue

To determine the optimum values of R0 and z0 for the DFoF code, a mock galaxy catalogue that

simulates the 2SLAQ catalogue was produced. This mock catalogue contains a distribution of

7,651,076 dark matter haloes and 824,704 galaxies across an octant of the sky.
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The halo catalogue was derived from the Horizon 4π simulation (Teyssier et al. 2009; Prunet

et al. 2008). This is a ΛCDM dark matter N -body simulation using WMAP 3 cosmology with a

2h−1 Gpc periodic box on a grid of 40,963 cells. The 7× 1010 particles were evolved using the

Particle Mesh scheme of the RAMSES code (Teyssier 2002) on an adaptively refined grid (AMR)

with around 1.4×1011 cells, reaching a formal resolution of 262,144 cells in each direction (∼ 7h−1

kpc comoving). The simulation covers a sufficiently large volume to compute a full-sky dark matter

distribution, while resolving Milky-Way size haloes with more than 100 particles and exploring

small scales deeply into the non-linear regime. The dark matter distribution in the simulation was

integrated in a light cone out to redshift 1, around an observer located at the centre of the simulation

box. The underlying cosmology for WMAP 3 is: ΩM = 0.24, ΩΛ = 0.76, Ωb = 0.042, n = 0.958, H0

= 73 and σ8 = 0.77.

Gravitationally bound haloes of dark matter are selected using the spherical overdensity HOP1

method of Eisenstein & Hut (1998). HOP is based on a hybrid approach in which the local

density field is first obtained by smoothing the density field with an SPH-like kernel using the

n nearest neighbours. Then the particles above a given threshold are linked with their highest

density neighbours until, after several “hops”, they are connected to the one particle with the highest

density within the region above the threshold. All particles linked to the local density maximum are

identified as a group.

The haloes were then populated using the Halo Occupation Distribution (HOD), where the

number of galaxies residing within each halo is drawn from a probability, P (N |M), that a dark

matter halo of mass M will host N galaxies.

The first moment of P (N |M) is the mean number of galaxies as a function of halo mass and

it is usually parameterised as a sum of a central and a satellite components (Kravtsov et al. 2004;

Tinker 2007).

The probability that a halo contains a central galaxy is given b

〈Nc|M〉 = 0.5
[
1 + erf

(
log10(M/Mcut)

σcut

)]
(2.15)

and the number of satellite galaxies is obtained from a Poisson sampling of

〈Ns|M〉 =
(
M

M0

)β
. (2.16)

The HOD model used is that of Blake et al. (2008) and includes several derived parameters that

were computed at various redshifts bins between 0.4 < z < 0.7. Table 2.1 lists the HOD parameters
1http://cmb.as.arizona.edu/∼eisenste/hop/hop.html
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Figure 2.2: HOD (left panel) of the mock halo catalogue (blue dashed line) and the theoretical
model of Blake et al. (2008) (red solid line). Density (right panel) as a function of redshift of the
mock halo catalogue (blue dashed line) and the 2SLAQ catalogue (red solid line).

Table 2.1: The HOD parameters derived from the MegaZ-LRG sample using the methodology
of Blake et al. (2008). The small differences between these parameters and those of Blake et al.
(2008) reflect the difference in the assumed underlying cosmology.

Redshift slice σcut log
(

M0
M�/h

)
β log

(
Mcut
M�/h

)
0.45 < z < 0.50 0.618 13.88 1.41 12.96

0.50 < z < 0.55 0.469 13.99 1.54 13.00

0.55 < z < 0.60 0.554 14.16 1.66 13.23

0.60 < z < 0.65 0.675 14.43 1.56 13.60

in each redshift bin. For the purposes of this project an evolving HOD model is constructed that

smoothly interpolates between the four Blake et al. (2008) redshift bins as shown in fig.2.2. In the

left hand panel it can be seen that the HOD model recovered from the mock catalogue matches the

theoretical input. In the right panel it can be seen that the smoothly evolving HOD model, based on

Blake et al. (2008), succeeds in reproducing the observed redshift distribution of the 2SLAQ data.

This figure shows that our smoothly evolving HOD model, based on Blake et al. (2008), succeeds

in reproducing the observed redshift distribution of the 2SLAQ data.

The radial positions of galaxies within a halo are assigned according to the NFW profile

(Navarro et al. 1996). Specifically, it is assumed that the mass inside a given radius, properly

normalised, represents the probability of containing a galaxy. Thus, integrating to the halo boundary

would yield a probability of one and therefore all galaxies would be placed within this radius. The
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angular position relative to the halo centre is chosen randomly for each galaxy.

In the model, all dark matter particles are assumed to be in approximately spherical virialised

haloes. The velocity of a dark matter particle is the sum of two terms,

v = vvir + vhalo, (2.17)

the first is due to the velocity of the particle about the centre of mass of its parent halo, and the

second is due to the motion of the centre of mass of the parent.

Consider the first term, vvir. We will assume that virialised haloes are isothermal spheres, so

that the distribution of velocities within them is Maxwellian. This is in reasonable agreement with

measurements of virial velocities within haloes in numerical simulations. If σvir denotes the rms

speeds of particles within a halo, then the virial theorem requires that

Gm

r
∝ σ2

vir ∝
H(z)2

2
∆1/3

vir (z)
(

3m
4πρcrit(z)

)2/3

, (2.18)

where the final proportionality comes from the fact that all haloes have the same density whatever

their mass: m/r3 ∝ ∆vir ρcrit. This shows that σvir ∝ m1/3: the more massive haloes are expected

to be ‘hotter’. At fixed mass, the constant of proportionality depends on time and cosmology, and

on the exact shape of the density profile of the halo. A convenient fitting formula is provided by

Bryan & Norman (1998),

σvir(m, z) = 102.5 gσ ∆1/6
vir (z)

(
H(z)
H0

)1/3( m

1013M�/h

)1/3

, (2.19)

where gσ = 0.9, and

∆vir = 18π2 + 60x− 32x2, with x = Ω(z)− 1 (2.20)

and Ω(z) = [Ωm (1 + z)3] [H0/H(z)]2.

It has been shown that σ(M) is independent of local environment (Sheth & Diaferio 2001),

however it may depend on position within a halo. This will mainly be due to the fact that haloes

have complicated density and velocity profiles. The two-dimensional redshift-space correlation

function for the mock catalogue, ξ(σ, π), was calculated with the pair separation decomposed in

terms of perpendicular, σ, and parallel, π, distances. Each component of separation was calculated

for 20 bins equally spaced in comoving distance between 0.01 < σ, π[Mpch−1] < 40, creating a

400 element grid of measurements. The smooth contours are created by linear interpolation over

the grid. Fig.2.3 shows the calculated 2-D correlation functions for the 2SLAQ catalogue of Ross

et al. (2007) and the mock galaxy catalogue. It shows the expected linear squashing at large radii
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Figure 2.3: The two-dimensional redshift-space correlation function for the 2SLAQ catalogue (left
half) and the mock catalogue (right half) plotted as a function of transverse, σ, and radial, π, pair
separation. The colour map represents log(ξ). The 2SLAQ correlation function is that of Ross et al.
(2007). Plot produced by Cristiano Sabiu.

and redshift distortions with ‘finger of God’ elongations at small scales. The colour map represents

log(ξ).

Fig.2.2 and 2.3 show that the simulation reproduces the properties of 2SLAQ well enough for

us to believe that it is sufficient to aid us calibrating our cluster finding parameters and therefore any

limits imposed upon the values of R0 and z0 from the simulation will be applicable to the real data.

There are, however, some caveats that should be taken into account that may cause the simulation

to not be fully representative of reality. For example, the effects of things such as the way in which

galaxies are added to dark matter haloes and cluster mergers at high redshifts could have influence

on the results. In the following section, we discuss how the simulations can bias the results together

with the analysis of the results.

2.5 Data Analysis

2.5.1 Linking Parameter Optimisation

The DFoF code was run on the 2SLAQ simulation with different values of R0 and z0 to find the

optimum combination of the two. To gain a more physical interpretation of these parameters,

hereafter R0 and z0 are expressed in terms of Rfriend(z) and vfriend(z) at z = 0.5 using equations
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2.9 and 2.10. The parameters were varied in the ranges

0 ≤ Rfriend(z = 0.5) ≤ 4.2 (Mpc h−1) (2.21)

and

100 ≤ vfriend(z = 0.5) ≤ 1500 (kms−1). (2.22)

The choice of parameters is made based on the completeness, purity and total number of clusters in

the resulting catalogues.

In order to determine the completeness and purity of the DFoF clusters relative to the simulation

haloes, a membership matching code was implemented. The technique involves looking at the

galaxy members assigned to each cluster by the DFoF code and matching these to the original halo

member galaxies. The clusters are examined in descending order of richness to ensure that the

largest clusters are the first to be matched to mock haloes. DFoF clusters may contain contributions

from several mock haloes, therefore each cluster is matched to the mock halo with the highest

number of shared members. Thus, if two haloes are merged into one cluster only one of the two

haloes will be matched.

For the purposes of this project two matching scenarios are examined: a) a strict unique-

matching regime, b) a less strict multiple-matching regime. In the first case each cluster is uniquely

matched to one halo and any cluster that corresponds to a halo that has already been matched,

which will be of equal or lesser richness, will be ignored. In the latter case multiple clusters are

allowed to match to the same halo, which increases the completeness. The completeness and purity

are defined via

Completeness =
Nmatches

Nhaloes
(2.23)

and

Purity =
Nmatches

Nclusters
. (2.24)

Where Nmatches is the total number of unique or multiple matches, Nclusters is the total number of

DFoF clusters found and Nhaloes is the total number of mock haloes. Nhaloes is calculated ignoring

all mock haloes with less than 3 galaxy members as this is the detection limit of the DFoF code.

Fig.2.4 shows the total number of clusters found in the 2SLAQ mock (top panel), unique

completeness (middle left panel), unique purity (middle right panel), non-unique completeness

(bottom left panel) and non-unique purity (bottom right panel) as a function of Rfriend(z = 0.5)
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Figure 2.4: Number of clusters detected in the mock halo catalogue as a function of Rfriend(z = 0.5)
and vfriend(z = 0.5) (top panel). Unique completeness (middle left panel) and purity (middle
right panel) of the DFoF clusters relative to mock haloes as a function of Rfriend(z = 0.5) and
vfriend(z = 0.5). Non-unique completeness (bottom left panel) and purity (bottom right panel) of
the DFoF clusters relative to mock haloes as a function of Rfriend(z = 0.5) and vfriend(z = 0.5).
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Figure 2.5: Completeness (left panel) and purity (right panel) as a function of Rfriend(z = 0.5) for
a fixed value of vfriend(z = 0.5) = 900 kms−1. The red solid line shows clusters with Nmem ≥ 3,
the blue dashed line shows clusters with Nmem ≥ 4, the light blue dot-dashed line shows clusters
Nmem ≥ 5 and the green triple dot-dashed line shows clusters with Nmem ≥ 6.

Figure 2.6: Number of clusters detected in the 2SLAQ catalogue as a function of Rfriend(z = 0.5)
and vfriend(z = 0.5).

and vfriend(z = 0.5). This figure clearly shows that the DFoF results are primarily dependent

on the choice of Rfriend(z = 0.5). Looking at the overall contour shape in the top panel, one

can see that the number of clusters found peaks around Rfriend(z = 0.5) = 2.8 Mpc h−1 and

vfriend(z = 0.5) = 900 kms−1 after which clusters are merged together creating highly unphysical

structures. This sets an upper limit on both of the parameters, although one would intuitively expect

the value of Rfriend(z = 0.5) to be much lower. For vfriend(z = 0.5) > 400 kms−1, the catalogue

is fully complete in the range 0.35 < Rfriend(z = 0.5) < 0.87 Mpc h−1 and fully pure out to

Rfriend(z = 0.5) = 0.28 Mpc h−1 for both the unique and non-unique regimes.

Since Rfriend(z = 0.5) has a greater effect on the completeness and purity, vfriend(z = 0.5) can
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be fixed to the limit imposed by the top panel of fig.2.4 and examine how the completeness and

purity vary with just Rfriend(z = 0.5). Fig.2.5 shows the variations in completeness and purity as

a function of Rfriend(z = 0.5) for different richness cuts using a fixed value of vfriend(z = 0.5) =

900 kms−1. The richness cuts show what the completeness and purity would look like if groups

are removed that have fewer members than some given threshold. It should be noted that the value

of Nhaloes is unchanged and therefore haloes which have fewer members than the richness cut

threshold are no longer matched. This figure indicates that the richer clusters are more pure, but

less complete, as one would expect. Because it is not possible to produce a catalogue that is 100%

complete and 100% pure, it is necessary to choose one or the other. If a catalogue is chosen that is

∼ 100% complete, fig.2.5 shows it can be cut by richness to improve the purity.

Finally the DFoF code was run on the real 2SLAQ catalogue to investigate the number of clusters

found for a given set of linking parameters. Fig.2.4 shows the total number of clusters found in the

2SLAQ catalogue as a function ofRfriend(z = 0.5) and vfriend(z = 0.5). Both this figure and the top

panel of fig.2.4 have the largest Nclt contours roughly in the range 2.5 ≤ Rfriend(z = 0.5) ≤ 4.0

Mpc h−1.

Therefore in order to obtain a fully complete catalogue with high purity and the largest number

of clusters possible, based on the results in fig.2.4, 2.5 and 2.6, values of Rfriend(z = 0.5) = 0.87

Mpc h−1 and vfriend(z = 0.5) = 900 kms−1 were chosen to find groups and clusters in the 2SLAQ

catalogue. These values correspond to a 2SLAQ mock cluster catalogue that is 98% complete and

52% pure.

2.5.2 Basic Results

Running the DFoF algorithm using a linking length of Rfriend(z = 0.5) = 0.87 Mpc h−1 and a

velocity linking parameter of vfriend(z = 0.5) = 900 kms−1 on the 13,133 galaxies in the 2SLAQ

sample produced a total of 313 groups and clusters containing 1,152 member galaxies. Fig.2.7

shows the angular position of the centres these groups and clusters and their distribution with

respect to redshift. The cluster centres and redshifts are taken as the average values of each of the

galaxy members.

Fig.2.8 shows the distribution of cluster velocity dispersion, σv, as a function of redshift. Fig.2.9

shows the distribution of cluster size, Rclt, as a function of redshift. Where Rclt is defined as the

projected distance from the cluster centre to the farthest galaxy member. The ‘x’s indicate clusters

with three members, the blue circles indicate clusters with between four and six members and the

red square indicate clusters with seven or more members. These plots illustrate that on average the
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Figure 2.7: Distribution of clusters in RA and Dec (left panel). Histogram of clusters as function of
redshift (right panel).

richest clusters have the largest sizes and velocity dispersions as expected.

2.5.3 Background Subtraction

The DFoF groups and clusters were examined by looking for peaks in the photometric redshift

distribution and colour-magnitude relation of SDSS galaxies around the cluster centres. Using

an SQL query regions of one square degree and centred on the FoF cluster candidates were

downloaded from the SDSS DR6 catalogue. These squares were downloaded for each of the

313 DFoF groups and clusters and include all SDSS galaxies with photometric redshifts. The

properties downloaded for each galaxy were: id, ra, dec, u-magnitude, g-magnitude, r-magnitude,

i-magnitude, z-magnitude, model i-magnitude, photometric redshift, photometric redshift error

and star likelihood. In each of these squares all galaxies within a 1 Mpc h−1 radius of the centre

were taken as cluster members with background, regardless of redshift, and all galaxies between

3 and 7 Mpc h−1 were used as field galaxies. Galaxies between 1 and 3 Mpc h−1 were ignored.

These limits were chosen because, on average, one would not expect galaxies father than 3 Mpc

h−1 from a real cluster centre to be genuine members. Using the DFoF cluster redshifts, the data

from the corresponding SDSS squares were stacked in redshift slices of ∆z = 0.05 in the range

0.4 ≤ z ≤ 0.7. The total number of groups and clusters with three or more and four or more

members in each redshift slice are listed in Table-2.2.

In each cluster redshift bin the stacked SDSS galaxies were binned by photometric redshift.

The number of SDSS galaxies assigned to the field was then subtracted from the number of SDSS

galaxies assigned as cluster members plus background in each redshift bin. This subtraction was

done taking into account the difference in area between the two regions. Fig.2.10 shows the number
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Figure 2.8: Distribution of cluster velocity dispersion, σv, as a function of redshift (left panel). The
‘x’s indicate clusters with less than four members, the blue circles indicate clusters with between
four and seven members and the red squares indicate clusters with more than seven members.
The gold asterisks highlight the groups and clusters that form part of the gold sample (see §2.5.5).
Histogram of galaxy members as a function of cluster velocity dispersion for the 3 choices of
richness as in the left hand plot (right panel).

Figure 2.9: Distribution of cluster size, Rclt, as a function of redshift (left panel). The ‘x’s indicate
clusters with less than four members, the blue circles indicate clusters with between four and seven
members and the red squares indicate clusters with more than seven members. The gold asterisks
highlight the groups and clusters that form part of the gold sample (see §2.5.5). Histogram of
galaxy members as a function of cluster size for the 3 choices of richness as in the left hand plot
(right panel).
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Table 2.2: Redshift Slices

z Range Nclt with Nmem ≥ 3 Nclt with Nmem ≥ 4

0.40 ≤ z ≤ 0.45 26 10

0.45 ≤ z ≤ 0.50 99 46

0.50 ≤ z ≤ 0.55 85 30

0.55 ≤ z ≤ 0.60 62 24

0.60 ≤ z ≤ 0.65 26 14

0.65 ≤ z ≤ 0.70 8 2

of SDSS background subtracted galaxies as a function of photometric redshift for all groups and

clusters. The blue dashed line are the background galaxies, the green dot-dashed line are the

foreground galaxies and the red solid line are the background subtracted galaxies. In these plots the

background subtraction should average out to zero if there is no overdensity in the field. A sharp

peak can clearly been seen in each of the plots at the cluster redshift range. This trend is reliable up

to z ∼ 0.6 after which the peaks cannot clearly be distinguished. This a strong indication that the

DFoF cluster candidates are genuine structures. The discrepancies seen after z ∼ 0.6 are probably

due to the relatively low number of clusters at these redshifts plus a result of poor photometric

redshift estimates for more distant objects in the SDSS catalogue.

To look for the colour-magnitude relation of the groups and clusters, i-magnitude vs (g − i)-

colour maps were made for both field galaxies and cluster+field galaxies in each SDSS square. The

C-M maps were then stacked by cluster redshift in redshift slices as seen in Table-2.2. Finally the

stacked field galaxy maps were subtracted from the stacked cluster galaxy maps taking into account

the relative areas. Fig.2.11 shows the background subtracted C-M diagrams for SDSS galaxies.

The maps show a clear trend in colour-magnitude space that resembles a cluster red sequence. The

cluster red sequence is an observational property whereby cluster galaxies are more red than field

galaxies at the same redshift. As with the plots in fig.2.10 this trend is visible out to z ∼ 0.6 and

similarly indicates that the structures are genuine.

2.5.4 Mass estimates

In order to calculate masses for the sample of groups and clusters, mass estimates calculated

using equation 2.19 are compared with the true masses of the 2SLAQ simulation haloes. Masses

were calculated for the DFoF catalogue produced from the 2SLAQ mock with linking parameters
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Figure 2.10: Number of SDSS background subtracted galaxies as a function of photometric redshift
for all groups and clusters. The blue dashed line are the background galaxies, the green dot-dashed
line are the foreground galaxies and the red solid line are the background subtracted galaxies.
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Figure 2.11: Colour-Magnitude diagrams for background subtracted SDSS galaxies. The maps
show a clear trend in colour-magnitude space that resembles a cluster red sequence.
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Figure 2.12: Average true cluster mass, M true, as a function of cluster richness, Nmem (left panel).
Average estimated mass, M est, as a function of true mass (right panel).

Rfriend(z = 0.5) = 0.87 Mpc h−1 and vfriend(z = 0.5) = 900 kms−1 using the cluster velocity

dispersions (hereafter Mest). The membership matching code described in section 5.1 was then

implemented to assign to each cluster a mock halo mass (hereafter Mtrue).

Fig.2.12 shows the average true cluster mass, M true, as a function of cluster richness, Nmem,

and the average estimated mass, M est, as a function of true mass. The error bars show the standard

deviation from the mean values. The left panel of this plot shows the expected trend between cluster

richness and mass. The right panel compares the matched halo masses to those calculated from the

cluster velocity dispersions according to equation 2.19. The deviations from the x = y trend are

principally the result of contaminating galaxies in the richness estimates and the small number of

high mass clusters detected. There is, however, a degree of overestimation in the cluster masses

from the velocity dispersions even when a mock halo has been detected perfectly.

