
NUMERICAL SIMULATION OF NONLINEAR

INTERACTION BETWEEN STRUCTURES

AND STEEP WAVES

by

Qingwei Ma

B.Eng., MSc

A thesis submitted for the degree of

Doctor of Philosophy

Department of Mechanical Engineering

University College London

1998

low



ABSTRACT

Responding to great concerns about the interaction between steep waves and

structures in naval architecture and offshore engineering, a methodology and

corresponding numerical algorithm for computing three-dimensional inviscid flow with a

free surface are developed based on a fully nonlinear theory in this thesis. The associated

boundary value problem is solved using a finite element method. In order to chose an

efficient solver for algebraic equations, a direct method and an iterative method with

two different preconditioners are compared to each other, which leads to the suggestion

that the conjugate gradient method with an SSOR preconditioner is the most suitable for

the problem of concern. Furthermore, the radiation condition at a truncated boundary is

imposed with an associated damping coefficient optimised to reduce the reflection of

waves. In addition, an analytical solution for transient standing waves in a circular tank

is derived using second order theory, which provides a tool to validate the numerical

method.

The developed numerical method is first utilised in simulating the sloshing wave in a

tank generated by initial disturbance on the free surface and by the translational motion

of the tank. Numerical results are compared with analytical solutions in several cases,

which show that the numerical method can be very accurate. The features of the steep

sloshing waves are then examined.

In the second application, the interaction between vertical cylinders and waves

generated by a wave maker is investigated. The motion of the wavemaker can be

specified accordingly, in order to generate monochromatic, bichromatic or irregular

progressive waves. The forces on one and two cylinders are obtained and compared

with published data. The steep waves and their effects on hydrodynamic loads are

analysed.

It is concluded that the developed methodology based on the finite element method is

a good alternative to the existing techniques for the simulation of steep waves. Its

accuracy, flexibility and efficiency demonstrated by various numerical examples appear to

be quite favourable.
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1. INTRODUCTION

1.1 Background

In order to explore and make use of the natural resources in the ocean, a wide variety

of marine structures have been constructed. Well known examples include ships,

Tension Leg platforms (TLPs), jacket-type platforms and moored floating storage tanks.

They are all being used under severe environmental conditions which are a combination

of tide, wind, current and waves. Although all of these effects should be considered in

the design and construction of the structures, the effect of waves is of most concern.

Waves may create very high loads on the structures and set them into motion, which will

affect the safety, operation conditions and behaviour of the structures.

(a) Sloshing in a tank (b) Breaking wave on a ship

Figure 1.1.1 Some examples of large waves (from Faltinsen, 1990)

The waves may be quite small under mild weather conditions, but it is quite often

necessary for the structures to withstand very large and steep waves. Two typical

examples are demonstrated in Figure 1.1.1. Both breaking and sloshing waves can create

large forces which may cause capsize of ships or can damage the structures. The other

example is associated with the so-called `ringing'. This is a kind of transient response of

large offshore platforms such as TLPs at extremely high frequencies. Figure 1.1.2,

plotted using results of Jefferys & Rainey (1994), illustrates a characteristic ringing event

in a model test. The evidence of several experiments (for instance, Chaplin, Rainey, &

Yemm, 1997 and Stansberg, C.T., Huse, E., Krokstad, J.R. & Lehn, E., 1995) suggested

that the ringing is closely related to very steep waves such as shown in Figure 1.1.3.
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The ringing motion can cause high level stress with high frequency in structures, which

has alerted engineers to the possible failure due to fatigue.

20
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Figure 1.1.2 Experimental event of ringing on a TLP (upper curve is time history of
wave and lower curve is a measured tension of structures)
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Figure 1.1.3 Large waves around cylindrical bodies

The above examples evidently show that the interaction between the structure and

waves needs to be carefully investigated in order to improve and optimise the design.

For the flows around large objects, the potential theory is commonly applied, which

ignores the viscosity of fluid. The theory further neglects the surface tension and the
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compressibility. Thus the velocity potential describing the flow satisfies the Laplace

equation.

The Laplace equation is linear, but the problem is made nonlinear by the boundary

conditions on the free surface, where a square term of fluid velocity is included and the

elevation of the surface is unknown. Furthermore the position of a moving body cannot

always be determined a priori. The nonlinearity renders the problem very difficult to

analyse. Over the years, linearisation has been applied. The theory has greatly advanced

our knowledge and has been found useful in capturing important phenomena such as

resonance. However, this is valid only for waves of very small amplitude relative to the

wave-length and the water depth. In order to investigate some problems in which the

amplitude is moderate, a Stokes' perturbation expansion based on wave slope has been

applied with the terms of the required order. In this approach, the second order

expansion is often used, which has provided the good prediction of slowly-varying drift

force and some high frequency forces. The third order analysis has also been found

useful to investigate nonlinear loads on cylinders. It may seem that the analysis could be

carried out by including higher order terms, but may be impossible in practice not only

because the equation can become very complex but also because they contain high order

derivatives which are not easy to compute numerically. On the other hand, to ensure the

convergence of the perturbation expansion, it is necessary to restrict the wave amplitude.

However, this restriction is not valid in many cases, such as the large sloshing waves and

the steep waves associated with ringing. In these situations, the fully nonlinear

formulation may be an appropriate choice.

The fully nonlinear formulation is usually solved by a time-step marching procedure

(Longuet-Higgins & Cokelet,1976). This assumes that the wave profile and the position

of the structure are known at a particular instant, and a mixed Dirichlet and Newmann

boundary value problem is formed; this can then be solved by numerical techniques. The

Bernoulli equation enables us to find the force on the structure; if the structure is not

fixed, Newton's law will provide the new acceleration. The acceleration then gives a new

velocity which further gives the new position of the structure. Similarly, the velocity

obtained on the free surface will give a new free surface profile. All of these will enable

the problem to be solved at the next time step. The procedure can be repeated for a

desired number of time steps.
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The physical problem may be studied experimentally. However it is expensive, and

for each experiment that is set up, only one special model can be tested. Although the

experiments can provide very useful and irreplaceable results, systematic investigation

with different parameters and different configurations may be practically impossible. In

contrast, numerical modelling may be relatively cheaper. Once the methodology and the

computer code are established, many different runs can be easily performed.

1.2 Objectives of the study

This study will numerically simulate the fully nonlinear interaction problem between

steep waves and three-dimensional bodies using the time-step marching procedure based

on the potential flow theory. The main tasks are:

I. to develop a numerical methodology and algorithm based on a finite element

method;

II. to apply the algorithm for two cases, namely, the simulation of sloshing waves in a

tank and the investigation of forces acting on a cylinder by the propagating waves.

Quality meshes play a vital role for an effective numerical analysis. Nevertheless, our

attention here is concentrated on the solution techniques, and a simple structured mesh is

used. Although the fully nonlinear theory has no restriction to any wave situations,

consideration is not given to the breaking and overturning waves.

1 .3 Outline of the thesis

A review and a discussion of previous work are presented in Chapter 2. The

mathematical formulation and the force calculation follows in Chapters 3 and 4 in turn.

A numerical algorithm based on the finite element method is presented in Chapter 5. In

Chapter 6, an investigation is carried out into the solution method of algebraic equations,

to find a suitable solver for the problem of concern. Chapter 7 presents the application

of the developed algorithm to sloshing waves. The simulation of the waves and their

interaction with vertical cylinders in a wave-making tank is discussed in Chapter 8,

followed by the conclusion and recommendations for the future work in Chapter 9.
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2. REVIEW AND DISCUSSION OF PREVIOUS WORK

The interaction between waves and structures has received considerable attention

from hydrodynamicists. This chapter will review and discuss previous studies and

techniques, particularly those associated with steep waves.

2.1 Mathematical model

Even with the assumptions described in the last chapter, the wave problem still

remains very complex. This is apparent from observing waves generated by a storm, by

the motion of ships or simply by throwing a stone into water. Therefore people have

established various mathematical models to formulate the problem, in order to obtain the

desired results with as little effort as possible. The models may be grouped into:

1) linear model in the frequency domain;

2) linear model in the time domain;

3) high order model in the frequency domain;

4) high order model in the time domain;

5) fully nonlinear model;

In each model, the fluid flow can be considered as two- or three-dimensional.

2.1.1 Linear model infrequency domain

The problem described by this model has to possess the following properties:

a) Physical quantities of interest (such as velocity, pressure and so on) can be expressed

as Re[f (x)e'" ], where f (x) represents any function dependent on spatial coordinate

only; (v is frequency and i = -^-_l . The physical meaning of this property is that the

waves have been fully developed and become periodic. The wave form and amplitude do

not change with time. Owing to this property, the time-independent analysis can be

applied.

b) Wave amplitude is so small relative to other scales (such as wave length and water

depth) that nonlinear terms in the free surface boundary conditions can be neglected and

the resulting linearised conditions can be imposed on the mean free surface.

c) If a moving body is included, its oscillation excited by waves is also small, so that the

body surface condition can be applied on its mean position.
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This model is very simple, and has been widely used. The corresponding theory and

techniques have been well established, and can be found in relevant literature, such as

given by Newman (1977) and Mei (1989).

2.1.2 Linear model in the time domain

While the second and third requirements in the above model are also needed for this

model, the first one is not necessary. Consequently, this model is capable of dealing with

transient wave-structure interactions. It should be noted that the waves in the first model

can be regarded as representing a periodic state of the transient flow. This implies that

the second model is suitable for a wider range of problems than the first one. However,

it is less popular than the first one in practice. The reason may be that the periodic state

flow are frequently of interest, and furthermore, with the second model, one has to deal

with the transient period in order to obtain periodic state results.

Nevertheless, this model is still used in numerous cases where transient behaviour

may be of interest. For example, Marhell and Ursell (1970) considered the waves

induced by a vibration of a floating body for which an initial displacement is specified.

Lee and Leonard (1987) dealt with the waves generated by a wave maker and by a

floating body that oscillates freely. More recently, Beck & Magee (1990), Bingham,

Korsmeyer & Newman(1994) and Bratland, Korsmeyer & Newman (1997) employed the

linear time domain model to investigate the interaction between the waves and bodies

with or without forward speed, and even provide some examples to show how to obtain

the added mass and damping coefficients at periodic state.

2.1.3 High order model infrequency domain

The problem described by this model should have the first property in Section 2.1.1.

In addition, the ratio of the wave amplitude to other scales is assumed to be moderate.

With these assumptions, a perturbation expansion is used and truncated at the required

order, and boundary conditions are satisfied on their mean positions of the boundaries.

A large volume of work has been published based on perturbation theory. For the

calculation of second order drift forces, Newman (1967) developed a far field method in

terms of first order velocity potential. In the work of Eatock Taylor & Hung (1987), a

semi-analytical solution was developed for a bottom-mounted vertical cylinder. More

recently, Huang and Eatock Taylor (1996) suggested a semi-analytical method for
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nonlinear interaction between waves and a truncated vertical cylinder. The wave drift

damping, the forces acting on a floating structure with slowly drift motion, have also

been modelled using the perturbation method (see, e.g. Zhao & Faltinsen (1989) and

Grue & Palm (1993)). All of the above studies and many others are based on the second

order analysis. Some effort has already been devoted to using third order analysis.

Faltinsen, Newman & Vinje, (1995) gave a solution for nonlinear loads on a slender

vertical cylinder using third order perturbation techniques. Malenica & Molin (1995)

presented a third order harmonic analysis of wave diffraction about a vertical cylinder.

2.1.4 High order model in time domain

Similar to the third model above, the ratios of the wave amplitude to other scales are

assumed be moderate within this model; however the transient behaviour of the waves is

allowed. Perturbation expansion techniques are again used. Isaacson & Cheung (1990,

1991) used a second order approach to simulate wave diffraction about two- and three-

dimensional structures. Isaacson & Ng (1993) and Ng & Isaacson (1993) applied the

same approach to wave radiation and combined radiation and diffraction problems,

respectively. More recently, Skourup, Buchmann & Bingham (1997) investigated the

wave runup on a vertical cylinder and ship response to the incoming wave using the

second-order time-domain analysis. Some efforts have also been made to use the third

order analysis. For instance, Sclavounos & Kim (1995) have investigated a diffraction

problem by means of a third-order time-domain analysis. Although this model may be

quite efficient and remains valid for transient waves possessing moderate nonlinearity, its

efficiency and capability have not yet been justified for very steep waves.

2.1.5 Fully nonlinear model

In this model, there is no extra limitation apart form the assumptions given in section

1.2. So free surface conditions include all terms, linear and nonlinear, and they are

imposed on an instantaneous free surface, which is not known before the analysis. The

body surface condition is linearly dependent on its velocity, but the position and the

velocity of the body need to be determined during the analysis, which therefore renders

the condition nonlinear as well. These nonlinearities imply that the model may be used in

the time domain. Due to the use of fewer assumptions, the model is closer to the

physical problem and is valid in a wider range of applications than those discussed above.
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However it is much more difficult to use, and without the aid of a powerful computer,

the results even for very simple cases are extremely difficult to obtain using this model.

In spite of this, considerable attention has been given to this model since the 1970's and

many interesting results have been published.

A very important contribution was made by Longuet-Higgins & Cokelet (1976),

which subsequently made the use of this model more attractive. In their work, a time

marching procedure is introduced, and the kinematic and dynamic free surface conditions

are described by Lagrangian notation which allows the trajectories of the fluid particles in

the free surface to be traced. Although they focused their attention on two-dimensional,

spatially periodic waves, the results they obtained showed a high potential for their

approach to be used for more complex problems. Soon afterwards Faltinsen (1977)

applied this approach to studying a nonlinear free surface problem, including a

harmonically oscillating body. Vinje and Brevig (1981) included multiple two-

dimensional bodies submerged in fluid domain. In order to preserve spatial periodicity,

they assumed that an array of identical bodies were present. Lin, Newman & Yue (1984)

investigated the wave maker problem as well as that for the radiation waves caused by a

oscillating cylinder. In their study, spatial periodicity was not assumed. The

investigations into the two dimensional, fully nonlinear model following Longuet-Higgins

& Cokelet (1976) have been continuing up until present. Many papers are worthy of

mention, for instance, Haussling & Coleman(1977,1979), Greenhow & Lin(1985),

Yim(1985), Greenhow(1987), Wang & Spaulding(1988), Yeung & Wu(1989),

Sen(1993), Wu and Eatock Taylor(1994,1995) and others.

The three dimensional problems are naturally of greater interest to offshore and naval

architecture engineers. However, compared to the two-dimensional analysis, only few

papers are available. The reason for this is that, as might be expected, it is more difficult

to address the three-dimensional, fully-nonlinear model. Two difficulties are apparent;

firstly, a considerably large number of unknowns need to be solved in the numerical

analysis, particularly when a realistic body is included. Secondly, tracing the waves and

motion of the body is more complicated compared with two-dimensional cases, not only

because the body and the free surface possess three-dimensional geometries but also

because the moving waterline (3D curve-line) can often be troublesome to consider.

Due to these difficulties, people have generally addressed bodies with simple geometries
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and/or avoided free-surface piercing problems. For example, Dommermuth &

Yue(1987b) and Kang & Troesch (1988) investigate vertical axisymmetric flow which is

analogous to two-dimensional flow. Although Kang & Gong (1990) have extended the

axisymmetric analysis to true three dimensional flows, the results they gave were only for

a sphere moving in a horizontal direction, beneath the free surface. Problems associated

with vertical and piercing cylinders have been treated by Isaacson(1982), Zhou &

Gu(1990) and Chan & Causal (1993), but the meshes they used were very coarse, which

might not be sufficient to give convergent results. Ferrant (1994) used the three

dimensional model to investigate the radiation and diffraction problem, and gave some

results for a submerged sphere, which were obtained with quite a large number of

elements on the free surface. Later, Ferrant (1995) calculated the runup on a vertical

cylinder subject to a incoming wave, again using his algorithm. Although there are a

number of other publications for this model (such as, Cao, Schultz & Beck (1991), Beck

(1994), Xue and Yue (1995), Celebi & Kim (1997) ), which have provided interesting

and encouraging results, the development of robust and efficient methods are still in

progress. This fully nonlinear three-dimensional model also forms the basis of this study.

2.2 Numerical methods for solving the boundary value problem

Regardless of which mathematical model is used, numerical techniques for solving the

boundary value problem (BVP) play an important role, unless the analytical solution can

be found, which is possible in only a few, very special cases. As mentioned above, the

interaction between waves and structures can be described by the Laplace equation, the

solution of which may be obtained using the well-known finite difference, finite volume,

finite element or boundary element methods. However, the effectiveness of each method

is problem dependent. The choice between the methods should be made carefully,

especially when solving the fully-nonlinear, three-dimensional wave problem.

2.2.I Finite difference andfinite volume methods

These two methods have been widely used to solve the Navier-Stokes equations

describing viscous flow. In addition, they have also been used to solve inviscid wave-

flow problems in some cases. For example, a finite difference formulation was applied to

the radiation problem due to a heaving cylinder by Telste (1985). Yeung and Wu (1989)
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also proposed a finite difference procedure to simulate nonlinear fluid motion in a tank.

In their work, boundary-fitted coordinates were employed, and the free surface particles,

as well as their velocity potential, are advanced by a second-order predictor-corrector

scheme. This procedure was later extended by Yeung & Vaidhanathan (1990) to

nonlinear wave diffraction over submerged obstacles.

Besides the finite difference method, the finite volume method was also tested, e.g.

by Mayer, Garapon & Sorensen (1997) in the simulation of wave flow. Using Euler

equations as a basis, they investigated the case of a two-dimensional propagating wave in

a narrow channel with a submerged bar. In their procedure, the kinematic boundary

condition was expressed in terms of the local volume flux, which could be integrated to

give the free surface elevation, and the velocities were evaluated using an irrotational

correction. The correction function as well as pressure in the fluid satisfy Poisson's

equation, which could be solved to update the velocity and the pressure. The authors

compared their results with some experimental measurements, and fairly good agreement

was achieved for the cases studied.

2.2.2 Boundary element method (BEM)

The boundary element method has provided a very powerful tool for solving linear or

high-order interaction between waves and structures in a frequency domain, and has

therefore become very popular. A distinct advantage of the method is that a Green

function satisfying both Laplace equation and all the boundary conditions except that on

the body surface can be found. As a result, it is necessary in numerical analysis to

discretise only the body surface where unknown source-sinks are distributed, regardless

of how big the fluid domain is. (In the case of the high order model, the discretisation on

the free surface is also needed, but only for the integration of a known function over the

surface). Owing to this advantage, other methods seem to be less efficient in these

situations in terms of computational cost.

BEM can also be used in a similar way to solve linear problems in a time domain.

However, in this case a Green function in the time domain satisfying Laplace equation

and all the boundary conditions except that on the body surface is used. Such a Green

function has long been available (Wehausen & Laitone, 1960), and it includes not only
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the information of flow at present but also that in the past (called memory effect). The

problem with using this Green function is that the CPU time and storage requirement,

necessary for its evaluation, grow rapidly with time, due to the memory effect. This

greatly restricts its application. Consequently, the methods are still sought to deal

efficiently with it, see for example, Beck & Liapis (1987), Ferrant (1988), Clement

(1997) and others.

With continued development of both the technology and the computer facilities, it is

possible to extend the boundary element method to high-order models in the time domain

as well as the fully nonlinear model. In these cases, a Green function similar to the above

is not available. Instead, a source Green function (sometimes called a Rankine source) in

an infinite fluid domain is used. This Green function is very simple to evaluate, but the

distribution of sources on all of the boundaries of the fluid domain are necessary, instead

of only on body surfaces. Many efforts, such as by Isaacson & Cheung (1990,1991),

Isaacson & Ng (1993), Zhang & Willams (1996) and so on, have been made to simulate

second order problems in a time domain associated with wave diffraction and radiation.

Skourup, Buchmann & Bingham (1997) also applied this method to simulate wave runup

on vertical cylinders. They took advantage of the perturbation expansion in their

research, which allows the boundary conditions to be imposed on a fixed boundary, and

therefore the calculation associated with the Green function is needed only once no

matter how many time steps are simulated.

However, this advantage is lost when the boundary element method is applied to fully

nonlinear wave problems, because at least one boundary of the fluid domain changes

with time. Nevertheless, people have carried out many investigations on the use of the

boundary element method for problems of this kind, and have provided many useful

results . These not only include the early papers by Longuet-Higgins & Cokelet (1976),

Faltinsen (1977), Vinje & Brevig (1981), Lin, Newman & Yue(1984), but also the recent

publications by Kang & Gong (1990), Chan & Causal (1993), Ferrant (1994), Xue and

Yue (1995), Celebi & Kim (1997) and others.

As well known, singularities in BEM exist when sources are distributed on the real

surface of the fluid boundary. The integration around the singularities usually requires

special treatment, which can result in costly numerical calculation. To avoid this

drawback, an alternative for BEM was proposed by Cao, Schultz & Beck(1991) and
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Beck, Cao, Scorpio & Schultz (1994), in which the sources are distributed on an

artificial surface outside the fluid domain, and the resulting formulation satisfies the

conditions on the physical boundaries of the fluid domain. This method is referred as

"desingularised" BEM. Unlike the conventional BEM, the Green function in the

desingularised BEM does not have any singular points in the fluid domain and on its

boundaries. Wang, Troesch & Maskew (1996) made a comparison between the two

versions of the BEM. Their results seemed to show that both methods have comparable

capability in dealing with the studied cases.

No matter which BEM, conventional or desingularised, is used to simulate the fully

nonlinear waves, a common problem exists; that is, a fully populated coefficient matrix

has usually to be tackled, which must be assembled and solved in each time step.

Because of this feature, massive computing and storage requirements are needed to

obtain results for even quite simple geometries.

2.2.3 Finite element method (FEM)

The finite element method has been well developed and widely used in the numerical

analysis of structural mechanics, where the computational domain is usually finite, and

also used in the simulation of some fluid problems with fixed boundaries, such as flow

under dams or in shallow water. Zienkiewicz and Taylor(1994) have summarised the

main accomplishments in this field.

Within the scope of the interaction between waves and structures, the FEM for the

linear problem in a frequency domain was discussed by Mei (1989) . Usually, the fluid

domain is infinite and it is therefore not possible to discretise the whole domain. Bai &

Yeung (1974) suggested a local finite element , discretisation only around the body,

matching with a series solution in the outer-domain which extends to infinity in the

horizontal direction . Eatock Taylor & Zeitsman (1982) modified this method by

replacing the series solution with a boundary integral discretisation at the fictitious

matching surface . They modelled a problem of multiple bodies using this formulation .

Later Wu & Eatock Taylor(1987) applied this method to linear diffraction by bodies with

forward speed . Apart from the application of the FEM to the linear problem, the same

formulation was also applied by Hung and Eatock Taylor (1987) and Clark, Bettess ,

Hearn & Downie (1991) to second order diffraction in frequency domains .
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An example of time domain analysis of linear problems was given by Lee & Leonard

(1987). They investigated the waves generated by a wave maker in a tank and a

transient problem arising due to the free heave oscillation of a two-dimensional floating

cylinder in calm water with an initial displacement. Comparison of their results for the

heaving cylinder with an analytical solution of Ursell (1964) showed good agreement.

Recently, FEM has been applied by Wu and Eatock Taylor (1994, 1995) to cases of

fully nonlinear interaction between waves and two-dimensional bodies. They

investigated different formulations of the problem, by considering the velocity potential

as unknown or the potential as well as two velocity components as unknown (hybrid

FEM). It was suggested that the hybrid FEM seemed to be not as superior in terms of

accuracy, despite considerably more memory and CPU time being required. The

algebraic equations in their work were solved using the Choleski factorisation method.

Remeshing was performed at each time step corresponding to the change in the fluid

domain. They provided various results for two-dimensional waves, including waves

generated by a piston wave maker, starting suddenly from rest or else undergoing

harmonic oscillations, the standing waves in a container and forced oscillation of a

cylinder. The reflected waves were avoided by truncating the fluid domain at relatively

long distance from the bodies and stopping the calculation before the reflection become

clearly visible. Later, Cai et al. (1998) developed a finite element formulation for fully-

nonlinear water waves but based on a time-dependent mapping of the fluid domain to a

fixed computational rectangle. This technique can avoid the need to remesh the fluid

domain during the wave evolution. However, recently, Westhuis & Andonowati (1998)

showed that this mapping technique may not give results as good as those obtained by

the method in which the fluid domain is directly discretised, as used by Wu and Eatock

Taylor (1994, 1995). In addition to the above papers, Nakayama & Washizu (1980)

used FEM to investigate the sloshing wave in a two-dimensional tank.