The range of cluster masses is a good match to known masses of massive clusters. Therefore,

from this analysis one can assume that mass estimates made for the real 2SLAQ cluster velocity

dispersions will be approximately representative of their true physical masses with some amount of

overestimation.

2.5.5 Clipping

In section 5.1 a catalogue was produced that optimised the completeness, while maintaining the

highest possible purity. This choice resulted in a catalogue that was 98% complete and 52 % pure.

Fig. 2.5 shows that clipping groups and clusters with the lowest richnesses will improve the purity,

but will reduce the completeness. This plot also shows that the purity is much higher for lower

values of Rfriend(z = 0.5), which would correspond to structures that have smaller radial sizes.
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Therefore it appears that the purity is mainly affected by the size and richness of the groups and

clusters.

In an attempt to improve the purity while preserving the completeness, several new catalogues

were made by clipping out groups and clusters with radii larger than some threshold for a given

richness from the original 2SLAQ mock cluster catalogue. Table 2.3 shows the total number of

groups and clusters with 3 and 4 members for various radial cuts. Rclip is the radial distance

threshold in Mpc h−1 above which all groups and clusters will be removed, Ntot is the total number

of groups and clusters for a given Rclip, Ntrue is the number of groups and clusters that are matched

to 2SLAQ mock haloes for a given Rclip and the ratio Ntrue/Ntot gives a measure for the purity for a

given Rclip. As can been seen in the table when no cuts are made groups of 3 and 4 members are

only 38% and 57% pure respectively. Above richness of 4 all groups and clusters are above 80%

pure. Therefore, the majority of the contamination in the cluster catalogue arises from these small

groups.

Taking only groups and clusters with sizes less than 0.11 Mpc h−1 for Nmem = 3 and less than

0.49 Mpc h−1 for Nmem = 4 produces a new catalogue which is 94% complete and 88% pure. These

values were chosen because they provide the best improvement to the purity with minimal change

to the completeness. Thus, by clipping out clusters with a low richness (i.e. few members), but

relatively large sizes, the purity can be improved by around 36%, while reducing the completeness

by only 4%.

Applying this same clipping procedure to the ‘real’ 2SLAQ groups and clusters, the catalogue

can be separated into ‘gold’ and ‘silver’ samples. Where the gold clusters are those that pass the

clipping procedure and therefore are the most likely to be genuine. The silver clusters fail the

clipping procedure and may still be genuine, but the probability is lower. Out of the 313 total

2SLAQ groups and clusters, 70 are gold and the remaining 243 are silver.

It should be noted that, although the mock appears to be a good representation of the 2SLAQ

galaxies, it is difficult to interpret how well this clipping procedure will translate to the real 2SLAQ

catalogue. Therefore the silver sample clusters are not removed, rather they are assigned a lower

likelihood of being genuine than the gold sample clusters. The final 2SLAQ cluster catalogue

contains an additional column that identifies each cluster as belonging to the gold or silver samples

with ‘G’ or ‘S’ respectively. In fig.2.8 and 2.9 the groups and clusters that form part of the gold

sample are highlighted with gold asterisks.
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Table 2.3: Radial Clipping: Rclip is the radial distance threshold in Mpc h−1 above which all groups
and clusters will be removed, Ntot is the total number of groups and clusters for a given Rclip, Ntrue

is the number of groups and clusters that are matched to 2SLAQ mock haloes for a given Rclip and
the ratio Ntrue/Ntot gives a measure for the purity for a given Rclip.

Nmem = 3

Rclip (Mpc h−1) Ntot Ntrue Ntrue/Ntot

- 17382 6741 0.388

0.60 13998 6739 0.481

0.49 11359 6739 0.593

0.39 9367 6739 0.719

0.28 7998 6739 0.842

0.21 7399 6738 0.911

0.14 6993 6708 0.959

0.11 6723 6563 0.976

0.07 5789 5727 0.989

Nmem = 4

Rclip (Mpc h−1) Ntot Ntrue Ntrue/Ntot

- 5927 3381 0.571

0.70 4561 3306 0.725

0.60 3987 3131 0.785

0.49 3362 2862 0.851

0.39 2966 2697 0.909

0.32 2728 2582 0.946

0.25 2577 2505 0.972

0.18 2433 2415 0.992

0.11 2116 2108 0.996

2.5.6 Cluster Images

Fig. 2.13 shows SDSS DR7 optical g, r and i-band colour images of the regions around the DFoF

detected clusters CL 008, CL 204, CL 122, CL 024 and CL 038. The yellow circles highlight the

positions of the cluster member galaxies, which are labeled with their individual redshifts. These

clusters were chosen to sample serval different redshift bins as listed in Table 2.2.

These images show that the galaxies are distributed in a small area on the sky and are close in

redshift space. An important point to notice is that the distribution of cluster LRGs in each image

varies from spherical to elongated filamentary structures. This is an advantage of the FoF method,

which makes no prior assumptions about the shape of the groups and clusters. CL 204 (top right

panel) in particular shows a rather filamentary distribution of cluster LRGs. The full cluster will be

comprised of many galaxy most of which will not be LRGs and therefore the true shape could well

be more spherical. Other techniques that have prerequisites on the shape of clusters would not be

able to detect this particular object using only the LRGs.
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Figure 2.13: SDSS g, r and i-band colour images of field around CL 008 (top left panel), CL 204
(top right panel), CL 122 (middle left panel), CL 024 (middle right panel) and CL 038 (bottom
panel). Yellow circles indicate the location of the cluster member galaxies, which are labeled with
their individual redshifts.

2.6 Correlation Function

The spatial distribution of galaxies and clusters of galaxies contains a wealth of information

regarding the underlying cosmological model. The most widely used method in the literature

for condensing this information is to measure the autocorrelation function of the positional data.

For our purposes we measure the correlation function simply to compare the statistical spatial

distribution of our cluster sample to other derived cluster samples.



2.6. Correlation Function 90

2.6.1 2SLAQ Clusters

We calculate the two-point correlation function for the 313 2SLAQ groups & clusters obtained

previously. Using the 2SLAQ spectroscopic galaxy catalogue we create a random catalogue, which

replicates the angular completeness on the sky, this process is handled straightforwardly in the

Healpix2 package of software. The radial distribution of the random catalogue is obtained from a

smooth spline fit to the galaxy redshift distribution, n(z). The smoothing ensures the exclusion of

large scale structure voids and filaments.

The correlation function is calculated with the Landy & Szalay estimator (Landy & Szalay

1993),

ξ =
DD − 2DR+RR

RR
, (2.25)

whereDD,DR andRR are the number of pairs of points in the data,D, and random,R, catalogues.

The number of pairs are calculated in 14 bins, equally separated in log space, from r = 5− 90 Mpc

h−1.

The correlation function is usually represented as a power law, ξ(r) = (r/r0)γ , thus making a

comparison with other works quite straight forward. In fig.2.14 we plot the two-point correlation

function of the 2SLAQ clusters (squares with errorbars) and a best-fit power-law slope (red solid

line). Uncertainties in the measurement of ξ(r) are due from Poisson noise (or shot noise), which

arises from a finite number of clusters that do not trace the underlying field, and cosmic variance,

which is a statistical uncertainty introduced by the fact that we can only observe a fraction of the

Universe at any given time. Cosmic variance is most significant at large scales as highlighted by

the errorbars in fig.2.14. The errorbars are estimated using the jackknife method, which involves

dividing the survey intoN sections with equal area or volume. The variance and mean are estimated

from N measures of our statistic. Each measurement is performed on the survey with region i

removed, where i = 1, ..., N .

The jackknife estimate of the variance is given by

σ2
ξ (ri) =

Njk − 1
Njk

Njk∑
j=1

[ξj(ri)− ξ(ri)]2, (2.26)

where Njk is the number of Jackknife samples used and ri represents a single bin in our statistic, ξ

(Lupton 1993). In this analysis we set Njk = 20 samples.

The power law model is best fit with the parameters r0 = 24± 4 Mpc h−1 and γ = −2.1± 0.2,

and the value of the reduced chi-squared is χ2
red = 0.94.

2This software is available from http://healpix.jpl.nasa.gov/
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Figure 2.14: Two-point correlation function for the groups and clusters found in the 2SLAQ
catalogue using the DFoF code (blue squares with error bars) and best-fitting power law slope (red
solid line). ξ(R) was measured using the estimator of Landy & Szalay (1993). Plot produced by
Cristiano Sabiu.

Comparing the r0 value obtained with those found using other low redshift cluster samples

shows good agreement, e.g r0 = 26± 4.5 Mpc h−1 (Borgani et al. 1999), 19.4 ≤ r0 ≤ 23.3 Mpc

h−1 (Miller et al. 1999), 18.8± 0.9 Mpc h−1 (Collins et al. 2000). See Nichol (2001) for a good

review of r0 values for various cluster samples. The clustering length found here is also consistent

with that expected for ΛCDM, 22 ≤ r0 ≤ 27 Mpc h−1 (Colberg et al. 2000).

2.6.2 2SLAQ Mock

The correlation function of the 2SLAQ groups and clusters is also compared with that of the mock

halo catalogue presented in §2.4. Fig.2.15 shows the two-point correlation function for the haloes in

the 2SLAQ mock galaxy catalogue (black squares with error bars) and best-fitting power law slope

(red solid line). The correlation of the mock haloes is best fit with parameters r0 = 23.05± 0.72

Mpc h−1 and γ = −1.95± 0.05, which are perfectly consistent with the parameters found for the

2SLAQ groups and clusters. The errorbars are measured using the jackknife method as before.

Although the errors are much larger for the real 2SLAQ data, this analysis indicates that the

catalogue of groups and clusters found within 2SLAQ using the DFoF code shows the correct level

of clustering with respect to the mock halo catalogue.
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Figure 2.15: Two-point correlation function for the haloes in the 2SLAQ mock galaxy catalogue
(black squares with error bars) and best-fitting power law slope (red solid line). ξ(R) was measured
using the estimator of Landy & Szalay (1993). Plot produced by Cristiano Sabiu.

2.6.3 2SLAQ LRGs

The correlation length of the 2SLAQ LRG sample was calculated by Ross et al. (2007), r0 =

7.45 ± 0.35 Mpc h−1 (see fig.2.16), and by Sawangwit et al. (2009), r0 = 7.5 ± 0.04 Mpc h−1.

Typical galaxies have correlation lengths of r0 ∼ 5 Mpc h−1, which means that LRG are strongly

clustered objects. The correlation length of the 2SLAQ clusters is around five times greater than

typical galaxies and around three times that of the 2SLAQ LRGs. This is to be expected as LRGs

are more biased at all scales than typical galaxies, and at linear scales galaxy clusters are more

biased than LRGs and typical galaxies (Percival et al. 2007; Fedeli et al. 2011).

2.7 Conclusions

We have written an optical cluster finding algorithm based on that of Huchra & Geller (1982). Our

dynamic friends-of-friends (DFoF) code uses a linking length that compensates for selection effects

by changing size depending on the surface number density of galaxies at a given redshift.

We produced a mock catalogue, which is representative of the 2SLAQ catalogue, using the

Horizon 4π simulation and the HOD prescription of Blake et al. (2008) in order to determine the

linking parameters, Rfriend(z) and vfriend(z), in the DFoF code. The code was run with various

combinations of the two parameters producing a set of distinct catalogues. We wrote a membership

matching code in order to determine the completeness and purity of the resulting catalogues relative

to the original mock haloes. Based on this analysis values of Rfriend(z = 0.5) = 0.87 Mpc h−1 and

vfriend(z = 0.5) = 900 kms−1 are chosen, which correspond to a catalogue that is 98% complete
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Figure 2.16: The real-space 2-point correlation function for the 2SLAQ LRG Survey (filled,
red, diamonds) for the Λ cosmology. The best-fit single power-law with r0 = 7.45 ± 0.35 and
γ = 1.72 ± 0.06 is given by the dashed (red) line. The double power-law fit reported for the
angular correlation, w(θ), is shown by the dotted (blue) line. The solid (black) line is a theoretical
prediction for the ξmass(z = 0.55) using the simulations from (Colı́n et al. 1999). These models
have (Ωm,ΩΛ) = (0.3, 0.7), h = 0.7 and a σ8 = 1.0. The lower panel shows the 2SLAQ LRG
ξ(r) measurements (assuming a Λ cosmology) divided by this best-fitting power law with the
dashed line covering 0.4 < σ < 50 Mpch−1 (Ross et al. 2007).

and 52% pure with the largest number of groups and clusters possible. Running the DFoF code

with these values, a catalogue of 313 groups and clusters containing 1152 member galaxies was

produced. The galaxy groups and clusters have an average velocity dispersion of σv = 467.97

kms−1 and an average size of Rclt = 0.78 Mpc h−1.

We tested the validity of the catalogue by obtaining SDSS galaxies in a 1deg2 region around

each cluster centre. We then subtracted the background signal from all the SDSS galaxies within 1

Mpc h−1 of the cluster centre and stacked the results in bins according to cluster redshift. Each of

these bins was examined in SDSS photometric redshift space and colour-magnitude space. This

analysis shows that the groups and clusters are reliable out to z ∼ 0.6. The discrepancies beyond

this range may be owing to the small number of groups and clusters detected at higher redshifts.

Also, there may be some contamination effects in the histograms from the photometric redshift

errors in the SDSS data.

We produce mass estimates for the catalogue using the cluster velocity dispersions according to
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equation 2.19. We tested the reliability of this approach by comparing mass estimates for clusters

found in the 2SLAQ mock with the true masses of the mock haloes to which they are matched.

We find that the mass estimates of the mock catalogue groups and clusters are for the most part a

good to fit to the true halo masses. The deviations seen are most likely the result of contaminating

galaxies in the richness estimates and the small number of high mass clusters detected. In general

one can see that the range of cluster masses is a good match to known masses of massive clusters.

We analysed optical SDSS g, r and i-band colour images of a selection of the clusters, which

span different redshifts. We observe that the galaxy members are distributed in a small region of

space, on the sky and in redshift. We also see an overdensity of red galaxies around the cluster

centres. This is strong evidence that the clusters are genuine. The distribution of LRGs in the

clusters varies from spherical to elongated filamentary structures. This highlights an advantage of

the percolation method in that it makes no prior assumptions about the cluster shapes, which allows

us to detect some structures that other methods may not.

We test different clipping procedures on the 2SLAQ mock group and cluster sizes. This analysis

indicated that the majority of the contamination in the cluster catalogue was attributed to groups

with 3 or 4 members. We found that by clipping out clusters with Rclt < 0.11 Mpc h−1 for Nmem =

3 and Rclt < 0.49 Mpc h−1 for Nmem = 4 improves the purity from 52% to 88%, while reducing the

completeness by only 4%, in the 2SLAQ mock catalogue. By applying this procedure to the real

2SLAQ group and cluster catalogue, the clusters were separated into ‘gold’ and ‘silver’ samples.

Where the gold samples consists of clusters that passed the clipping procedure and are therefore the

most reliable and the silver sample consists of clusters that failed the clipping procedure and may

still be genuine, however less reliable. Out of the 313 total 2SLAQ groups and clusters, 70 are gold

and the remaining 243 are silver.

Finally, the two-point correlation function of the cluster catalogue was tested. A best-fitting

power law model, ξ(r) = (r/r0)γ , was found with parameters r0 = 24 ± 4 Mpc h−1 and

γ = −2.1± 0.2. The value of the reduced chi-squared is χ2
red = 0.94. These values are in good

agreement with those of the mock galaxy catalogue and with those found in the literature (Nichol

2001).

Future surveys such as the Dark Energy Survey (DES), Euclid and Planck will images millions

of galaxies across the whole sky. An abundance of photometric data will be obtained for each of

these objects, however it will not be possible to obtain spectroscopic data for all of them. Therefore,

it is important to develop reliable cluster finding techniques that utilise the photometric data that

will be available. Photometric redshifts, for example, provide a useful way to probe the properties of
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Table 2.4: Cluster Catalogue Sample

Nō ID Nmem RA Dec z σv (kms−1) Rclt (Mpc h−1) log10 Mest (M�) Sample

1 CL 0008 011 152.85693 -0.00323 0.51165 0562.51 02.08 14.3051 G

2 CL 0031 010 210.59379 -0.55691 0.44007 1178.60 02.00 15.2916 G

3 CL 0060 009 035.42705 -0.22677 0.59094 0784.58 01.74 14.7136 G

4 CL 0140 008 342.39005 -0.44521 0.49785 0846.21 01.27 14.8415 G

5 CL 0204 007 158.86053 -0.02893 0.48510 1108.13 00.65 15.1969 G

6 CL 0038 007 191.56150 -0.51722 0.48679 0511.13 01.66 14.1882 G

7 CL 0051 007 190.76950 +0.03930 0.46779 0786.90 01.26 14.7564 G

8 CL 0122 007 161.24470 -0.30396 0.62371 0851.02 01.85 14.8094 G

9 CL 0064 006 202.19576 -0.35692 0.52837 0381.83 00.73 13.7950 G

10 CL 0024 006 343.37305 -0.49057 0.56982 0591.89 01.52 14.3531 G

galaxies along the line of sight when spectroscopic data is not present. All of the results presented

in the chapter will be compared to those found in chapter 3, which will examine the clustering in

the 2SLAQ catalogue using photometric redshifts. This comparison will test the reliability of the

DFoF code to detect structures using photometric data.

Cluster Catalogue

The catalogue contains 313 clusters with the following properties: identifier, number of galaxy

members (or richness), right ascension, declination, redshift, velocity dispersion (in kms−1), radial

size (in Mpc h−1), estimated mass (in log10 M�) and sample to which it belongs (G: gold ; S:

silver). A sample of the first 10 clusters is shown in table-2.4.



CHAPTER 3

OPTICAL CLUSTER DETECTION II:

PHOTOMETRIC FRIENDS-OF-FRIENDS

Abstract

A slightly modified version of the Botzler et al. (2004) photometric redshift friends of friends

algorithm, which uses a dynamic linking length that changes with the surface number density of

galaxies is presented. The code is applied to 2dF-SDSS and QSO (2SLAQ) luminous red galaxy

survey using photometric redshifts obtained using the neural network code ANNz (Collister &

Lahav 2004). A cluster catalogue is produced that matches the spectroscopic catalogue obtained

in chapter 2 to 38% in completeness without any cuts (i.e. including groups and clusters with

Nmem ≥ 3) and up to 80% if matching is only considered for 2SLAQ spectroscopic clusters with

Nmem ≥ 6. The code is also run on the Megaz-LRG DR7 catalogue with linking parameters chosen

based on the physical properties of the clusters found and the completeness of the Megaz-LRG

clusters found within the 2SLAQ area to the 2SLAQ spectroscopic clusters. Two catalogues are

chosen for further analysis as no obvious agreement can be found between these criteria. One

catalogue that has physical properties that would be expected of clusters and one catalogue that has

a high completeness relative to 2SLAQ, but includes some unphysical structures due to merging

in photometric redshift space. Galaxies from regions of one square degree and centred on the

galaxy clusters were downloaded from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7).

Investigating the photometric redshifts and cluster red-sequence of these galaxies shows that

the galaxy clusters detected with the FoF algorithm are reliable out to z ∼ 0.6 for the 2SLAQ

96
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photometric catalogue, consistent with the spectroscopic results, and out to z ∼ 0.65 for the Megaz-

LRG catalogues. These results appear to favour the more complete Megaz-LRG cluster catalogue

with less purity and some merging of structures. The radial profiles of all three cluster catalogues is

examined, also indicating a better agreement between 2SLAQ and the more complete Megaz-LRG

catalogue. A best-fitting power law model , ξ(r) = (r/r0)γ , with parameters r0 = 9.55 ± 4.23

Mpc h−1 and γ = −1.115± 0.29 is found. The clustering length is less than that of the 2SLAQ

spectroscopic clusters due to the inclusion of more false detections in the photometric 2SLAQ

cluster catalogue.

3.1 Introduction

Groups and clusters of galaxies are the largest gravitationally bound objects that one can observe

in the Universe. Studying the mass function of these groups and clusters enables one to constrain

cosmological parameters and to probe dark matter (Press & Schechter 1974).

At present there are many different techniques designed to detect clusters of galaxies at optical

wavelengths (e.g. Couch et al. 1991; Lidman & Peterson 1996; Efstathiou et al. 1988; Davis

et al. 1985; Dalton et al. 1997; Ramella et al. 2002; Kim et al. 2002; Lopes et al. 2004; Ramella

et al. 2001). In the previous chapter (§4) the percolation method of Huchra & Geller (1982),

which detects structure in spectroscopic surveys, was introduced. This method has been shown

to be reliable (Huchra et al. 1983; Geller & Huchra 1983), however due to the time it takes to

obtain decent quality spectra for a large number of objects many of the current and upcoming

surveys, such as the Sloan Digital Sky Survey (SDSS, York et al. 2000), DES (The Dark Energy

Survey Collaboration 2005) and EUCLID (Peacock 2008), are focused on providing good quality

photometric data for large portions of the sky.