To the author's knowledge, there have been no publications applying FEM to the

simulation of fully-nonlinear three-dimensional interaction between waves and structures,

as attempted in this thesis. Here, an iterative method with pre-conditioner will be used

to solve the algebraic equations, and various techniques such as the recovery technique

will be investigated in order to improve the accuracy without increasing the number of

elements. The radiation condition is also suggested in the thesis, which helps to minimise
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the reflection of waves when artificially truncated boundaries are inserted in the fluid

domain. In addition, the methods for evaluating the fluid velocity and for calculating the

forces on bodies are discussed.

Unlike the boundary element method, the finite element method requires the whole

fluid domain to be discretised. Therefore, the number of nodes and unknowns in FEM is

larger than in BEM. However, nonzero entries in the coefficient matrix for FEM may be

much less than for BEM, implying that less computational cost and storage memory of

the coefficient matrix might be required. To be specific, consider a rectangular-box fluid

domain as an example. Dividing the domain by M, + 1, MZ + 1 and N + 1 planes along

length, width and depth respectively leads to the number of nodes:

(M, + 1)(M2 + 1)(N + 1)
in the whole domain

= M,MZN+M,MZ +M,N+MZN+M, +MZ +N+1

and

2(M,M2+M,N+M2 N+1) on all boundaries.

In the finite element formulation, any individual node is only affected by nodes connected

to it through the mesh. In this discussed case, the maximum number of connecting nodes

is 26, implying that no more than 27 coefficients are nonzero for each node.

Consequently, the total number of nonzero coefficients for FEM is:

Pe <_27(M1M2N+M,M2 +MIN+M2N+M1 +M2+N+1) .

However, in the boundary element method, every node is affected by all others and

therefor the total number of nonzero coefficients for BEM is:

Pb =4(M,MZ+M,N+MZN+1)2.

It can be worked out that:

Pb 4

P « max(M'' MZ' N)
e 9

This clearly shows that the number of nonzero values occurring in FEM is typically much

less than in BEM in the fully nonlinear analysis, particularly when the number of divisions

are very large. Wu and Eatock Taylor (1995) made a comparison between FEM and

BEM for a two-dimensional wave radiation problem, and suggested that the finite

element method was actually more efficient in terms of storage requirement and solution

time than the equivalent boundary element method. It should be noticed that the BEM
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version used for their comparison was based on a conventional BEM, and it could have

been further optimised using the domain decomposition technique suggested by Wang,

Yao & Tulin (1995). Even with the optimisation, however, the number of nonzero

coefficients in FEM is still comparable to BEM (see the discussion in Ma, Wu & Eatock

Taylor, 1997). The feasibility of the optimisation technique has yet to be justified for the

three-dimensional simulations. A similar comparison was also made more recently by

Westhuis & Andonowati (1998). Their results confirmed the conclusion of Wu and

Eatock Taylor (1995).

2.3 Singularity on the waterline

In potential flow analysis, a well-known difficulty is the singularity at the waterline

which is the intersection between the moving body surface and the free surface, see Lin,

Newman & Yue (1984). This singularity was theoretically discussed by Peregrine

(1972), who gave a solution for a steady flow towards a rigid wall and showed that the

singularity in free surface elevation was logarithmical. Wang & Chwang (1989) and

Rainey (1997) carried out a similar analysis on the flow near a vertical cylinder, and the

singularity on the waterline was again found. Experimental confirmation was provided

by Lin, Newman and Yue (1984) for an impulsive wave maker, and by Rainey (1997) for

a wave motion around a cylinder.

It is anticipated therefore that numerical difficulties may be encountered at the

waterline due to the singularity. There are two schemes which can successfully treat the

singularity and lead to realistic solutions. The first was suggested by Lin, Newman and

Yue (1984), who used the fact that the intersection points are common to both the

moving rigid boundary and the free surface, and who thus imposed both the free surface

condition and the body surface condition at one point. Their results confirmed that, with

this treatment, the wave motion induced by the wave maker and an oscillating body can

be successfully simulated. The second was discussed by Wang, Yao and Tulin (1995),

who considered one intersection point as two points: one on the body surface and

another on the free surface. At these points, the velocity potential was the same but its

derivatives were not. The body condition was imposed at the body point. At the free

surface point, an equation was derived to relate the normal and tangential derivatives,

leaving one of them as an independent unknown variable, which could then be found
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from the control equations. They mentioned that their scheme was reliable and concise

for any wave-body intersection problem. The above two schemes were developed for a

two-dimensional boundary element formulation.

2.4 Existing methods for the radiation condition

When the relevant physical domain is infinite, the computational domain must be

truncated at a finite distance from the area of interest, because of the limitations on

computer memory and CPU time. In order to ensure the wave field is not evidently

disturbed by the artificial surface, an appropriate condition needs to be imposed.

Various approximate schemes for this condition have been developed, and a review has

been given by Romate(1989, 1992). Here we just briefly describe them and discuss some

new developments since his work.

Using a large domain

The simplest method is to truncate the computational domain at very large distances

from the body, where the velocity potential or the velocity of fluid are assumed to be

undisturbed. Isaacson(1982) used this method to study the nonlinear wave effects on

fixed and floating bodies. Generally, this method needs very large domain to allow long-

time calculation , and thus the capability of computers can easily be exceeded.

Periodic boundary condition

This was employed by Longuet-Higgins & Cokelet(1976) for two-dimensional

propagating waves. They assumed the waves to be periodic in space, and then

transformed the fluid domain in one wave-length ("period") into a computational

domain, closed by a simple contour corresponding to the free surface. In this method, no

artificial boundary was inserted in the fluid domain and therefore no reflection was

created. Vinje & Brevig (1981) used a similar condition for the interaction between

waves and bodies, which were placed in such way that the periodicity in space could be

created. Although this method is exact for periodic waves and easy to use, it cannot be

adopted in many cases as the fully nonlinear waves are not always periodic in space.

This is particularly true when a finite number of three dimensional bodies are included.

Damping zone method
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This is also referred to as the "absorbing beach" method in some literature. In this

approach, an artificial damping (or dissipative) term is introduced in a zone near the

truncated boundary, in order to remove the transmitted energy of the waves and so to

reduce the reflection. There are two ways to implement damping. The first is to add a

damping term to the field equation, making the zone act like a sponge layer. The second

is to add it to the free surface conditions, as a wave energy absorber mounted on the free

surface. The latter is more suitable for the potential flow analysis.

Israeli & Orszag(1981) reviewed the application of the field-damped method to the

one-dimensional wave equation, Schroedinger's equation and the Klein-Gordon

equation. They showed that the effectiveness of the method could be satisfactory if the

damping coefficient and the length of the damping zone were chosen carefully. Another

example of this implementation can be found in Chan (1975), who added a linear

damping to the momentum equation in his two-dimensional finite difference scheme.

In potential flow analysis, the second technique of the damping zone is more often

found in the literature. Baker, Meiron & Orszag (1981) investigated a free surface

problem using a vortex method and added a dissipative term to the equations for the

wave elevation and for the vortex strength (in their case, these correspond to the

kinematic and dynamic free surface conditions, respectively). Comte, Geyer, King,

Molin & Tanoni(1990) used a similar idea, but applied the dissipative term to the normal

kinematic and dynamic conditions on the free surface, that is:

Dt
= N.T - v(xe)(x - xe

D^ = N.T-v(xe)(0 -0e)

(2.4.1)

(2.4.2)

where N. T represents the normal terms; 0 is the velocity potential; x is the coordinates

of a pint on the free surface; subscript e corresponds to the reference configuration for

the fluid and v(xe ) is a damping coefficient (usually specified to be larger than zero).

They suggested that the coefficient in the damping zone for the two dimensional problem

can be assumed to be:

1
v(xe w

k
2(x - xd

Z
^J where Xd <_ x <_ x, = Xd +

21c
k (2.4.3)
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where Co and k are wave frequency and wave number, respectively; the damping zone

starts from Xd and ends at x,. The scheme was also employed by Wang, Yao & Tulin

(1995) in their simulation of a long 2D tank, with a modification to the above damping

z

coefficient, being replaced by v(xe^ _ 0b x L xb

,

where Lb is the length of the zone
b

and Ob is the magnitude of the damping coefficient. The coefficient Ob in their

approach not only depends on the wave frequency but also on the wave elevation, the

velocity potential and the velocities at the corresponding points. In his simulation of

three dimensional diffraction waves, Ferrant (1994) applied this scheme to a perturbation

part, which was the total wave potential subtracted by the incident wave potential. The

damping zone in his case is an annulus surrounding the body, and the damping coefficient

is taken as v = 0.5w - R(x - R 1 where R is the inner edge of the zone andC^ ( ` 1 6 )J s b g

R(x) is the distance from the origin to the point x. He interpreted 0 and x as the total

potential and the position of the fluid particles convected by total flow velocity,

respectively, while 0e and xe are determined by the incident wave. Apart from the

above implementations with both two free surface conditions being modified, there is an

alternative in which the damping term is added only to the dynamic condition, leaving the

kinematic condition unchanged (see for instance, Bettess and Mohamad, 1982).

Although some satisfactory results with the above techniques have been presented by

the researchers, a problem still exists, that is the added damping term in the dynamic

condition may not always remove the energy from the fluid domain. When

v(xe)(0 - 0e) > 0, the energy is taken out. However when v(xe )(0 - 0r) < 0, the

energy is actually put into the fluid, implying that undesirable reflection will be

generated. This has been discussed by Cao, Beck and Schultz (1994). They suggested

the added term in the dynamic condition should take the form: v sign(On -den )IQI

where Q can be any function of 0 and 0,, (the normal derivative of 0). With using

this expression, the added term always absorbs energy from the fluid flow and therefore a

well-behaved damping zone is expected.

In addition to the introduction of the damping term, a similar technique was

developed for the two-dimensional wave tank problem by She, Greated & Easson(1992),
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who assumed that the fluid velocities decreased exponentially in the zone near the

truncated boundary. Good agreement has been achieved in their studied case compared

with Stock's waves. However, as shown by Arai, Paul, Cheng & Inoue(1993), the

reduction in horizontal velocity may invalidate the continuity of the flow. In order to

overcome this problem, Arai, Paul, Cheng & Inoue(1993) combined the velocity

reduction technique with the Sommerfeld condition, but applied the reduction of the

velocity only to the vertical components. They also made some optimisation about the

length of the damping zone to achieve as little reflection as possible.

Sommerfeld condition

The Sommerfeld condition can be written as ^ + CLO = 0, where n is the normal

vector out of fluid domain and c is the phase velocity of the wave. It was originally used

as a radiation condition in linear wave problems, to ensure that the wave is outgoing. It

was Orlanski (1976) who applied this condition to the truncated boundary for nonlinear

hyperbolic flow. The phase velocity in his study was numerically calculated from the

flow near the boundary. Chan(1977) used the same idea to study nonlinear wave-body

interaction problems. The main advantage of the method for the evaluation of the phase

velocity is that the wave frequency does not need to be known in advance. This is

convenient for the nonlinear wave analysis, because the frequency in this case is not

always specified. However, a difficulty can often exist with the way in which the phase

velocity is calculated. That is, the scheme may fail to yield the proper value of the phase

velocity at the crests and troughs of the velocity potential, even for a sinusoidal wave

with a single celerity. To overcome this problem, the phase velocity has been replaced

by one for shallow water waves in some studies, see for example, Lennon, et al (1982).

The Sommerfeld condition has also been used by many other authors, such as Yen &

Hall(1981), Zhou & Gu(1990), Sen(1993), and so on.

Absorbing condition based on differential equations

This is given by ri + c; a = 0, where ri is the direction of the i-th wave
;_1 r)t 19r;

component. It is clear that the simplest example of this method is the Sommerfeld

condition. Bayliss & Turkel (1982) have developed a higher order differential method
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to absorb spherical waves. Romate(1989,1992), and Broeze & Romate (1992) used the

same method to absorb free surface plane waves. In general, this kind of method

requires knowledge of the wave directions or main directions (e.g., two main directions

for a second-order differential equation). In the examples given by Broeze &

Romate(1992) who assumed c; = c, it was shown that the reflection can be successfully

reduced for waves approaching the boundary in one or two directions. In the work of

Zhang & Willams (1996), the second-order differential equation with c, # c2 was

employed to simulate the waves in flumes based on perturbation theory, and good results

were obtained. It should be noted that this method is based on perturbation theory.

Consequently, its effectiveness needs to be justified for the fully nonlinear wave-body

interaction problem.

Matching with linearfarfield solutions

This method was proposed by Lin, Newman & Yue(1984) for the body-induced

wave problem (radiation). In the method, the computational domain is divided into an

inner domain and an outer domain. In the inner domain, all the conditions are satisfied

exactly except for the radiation condition. In the outer domain, the problem is linearised,

enabling an analytical expression to be determined. By matching the two different

solutions on the interface, the equations for the numerical analysis in the inner domain

can be formed. This method can avoid the numerical difficulty of the Sommerfeld

condition. Furthermore, the linearized condition is adequate when the matching

boundary is far away enough from the body, as the wave generated by a 3-D oscillating

body in otherwise calm water will decay rapidly as the outer domain is approached.

Nevertheless, for the wave-body interaction problem including diffraction, this method

may not be consistently valid, because the incoming waves may not be necessarily linear

in the far field.

Active wave absorber

The main idea of this method is that a wave maker is mounted at the truncated

boundary, and absorbs the waves by controlling its motion, displacement and velocity

which are determined by the wave information to be absorbed. The wave information

may be the wave force obtained by integrating the pressure over the wavemaker surface,

or the wave height. Maisondieu & Clement (1993) used the force signals to control the
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motion of the wavemaker. In the work of Skourup & Schaffer (1997), the motion of the

wavemaker was related to local wave height measured on its surface. They both applied

the active wave absorber to simulate the waves in flumes, but Skourup & Schaffer

claimed that the idea could be extended to three-dimensional situations by using an array

of independently controlled 2D absorbers.

Combined techniques

Several schemes combining two of the techniques mentioned above have been

suggested recently. Apart from the work of Arai, Paul, Cheng & Inoue(1993), who

combined the velocity reduction method with the Sommerfeld condition, Contento &

Casole (1995) coupled the normal damping zone method and the Sommerfeld condition.

The phase velocity was numerically evaluated in their study, and a very rapid change in

the time history of the phase velocity was shown. Clement & Domgin(1995) and

Clement (1996) employed the active wave absorber and the damping zone method at the

same time. The results demonstrated that the combined techniques worked well.

2.5 Existing methods for the calculation of forces

In the analysis of linear and nonlinear wave problems based on perturbation methods

in the frequency domain, the forces and moments acting on bodies can be easily obtained

by integration of the pressure over the body surfaces, once the velocity potential is

found. However the story is different for nonlinear problems based on time domain

analysis. The difficulty arises due to the term ^ in the Bernoulli equation. The nodes

or collocation points on the body surface move from one time step to another. As a

result, a direct calculation of the term may be impossible unless using an approximate

interpolation method; this however require a large storage of the information from

previous time steps, and may produce unacceptable accumulated errors. Therefore,

several methods have been proposed to overcome the difficulty associated with the force

calculations.

Estimation of the material derivatives of the velocity potential

An estimation of the material derivatives of the velocity potential was proposed by

Lin, Newman & Yue(1984). Under their scheme, the time derivative in the Bernoulli

equation is expressed as:
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aODo
at Dt VO•VO,

(2.5.1)

where D̂ is the time derivative obtained by following a fluid particle. Hence, the

pressure is written alternatively as:

( Dt 2
(2.5.2)

They used the scheme to investigate body-induced wave problems. Sen (1993) used a

similar scheme to calculate the pressure on a 2-D moving body, employing a slightly

different expression for ^
,
namely:

a^=do - u - vO,
at St

(2.5.3)

where U is the velocity of the body surface; and represents the rate of change of

velocity potential obtained by following a point on the body surface. Now the pressure

is expressed as:

P St 2U•0O +DO • 0O + gz (2.5.4)

Compared to the former, the later equation is more suitable for floating body problems.

As shown by Sen(1993), however, this kind of method may lead to "spikes" in the

pressure history (and as a result, in the forces) due to the addition or deletion of elements

on the body surface near the free surface. He suggested that the spikes could be

removed if the total number of elements on the wetted body surface is kept constant

during the change of the wetted surface. However this suggestion may not be valid for

the case where the bodies have very large motions.

The spikes may not cause problems for fixed bodies or moving ones with prescribed

motions. The story is different however for the case of bodies floating freely under the

excitation of waves, because their motion is estimated by using the forces. Therefore, the

spikes may produce unreasonable motion or even cause the procedure to break down.
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Solving a boundary value problem

The term ^ can also be found by solving a boundary value problem. The boundary

value problem for is very similar to the one for the velocity potential itself. That is,

a
satisfies the same equation in the fluid domain and the same boundary condition at

infinity and on the sea bed as the potential. On a moving boundary surface, however,

the normal derivative of Lo is related to the acceleration of the body surface as well as

the velocity. The acceleration is unknown before the force has been found, and in turn

depends on the solution of ^ . In the literature, special attention has been paid to

dealing with this boundary condition. Comte, Geyer, King, Molin & Tanoni (1990)

split the force into two parts. The first part is proportional to the acceleration and can be

combined into the motion equation, while the second part is not directly dependent on

the acceleration and can be solved without information of the acceleration. A similar

technique has been adopted by Kang & Gong (1990), who used equation (2.5.3) and

solved a boundary value problem for ^ instead. In the approach of van Daalen

(1993), the boundary value problem for ^ was combined with the equation of the

body motion, and the acceleration was eliminated.

More recently, Wu and Eatock Taylor (1996) introduced an artificial potential which

satisfied a Neumann condition (only related to the configuration of the body) on the body

surface and a Dirichlet condition on the free surface in order to avoid the difficulty.

They obtained a relationship between the artificial potential and the force, which did not

contain the term LO
at

without involving LO
at

By solving the alternative potential, the force could be evaluated

This is very convenient from a numerical point of view, although

the pressure may not be obtainable at the same time.
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3. MATHEMATICAL FORMULATION

In this chapter, the general equations of fluid motion will be described based upon the

assumptions given in Section 1.2. A right-hand Cartesian co-ordinate system oxyz is

employed. The vertical z-axis points upwards and the oxy plane is located on the mean

free surface. A sketch of the fluid domain and the co-ordinate system is shown in Figure

3.0.1. The figure also shows the coordinate system ObXbYbZb (moving system) which is

fixed on the body and coincides with oxyz initially.

Figure 3.0.1 Coordinate system and fluid domain

3.1 Equations of fluid motion

Based on the assumptions of incompressibility, the velocity vector u = (u, v, w) of the

fluid satisfies the continuity equation

0 • u=0

and the momentum equation

(3.1.1)

+(u•D)ri =-^Op-geZ (3.1.2)
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where V = eA x +e`. ^ +eZ Z , p is the fluid density, g is the gravitational

acceleration and p is the pressure of fluid; ex, eV and eZ denote unit vectors in the x-, y-

and z-directions, respectively.

Since the flow considered here is irrotational, the velocity u can be expressed as the

gradient of a scalar function 0 = O(x, y, z, t) , called the velocity potential, i.e.

u =0O. (3 . 1 . 3 )

Combining (3.1.3) with (3.1.1), it follows that the velocity potential will satisfy the

Laplace equation:

v20 =o. (3 . 1 .4)

This equation enables us to find one unknown scalar function rather than a vector

function with three components. Once the scalar function is known, the velocity vector

can be determined from equation (3 . 1 . 3) . This clearly makes the problem easier.

After equation (3 . 1 . 3) is substituted into equation (3 . 1 . 2) - and integration is

performed, the well-known Bernoulli's equation is obtained:

^ _ ^ +2 IV0IZ + gz + c(t) (3.1.5)

where c(t) is an arbitrary function of time independent of spatial variables. It can be

usually omitted by redefining 0 appropriately, ensuring that the velocity field remains

unaffected. Hereafter, the constant will be taken as zero.

It can be seen therefore that when the velocity potential is solved from equation

(3.1.4) with the appropriate boundary conditions, then the pressure of the fluid can be

evaluated by equation (3.1.5).

3.2 Boundary and initial conditions for the velocity potential

The distinction between different fluid problems often comes from the conditions for

the velocity potential on the boundaries of the fluid domain, and thus appropriate

boundary conditions must be applied on the velocity potential according to the physical

boundaries. Two types of boundaries are usually involved in the problem of interest

here: the rigid boundary and the free surface boundary.
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3.2.1 Condition on a rigid boundary

The sea bed, the sides of the fluid container and/or the body surface may all be the

rigid boundaries. Some may be fixed and others may be moving. In either case, the

physically relevant boundary condition for the fluid motion is that the normal component

of the velocity of a fluid particle, u • n, is equal to the normal velocity of the boundary

surface at the corresponding point to the fluid particle. Expressed in terms of the

velocity potential, this condition becomes

= U • n , (3.2.1)

where n is the normal vector pointing out of the fluid domain and U is the velocity at

the corresponding point on the rigid surface. If a rigid boundary is fixed, the right-hand

side of the above equation is simply equal to zero. For example, on the sea bed

z = -d(x, y) denoted by Sd in Figure 3.0.1, the above condition can be written as:

ao ad+ao ad+a^=o.
aX ax ay ay &

3.2.2 Condition on the free surface

(3 .2 .2)

The physical nature of the free surface requires two conditions: kinematic and

dynamic conditions. The former states that a fluid particle on the free surface is assumed

to stay on the free surface. The later requires that the pressure on the free surface must

be atmospheric at all times. These conditions may be described using Eulerian notation,

semi-Eulerian notation or Lagrangian notation. All of them are given below.

Free surface condition in Eulerian notation

Suppose the free surface is defined by

z = ^(x, y, t) or F(x, y, z, t) = ^(x, y, t) - z = 0.

The kinematic condition can be derived by requiring

+VO •OF=O on z = Ox, y, t) ,

(3 .2 . 3 )

(3.2.4)

that is
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a aX ax ay ay al (3 .2 .5)

The dynamic condition is obtained from equation (3.1.5). Taking the pressure as zero on

the free surface and substituting ^ for z ,equation (3.1.5) becomes:

a^+2I0OIZ+S^=O on z = ^ (x, y, t) .

Free surface condition in Seini-Euler-ian notation

(3 . 2 . 6)

Here the above kinematic condition, equation (3.2.5), is retained while the dynamic

condition is rewritten as

do do d^
+ 1 IoOI 2 + g=o'

8t az at 2

where
LO

is related to ^ by:

(3 . 2 .7 )

(3.2.8)

The two time-derivatives have different meanings:
d

indicates the rate of the change

with time when all the space variables are fixed while
d

means that the derivative with

respect to time is taken with the space variables changing on a vertical line.

Free surface condition in Lagrangian notation

In this notation, the kinematic and the dynamic conditions on the free surface are

specified by following the material points. They are written, respectively, as

Dx 20 Dy ao Dz ao

Dt ax ' Dt c)y ' Dt dz

and

Do- I I0012
+ Sz

=0

Dt

where p is defined as
Pt
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+ vO v
. (3.2.11)

Dt a

The Eulerian notation is often employed for linear and high order perturbation theory.

For the fully non-linear analysis in the time domain, Lagrangian or semi-Eulerian notation

is usually used because of their suitability for time-step marching methods. These two

notations have different features, however, since in contrast to the latter, the former

does not need the slope of the free surface. This slope may be found by using a

numerical differential method, which often introduces extra errors. Using the Lagrangian

notation may result in sawtooth problems, as noticed by Longuet-Higgins and Cokelet

(1976) and many others. The sawtooth problem may be avoided by remeshing or

smoothing. However, both remeshing and smoothing techniques inevitably introduce

errors, too. It would appear that there is no firm evidence suggesting that one of them

is generally superior over the other, although there are some cases where the semi-

Eulerian notation may not be suitable without domain transformation, for instance, in the

wave maker problem discussed in Chapter 8 below.

3. 2 . 3 Initial conditions

The fully non-linear wave problem will be solved in the time domain by using a time

step procedure that starts from the initial state of the flow. This state is described by the

initial values of the velocity potential on the free surface and the position of the surface

itself. Mathematically, they can be written as:

Ox, Y,O) = V(x, Y)

O(x, Y, Ox, Y,O),O) _ (p(x, y).
(3.2.12)

If a body is included, its velocity and position at the starting instant must also be given.

3.3 Equations of a moving body

The motion equations corresponding to small motion have been widely used in naval

architecture and ocean engineering, see for example Mei (1989) where the equations

based on linearisation are derived. When a body is subjected to steep waves, its motion

may be large and so the linearised equations may not give acceptable results in this

instance. Here, the equations of motion in the general case are presented.