One way of using the photometric data to obtain clustering information is by estimating

photometric redshifts for each of the objects. There are many techniques available for photometric

redshift estimation most of which use either template fitting or a training set (e.g. Koo 1985; Loh &

Spillar 1986; Connolly et al. 1995; Bolzonella et al. 2000; Collister & Lahav 2004), however the

errors associated with these photometric redshifts can be around two orders of magnitude larger

than spectroscopic redshifts. Botzler et al. (2004) showed that the percolation method of Huchra &

Geller (1982) could be expanded for use with photometric redshifts and take into account the larger

errors associated with them.

In this chapter the results from chapter 2 are used to calibrate photometric version of the
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friends-of-friends algorithm for use on the Megaz-LRG catalogue. Megaz-LRG is a large subset

of luminous red galaxies from the SDSS with photometric redshifts (Collister et al. 2007). Mock

galaxy catalogues are produced with the intention of constraining the friends-of-friends linking

parameters, however it is shown that more realistic mocks would be required to get reliable

constraints.

The following section provides further information of the data used for calibration and analysis.

Section 3.3 describes the Botzler et al. (2004) friends-of-friends method in detail along with

modifications that were made. Section 3.4 describes the mock galaxy catalogue produced to

constrain the linking parameters. Section 3.5 presents the catalogues produced and their analysis.

Finally, section 3.6 shows the results of examining the cluster two-point correlation functions for

the 2SLAQ photometric catalogue.

3.2 Data

3.2.1 2SLAQ

The 2dF-SDSS and QSO (2SLAQ) Luminous Red Galaxy Survey is a spectroscopic survey of

around 15000 potential luminous red galaxies (LRGs) in the redshift range 0.45 ≤ z ≤ 0.7 (Cannon

et al. 2006). A more detailed description of this catalogue is provided in §2.2. One of the principal

benefits of this sample is the availability of both spectroscopic and photometric data for each of the

galaxies.

3.2.1.1 Photometric Redshifts

The ANNz program (Collister & Lahav 2004), which is described in detail in §1.4.4.2, was

employed to estimate photometric redshifts for the 2SLAQ catalogue. The 2SLAQ spectroscopic

data was used to train the neural network to model the dependency between the 2SLAQ magnitudes

and photometric redshifts (it should be noted that the 2SLAQ quasar data was not used). This

dependency was obtained by using around two thirds of the 2SLAQ catalogue as a mock target

sample or evaluation set and using the remaining third as a training set. An architecture of 5 input

nodes, 1 output node and 2 hidden layers each with 10 nodes was set up (Nin:N1:N2:Nout →
5:10:10:1). The 5 inputs from the mocks are the SDSS u, g, r, i and z magnitudes. Ten nodes were

chosen for the hidden layers to ensure there were twice as many nodes as there were inputs.The

accuracy of the photometric redshifts acquired from the evaluation set is characterised by the bias,
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Figure 3.1: 2SLAQ spectroscopic redshifts versus photometric redshifts obtained form ANNz.

δz, and the dispersion, σ2
z , via

δz≡zphot − zspec (3.1)

and

σ2
z = 〈(δz)2〉 − 〈δz〉2, (3.2)

where zphot is the photometric redshift and zspec is the spectroscopic redshift. Fig.3.1 shows the

2SLAQ photometric redshifts as a function of the spectroscopic redshifts.

3.2.2 Megaz-LRG

Megaz-LRG is a photometric redshift catalogue of over a million SDSS luminous red galaxies

(LRGs) in the redshift range 0.4 ≤ z ≤ 0.7 with limiting magnitude i < 19.8 (Collister et al. 2007).

The LRGs used to make the MegaZ-LRG catalogue were taken from the Sloan Digital Sky Survey

data release 7 (SDSS DR7) five-band (u, g, r, i, z; Fukugita et al. 1996; Smith et al. 2002) imaging

data. LRGs are the most massive and most intrinsically luminous galaxies in the Universe. The

prominent 4000 Å break in the LRG spectra facilitates the measurement of photometric redshifts

for these galaxies (Eisenstein et al. 2003).
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Figure 3.2: Histogram of Megaz-LRG DR7 photometric redshifts (red solid line), 2SLAQ spectro-
scopic redshifts (blue dotted line) and 2SLAQ photometric redshifts (green dashed line). All three
lines are normalised to N/Nmax.

3.2.2.1 Photometric Redshifts

Megaz-LRG photometric redshifts were estimated using ANNz (Collister & Lahav 2004). The

full 2SLAQ catalogue (Cannon et al. 2006) was used as the training set. Fig.3.2 shows the N(z)

distribution for the Megaz-LRG catalogue photometric redshifts.

3.2.2.2 Star-Galaxy Separation

In imaging data it is important to be able to discriminate between stars and galaxies, particularly

for extragalactic studies. In general it is assumed that galaxies are more extended sources than stars

in images. Several codes have been developed to make the distinction between stars and galaxies

using this assumption. Bertin & Arnouts (1996) have shown that neural networks can successfully

be applied to this problem.

The 2SLAQ evaluation set contains ∼ 5% stellar contamination. Collister et al. (2007) use

the 2SLAQ spectroscopy to train the ANNz code to distinguish between stars and galaxies. This

reduces the stellar contamination to ∼ 2% in the evaluation set and from this the full Megaz-LRG

catalogue contains a final column which lists the probability that each object is a galaxy and not

star.
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3.2.2.3 Catalogue

The complete Megaz-LRG DR5 catalogue lists 1,468,028 objects each with ID, right ascension,

declination, u magnitude, g magnitude, r magnitude, i magnitude, z magnitude, model-i magnitude,

photometric redshift, error on the photometric redshift, the probability that the object is a galaxy

and the error on this probability.

3.3 Photometric Friends-of-Friends Method

The friends-of-friends algorithm discussed in this chapter expands upon that described in the

previous chapter for use with photometric redshifts. This method essentially follows that of Botzler

et al. (2004), the principal difference being, as in the previous chapter, the use of dynamic linking

parameters that change with the surface number density of galaxies at a given redshift. This

approach does not require any magnitude limit on the galaxy sample, which makes more galaxies

available for cluster detection. A fluxogram of the photometric Dynamic Friends-of-Friends

(hereafter DFoF) algorithm is shown in fig.3.3.

Following the steps shown in fig.3.3: First the initial values of linking length, R0, the photomet-

ric redshift linking parameter, K, and the minimum number of galaxy members needed to form a

group/cluster, Nmin, are chosen. To compensate for selection effects, R0 is varied via

Rfriend(z) ∝ R0

(
dN

dz

dz

dV

1
Asky

)− 1
2

, (3.3)

where dN/dz is the surface number density of galaxies at each redshift in the range covered by the

galaxy catalogue, dV /dz is the differential comoving volume and Asky is the fraction of sky area

covered in the catalogue relative to the total sky area. This dynamic linking parameter is required

because the fixed parameters used by Botzler et al. (2004) require that the sample be volume limited.

Due to the colour cuts included in 2SLAQ, volume limiting the catalogue removes a large number

of objects that would contribute to the clustering.

The entire catalogue is divided into redshift slices with size, δzini, of the order of the typical

photometric redshift error of the galaxies, δzi, in the range zmin ≤ z ≤ zmax. For the work presented

in this chapter δzini = 0.01. Percolation is performed on each redshift slice independently.

A galaxy i is selected from the catalogue that has not yet been assigned to a group and lies in

the redshift range zmin ≤ z ≤ zmax. The projected distance between galaxy i and second galaxy j,

Dij , is calculated using

Dij = cos−1(sin(δi)sin(δj) + cos(δi)cos(δj)cos(αi − αj)), (3.4)
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Figure 3.3: Fluxogram of the photometric FoF algorithm with dynamic linking length. The blue
and red borders show the additional redshift slicing and merging procedures respectively. Based on
Botzler et al. (2004).
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where α and δ are right ascension and declination respectively.

The two galaxies are linked together (i.e. are friends) if they satisfy the conditions

Dij ≤ Rfriend(z) (3.5)

and

|zi − zini| ≤ K × δzi
2
, (3.6)

where zi is the photometric redshift of the galaxy and zini is the redshift of the slice. Equation 3.6

is important because it shows that galaxies can exist in multiple redshift slices and therefore can

form part of multiple clusters. This is the principle equation that makes this version of the FoF code

applicable to photometric redshifts.

A protogroup-candidate k is formed that includes galaxy i and its friends. A search is then

made around the galaxies linked to i. This process is repeated until no further friends are found.

The protogroup-candidate k is defined as a real protogroup if it satisfies

Nk ≥ Nmin. (3.7)

For the purposes of this work Nmin > 3. This is a reasonable assumption when dealing with LRGs,

which are not common objects.

Once this process have been performed on all redshift slices (i.e. zini = zmax) the final merging

procedure begins in which a search is carried-out for protogroups with galaxies in common. If

a common galaxy is found between two protogroups a final group candidate n is formed, which

contains all unique group members from the protogroups.

3.4 Mock Catalogue

As in the previous chapter, a simulated galaxy catalogue was produced to determine the optimal

choice of linking parameters, R0 and K. The halo catalogue was derived from the Horizon 4π

simulation (Teyssier et al. 2009; Prunet et al. 2008). A full description of how the spectroscopic

mock catalogue was produced is provided in §2.4.

To make the spectroscopic mock applicable to the 2SLAQ photometric data, photometric

redshifts were added to the mock galaxies using

zphot = zspec + b(zspec) + erf−1(x)σ
√

2 + µ, (3.8)
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Figure 3.4: Photometric redshift variance of 2SLAQ data in spectroscopic redshift bins (left panel).
Bias between photometric versus spectroscopic redshifts and x = y (right panel). Plots produced
by Cristiano Sabiu.

where µ and σ are the mean and the variance of the photometric redshifts in a given bin respectively,

b is the bias given by µphot − µspec, and x is a random number between 0 and 1. erf−1(x) is the

inverse error function given by

erf−1(x) =
∞∑
k=0

ck
2k + 1

(√π
2
x
)2k+1

. (3.9)

σ was measured by examining the variance of 2SLAQ photometric redshifts, which were obtained

with ANNz, in bins of spectroscopic redshift as shown in the left panel of fig.3.4. The bias was

obtained from the difference between the mean 2SLAQ photometric and spectroscopic redshifts as

seen in the right panel of fig.3.4.

Since the photometric redshifts scatter the positions of the mock galaxies along the line of sight,

the number density in the range 0.4 ≤ z ≤ 0.65, which is the range of interest for comparison with

2SLAQ, will be altered. To compensate for this effect, galaxies are removed at random in redshift

bins where the number density of the mock does not match that of 2SLAQ. This was done in two

different ways, producing two different versions of the mock. In the first version, photometric

redshifts are added to the galaxies and then objects are removed to maintain the the correct number

density. The final version 1 photometric mock catalogue contains 388,029 galaxies. For the second

version of the mock, galaxies were removed first and then photometric redshifts were added to

the remaining objects. The final version 2 photometric mock catalogue contains 419,452 galaxies.

Both mocks contain around half as many objects as the spectroscopic mock catalogue, however the

number density in the range 0.4 ≤ z ≤ 0.65 is the same as can be seen in fig.3.5. Fig.3.6 shows the

distribution of the mock spectroscopic redshifts versus photometric redshifts. The mocks match the
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Figure 3.5: Number density as a function of redshift of the photometric mock halo catalogue (blue
dashed line) and the 2SLAQ catalogue (red solid line). Mock version 1 (left panel), mock version 2
(right panel).

Figure 3.6: Spectroscopic redshifts versus photometric redshifts for 2SLAQ photometric mock
catalogue. Mock version 1 (left panel), mock version 2 (right panel).

2SLAQ photometric redshifts in the range 0.4 ≤ z ≤ 0.65, however the fit is better in the second

version of the mock (right panel).

Both versions of the mock were used in the data analysis to determine what effect, if any, would

the way in which galaxies were removed have on the results.

3.5 Data Analysis

3.5.1 Linking Parameter Optimisation

The method for determining the best combination of linking parameters for the photometric DFoF

essentially follows that applied in §2.5, however several important differences should be noted.

In the previous chapter, the linking parameters were constrained by comparing cluster cat-
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alogues, obtained by running the DFoF code with different combinations of parameters, with

simulated haloes. The previous section described how photometric redshifts were included in this

same mock catalogue, producing two different versions of a photometric mock catalogue. It should

be noted that these mocks mimic the number density of 2SLAQ and cannot be directly applied

to Megaz-LRG. The reason being that Megaz-LRG has a much higher number density of objects

(1,939,760 galaxies within ∼8000 deg2) than 2SLAQ (13,133 galaxies within ∼145 deg2) and

therefore the linking parameters for each catalogue must be constrained independently. It would be

necessary to produce a mock that mimics the Megaz-LRG number density to preform the same

analysis, however for the purposes of this project this approach was not pursued. The reason for

this is that the mock would need to be more realistic than that produced in §3.4 to provide useful

information about the completeness and purity of the linking parameters, which would require a lot

more time than can currently be applied to this project. This point is explained in greater detail in

the following subsections.

Another important difference between this chapter and the previous one is that the spectroscopic

2SLAQ cluster catalogue presented in chapter 2 serves as a sort of ‘truth table’ for a cluster

catalogue obtained using the 2SLAQ photometric redshifts. This provides an additional method

for constraining the linking parameters. In addition, since all of the 2SLAQ galaxies are included

in the Megaz-LRG catalogue, the spectroscopic 2SLAQ cluster catalogue also provides a way

of determining the best set of linking parameters for Megaz-LRG. As the right combination of

parameters should reproduce the majority of the same structures.

Finally, as no mock analysis is performed for Megaz-LRG, the linking parameters for this

catalogue can further be constrained simply by examining the physical properties of the resulting

clusters from a given combination of R0 and K.

3.5.1.1 2SLAQ

The DFoF code was run on the the two versions of the photometric mocks varying R0 and K in

order to determine the combination of the two parameters that best reproduce the simulated haloes.

DFoF was additionally run with a range of R0 and K values on the 2SLAQ photometric data in

an effort to find a set of parameters that reproduce the 2SLAQ spectroscopic cluster catalogue. To

maintain a more physical interpretation of the friend radius, R0 is hereafter expressed in terms of

Rfriend(0.5) according to equation 3.3.

In order to determine the completeness and purity of the DFoF clusters relative to the simulation

haloes, a membership matching code was implemented. The technique involves looking at the
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galaxy members assigned to each cluster by the DFoF code and matching these to the original halo

member galaxies. The clusters are examined in descending order of richness to ensure that the

largest clusters are the first to be matched to mock haloes. DFoF clusters may contain contributions

from several mock haloes, therefore each cluster is matched to the mock halo with the highest

number of shared members. Thus, if two haloes are merged into one cluster only one of the

two haloes will be matched. Each cluster is uniquely matched to one halo and any cluster that

corresponds to a halo that has already been matched, which will be of equal or lesser richness, will

be ignored. The completeness and purity are defined via

Completeness =
Nmatches

Nhaloes
(3.10)

and

Purity =
Nmatches

Nclusters
, (3.11)

where Nmatches is the total number of unique matches, Nclusters is the total number of DFoF clusters

found and Nhaloes is the total number of mock haloes. Nhaloes is calculated ignoring all mock haloes

with less than 3 galaxy members as this is the detection limit of the DFoF code. It should be

noted that both the completeness and the purity are functions of the richness of the objects in the

‘true’ halo catalogue and the DFoF cluster catalogue respectively. In this section both the 2SLAQ

spectroscopic catalogue and the mocks are considered to be true halo catalogues.

Fig.3.7 shows the number of clusters detected in the 2SLAQ photometric redshift catalogue

(top left panel), and the unique completeness (top right panel) and purity (middle left panel) of

the photometric clusters relative to 2SLAQ spectroscopic groups and clusters all as a function of

Rfriend(z = 0.5) and K. This figure also shows the unique completeness for groups and clusters

matched to 2SLAQ spectroscopic groups and clusters with Nmem ≥ 6 (middle right panel) and the

unique completeness (bottom left panel) and purity (bottom right panel) relative to the 2SLAQ

gold sample groups and clusters (see §2.5.5). This figure indicates that the maximum number

of clusters is found around Rfriend(0.5) = 1.8 h−1Mpc. All three completeness plots show the

same distribution in which the completeness peaks around Rfriend(0.5) = 0.8 h−1Mpc then dips

and peaks again around Rfriend(0.5) = 1.2 h−1Mpc. This indicates that beyond the initial peak

structures are merging together lowering the completeness before smaller structures are formed

increasing it again. The first peak corresponds to a cluster catalogue that is 38% complete and

25% pure relative to the 2SLAQ spectroscopic cluster catalogue (this includes all objects with

Nmem ≥ 3). The completeness can be improved to around 80% if matching is only made with
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2SLAQ groups and clusters with six or more members or to around 70% if the groups and clusters

are compared to the 2SLAQ gold sample clusters. Both purity plots also show a similar distribution

in which the purity peaks around Rfriend(0.5) = 0.2 h−1Mpc for K values between 1.4 and 1.8 and

the drops before increasing again around Rfriend(0.5) = 3.5 h−1Mpc. This later increase in purity

is the result of mass merging of the clusters that eventually reaches a point at which the cluster

catalogue contains only a few clusters that include all the galaxies in the galaxy catalogue.

Fig.3.8 shows the number of clusters detected in both versions of the mock photometric redshift

catalogue (top panels), and the unique completeness (middle panels) and purity (bottom panels)

of the DFoF clusters relative to mock haloes all as a function of Rfriend(z = 0.5) and K. Some

parameter combinations were not run for the first version of the mock because the clusters merged

into highly unphysical structures, this is the cause of the sharp borders seen in the left panels.

This figure clearly shows that the completeness is significantly affected by the way in which the

mock is produced as the levels of completeness differ quite significantly from one mock to another.

Additionally, there seems to be little correlation with the results from the 2SLAQ photoz matching.

The first version of the mock peaks in completeness at Rfriend(0.5) = 0.15 h−1Mpc and K = 1.8

and the second version of the mock peaks initially at Rfriend(0.5) = 0.25 h−1Mpc and K = 1.2

and then again at Rfriend(0.5) = 0.8 h−1Mpc and K = 1.5. The first two sets of parameters

when run on the real 2SLAQ photometric data produce zero clusters. The last set of parameters

( Rfriend(0.5) = 0.8 h−1Mpc and K = 1.5) coincides with the 2SLAQ photoz matching results (

Rfriend(0.5) = 0.8 h−1Mpc and K = 1.8), however perhaps only coincidentally.

These results indicate that the mocks are too basic to reveal the true levels of completeness and

purity for the 2SLAQ photometric data. A decent degree of correlation would be expected between

the mocks and the 2SLAQ photometric catalogue since the number densities of both catalogues are

roughly the same. This can partially be attributed to the simplistic manner in which the photometric

redshifts were assigned to the galaxies, however the way in which objects are removed from the

photometric mocks appears to have a significant effect on the clustering. A more sophisticated

mock would be required to improve the results from this analysis. Ideally this mock would contain

realistic colours for each of the galaxies in the catalogue, which would allow photometric redshifts

to estimated directly. Also the way in which the photometric mock is diluted to match the number

density of the spectroscopic mock would have to be done in way that does not significantly effect

the clustering. For purposes of this project it was decided to leave a more detailed mock analysis

for a later study and therefore no mocks were created to simulate the Megaz-LRG catalogue in this

chapter.
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Figure 3.7: Number of clusters detected in the 2SLAQ photometric redshift catalogue as a function
of Rfriend(z = 0.5) and K (top left panel). Unique completeness (top right panel) and purity (middle
left panel) of the photometric clusters relative to 2SLAQ spectroscopic groups and clusters as a
function of Rfriend(z = 0.5) and K. Unique completeness for groups and clusters with Nmem ≥ 6
(middle right panel) and completeness (bottom left panel) and purity (bottom right panel) of 2SLAQ
photometric redshift catalogue relative to 2SLAQ spectroscopic gold sample groups and clusters.
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Figure 3.8: Number of clusters (top panels) detected in the mock photometric redshift catalogues
(v1 mock left panels, v2 mock right panels) as a function of Rfriend(z = 0.5) and K. Unique
completeness (middle panels) and purity (bottom panels) of the FoF clusters relative to mock haloes
as a function of Rfriend(z = 0.5) and K.
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Using only the results from the 2SLAQ photometric cluster analysis, the parameter set

Rfriend(0.5) = 0.8 h−1Mpc and K = 1.8 was chosen for finding groups and clusters in the 2SLAQ

photometric catalogue as the resulting catalogue contains the most realistic looking structures out

of the two peaks in fig.3.7.