44



Suppose the ve loc ity at the mass centre of a body is U, and the angular velocity

around the centre is S2, then the total velocity U at any point on the body can be

written as:

U = U, +S2 x rn, (3 .3 . 1)

where rb is a vector from the mass centre to the point considered. Without loss of the

generality, the mass centre will be assumed to coincide with the origin of the moving

coordinate system. Newton's laws give the following two equations to the motion of the

body:

MdU` =F
dt

and

dL
N,dt

(3.3 -2)

( 3 .3.3)

where M is the mass of the body; F and N, are the external force and the moment

about the mass centre, respectively, which, if the gravity and the hydrodynamic force are

present only , can be expressed as:

F = ff pnds - Mge2
$y

N, = ff prb x nds .
$y

Finally, L, in equation (3.3.3), is the angular momentum and is defined as:

L - jfJ rb x(U^ + Sl x rb )dm

= Jlj rb W.dm + jjl rb X-0 X Tbdm
L

= J!1[IrbI2 S2 -rb (Sl • rb )Pm

( 3-3-4)

(3 .3 .5)

(3.3.6

where E is the space occupied by the mass of the body_

For practical use, equations (3.3.2) and (3.3.3) need to be expressed in matrix form

with elements composed of the projected components of the vectors. There are two
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choices available for this: one is to express a vector in terms of its components in the

ozyz system and the other is to do it in terms of its components in the ObXbYbZb system

For convenience, the former is utilised for equation (33.2), i_e.:

dU,

dt

[M]
dV`
dt

dWr

dr

F,.

= F,

FZ

(3-3 . 7 )

where U, V, and 111, are the components of U, ; and [M] is a diagonal matrix , whose

diagonal entries are all equal to the mass M. The derivatives of the velocities with

respect to time can be related to the coordinates (x, y, z,) of the centre of mass in the

oxyz system by:

dU ,c dV, dW^ d Zx, d a y, d Z z ,

dt dt dt dt 2 dt 2 dt 2
(3 -3 .8)

It can be seen that if equation (3.3.3) is also expressed in terms of the components in

the system oxyz, then the components of rb change with time. In order to avoid this,

equation (3 . 3.3) needs to be expressed in the moving system obxb ymzb. We first study

L and its derivative . The components of L in the moving system can be derived from

equation (3 . 3.6) as

3

L; _ Y, I;^ SZ i (i =1,2,3, (3 .3 .9 )
,_1

where 1,2 and 3 correspond to xb , yb and zb , respectively; and I. are the moments of

inertia defined as

3

(i. j = Z^^) ,
1il JJf s^Ixbk 2 - Xbr Xbj

Mk= 1

(3 .3 . 10)
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where 6Y.
= 1 1 i=j

and rb = xni,, + xh j,, + xhkh has been used, with (ib , Jn kb
0 i# j

representing the unit vectors in the x,, -, y,, -and Zb -directions, respectively. It is noted

that I;, is independent of time and therefore need only to be evaluated once. This is

main advantage for expressing equation (3.3.3) in terms of moving-system variables.

However one should bear in mind that the time derivative in equation (3.3.3) has

more complicated form in the onx,, ynZn system. This time derivative is determined now

using the following relationship (Marion 1965):

dL dL
SZ

dt d h
t+x L , (3.3.11)

where
d

represents the time derivative in the moving system. This equation is valid
di' t

for any vector; for example, for the angular velocity, we have:

d=d+S x Sl =
h dbt

(3.3.12)

which means that the time derivative of the angular velocity is the same in both two

coordinate systems. Substituting equation (3.3.9) into equation (3.3.11) gives:

dL; ' dS2 i
dt 1= ^

I j'' dt + DC^;k Q ;1 k,o l (i =1, 2 , 3),
j,k,l=1

( 3 . 3 . 13)

where

0, for any index is equal to any other index;

+ 1, if i, j, k form an even permutation of 1,2,3;

-1, if i, j, k form an odd permutation of 1,2,3.

Equation (3.3.3) can now be rewritten in matrix form as

(3.3.14)
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^
1

1,j
d
dt +

i= 1

dS^ j

IZ' dt +I=J

3 dQ J

j;' dt +1=1

1 £I jk Q j jkl,Ll
j.k ,l=I

E2 jk ^ AS2. 1. l S2
j.k. l = !

J

1 £ijk Q j ,PQ 1
j. k . l = I

N,1

= i N,z

NC3

where the N, represent the moment components relative to the moving system.

(3 . 3 . 15)

The governing equations (3.3.7) and (3.3.15) have been written in two different

coordinate systems, and therefore the transformation linking the two systems is required.

This is given in Appendix A and has the form:

x xC xh

Y = Y, + [T] .Y,

z z' z,,

Here [T] is the transform matrix defined as:

cos ocos y - cos /3 sin y

[T]= sin a sin pcos y + cos a sin y - sin a sin /3 sin y + cos a cos y

- cos a sin,6 cos y + sin a sin y cos a sin p sin y + sin a cos y

(3.3.16)

sin

- sin acos /3

cosa cos/3

(3.3.17)

where (a, (3, y) are Euler angles. The angular velocity can be expressed in terms of the

Euler angles as (see A 1.9 in Appendix A):

S4 a cos /3 cos 'Y + /3 sin y

SZ = S2l = /3 cosy-acosJ3siny

S1, y+dsin/3

( 3 . 3 . 18)

It is noted that the velocity U. and the angular velocity SZ can be evaluated from

equations (3.3.7) and (3.3.15) once the force and the moment are known. The co-

ordinates (x" y" z') and the Euler angles can then be deduced from equations (3.3.8)

and (3.3.18), respectively, thus enabling the position and orientation of the body be

determined.
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3.4 Equation and conditions in a moving coordinate system

It can sometimes be convenient to describe the fluid flow in a body-fixed co-ordinate

system o,,xby,,zh , as defined in Figure 3.0.1. In this system, the velocity potential 0 is

still governed by the Laplace equation, i.e.

v z 0 =o, (3.4.1)

but V2 is now defined by OZ = , + ` Z +aZ . The condition on the rigid boundary
r, ^ b ^n

surface also takes the same form as before, namely

ao =U•^a.
aiz

(3.4.2)

The conditions on the free surface in contrast will have a different form because the

partial time derivatives are different in the fixed and moving systems. The main task of

this section is to derive the expression for the free surface condition in the moving

system. Here, we describe the free surface only in semi-Eulerian notation, although a

similar derivation may be applied in other notations.

From equation 3.3.16, the relationship between the two system is given by:

r = r,, +[T]rb,

where r = jx,Y, zI a r, _ 1x" y" z' I and rb =1Xb'yb'Zbl

be rewritten as

where [fl = [T]-1 which is the inverse matrix of [T] and is defined as:

(3 .4 .4)

cos /3 cos y sin a sin /i cos y + cos a sin y - cosa sin Q cos y + sin a sin y

- cos psin y - sin a sin /3 sin y + cos a cos y cos a sin /3 sin y + sin a cosy

sin /i - sin a cos p cos a cos p

(3 .4 . 5)

The relationship between the partial time derivatives in the two coordinate systems

is given by:

A , ^ '• ' n^
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Equation (3.4.3) can also



Z (3.4.6).(v)r,..,,,,ha
a

) A
.. -^s^.. &
1Z Ah 1 h 2" t\Z

dcnotcs the partial time derivative with (x, y, z) fixed, andwhere t̂ ) X17

a
St ) .

represents the partial time derivative with (xn I Yb I Zb ) fixed. It follows from

equation (3.4.4) that

-1!' =
d [fl(

r - r^ ^ - [T]dry
_ d[T]

[T]rn _
[fl

dry
,

at dt ^ dt dt ^^ dt
(3 .4 . 7)

where
d [fl

is derived in Appendix A. As shown by Korn & Korn (1968), the following
dt

relationship holds:

0 S2; - S2Z

dt
S12 -S21 0 -

(3.4.8)

where S'2; are the components of S2 given in equation (3.3.18). As a result, equation

(3.4.7) becomes:

(3.4.9)

The term in parenthesises is simply the velocity due to the body motion. Using equations

(3.4.9) and (3.4.7), the dynamic condition in equation (3.2.6) is expressed in the moving

system as

O
-0O •(S2 x rb+U,)+20O - OO +gzc

+ g(T31 xb + T32Yb + T33 7B ) _ 0,

(3.4.10)

where Tj are entries in matrix [T] and ^b is the free surface elevation measured in the

ObXbYbZb system. In the corresponding semi-Eulerian notation, we have:
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60 ao a,, vO
' `
s2 X r

r
+ v)+ 1 vO

'
v O + gZ̀.81 az^, 81 ' 2 (3 .4.11)

+ b'(Tai XI, +TizYn +T"^i,) = 0,

ao^xvI Yr>>^n( x r,I Y^,I t )] (50 ao a^
where the relationship

& St az y has been used.
v St

To derive the kinematic condition on the free surface, equation (3.2.3) is firstly

transformed into the moving co-ordinate system, that is:

F z = (z, +T3 1 xb +T;Zyb +T341,)

-(z, +T,I x,, +T,zYn +T„Zn)

= T33 ( ĥ - ZG ) = r, - Zf, = 0.

Using equations (3.2.4) and (3.4.6), the expression

A U `^r^
+ â - V â

n
- I-- - ') = 0 (3.4.12)sr ax,^ axe, ^h ^ti OZb

is obtained, where U , V and W are the components of (S2 x rb + Uj in the Xb ', Yb ',

and zb -directions, respectively.

When a problem is solved in the moving system, the expression of fluid pressure may

also be required in the same system. This can be obtained in the same way as for

equation (3.4.10), i.e.

-p= ^-0O •(S2xrb+Uc)+2VO - OO +gz'
P

+ g(T3Ixb + 732 Yb + T346 )'

3.5 Equation and conditions for

(3.4.13)

As mentioned in Chapter 2, a difficulty exists in the evaluation of in the time

marching simulation. To overcome this, some researchers have attempted to solve a
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boundary value problem for
dO

. The equation and boundary conditions for ^ in the

oxyz system are described in this section.

It is evident that the term ^ satisfies the Laplace equation, i.e.

V2 a^ = o,

On the free surface, the condition p = 0 leads to:

at g^ 2IV0I2,

(3.5.1)

(3.5.2)

which gives the values of ^ on the free surface once the problem for the potential is

solved. Meanwhile on a fixed boundary, the condition

a ao = o
p'Z

holds. However, on a moving boundary, particularly on an accelerating boundary, the

condition becomes complicated. Wu and Eatock Taylor (1996) have derived the

equation

a a0 ^ ^v^ + SZ x rb ^ • n - U, • ^? Ô + S2 . a ^rb x (U , - 0o)] on Sb . (3 . 5 . 3 )
arc at an can

Kang and Gong (1990) gave an expression different from equation (3.5.3); they

defined:

do do

then proved that

a aO
an St

(il^ + Sl x rb - S2 xU)• n on Sb.

(3 . 5 . 4 )

(3 . 5 . 5)

The combination of equations (3.5.4) and (3.5.5) should be equivalent to equation

(3.5.3) but it is not apparent. The extra derivation is given here to show they are indeed

equivalent. To do so, let T be the last two terms in equation (3.5.3), i.e.
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T = -U^. •
a

o
+ 92 "all [r, x (u, - VO)]

which it is then rewritten as

T = dZ{- U •Oo+(S2x r 0O +.i
2 -(r x U

')
- Sl •(r xDO)}. (3.5.6)

Using a • (b x c) = b - (c x a) for arbitrary vectors a , b and c , equation (3.5.6)

becomes

where ^?' = it has been used.

Using a • (b x c) _ -b • (a x c) once more leads to

Finally, substituting equation (3.5.7) into (3.5.3) gives

a ao =[U +Slxr SlxU ^ ^ • n -a(U •
Vo)

on Sb .^ at ^ on

(3 . 5 . 7)

(3.5.8)

which clearly shows that equation (3.5.3) is equivalent to the combination of equations

(3.5.4) and (3.5.5).

If the moving boundary has no rotational motion, then equation (3.5.3) or (3.5.8)

can be simplified to

d doa-,W U` -n a^ WC -°O)' (3 . 5 . 9)

In particular, on the surface of the piston wave maker where the velocity U, can be

assumed as a function of the time variable only, equation (3.5.9) becomes:

z z

an at an ^ ay
(3.5.10)
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where the fact that n opposite to the x-axis has been used, and &2 has been replaced

by
_(d 20

+(9'-0&2 O^y ,

The problem for defined in equations (3.5.1) to (3.5.3) can be solved in a similar

way as for the potential itself. However, it should be noted that the fluid velocity is

included in the boundary condition for ^ This means that solving for is possible

only after the solution for 0 has been found.
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4. CALCULATION OF HYDRODYNAMIC FORCES

One of the primary reasons for studying the interaction between waves and structures

is the desire to predict the forces and/or the moments acting on the body due to the

dynamic pressure of the fluid. As mentioned in Chapter 2, their prediction is not trivial in

the time marching procedure because of the difficulty associated with the evaluation of

the term by a differential method. We attempt to avoid this difficulty here and

employ the following two methods.

The forces and the moments are represented by integrals of the fluid pressure over

the body surface, i.e.

F = fJpndS,
Sh

N, -JJ prb xndS,
Sy

(4.1.1)

(4.1.2)

where n is a normal vector pointing out of the fluid domain and hence into the body

surface as before. Substituting for the fluid pressure in equation (3.1.5), it follows that

F =-pJf I ^ +ZIO01Z+gz IndS
Sb ` /

N, = -pJj ( + IV j2 +gz x dS.
fb

(4.1.3)

(4 . 1 .4)

One possible method is to directly integrate equations (4.1.3) and (4.1.4) using the

velocity values and obtained by solving the boundary value problem described in

section 3.5. This method will be called the direct force method in this thesis. Clearly,

extra effort is to solve for the term The corresponding computational cost depends

on the methods used to solve the algebraic equations. If the direct solution method, such

as Choleski factorisation method, is employed, the cost may be almost negligible if the

inverse or factorisation of the matrix for solving the potential is usable. However if the
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iteration solution method is used, the cost may be almost the same as that for solving the

velocity potential itself and therefore may double the total cost.

Another method used for calculating the forces and moments has been proposed and

published in the paper by Wu & Ma (1995). It is described here, as follows. Noting that

p=0 on the free surface Sf , the equation (4.1.3) can be rewritten as

s,,+s,

(4.1.5)

We then choose a fixed surface S, which is closed laterally and is vertical near the free

surface, as shown in Figure (3.0.1), to form a enclosed surface E = S,, + Sf + S, + Sd .

Following Newman (1977), we have

d^ fl0 ,^ds=dtlJ1VO^=fflo^^+ lloO (V.n)ds
Sy + Sf tS,tSd V S Sy +SftS,+Sd

ff [LOn + VO(V - n) dS,
Sy+Sf+SctSd

where V denotes the velocity of the surfaces.

(4.1.6)

It should be noted that integration on S, may not be the same as that in the case of

Newman because SC here may intersect the free surface. As a result, the area of S,

changes with time. Hence, the time derivative and the integration over the surface can

not be interchanged, that is,

between them, let us consider

G(r) = ff 0 nds.
Sc

dt ^^
0 ndS #JJ^ndS. To obtain the relationship

s, s,

As shown in Figure 4.1, the surface Sc may have a difference OSC from t to t + At and

therefore

G(t + Ot) - G(t) = ff ¢(r , t + At) ndS - Jf O(r , t) ndS ,
SC +esC s,
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where the vector r represents (x, y, z) . Neglecting the higher order terms proportional

to (At) (in = 2,3,...), we have

0(r ,t+Ot) =0(r,t)+At^ ,

and it follows that

.G(t + At) - G(t) = Ot ff ndS + ff 0 (r, t + At) ndS
S , Cat es, .

Sf(t+dt)

q

^ dS=Ot ^^dC

Sf R)
dS

n

Figure 4.1 The change of surface with time (dC is a segment on the intersection Q

It is evident that the small surface AS, created is due to the fluid motion on the free

surface in the interval At, and consequently it is determined by dS =At ^ dC, as

demonstrated in Figure 4.1. Letting At --^ 0, it clearly follows that

dG = dt
fj

0 ndS =ff^ndS + f^o^ndC,
4 s^

(4 . 1 .7)

57



where C is the instantaneous intersection of S, and Sf , and l = it x q , with q being the

tangential direction of C. Moreover, q points in a direction such that the fluid domain

lies to the left of q .

Substituting equations (4.1.7) into (4.1.6) and using ff0 ndS =ff^ndS yieldsat
Sd Sd

ff^ ndS = ^t ff O nds - ff OO(V • n ^Cts + f'O^ ridC - ff
(
^n + Oc^(V • n ) 1his

S11 ,s,,+s f S,, sf /

Thus the forces acting on the body can be written as

F= -p
d
d ff 0 ndS - p JJ gzndS

s,,+s, s,,+s,

-p ff ( v4_ !vv^
n^s

S,+ Sd

- p^^0 ^ ndC,

(4.1.8)

where the following equation, which can be derived in a similar way to that for (4.89) of

Newman (1977), has been used

1JI0O -2VO •DO n^dS=-ff I ^VO-20O - DO n^dS
Sb ^ Sf \ l

- ff 0O -20O .o^^^s.
S^ tSd

It is evident that the distance between S, and Sb is arbitrary. If S, is chosen to be a

vertical cylinder S„ at infinity, where the potential may be taken as the incident potential

O; at any finite time step, then equation (4.1.8) changes to:

F =-pafJ ¢ndS-P ff gz ndSt
S b +S f S 6 tS f

+
2

ff 0O00 ndS - pfc+ O, ' ndC
$b

- pff (^Vo; - 2DoiDo;n^S
S_

(4 . 1 . 9)
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Following the same procedure, the expression for the moments can also be aUtaineda

which correspond to equations (4 . 1 . 8) and (4 . 1 .9) in turn , i .e .

N^ =-p
d

JJorb xndS- pg Jf Zrb xndS
dt sL+s s6+s

a (4. 1 - 1 0)

pf'^i ^ rL x ndC - p ff rb x ^^^'^i - ^ G°^5V^h n^,S
Sr+$d

N, =-p
d
a JJ0 rb xndS - p fJgZ rb xn dS

S"+S1 Sb +Sf

+ 2JJD0V0 r x ndS-Pfc 0i , rb x ndC
_

$J

if
a0;

- pfJ rb x ^V$; - 2oOvo n S,
s

(4 . 1 . 11)

The method for calculating the force and the moment using equations (4.1.8) to

(4.1.11) is referred as the integrated force method in this thesis. It is obvious that any

integration involving is absent from the formulae, and any partial time derivatives of

velocity potential at individual points on bodies is not involved. Time derivatives are

taken only on the integration of the velocity potential over the body and free surfaces,

which is the first term included in the relevant equations. All these simplify the numerical

evaluation of the forces and the moments. In addition, the terms in equations (4.1.9) and

(4.1.11) associated with S„ can be ignored for the wave radiation problem. Compared

with the direct force method mentioned above, the solution for is not required in this

method.

However, integration applied to the first two terms has to be performed over the

entire free surface. Thus the result is more likely to be affected by the error at the outer

boundary of the computational domain (reflection for example). Another restriction on

the use of the integrated force method is that the surface S,, has been fixed. On the

other hand, the fluid domain may be discretised in numerical analysis by using some
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planes (mesh surfaces). These mesh surfaces may move with time, and thus interpolation

has to be employed to perform integration over the surface. Nevertheless, there are

many cases where the fixed surface can be found, for example, when the fluid domain is

truncated far away from the body, and the truncated surface may taken as fixed and can

be considered as the surface S,. Another example is when the semi-Eulerian notation is

used and the mesh surface does not move in the horizontal direction, in which any mesh

surface can be taken as the surface St . Furthermore, the integrated force method can

provide only the total forces and moments acting on the body but not the pressure itself;

if the pressure is required for a particular time step, it can be obtained by solving a

boundary value problem for ^
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5. A NUMERICAL ALGORITHM USING THE FINITE ELEMENT

5.1 Introduction

The fully nonlinear wave problem described in Chapters 3 and 4 will be solved by a

numerical procedure. This procedure includes the following steps:

(1) start with initial values;

(2) solve the boundary value problem for the velocity potential;

(3) calculate the velocity of the fluid;

(4) calculate the forces on a body (and its acceleration if it is not fixed);

(6) update the positions of, velocity potential and

the velocities on the free surface (and the body surface if it is not fixed);

(7) go to (Z) for the next time step.

METHOD

The boundary value problem in step (2) requires solving the Laplace equation with

relevant boundary conditions, which are summarised here for ease of reference:

D z¢ =0 in the fluid domain b (5 . 1 . 1)

= U • n

-fp

on the rigid boundaries S.

on SP

(5 . 1 .2)

(5.1.3)

where S. represents all rigid boundaries, such as body surfaces, bottom surfaces and so

on, where the velocity is known, whilst SP denotes the boundaries where the velocity

potential is known, which includes the free surface and may also include an artificial

boundary surface ( to be discussed in Chapter 8). On the free surface,

fp = O[x, y, ^(x, y, t), t], where ^ and 0 have been found from the solution at the

previous time step by integrating the kinematic and dynamic free surface conditions of
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Section 3.2.2. On the artificial boundary. .err, is also detemnattned using the infouunuauion of

the previous time step.

This bQaund;try value problem will be solved by a finite element method to obtain the

veloc ity potential in the whole domain. Once the velocity potential is fl^^^, the

velocity will be evaluated by a numerical differentiation method. All of these and other

numerical techniques are discussed in the following sections,

5.2 Formulation of the finite element method

Usually, the above boundary value problem is transformed into an equivalent integral

problem in order to employ the finite element method. There are several methods to do

this (see Zienkiewicz & Taylor, 1 994) . Here the variational principle is adopted, and the

following functional is used:

n =1JfJ(V0)2dV - JJ0 fmdS
2 V S.

5.x, . 1 )

where f„ = U • n. It is shown by Z,ienkiewicz, & Taylor (1994) that if a potential function

is taken as 0 = fp on Sp and satisfies b7I = 0 with respect to arbitrary changes 60

under the condition S0 = 0 on S. , then the function must be the solution of the problem

defined in equations (5.1.1) and (5.1.3). In fact, letting SI1= 0 yields:

o = ^ = Jjlov30dV -jJ80 f. dSV S.
_ -ffJ80o20-dV + JJ"(dn fA

)
dS + JJ60^dS

V S. s,,

=-JIJ30o20-dV + Jj80(^- fA ds,d s.
where the Green theorem and 80 = 0 on SA have been used. This equation clearly

shows that a potential 0 satisfying SII = 0 for any variation of 80 with 4 = 0 on S. is

indeed the solution of the problem defined in equations (5.1.1) to (5.1.3). Therefore the

above boundary value problem is equivalent to minimising the function II ,

An approximate solution minimising the function can be found by the following

procedure. Firstly the fluid domain is discretised into small elements. The velocity
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potential is then expressed by a shape function N, (_z, y, z) and the unknown values 0

on the nodes:

N,(x,y,z),

where the sum is taken over all the nodes. Equation (S_2.1) is thus written as

17 = 17(Y'I 1 02e .... . .)
= 2

JJJ
IO10N) dV -JJ J Q1TlNJCt

.Sn e
V f S.

J

and the arbitrary variation of 60 N, (x, y, z) implies that

an an an an
617 = 802+aO, aO2 a0z , a0,

5 .2 . 2 )

(5 -2 .3)

Letting 617 = 0 and 60 = 0 on Sr ,and employing fp on SP, it follows that

fJ f VNI O,VN,d`d =
V

J¢S P

Jf N j .fnds - Ilf VN, - E(fp ),VN,d`d
S. n l

IES'

which can be rewritten in matrix form:

[AI{O} = {BI,

where

A„ = fff ON, • ON1dd
V

(is).

(I Vz SP

(1 0 Sp and J 0 Sp),

Br = Jf N, .f„ds - J JJ VNI Y, (.fp)j ON,db'
S. d J_'

JeSo

(1 Lt SP ) .

(5 .2 .4)

( 5 .2 .5)

( 5.2.6)

(5.2.7)

(5.2.8)
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In equation (5.2.6), denotes the transpose of a matrix. Equation (5.2.5) is an

algebraic system with 0, being the unknowns. The coefficient matrices [A]and {B} in

equations (5.2.7) and (5.2.8) can he evaluated when the shape function is given.

It is should be noted that the term associated with the velocity potential on the free

surface has appeared on the right hand side of equation (5.2.4). All the values of the

potential, f,,, are known when solving the equation. Wu and Eatock Taylor (1994)

have found that this can ease the well-known singularity problem at the waterline

between the free surface and rigid boundaries.

5.3 Discretisation of the fluid domain

Before discussing the evaluation of matrices [A] and {B} , the discretisation of the

fluid domain is first presented. The discretisation of the fluid domain into a mesh of

small elements is a fundamental part of a numerical procedure, and therefore a lot of

effort has been devoted to corresponding techniques in the literature. A review about

this may be found in Greaves (1995). The work here mainly concentrates on the

development of the methodology. Therefore, a relatively simple technique for the mesh

generation is used.

5

Figure 5.3.1 Division of a hexahedron

In the method used here, the fluid domain is first divided into a number of small

hexahedra by three groups of different surfaces. One group consists of curved surfaces

(referred to as horizontal surfaces) roughly lying in horizontal directions. The other two

groups of the surfaces are each perpendicular to the bottom of the domain, as well as
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being perpendicular to each other. The hexahedra generated in this way are then divided

into six tetrahedra, as shown in Figure 5.3. 1. The tetrahedra constitute the elements

required. A typical mesh of a box-like domain generated in this way is illustrated in

Figure 5.3.2 below.

Figure 5.3.2 Sketch of the mesh of a rectangular domain

The distance between the surfaces may change in order to achieve a relatively finer

discretisation in the area where the fluid velocity is expected to be larger, which may help

to improve the accuracy without increasing the cost. Particularly, Wu and Eatock Taylor

(1994, 1995) suggested that the distance between the horizontal surfaces near the free

surface should be smaller and determined by:

(d + ^)+ ^, (5 .3 . 1)

where z; is the vertical coordinate of a node, d is the mean water depth, C is the wave

elevation as defined before, N is the total number of divisions along the vertical direction,

and x (>_ 0) is a coefficient which can be used to adjust the distribution of the nodes. A
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larger value of x means a finer mesh near the free surface. When K = 0, the mesh is

uniform in the vertical direction. Physically the amplitude of the fluid velocity in waves

may decay with water depth from the free surface to the bottom, and the rate of the

decay depends on the ratio of the wave length to the water depth: the smaller the ratio,

the faster the decay. Thus a larger value of ic should be used, which leads to smaller

elements near the free surface and larger ones near the bottom.

However, when the coefficient is chosen, care should be taken to avoid elements with

very large (or small) aspect ratios (i . e. the ratio of one side of an element to the other).

If the ratio is too large (or too small), the resulting coefficient matrix, [A], may be ill-

conditioned. The lower and upper limits on the ratio have been suggested to be 0.1 and

10.0, respectively (Reddy, 1984). In our case, if liZ represents the height of hexahedra in

the z-direction and /z,. V represents the length in the horizontal direction, then the aspect

ratio can be measured by hZ It is clear that with increasing x' , the value of lZ
IZir

becomes small near the free surface, and becomes large at the bottom. In order to

restrict the ratio to the range of 0.1-10.0, the following limitation should be imposed:

K < min(KI ,K2) ,

where x', satisfies

while x2 is determined by

e-KZ(d+C) -1 ^d + ^)

(5 . 3 . 2)

(5 . 3 . 3)

(5.3.4)

A general rule for determining the value of x' seems to be quite difficult to specify,

but it has been found in our limited experience that the following empirical formula,

subject to equation (5.3.2), may be used as a good guide within a practical range of

frequencies:
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rc = --031co
Z
+ 2.29 -1.47, 1.0 <_ -w <_ 3.0, ( 5 3.5 )
f;%)

d

9 g

where w is the wave frequency.

5.4 Shape function

The fundamental idea of the finite element method is that the unknown function, such

as the velocity potential of concern in this work, is expressed in terms of the nodal values

of the function and an interpolation function (or shape function). The shape function

needs to be properly chosen, and may be a linear, quadratic or higher-order polynomial

function. In this work, the linear function is used. The basic reason for this choice is

that the calculation of the coefficient matrix becomes relatively simple.

A shape function N, (x, y, z) has been introduced in equation (5.2.2) without any

information on its evaluation. This function is defined on the whole fluid domain and will

be called a global shape function. In order to express it explicitly, it should be related to

local shape functions, each of which is defined on one element. Before the relationship

between the global and local shape functions is given, the local shape function is first

discussed in detail.

Attention is focused on one element e as shown in Figure 5.4.1, where the four

nodes have been locally numbered as 1, 2, 3 and 4. The nodes are arranged in such way

that 1-2-3 has an anticlockwise sense, when viewed from node 4. The local shape

function defined on this element is denoted by N; (x, y, z) and is written as :

N; =
1

6b, (a; + b; x + c; y + d; z) (i =1,2,3,4 for x, y, z E e ,

where b'e is the volume of the element and can be expressed as:

1, X1, Y1, z,

b - 1 det 1' x2 , Y21 Zz
6 1, x3y y3, z3 ,

1, x4 , Y41 z4
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4

1

2

Figure 5.4.1 A tetrahedra element

3

and x; , y; , Zi (i = 1, 2, 3, 4) are the coordinates of the nodes. The other constants in

equation (5.4.1) are given as follows:

Ixj , yj, zj

xp , yN, zP

1, yj, z;

b; det 1, y,,, , z,,,

1, yp, zp

(i, j, m, p =1,2,3,4 ,

(i, j, m, p =1,2,3,4 ,

(i, j, m, p =1,2,3,4 ,

(5 .4 . 3)

(5 .4 .4)

x; , 1, z;

xP, 1, zp

and

(5.4.5)
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X; , y; , 1
d, _ -det x,,,, yj, j, m, p =1,2,3,4, (5.4.6)

xP, yj, 1

where the cyclic interchange of subscripts is used, as illustrated by the figure below:

i

P ^

in

It can be verified that the shape function defined in equation 5.4.1 has the following

property:

(5 .4 .7)

With this shape function, the velocity potential within each element e can be written in

the following form:

a
0_
j 0; N; (X, Y, z) (x, y, z e e). (5.4.8 )
i=1

This clearly shows that the velocity potential 0 is linear in x, y and z, and when

x = x; , y = y; , z = z; (i = 1, 2, 3, 4) because of equation (5.4.7).

. T .

Figure 5.4.2 Elements'connected with a particular node I
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We next consider a patch of elements connected to one particular node, as shown in

Figure 5.4.2, where each element has been represented by a triangle without loss of

generality. It needs to distinguish I (J) from i (j) (i, j = 1, 2, 3, 4). 1 (J) and i (j)

may denote the same node; but I (J) is a global node number, while i (j) is a local

number. With this specification, it can be understood that for a global number I, the

corresponding local number i may or may not be found in a particular element

depending on whether the element includes 1 . If the corresponding number i for I

does exist, it is often different in different elements. As shown in Figure 5.4.2, for

instance, i = 2 in e, corresponds to the node I while in e2 i=3. Also for any J

which is not equal to 1,1 + 1 or I + 2, the corresponding local number cannot be found

in element e2 'An element patch attached to node I is denoted as E, , for convenience

of reference. In particular, the element patch in Figure 5.4.2 is composed of four

elements and so E, = e, n e2 n e3 n e4 .

Using equation (5.4.8), the velocity potential on E, can be written as:

4

jOjN e, (X, Y, Z)

i=1
4

O; N;2 (X, y, z)

i=1
a

o; N;' (x, y, z)
i=1
4

O;1Vi° (x, y, z)

i=1

where each local shape function has been defined by equation (5.4.1). If the global shape

x,y,zEe,

x, y, z E e2

x, y, z c- e3

x, y, z E e4

(5 .4 . 9)

function is defined as:

^
)

0

Niel (X, Y, Z) (x, y, z) E el let e E,

(x, y, z) a E,
(5.4.10)

and j in Of is changed to its corresponding global number, the expression in equation

(5.4.9) can be extended to the entire fluid domain, i.e.
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00,N, (X,y,Z),

where the sum is taken over all the global nodes.

(5.4.11)

More discussion about (5.4. 10) may be helpful for the following analysis. Supposing

(x, y, z) to be a point in a particular element e,,,, and letting J be any global node

number, it follows from equation (5.4.10) that

N (x, y, z)
N, (x, y, z) =

to

J E e,,,

1 0 em

(5.4.12)

because in the latter case (J 0 e), (x, y, z) cannot be in patch E. . In fact, equations

(5.4.10) and (5.4.12) are equivalent; both of them relate the local and global shape

functions together, but in a different manner. The former describes the relationship when

considering one node with several associated elements, while the latter gives the

relationship when considering one element with several associated nodes. From either

equation, one can also obtain

1
N, (x.,, Yj, z .,

0

5.5 Coefficient matrix

IJ

I^J
(5 .4 . 13 )

With the above definition of the shape function N, (x, y, z) , we now consider the

calculation of the coefficient matrices in equations (5.2.7) and (5.2.8). To this end, they

are rewritten in terms of the integration over the elements:

A„ jff VN, • ON,dV= A;; (10 SP and J e S,),
k ek k

B,- j Jf N,.fnds- Efff VN,' Y. (fn),ON,dd= I B;k (It.^ Sp
k ASn (ek ^ k ek J k

IES P

(5 .5 . 1)

(5.5.2)

where I is the sum taken over all the elements and AS,, (ek )represents the triangular
k

surface of element ek , forming a part of the boundary Sn . If no surface in element ek
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lies on the boundary S„ , then AS,, (e, 0. It is evident that A;; and B; are the

contributions from element e A, to AY and B, , respectively.

The contribution to A„ from the element eA is firstly considered, that is

rA

(5.5.3)

According to equation (5.4.12), if at least one of I and J is not a node of e, then at

least one of N, and N, is equal to zero, and as a result A;; = 0. If on the other hand,

both I and J are nodes of the element eA ,then N, = Niel and N. = Nek . Consequently,

the result

36b,
(b,b1+c1c+d,d)

A^ =

1

e,
e t

(5.5.4)

is obtained, where the local numbers i and j of the nodes are used on the right hand

side to retain the consistency with equation (5.4.1)

The contribution to B, from the element may be split into two parts, i.e.

B^` = B„ +BIZ ,

where

B^k --fff ON, • (fP)JVN,db'
eA

JESP

and

Biz
=

JJ N,.fndS .
,&S. ( et^

(5 . 5 . 5)

(5.5.6)

(5.5.7)

These two parts arise from different sources. The first part is the contribution from the

node lying on SP ; this part is zero if there is no node on SP or else if node I is not a

number of this element. When the element contains I and J with J being on SP ,this

part can be evaluated in the similar way as for A k , i.e.
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1 1

Be - 36`d
I (b;bj +c;cj +d;d;)(fr);

/ I r4

j(i)€sp and 1, j(J) E ek

otherwise.

(5.5.8)

The term B;Z results from the contribution of the surface of the element, which is part

of the boundary S„ ,and can be expressed precisely as:

II Nr4
fnCl.S

B e& _ AS. (e4Iz -

AS, (ek) # 0 and 1EdS„(eA)

0 otherwise (10 eA or AS,, (ej = 0)

(5.5.9)

To evaluate this integral analytically, fn may be assumed to be a constant on S,, (ek) or

else a linear function. With this assumption, it can be found:

ek

3 In

S. (<< +
3 2

\fnJ^ + (fn/m

4 4

f,, is a constant on ek

f,, is linear,

(5.5.10)

where AS" is the area of dS„ (ek ), and (f„), is the value of f„ at node i while (fn
J

and (f„)m are the nodal values of fn at other two nodes of dSn (ek). The derivation of

the equation is presented in Appendix B. Usually, the constant f, on dS„ (ek ) is

assumed, but if f,, changes rapidly, the linear assumption may be used.

When the contributions from each element are known, the total values of A„ and B,

can be found by summing them properly . Here the relevant details are given to the

assembly of A„ ,and the similar manner can be used for B,. For this purpose , Figure

5.4.2 is referred to again. Taking A, ,+, as an example and noting that only elements e,

and e2 include both nodes I and I+1, the coefficient, therefore, is

e,
e
2Al 1+1 ^ A

11+1 11+1

By considering different J for the fixed I, all the A„ (J = 1,2,3,• • - ) can be obtained.

Other coefficients with different index I can be assembled in a similar way.
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It should be noted that for all J 0% E, , A„ = 0, and usually the number of J 0- E,

is very large compared with the number of J E E, . As a result, only a few entries A„

for a fixed node I are nonzero. The number of J E E, depends on the mesh and may be

different for a different node l; this number does not exceed 27 for the mesh discussed

in Section 5.3. Due to no limitation having been put on the node I, this property of A„

is also valid for any other nodes. This feature of the coefficients A„ makes the matrix

[A] sparse. That means that all the nonzero entries are bounded in a band, within which

there may also be some zero entries. A sample pattern of the matrix is shown in Figure

5.5.1, where * denotes the nonzero coefficients. The number of entries from the first

nonzero coefficient to the diagonal in each row is usually referred to the `half

bandwidth'. The half bandwidth is largely dependent on the geometry of the fluid

domain, the mesh structure and the numbering system of the nodes. For a given domain

and mesh, the optimisation of the numbering system of nodes may be utilised to achieve

as small number of zero entries in the half bandwidth as possible. However, it should be

noted that even with the use of the optimising technique, many zero entries may still be

contained in the half bandwidth. In our calculation, the average half bandwidth often

reaches to 300 -500, which is far greater than the maximum number of the nonzero

entries.

* x^

* x^
* * ^x

* * * x^

* * ^x

Figure 5.5.1 Matrix pattern
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Apart from being sparse, the matrix [A] is also symmetric. This can be seen from

equation (5.5.1), where the value of the integration does not change with the interchange

of 1 and J. Furthermore, the matrix is also positive definite (PD). This can be simply

shown by considering:

JJf 00V . OW > 0, for any non-constant velocity potential .
V

Inserting equation (5.4.11) into the above inequality gives:

>fl, (5.5.11)

where A„ = JJf VN, • ON, dV for any node number I and J. Equation (5.5.11)V
indicates that the matrix pq is positive definite. Of course, if the velocity potential is a

constant , fJJ 0o • O0d'd = 0, but this situation is of no interest because no flow would
v

exist in this circumstance. It should be noted, however, that [A] is different from

because some entries have been moved to the right hand side in equation (5.2.4).

Nevertheless [A] can be shown to be a principal minor obtained by deleting some

corresponding rows and columns of P1 . As is well known, if [A] is symmetric

positive definite, any principal minor is also symmetric positive definite (Pissanetzky,

1984). Hence, [A] is positive definite.

Another aspect of concern is the storage of the matrix [A]. There are two basic

ways of storing the matrix when coding the methodology. One way is to store only

nonzero coefficients, while the other is to store all the coefficients in the half bandwidth

including many zero entries. The choice from the two ways depends on methods used to

solve the algebraic equations. An iterative method allows the former to be used, while a

direct method requires the latter.
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5.6 Velocity calculation

The fluid velocity on the free surface and on the body surface is required for the

evolution of the waves and the evaluation of the forces acting on the body, as has already

been seen in Chapter 3 and Chapter 4 above. The velocity elsewhere in the fluid domain

may also be required, but it is not necessary for the simulation to proceed. Thus attention

is paid here only to the velocity on the free surface and the body surface.

In order to calculate the velocity, one can solve a mixed boundary value problem

with the velocity and potential being unknowns. The velocity can also be evaluated

using a formulation based on the Galerkin method. Both techniques have been used by

Wu & Eatock Taylor (1994), and were found to give satisfactory results. The authors,

however, showed that both techniques may double the CPU time for the solution of

potential itself. Therefore, they (Wu & Eatock Taylor, 1995) later suggested that the

velocities could be calculated by a finite difference method once the potential was

available, and achieved similarly satisfactory results with less calculation cost. The finite

difference method will be used in this work. According to the mesh structure mentioned

in Section 5.3, a slight modification will be made, as explained below.

1+2

I3 17!+ 3
^`.

p / `

-/ hi 1+ 1
ff

1+4/ 4 1+5

h2

l+h

Figure 5.6.1 Node and its neighbours

The velocity on the free surface is addressed first. Suppose that the velocity at a

node I on the free surface is sought, and that the node has several neighbours around it

with two of them being below the free surface and being on a vertical line, as shown in

Figure 5.6.1. The nodal values of the velocity potentials on the nodes are represented by
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0 1 10,+1 10/+i "' , and corresponding vectors formed between the nodes I + 1, 1 + 2, • • • on

the free surface and the node 1 are denoted by 1 1, 1 2' ...

The vertical velocity is then evaluated using the nodal potential 0 , , 0 +s and 0 1 +6 by

the following equation:

2 2h, + h2 1 2 1 2 hW .- ' + - ^^ - - + ^i+s +
,

J01+6. (5.6.1)
3h, h, + h2 2 3h2 lz, 3hi h, + h2

This equation is obtained by the combination of a two-point and a three-point differential

formula.

The horizontal components are found by grouping the vectors on the free surface so

that there are two vectors in each group, and at least one vector is different from those

in other groups. For example, the four vectors in Figure 5.6.1 may be divided into four

groups: (11, 12), (12, 11), (11, l4) and (l4 , V). For each group, the following equations

can be obtained:

u; lx +v;lk _^ -wlZ (5.6.2)

(5.6.3)

where lx , lk and li are the components of the vector l ' (k =1, 2, • • • ), index i refers

to the group, and ^^ _ (O'+`k 0`^ Solutions of equations (5.6.2) and (5.6.3) yield the

velocities related to the directions , k and 1'. After the solutions in all the groups are

found, the average is taken in order to give the horizontal velocities at the node I, that is

1q
u = - Y, u,,,

q n1-1

9

v =-1 Vm

q ,,,_i

where q is the total number of groups..

(5.6.4)

(5.6.5)

On the rigid surface such as the body surface, the normal velocity is known. Only the

tangential components need to be determined. In this case, all the neighbouring nodes,
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corresponding to I , I + 1, I + 2, 1+3 and 1+4, are on the rigid surface, but the other

nodes corresponding to I + 5 and I + 6 in the fluid domain are not needed. Equations

(5.6.2) to (5.6.5) can be modified for the calculation of the tangential velocities. That is,

the second term on the right hand side of both equations (5.6.2) and (5.6.3) is taken as

zero, while equations (5.6.4) and (5.6.5) retain the same.

It should be noted that the above method may not be applicable to a general mesh

because the vertical line containing three successive nodes may not exist. In this

circumstance, the Galerkin formulation of the velocities or a least-square-based method

may be used.

6.00

s.oo

•^ 4 . 00

3 . 00
u

2 .00

1.00

0.00

0 . 00
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0 . 50 1 . 00 1 . 50 2 . 00
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nurr
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.5 0.20
c
0
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a
O

0 . 00

0.00 0.20 0.40

X

0 . 60

(a) Vertical velocity (t=0) (b) Horizontal velocity t = At

Figure 5.6.2 Comparison of the vertical and horizontal components of the velocity on
the free surface generated by a wave maker with impulsive motion (the values of velocity

shown have been divided by gd and At = 0.005 dIg )

To verify the above method, the problem of a wave maker suddenly starting to move

at time t = 0 with velocity U = gd in a rectangular tank of length

L = 5d and width B = OSd is solved. The right hand coordinate system is specified such

that the wave maker is mounted at x = 0 and the free surface is at z = 0 before the start

of motion. The mesh used is similar to that in Figure 5.3.2, and is generated by M, + 1

transverse planes, M2 + 1 longitudinal planes and N +I horizontal surfaces. The

values of M, , M2 and N are taken as 100, 6 and 16, respectively. The smooth scheme

given in section 5.9 is applied. For a similar problem with infinite tank length, Peregrine

(1972) has given a first order solution using a perturbation method with the time being

the small parameter, and van Daalen (1993) extended it to second order. Their solution
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is used to check the results obtained here. Figure 5.6.2 shows the comparison between

the numerical results and their analytical solutions. It can be seen that excellent

agreement has been achieved in this case. Further validation will be given in Chapter 7

and Chapter 8, where the numerical waves are compared with some known analytical

solution, and this will indirectly check the velocity calculation method.

5.7 Integration to update the information on the free surface

The solution of the velocities at nodes enables us to calculate the new nodal values

of the free surface elevation and the potential on the free surface, by using equations

(3.5.2) and (3.2.7) for Semi-Eulerian notation, or (3.2.9) and (3.2.10) for Lagrangian

notation. These new values provide conditions on the new boundaries for the analysis at

the next time step.

It has been seen in Chapter 3 that the free surface conditions give the time derivatives

of the potential and the position of the free surface. Numerical integration must be

performed to obtain the new values. There are many schemes for this. The method used

here is based on the open trapezoidal rule (Korn & Korn,1968) which is described as

follows.

d
Suppose that the time derivative of a function y is known, i.e. dt = f at time t ,

the value of the function y at the next time step is determined from

y'+& = Y '
+ 2t (3f, - f, -A, (5 .7 . 1)

where At is the time step and assumed to be constant. The accuracy of the equation is in

order of
(At)

Z

When the semi-Eulerian notation is used, there is no difficulty in the implementation

of equation (5.7.1). However, when the Lagrangian notation is used, remeshing is often

required to avoid over-distortion of the elements. If remeshing is performed, the time

derivative f,_,6, at the previous step becomes problematical. The reason is that the same

fluid particle must be followed in equation (5.7.1). When remeshing is used, however,

node J at time t and node J at time t - At may not represent the same particle. For

example, node J at time t may be situated at the position Q at the time t - At, as shown
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in Figure 5.8.1. The derivative at node J at time t - At is then not available. Moreover,

the position of the point Q is also unknown, and it must be derived from the position of

node J. It is clear that in order to find f,_,,, in this case, the position of Q should first

be found and then f,-,A, may be obtained by interpolation of the values at nodes a, b, and

c at time t - dt.

In order to find the position Q, it is assumed that the coordinates of node J are

obtained by the following equation (actually, they are obtained by the interpolation from

a', b' and c' ,see the next section):

x, = xQ + uQAt

y, = yQ +vQOt,

(5.7.2)

(5 .7 . 3)

where (X,, Y.) and (xQ, YQ) are the coordinates of node J and Q, respectively, and

uQ and vQ are the velocity components at the point Q at time t - At. These two

velocity components are unknown but may be interpolated from the velocities at a, b and

c, in the following manner:

uQ = a, + b, xQ + c1yQ ,

vQ = aZ +b2xQ + c3yQ ,

(5.7.4)

(5.7.5)

where the constants a; , b; and c; (i=1,2) depend on the velocities and position of the

points a, b and c, and they can be obtained by replacing (q,, q2 , q;) with

[(u) ^u), (u^b ] (for i=1) and [(v), (vQ^, (v), (for i=2) in equation (C.5) in

Appendix C, respectively. Substituting equations (5.7.4) and (5.7.5) into equations

(5.7.2) and (5.7.3) yields:

(1+dtb,)xQ +dtc, yQ = x, - dta,, (5.7.6)

(1 + dt bZ)xQ + At c2 yQ = y, - dt aZ . (5.7.7)

The solutions of equation (5.7.6) and (5.7.7) give the coordinates of the point Q which

are used to interpolate the time derivatives, that is
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V-At ) Q =a1 + IJf xQ +Cf yQ , (5.7.8)

where (a f , bf , c1) is also obtained by equation (C.5) with (q,, q2 , q3) being replaced

by [(fr-e^). I (fl-al )h ' V-11)c I • It should be noted that equations (5.7.2) and (5.7.3) are

different from equation (5.7.1). However, if equation (5.7.1) is used for the purpose of

finding the coordinates of the point Q at time t -At, its position and velocity at time

t - 2At must be involved, and making the calculation even more complicated.

5.8 Remeshing and interpolation

If the nodes are simply followed, the configuration of elements may change during

the time-marching process. It is possible that the elements may become so distorted

that the calculation breaks down. To overcome this problem, the fluid domain may

need to be remeshed at each time step or after every several time steps. It has been seen

that at each new time step the free surface position and the velocity potential on the

surface are obtained by integration, using the corresponding nodal values at the previous

time step. When remeshing is performed, the new nodal values may become unavailable

and hence interpolation may be required in this case.

mesh at t

^'• updated from mesh at t - At

mesh at t - At
a C

+ Q

Figure 5.8.1 Illustration of remeshing

Whether or not interpolation is necessary depends on the notation used and the

method of remeshing. If the semi-Eulerian notation is used and the vertical planes for the

mesh generation are not changed, then the nodes on the free surface only move up and

down. Consequently, the remeshing performed does not result in new nodes on the free

surface, and thus interpolation is not necessary. If the Lagrangian notation is used,

however, the nodes move in all directions. If the fluid domain is remeshed in this case,

the new nodes on the free surface may not coincide with the old nodes and thus the free

81



surface elevation and the potential values on the new nodes must be found. Figure 5.8.1

can be used to illustrate this situation. Triangle abc is a part of the free surface at time

t - At . After the solution is found, the nodes a, b, and c are updated to a', b' and c',

respectively. Consequently, the triangle changes to a'b'c'. If remeshing is performed at

this time level, new triangles on the free surface are formed (triangle IJK in the figure

denoting one of them). The new nodes (I, J, K,-.-) may not necessarily coincide with

the old nodes (a', b', c',• • • ) . All the information is held at the nodes a', b' and c' ,but

the values at the nodes I, J, K are needed for calculation at time t . In the following, the

triangle a'b'c' is referred to as the `old triangle', while IJK is referred to as the `new

triangle'.