3.5.1.2 Megaz-LRG

As the mock results for the 2SLAQ photometric catalogue were unreliable, for the Megaz-LRG

catalogue no mock analysis is performed. To determine the best choice of FoF parameters for Megaz-

LRG an analysis is made of the resulting physical cluster properties from a given combination of

Rfriend(z = 0.5) and K.

Fig.3.9 shows the number of clusters detected in the Megaz-LRG DR7 catalogue, the richness

of the largest cluster, the size of the largest cluster and the average size of all clusters as a function

of Rfriend(z = 0.5) and K. A threshold of 100 LRG members is chosen to limit the production of

unphysical Megaz-LRG clusters, which is indicated with a dashed line in the top right panel of

the figure. The maximum physical size of the largest cluster is limited to a few hundred h−1Mpcs,

which is indicated with a dot-dashed line in the bottom left panel of the figure. This is well above

the expected size of the largest cluster, but this soft limit allows for some merging of structures in

the cluster catalogue. It should also be noted that this maximum value is not representative of the

average size of structures in the cluster catalogue. Finally, the average size of all clusters in the

catalogue is limited to around 1 h−1Mpc, which is indicated with a dotted line in the bottom left

panel of the figure.

To gain some understanding of the levels of completeness and purity for a given set of Rfriend(z

= 0.5) and K in Megaz-LRG, a cut version of the catalogue was produced, which contains only

Megaz-LRG galaxies within the 2SLAQ area as shown in fig.3.10. The groups and clusters found

within this area can then be compared with the 2SLAQ spectroscopic cluster catalogue (as all

2SLAQ galaxies are contained within Megaz-LRG) in order to get an idea of the completeness

and purity as a function of Rfriend(z = 0.5) and K. The combination of parameters for Megaz-LRG

will differ from those of 2SLAQ photoz, as the Megaz-LRG catalogue has a much higher number

density of objects. 2SLAQ contains around 13,000 objects within 145 deg2, while Megaz-LRG

DR7 contains around 2,000,000 objects within an area of around 8000 deg2. This difference arrises

because the 2SLAQ catalogue was produced by selecting LRGs at random from this area and it is

therefore not complete.

Fig.3.11 shows the number of Megaz-LRG clusters detected in the 2SLAQ area (top left panel),
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Figure 3.9: Number of clusters detected in the Megaz-LRG catalogue (top left panel), the richness
of the largest cluster (top right panel), the size of the largest cluster (bottom left panel) and the
average size of all clusters as a function of Rfriend(z = 0.5) and K (bottom right panel).

Figure 3.10: Distribution of Megaz-LRG galaxies within the 2SLAQ area.
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Figure 3.11: Number of Megaz-LRG clusters detected in the 2SLAQ area (top left panel), and the
unique completeness (top right panel) and purity (bottom panel) of the groups and clusters relative
to 2SLAQ spectroscopic cluster catalogue all as a function of Rfriend(z = 0.5) and K.

and the unique completeness (top right panel) and purity (bottom panel) of the groups and clusters

relative to 2SLAQ spectroscopic cluster catalogue all as a function of Rfriend(z = 0.5) and K. The

limits imposed from fig.3.9 are displayed on top of the completeness and purity plots. This figure

clearly shows that point at which the cluster catalogue satisfies the limits imposed from 3.9 and the

point at which it is complete are inconsistent.

Based on these results, two Megaz-LRG cluster catalogues are chosen for further analysis. The

first catalogue corresponds to parameters Rfriend(z = 0.5) = 0.5h−1Mpc and K = 0.8 (Megaz-

LRG v1), which falls within the limits imposed from fig.3.9, but has very low completeness (∼ 5%

matching to Nmem ≥ 3 or ∼ 33% matching to Nmem ≥ 6). The second catalogue corresponds

to parameters Rfriend(z = 0.5) = 0.75h−1Mpc and K = 1.5 (Megaz-LRG v2), which produces

more unphysical structures but has a much higher completeness (∼ 35% matching to Nmem ≥ 3 or

∼ 72% matching to Nmem ≥ 6) according to fig.3.11.

The choice of two different catalogues can be justified for the following reasons. Firstly, it may

be necessary to produce some highly unphysical structures due to merging in order to obtain the
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Figure 3.12: Angular positions of the 2SLAQ spectroscopic cluster member galaxies for clus-
ters 0008 and 0060 (red crosses), and member galaxies for Megaz-LRG cluster catalogues with
Rfriend(z = 0.5) = 0.5h−1Mpc and K = 0.8 (blue ‘X’s), Rfriend(z = 0.5) = 0.75h−1Mpc and
K = 1.5 (green diamonds) and Rfriend(z = 0.5) = 1.0h−1Mpc and K = 1.5 (black squares)
within same area.

desired level of completeness in the cluster catalogue. This may be due to the high number density

of objects in Megaz-LRG. A secondary cluster analysis of the substructures of these extremely

large clusters may reveal the true objects. Secondly, it is also difficult to discern how well matching

Megaz-LRG photometric clusters to 2SLAQ spectroscopic clusters will reveal the true amount of

completeness and purity in the catalogue. Therefore examining the statistical properties of both

catalogues may help to identify which constraints produce the most realistic cluster catalogue.

These points are more clearly illustrated in the following subsection.

3.5.1.3 Case Study

Fig.3.12 shows the angular positions of the 2SLAQ spectroscopic cluster member galaxies for

clusters 0008 and 0060 (red crosses). This catalogue was produced using parameters Rfriend(z =

0.5) = 0.87h−1Mpc and vfriend(z = 0.5) = 900 kms−1 in the previous chapter (chapter 2).

Member galaxies for Megaz-LRG cluster catalogues with Rfriend(z = 0.5) = 0.5h−1Mpc and

K = 0.8 (blue ‘X’s), Rfriend(z = 0.5) = 0.75h−1Mpc and K = 1.5 (green diamonds) and

Rfriend(z = 0.5) = 1.0h−1Mpc and K = 1.5 (black squares) are over plotted within the same area.

This figure shows that in the case of cluster 0008 the Megaz-LRG catalogue with parameters

Rfriend(z = 0.5) = 0.5h−1Mpc and K = 0.8 identifies four out of the eleven members, which

is sufficient for identifying the structure. The same Megaz-LRG catalogue does not identify any

members of cluster 0060, however the catalogue with parameters Rfriend(z = 0.5) = 0.75h−1Mpc
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and K = 1.5 identifies three out of the nine members. This clearly shows that there is a higher

completeness for the larger parameter set, although the catalogue contains some highly unphysical

structures as seen in fig.3.9. The richest object found in the version 1 Megaz-LRG cluster catalogue

contains 89 LRGs and has a size of 2.23 h−1Mpc, which is fairly reasonable considering the number

of objects. This set of parameters marks the point at which cluster merging is only just starting and

therefore the structures are much more pure, but also much less complete. The richest object found

in version 2 contains 35,023 LRGs and has a size of 1442.25 h−1Mpc, which is highly unphysical

and is clearly the result of over-merging. It should be noted that this object is not representative of

the entire catalogue and is in no way considered to be a genuine cluster.

3.5.2 Basic Results

Running the photometric DFoF algorithm using a linking length of Rfriend(z = 0.5) = 0.85 Mpc

and a photometric redshift linking parameter of K = 1.8 on the 13,133 galaxies in the 2SLAQ

photometric redshift catalogue produced a total of 569 groups and clusters containing 2,180 member

galaxies. Fig.3.13 shows the angular position of the centres of these groups and clusters (top left

panel), their distribution with respect to redshift (top right panel), the distribution of cluster sizes,

Rclt, as a function of redshift (bottom left panel) and a histogram of the cluster sizes (bottom right

panel). Where Rclt is defined as the average projected distance from the cluster centre of the galaxy

members. The ‘x’s indicate clusters with three members, the blue circles indicate clusters with

between four and six members and the red square indicate clusters with seven or more members.

These plots illustrate that on average the richest clusters have the largest sizes as expected. Around

65% of all the groups and clusters have sizes less than 1 h−1Mpc, which is comparable with∼ 77%

of spectroscopic 2SLAQ clusters, which implies that the majority of the clusters are virialised

structures. A general increase can be seen in the average cluster sizes in the range 0.65 ≤ z ≤ 0.70,

however this is somewhat expected as z ≈ 0.70 is the limit of the 2SLAQ catalogue.

Running the photometric DFoF algorithm using a linking length of Rfriend(z = 0.5) = 0.5

h−1Mpc and a photometric redshift linking parameter of K = 0.8 on the 1,939,760 galaxies

in the Megaz-LRG DR7 photometric redshift catalogue produced a total of 21,255 groups and

clusters containing 73,073 member galaxies. While running the code using linking parameters

of Rfriend(z = 0.5) = 0.75 Mpc and K = 1.5 produced a total of 114,874 groups and clusters

containing 544,008 member galaxies. Fig.3.14 and fig.3.15 show the angular position of the centres

of these groups and clusters (top left panel), their distribution with respect to redshift (top right

panel), the distribution of cluster sizes, Rclt, as a function of redshift (bottom left panel) and a
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Figure 3.13: Angular position of the 2SLAQ photometric cluster centres (top left panel), their
distribution with respect to redshift (top right panel), the distribution of the cluster sizes, Rclt, as a
function of redshift (bottom left panel) and a histogram of the cluster sizes (bottom right panel).

histogram of the cluster sizes (bottom right panel). Around 97% of the Rfriend(z = 0.5) = 0.5

h−1Mpc and K = 0.8 Megaz-LRG clusters, and ∼ 94% of the Rfriend(z = 0.5) = 0.75 h−1Mpc

and K = 1.5 clusters have sizes less than 1 h−1Mpc. This is not surprising considering the much

higher number of objects detected, but does clearly show that the unphysical structures found are

a very small fraction of the total number of clusters. In addition, these figures show that for both

mocks the majority of larger clusters are found at the edges of the redshift distribution.

The results of fig.3.14 and fig.3.15 indicate that the Megaz-LRG catalogue with linking param-

eters Rfriend(z = 0.5) = 0.75 h−1Mpc and K = 1.5 may be the better choice, as the catalogue is

more complete and at most only ∼ 6% of the clusters are unphysical.

3.5.3 Background Subtraction

As in the previous chapter, the DFoF groups and clusters for the three catalogues (2SLAQ photo-

metric catalogue, and Megaz-LRG catalogues v1 and v2) were examined by looking for peaks in

the photometric redshift distribution and colour-magnitude relation of SDSS galaxies around the
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Figure 3.14: Angular position of the Megaz-LRG DR7 (with linking parameters Rfriend(z = 0.5) =
0.5 h−1Mpc and K = 0.8) photometric cluster centres (top left panel), their distribution with
respect to redshift (top right panel), the distribution of the cluster sizes, Rclt, as a function of redshift
(bottom left panel) and a histogram of the cluster sizes (bottom right panel)

cluster centres. Using an SQL query regions of one square degree and centred on the FoF cluster

candidates were downloaded from the SDSS DR7 catalogue. These squares were downloaded

for each object in each catalogue and include all SDSS galaxies with photometric redshifts. The

properties downloaded for each galaxy were: id, ra, dec, u-magnitude, g-magnitude, r-magnitude,

i-magnitude, z-magnitude, model i-magnitude, photometric redshift, photometric redshift error

and star likelihood. In each of these squares all galaxies within a 1 h−1Mpc radius of the centre

were taken as cluster members with background, regardless of redshift, and all galaxies between

3 and 7 h−1Mpc were used as field galaxies. Galaxies between 1 and 3 h−1Mpc were ignored.

These limits were chosen because, on average, one would not expect galaxies father than 3 h−1Mpc

from a real cluster centre to be genuine members. Using the DFoF cluster redshifts, the data

from the corresponding SDSS squares were stacked in redshift slices of ∆z = 0.05 in the range

0.4 ≤ z ≤ 0.7. Due to constrains on time and storage space background subtraction was only per-

formed for Megaz-LRG v1 clusters with Nmem ≥ 6 and Megaz-LRG v2 clusters with Nmem ≥ 10,

which corresponds to 860 and 5,088 objects respectively, where Nmem is the number of galaxy
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Figure 3.15: Angular position of the Megaz-LRG DR7 (with linking parameters Rfriend(z = 0.5) =
0.75 h−1Mpc and K = 1.5) photometric cluster centres (top left panel), their distribution with
respect to redshift (top right panel), the distribution of the cluster sizes, Rclt, as a function of redshift
(bottom left panel) and a histogram of the cluster sizes (bottom right panel)

members in a group or cluster (i.e. the richness).

In each cluster redshift bin the stacked SDSS galaxies were binned by photometric redshift.

The number of SDSS galaxies assigned to the field was then subtracted from the number of SDSS

galaxies assigned as cluster members plus background in each redshift bin. This subtraction was

done taking into account the difference in area between the two regions. Fig.3.16, fig.3.17 and

fig.3.18 show the number of SDSS background subtracted galaxies as a function of photometric

redshift for all groups and clusters in the 2SLAQ photoz catalogue and the Megaz-LRG catalogues

respectively. The blue dashed line are the background galaxies, the green dot-dashed line are the

foreground galaxies and the red solid line are the background subtracted galaxies. In these plots the

background subtraction should average out to zero if there is no overdensity in the field. Peaks can

been identified in each of the plots at the cluster redshift range. These peaks are not as pronounced

as those seen in fig.2.10 from the 2SLAQ spectroscopic catalogue, however this remains a strong

indication that the DFoF cluster candidates are genuine structures. In fig.3.16, like in fig.2.10, peaks

can clearly be seen out to a redshift z ∼ 0.6 after which the plots become noisy, however fig.3.17
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and fig.3.18 still show evidence of a peak at the cluster redshift in the range 0.6 ≤ z ≤ 0.65. This is

because a much larger number of objects at higher redshifts have been identified in the Megaz-LRG

cluster catalogues. The noise seen above this redshift range can partially be attributed to the quality

of the SDSS photometric redshifts.

To look for the colour-magnitude relation of the groups and clusters in each cluster catalogue,

i-magnitude vs (g − i)-colour maps were made for both field galaxies and cluster+field galaxies in

each SDSS square. The C-M maps were then stacked by cluster redshift in redshift slices. Finally

the stacked field galaxy maps were subtracted from the stacked cluster galaxy maps taking into

account the relative areas. Fig.3.19, fig.3.20 and fig.3.21 show the background subtracted C-M

diagrams for SDSS galaxies. The maps show a trend in colour-magnitude space that resembles

a cluster red sequence. The cluster red sequence is an observational property whereby cluster

galaxies are more red than field galaxies at the same redshift. Similarly to fig.3.16, fig.3.19 shows

a less noticeable trend than that see in fig.2.11 with the same cut-off at z ∼ 0.6. Fig.3.20 and

fig.3.21 show a much sharper trend (∼ 0.3 in g − i) than fig.3.19 that becomes more noisy with

redshift. These figures are another strong indication that a large fraction of the objects in the cluster

catalogues are genuine structures.

The redshift peaks and red sequence track appears more prominent in the Megaz-LRG v2

cluster catalogue, which indicates that the catalogue is more complete than the Megaz-LRG v1

cluster catalogue. This implies that the completeness levels shown in fig.3.11 are, to a certain

degree, representative of reality and that it may be better to produce a more complete and unphysical

catalogue that can be reanalysed later on.

3.5.4 Radial Profile

Fig.3.22 shows the radial profile of 2SLAQ spectroscopic cluster galaxies (red solid line), Megaz-

LRG photometric cluster catalogue members, with linking parameters Rfriend(z = 0.5) = 0.5

h−1Mpc and K = 0.8 (blue dashed line), and Megaz-LRG photometric cluster catalogue members,

with linking parameters Rfriend(z = 0.5) = 0.75 h−1Mpc and K = 1.5 (green dot-dashed line).

The red triple dot-dashed lines show the the 2SLAQ spectroscopic radial profile multiplied by the

ratios of the number of 2SLAQ spectroscopic cluster galaxies (1,152) to the number of Megaz-LRG

cluster galaxies (73,078 for v1, 544,022 for v2).

This provides further evidence that the Megaz-LRG v2 cluster catalogue uses a better choice

of linking parameters as the 2SLAQ profile, when normalised, appears to be a good fit to the

Megaz-LRG v2 profile.
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Figure 3.16: Number of SDSS background subtracted galaxies as a function of photometric redshift
for all groups and clusters found in the 2SLAQ photometric catalogue. The blue dashed line are the
background galaxies, the green dot-dashed line are the foreground galaxies and the red solid line
are the background subtracted galaxies.
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Figure 3.17: Number of SDSS background subtracted galaxies as a function of photometric
redshift for all groups and clusters with Nmem ≥ 6 found in the Megaz-LRG catalogue (with
linking parameters Rfriend(z = 0.5) = 0.5 h−1Mpc and K = 0.8). The blue dashed line are the
background galaxies, the green dot-dashed line are the foreground galaxies and the red solid line
are the background subtracted galaxies.
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Figure 3.18: Number of SDSS background subtracted galaxies as a function of photometric
redshift for all groups and clusters with Nmem ≥ 10 found in the Megaz-LRG catalogue (with
linking parameters Rfriend(z = 0.5) = 0.75 h−1Mpc and K = 1.5). The blue dashed line are the
background galaxies, the green dot-dashed line are the foreground galaxies and the red solid line
are the background subtracted galaxies.
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Figure 3.19: Colour-Magnitude diagrams for background subtracted SDSS galaxies for the 2SLAQ
photometric cluster catalogue. The maps show a clear trend in colour-magnitude space that
resembles a cluster red sequence.
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Figure 3.20: Colour-Magnitude diagrams for background subtracted SDSS galaxies for the Megaz-
LRG cluster catalogue (with linking parameters Rfriend(z = 0.5) = 0.5 h−1Mpc and K = 0.8)
with Nmem ≥ 6. The maps show a clear trend in colour-magnitude space that resembles a cluster
red sequence.
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Figure 3.21: Colour-Magnitude diagrams for background subtracted SDSS galaxies for the Megaz-
LRG cluster catalogue (with linking parameters Rfriend(z = 0.5) = 0.75 h−1Mpc and K = 1.5)
with Nmem ≥ 10. The maps show a clear trend in colour-magnitude space that resembles a cluster
red sequence.
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Figure 3.22: Radial profile of 2SLAQ spectroscopic cluster galaxies (red solid line), Megaz-LRG
photometric cluster catalogue members, with linking parameters Rfriend(z = 0.5) = 0.5 h−1Mpc
and K = 0.8 (blue dashed line) and Megaz-LRG photometric cluster catalogue members, with
linking parameters Rfriend(z = 0.5) = 0.75 h−1Mpc and K = 1.5 (green dot-dashed line).

3.6 Correlation Function

The two-point correlation function for the 569 2SLAQ photometric groups and clusters obtained

previously is calculated. Using the 2SLAQ photometric galaxy sample, a random catalogue is cre-

ated that replicates the angular coverage on the sky, while assuming constant angular completeness

with the observed region. This process is handled straightforwardly in the Healpix1 package of

software. The radial distribution of the random catalogue is obtained from a smooth spline fit to

the galaxy redshift distribution, n(z). The smoothing ensures the exclusion of large scale structure

voids and filaments.

The correlation function is calculated with the Landy & Szalay estimator (Landy & Szalay

1993),

ξ =
DD − 2DR+RR

RR
, (3.12)

whereDD,DR andRR are the number of pairs of points in the data,D, and random,R, catalogues.

The number of pairs are calculated in 14 bins, equally separated in log space, from r = 5− 90 Mpc

h−1.
1This software is available from http://healpix.jpl.nasa.gov/
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Figure 3.23: Two-point correlation function for the groups and clusters found in the 2SLAQ
photometric catalogue using the DFoF code (blue squares with error bars) and best-fitting power
law slope (black solid line). ξ(R) was measured using the estimator of Landy & Szalay (1993). Plot
provided by Cristiano Sabiu.

In fig.3.23 the two-point correlation function of the 2SLAQ clusters (squares with error bars)

and a best-fitting power-law slope (red solid line) are plotted. The error bars are estimated using the

jackknife method, which involves dividing the survey into N sections with equal area or volume.

The variance and mean are estimated from N measures of the statistic. Each measurement is

performed on the survey with region i removed, where i = 1, ..., N .

The jackknife estimate of the variance is (Lupton 1993)

σ2
ξ (ri) =

Njk − 1
Njk

Njk∑
j=1

[ξj(ri)− ξ(ri)]2, (3.13)

where Njk is the number of Jackknife samples used and ri represents a single bin in the statistic, ξ.

In this analysis Njk = 20 samples is set.

The power law model, ξ(r) = (r/r0)γ , is best fit with the parameters r0 = 9.55± 4.23 Mpc

h−1 and γ = 1.115± 0.29. The value of the reduced chi-squared is χ2
red = 0.89.

These results show less correlation than those found in §2.6, where the correlation function

of the spectroscopic cluster catalogue was best fit with parameters r0 = 24 ± 4 Mpc h−1 and

γ = −2.1 ± 0.2 and the mock halo catalogue was best fit with parameters r0 = 23.05 ± 0.72

Mpc h−1 and γ = −1.95 ± 0.05. This discrepancy is partially due to a higher number of false
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detections or impurities in the photometric cluster catalogue, which dilutes the clustering length.

Objects are detected at random locations where there is no genuine structure, which will cause the

amount of correlation at a given scale to decrease. In addition to this, the differences between the

correlation lengths of the spectroscopic and photometric cluster catalogues can also be attributed

to the incompleteness of the photometric cluster catalogue as a function of the richness of the

objects and hence as function of mass. Clusters with lower masses have lower clustering lengths

and preferentially including them in the sample from up-scattered detections will also suppress

the correlation length. This implies that the two-point correlation can actually be used to measure

the amount of impurity and completeness in the photometric cluster catalogue with respect to the

spectroscopic catalogue. This also indicates, however, that in its current form the photometric

cluster catalogue cannot be used to make reliable constraints on cosmological parameters such as

σ8 and Ωm without further calibration.

3.7 Conclusions

An optical cluster finding algorithm based on that of Botzler et al. (2004) has been presented that

uses a dynamical linking length that changes with the surface number density of galaxies at a given

redshift range.

The cluster finder was run with a range of different linking parameters on the 2SLAQ catalogue

with photometric redshifts obtained using ANNz (Collister & Lahav 2004). The completeness

and purity of the resulting catalogues were tested by matching the galaxy members of the clusters

found to the clusters found in the 2SLAQ spectroscopic cluster catalogue produced in chapter 2.

Additionally, photometric redshifts are added to the spectroscopic mock catalogue, also produced in

chapter 2, using the bias between the 2SLAQ spectroscopic and photometric redshifts. To add the

photometric redshifts it was necessary to remove a certain number of objects to maintain the correct

number density of galaxies. This was done in two different ways; first adding photometric redshifts

and then removing objects and second by removing objects and then adding photometric redshifts.

The results showed that the way in which objects were removed alters the level of completeness

significantly. In addition, no correlation is found between the mock results and the 2SLAQ

photometric cluster results. A more sophisticated mock would be required to constrain the linking

parameters. This would entail adding realistic colours to the galaxies in the mock before producing

the photometric redshifts. Since no combination of parameters exists, which optimises both the

completeness and the purity simultaneously, linking parameters of Rfriend(0.5) = 0.8 h−1Mpc and



3.7. Conclusions 129

K = 1.8 were chosen purely from the 2SLAQ photometric cluster matching. This corresponds to a

catalogue, which is 38% complete (80% when matched to clusters with Nmem ≥ 6) and includes

569 clusters containing 2,180 galaxies.

To constrain the linking parameters for the Megaz-LRG catalogue, the physical properties

of the resulting structures from a given combination of parameters were analysed. Additionally,

Megaz-LRG clusters found within the 145 deg2 2SLAQ area were matched to the 2SLAQ spectro-

scopic clusters. Based on these results two cluster catalogues were chosen, one with parameters

Rfriend(0.5) = 0.5 h−1Mpc and K = 0.8, which contains 21,255 groups and clusters (containing

73073 galaxies) that are more physical structures with low completeness, and another with pa-

rameters Rfriend(0.5) = 0.75 h−1Mpc and K = 1.5, which contains 114,874 groups and clusters

(containing 544,008 galaxies) that are more unphysical structures with higher completeness. This

occurs because as the linking parameters are increased, a large number of smaller structures are

found contributing to the completeness and at the same time larger structures are merged together

to form extremely large unphysical structures. Later analysis shows that a maximum of 6% of

these structures are unphysical all of which appear to exist near the edges the Megaz-LRG redshift

distribution.

The validity of the cluster catalogues was tested by obtaining SDSS galaxies in a 1 deg2 region

around each cluster centre. The background signal from all the SDSS galaxies within 1 h−1Mpc of

the cluster centre were subtracted and the results stacked in bins according to cluster redshift. Each

of these bins was examined in SDSS photometric redshift space and colour-magnitude space. This

analysis shows that the 2SLAQ photometric groups and clusters are reliable out to z ∼ 0.6, which

is consistent with the 2SLAQ spectroscopic results. The Megaz-LRG results show reliable cluster

detection out to z ∼ 0.65, however the results appear more pronounced for the Megaz-LRG cluster

catalogue with Rfriend(0.5) = 0.75 h−1Mpc and K = 1.5, which shows a trend of ∼ 0.3 in g − i
colour space. This is consistent with the earlier completeness analysis.

The radial profiles of all three cluster catalogues were examined and although all three profiles

show roughly the same slope, the profile corresponding to the Megaz-LRG cluster catalogue with

Rfriend(0.5) = 0.75 h−1Mpc and K = 1.5 appears to fit better with the 2SLAQ spectroscopic

cluster profile. Another strong indication that this set of parameters is more appropriate for the

Megaz-LRG catalogue.

Finally, the two-point correlation function of the photometric 2SLAQ cluster catalogue is tested.

A best-fitting power law model, ξ(r) = (r/r0)γ , with parameters r0 = 9.55± 4.23 Mpc h−1 and

γ = −1.115± 0.29 is found. The value of the reduced chi-squared is χ2
red = 0.89. These values
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show less correlation than that found with the spectroscopic 2SLAQ clusters, which is the result of

a higher number of impurities and incompleteness at low richnesses in the photometric 2SLAQ

cluster catalogue.

The principal difficulty encountered when applying the (Botzler et al. 2004) technique is that

is appears to depend on the number density of the galaxy catalogue. While the code reproduces

the 2SLAQ spectroscopic cluster catalogue to reasonable degree, it becomes difficult to produce a

complete cluster catalogue before significant merging occurs in a denser catalogue like Megaz-LRG.

To produce a complete and physical cluster catalogue further analysis is required. This could be

done by examining the substructure of the over-merged structures or by trying to remove interloping

field galaxies, which allow objects to merge, before running the DFoF code. Hence for catalogues

with a surface number density of galaxies such as Megaz-LRG, this method fails to produce a

catalogue that is both pure and complete. It is, however, possible to independently produce a

catalogue that is either pure or complete.



CHAPTER 4

AAT SPECTROSCOPIC OBSERVATIONS OF A

SELECTION OF PHOTOMETRIC FOF TARGETS

4.1 Introduction

In the current cosmological model of the Universe it is believed that most of the mass resides

in a network of cold dark matter haloes. Small perturbation in the early Universe grow through

gravitational collapse and mergers, hierarchically forming structure over time. This model has

successfully been used to explain much of the distribution and structure of the objects we observe in

the Universe now. Our lack of knowledge regarding the source and nature of dark matter, however,

limits our ability to fully understand the origin and fate of structure in the Universe. It is therefore

essential to test and refine this model using all available data.

One of the most useful tools in probing the evolution and properties of CDM haloes are

cosmological N-body simulations, in which particles within a given volume are allowed to evolve

under gravity. Specifically N-body simulations provide estimates for the number density of CDM

haloes as a function of mass, their spatial distribution and clustering, their radial density profiles

and the their growth and evolution with redshift. All of these predictions can easily be compared to

observations to test the reliability of the current CDM model.

Clusters of galaxies are ideal objects to compare with the predictions of N-body simulations

as they directly trace the distribution of dark matter in the Universe. More fundamentally, the

mass function of galaxy clusters is a particularly sensitive probe of cosmological models. The

clusters should be sampled over a large volume to produce the most accurate tests of cosmology.

The clusters detected in the 8000 deg2 Megaz-LRG catalogue as described in §3 fit this criterion,
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however before any comparison can be made it is necessary to calibrate the relation between the

dark matter halo mass and the observed cluster richness. To accomplish this, a proposal was

made to carry out a spectroscopic follow-up of a sample of the Megaz-LRG clusters using the

Anglo-Australian Telescope. The spectra could then be used to determine the redshifts of the

galaxies, which in turn provide the cluster velocity dispersions and from these estimates can be

made of the cluster dynamical masses.

The project, described in this chapter, aims to follow-up a subset of around 100 galaxy clusters

from the Megaz-LRG DR5 cluster catalogue. The cluster sizes and velocity dispersions can then

be measured to estimate the halo dynamical masses, which in turn can be used to calibrate the

scatter between mass and richness (van der Marel et al. 2000; Yee & Ellingson 2003). In addition

to this, the galaxy redshifts can be used to establish the reliability of the cluster finding algorithm

by identifying missing or interloping cluster members.

The following sections provide details on the observations made at the Anglo-Australian

Observatory (AAO) and the analysis of this data. Section 4.2 briefly describes the telescope and

instruments used at the AAO. Section 4.3 highlights the main points in the observing proposal

submitted to the AAO. Section 4.4 presents the observations obtained and their analysis. Finally,

section 4.5 discusses the conclusions and plans for future work regarding the AAO data.

4.2 The Anglo-Australian Telescope

The Anglo-Australian Telescope (AAT) is a 3.9 m equatorially mounted reflecting telescope located

at the Anglo-Australian Observatory (AAO). The AAO is situated at an altitude of 1100 m on the

Siding Spring mountain near Coonabarabran in New South Wales, Australia. The median seeing

recorded at this site is 1.5 arcseconds. The AAT was commissioned in 1974 and is equipped with

the Two Degree Field (2dF) facility and the AAOmega spectrograph, which is described in further

detail below (§4.2.1).

The AAT has been an important instrument for several important completed and ongoing

projects such as the 2dF Galaxy Survey (Colless 1999), WiggleZ (Glazebrook et al. 2007) and

GAMA (Driver et al. 2008).

4.2.1 AAOmega Spectrograph

AAOmega is a bench mounted, fibre fed, double-beam spectrograph that can be used for either

multi-object spectroscopy or integral field spectroscopy. Table 4.1 highlights some of the main
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Table 4.1: AAOmega Observing Mode Properties

Property Multi-object Integral Field

Field of view 2 deg 11x22 arcsec

Number of fibres 392 512

Angular size of fibre 2” 0.7”

Wavelength range 0.37-0.95µm 0.37-0.95µm

Dispersion 0.2-1.5 Å/pixel 0.2-1.5 Å/pixel

Spectral resolution (FWHM) 3.5 pixels 2.1 pixels

Spectral resolution (λ/∆λ) 1300-10000 2000-15000

Magnitude limit B=22 B=22

properties of these two observing modes. AAOmega provides improved resolution, throughput and

stability compared to the 2dF, RGO and SPIRAL spectrographs that were previously used with the

AAT.

AAOmega uses a duel-beam system with separate blue and red arms split by a dichroic at

570nm as shown in fig.4.11. The spectrograph uses Volume Phase Holographic (VPH) gratings,

which can be up to 50% more efficient than standard reflection gratings, and the point spread

function (PSF) of the instrument is extremely Gaussian and uniform, which is essential for accurate

sky subtraction.

4.3 Observing Proposal

With the aim of expanding upon the work discussed in §3, an observing proposal was submitted

to the AAO in spring 2007 for four nights to carry out a spectroscopic followup on a selection of

Megaz-LRG cluster candidates. Some of the key points made in that proposal are discussed in the

following subsections including a description of the input data (§4.3.1) and the observing strategy

(§4.3.2).

4.3.1 Input Data

The Megaz-LRG catalogue, which is discussed in greater detail in §3, is a collection of over a

million luminous red galaxies (LRGs) with photometric redshifts in the range 0.4 ≤ z ≤ 0.7 and
1http://www.aao.gov.au/local/www/aaomega/
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Figure 4.1: AAOmega optical layout in high dispersion mode.

magnitudes with i < 19.8 in a volume of 3.3h−3Gpc3 produced from the imaging component of

the Sloan Digital Sky Survey (SDSS) (Cannon et al. 2006). The fifth data release (DR5) of the

Megaz-LRG catalogue contains a total of 1,468,028 galaxies. LRGs are important for cosmology

as they reside in the densest environments and thus are good tracers of cosmic structure. The large

volume of the Megaz-LRG catalogue enables one to probe the most massive peaks in the in the

density field, which provides the most sensitive tests of the cosmological model. This catalogue

has previously been used to test cosmological models by Blake et al. (2007, 2008); Thomas et al.

(2010).

A cluster catalogue was produced from the southern strips of the Megaz-LRG DR5 catalogue

using a friends-of-friends (FoF) procedure that uses photometric redshifts, which is based on that

of Botzler et al. (2004) (see §3). The southern strips were selected by taking only galaxies in the

ranges −60 ≤RA≤ 70 and −15 ≤DEC≤ 20 as shown in fig.4.2, which corresponds to a total

of 138,308 objects. It should be noted, however, that the FoF code used to produce these cluster

candidates was an older version than that described in §3 and is therefore, to a certain degree, less

accurate. This is mainly because the older version of the code was run before mock calibrations

were used and therefore the linking parameters were selected based on the physical properties of

the resulting FoF clusters. The linking parameters were chosen such that the average cluster sizes

were Rclt ≤ 2 h−1Mpc and the average cluster velocity dispersions were σv ≤ 1000 kms−1. In
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Figure 4.2: Distribution of Megaz-LRG DR5 galaxies. The red dot-dashed line shows cuts made to
the full catalogue to leave only the southern strips.

Table 4.2: Richness Cuts

Sample Minimum Richness Number of Clusters

A 7 248

B 5 947

C 4 2894

the current version of the DFoF code this catalogue would have linking parameters smaller than

those used in chapter 3 and would therefore be pure but not very complete. Given that a mock was

not used for calibration, it is difficult gauge the exact level of completeness or purity of the cluster

catalogue, however for the purposes of a spectroscopic follow up, the purity is the principal quantity

of interest. Therefore, the cluster catalogue was divided into three samples based on cluster richness

as shown in table 4.2. Sample A are the richest structures and thus should be the most reliable

targets for observation. Fig.4.3 shows the positions of all of the clusters found in the southern strips

of the Megaz-LRG DR5 catalogue, where the red circles correspond to sample A clusters, the blue

plus signs correspond to sample B clusters and the yellow ‘x’s correspond to sample C clusters.
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Figure 4.3: Positions of clusters in the souther strips of the Megaz-LRG DR5 catalogue. Red circles
correspond to sample A clusters, blue plus signs correspond to sample B clusters and yellow ‘x’s
correspond to sample C clusters.

4.3.2 Observing Strategy

In order to increase the efficiency of the observations the densest regions were targeted. Eight fields

were selected in which there were multiple sample A clusters within a 2 deg diameter. Fig.4.4

shows the positions of the cluster candidates in the eight observing fields. The large red circles

correspond to sample A clusters, the medium blue circles correspond to sample B clusters, the small

yellow circles correspond to sample C clusters and the green ‘x’s correspond to 2SLAQ clusters.

The dashed line shows the 2 deg field of view of the spectrograph. Regions also containing clusters

from the 2SLAQ catalogue were favored as spectra for these galaxies are already available.

As is it difficult to obtain accurate velocity dispersions with only a few LRGs, each field was

supplemented with SDSS galaxies (i < 20) lying along the colour-magnitude red sequence of the

clusters. This approach has been used by previous cluster surveys such as CNOC Carlberg et al.

(1996) and RCS Blindert et al. (2004) to estimate cluster velocity dispersions. SDSS galaxies were

selected for each Megaz cluster based on two ranking criteria. The first criterion was that if a galaxy

satisfied

|(r − i)gal − (r − i)RS| < 0.1 (4.1)
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Figure 4.4: Positions of clusters in target fields. The large red circles correspond to sample
A clusters, the medium blue circles correspond to sample B clusters, the small yellow circles
correspond to sample C clusters and the green ‘x’s correspond to 2SLAQ clusters. The dashed line
shows the 2 deg field of view of the spectrograph.
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Table 4.3: AAOmega Diffraction Gratings

Grating Wavelength Range Dispersion MOS Resolution

580V 3700-5800 Å 0.1 nm/pixel 1300 R

385R 5600-8800 Å 0.16 nm/pixel 1300 R

and

ibright ≤ igal ≤ 19.8, (4.2)

where (r − i)gal and igal are the colour and magnitude of the galaxy, (r − i)RS is the colour of the

red sequence track and ibright is the brightest galaxy in the cluster, then a rank of 1, 3 or 5 was

assigned to the galaxy if it was located within 1, 2 or 3 h−1Mpc of the cluster centre respectively.

(r − i)RS was calculated for each i-mag and redshift using the model of Bruzual & Charlot (2003).

The second criterion was that if a galaxy satisfied

((r − i)RS − 0.5) ≤ (r − i)gal ≤ ((r − i)RS − 0.1), (4.3)

and

iblue ≤ igal ≤ 19.8, (4.4)

where iblue = (ibright + 19.8)/2 or iblue = ibright + 0.5 depending upon which of the two values is

smaller, then a rank of 2, 4 or 6 was assigned to the galaxy if it was located within 1, 2 or 3 h−1Mpc

of the cluster centre respectively. The SDSS galaxies were then selected in rank order until each

field had at maximum 392 targets, which is the number of AAOmega spectrograph fibres.

The main technical challenge for these particular observations using AAOmega is that the

spectrograph fibres cannot be placed more closely than 30 arcseconds. This limitation can cause

problems with fibre collisions when attempting to observe galaxies that are separated by ∼ 1-2

arcminutes. On average the virial radius of clusters is ∼ 1h−1 Mpc, which projects to an angular

diameter of ∼ 2.5 arcminutes on the sky at z ≈ 0.55. Therefore, two separate fibre configurations

were assumed for each field, which ensures that in each field spectra are obtained for each cluster

galaxy.

The 580V and 385R diffraction gratings were chosen for the blue and red arms of the AAOmega

spectrograph respectively. The basic properties of these gratings are shown in table 4.3, which

principally shows that the wavelength coverage is 3700 Å≤ λ ≤ 8800 Å.
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Table 4.4: Fractional Lunar Illumination

Night FLI Range

Dark 0.00 ≤ FLI < 0.25

Grey 0.25 ≤ FLI < 0.65

Bright 0.65 ≤ FLI ≤ 1.00

A signal-to-noise (SNR) ratio of 3 per Å has been shown to produce high redshift completeness

for red galaxies from AAT data (Cannon et al. 2006). The AAOmega Exposure Time Calculator

shows that a SNR ≈ 3.6 per Å can be obtained for an I = 20 galaxy in grey time and 1.5

arcsecond seeing with a one hour exposure. Therefore, in order to observe each field twice (for

both configurations) for one hour, a total of four grey nights were required to carry out the project.

A grey night is defined by the fractional lunar illumination (FLI) as shown in table 4.4, where

FLI denotes the fraction of time in which the moon is below the horizon as given by

2× FLI = 1− cosβcos(λ− λ�), (4.5)

where λ and λ� are the longitudes of the Moon and the Sun respectively.

4.4 Analysis & Results

Observations were carried out at the AAO between the 7th and 10th of September 2007. During this

period two and half nights were clear and a total of 4116 spectra were obtained from the 8 fields.

The following subsections describe the process followed for reducing the data (§4.4.1), obtaining

the galaxy redshifts (§4.4.2) and the results found (§4.4.3).

4.4.1 Data Reduction

The observations obtained with the AAT were reduced using the standard AAO pipeline software

called 2dfdr 2. 2dfdr is a package that was originally developed by Jeremy Bailey to reduce 2df

data. The package has more recently been updated for reducing data from other instruments such

as 6df, SPIRAL, SDSS and AAOmega.

The 2dfdr system performs bias and dark subtraction, flat fielding, tram-line mapping to fibre

locations on the CCD, fibre extraction, arc identification, wavelength calibration, fibre throughput
2http://www.aao.gov.au/AAO/2df/aaomega/aaomega software.html
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calibration and sky subtraction. Each of these data reduction procedures are described in the

following subsections3.

4.4.1.1 Debiassing

Debiassing or bias subtraction is performed by subtracting a bias frame from the data image. A

bias frame is an image obtained with the instrument with no actual exposure time. This removes

noise due to electronics in the device from the data image. As there is no exposure time the bias

frame only contains the intrinsic bias of the sensor without a build up of charge.

4.4.1.2 Dark Subtraction

Dark subtraction is performed by subtracting a dark frame from the data image. A dark frame is an

exposure obtained with the instrument in darkness. This removes noise due to the small electric

current that flows though a CCD when it is not collecting photons, which is commonly referred to

as dark current. Most CCDs contain a certain number of pixels with imperfections that cause them

to collect more of these thermal electrons than the rest or none at all. Dark subtraction removes the

noise caused by these hot and/or dead pixels.