In order to find the new nodal values, interpolation is employed. It is quite

straightforward because the interpolation method for the triangle on the free surface has

been developed in Appendix C. We must, however, find which old triangle each new

node such as J belongs to, before using that formula. This is because when the domain

is remeshed , the new nodes cannot automatically be attached to a particular old triangle.

To find the corresponding old triangle, the following method will be used.

Consider node J specifically. For convenience, the triangle a'b'c' is projected on to

the oxy plane to form a"b"c", as shown below in Figure 5.8.2.

J a,

C•

y

Q..
C"

x

Figure 5.8.2 Projection of triangle a'b'c' onto the x-y plane

Then, the following six vectors can be defined:
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where x, y, and z are the coordinates of corresponding points denoted by the indices. If

the node J is inside the triangle a'b'c' , it must follow that:

VJ, X Vba ? 0

VJ2 X Vcb 0

VJ,xVac ?0.

(5 . 8 . 1 )

If one of inequalities in (5.8.1) is not satisfied , node J must be outside the triangle. The

required triangle containing the node J can then be found by searching the old triangles

using the condition given in (5.8.1).

After fording the triangle containing node J, for example, a'b'c', formula (C.5) can

be used to obtain all the information at node J , including the free surface elevation, the

nodal potential and so on, which enables the problem to be solved on the new mesh at

time t .

Numerical evidence has suggested that if the remeshing is carried out too frequently,

for example, remeshing after every time step, the interpolation used above may cause a

loss of energy. The interpolation based on a quadratic function has also been tested but

the problem of energy loss still exists, although it may be slightly reduced. To overcome

this problem, remeshing may be performed after a sufficient number of time steps. On

the other hand, as mentioned at the beginning of the section, over-distortion may occur if

remeshing is applied less frequently than necessary. In this work, remeshing is carried

out after very 20 to 100 steps depending on the wave length. However the further

investigation on remeshing and interpolation is required for future work on other

practical problems not included here.
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5.9 Smoothing and recovery techniques

Like other numerical methods, the finite element method can only offer an

approximation to the exact solution of the physical problem. The difference between the

exact solution and the finite element solution may be a result of modelling a continuum

with a computational model that has a finite number of degrees of freedom and

representing a continuous function with a piecewise interpolation function. Although the

difference, or error, may decrease with increasing the number of the elements, or using a

higher order interpolation function, a very large number of elements and/or a very

complicated interpolation function are not always economical or practical. In solid

mechanics where the finite element method has been widely used, a lot of effort has been

devoted to the development of a good postprocessing method and adaptive mesh

procedure, see for example Zienkiewicz & Taylor (1994), Zienkiewicz & Zhu (1992) and

Wiberg, Abdulwahab & Ziukas (1994). These two distinct research areas have the same

aim, that is to achieve higher accuracy without the obvious increase in the computational

costs. Postprocessing techniques aim to provide more accurate results by properly

treating the finite element solution. In contrast, the adaptive mesh is employed to try to

achieve more accurate results by optimising the distribution of elements so that finer

meshes are used in regions of large variable gradient, and coarser meshes used

elsewhere. This optimisation procedure is performed by adjusting the mesh according to

the errors obtained through successively solving the same problem. The core of the

adaptive technique is error estimation which is based on some postprocessing results.

Therefore it can be seen that postprocessing is fundamental to improving the quality of

the finite element solution. In solid mechanics, postprocessing is mainly performed on

stresses (derivatives) if the finite element method is based on displacements. Several

techniques have been used to postprocess the stresses, such as nodal averaging, global

projection and so on, see Zienkiewicz & Taylor (1994). Among them is superconvergent

patch recovery, recently developed by Zienkiewicz & Zhu (1992), which is believed to

be the most practical and effective.

In this work, we do not attempt to use the adaptive meshes, but instead attempt to

improve the finite element results by means of some postprocessing techniques. Two

techniques will be discussed. One is smoothing and the other is the patch recovery

technique.
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Smoothing technique

A 5-point smoothing scheme is used to smooth the velocity at nodes situated in a

plane. Longuet-Higgins & Cokelet (1976) have used this scheme in their boundary

element analysis , which successfully removed the saw-tooth problem. For five equally-

spaced points, the relevant formula is written as:

1
w, = 16 (- w,_2 +4w,_, + lOwJ +4w,+, - wJ+Z

where w is the function to be smoothed and w, is the smoothed value at node J; nodes

J - 2, J - 1, J + 1, J + 2 are situated on both sides of the node J, as shown in Figure

5 . 9 . 1 .

W w

J-2 J J+1 J+2

Figure 5.9.1 Sketch of smoothing procedure
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(a) different meshes without smoothing (b) with smoothing (Mz = 6)

Figure 5.9.2 Vertical velocity at x=0.05 for impulsive motion of the wave maker

(the values of velocity shown have been divided by gd )
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As an example, this scheme is now used for the problem of impulsive motion of the wave

maker, as described in Section 5.6. Similar meshes to Figure 5.6.2 are used but M, is

taken as a different number in order to obtain a different mesh size in the y-direction.

Figure 5.9.2a gives the numerical solution of the vertical velocity on the free surface at

x = 0.05, which is not smoothed . It can be seen that variation along the y-direction

is evident, although physically this problem is two dimensional, and hence the

solution should not be a function of y. The comparison of the velocity obtained by

different numbers of divisions in the y-direction shows that the variation decreases, and

that the results converge to the analytical solution with increasing the division level,

although the rate of convergence is quite slow. Figure 5.9.2b shows the comparison of

between the analytical solution and the smoothed numerical results corresponding to

M2 =6. It can be found that the calculated velocity has no visible variation and is in

good agreement with the analytical solution. This example shows that this smoothing

technique may improve the results dramatically.

However, the smoothing technique mentioned above has limited practical use

because it requires the mesh to be regular and five nodes to be on the same plane. These

requirements may not be easily met in many cases. For example, when a cylinder is

mounted in the wave tank, a different mesh structure in the area around the cylinder from

that in the area near the wave maker has to be used, and thus the smoothing technique is

not applicable. In such a case, an alternative, patch recovery technique, may be

employed.

Figure 5.9.3 Triangular patch
(o: Sampling point )
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Patch recovery technique

The fundamental idea behind the patch recovery technique is that the velocity is

assumed to be fitted by a polynomial over a patch on the free surface. Such a patch

consists of a union of triangles containing this node, as shown in Figure 5.9.3 where

there are six triangles in the patch associated with node I. This polynomial can be

simply written as:

W,*=u+vx+cv, (5.9.1)

where w, * denotes a fitted-velocity component on the free surface, and the subscript

refers to the patch around the node I. The coefficients a, b and c, included in equation

(5.9.1), are to be determined by a least-square method fitting to a set of sampling points.

That means that the following function is minimised:

i=1
(5.9.2)

where x; and yj are the horizontal coordinates of the sampling points (as shown in

Figure 5.9.4); w;' is the velocity at the sampling points, and n is the number of triangles

in this patch. The minimisation of equation (5.9.2) leads to:

n n n

1 I x; j y; a w"

n n n n

x; x 2
jx; y; b = Y' x; w h

n n n n

Y, X;Yi Y? c Y, Yrwn

Once this equation is solved, substitution of a, b and c into equation (5.9.1) enables the

new velocity w, to be evaluated at node I. We refer to w, as the recovered velocity,

and it is used in place of the corresponding velocity calculated in Section 5.6. Clearly,

the new velocity found in this way is determined by the velocities at the sampling points,

W;`. If thew.'' have higher accuracy (i.e. better approximation to the exact velocity),
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w, may be more accurate than those calculated in Section 5.6. The sampling point is

then called a superconvergent point.

The question now is whether or not the superconvergent points exist. Zienkiewicz &

Zhu (1992) stated that when using triangular elements with a linear interpolation

function in the finite element analysis, the centroid of a element is a superconvergent

point where the solution obtained by the finite element method is more accurate than

that in other places. Therefore, the sampling point is simply the central point of the

triangles.

The w;' at the sampling points can be easily estimated by the interpolation given in

C.5 of Appendix C, that is

where a'' , b" and c" are calculated using C.5 with (q1, qZ , q3) replaced by

(w, , w, , wK) which are the nodal velocities of the triangle containing the sampling

point i.

However, a difficulty with using the recovery technique may occur at the domain

boundaries, where a patch may include fewer triangles, as shown in Figure 5.9.4.

Although various techniques have been suggested to deal with the problem, none is

perfect. One of them is given by Zienkiewicz & Zhu (1992), in which the boundary

values of stresses is obtained using the patches of internal nodes, somewhat like

extrapolation.

0

a). on a corner b). On a plane surface c) on a curve

Figure 5.9.4 Patch around the boundary nodes

In our work, different treatments are used for different boundaries. If the boundaries

are composed of the planes, such as a) and b) in Figure 5.9.4, the smoothing technique
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mentioned above is used. If the boundary is a curved surface like case c) in Figure 5.9.4,

we simply follow the idea of Zienkiewicz & Zhu (1992), based on the extrapolation

technique. That is the value at point A in Figure 5.9.4c is found by the patch associated

with internal point B.

To demonstrate the accuracy of the recovery technique, the same problem of

impulsive motion of the wave maker mentioned above is solved again. Similar results to

Figure 5.9.2b are plotted in Figure 5.9.5, together with the analytical solution. It can be

seen that the good agreement is also achieved here.

All the results given in Chapter 7 and Chapter 8 have been postprocessed using the

above techniques, unless mentioned otherwise.

5 .00

•^ 4 . 00

3.00

2 . 00

-0 . 25 0 .2 5

Figure 5.9.5 Comparison of the vertical velocity obtained by using the recovery
technique with the analytical solution, at x / d = 0.05, for the impulsive wave maker

(the values of velocity shown have been divided by gd )
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6. SOLUTION METHODS FOR THE ALGEBRAIC SYSTEM

6.1 Introduction

After the fluid domain is discretised, the differential equation and boundary

conditions are transformed into a set of linear algebraic equations in this thesis, as

discussed in Chapter 5, i.e.

(6.1.1)

where [A]_ (a ij ) is the coefficient matrix and {B} = (bi ) is a vector containing the
I)XII n

known components. To be consistent with mathematical books, entries of [A] and {B}

are represented by a;^ and b; , respectively, instead of A„ and B, as in Chapter 5, and

the vector of unknowns is denoted by {x} .

In Chapter 5, it has been shown that the matrix [A] is sparse and symmetric positive

definite (SPD) in this study. The sparsity is determined by the half bandwidth (hereafter

denoted by 91) and the number of non-zero entries in 91, which is dependent on the

geometry of the problem, the mesh structure and the numbering system of the nodes.

The solution of this algebraic system is a key part of the analysis of the interaction

between structures and non-linear waves discussed in this theses. The efficiency of the

corresponding code largely depends on the efficiency of the solution techniques. There

are a number of possible methods for solving the system, but the efficiency of each

method is largely problem-dependent. The application of FEM to steep wave problems is

currently being investigated. It is not as mature as its application in other fields, such as

solid mechanics. Therefore the choice of the methods for solving the corresponding

algebraic system is not straightforward.

There are essentially two different types of methods available for solving the linear

equation (6.1.1): the direct method and the iterative method. Both of them have a wide

variety of forms, depending on the type of problems to be solved. There is no intention

here to discuss all the detail. The discussion will be made especially with regard to the

property of matrix [A] associated with the steep wave problem.

90



A well-known approach in direct strategies is the Choleski factorisation method,

used to solve algebraic systems with SPD matrices. In this method, the matrix is

factorised into triangular factors, and the corresponding unknowns are then found by the

forward and backward substitution of the triangular system. The alternative to the direct

method is the iterative procedure, in which the unknowns are found by computing a

sequence of their approximations. Not all iterative procedures can be applied to the

problem in this thesis, but it is hoped that the preconditioned conjugate gradient (PCG)

solver is suitable because it has been successfully used in many problems with SPD

matrices.

The two methods have different advantages and disadvantages. In the direct method,

the solution can be found directly, and would be exact if there would be no round-off

errors. The cost of calculation can be predicted a priori, and does not need a control

error. In addition, once the factors of [A] are obtained, they can be used to find the

solutions corresponding to every columns in {B} if it contains two columns. In the case

where the factorisation calculation dominate the requirement for CPU time, the cost of

the solving for the two columns may not be significantly larger than for one column.

This may be advantageous when both the velocity potential and the term need to be

solved. The main problem with this method may be the memory requirement for storing

[A]. Although it is only necessary to store the entries in half bandwidth of the matrix, a

large number of zero coefficients will still normally be included, because the half

bandwidth usually comprises a much larger number of zero coefficients than non-zero

coefficients in each row. The zero entries in the half bandwidth will be filled in during

the process of factorisation, that is, the zero entries may become nonzero. This feature

of the Choleski method leads to dramatic storage requirement for solving large problems.

In contrast, the iterative procedure only handles the matrix-vector products and does not

change the entries in [A] during the process. Thus, there is no need for storing the zero

entries of the matrix, and consequently, the iterative method requires considerable less

storage than the direct one. In some cases, the iterative method, such as PCG, may be

much faster than the direct one if an efficient preconditioner is employed. Nevertheless,

the determination of the preconditioner is not trivial and is very much problem-

dependent. Also the iterative method needs a control error which largely affects the
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computational costs. Moreover, if the two columns are included in {BI, the cost for

solving the algebraic system may be almost doubled.

The purpose of this chapter is to try to answer the questions: Which solver, Choleski

or PCG, is more suitable for solving our problem? When the PCG method is adopted,

what kind of preconditioner should be used?

6.2 Choleski method

The Choleski method has been widely used and thoroughly investigated both in

theory and in practice. Thus only a brief description will be given here.

If [A] is an SPD matrix, a triangular decomposition of [A] yields

[ A ] = L LILnI[ L] (6 . 2 . 1)

is itswhere [L] is an unit lower-triangular matrix with L;; = 1 (i = 1,2,3...n), (L]'

transpose, and [A] is a diagonal matrix which is often written as

The entries in [ L] and [A] can be determined recursively by

p, =a,

and

i-1

t ,; = a,; - E t ik ikj
k = I

lei = t^; /Pi (.1 = Ii,-- -i - 1),

(6 . 2 . 2)

(6 .2 . 3)

(6.2.4)

i-1

P. = a,. - I t;k lrk
k=1

(6.2.5)

for i = 2, 3, • • • n . In equation (6.2.4), Ii represents the first non-zero entry in the i-th

row. It can be seen that even if a coefficient a;^ lying in the half bandwidth is zero, the

corresponding l;^ may become nonzero. In addition, p, are always positive because

[A] is an SPD matrix.

When [A] is expressed as in equation (6.2.1), the following transformation can be

made:
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so that

(6 . 2 . 6)

(6.2.7)

The unknowns {x} are then found by using the forward substitution

Y. = b,
.-

Y. =b; - I likYk
k = 1

(i = 2,3,...n),
(6.2.8)

and the backward substitution

Y,.
x^^ - -

P.
n

x, = y^ Y, lkr xk
Pi k =.+i

(i =n-1,•••2,1.

(6 . 2 . 9)

In practice, a large portion of the computational cost for the above procedure occurs

during the factorisation in equations (6.2.3) to (6.2.5). Specifically, the computational

cost of the factorisation is roughly proportional to n9Z2, while the cost of the forward

and backward substitution is roughly proportional to n9Z (Pissanetzky, 1984). Hence,

once decomposing the matrix [A], problems with two right-hand side vectors can be

solved using equations (6.2.8) and (6.2.9) twice. The CPU time required may increase

by only a small fraction of solving one-vector problems.

6.3 PCG iterative method

The iterative method comprises a wide range of forms. An extensive survey has been

given recently by Bruaset (1995) who grouped the widely used iterative methods into

two classes. The first class is based on matrix splitting, such as Jacobi, Gauss-Seidel,

successive overrelaxation and symmetric successive overrelaxation (SSOR) methods.

The second class is based on the Krylov subspace. The conjugate gradient method is a

popular method in the second class for symmetric positive definite problems. As shown
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by Bruaset (1995), the full effectiveness of the conjugate gradient method cannot be

achieved unless a suitable preconditioner is employed, which multiplies the original

matrix [A] in a suitable way. The evidence given by Bruaset (1995) showed that a

good preconditioner may considerably speed up the convergence of the iterative method.

The algorithm for the preconditioned conjugate gradient (PCG) method is discussed

next. Only a brief description will be given, and all the details can be seen in the work of

Bruaset (1995) and the books of Axelsson (1976, 1994).

6.3.1 Conjugate gradient methodfor a minimisation problem

The conjugate gradient method comes from considering the minimisation of the

quadratic problem

1

where (x, Ax) and (B, x) represent inner products defined by

(x, Ax)_ {x}^ [A]{x} and (B, x)_ {B}^ {x} .

(6.3.1)

(6 . 3 . 2)

It can be shown that if [A] is an SPD matrix, i.e. (x, Ax) > 0 for all {x} # {0} , the

minimisation of (6.3.1) is equivalent to solving [A]{x} _ {B} in equation (6.1.1). In

fact, letting x satisfy [A]{x}= {B}, equation (6.3.1) can be rewritten as:

H(x) =
1
2(x-x+x,A(x-x+5E)) -(B,x-x+x)

(6 . 3 . 3)

where (Ax,x - x) = (x,A(x - x)) = (B, x - x), since [A] is symmetric, has been

used. Equation (6.3.3) shows that H(x) reaches its minimum, H(x), if and only if

{x} = IT}, since (x - x, A(x - x)) > 0 when {x} # 111. This means that we can obtain

the solution of equation (6.1.1) by minimising H(x) in equation (6.3.1).

This minimisation problem can be solved by the conjugate gradient method. In this

method, the minimiser of H(x) is found step by step, by searching a sequence of
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approximate vectors in a particular way described now. Letting {xV
) denotes the

approximation obtained at stage k , the approximation at stage k + 1 is constructed by:

I = {x} I (6.3.4)

in such a way that H(x(k) + 11A p(A) ) is minimised. To achieve this, the constant A k

and {p}(A) (called as a searching direction) have to be determined properly. In order to

find Ilk ,inserting equation (6.3.4) into (6.3.1) and using

Y
,
P k P

'
P

that is, (p(k) ^Ap(k)\

where {r}(k) = {B}- {A}{x}(k) defines a residual of {x} (k)

The vector {p}(k) in equation (6.3.4) can be constructed as

I
p1

(k)

_ jrI(k) +ak jpj(k_,)e

where a k is another constant which is determined by imposing

Substituting equation (6.3.7) into (6.3.8), it follows that

rr(k) Ap(k >)

ak - - pck->> Ap(k-0

aH(x(k) +X A p(R
)
)

A
- 0 yields:

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)

(6.3.9)
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Once the values of ak and A A are obtained, equation (6.3.4) gives a new approximation

t o {x} .

Equations (6.3.6) and (6.3.9) are not the best in terms of calculation time. They may

however be transformed into other forms. In fact, as shown by Axelsson (1994), the

above procedure for constructing {x}(A+1 ) and {p}(k) ensures that

(1.(A+1), r(i)=0 (j=0, 1,2...k), (6.3.10)
^ i

fr(,^+i), p(i))=0 (j=0, 1,2...k), (6.3.11)
t

(p(k+f),Ap(j)1=0 (j=0, 1,2,...k). (6.3.12)
^ 1

Using these equations, the alternative formulae

l r(k
)' r(A) )1̂ k -

t

rp(k) Ap(k)

and

(k) (k)
^ak = lr

(r(k_1),r(k_1)\

(6 . 3 . 13)

( 6 . 3 . 14)

may be derived. Equations (6.3.13) and (6.3.14) are more effective than equations

(6 . 3 . 6) and (6 . 3 . 9) because in the former case, the evaluation of the inner

products (r(k), Ap(k-`) )
is avoided, and also the numerators are equal.

Another issue to be addressed concerns the situation where {p}(k) maybe zero, and

hence A k could not be determined by (6.3.13). However, it can be shown that this case

will never happen in practice. Actually, using equations (6.3.7) and ( 6.3.11), one can

obtain:
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l
(r(x) ' n(k )

Hr (ti) ' r(k ) l +a " (Y(x) ' p(R i)1 _ (r(A),Y(A)I
1 ^^

(6.3.15)

From this equation, it is clear that NO = 0 implies that (r(k )
, t' (0) = 0, which in turn

implies that {r}") = {B}-[A]{x}(A) = 0. Thus, a zero searching direction occurs only

when the exact solution is obtained, but by then the iteration procedure would have been

stopped.

6.3.2 Iterative algorithm based on the conjugate gradient method

In a computer code, the above minimisation procedure can be realised by the

following algorithm. Supposing that an arbitrary initial approximation {x}Mand

tolerance error E are given, the algorithm can be written as:

Algorithm 1:

{r}coy _ {B} _ [A]{x}coy; {p}coy = {r}coy; So _ (r(o),,.(o)), ;^ = so
l p (0), Ap coy 1
l 1

I { x}( k)

_ Jx
J
l (k-I) + a__

t

f

p}

(k - 1)

t ••x

[max({Ir}(k1) < ENo
S

a
r(k) , r^k^^k

k

l

ak =
8k_, STOP

R-Pi
(k)

Irl
'k)

k

Y(P
A k ( k )

, si
A
r
n (k )

*45k_, = 8k;
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(k) {k) {A} {k}
where r^ } _ [Ire I Ir2l Ir„ I ] . In this algorithm, none of the entries of [A]

changes during the procedure, and therefore it is only necessary to store the non-zero

entries, which saves on storage requirement significantly. It can be seen that almost

every matrix-vector multiplication is associated with the residual {r}, which is related to

the right hand side vector {B} . This means that if {B} includes two columns, the cost

for finding each corresponding solution may be almost equal. Compared with the direct

method of Section 6.3, the iterative procedure may be inferior in this case, if both

methods have roughly similar cost for the one-column problem.

The convergence properties of this algorithm depend upon the eigenvalue distribution

of the matrix [A] (see Bruaset, 1995). Specifically, the number of iterations needed for

a given E is determined by the `condition' of this matrix, which is defined as the ratio of

the maximum eigenvalue to the minimum eigenvalue for SPD matrix. Consequently, the

convergence properties may be improved by changing the eigenvalue distribution of [A].

This may be achieved by `preconditioning' the matrix [A].

6.3.3 Iterative algorithm based on the preconditioned conjugate gradient method

Preconditioning the matrix [A] means transforming the matrix into another, which

may possess a more favourable eigenvalue distribution. Let us introduce an arbitrary

non-singular matrix [C] and multiply the both sides of equation (6.1.1) by [C]-'. This

gives

(6.3.16)

If [C]-' is chosen approporately, the resulting preconditioned matrix [C]-'[A] may have

a good eigenvalue distribution. The method for choosing [C] will be discussed in

Section 6.4. Our attention here is focused on the application of Algorithm I to the new

system in equation (6.3.16). It has been shown that the above algorithm is established

on the basis of the SPD matrix . To ensure that [C]-'[A] is an SPD matrix, the matrix
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[C] is also required to be an SPD matrix (Axelsson, 1994). Applying Algorithm I to

[C] -'[Al and performing some necessary changes, the following algorithm is formed:

Algorithm II:

{r}coy = {B} -{A}{X}(o); { p}coy _ tc]-'{r}("; So = (,.co) p(o) ), ,^ = so
( p co > , Ap(o)1t 1

max({Irl} (k)
) < E

FYES

Fol
{g}(k) = {C}-^

STOP

3k (r 9

a =Sk
k

k-i

R-Pi (k) = jgj(k)
+ ak

jPj'k-1)

S
An (k )X k k ^ n ( k )

,tit,r

. Sk _ ' _ sk
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Compared with Algorithm I, almost all of the calculations in this algorithm are

identical except for the inclusion of an additional computation in each iteration, namely

{g}"' _[C]-^{r}^A}. It would appear that solving for {g}(A) is similar to solving an

problem, such as equation (6.1.1). However, if [C], to be able to chosen arbitrarily, has

the form [C] L][ L]^ , the solution for {g}(A
)
can be easily and effectively found by the

forward and backward substitution techniques described in equations (6.2.7) and (6.2.8).

It is evident that the effectiveness of the procedure largely depends on the form of [C] .

6.4 Preconditioner

When choosing [C], several issues must be considered in order to ensure that [C]

will accelerate the convergence without giving rise to a noticeable increase in CPU and

storage requirement. These include: (1) the resemblance between [C]-' and [A]; (2) the

cost of its construction; (3) the cost of computing (g)") = [C]-'{r}(k) and (4) the cost of

its storage. The first requirement is to ensure that the condition of [C]-'[A] is better than

that of [A]; the second and the third ones are concerned with the cost of applying the

preconditioner, which should require a little computational effort; finally with the fourth

issue, it is expected that the storage requirement of the preconditioner is less than, or at

least comparable to, that of [A]. Although the above four requirements may be in

conflict with each other, there are a large number of preconditioners which can

reasonably satisfy the requirements or at least some of them, Bruaset (1995) grouped

them into three families:

1) Preconditioner based on matrix splitting associated with basic iterative methods like

the Jacobi and SSOR (symmetric successive overrelaxation) methods.