4.4.1.3 Flat Fielding

Flat fielding is performed by dividing the data image by a flat field frame. A flat field frame is

obtained by taking an exposure of a uniform radiation source with the instrument. In practice, flat

field frames are generally obtained by taking an exposure of a blank screen on the inside of the

telescope dome with the lights turned on or by taking an exposure of the sky during twilight hours.

The disadvantage with the first approach is that in can be difficult to illuminate the dome in a way

that is uniform. The sky at twilight is a much better approximation of uniform ration, however the

problem with this approach is that the brightness of the sky changes rapidly during twilight hours,

so it can be difficult to obtain multiple flat fields. Fig.4.5 shows an example of a flat field obtained

inside a telescope dome. Flat fielding removes the noise in an image caused by the pixel-to-pixel

variation in the CCD. This variation is owing to the fact that every pixel in a CCD has a different

gain or quantum efficiency, η, which is given by

η =
Ne

Nν
, (4.6)

where Ne is the number of electrons produced and Nν is the number of photons absorbed.
3see http://www.starlink.ac.uk/star/docs/sc14.htx/sc14.html for more details
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Figure 4.5: Example of a flat field frame obtained inside a telescope dome.

4.4.1.4 Tram-Line Mapping

Tram-line mapping or tramlining is the process of tracking the positions of the fibre spectra on the

CCD. Fibre spectrographs produce frames containing a series of horizontal lines, which are the

individual spectra obtained through each of the fibres as shown in fig.4.6. In order to extract the

individual spectra, it is necessary to define the aperture of each spectrum on the CCD. This is done

by tracing each spectrum to identify the amount of curvature caused by the optics of the system and

the degree of misalignment with the CCD grid. In addition, it is necessary to determine the width

of the spectrum in the number of pixels it spans. The tram-line map can be made using a flat field

frame to ensure that the spectra are well defined.

4.4.1.5 Fibre Extraction

Fibre extraction is the process of extracting the one-dimensional spectra from the CCD frame.

This involves first subtracting background scattered light from the data, then fitting overlapping

Gaussian profiles to a fibre flat field frame, fitting these profiles to the data image and finally using

a tram-line map to identify the positions of the spectra and extract them.



4.4. Analysis & Results 142

Figure 4.6: Example of a tram-line map observed with the WYF- FOS/AUTOFIB2 fibre spectro-
graph on the WHT.

4.4.1.6 Arc Identification

Arc identification is the process of identifying emission or absorption line features in the spectrum

of a calibration source or arc lamp. Arc lamps consist of two electrodes separated by a gas, which

for calibration purposes can typically be e.g. CuAr, CuNe, He, HeAr, FeAr, FeNe or ThAr. This

identification procedure is generally done in a semi-interactive way using data reduction software

such as FIGARO4, IRAF5 and MIDAS6, however some automated methods also exist (Zuiderwijk

1995).

4.4.1.7 Wavelength Calibration

Wavelength calibration is the process of converting the CCD pixel positions of spectra to wave-

lengths using calibration frames. Calibration frames are obtained by taking exposures of an arc
4http://www.aao.gov.au/figaro/
5http://iraf.noao.edu/
6http://www.eso.org/sci/software/esomidas/
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lamp, which has a spectrum with emission lines of know wavelength. A relation can then be made

between the CCD pixel positions and wavelengths of the arc lamp emission lines by fitting a low

order polynomial. Finally, this relation can be applied to the data image spectra to identify the

wavelengths of the spectral features.

4.4.1.8 Fibre Throughput Calibration

Fibre throughput calibration is performed by dividing an individual spectrum by its corresponding

normalised fibre throughput. The normalised fibre throughput for a given fibre is obtained by

taking the mean signal in the fibre divided by the mean signal over all fibres. Generally the relative

fibre throughput is obtained by taking exposures offset from the target field, so that the fibres are

configured in the same way but are receiving sky signal. Another method uses sky emission lines

to normalise the fibre throughputs. This process corrects for the fibre-to-fibre differences in the

spectrograph.

4.4.1.9 Sky Subtraction

Sky subtraction is performed by subtracting a sky frame from an observed spectrum. A sky frame

is obtained by taking an exposure of a region of blank sky. This can be done simultaneously to

target exposures by allocating a certain number of spectrograph fibres to blank patches of sky, or

separately before and/or after the target exposures. The amount of sky correction required depends

on the angular size of the field of view of the fibre. Sky subtraction removes noise caused by

emission from the night sky, which is principally caused by the aurora, zodiacal light, which is

sunlight reflected off interplanetary dust, atmospheric emission, which is mainly from water lines

as seen in fig.4.7, and faint background sources.

4.4.2 Redshifting

Galaxy spectra are typically characterised by a strong continuum component with a break at 4000

Å, which is caused by the absorption of high energy radiation by metals in the atmospheres in stars

and the absence of hot blue stars. Other key features include the calcium H and K lines located at

3934 Å and 3969 Å respectively. These features are shifted to the range 5600 ≤ λ ≤ 6800 Å for

the redshift range 0.4 ≤ z ≤ 0.7 and therefore are often used to identify galaxy redshifts.

The reduced galaxy spectra obtained with the AAT were redshifted using RUNZ. RUNZ is a

Fortran 77 redshift-fitting software package written by Will Sutherland for determining redshifts in
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Figure 4.7: Example spectrum of the Earth’s atmosphere containing water lines.

the 2df Galaxy Redshift Survey. The package was later modified for use on 6df (by Will Saunders),

on 2SLAQ (by Russell Cannon) and on Wigglez (by Scott Croom). Fig.4.8 shows a screen shot of

the RUNZ environment with an example galaxy spectrum. Redshifts are chosen for each spectrum

by identifying absorption features (e.g. calcium H and K lines) or emission features (e.g. oxygen

OII line) and fitting a template. Fig.4.9 shows a close up of an example galaxy spectrum (top

panel) and a template fitted to the galaxy spectrum (bottom panel). In this example the H, K and G

lines are clearly identified. Fig.4.10 shows an example of stellar spectrum (top panel) and galaxy

spectrum with a visible OII emission line (bottom panel). M class stars, which are very cool stars

with surfaces temperatures T ≤ 3900 K, are often mistaken for galaxies because on the sky they

appear as bright red objects. The spectra of M stars, like the one shown in the top panel of fig.4.10,

are quite distinct from galaxies and contain large absorption features due to molecules like TiO.

In the final step of the RUNZ code each galaxy redshift is assigned a quality, as shown in table

4.5, to record its reliability. Qualities of 2 or below are assigned to galaxies for which no redshift

could be obtained or for which the redshift obtained was not reliable enough to be used for further

analysis. A quality of 6 is assigned to a spectrum that corresponds to a M class star. Qualities of

3-5 are assigned to galaxies for which a reliable redshift can be obtained and only these objects are

used for further analysis.

4.4.3 Results

Each of the eight observing fields was redshifted at least once. Fields 1, 2, 3, 5, 6 and 7 were

independently redshifted multiple times by different people in order to increase the reliability



4.4. Analysis & Results 145

Figure 4.8: Screen shot of the RUNZ environment with an example galaxy spectrum.

Figure 4.9: Close up of an example galaxy spectrum (top panel) and a template fitted to the galaxy
spectrum (bottom panel) in RUNZ. The H, K and G absorption features can clearly be identified.
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Figure 4.10: Close up of an example stellar spectrum (top panel) and a galaxy spectrum with visible
OII emission line (bottom panel) in RUNZ.

Table 4.5: RUNZ Redshift Quality

Redshift Quality Reliability

0 Redshift requires further examination

1 Poor quality spectrum, no redshift estimate

2 Possible redshift, requires re-observation

3 Probable redshift, ∼ 75% confidence

4 Reliable redshift, ∼ 95% confidence

5 Reliable redshift and high quality spectrum

6 Reliable redshift and high quality spectrum, but not extragalactic.
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Table 4.6: Observed Spectra

Field Number of Spectra Number of Redshifts Redshifter

1 531 329 SF, SB, KP

2 655 347 SF, SB, FBA

3 571 402 SF, SB, KP

4 401 306 SB

5 493 278 SF, CB

6 529 310 CB, KP

7 592 382 SF, SB, FBA

8 343 25 CB

of each redshift. Data from field 8 was not used as, owing to the poor quality of the data, an

insufficient number of spectra were obtained for analysis. Field 4 was only redshifted once due to

time constraints. Field 6 was only partially re-redshifted, therefore there are not enough secondary

redshifts for comparison. Redshifting was carried-out by Filipe Abdalla (FBA), Chris Blake (CB),

Sarah Brough (SB), Kevin Pimbblet (KP) and myself (SF).

Comparison between redshifts obtained independently by different redshifters, where available,

shows a high level of consistency as seen in fig.4.11. For this study, a reliable redshift is defined

as one that has a quality assigned by the redshifter between 3 and 5. In the case of disagreement

between two redshifters, the value with the highest assigned quality was used. In the vary rare cases

in which there was disagreement and both redshifters had assigned the same quality to the redshift,

the spectrum was re-analysed. When three independent redshifts were available, a value was chosen

that showed agreement between at least two redshifters regardless of the assigned qualities. In

the rare case of disagreement between all three redshifters, the redshift with the highest assigned

quality was chosen. Fig.4.11 shows that in the worst case ∼ 4% of the redshifts may be incorrect

for fields 1, 2, 3, 5 and 7. For the fields that were only redshifted once this number could be higher,

however given the level of consistency between different redshifters, it is assumed that this value is

a reasonable estimate of the error in the measured redshifts.

Table 4.6 shows the total number of spectra obtained for each observing field, the number of

reliable redshifts obtained and by whom the field was redshifted. A total of 2379 reliable redshifts

were obtained for the eight observing fields. Fig.4.12 shows N(z) for the stacked galaxy redshifts,

which peaks in the same range as the Megaz-LRG catalogue, 0.4 ≤ z ≤ 0.7.
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Figure 4.11: Comparison between redshifts obtained independently by different redshifters for
fields 1, 2, 3, 5 and 7. The x-axis in each panel corresponds to a redshift obtained by SF and the
y-axis to a value obtained by a second or third redshifter.
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Figure 4.12: N(z) for combined redshift data from each of the eight observing fields.

Fig.4.13-4.18 show N(z) for all sample A clusters, which includes all the redshifted Megaz-

LRG galaxies and any 2SLAQ galaxies that are within the observing regions. N(z) was calculated

in each panel by taking all galaxies within 1 h−1Mpc of the sample A cluster centre. Each panel

in fig.4.13-4.18 clearly shows a peak in z around the sample A cluster redshifts (indicated by a

black dashed line in the plots). In certain panels, such as the first panel in fig.4.17 (field 5), the

peak in z is very sharp and perfectly aligned with the cluster redshift. In other panels, such as

the first panel in fig.4.14 (field 2), there appear to be multiple structures at different redshifts. It

can also be seen that in some panels the z peak and the cluster redshift are not perfectly aligned,

this can partially be attributed to photometric redshift bias. It should, however, also be noted that

these cluster centres were found using an older version of the FoF code and the new and improved

version should produce more accurate results.

Velocity dispersions were estimated for each of the Sample A clusters, where possible, using

only the galaxies in the sharpest peak in the N(z) distribution. The left panel of fig.4.19 shows a

histogram of the velocity dispersions obtained compared to the velocity dispersions of the 2SLAQ

mock galaxy catalogue presented in §2.4. The AAT data shows a peak at higher velocities (∼ 850

kms−1), however this is to be expected as the AAT targets were selected from the largest FoF

cluster candidates, while the mock catalogue shows a range of velocities from a more complete

sample of haloes of different sizes. The left panel of fig.4.19 shows a comparison between the

velocity dispersions of AAT and mock data as function of richness. Although the AAT sample is
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Figure 4.13: N(z) of galaxies within 1 h−1Mpc for sample A clusters in field 1. The black dashed
line shows the location of the cluster redshift.
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Figure 4.14: N(z) of galaxies within 1 h−1Mpc for sample A clusters in field 2. The black dashed
line shows the location of the cluster redshift.
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Figure 4.15: N(z) of galaxies within 1 h−1Mpc for sample A clusters in fields 3 and 4. The black
dashed line shows the location of the cluster redshift.

much smaller, the two data sets show good agreement. This indicates that the velocity dispersions

measured are reasonable given the number of LRGs in each cluster.

Mass estimates were also obtained for the clusters using equation 2.19. Only 25 redshifts have

been obtained for field 8 due to poor weather on the last night of observing, therefore this field

has not been analysed. Table 4.7 lists the positions of all the Sample A clusters and the number of

Megaz-LRG and 2SLAQ galaxies within 1 h−1Mpc of this position, the number of galaxies within

the highest z peak, the average redshift of these galaxies and the their velocity dispersion. Regions

where there are multiple significant peaks in z are identified with ‘*’ and regions with no visible

peak in z are identified with ‘-’. Clusters 5 and 18 are clear non-detections, and assuming that

cluster with only a few galaxies in the peak and relatively high velocity dispersions (e.g. clusters 1,

17, 20, 23 and 27) are also inconclusive, then 24 out of the 31 clusters can be claimed as detections,

which is a success rate of∼ 77.4%. This is a crude analysis, but provides an estimate for how many

real collapsed structures can be detected using the photometric friends-of-friends technique.

Fig.4.20 shows the distribution of the sample A cluster redshifts as a function of the average

peak galaxy redshifts. The error bars show are the standard deviation of the galaxy redshifts in a
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Figure 4.16: N(z) of galaxies within 1 h−1Mpc for sample A clusters in field 5. The black dashed
line shows the location of the cluster redshift.
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Figure 4.17: N(z) of galaxies within 1 h−1Mpc for sample A clusters in field 6. The black dashed
line shows the location of the cluster redshift.
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Figure 4.18: N(z) of galaxies within 1 h−1Mpc for sample A clusters in field 7. The black dashed
line shows the location of the cluster redshift.
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Table 4.7: Estimated velocity dispersions and masses for sample A clusters. (‘*’ Secondary peak in
field, ‘-’ non-detection)

No RAclt (Deg) Decclt (Deg) zclt Field Ntot Npeak z̄gal σgal (kms−1) log10 Mest (M�)

1 315.1096 -00.9645 0.4626 1 14 5 0.4205 1601.09 15.697

2 314.5899 -00.5231 0.5268 1 13 8 0.5129 0825.69 14.805

3 314.2283 +00.5936 0.5329 1 14 6 0.5191 0966.38 15.008

4 315.3197 +00.1036 0.6243 1 7 3 0.6000 0333.46 13.596

5 313.9317 -00.4925 0.6099 1 9 - - - -

6 322.3919 +00.4773 0.4515 2 11 7 0.4377 0843.51 14.857

7 322.2796 -00.4862 0.4730 2 18 12 0.4750 0472.03 14.089

8 321.5038 -00.5226 0.4986 2 15 13 0.4715 1571.11 15.656

9 321.6310 -00.4877 0.5162 2 16 5 0.5237 0594.39 14.373

*9 321.6310 -00.4877 0.5162 2 16 10 0.4720 0768.81 14.725

10 321.5802 -00.0831 0.5459 2 13 5 0.5677 0287.37 13.412

*10 321.5802 -00.0831 0.5459 2 13 4 0.5209 1978.67 15.941

11 010.3646 -00.3288 0.4783 3 12 6 0.4609 0725.62 14.653

12 009.4711 -00.1135 0.5179 3 14 7 0.4917 0767.87 14.717

13 034.9435 -00.3690 0.5543 4 13 10 0.5371 0955.71 14.988

14 035.0136 -00.0714 0.5971 4 9 8 0.5549 1142.78 15.215

15 054.3908 -00.2541 0.4829 5 14 14 0.4799 1167.77 15.267

16 054.6598 -00.1757 0.5004 5 7 3 0.4817 0257.25 13.295

17 055.3308 +00.6971 0.5436 5 7 3 0.5648 1488.02 15.556

18 053.9124 -00.5840 0.6027 5 5 - - - -

19 054.7989 -00.3304 0.5758 5 8 4 0.5510 0019.77 09.930

20 055.0172 -00.5389 0.6375 5 5 4 0.6155 0912.70 14.903

21 313.3544 -06.3877 0.4630 6 11 3 0.4396 0153.57 12.637

22 312.1900 -05.9234 0.4833 6 8 4 0.5822 0547.69 14.248

23 313.8819 -05.7387 0.5387 6 9 4 0.5632 0924.39 14.936

24 313.5650 -06.4810 0.5481 6 13 8 0.5355 0825.54 14.797

25 313.0324 -05.7582 0.6014 6 8 3 0.5123 0506.23 14.168

26 313.2138 -06.6332 0.6551 6 7 4 0.6362 0386.83 13.778

27 353.9446 -09.6154 0.4698 7 12 4 0.4513 1009.31 15.086

28 354.9109 -09.9245 0.4748 7 15 8 0.4633 0510.07 14.193

29 355.1917 -10.2231 0.4838 7 6 4 0.4622 0094.64 11.999

30 354.3788 -08.7886 0.4788 7 12 6 0.4348 0537.36 14.270

31 355.1009 -08.8109 0.5502 7 9 3 0.5611 0233.26 13.143
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Figure 4.19: Left panel: Histogram of the velocity dispersions obtained from the N(z) peak
galaxies around each cluster compared to the velocity dispersions of the 2SLAQ mock galaxy
catalogue. Right panel: velocity dispersions of the measured and mock data as function of cluster
richness.

given cluster. This plot shows good agreement between the two redshifts, although the FoF code

marginally overestimates the cluster redshift for the most part. This is an important discrepancy

that would need to be addressed before any cosmological analysis could be performed using the

photoz clusters.

It should be noted that the work presented in the section is in essence a pilot study principally

aimed at determining the reliability of the FoF code to detect genuine structure. The velocity

dispersions and mass estimates obtained are only meant to give a rough approximation for the

clusters using the limited number of galaxy spectra. More reliable estimates could be obtained with

more in depth spectroscopic analysis using the most recent version of the FoF code.

4.5 Conclusions & Future Work

Eight fields were targeted for observation based on cluster candidate positions found using a

friends-of-friends (FoF) algorithm that incorporates photometric redshifts on the Megaz-LRG

DR5 catalogue. The best candidates were chosen as those with seven or more LRGs and were

labeled sample A clusters. The fields were supplemented with SDSS galaxies lying along the

red-sequence of these clusters. 4116 spectra were obtained over four grey nights at the Anglo-

Australian Observatory using AAOmega from the eight observing fields. From these 4116 spectra,

2379 galaxy redshifts were measured using the RUNZ package. Measuring N(z) in regions 1

h−1Mpc around a selection of the sample A clusters shows clear peaks in z around the cluster

redshifts. Estimates are made for the cluster velocity dispersions and dynamical masses by taking
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Figure 4.20: Average photometric redshift of sample A cluster galaxies, zclt, versus average
spectroscopic redshift of galaxies around cluster centres, z̄gal. Error bars are the standard deviation
of the spectroscopic redshifts of galaxies in a given cluster.

only the galaxies within the N(z) peak. The majority of these estimates are consistent with what

would be expected for genuine structures, although these estimates are very approximate. A crude

analysis of the expected physical properties for the clusters gives an estimate of a success rate of

∼ 77.4%.

These results can potentially be improved by running a better calibrated version of the FoF code

on the Megaz-LRG catalogue. This may improve the accuracy of detecting the cluster centres. This

code could also be run on a more recent release of Megaz-LRG. A more in depth spectroscopic

analysis of this data could provide reliable velocity dispersion and dynamical mass estimates, which

could be compared with lensing and/or X-ray data.

Further work that can be done using this data includes:

1. Halo mass function: One of the central predictions of CDM models is the trend seen in the

number density of haloes as a function of mass and how this trend changes as a function of

redshift (Sheth & Tormen 1999). For massive haloes, such as those considered in this project,

the mass function is particularly steep and a sensitive probe of cosmology. The observations

proposed here, which principally correspond to z ≈ 0.55 (a look-back time of 5.4 Gyr),

can be compared to measurements of low-redshift spectroscopic galaxy surveys such as the
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SDSS (Rines et al. 2007).

2. Clustering of massive haloes: The scaling of the clustering strength of haloes with mass is

an important prediction of CDM simulations (Younger et al. 2005). Since massive clusters

are relatively scarce objects, large surveys like Megaz-LRG are required to measure the

clustering properties accurately. The enormous volume probed by Megaz-LRG enables one

to trace the rarest peaks in the density field.

3. Halo occupation distribution: The halo occupation distribution (HOD) is a useful point

of comparison between models and data of CDM haloes (Seljak 2000). The HOD can be

measured directly from the Megaz-LRG cluster catalogue, in addition to the radial profile of

the satellite galaxies in halo, which is assumed to trace the dark matter halo density profile.

4. Comparison with other cluster mass observables: Dynamical masses estimated from

the Megaz-LRG cluster velocity dispersions can be compared to those estimated from X-

ray temperatures (e.g. Viana et al. 2003) and gravitational lensing (e.g. Cypriano et al.

2004). Each of these techniques on their own are subject to systematic errors: the velocity

dispersion may contain an offset between cluster galaxies and dark matter particles; X-ray

temperatures may have a non-equilibrium structure due to on-going merger events; and

lensing measurements are subject to projection effects from additional mass along the line-

of-sight. Therefore, cross-correlation between these three methods is essential for producing

reliable mass estimates.



CHAPTER 5

THE DARK ENERGY SURVEY

5.1 Introduction

The term dark energy has been introduced to account for around 2/3 of the density in the Universe

(Carroll et al. 1992) and to explain the observed acceleration in the expansion of the Universe

(Perlmutter et al. 1998). Understanding the nature of dark energy has since become one of the

most fundamental questions in cosmology. The Dark Energy Survey (DES) is one project that is

aiming to shed some light on this problem (The Dark Energy Survey Collaboration 2005). DES will

employ four distinct methods to probe the properties of dark energy, namely baryon oscillations of

the power spectrum, the abundance and spatial distribution of clusters, weak gravitational lensing

and type Ia supernovae. This project is a large undertaking involving institutions from all over the

world.

The following sections outline the details of the DES and work that has been carried out so far

using DES simulations from Stanford (DC4) and the Institut de Ciències de l’Espai (ICE). Section

5.2 describes the DES project and instruments. Section 5.3 describes two different simulations

of the data expected from DES. Finally, section 5.4 presents work that has been carried out so far

using the DES simulations.

5.2 Survey Overview

DES is an optical-near infrared survey of 5000 deg2 of the southern galactic cap out to ∼ 24th

magnitude in the SDSS g, r, i & z bands. The survey will be conducted with the Blanco Telescope

using the newly developed Dark Energy Camera (DECam) and is expected to run from 2012 to

160
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2017. The overall objective of the survey will be to measure the dark energy and dark matter

densities and the dark energy equation of state to high accuracy.

The project was originally proposed in response to a competition announced in December

of 2003 by the National Optical Astronomy Observatory (NOAO) to build an instrument for the

Blanco telescope in return for 30% observing time over a 5 year period. Once completed, the

constraints from DES will allow certain models of dark energy to be discarded and should provide

a better understanding of what effects dark energy actually has on the Universe.

This section will give a brief description of the Blanco telescope (§5.2.1), DECam (§5.2.2) and

the science objectives of DES (§5.2.3).

5.2.1 The Blanco Telescope

The Blanco telescope is a 4 m reflector telescope based at the Cerro Tololo Inter-American

Observatory (CTIO), which is at an altitude of 2200 m and is situated just east of La Serena, Chile.

The telescope was commissioned in 1974 and is named after the Puerto Rican astronomer Victor

Manuel Blanco.

CTIO is located in the Atacama desert where there is virtually no rainfall and the median seeing

is in the around 0.6− 0.7 arcseconds, which makes it an ideal location for obtaining high quality

imaging data.

5.2.2 The Dark Energy Camera

DECam is a 519 mexapixel optical CCD camera with SDSS g, r, i & z filters (fig.5.1). The camera

was designed to have a large field of view (2.2◦), high throughput and good image quality. The

optical system consists of 5 lenses, C1, C2, C3, C4 & C5, with diameters 980 mm, 690 mm, 652

mm, 604 mm and 512 mm respectively. DECam has a low noise CCD readout and is cryogenically

cooled to 180 K.

There are 62 2k×4k (0.27”/pixel) CCDs arranged in a hexagon covering 3 deg2 (fig.5.2). Each

individual CCD is a 250 µm thick silicon device, which is optimised to detect high redshift z-band

images.

The full DECam apparatus, which weighs around four tons, will be placed at the prime focus

of the Blanco Telescope in Chile.
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Figure 5.1: DECam representation.

Figure 5.2: DECam CCD layout.
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5.2.3 Science Objectives

DES aims to measure the dark energy and dark matter densities and the dark energy equation of

state using four independent methods: galaxy clusters, weak lensing tomography, galaxy angular

clustering and supernovae distances. Each of these probes are subject to different systematics and

therefore combining them will allow a cross check of the systematic errors, which will enable

higher precession measurements of dark energy.

Galaxy clusters are thought to be a good probe of cosmology because they only involve

gravitational dynamics and dark matter. DES aims to obtain detailed optical measurements of

galaxy clusters, which will allow accurate photometric redshift estimates. The galaxy cluster

data will be complimented with results from the South Pole Telescope (SPT) survey, which uses

the Sunyaev-Zel’dovich effect to detect clusters. The SPT is a 10 m telescope located at the

Amundsen-Scott South Pole Station in Antarctica. The telescope observes in a frequency range

70-300 GHz.

Weak lensing is sensitive to the expansion history of the Universe through the shear-shear

angular power spectrum and galaxy-shear correlations. DES aims to measure shapes for ∼ 3× 108

galaxies with improved image quality.

Measurements of the peaks and wiggles found in the matter power spectrum from galaxy

angular clustering can be used a distance measures. DES aims to measure angular clustering in

photometric redshift bins out to z ∼ 1.1.

The light curves of Type Ia supernovae can be used as standard candles in cosmological

distance scales. DES will use 10% of its observing time to measure r, i & z light curves for ∼1900

supernovae in the range 0.3 < z < 0.75 in a region of 40 deg2.

The combination of the high precision DECam data for each of these probes will provide the

most accurate test of dark energy to date.

5.3 Simulations

Once DES begins observations, a huge amount of data will become available, which will require

a lot of work to reduce and analyse. It is therefore productive to establish reliable pipelines and

resources before operations begin. To this end, several high quality simulations of the data expected

from DES have been produced, which can be used to test and refine the data pipelines. These

simulations are not only of galaxy catalogues, but also of the expected images from the CCD fields.

This section will briefly discuss the mock galaxy catalogues produced in Barcelona (§5.3.1)
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and Stanford (§5.3.2).

5.3.1 Barcelona

The Barcelona simulations were produced by Jorge Carretero, Francisco Javier Castander, Anna

Cabré, Ricard Casas, Martin Crocce, Pablo Fosalba and Enrique Gaztañaga at the Institut de

Ciències de l’Espai (ICE).

The N -body simulation is a snapshot at z = 0 (i.e. with no evolution) of 20483 particles in

a box of 3072 Mpch−1 in length made with the GADGET-2 code. The cosmological parameters

used are for a flat universe with ΩM = 0.25, ΩΛ = 0.75, h = 0.7, σ8 = 0.8 and ns = 0.9. The

dark matter haloes are found with a friends-of-friends algorithm, which requires a minimum of 20

particles to form a halo. The mass of each dark matter particle is mp = 23.42× 1010M�h
−1.

5.3.1.1 Galaxy Assignment

Galaxies are assigned to haloes following the approach of Skibba et al. (2006). This method uses

the HOD interpretations from the SDSS measurements of the luminosity dependence of clustering

by Zehavi et al. (2005), which was motived by the work of Kravtsov et al. (2004). Zehavi et al.

(2005) find that the HOD model assumes a simplified form when the galaxies are separated into

central and satellite members.

From this approach, the mean number of galaxies with luminosity greater than L in haloes of

mass M is given by

Ngal(> Lr|Mhalo) = 1 +Nsat(> Lr|Mhalo) = 1 +
[ Mhalo

M1(L)

]α(L)
, (5.1)

where Mmin is the minimum halo mass for hosting at least one central galaxy, M1 is the mass of a

halo that on average hosts one satellite galaxy and α is the power-law slope of the satellite mean

occupation function. Equation 5.1 holds If M ≥Mmin(L), otherwise Ngal(M) = 0 (Kravtsov et al.

2004; Zehavi et al. 2005). In practice, Mmin(L) is a monotonic function of L. The results are well

approximated by

( Mmin

1012h−1M�

)
≈ exp

( L

9.9× 109h−2L�

)
− 1, (5.2)

where M1(L) ≈ 23Mmin(L), and α ∼ 1 (Skibba et al. 2006).
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Figure 5.3: Luminosity function of Barcelona mock catalogue produced by Jorge Carretero Palacios.
Smooth curve is SDSS luminosity function (Blanton et al. 2003).

5.3.1.2 Luminosities

All haloes in the simulation have at least one central galaxy with luminosity given by 5.2. Absolute

r−band magnitudes are calculated via

Mr − 5log10(h) = −2.5log10(Lr) +Mr�, (5.3)

where Mr� = 4.76 (Blanton et al. 2003).

The luminosity function for the central and satellite galaxies is shown in fig.5.3, where the there

are 30,468,972 galaxies in total, 24,659,420 of which are centrals and the remaining 5,809,552 are

satellites. This plot shows that the mock luminosity function is a good fit to SDSS.

5.3.1.3 Colours

Central galaxy colours are modelled via

〈g − r|Mr〉red = 0.932− 0.032(Mr + 20), (5.4)
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Figure 5.4: N(z) of Barcelona mock catalogue produced by Jorge Carretero Palacios.

rms(g − r|Mr)red = 0.07− 0.01(Mr + 20), (5.5)

〈g − r|Mr〉blue = 0.62− 0.11(Mr + 20), (5.6)

and

rms(g − r|Mr)blue = 0.12− 0.02(Mr + 20), (5.7)

where 5.4 and 5.5 are for central galaxies in the red sequence, and 5.6 and 5.7 are for blue central

galaxies (Blanton et al. 2003). Satellite galaxies are better approximated by

〈g − r|Mr〉sat = 0.83− 0.08(Mr + 20). (5.8)

5.3.1.4 Positions and Velocities

Satellite galaxies are placed in the dark matter haloes following an NFW profile (Navarro et al.

1996), where the spherically averaged density of the halo is given by
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ρ(r)
ρ̄

=
∆vir(z)
3Ω(z)

c3f(c)
x(1 + x)2

, (5.9)

and x = c(Mhalor/rvir). c is the concentration parameter of the halo, which is approximated by

c(Mhalo) ≈ 9
(1 + z)

(Mhalo

M∗0

)
, (5.10)

(Bullock et al. 2001). M∗0 is the standard nonlinear mass scale with the assumed value M∗0 =

2× 1013M�.

5.3.1.5 Galaxy Types

Galaxies are assigned a probability of having a certain type based on their redshifts. The mock

catalogues of Oyaizu et al. (2006) and Lin et al. (2004) are used to produce a catalogue of galaxy

types. The distribution of galaxy types is derived using data from the GOODS/HDF-N field (Capak

et al. 2004; Cowie et al. 2004; Wirth et al. 2004) and CWW template SEDs (Coleman et al. 1980).

5.3.2 Stanford

The Stanford Data Challenge 4 (DC4) simulation was produced by Risa Wechsler and Michael

Busha using a 573 deg2 subset of the ΛCDM Hubble Volume Simulation and covers 5000 deg2

on the sky out to redshift z ∼ 1.4. The mock is magnitude limited to 0.4L∗ in the r-band, and

uses ΩM = 0.3, ΩΛ = 0.7, h = 0.7 and σ8 = 0.9. Galaxies are added to the simulation using the

ADDGALS routine, which assigns the properties of real SDSS galaxies to the mock galaxies.

5.3.2.1 Hubble Volume Simulations

The Hubble Volume Simulations are N -body simulations of 1× 109 dark matter particles, where

the mass of each particle is mp = 2.2× 1012M�h
−1, in boxes of 3000 Mpch−1 and 2000 Mpch−1

in length. The project was aimed at studying clusters of galaxies, filaments and voids (Evrard et al.

2002). The 3000 Mpch−1 box was run with standard ΛCDM cosmology (ΩM = 0.3, ΩΛ = 0.7 and

σ8 = 0.9), while the 2000 Mpch−1 box was run with a cosmology dominated by non-relativistic

cold dark matter, τCDM (ΩM = 1, ΩΛ = 0 and σ8 = 0.6).

Fig.5.5 shows a lightcone from the ΛCDM Hubble Volume Simulation, which illustrates the

evolution of clustering along the line of sight.
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Figure 5.5: Lightcone, which shows the evolution of clustering in the Hubble Volume Simulation
(Evrard et al. 2002).

5.3.2.2 Galaxy Assignment

The ADDGALS routine takes real galaxies from the luminosity function of Blanton et al. (2003) in

the SDSS r-band with passive evolution of M∗ = 1.3 per unit redshift irrespective of galaxy type.

Each galaxy is assigned to a dark matter particle in the simulation by matching the luminosity-

dependent clustering in the local Universe. No redshift evolution is used beyond the local SDSS

colour-environment corrections.

The mock galaxies are assigned to SDSS galaxies with the same L/L∗ and local galaxy density.

Each mock galaxy then has apparent magnitudes in the SDSS g, r, i, z & Y bands. Brightest Cluster

Galaxies (BCGs) are inserted with L ∼M0.3 and σ(logL) = 0.15, based on Hansen et al. (2009),

only for haloes with M > 1× 1014M�.

5.4 Data Analysis

This section details work that has been done thus far using the DES simulations described in

the previous section. Section 5.4.1 presents work on estimating photometric redshifts for the

DES simulations. Section 5.4.2 highlights work done regarding the galaxy colours in the DES

simulations. Finally, section 5.4.3 shows the start of work involving cluster detection in the DES

simulations using galaxy photometric redshifts.

5.4.1 Photometric Redshifts

Photometric redshifts were estimated for the Stanford DC4 mock using ANNz, the neural network

code of Collister & Lahav (2004). 50,000 random galaxies were selected from the mock with SDSS

g, r, i, z & Y photometric bands. Since each mock galaxy has an associated redshift, these random

galaxies can be used to train the neural network. 30,000 of these galaxies were used as the training

set and the remaining 20,000 were used as a validation set to prevent over-fitting. The remaining

mock galaxies not used for training were run through the trained network assuming no knowledge
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of the spectroscopic redshifts. The ANNz architecture was 2 layers of 10 nodes. The resulting

photometric redshifts obtained from ANNz versus the spectroscopic redshifts are shown in the top

left panel fig.5.6. The fit to the x = y line seen in this plot is very good, unfortunately it does not

look very realistic. Comparing the top left panel with the top right panel of fig.5.6 from Banerji

et al. (2008) shows that the scatter is at least two times smaller in the Stanford mock. The Banerji

et al. (2008) photometric redshifts were produced by running ANNz on DES mocks produced by

Lin et al. (2004) and Oyaizu et al. (2006) with SDSS g, r, i, z & Y photometric bands.

In an attempt to account for the discrepancies between the top left and right panels of fig.5.6,

a second set of photometric redshifts were produced from a version of the Stanford DC4 mock

without any magnitude cuts. 150,000 random galaxies were selected from the uncut mock, 100,000

were used as the training set and 50,000 were used as the validation set. The bottom left panel

of fig.5.6 shows the photometric redshifts obtained from the uncut mock using ANNz versus the

spectroscopic redshifts. This plot shows a very similar scatter to that seen in the top right panel

of fig.5.6, which implies that the problem lies with the apparent magnitudes in the Stanford DC4

mock catalogue.

The source of the problem was found to be the result of magnitude errors that were not effected

by evolution. Later versions of the DC4 mock and now the DC5 mock have since fixed this problem

as shown in the bottom right panel of fig.5.6. This plot was created by Stephanie Jouvel using the

photometric redshifts available in the current DC5 mock, which were produced using the neural

network algorithm of Oyaizu et al. (2008a,b). The red and green lines correspond to zp− zs = 0.15

and zp − zs = 0.3 respectively.

Photometric redshifts were also produced for the Barcelona mock using ANNz. A sample of

47,000 random galaxies were used as the training set and another 23,000 were used as the validation

set. The ANNz architecture used was the same as that used for the Stanford mock, 2 layers of 10

nodes. The resulting photometric redshifts versus spectroscopic redshifts are shown in fig.5.7. This

figure shows a similar scatter to that seen in fig.5.6, which implies the Barcelona mock suffers

from the same problem as the DC4 versions of the Stanford mock. To investigate this an analysis

of the colour versus colour space of the Barcelona and DC4 Stanford mocks was made, which is

discussed in the following subsection.

5.4.2 Colours

Fig.5.8 shows g-r vs. r-i colours (top left panel), r-i vs. i-z colours (top right panel) and i-z vs.

z-Y colours (bottom panel) for the Barcelona mock, where the colour bar indicates the number of
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Figure 5.6: DC4 mock photometric redshifts versus spectroscopic redshifts using SDSS g, r, i, z &
Y photometric bands (top right panel). Photometric redshifts versus spectroscopic redshifts using
SDSS g, r, i, z & Y photometric bands from Banerji et al. (2008) produced using mocks produced
by Lin et al. (2004) and Oyaizu et al. (2006) (top right panel). Uncut DC4 mock photometric
redshifts versus spectroscopic redshifts using SDSS g, r, i, z & Y photometric bands (bottom right
panel). DC5 mock photometric redshifts Oyaizu et al. (2008a,b) versus spectroscopic redshifts
produced by Stephanie Jouvel (bottom right panel).The red and green solid lines correspond to
zp − zs = 0.15 and zp − zs = 0.3 respectively.
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Figure 5.7: Barcelona mock photometric redshifts versus spectroscopic redshifts using SDSS g, r, i,
z & Y photometric bands.

galaxies. These plots show the spectral energy distribution (SED) tracks for the mock galaxies. To

test the reliability of the galaxy colours, these SED tracks are compared to the Stanford DC4 mock

and to the mock of Lin et al. (2004).

Fig.5.9 shows the overlap of the colour space contours between the Barcelona mock and the

Lin et al. (2004) mock (top panels), and between the Barcelona mock and the Stanford DC4 mock

(bottom panels). This figure shows that there is relatively good agreement between the Barcelona

mock and that of Lin et al. (2004), whereas there is much less overlap with the Stanford DC4 mock.

The overlap between the Barcelona and Lin et al. (2004) mocks is more clearly illustrated in the

colour maps without magnitude errors shown in fig.5.10. Fig.5.11 shows the scatter in g-r vs. r-i

colour space as a function of redshift for the Barcelona mock (left panel) and the Lin et al. (2004)

mock (right panel). This plot shows that the colour distribution with respect to redshift is the same

in both mocks, however the Lin et al. (2004) mock show a much more uniform spread of galaxy

colours. Fig.5.12 shows the change in the g-r colour as a function of redshift in the Barcelona

mock.

These plot have helped to understand the problems in the Barcelona simulation, which has led

to development of improved versions with more realistic galaxy colours and evolution. This project

is still ongoing and it yet to be seen how realistic the photometric redshifts will be from the current

version. The aim of this project is to produce a mock galaxy catalogue, which is competitive with
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Figure 5.8: g-r vs. r-i colours (top left panel), r-i vs. i-z colours (top right panel) and i-z vs. z-Y
colours (bottom panel) for the Barcelona mock galaxy catalogue. The colour bar indicates the
number of galaxies.

and complementary to the Stanford mock for use in the Dark Energy Survey working groups.

5.4.3 Galaxy Clusters

In addition to the photometric redshift and colour analysis work, some attempts have been made to

detect galaxy clusters in the Stanford mocks.

5.4.3.1 Initial Results

Initial work was carried out within the DES clusters working group, using the Stanford DC4 mock,

for the DES Clusters Comparison Workshop held in Columbus, Ohio, in 2008. The objective

of this meeting and those since then is to find the optimal cluster finder(s) for the Dark Energy

Survey. To this end several groups were encouraged to prepare cluster catalogues using whichever
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Figure 5.9: Colour space contours for the Barcelona mock (empty contours) and the Lin et al.
(2004) mock (filled contours) (top panels). Colour space contours for the Barcelona mock (empty
contours) and the Stanford DC4 mock (filled contours) (bottom panels).
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Figure 5.10: Colour space contours for the Barcelona mock (empty contours) and the Lin et al.
(2004) mock (filled contours) without magnitude errors.

0.5 0 0.5 1 1.5
0.5

0

0.5

1

1.5

z

g r

r
i

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 0 0.5 1 1.5
0.5

0

0.5

1

1.5

g r

r
i z

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.11: Scatter in g-r vs. r-i colour space as a function of redshift for the Barcelona mock (left
panel) and the Lin et al. (2004) mock (right panel).
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Figure 5.12: g-r colour as a function of redshift in Barcelona mock galaxy catalogue.

technique they prefer from the Stanford DC4 mock galaxy catalogue. Each group was provided

with the catalogue of the mock galaxies and the positions of the dark matter haloes (or truth table)

to determine the reliability (i.e. completeness & purity) of their catalogue.