2) Preconditioners based on incomplete factorisation (ILU)

3) Preconditioners based on approximation inversion

In the following, the two preconditioners, based on SSOR and the incomplete

factorisation, will be discussed.
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6. 4. 1 SSOR preconditioner

This preconditioner comes from the SSOR iterative method which can be described

in matrix form as

where [R] = [C] - [A] and the matrix [C] on the left hand side is defined by:

[C] = ([D] +,U[L])[D]-'([D] + I-t[L]T)

2 µ

( 6.4. 1 )

(6.4.2)

where µ is a constant called the relaxation coefficient; [D] is a diagonal matrix formed

by the diagonal entries of [A]; and [L], with its diagonal entries equal to zero, is the

lower-triangular part of [A].

What we are interested in here is not the procedure of equation (6.4.1) but the matrix

[C] defined in equation (6.4.2). This matrix is considered as a preconditioner and

possesses the following properties:

1) Its factors are triangular and therefore a system like [C]{g}(k) = {r}") can be

efficiently solved by backward and forward substitutions.

2) All of the elements in the factors are directly determined by those in [A], and

therefore it is not necessary to calculate and to store them. When solving the system

[C]{g }" ) ={r}'k) , the required entries are just taken from the corresponding

elements of [A] .

3) The [C] is always an SPD matrix whenever [A] is an SPD matrix, as proved by

Axelsson (1976) .

Adjusting the constant µ included in equation (6 . 4.2) may lead [C]-' [A] to have a

good condition . Generally, it should be in the range 0 < IL < 2. Axelsson (1976)

showed an optimal value based on the condition of [A], but it is not available in the

iteration process . The proper value of µ may be found by numerical tests.
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6.4.2 Preconditioner based on incomplete factorisation with modification

The preconditioner [C] constructed in this way was originally suggested by

Meijerink & van der Vorst (1977). Their method is based on a scheme similar to but

different from the Choleski factorisation method described in Section 6.2 above. As

mentioned there, the sparsity within the band of a matrix will be lost during the

factorisation. The fundamental idea of the incomplete factorisation method is to reject

all, or part, of those fill-in entries according to a chosen sparsity pattern. Thus the

factorisation becomes approximate, or incomplete. The resulting matrix in this way is

used as a preconditioner.

If the sparsity pattern is represented by a set of matrix indices (i, j), i :f- j , which

refer to non-zero entries, then the sparsity pattern of a symmetric matrix [A] is written

as:

PA = {(l , j), Q ^^ :P1- O, f :!^ l } (6 .4 .3 )

When using incomplete factorisation, the sparsity pattern for [C] can be specified

accordingly. Once the sparsity pattern is given, the incomplete factorisation is performed

as follows:

Pi -Qii+

and

i-1

a,, Y, tik lkj ^l>>^ E P,
t;^ = k-i

0 P,

lei tii /pi (j =1,2... i -1);

-I
P r =air - Y, t,k Tik

k = 1

for i = 2,3,. • • n. The matrix [C] is then expressed in the form:

[C] = VIAILI',

(6 .4 .4)

(6.4.5)

(6.4.6)

(6.4.7)

(6.4.8)
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with [L] _ (1;^) and [A] = diag(P, Pz,...PJ

It can be seen that the procedure described by equations (6.4.4) to (6.4.7) is similar

to that described by equations (6.2.3) to (6.2.5). The only difference is that all the

entries with (i, j) iZ P, have been set to be zero here. Bearing in mind that there is a

large number of zero entries in the half bandwidth of the matrix [A], one can understand

that this restriction leads the cost of the incomplete factorisation method to be

dramatically smaller than that of the full factorisation method in Section 6.2, if Pc = PA

The preconditioner matrix [C] in equation (6.4.8) has the following properties:

1) It enables equations like [C]Jr}(" = {g}(A) to be solved efficiently by backward and

forward substitution.

2) Its elements on the non-zero set Pc are equal to those of [A], i.e. c;^ = a;^ for

(i, j) E Pc. This can be seen from equation (6.4.6) above.

3) If Pc includes all the indices in the band of [A], then [C] = [A]; if Pc just includes

the diagonal entries of [A] ,then [C] = diag(a,,,a22,a;;,*• •Cl n , ) . Any other choice of

Pc in between leads to different approximations of [C] to [A]. It is obvious that the

more the elements included in P, the faster the associated PCG iterative method will

converge but also the more it costs to construct and store [C]. A common choice is

Pc = PA • This is a reasonable compromise between the cost and convergence rate.

This choice will be used in the work here.

In the complete factorisation of Section 6.2, the diagonal element p; is always

positive at all stages, if the matrix [A] is SPD. However, in the case of the incomplete

factorisation, the positive diagonal entries A are not guaranteed even when [A] is an

SPD matrix. If p; _< 0 , the PCG method would fail because [C]-'[A] may not be an

SPD matrix. On the other hand, even when p; > 0 is achieved in some cases, [C]-'[A]

may not necessarily have the best condition for the given sparsity pattern.

To avoid the difficulty of p; <_ 0 and also to adjust [C] for a given sparsity pattern,

Manteuffel (1980) suggested a shifted incomplete factorisation. In his method, the
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matrix [A] is replaced by a new matrix [A]+ 6[D], where 8 is a constant and

[D]=diag(a,1,a22,a33,•••a,,,,). Then the above incomplete factorisation procedure is

applied to [A]+ O[D] to give the corresponding matrix [C]. It is apparent that the

condition of the resulting matrix [C]-'[A] depends on the coefficient 0. For a particular

value of 0 [C]-'[A] may have a better condition than for any other values. This

particular value is called the `best value'. Manteuffel (1980) also investigated the

influence of the coefficient 0 and showed that the best value of 0 is in the range of

(00). where 8, is the minimum value of 0 necessary to guarantee that all of the

diagonal entries are positive, and 9„ (> 0) is the value of 0, above which the condition

of [C]-'[A] is worse than [A]. The value 8, may be either positive or negative.

Unfortunately, neither 8, nor 0, let alone the best value of 0, can be easily obtained

without numerical tests.
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6.5 Investigation on the influence of µ and 0

In the above sections, two preconditioners were described. In each one of them, a

constant is included. The constants affect the condition of [C]-'[A] and therefore the

convergence rate of the PCG method. In this section, the influence of the constants will

be investigated by numerical tests.

During the tests, the condition of [C]-I [A] is not of direct concern, although the

changes in the values of µ and 0 directly affect the condition. Instead, attention is

focused on the convergence rate of the PCG. The reasons for this are two-fold: firstly

the eigenvalues of [C]-'[A] cannot be easily obtained and secondly the ultimate purpose

of the investigation is to try to find good values for µ or 0 which can give good

convergent properties for the PCG method.

The numerical tests are based on the impulsive wavemaker problem already used in

Chapter 5. The mesh will be generated in the same way as there, but the dimensions of

the tank and the velocity of the wave maker may vary accordingly here. The test cases

are listed in Table 6.5.1 which includes cases with different mesh sizes ( Cases A, B and

C), with different number of nodes but the same mesh size (Cases B and D) and with

different velocity (Cases D to G).

Table 6.5.1 Test cases

Case ui sa B/d [./d Number of nodes

A 1.0 0.5 4 22275

B 1.0 0.5 4 5187

C 1.0 0.5 4 3731

D 1.0 0.5 10 13031

E 0.5 0.5 10 13031

F 1.5 0.5 10 13031

G 2.0 0.5' 10 13031
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All of the cases are first solved using an incomplete factorisation matrix as a

preconditioner. The value of 0 is taken in the range (-0.18, 0). For each value, the

error defined by error(k) =max({Irl}(A)) via the number of iteration can be obtained.

The convergent surfaces are then plotted as shown in the left columns of Figure 6.5.1 to

Figure 6.5.7, in which a = -0 is used to avoid the negative symbol. From these results,

one can also plot the corresponding curves of the number of iteration against a for a

fixed error, e.g. error < 10-8, as shown in the right columns of Figure 6.5.1 to Figure

6.5.7. It can be seen from these figures that although the convergent property may be

different for different cases, the best values of a or 0, at which the number of

iterations is a minimum, are almost the same, i.e. a = -B = 0.12, for the given desired

accuracy. It can also be seen that the convergent rate is not very sensitive to these

values, that is in a quite wide range of a c (0,0.16), the iteration number required for

obtaining the desired accuracy does not change significantly. However, when a > 0.16,

the convergent rate may be dramatically slow, as also shown in these figures. According

to these tests, it is recommended that 0 should be taken in the range (-0.12, 0) for the

problem described in this work.

All of the cases are now solved again using the SSOR preconditioner. Although

similar convergent surfaces to those in Figure 6.5.1 and Figure 6.5.7 can also be plotted,

the results presented in Figure 6.5.8 are only for the iteration numbers against it with

error< 10-8. These figures show that the iteration number required for a given error may

be quite sensitive to the choice for value It in some cases, such as in Case D or Case

G. However, the best value of µ is almost the same for all cases, as with 0 in the

incomplete factorisation preconditioner. This value seems to be estimated as It = 1.618.

Comparing Figure 6.5.8 with those of the corresponding cases in the right columns of

Figure 6.5.1 to 6.5.7, it is found that the iteration numbers corresponding to the best

value of µ or 0 in turn are roughly same, although the number for SSOR

preconditioner appears to be somewhat larger in all of the cases.
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6.6 Comparison between direct and iterative methods

The comparison is carried out using numeral tests. The test model is once more the

impulsive wave maker in a rectangular tank. The tank may have different dimensions,

that is, L / d = 5, 10 and B l d = 0.5, 1.0, 15, 3.0. The variation of width is used in

order to give different half bandwidths of the matrix [A]. The mesh is generated in a

similar way to that mentioned in the previous section. The velocity of the wave maker is

specified as U / gd = 1.0. When the direct method is used, the numbering system of

the nodes is optimised to achieve minimum total half bandwidth, which is the sum of the

half band width over all rows. When iterative methods are used, the starting

approximation of the solution is taken as zero, and the control error tolerance is taken as

being less than 10-8. The constants, µ or 0, are chosen according to the analysis of

the previous section. Attention is paid to the CPU time spent to solve the various cases,

using the three different methods. The CPU time is collected based on the total

calculation including the mesh generation, the formulation of the matrix [A], the velocity

evaluation, the solution of the algebraic equations and so on. However in the direct

method, the CPU time spent on the optimisation of the numbering system is not included

because it usually needs to be performed once only for practical simulations if the same

mesh structure is used at every time step. The results obtained are summarised in Table

6.6.1. In each case, the CUP time has been divided by the CPU time required by the

iterative method with the SSOR preconditioner. The half bandwidth 91, relevant to the

direct method, in the table is the average value, which is obtained by dividing the total

half bandwidth by the number of the nodes.

The results in this table show that the CPU time for the direct method is roughly

proportional to SR2, comparing the c3 with c12, in which the number of the nodes is

roughly the same. Furthermore, when the average half bandwidth is quite small, say less

than 120, the CPU time spent by the direct method is comparable to that spent by the

two iterative methods. However, when the half bandwidth is large, for instance 340, the

CPU time of the direct method is considerably (even ten times) more than that of the

iterative methods. The comparison of the direct method and the iterative methods is also

made for a problem with a circular cylinder subject to the harmonic wave generated by

the wave maker. The CPU time of the direct method is also found to be over ten times
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more than that of the iterative methods, when the average half bandwidth is quite large

(Ma, Wu & Eatock Taylor, 1997). All of these investigations indicate that the direct

method should not be the first choice except for cases where the half bandwidth is quite

small, even when two columns are included in right hand side of equation 6.1.1.

Table 6.6.1 Comparison of CPU time required by direct and iterative methods

Case definition Number Half Direct ILU SSOR

Case Dimension(L X B) of Nodes Bandwidth Method --CG --CG

C 1 I X 0.5 1547 99 1.63 1.03 1.0 (0.32sec)

c2 3 X 0.5 4879 124 2.43 1.15 1.0 (0.79sec)

c3 5 X 0.5 7973 123 2.24 1.17 1.0 (1.39sec)

c4 10 X 0.5 15827 123 1.97 1.04 1.0 (3.39sec)

c5 15 X 0.5 23919 124 1.97 0.98 1.0 (5.50sec)

c6 20 X 0.5 31773 124 1.94 0.91 1.0 (7.69sec)

c7 30X0.5 47719 123 1.96 0.90 1.0 (12.52sec)

c8 1 X 1.5 4199 242 8.04 1.01 1.0 (0.69sec)

c9 3 X 1.5 13243 358 16.51 1.22 1.0 (2.26sec)

CIO 5X 1.5 21641 347 12.59 1.24 1.0 (4.45sec)

C11 10 X 1.5 42959 -------- -------- 1.09 1.0 (11.04sec)

c12 1 X 3 7735 235 7.63 1.10 1.0 (1.31 sec)

c13 2X3 16065 534 36.49 1.15 1.0 (2.99sec)

c14 3X3 24395 -------- -------- 1.20 1.0 (S.OOsec)

c15 5X3 39865 -------- -------- 1.13 1.0 (9.27sec)

c16 8X3 63665 -------- -------- 1.14 1.0 (17.65sec)

The results in Table 6.6.1 above seem to suggest that the CPU required by the two

iterative methods is similar in all cases, although a slight difference exits. Therefore, as

113



regards the CPU time, either of them can be chosen to solve the problems. However,

when the incomplete factorisation conditioner is used, the storage of matrix [C] is

required whereas this requirement is not necessary when using the SSOR preconditioner.

Therefore preference may be given to the iterative method with the SSOR preconditioner

when storage requirement is taken into account.

When the comparison between the direct method and the iterative method was made,

the control error tolerance of less than 10-$ for the iterative method was imposed. If a

smaller error were specified, the CPU time required by the iterative methods would be

larger. However, it should be noticed that a smaller error does not seem to be necessary

according to the comparison of numerical results with analytical solution, as shown in

Chapter 5 where the numerical results were obtained using the iterative method.

It should also be noticed that in the time marching process, the starting

approximation solution at each step is actually estimated from the solution of the

previous steps. This may enable the iterative method to be more efficient. It is clear,

however, that the number of the iteration required at each step depends on the length of

the time step. The smaller the time step, the smaller the iterative number. Therefore,

this factor needs to be taken into account when choosing the length of the time step.

Unless mentioned otherwise, the results presented in this thesis are all obtained by the

iteration method with an SSOR preconditioner.
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7. TRANSIENT SLOSHING WAVES IN A TANK

7.1 Introduction

We will now move on to the validation and application of our methodo logy described

in previous chapters. Two different types of wave problem are considered: transient

sloshing waves in a tank and transient waves generated by a wave maker in a channel,

with or without a body. The first type of the problem is considered in this chapter.

Sloshing waves may be caused by tank motion, by a disturbance (initial wave

elevation, velocity potential and so on) on the free surface, or by both. Sloshing waves

are associated with various engineering problems, such as liquid oscillations of large

storage tanks caused by earthquakes, fuel motions in aircrafts and spacecrafts, liquid

motions in containers and water flow on ship decks. The loads produced by the wave

motion can cause structural damage and loss of the motion stability of solid objects, such

as ships.

There has been a considerable amount of work on wave sloshing. For the case of

small motion, Abramson (1966) used linear theory, and Solaas & Faltinsen (1997)

adopted perturbation theory. For large motion, Jones & Hulme (1987), Faltinsen(1978),

Okamoto & Kawahara (1990), Chen, Haroun & Liu (1996) and Armenio & La Rocca

(1996) used various numerical methods for two dimensional problems. For three

dimensional problems, Huang and Hsiung (1996) used the shallow water equations for

the flow on a ship deck.

This body of work has significantly advanced our knowledge of sloshing waves in a

tank. It is now well understood that in addition to normal standing waves, other wave

forms, such as travelling waves and bores, can occur. Under certain conditions, high

pressure and impact forces will be created on the side walls of the tank. This can have

several serious implications, for example: (1) high pressures may create excessive stress

and deformation within the walls, so that structural failure may become more likely; and

(2) for a structure such as a ship, the high pressure may create an overturning moment in

roll, which could be large enough to cause capsize. The publications mentioned above

are either based on a two dimensional method or a shallow water formulation. The
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answers they offer to these concerns are applicable only when their adopted assumptions

are valid.

The methodology developed in this work provides another alternative to explore this

kind of problem. Fully nonlinear theory is used. No restriction is imposed on water

depth, and the tank can be three dimensional. It tends to provide some new

understanding of the phenomenon associated with sloshing waves.

Although our method can be applied to a tank of an arbitrary shape and undergoing

any excitation , the results presented in this chapter are for a circular tank with an initial

free surface disturbance (wave elevation and/or velocity potential) and for a rectangular

tank undergoing translational motion. The method and code will be first validated. It is

then used to show how the waves behave in a practical three dimensional tank.

Numerical results have been compared with some analytical solutions, and extensive

investigations have been made, particularly for the case of sloshing waves generated by

the motion of a rectangular three dimensional tank. The cases with different geometry

and excitation are arranged as follows:

1) Standing waves in a circular tank with or without an inner cylinder, subjected to the

initial free surface disturbance are given in Section 7.2.

2) The force calculation on the inner cylinder for a particular initial free surface

disturbance is discussed in Section 7.3.

3) Waves in a rectangular tank subject to translational motions are presented in Section

7.4

7.2 Standing waves in a circular tank

The geometry of the tank is circular in this case, and there may also be a circular

vertical cylinder mounted in the centre. The water is initially still, and the wave elevation

and the potential value on the surface are specified. An important reason for considering

this problem is that we can find an analytical solution in the time domain, which can be

used to verify the numerical method directly.
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7.2.1 Analytical solution ofstanding wave in a circular tank.

Various analytical solutions are available for first and second order problems in the

frequency domain, see for example, Hunt & Baddour(1980,1981). Far fewer are

available in the time domain. Among them are the cases of a two dimensional

wavemaker problem (Eatock Taylor, Wang & Wu 1994) and the case of a vertical

circular cylinder in the open sea (McIver 1994). However, both of these solutions are

fully linearised, i.e. they are valid only for small amplitude waves. Here the fully

nonlinear numerical method in the time domain needs to be validated and therefore

nonlinear effects are important. In this sub-section, the work of Wu and Eatock Taylor

(1994) is extended to three dimensions with a fluid domain bounded by cylinders. First

order and second order solutions will be derived by expanding the potentials into a series

of eigenfunctions.

Figure 7.2.1 Sketch of a circular tank

Consider the configuration in Figure 7.2.1, where the radii of the inner and the outer

cylinders are Ro and R , respectively. Our analysis is restricted to the axisymmetric

problem, although the developed method can be extended to more general cases. The

velocity potential, therefore, can be written as:

0 = 0(r, z, t),

where (r, z) represents a cylindrical coordinate system with the origin being at the centre

of the tank, z pointing upwards and z = 0 corresponding to the mean free surface, as

shown in Figure 7.2.1.
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In the system, the equations and boundary conditions for a Cartesian coordinate

system mentioned in Chapter 3 can be rewritten as follows:

I d (aOl a2^
-oY arr ar)+ dzz

a^ = odr

a^ = o
az

in the fluid domain,

r=Roandr=R,

z= -d,

z

aZ^ + ^
LO + a°O + 1v^ ^ v^v^^2 = o

dt dz opt 2

1 (LO 1 z
^=-g ^+2IO^I

Z=^,

(7.2.1)

(7.2.2)

(7.2.3)

(7.2.4)

(7.2.5)

If there is no inner cylinder, equation (7.2.2) is applied only on r=R. Equations (3.2.5)

and (3.2.6) have been combined to give the free surface boundary condition in equation

(7.2.4), which is more convenient for the perturbation analysis. The initial condition is

specified as:

(7.2.6)

The above equations correspond to the fully nonlinear problem. A solution can be

found based on the perturbation theory. Although more general cases may be

considered, here T(r) and Vi(r) in equation (7.2.6) are assumed to be determined by

the parameter of first order, denoted by (p, and yi,. The perturbation theory, up to the

second order of wave slope, gives

0 _ 01 + 0z +... ,

^ _ ^1 + ^z+...,

(7 .2 . 7)

(7.2.8)

where 0, and C, are the potential and wave elevation of the first order, respectively,

being proportional to the wave slope, while 02 and ^Z are the counterparts of the second
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order, being proportional to the square of the wave slope. Substituting the two

expressions into equations (7.2.4) and (7.2.6), and rearranging the results in terms of the

order of the wave slope, the equations for 01 , 02 , ^, and ^2 can be obtained:

aZo, ao, =oaZ +g dz.

1 aO,
_-g a

0, (r,0,0) = gyp, (r)

and

at^2 + g

dO2

Z -
q(r, r) on z=0,

1 aO2 1 a 2 0, +lo^l, Z
^z g at LO

- g CI far 2 1,0'

z -O ,r=O

where

d ( d 201 a0, a Z
Z-o

(7.2.9)

(7.2.10)

(7.2.11)

(7 .2. 12)

(7.2.13)

(7 .2 . 14)

(7.2.15)

Both 0 , and 02 also satisfy equations (7.2.1) to (7.2.3).

The solution for the first order potential 0 , (r, t) can be found by the variable

separation method which leads to:

G (') (t) + i G (1) (t)Z. (r)fm (z)
M= 1

on z=0,

on z=0,

(7 . 2 . 16)
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where Z(r) and f,,, (z) are defined by:

Znt (r) ' JO (am r) + BIII YO (an, r)

cosh(a (z + d))

f171
(
Z
)

cosh(an,d )

(7 . 2 .1 7)

(7.2.18)

and J,, and Y„ (n=0,1,..,) are Bessel functions of the first and the second kind of order

n, respectively. The coefficients a,,, and B,,, in equation (7.2.17) are obtained from the

boundary conditions on the surfaces of the cylinders. This leads to:

Bm _ - ^

Y (a Ro

and a,,, are the solutions of

(7.2.19)

(7.2.20)

B,,, in equation (7.2.19) should be taken as zero when there is no inner cylinder.

Substituting equation (7.2.16) into (7.2.9), it follows that:

01 =aat+bo+ j (a,,,sinco„,t+bm COSC)mf^Z.(r)f.(z),
n1-1

where

CO n^ = g a,, tanha„,d.

(7.2.21)

( ! . 2, . 22

The set of functions {l, Z,,, Im =1,2,3, • • •} are orthogonal and complete (with

weighting function r) within Ro < r _< R (see MacCluer, 1994), and therefore any

continuous functions tp, (r) and t/f , (r) can be expanded in terms of these functions.

Upon doing this and substituting (7.2.21) into the initial condition in equation (7.2.11),

the coefficients, am and b,,,, are obtained

2,g (' R

ao = - Ra -R 2 JRV, (r)dr
0

(7.2.23)
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am = -

g

rn /f YZfYl1 (Y) Z l^IY nCY ,R"

2 R
bo - Rz _ R z JRryi (r)dr

0

bm = f ^PI ( Y )zrri (Y )CIY/ JI YZ,ZCtY .
^^ R^

(7.2.24)

(7.2.25)

(7.2.26)

The coefficient ao is related to the mean position of the initial free surface and so it is

made zero due to the choice of the coordinate system. Without loosing generality, T, (r)

can be chosen in such a way that bo is also zero. Under these conditions the wave

elevation can be written as:

O)n, (Rnt cos o). t - bm sin o) t)Z (r).

g m=1

(7 . 2 . 27)

Substituting the first order solutions in equations (7.2.21) and (7.2.27) into (7.2.15),

the term on the right-hand side of equation (7.2.12) can be written as:

q(r, t) = 1jj [0,n„n (a an +bn,bn ) S1I1(COnt - LOn )t
2 m=1 n.l

+ l mn (Cl mCl n - UnIUn) $lll ( o)nn +(on)t

+I'mn (bman - Clmbn ) COS(CVm - (. )n ) t

+ 1rmn (bmQn +Rm17n ) COS( C)m + (Dn )r ]

where

Pmn -Can (am - K. }Wmn + ((0- - wn )\amanv ntn + KmKnwmn )

Y
mn -

Co
n (am Km )Wmn - (CD. + cp. )\amanU. + KmKnWm^ ! s

W,„n = Wmn (r) = Zm (r)Zn (r) ,

U,,,,, = Umn (r) = 1J, (an, r) + B,,, Y, (am r)IJ, (an r) + BnY, (an r)] ,

( 7 .2 . 28)

(7 .2 .29 )

(7.2.30)

(7.2.31)

(7 .2 . 32)
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and

O)
2.