Several cluster catalogues were produced from the Stanford DC4 mock using the friends-

of-friends technique described in chapter 3 with various values of R0. The completeness and

contamination (1-purity) for each of these catalogues was determined using a cylindrical matching

technique, which simply matches FoF cluster centres to mock halo centres in a cylinder, 1.5 Mpc in

radius and z = 0.004 in length. This is done requiring that the matching from clusters to haloes be

unique. The completeness and contamination of the catalogue were defined via

Completeness =
Nmatches

Nhaloes
(5.11)

and

Contamination =
(Nclusters −Nmatches)

Nclusters
, (5.12)

where Nmatches is the number of matches between FoF cluster and mock haloes, Nclusters is the

number of FoF clusters detected and Nhaloes is the number of mock haloes.
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Figure 5.13: Completeness as a function of halo mass for all FoF clusters (top left panel). Contami-
nation as a function of cluster richness for all FoF clusters (top right panel). Completeness as a
function of halo mass for FoF clusters with Nmem ≥ 5 (bottom left panel). Contamination as a
function of cluster richness for FoF clusters Nmem ≥ 5 (bottom right panel).

Fig.5.13 shows the completeness as a function of halo mass for all FoF clusters (top left panel)

and the Contamination as a function of cluster richness for all FoF clusters (top right panel). The

bottom panels of fig.5.13 show the completeness and contamination only for clusters with 5 or

more members. The figure shows that majority of the contamination comes from the smallest

groups of 3 or 4 members and that a reliable catalogue can be produced for haloes down to a mass

of 2.5× 1014M�. It should be noted that the FoF algorithm has been much improved since these

results were presented, however the results presented here will be overly optimistic as the DC4

mock incorporates rather unrealistic photometric redshifts (see §5.4.1). These photometric redshifts

approximate very closely the spectroscopic redshifts in the mock catalogue and therefore avoid

many of the problems with merging encountered in chapter 3, which severely limits the levels of
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completeness and purity that can be achieved without making richness cuts to the cluster catalogue.

The principal difficulty encountered in this meeting was that comparing different cluster

catalogues is a non-trivial process. Each group presented a catalogue that was produced in a unique

way, some of which contained information about cluster galaxy members, other that contained only

information about the cluster centres. In addition to this, each group had presented the reliability of

their cluster finder in slightly different way, making comparison very difficult.

5.4.3.2 Cluster Comparison

In order to gain some level of comparison between different cluster finding algorithms in the DES

clusters working group, cluster catalogues were analysed that were obtained with some more recent

versions of the Stanford DES mocks. These mocks contain more realistic photometric redshifts

than previous versions among other minor improvements. The FoF code discussed throughout

this thesis is compared, using a very crude cylindrical matching code (described in the previous

subsection), with the Gaussian Mixture Brightest Cluster Galaxy (GMBCG) method of Hao et al.

(2010) and the Voronoi Tessellation (VT) method of Soares-Santos et al. (2011).

The GMBCG method makes use of the assumption that the distribution of galaxy colours in a

cluster can be well approximated by a mixture of two Gaussian distributions (Hao et al. 2009, 2010).

The galaxy colours in a patch of sky that does not contain a cluster should be well represented

by single wide Gaussian. If a cluster is present, the colours should show a bimodal distribution

with one narrow Gaussian that includes galaxies in the cluster red sequence and one wide Gaussian

that corresponds to background, foreground and other blue galaxies. A cluster catalogue found

using v2.10 of the Stanford DES mock was provided by Jiangang Hao for the purposes of this

comparison.

The Voronoi tessellation (see §1.4.5.2) method of Soares-Santos et al. (2011) is performed in

2+1 dimensions by dividing the input catalogue into non-overlapping slices of 1− σz , where σz is

the redshift error. The tessellation is produced by dividing the galaxies in each slice into discrete

cells. The size of the cells gives an indication of the density in the field. Cluster candidates are then

chosen as those with a density above some threshold. A cluster catalogue found using v1.07 of the

Stanford DES mock was provided by Marcelle Soares-Santos for the purposes of this comparison.

The FoF code was run on v2.14 of the Stanford DES mock, which has no significant differences

to v2.10, with parameters Rfriend(0.5) = 0.077 h−1Mpc and K = 0.5. These parameters were

chosen solely based on the physical properties of the resulting groups and clusters.

Fig.5.14 shows the completeness as a function of mock halo mass (left panel) and the purity as
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Figure 5.14: Completeness as a function of halo mass, M200, for clusters detected using GMBCG
(red solid line), Voronoi Tessellation (blue dotted line) and FoF (green dashed line). Purity as a
function of cluster richness for clusters detected using GMBCG (red solid line), VT (blue dotted
line) and FoF (green dashed line).

function of cluster richness (right panel) for GMBCG (red solid line), VT (blue dotted line) and

FoF (green dashed line). This plot shows that the FoF does marginally better than GMBCG for

the completeness, particularly for lower mass haloes, but generally worse for the purity. The VT

method appears to perform the worst in both accounts. It should be clearly noted that the cylindrical

matching technique is very simplistic and probably does not give the best account of the reliability

of a cluster finder, but for the purposes of this chapter provides a consistent method to compare the

three codes. It should also be noted that the FoF code was not fully optimised (as in chapters 2 and

3) for this comparison.

These results indicate that the FoF and GMBCG techniques are comparable in their ability

to reproduce the mock halo catalogue. Part of the discrepancy with the VT technique can be

explained by the fact that the catalogue used for this comparison only has a proxy for the cluster

richness. A more accurate measure for the cluster richness can be obtained using a follow-up code.

Soares-Santos et al. (2011) show much better values of completeness and purity obtained using a

membership matching technique. In general membership matching techniques are a more reliable

method for determining the efficiency of a cluster finder. This does, however, require that each

cluster catalogue provides a list of the member galaxies that belong to each cluster or that some

kind of afterburner be run to determine the membership of each cluster. Membership matching

could not be implemented for the purposes of this chapter as cluster galaxy information was not

available for all of the cluster catalogues. A more in-depth membership matching analysis will be

done before the contents of this chapter are submitted for publication, this will be part of the DES



5.5. Conclusions and Future Work 179

cluster comparison tests.

5.5 Conclusions and Future Work

The Dark Energy Survey is revolutionary new optical-near infrared survey of 5000 deg2 of the

southern galactic cap. DES will use four different methods to probe the properties of dark energy;

baryon oscillations of the power spectrum, the abundance and spatial distribution of clusters, weak

gravitational lensing and type Ia supernovae. The survey will carried out using the 4 m Blanco

telescope based at the Cerro Tololo Inter-American Observatory (CTIO) with the 519 mexapixel

optical CCD camera, DECam. To prepare for the abundance of data that will be made available,

simulations of the data expected from DES have been prepared by several institutions.

Work has been done to obtain photometric redshifts for the simulated galaxies using the neural

network code ANNz. Initial results showed that the scatter between spectroscopic and photometric

redshifts was less than would be expected from real data. A comparison was then made between

the different simulated galaxy colours in an attempt to explain this discrepancy. Furthermore, the

friends-of-friend code described in chapter 3 was used to detect structure in the Stanford simulation.

All of the work described in this chapter is still ongoing. Since these results were presented,

several improvements have been made to the DES simulations both at Stanford (now on DC5) and

in Barcelona, and also to the friends-of-friends code. Work will continue to improve the galaxy

colours in the simulations, which will in turn lead to more realistic photometric redshifts. Once

the galaxies have reliable photometric redshifts, the FoF can be used to detect structure in the

simulations.



CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 Introduction

This thesis has presented a series of projects focused on the optical detection of clusters of galaxies.

The principal aim has been to investigate techniques that can be applied to current and up coming

galaxy surveys such as the Dark Energy Survey (DES), with particular interest in using estimated

photometric redshifts to detect genuine structures. The following section (§6.2) summarises the

results and conclusions from each chapter. The last section (§6.3) discusses some work that will be

done in the future to further the work presented in this thesis.

6.2 Summary and Conclusions

6.2.1 Optical Cluster Detection I: Spectroscopic Friends-of-Friends

This chapter presents a catalogue of galaxy groups and clusters selected using a friends-of-friends

algorithm, which is based on that of Huchra & Geller (1982) with a dynamic linking length, from

the 2dF-SDSS and QSO (2SLAQ) luminous red galaxy survey. The linking parameters for the

code are chosen through an analysis of simulated 2SLAQ haloes, produced from the Horizon 4π

simulation and the HOD prescription of Blake et al. (2008). The resulting catalogue includes

313 clusters containing 1,152 galaxies. The galaxy groups and clusters have an average velocity

dispersion of σv = 467.97 kms−1 and an average size of Rclt = 0.78 h−1Mpc.

Galaxies from regions of one square degree and centred on the galaxy clusters were downloaded

from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6). Investigating the photometric

180
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redshifts and cluster red-sequence of these galaxies shows that the galaxy clusters detected with the

FoF algorithm are reliable out to z∼0.6. The discrepancies beyond this range is partially owing

to the small number of groups and clusters detected at higher redshifts. Also, there may be some

contamination effects in the histograms from the photometric redshift errors in the SDSS data.

Mass estimates are made for the clusters using their velocity dispersions. These mass estimates

are shown to be reliable by comparing them with the 2SLAQ mock halo masses. Some deviations

are seen, which are the result of contaminating galaxies in the richness estimates and the small

number of high mass clusters detected. In general the range of cluster masses is a good match to

known masses of massive clusters.

Further analysis of the simulation haloes shows that clipping out low richness groups with

large radii improves the purity of catalogue from 52% to 88%, while retaining a completeness of

94%. It is unknown to what accuracy this clipping procedure can be applied to the real 2SLAQ

data, therefore the 2SLAQ clusters that survive the clipping are labelled as ‘gold’ sample objects,

meaning that they have a higher probability of being genuine structures. The clusters that fail the

clipping are labelled as ‘silver’ sample objects and may still be genuine, but with a lower probability.

Some of these lower probability objects may be clusters that are still collapsing. Out of the 313

total 2SLAQ groups and clusters, 70 are gold and the remaining 243 are silver.

Finally, the two-point correlation function of the cluster catalogue is tested. The best-fitting

power law model , ξ(r) = (r/r0)γ , with parameters r0 = 24± 4 Mpc h−1 and γ = −2.1± 0.2 is

found.

6.2.2 Optical Cluster Detection II: Photometric Friends-of-Friends

A slightly modified version of the Botzler et al. (2004) photometric redshift friends of friends

algorithm, which used a dynamic linking length that changes with the surface number density of

galaxies is presented. The code is applied to 2dF-SDSS and QSO (2SLAQ) luminous red galaxy

survey using photometric redshifts obtained using the neural network code ANNz (Collister &

Lahav 2004). A cluster catalogue is produced with 569 groups and clusters containing 2,180

member galaxies that matches the spectroscopic catalogue obtained in chapter 2 to 38% without

any cuts and up to 80% if matching is only considered for 2SLAQ spectroscopic clusters with

Nmem ≥ 6.

The code is also run on the Megaz-LRG DR7 catalogue with linking parameters chosen based

on the physical properties of the clusters found and the completeness of the Megaz-LRG clusters

found within the 2SLAQ area to the 2SLAQ spectroscopic clusters. Two catalogues are chosen for
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further analysis as no obvious agreement can be found between these criteria. The first catalogue

includes 21,255 groups and clusters (containing 73073 galaxies) that have physical properties

that would be expected of clusters. The second catalogue includes 114,874 groups and clusters

(containing 544,008 galaxies). This catalogue has a higher completeness relative to 2SLAQ. This

difference occurs because as the linking parameters are increased, a large number of smaller

structures are found contributing to the completeness and at the same time larger structures are

merged together to form extremely large unphysical structures.

Galaxies from regions of one square degree and centred on the galaxy clusters were downloaded

from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Investigating the photometric

redshifts and cluster red-sequence of these galaxies shows that the galaxy clusters detected with the

FoF algorithm are reliable out to z ∼ 0.6 for the 2SLAQ photometric catalogue, consistent with the

spectroscopic results, and out to z ∼ 0.65 for the Megaz-LRG catalogues. These results appear to

favour the more complete Megaz-LRG cluster catalogue, which shows a trend of ∼ 0.3 in g − i
colour space consistent with the cluster red sequence. On dense galaxy catalogues, this cluster

finding method in not capable of producing a catalogue that is both pure and complete. The code

can, however, produce a cluster catalogue that is either pure or complete independently.

The radial profiles of all three cluster catalogues are examined, also indicating a better agreement

between 2SLAQ and the more complete Megaz-LRG catalogue.

Finally, the two-point correlation function of the 2SLAQ photometric redshift cluster catalogue

is tested. The best-fitting power law model , ξ(r) = (r/r0)γ , with parameters r0 = 9.55 ± 4.23

Mpc h−1 and γ = −1.115± 0.29 is found. These results show less correlation that those found for

the spectroscopic 2SLAQ cluster catalogue, which is the result of impurities diluting the clustering

length. This implies that the two-point correlation function can be used to measure the impurity of

the photometric 2SLAQ cluster catalogue.

6.2.3 AAT Spectroscopic Observations of a Selection of Photometric FoF Targets

Eight fields were targeted for observation based on cluster candidate positions found using a

friends-of-friends (FoF) algorithm that incorporates photometric redshifts on the Megaz-LRG

DR5 catalogue. The best candidates were chosen as those with seven or more LRGs and were

labeled sample A clusters. The fields were supplemented with SDSS galaxies lying along the

red-sequence of these clusters. 4116 spectra were obtained over four grey nights at the Anglo-

Australian Observatory using AAOmega from the eight observing fields. From these 4116 spectra,

2379 galaxy redshifts were measured using the RUNZ package. Measuring N(z) in regions 1
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h−1Mpc around a selection of the sample A clusters shows clear peaks in z around the cluster

redshifts. Estimates are made for the cluster velocity dispersions and dynamical masses by taking

only the galaxies within the N(z) peak. The majority of these estimates are consistent with what

would be expected for genuine structures, although these estimates are very approximate.

These results can potentially be improved by running a newer version of the FoF code on the

Megaz-LRG catalogue. This may improve the accuracy of detecting the cluster centres. This code

could also be run on a more recent release of Megaz-LRG. A more in depth spectroscopic analysis

of this data could provide reliable velocity dispersion and dynamical mass estimates, which could

be compared with lensing and/or X-ray data.

6.2.4 The Dark Energy Survey

The Dark Energy Survey is revolutionary new optical-near infrared survey of 5000 deg2 of the

southern galactic cap. DES will use four different methods to probe the properties of dark energy;

baryon oscillations of the power spectrum, the abundance and spatial distribution of clusters, weak

gravitational lensing and type Ia supernovae. The survey will carried out using the 4 m Blanco

telescope based at the Cerro Tololo Inter-American Observatory (CTIO) with the 519 mexapixel

optical CCD camera, DECam. To prepare for the abundance of data that will be made available,

simulations of the data expected from DES have been prepared by several institutions.

Work has been done to obtain photometric redshifts for the simulated galaxies using the

neural network code ANNz. Initial results have shown that the scatter between spectroscopic

and photometric redshifts was less than would be expected from real data. This has highlighted

problems with the colours in early versions of the Stanford DES mock, which have since be

corrected. A comparison was then made between the different simulated galaxy colours in an

attempt to explain this discrepancy. Furthermore, the friends-of-friend code described in chapter

3 was used to detect structure in the Stanford simulation and these results have been compared

with other cluster finding techniques. This comparison process is still on going, but initial results

indicate that this method is consistent with other methods currently used in DES.

All of the work described in this chapter is still ongoing. Since these results were presented,

several improvements have been made to the DES simulations and the friends-of-friends code.

Work will continue to improve the galaxy colours in the simulations, which will in turn lead to

more realistic photometric redshifts. Once the galaxies have reliable photometric redshifts, the FoF

code can be used to detect structure in the simulations.
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6.3 Future Work

6.3.1 Improved Mocks

One of the problems encountered when working with the photometric friends-of-friends method

was that a crude mock was unable to provide reliable estimates of the completeness and purity of a

given set of linking parameters. The analysis done in §3.5 showed that taking a spectroscopic mock

and adding photometric redshifts using the bias between 2SLAQ spectroscopic and photometric

redshifts changed the number density of galaxies in certain ranges. To compensate for this effect

it is necessary to remove a certain fraction of objects, however the way in which this is carried

out has significant effects on the resulting levels of completeness and purity that can be obtained.

Therefore, it is clear that a more sophisticated mock would be required to gain some understanding

of the level of completeness of a given cluster catalogue. This mock would ideally have realistic

colours assigned to each of the galaxies, which would allow photometric redshifts to be estimated

for each of the objects.

The work mentioned in chapter 5 regarding the Barcelona DES mocks is the beginning of

a project that should shed some light on the advantages and disadvantages of using simulated

galaxy catalogues to explore the completeness and purity of photometric friends-of-friends cluster

catalogues. It may turn out that using mock catalogues is not the most efficient way of producing

a realistic cluster catalogue. Perhaps, as shown in chapter 4, it is better to follow up with a

spectroscopic analysis on a selection of objects and identify the fraction of objects that constitute

genuine bound structures. Most likely the most reliable catalogue will be produced by combining

both approaches.

6.3.2 Voronoi Tessellation

Another major difficulty encountered when working with the photometric friends-of-friends tech-

nique is effect of cluster merging. In §3.5 it was shown that the completeness tends to peak ∼ 50%

because for low linking parameter combinations only larger structures are detected and if the

parameters are increased smaller structures are found, however simultaneously lager structures

merge together often forming highly unphysical objects. The results in chapter 3 indicate that it is

better to use a higher parameter set that corresponds to higher completeness as it may be possible

to reanalyse the more unphysical objects to look for substructure. It may, however, be possible to

avoid the problem by removing some of the field galaxies that cause the clusters to merge when the

linking parameters are increased.
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One way of removing field galaxies from a catalogue before running the friend-of-friends would

be to implement a Voronoi tessellation code (see 1.4.5.2). This technique can be used to identify

voids in a galaxy catalogue and remove galaxies living in these regions before searching for the

galaxy clusters. A three-dimensional Voronoi tessellation code has been developed by Walter Dos

Santos, which could be implemented in the near future to test this approach.

6.3.3 Cluster Masses

In chapter 2 cluster masses were estimated from the cluster velocity dispersions. The masses

obtained appear to be consistent with those expected for galaxy clusters, however there is large

uncertainty associated with these estimates because of the small number of LRGs contributing

to the velocity dispersions. It would be interesting to carry out a spectroscopic follow up on a

selection of these clusters to examine all the member galaxies (not just the LRGs) to determine how

reliable the velocity dispersions given solely by the LRGs are. Additionally, it would be interesting

to compare the mass estimates with those provided by other methods such as gravitational lensing

or X-rays.

6.3.4 DES Clusters

Continued involvement in the Dark Energy Survey is essential for keeping up to date with work

regarding galaxy cluster detection. The Stanford simulations are useful for testing the photometric

friends-of-friends algorithm. In addition, the DES clusters working group provides a platform to

compare with other cluster finding techniques.

One task aimed for the near future is to incorporate the friends-of-friends code into the DES

portal.
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Bradač, M., Lombardi, M. & Schneider, P., 2004, A&A, 424, 13

Bruzual, G. & Charlot, S., 2003, MNRAS, 344, 1000

Bryan, G. L. & Norman, M. L., 1998, ApJ, 495, 80

Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V., Klypin, A. A., Primack,

J. R. & Dekel, A., 2001, MNRAS, 321, 559

Cannon, R., Drinkwater, M., Edge, A., Eisenstein, D., Nichol, R., Outram, P. & Pimbblet, K., 2006,

MNRAS, 372, 425

Capak, P., Cowie, L. L., Hu, E. M., Barger, A. J., Dickinson, M., Fernandez, E., Giavalisco, M.,

Komiyama, Y., Kretchmer, C., McNally, C., Miyazaki, S., Okamura, S. & Stern, D., 2004, AJ,

127, 180

Carlberg, R. G., Yee, H. K. C., Ellingson, E., Abraham, R., Gravel, P., Morris, S. & Pritchet, C. J.,

1996, ApJ, 462, 32

Carroll, S. M., Duvvuri, V., Trodden, M. & Turner, M. S., 2004, Physical Review D, 70(4), 043528

Carroll, S. M., Press, W. H. & Turner, E. L., 1992, ArA&A, 30, 499

Colberg, J. M., White, S. D. M., Yoshida, N., MacFarland, T. J., Jenkins, A., Frenk, C. S., Pearce,

F. R., Evrard, A. E., Couchman, H. M. P., Efstathiou, G., Peacock, J. A., Thomas, P. A. & The

Virgo Consortium, 2000, MNRAS, 319, 209

Coleman, G. D., Wu, C. & Weedman, D. W., 1980, ApJS, 43, 393

Colı́n, P., Klypin, A. A., Kravtsov, A. V. & Khokhlov, A. M., 1999, ApJ, 523, 32

Colless, M., 1989, MNRAS, 237, 799

Colless, M., 1999, Royal Society of London Philosophical Transactions Series A, 357, 105
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