K,,. _ -. (7.2.33)

The expression for the second order wave elevation in equation (7.2.13) can be

divided into two parts, i.e.

where

a 2
0,

1 z
^2 1

9 aZat + 2 ^°^^ ^
jZ=o

and

1 a¢2
^z2 g

dt Z=o

(7.2.34)

(7.2.35)

(7.2.36)

The first part can be calculated directly using the first order solution given above.

Substituting equations (7.2.21) and (7.2.27) into (7.2.35), one can obtain:

1 Ir

2̂1 - 2 (a b,, - ^7Qn )5111 ( C.)n, -0),, ) t

g m= 1 n=1

+&n (ab,, +bn, Cl n ) Slll(a)n, +o),, ) t

+Ynrn (bmbn + QmRn )COS(CUm - (V„ )t

+kn (U
.,[/.

- Cl n, Q n ) CoS(o-)m + (.fin ) t

where

= 2 (aman v mn + K.,Kn YYmn ) + Ong n KnW.,.

z (amanv mn +KmKnWmn ^- g n Knj'^'ntn

(7 . 2 . 37)

(7.2.38)

(7.2.39)

To determine the second part of the second order wave elevation, one has to find the

second order potential which satisfies equation (7.2.1) to (7.2.3) plus (7.2.12) and
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(7.2.14). An expression for the second order potential can be constructed in a similar

way to the first order case as follows:

(7.2.40)

where Z(r) and f(z) have been defined in equations (7.2.17) and (7.2.18)

respectively. The initial conditions for 02 are then written as:

02(r,0,0) _
:L i K; 10j

a;bjWa(r),
t=i /=t 9

aOZ (r,0,0)

(7.2.41)

(7.2.42)

Inserting equation (7.2.40) into (7.2.12) leads to the following equation governing

G(z) .
m

G (2)" rtl '^" ^ [G 2)"n(t) -^ ^nG Z) (4- \r/ - q\r^ t/
`^ m=1

( 7 . 2 .43)

where cohas been defined in equation (7.2.22). Using the expansion of q(r,t) in

equation (7.2.28), a special solution g(t) of equation (7.2.43) can be found:

1 Eo(l,.l)(Qiai -bib;)
go(t)---^^ 2 sin(co; +(vj)t

2 j_1 i=1 (Ni +
Wi 1

Eo(i, j)(b;aj +a;bi)
+ 2 cos(w; + co; )t

i1

Doi, j)(a;aj+b;bj)
Z sin(c); - wJ )t

i=1 j=1
jW (mi Ojj)

Doi, j)(b;aj -a;b;)

(Coi - (0
1

(7.2.44)
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D (i, j)(aiaj + bibj)

E„(l ,J)(u;Q; - b,G;
+ sin(c0; +CVj )t

2 (CAS -1- CUB )^

I D(i, j)lb;aj -a;b;l

2 j=1 j=j CO,2 _ (O)i _ (0j
cos(c); -co+ 2 j )t

E(i°j)lbiaj +aibil
+ 2 cos(cv; +coj)t

z (

0

^ + ^1 J

where

2 R
Do(i,J)-

R 2 -R Z

r

0

2 R
J^ R z - R z JRo rYr^ (r)dr ,

0

D.
(i,

j)
= f^^^; (r)Z (r)dr/fROZmdr (m > 0),

En. (t, j) =
R

JRor?'r; (r)Z,„ (r)dr

f

R
rZ„^,dr (m>0).
0

(m > 0)

The general solution of Gm(2) can therefore be written as:

GO(2) = go (t) + a(o2)t + bo2),

Gm2)
=

gm\Z / + Q
m2)

sin COmt + ^jm2) COS^mt (M > Q) .

Using the initial conditions in equations (7.2.41) and (7.2.42) yields:

b.(2) [P0 (i, j)aibj (0) (m ^t 0),
;., ;_1

aoz^ =-So(0) -
2
1 ,j[ Xo(i,.l)(b;bj +a;ai) +Ya(i,.l)(brb; -aia;)

r=^ i=^

(7 . 2 . 45)

(7 .2 .46 )

(7 .2 . 47)

(7 . 2 .48 )

(7 .2 . 49)

(7.2.50)

(7.2.51)

(7.2.52)

(7 .2 .53)
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am
_

(0

X (i,j)(bib, +ajaj)
III m i = ,

J =
1

+ Y,,. (i, j)(b;bj - a;aj ) ] (m > 0),

where

2 R
X°(c'A RZ-Roz Jaµ'j Wdr,

2 RY

n

X nt (l, J ) J Yyij \ /"/Zm ( P)ClY/J rZIZ ^Y^C^Y
Ro Ro

(In > 0) ,

'R R
Y.1)= JrA,;W Z„, (r)dr/f rZ;(r)dr

[^ G

(m > 0),

2 R K; wj
Po(i,l)-R2-RZ^^ dr

g

R K^ CA -
P

j) = f^r ' Zm (r)dr
IfPR

rZ^ (r)dr
S

(m> 0).

(7.2.54)

(7.2.55)

(7.2.56)

(7 . 2 . 57)

(7.2.58)

The second part of second order wave elevation in equation (7.2.34) can then be

obtained by substituting (7.2.40) into (7.2.36)

^zz = -1l[SnI `t) 'F CUm Qm2)COSCUm t - wMb^2) sin mmtk», (r)
g m= 1

-g (a0(2) + go(t).

7.2.2 Comparison between numerical results and analytical solution

(7.2.59)

The above analytical solution will be used as a benchmark to validate the numerical

results. For this purpose, only a simple case with an initial disturbance

(p, = 0 and yf, = aZk (r) (k=1 is used in the following) is considered, where a is the

amplitude. The analytical expression for the corresponding wave elevation is:

^, = aZk (r) cos wk t
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ga2

X21 w(µkk cos2coA r)
A

g
Q Z

Eo k,k
^22 = wA 4^A (cos2wAr - I)+ 2 X,)(k,k)- 2 Yo(k,k)

o) -E (k k^
Z (r) cos 2o), i

m C0k2

+^ co.Er^^ (k , k) 1 1.t
L^ a)z + 2 X(k, k) 2 Y (k, k) (r) cos (0,,,

(7.2.61)

(7.2.62)

The sum of ^,, ^Z') and q(21 gives the total wave elevation up to the second order at any

time:

Figure 7.2.2 Mesh for the circular tank domain

(7.2.63)

In the numerical simulation for this case, the fluid domain is discretised as shown in

Figure 7.2.2. The mesh here is generated in a similar way to that in Chapter 5.

However, the two sets of planes perpendicular to the bottom are now radial vertical
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planes (M,), and concentric circular cylinder surfaces (Mjwhose common centre

coincides with that of the tank. Here N is again used to denote the number of mesh

surfaces in the horizontal direction.

It should be noted that in this and Section 7.3 the algebraic system is solved by the

direct method, and the recovery and smooth techniques in Chapter 5 are not applied.

The reasons are that: (1) these results are obtained in the early stage of this study, when

the iterative method in Chapter 6 and the recovery (smooth) techniques in Chapter 5 had

not yet been investigated and adopted; (2) the main aim here is to validate the numerical

method, instead of seeking a way to save computer resources.

1

0 . 5

0

-0 . 5

-1

t

Figure 7.2.3 Wave elevation history at the centre of tank
without the inner cylinder (Rld = 2.0, a / d = 0.03 )

Firstly the influence of the mesh size and time step is investigated. The tank has a

scaled radius, Rld = 2.0, without the inner cylinder. The amplitude of the initial free

surface elevation is taken as a = 0.03d . Figure 7.2.3 presents the comparison of wave

history at the centre of the tank between the numerical results and the analytical solution

given in equation (7.2.63). Here r, as in following figures, is nondimensional time and

defined by z = t
JdW

. The numerical results corresponding to different parameters used

to discretise the space and the time are denoted by cl, c2 and c3:
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c l: (Ac=0.03, N= 10, M1=12, M2 = 10)

c2: (AT= 0.05, N= 15, M1=24, MZ =16)

c3: (Oz = 0.03, N = 15, M, = 24, M2 =16).

It can be seen from Figure 7.2.3 that the difference between the analytical and the

numerical results is invisible in case c3. Figure 7.2.4, for the case with an inner cylinder

of radius Ro = 0.4d in the same tank with a scaled amplitude (a / d) equal to 0.05, plots

similar results on the surface of the inner cylinder. In this figure, c4, c5 and c6 are

defined by:

c4: (Oz=0.02, N = 10, M, =16, M2 = 10)

c5: (Oz = 0.03, N = 15, M, = 32, M2 = 16)

c6: (Oz = 0.02, N = 15, M, = 32, M2 = 16).

0 . 5

0

-0 . 5

T

Figure 7.2.4 Wave elevation history on the surface of the inner cylinder
(Rld=2.0,RoId=0.4, a / d = 0.05)

It is shown that a smaller mesh size and a smaller time step

(Az = 0.02, N = 15, M1 = 32 and M2 =16) than the case in Figure (7.2.3) are needed
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to obtain similar agreement with analytical results. The difference between the two cases

is that they have different values of a,,,R solved from equation (7.2.20),

specifically, a,R = 3.832 for the first case while a, R = 4.236 for the second case. The

higher the value, the higher the frequency of oscillation. The different convergent

properties of the two cases illustrate that the higher values of the frequency and the wave

slope may require a finer mesh and a smaller time step when the numerical simulation is

employed.

( /a

• 1st order

- - - 1st+2nd order

- - numerical

^.....•.l

0.5

r

y

0 5 10 15
T

C /a

Figure 7.2.5 Comparison of wave elevation history at the centre of the tank
with the analytical solution (Rld = 2.0, a / d = 0.15)

• 1st order

- • - lst+2nd order

- - numerical

0.5

0 ^ .%

0 5 10 15

Figure 7.2.6 Comparison of wave elevation history on the surface of the inner cylinder

with the analytical solution (R/d = 2.0, Ro Id = 0.4, a / d = 0.2 )
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To check effects of nonlinearity, the above configurations are further considered with

larger initial amplitudes in Figures 7.2.5 and 7.2.6, respectively. In order to illustrate

how important the nonlinear effects are in these cases, the corresponding linear (first

order) and nonlinear (up to second order) analytical results are plotted separately.

Figure 7.2.5 is for the case without the inner cylinder, and Figure 7.2.6 with the cylinder.

These two figures show that the fully nonlinear numerical solutions have some

discrepancies with the linear solution but the difference is evidently reduced when the

second order correction is included.

7.3 Force cal culat ion on a inner cylinder

It should be noted that the force has not been considered in the above cases because

the total force on the cylinder is equal to zero. In order to consider a case where the

force is not zero, the initial free surface disturbance in this section is specified as:

^(x, y,0) = a e-k^lxl+l `'I' sin kx. (7.3.1 )

Two methods, direct and integrated force methods, mentioned in Chapter 4 will be

employed to evaluate the force. Although an analytical solution is not sought for this

case, the numerical results of the force obtained by the two different methods can be

compared.

f

1

0.5

0

-0.5

-1

Figure 7.3.1 Force on the inner cylinder (Ro Id = 0.2, RIRo = 20, kd = 25, a / d = 0.1)
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A similar configuration is considered to that of the previous section with the

dimensions of the cylinder and the tank here being taken as Rod = 0.2 and RIRo = 20,

respectively. The amplitude a in equation (7.3.1) is chosen as a / d = 0.1 and the

parameter k taken as kd = 25. The mesh for the numerical analysis is similar to that in

Figure 7.2.2 with N = 15, M, = 320, M2 = 16.

Figure 7.3.1 gives the force in the x-direction on the inner cylinder mounted on the

tank bottom obtained with the two methods. Here f is defined by f = FxlpgaRo .

The evaluation associated with the integrated method is obtained by equation (4.1.8).

Excellent agreement between results obtained by the two methods can be found.

A truncated inner circular cylinder with different draft is further considered. The

radii of the cylinder and the tank are the same as those in Figure 7.3.1 while the draft of

the inner cylinder is taken as 0.7d and 0.4d, respectively. Once again, the results for

the force calculated by two methods are graphically indistinguishable. Owing to this

reason, only the force by the direct method is presented in Figure 7.3.2.

f

1

0.5

0

-0.5

-1

Figure 7.3.2 Force history on the inner cylinder with different drafts
(Rod =0.2,R/Ro =20,kd =25, a/d =0.1)
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7.4 Sloshing wave generated by the translational motion of a tank

The geometry in this section is changed to a rectangular tank. The fluid flow is

induced by the translational motion of the tank. Compared with the problem in the

previous two sections, the fluid velocity on the rigid boundary is not zero, which makes

the problem somewhat different. As discussed in section 3.2.2, Semi-Eulerian or

Lagrangian notation of the free surface conditions may be used in the numerical method.

In this section, the former will be employed to avoid the interpolation on the free surface.

From now on, the algebraic system will be solved by the iterative method discussed in

Chapter 6, and the recovery techniques in Chapter 5 are used for all the following results.

7.4.1 Governing equations

A Cartesian coordinate system fixed on the tank is established as shown in Figure

7.4.1. The origin of the system has been chosen at the centre of the undisturbed free

surface. Here xyz is used to denote the moving coordinate system for simplicity

without confusion with Chapter 3 where Xb Yb Zb denotes the moving system. The

displacements of the tank due to its translational motion in the directions of the Cartesian

axes are defined as:

(7 .4 . 1 )

The corresponding governing equations in the moving system have been given in

section 3.4 for the case with the general motion of a body. They can be used to give the

governing equations of the fluid flow induced by the translational motion considered in

this section after the angular velocity is taken as zero in equations (3.4.11) and (3.4.12).

That is:

O20= 0 in the domain fluid (7.4.2)
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Z

Figure 7.4.1 The coordinate system

= U • n on the walls of the tank (7.4.3)

a^ + ^
do dx
^̂

)LC
+
(LO

cry

d^,

cry

a^

c)z

ao dz,
= 0 on the free surface (7.4.4)

dt

60 ao a^ _ vo • ` + 1̂ o • Vo+ g(^+zj= 0 on the free surface (7.4.5 )
St az at dt 2

dr
where U = dt is the velocity of the tank and n is a normal vector out of fluid, and the

free surface elevation ^(x, Y, t) is measured in the moving system. Other parameters in

the above equations have already been given in Chapter 3. They are not repeated here.

The velocity potential, 0, is now split as follows:

0 =^p+xU+yV+zW (7 .4 . 6)

where U , V and W are the components of U in x, y and z directions, respectively.

Substituting this equation into equations (7.4.3) to (7.4.5), it follows that:

OZ(p = 0 in the fluid domain (7.4.7)
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d(P = 0 on the side walls (7.4.8)
an

d^d^p dCate^+a^
^ aX ax ay

on the free surface (7 .4 . 9)

Sip acp a^ 1 dU dV dW
on the free surface

St az at 2 ^^ ^^^^
Xdt _y

dt -^ dt
(7 .4 . 10)

where the term c(t) =
1
2 JUJZ - gzc has been deleted from equation (7.4.10) because it is

independent of the spatial coordinates. The condition on the walls in equation (7.4.8)

becomes homogeneous. The kinematic condition becomes simpler but more terms are

introduced to the dynamic condition as shown in equations (7.4.9) and (7.4.10).

The tank is assumed to start from rest with 0 = 0 on free surface, implying the initial

conditions for ^p are given as:

T(x, y,0,0) = -xu(0) - yv(0)

4x, y,0) = 0.

(7 .4 . 11)

(7.4.12)

The pressure in the fluid can be obtained by using equations (7.4.6) and (3.4.13):

p app 1 dU dV dW
_ ^ +20^p • O^p+gz+xd

+y dt +Z dtp

7.4.2 Numerical results for surging motion

(7.4.13)

We consider a case in which the displacement of the tank is governed by

x, (t) = a sin(wt) , y, = 0 and zC = 0 , where a is the amplitude and co is the frequency.

The corresponding velocity is U = amcos(wt), and V = W = 0. This two-dimensional

case has been investigated by many people, e.g. Faltinsen (1978), Okamoto & Kawahara

(1990), Chen, Haroun & Liu (1996). Their results may be used here for comparison.

The dimensions of the tank are chosen as L l d = 2.0 and B l d = 0.2 , (the same as

those used in the experiment by Okamoto and Kawahara , 1990 ), where L, B are the

length and the width of the tank, respectively. A linearised solution for V can easily be

found from the results of Faltinsen (1978):
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(p = a^ ^C cos wt - (C + H"1 cos c) t1
cosh k„ (z + d)

sin k x (7.4. 1 4)

O
n .. ^ Z f ,.^

cosh k,,d n

where k =
2n+ 1 ^3 4 (-1)"

C = H" and cot = gk„ tanhk„d,. L L kz ^ z z It
,1 11

(which is the natural frequency). The dynamic pressure and the wave elevation can then

be obtained from:

a^ dU 1
P = -PS( & + X dr

^ _ 11i + X12

where

a
7j1 = - xC1)2 -I- j Cn LU S1ri ICn X sinCOC

g n.0

r7z = -a^ wn Cn + HZ sink„x sin w„ t .
g n=o w

Figure 7.4.2 Initial mesh for sloshing wave

(7.4.15)

(7.4.16)

In the numerical analysis, the fluid domain is discretised in a similar way to that for

Figure 5.6.2. A typical initial mesh is illustrated in Figure 7.4.2. In the following, MI,
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M2 and N are still used to represent the number of surfaces used for dividing the fluid

domain as in Chapter 5.

Some parameters in the following discussion are nondimensionalized as follows:

(x, y, z, L, B, a) ^ (x, y, z, L, B, a)d, t w ^ cof , k -^ k / d (7.4.17)
S

and then

co = gk,, tanh k„d __) 0)2 = k,, tanh kn .

To compare with the linear analytical results, the numerical simulation is carried out

with a small amplitude a = 0.00186. The excitation frequency is either higher or lower

than the first natural frequency coo = ko tanh ko . In the calculation, we have chosen

M, = 40, M, = 6 N = 16 and AT = 0.0111. The time history of the free surface

elevation at x = -L / 2 is presented in Figure 7.4.3. Comparison between the analytical

solution and the numerical results shows that they are in an excellent agreement.

It is interesting to see from Figures 7.4.3a and 7.4.3c that the wave history is very

similar to that due to two harmonic wave trains of slightly different frequencies. This

amplitude modulated wave can be understood from equation (7.4.16). The expression is

composed of two parts: one, r7l, corresponds to the excitation frequency co and the

other , 772 , corresponds to the natural frequencies wo, w, 10)21 w3, • • • . Of the latter, the

wave of the first frequency wo is dominant and others have far less contribution due to

w = (0o . As a result, the entire wave is actually dominated by two waves of frequencies

co and wo , respectively. As well known, the frequency of the envelope of the

amplitude-modulated wave is dw = IN - cvo l and its time period is 21r/Am, which can

clearly be seen in Figures 7.4.3a and 7.4.3c (2n/dce) = 52.25 from the linear theory).

One can see from Figure 7.4.3b that the wave amplitude increases with time. Indeed,

the magnitude of ^/a has reached around 30 at z = 50. However, it does not of course

suggest that the amplitude will tend to infinity with time, even based on the linear theory.

The result is due to dco being very small , which leads to a very long period

(21rldcv = 6283) and a very large amplitude of the wave envelope.
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(c) w/ova = 0.900 (d) wlwo = 0.583

Figure 7.4.3 Time history of free surface elevation at x = -L / 2 for different frequencies
(solid line: analytical; dashed line: numerical )

Figure 7.4.4 shows "snapshots" of the free surface profiles between r = 5.3153 and

z =15.5031, at intervals equal to 0.443, for the case of w / coo = 0.999. Figure 7.4.5

gives corresponding comparisons of the numerical pressure with the analytical solution

through the water depth. Again a good agreement between the analytical and numerical

results is found.
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z= 5 . 3153

ft1583

L'iPHHH1 P' H 303'

Figure 7.4.4 Free surface profiles for co / cvo 0.999

( solid line: analytical; dashed line: numerical)

The present numerical method is now used to analyse cases with larger amplitude,

still with co /coo = 0.999. We consider the surging motion with a = 0.0186, which is ten

times larger than that in the previous case. Figure 7.4.6 plots the free surface elevation

measured from the bottom of the tank at two time steps, as obtained from the

experimental data (Okamoto and Kawahara,1990), the linear analytical solution and the

non-linear numerical simulation. It can be seen that the numerical simulation gives better

agreement with the experimental data, although the linear solution still gives good results

in this case.
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T= 1 5.5031

Figure 7.4.5 Comparison of numerical pressure along the water depth

(x = L / 2, y = 0) for w /coo = 0.999 with analytical solution

( Solid line: analytical solution; dashed line: numerical simulation)
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(b) r = 15.725

Figure 7 .4 . 6 Comparison of free surface elevation
with experimental data
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(a) Wave history (x = -L/2)

(a = 0.00186, 0.0093, 0.0186)
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C
0
ro 0

x 1

35

(b) Wave profile, a = 0.0186

Figure 7.4.7 Wave history and profile for x = 0.5

To further demonstrate the effects of non-linearity, the results for different excitation

amplitudes are plotted in Figure 7.4.7, where x = d / L and co / wo = 0.999. It can be

observed that with increase of amplitude, the crests become sharper, the troughs become

flatter and the period tends to be longer. All these effects have also been noted by

Armenio and La Rocca (1996) for the two-dimensional roll motion. The gradual

increase of the period is also discussed by Greaves (1995) and Tsai & Jeng (1994) for

the case of free oscillation in a tank.

The motion near the first natural frequency wo has some interesting features. Apart

from the normal standing wave, a travelling wave and a bore may exist. Based on their

investigation into the two dimensional roll motion, Armenio and La Rocca (1996) have

mentioned that these three waves may all appear, depending on X. Huang and Hsiung

(1996) have also noticed the bore, when using a shallow water formulation.

Our analysis shows the occurrence of a normal standing wave in Figure 7.4.7(b). We

now consider two cases, with, = 0.125, 0.04, to demonstrate a travelling wave and a

bore. In the first case, the tank length is taken as L = 8. Two different amplitudes
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Figure 7.4.8 Wave history, profile and pressure(O) = 0.99980)0, a = 0.0372)

of the motion are considered with the same frequency, co = 0.9998cvo . The mesh is

generated using M, = 40, M2 = 6, N = 16 and the time step is chosen as

dz = 0.0273. Figure 7.4.8 presents the wave profile, wave history and pressure on the

side walls for the amplitude a = 0.0372. Figure 7.4.8d clearly exhibits a wave with one

peak travelling in the tank. When the peak reaches the wall, the pressure is apparently

larger than the static pressure, as shown in Figure 7.4.8b. The travelling wave does not

appear immediately after the tank starts to move. Instead, there is a transient period

during which the wave changes gradually from standing wave to travelling wave, as

illustrated in Figure 7.4.8c. Figure 7.4.8 also shows that the wave history is very

different from that in Figure 7.4.7. The non-linear effects are even more significant and
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the peaks are even sharper here. The peaks are modulated but the modulation frequency

is no longer equal to the difference between the excitation frequency and the first natural

frequency (2z / Aw = 8.2 x 105 from the linear theory).
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(a) wave profile r = 26 - 36 (b) Wave profiles r = 0 - 30

Figure 7.4.10 Wave profile for a = 2.5 and w = 0.9973coo

Figure 7.4.9 shows results for the same case as Figure 7.4.8, except that the amplitude

a = 0.00372 is now ten times as small. The results in Figures 7.4.8 and 7.4.9 are clearly

very different. Figure 7.4.9b does not show any visible travelling waves even when

C0
o

-4

1 UU LUU 3UU 4UU X 4 220

T

(a) Wave history (x = -L / 2) (b) Wave profile

Figure 7.4.9 Wave history and profile (c) = 0.9998coo, a = 0.00372)
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i 320. Instead the results are similar to those in Figure 7.4.7. This suggests that the

wave form in a sloshing tank depends not only on the depth length ratio of the tank but

also on the motion amplitude.

In the second case, the length is taken as L = 25, which corresponds to very shallow

water. The excitation frequency is taken as co = 0.99730o0 and the amplitude a = 2.5.

The wave profiles are shown in Figure 7.4.10. It can be seen that a bore appears after

about r = 26 . To the left of the bore, the water surface is almost flat and the free

surface elevation is small. To the right of the bore, the wave elevation is much higher.

In addition, there is some higher frequency undulation superimposed on the right. This is

different from the bore observed by Huang and Hsiang (1996) using the shallow water

approximation. Their equation is essentially based on the Airy theory, in which there are

no dispersive terms to permit modelling of undulations, see Peregrine (1966). In the

case here, it is more appropriate to base the shallow water approximation on the

Boussinesq equations, which allow waves of relatively short length. Further, in Figure

7.4.10, there is also a period of transition before the bore is formed as in Figure 7.4.8c.

It should be mentioned that the bore has never been observed in our calculation if the

motion is very small.

Chester (1968) and Chester & Bones (1968) have also studied the behaviour of

sloshing waves around resonance by an approximate method and by experiments. The

results from the two methods were given in separate figures and the comparison seems

to be favourable qualitatively. Their data have shown that the history of the wave

elevation may have one, two or more peaks within each period, depending on the

frequency and amplitude of the excitation, and the depth. In particular, at w = wo, one

peak can be observed when x = 1/ 12 and two peaks when Z =1 / 24. Figures 7.4.8

and 7.4.10 seem to display some similarity to this kind of behaviour, but our results are

not entirely identical to theirs. The difference seems to be mainly due to the fact that the

profiles they gave are those in the steady periodic stage, but the modulation still exists in

our calculation, even after a long simulation. A longer simulation was not attempted

here, because to reduce the accumulated error, a very fine mesh and small time steps

would have to be used, which requires prohibitive computer resources.
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7. 4.3 Three Dimensio nal Cases

The tank in these cases is subjected to motions defined by xc(z) = aa. sin(O),z),

y, . (r) = a,. sinand z,. (T) = a Z sin(c)Z z), where a,., and 0) ,

(XI = x, x2 = y, x; = z) are the amplitudes and frequencies in surge, sway and heave

modes, respectively. The corresponding velocities are then U('r) = coxax cos(c)xz),

V(z) = c),.n,, cos(a)J) and W(Z) = coZaz cos(cvZz).

Table 7.4.1 The cases for three dimensional sloshing

d i mens i o n frequency ampl i tud e

case L B coF N,, c) Z aX Q,, aZ

A 4 4 . 9999 CO oF . 9999 [U o y
0 . 0 0372 X 10 " 0372x 10" 0 .0

B 4 4 . 9999 0)o^ . 9999 [UoY 0 . 0 0 . 0372 0 . 0372 0 . 0

C 4 4 . 99 95 w
I x . 9995 00ty 0 .0 0 . 0186 0 .0 186 0 . 0

D 4 2 .9999 (0 0, . 99 99 W oY 0 . 0 0 . 0372 0 .0186 0 .0

E' 4 4 2 .04 CJ ox 0 . 2

F 4 4 . 9995 [)D R .9995 C.0,,. 2 . 04 CU ox 0 . 0186 0 . 0186 0.2

G 8 8 . 9999 CO ox • 9999 LUoy 0 . 0 0 .0372 0 .0372 0 . 0

H 8 4 ,gggq (0p^ . gggg woy 0 . 0 0 .0372 0 .0186 0 . 0

S 25 25 . 998 0)Ox .9 9 8 0U oY 0 .0 1 . 2 1 . 2 0 .0

+: horizontal velocity disturbance is applied only at Z = 0 ( see equation 7.4.25)

The wave motion in the three dimensional tank is much more complicated than that in

the two dimensional case. Several cases with different parameters, as listed in Table

7.4.1, are considered below to demonstrate how they influence the waves induced in the

tank. co;, and w;y (i = 0,1) in the table are the natural frequencies based on the linear

analysis corresponding to the x and y directions. It should be noted that the natural

frequencies in the three dimensional cases are

(+(n^/B^2 tanh ^m^L)2 + (n^/B)Z (yn, n = p,1,2... ). Among them, the terms
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with in = 1,3,5• • •, n = 0 and n = 1,3,5• • -, in= 0 correspond to the anti-symmetric

motions in the x and y directions, respectively. Thus the first and second natural

frequencies in the x direction, coox and co,x in the table, are obtained by taking

in = 1, n = 0 and in = 3, n = 0, respectively. Similarly coo, , and cv,,, are obtained by

taking in = 0, n = I and in = 0, n = 3, respectively.

Table 7.4.2 Parameters for convergence study

case MI M2
N dz

c l 60 60 ] 2 0.0111

c2 40 40 12 0.0111

c3 40 40 16 0.0111

c4 80 80 18 0.0111

c5 40 40 12 0.0146

c6 40 40 12 0.0219
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Figure 7,4.11 Comparison of wave elevation history at (L I 2, B/2)

for different meshes and time steps
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Convergence study

Case B is taken as an example for the convergence study. The mesh is generated in

a similar way to that shown in Figure 7.4.2. Table 7.4.2 lists the parameters used for this

examination of convergence.

Figure 7.4.11 presents the time history of the free surface elevation for all cases in

Table 7.4.2, taken at the corner (L / 2 , B / 2) where the wave is found to be very steep

(see Figure 7.4.13 below). Figure 7.4.1 la is for cases cl-c4 where the time steps are the

same but the meshes are different; while Figure 7.4.1 lb is for c2, c5 and c6 where the

meshes are the same but the time steps are different. The figures show that the results

from these meshes and time steps are in good agreement. This suggests that between

40 to 80 divisions in each wave length and 400 time steps in each wave period are

needed to obtain the converged results. But these parameters clearly very much depend

on the time period over which the calculation is made and other factors such as the wave

amplitude. In the following analysis, these parameters are chosen in such a way that the

same degree of accuracy is maintained
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Figure 7.4.12 Wave elevation history at four corners (Case A)
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Sloshing waves in Cases A to F

In all these cases the tank has the same length. The varying parameters are the

width, the frequency and the excitation amplitude. In Case A, the motion is very small.

The fluid domain is discretised using M, = 40, M2 = 40 and N = 12, and the time step

is taken as Ar = 0.0146. The wave elevation histories at the four corners of the tank

are given in Figure 7.4.12. It can be seen that the wave amplitude at two corners

(L / 2, B / 2) and (- L / 2 ,- B / 2) increases with time while the wave elevations at the

other two corners are almost zero.
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Figure 7.4.13 Wave elevation history at four corners (Case B)

In Case B, the excitation amplitude is one hundred times bigger than that in Case A.

Figure 7.4.13 presents the wave elevation history at the four corners. Unlike in Case A,

the free surface elevation at corners (L/2,-B/2) and (-L/2,B/2) is no longer

invisible and, especially after z = 20, the increase of the amplitude with time becomes

evident. The peak at the other two corners ( L l 2, B l 2 ) and (- L l 2, - B / 2) can

become quite large, indeed it is about three times bigger than the initial water depth after

z= 40.
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a

Figure 7.4.14 Snapshots of the free surface for Case B (height of the box=2d)
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Figure 7.4.15 Pressure history at a point on the tank wall
(Case B)

Two typical snapshots of the free surface are illustrated in Figure 7.4.14, where the

height of the plotted box is 2d. Figure 7.4.15 provides the pressure history (excluding
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the contribution from the static pressure) recorded at four points: two at the mean free

surface and two on the bottom. It shows that as the time progress, double peaks appear

in the time history of the pressure, which is particularly evident on the bottom. This is

very similar to that observed by Nagai (1969) in the pressure in steady-state standing

waves, and that observed by Cooker, Weidman & Bale (1997) in the force on a vertical

wall subject to a solitary wave.
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Figure 7.4.16 Wave elevation history at four corners (Case C)

Figure 7.4.17 Snapshots of the free surface for Case C (height of the box=2d)
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Figure 7.4.18 Wave elevation history at four corners (Case D)
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Figure 7.4.19 Snapshots of sloshing wave for Case D (height of the box=2d)
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In the above two cases the excitation frequency is approximately equal to the first

natural frequency of the tank. In Case C, this frequency is increased to near the second

natural frequency of the tank. Figure 7.4.16 shows the wave elevations at the four

corners. It should be noticed that both the velocity amplitude (ce), ax) and the

acceleration amplitude (cvxax) of the excitation in this case are larger than those in Case

B, but the wave amplitude here is much smaller. The snapshots of the wave elevation are

shown in Figure 7.4.17, which shows that the wave is shorter than that in Figure 7.4.14,

as expected.

In the three cases considered above, both the tank and the external disturbance are

symmetrical about the vertical plane joining the two corners (L / 2 , B / 2) and

(-L / 2, -B / 2). The wave motion is therefore also symmetrical. In Case D the

property of symmetry no longer exists. The mesh in this case is generated using

M, = 60, M2 = 40 and N =12, and the time increment is Ar = 0.0111. Figure 7.4.18

show the time histories of the wave elevations at the four corners. As can be seen, the

water surface can become very high at all corners, instead of just at two corners as in the

previous cases. This can be more clearly seen in Figure 7.4.19, which shows that the big

wave can occur at other places along the walls.

We now consider the cases including the vertical motion. In Case E, the tank

oscillates only vertically but with a small initial perturbation of the horizontal velocities.

The excitation is defined by:

10.0283 z = 0
U(T) = v(i) =

0 z > 0 (7.4.25)

w(r) = cvZaZ cos((OZz)

The frequency of the vertical motion is taken to be about twice the first natural frequency

in the horizontal direction. The waves generated by the vertical oscillation are called

Faraday waves. Benjamin & Ursell (1954) explained the mechanism of Faraday waves

by analysing Mathieu's equations derived from the linear theory. Since then, a

considerable number of papers have been published on this topic, which have been

reviewed by Miles & Henderson (1990) and Jiang, Ting, Perlin & Schultz (1996). Here

we try to demonstrate the transient behaviour of the Faraday waves.
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The mesh for this case is the same as that used in Case B and the time increment is

taken as 0.0107. The wave elevations at the four corners are plotted in Figure 7.4.20.

The results without a horizontal perturbation (dashed line) is also included in this figure

for comparison. It can be seen that the motion of the free surface is not at the excitation

frequency but at the first natural frequency of the tank. A similar case was reported by

Su and Wang (1986), based on their solution of the Navier-Stokes equations. We have

investigated other cases with excitation frequencies

wZ = OScqoA ,1.Oc)ox ,1.5coo, and 25wox but fixed acceleration amplitude (aZc)Z = 0.428 as

in Figure 7.4.20) were considered. The results, indicated in Figure 7.4.21, show that the

history of the wave elevation in all the cases is almost the same. This suggests that the

wave evolution during the transient period generated by the vertical excitation with a

given horizontal perturbation may be determined only by the acceleration amplitude of

the excitation. To further confirm this, Figure 7.4.22 presents the wave history

generated by the excitation with the same frequency o)Z = OSwox , but different

amplitudes, corresponding to aZcOZ = 0.428 and aZwZ = 0.129 respectively. It shows

that the results in these cases are very different.
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Figure 7.4.20 Wave elevation history at four corners (Case E)
(solid line: u, v given in equation. 25 ; dashed line: u = v = 0)
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Figure 7 .4.21 Wave elevation history at two corners : four lines coincide with

each other (Case E, c)Z = 0Scc)o,. ,1.Ocoo A. , 1.5coox and 25(ooa. and a ZwZ = 0.428 )
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Figure 7.4.22 Wave elevation history at two corners ( Case E, wZ = OSwos,

solid line: aZmZ = 0.428 ; dashed line: aZwZ = 0.129)
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Figure 7.4.23 Wave elevation history at four comers (Case F)
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Figure 7.4.24 Snapshots of wave profile for Case E and Case F

(height of the box=2d)
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Figure 7.4.25 Wave elevation history at four corners (Case G)
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Figure 7.4.26 Snapshots of travelling waves for Case G (height of the box=2d)

Case F is similar to case E, except that a horizontal excitation is applied throughout

the time history. What is interesting here is that despite the horizontal excitation being

applied over the entire period of the calculation, the wave amplitudes in this case (as

shown in Figure 7.4.23) are no larger than that in Case E (shown in Figure 7.4.20). The

comparison of the free surfaces in these two cases is illustrated in Figure 7.4.24.

Compared with Case C, where the horizontal motion is the same as that in Case F but

with no vertical motion, the amplitude in Case F is much larger.

155



Sloshing waves in Cases G and H

In these two cases, the water depth is effectively smaller. In Case G, the ratio of

depth length (= depth width) is set as 0.125, which is the same as in the 2D case of

Figure 7.4.8 where the travelling wave has been observed. The wave elevation histories

at the four corners are shown in Figure 7.4.25. Figure 7.4.26 shows a sequence of a

wave crest moving from the corner (- L / 2 ,- B / 2) to the corner (L / 2, B l 2 ). Figure

7.4.27 gives the profiles on two vertical planes, y = 0 and x = 0, at different time steps.

These results clearly show that the travelling wave exists in this case. Figure 7.4.28

illustrates the pressure history at four points: two at the mean free surface and two on

the bottom. Compared with Figure 7.4.14, the double peaks do not seem to exist in the

pressure at the mean free surface, but there are small peaks superimposed on the primary

ones. The pressure on the bottom, on the other hand, has similar behaviour to that in

Figure 7.4.15.
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Figure 7.4.27 Wave profiles on two vertical planes (Case G)

((a): on the plane y=0; (b) : on the plane x=0)

In Case H, the width is reduced by half and the ratio of length/width is therefore the

same as that in Case D. The wave elevation history is shown in Figure 7.4.29. The

travelling wave is also evident in this case, as shown in Figure 7.4.30. This is different

from what has been observed in Case D, where the water is deeper.
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Figure 7.4.28 Pressure history (Case G)
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Figure 7.4.29 Elevation history at four corners (Case H)
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Sloshing waves for Case S

This is an extremely shallow water case. The tank is undergoing horizontal motion

only, at a frequency near to the fir s t natural frequency . As di scu ssed in connection with

Figure. 7 .4 . 10 for the two dimens ional case, a bore may he generated when the water

depth is very small. Figure 7 .4 . 31 gives snapshots of the wave profiles for this case.

One can see from this figure that the three dimensional bore is travelling from the corner

(-Ll2, - Bl2) to the corner ( L / 2 , B / 2 ).

Figure 7.4.30 View of travelling waves for Case H (height of the box=2d)
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8. WAVES IN A RECTANGULAR TANK WITH A WAVEMAKER

8.1 Introduction

The simulation of waves generated by a piston-type wavemaker in a rectangular tank

is undertaken in this chapter. The wave maker is located at one end of the tank and the

generated waves travel to the other end (referred as to `the far end' herein). Up to two

vertical cylinders are inserted in the tank for several cases. The wavemaker problem is

important in naval architecture as well as offshore and harbour engineering, as associated

model tests are often conducted in such a tank. Some real ocean environment can also

be modelled if the tank is wide enough, and side wall effects are negligible.

The generation, propagation and/or scattering of the waves in the tank can be studied

by a perturbation expansion in the frequency domain (e.g. Sulisz & Hudspeth, 1993) or

in the time domain (e.g. Zhang & Williams, 1996) when the generated waves are small.

Although the perturbation method may give good results with a relatively small amount

of computation, fully nonlinear theory should be implemented when the waves are large.

Over the past decade, many investigations have been devoted to the numerical simulation

of the fully nonlinear waves of this kind and their interaction with structures using time

step procedures. Most of them are based on a boundary element method. Some of these

studies consider waves propagating in a tank, such as Lin, Newman & Yue (1984),

Ohyama (1991), She, Greated & Easson (1992) and Wang, Yao & Tulin (1995). Some

deal with the interaction between the wave and the bodies, for instance, Sen (1993),

Comte, et al (1990) and Contento & Casole (1995). All of these works are concerned

with the two dimensional problems. There are also a number of publications, albeit

fewer, on three dimensional cases. One of these was presented by Chan & Causal

(1993), where some preliminary results for forces on a cylinder were given. More

recently, Celebi & Kim (1997) presented a 3-D simulation based on desingularised

boundary element method.

The finite element method developed in this thesis will be applied to investigate the

wave problems in various situations. In some cases the analytical solutions will be used

for comparison.
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It should be noted that when the wave height is very large, and/or the wave travels

over a long distance, it may overturn and break (Wang, Yao & Tulin, 1995). In addition,

a jet may develop at the wave maker when it moves sufficiently fast, as shown by

Greenhow & Lin (1985). In this work, only situations in which neither breaking nor the

jet takes place are considered.

The various parameters used in this chapter will be non-dimensionalised as in

equation (7.4.17).

8.2 Radiation condition

In modelling the generated progressive waves, the reflection from the far end is

usually undesirable. Although a technique for completely removing the reflection of fully

nonlinear waves has yet to be developed, researchers have attempted to reduce the

reflection as much as possible by imposing an artificial radiation condition on the

boundary at the far end. Some principles and techniques used to deal with the radiation

condition have been discussed in Chapter 2. In our application, the combination of the

damping zone and the Sommerfeld condition will be employed.

The implementation of this condition is illustrated in Figure 8.2.1 with the definitions

of some dimensions. Also shown in this figure is a right-hand Cartesian coordinate

system: the oxy plane being on the mean free surface with the x-axis pointing to the far

end; the z-axis pointing upwards; and the origin being at the centre of the mean free

surface.

Wave maker

H T z
damping zone

x

d

Figure 8.2.1 Tank with the wave maker and the radiation condition (d=1)
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The Sommerfeld condition gives

do do
ar a1z

( 8.2. 1)

The difficulty in implementing this condition is to evaluate the parameter c. This

parameter is the phase velocity of the wave in linear harmonic waves, but its physical

meaning cannot exactly be identified when the condition is applied to fully nonlinear

waves. In some reported applications, the parameter is simply estimated by the

numerical values of
o

and ^ at each time step from the solutions at previous steps,

see, e.g., Orlanski(1976), Zhou & Gu (1990) and Contento & Casole(1995). However,

large errors with this approach are not easy to avoid, particularly when the crest or

trough of the velocity potential passes the far end boundary. Although this difficulty can

be overcome by some approaches, such as using an average value of c found at a

number of points near the boundary, as suggested by Contento and Casole (1995), the

resulting value can often oscillate rapidly with time. The rapid oscillation may increase

the possibility of numerical instability. An alternative to numerical evaluation of c is to

take the parameter as a constant, particularly when combining the Sommerfeld condition

with other techniques. Ohyama (1991) used c = 1 (the phase velocity of a long wave

relative to the water depth) when the sponge layer was coupled with the Sommerfeld

condition. Arai, Paul, Cheng & Inoue (1993) took c as the phase velocity of the

harmonic wave calculated by linear theory when they combined the Sommerfeld

condition with a velocity reduction technique. Although these constant values are not

consistent with the property of the fully nonlinear wave, they are easier to use, and the

above two papers have demonstrated in the combined techniques of the radiation

condition that the constant value of the parameter c may lead to good results even when

irregular waves comprising components of different phase velocities are simulated.

In our work, this parameter c is chosen in the same way as done by Arai, Paul,

Cheng & Inoue (1993), that is:

c
tanh(k)

, (8.2.2)=
k
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where k is the real root of cc)Z = k tanh(k). This choice is partly based on the results of

Ohyama (1991) for irregular waves, and also based on the consideration that the

irregular wave associated with marine engineering often has a narrow band spectrum.

This implies that the wave system is dominated by the components near a particular

frequency.

It should be noted that even when the wave is linear and harmonic, equation (8.2.2) is

valid only after the generated waves become periodic in the tank. However, before

reaching the periodic stage, there is a transient zone between the wave front and the far

end boundary. In this zone, the wave is very long, and thus the phase velocity of the

wave is different from that in equation (8.2.2) and is close to c = 1. Lee and Leonard

tanh(k)
(1987) have suggested an interpolation between c = 1 and c = k for the transient

stage. Nevertheless, it is considered to be not necessary to perform the interpolation in

our work. The reason is that the wave amplitude in this transient zone is relatively small,

which can be further reduced by the damping zone. Therefore the small error in c may

not affect the computational results significantly.

The boundary at the far end can be either fixed or non-fixed. If the boundary is fixed,

extra effort has to be given to dealing with the situation where the water particles on the

boundary move inwards, and thus the boundary becomes detached from the water. In

the non-fixed case, the boundary is considered to move with the water particles.

However, the boundary in this case may be seriously distorted if each spatial point

follows the corresponding water particle. This distortion can lead to numerical

difficulties. One way to avoid this is to take the velocity of the boundary motion, U, as

the average of the x-component of the velocity of water particles on the intersection line

between the free surface and the boundary, and the boundary surface is assumed to be a

vertical plane at all time.

For the numerical implementation of equation (8.2.1), the time derivative of the

velocity potential on the boundary at the far end is expressed as:

dorc dorc + U arc + v a rc + w dorc _ arc +
U u + V 2

+ W1

dz dr
rc

(1x J^ dz • dr
rc

'
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where u , v and w are the velocities of fluid particles in the x-, y- and z-direction

respectively. Inserting equation (8.2.1) into the above equation yields:

orc

di
(8.2.3)

In order to be consistent with the assumption of U, which is constant in the y-direction,

u and w on the boundary can be replaced by their averages at points in the same level

of water depth, Wand W, and v can be assumed to be zero. The value of the velocity

potential on the boundary is, therefore, estimated by:

O,c 1, +
dOrC

Az z > z
(8 . 2 . 4)

where z, = LI(1 + P) , and P is a coefficient which can be taken as 0.2 according to

numerical tests.

It should be noted that there is inconsistency at the intersection line between the free

surface and the vertical boundary at the far end. The nonlinear boundary conditions are

used on the free surface, but the Sommerfeld condition applied on the vertical surface is

linear. The velocity potential is not identical when the points on the intersection line are

approached from the two surfaces. This may lead to artificially large velocities and

numerical instability. To suppress the problem, a localised interpolation is introduced on

the vertical surface in the range zs <_ z <_ zf , where zf is the vertical coordinate of the

intersection line and z = zs is a line below the free surface. In this range, the velocity

potential in equation (8.2.4) is replaced by:

2 z

1+2 Z - zs 1 ZZf
+ Of

z-zf Z - ZS

Z
f
- ZS Zf - Zf ^r Zf - ,Zs Zf - 'zs

(8.2.5)2 2

+ws(z-z
z-z

s f +wf(z_z1)[z_ S
Zf -ZS Zf - ZS

where (of , 0S) and (Wf , ws) are the potentials and vertical velocities at z = zf and

z = zs , respectively. It is easy to show that the velocity potential in the expression

satisfies:
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do,
for0 , - 0 1

dz.
= W

f
Z=Zf '

and

rc = 0 ,

dOrc _
Ws for z=z.r •

The length of (zf - Z,r) is found to be suitable if it covers three element lengths in the z-

direction regardless of the size of elements.

The damping zone is implemented by adding an artificial viscous term in the free

surface conditions near the boundary at the far end. The added term plays a role in

removing the energy from water, thereby possibly reducing the reflection. This method

has been widely used, as reviewed in Chapter 2.

Both the dynamic and kinematic conditions on the free surface can be modified by

adding the viscous term. Numerical tests in our work have shown that the modification

to the kinematic condition sometimes causes sawtooth-like waves in the damping zone.

Therefore, the modification is adopted only to the dynamic condition below.

After the viscous term is added, the dynamic free surface condition can be written as:

Do
Dt -

N. T - v(x)I0I Slgn(on^ , (8.2.6)

where N. T denotes the normal term, v(x) >_ 0 is a damping coefficient, sign(On) is a

function of On defined by:

- 1 On <0

sign(on ) = 0 On = 0

1 On > 0,

and On denotes the normal velocity on the free surface with n being out of fluid. If the

wave is not overturning, On has the same sign as the vertical velocity, and hence

sign(On ) can be replaced by sign(w) in the calculation. The added term in equation

(8.2.6) ensures that the damping zone always absorbs energy from the fluid, as suggested

by Cao, Beck and Schultz (1993).
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The term v(x) in equation (8.2.6) is artificially chosen. Its magnitude and form play

an important role in the performance of the damping zone. If the value is too small, the

absorption is too weak, while if it is too big the zone itself acts like a rigid surface.

Large reflection occurs in both cases, although for different reasons. In addition, v(x)

has to be smooth enough in the zone and at both its ends, otherwise the discontinuity of

z

X and dxv may lead to large gradients or even discontinuity of velocities. This not

only gives rise to reflection but also may cause the numerical instability. In this work,

the following form of v(x) is adopted:

1
>_ xd

V(x) = 2 va 1-cos
Ldmdm

0 x<xd,

where vo is the magnitude of the damping coefficient, Xd is the x-coordinate of the left

end of the zone and Ld,,, is the length of the zone. Apart from the damping coefficient,

the efficiency of the damping zone is also dependent on the length Ld,,, . In this thesis,

the length is taken as Ld,,, = min(32., 3), where X = 2n1k . Thus vo is the only

parameter to be chosen.
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8.3 Monochromatic waves

The monochromatic wave means the wave generated by the wave maker undergoing

the following motion :

with the velocity:

U = acc) sin(cOZ),

(8.3.1)

(8.3.2)

where S(i) is the displacement of the wave-maker; a is its amplitude, cc) is its

frequency and r denotes time.

8.3.1 Optimisation ofparameter vo

As mentioned above, there is only one parameter vo to be chosen when the radiation

condition is applied. This parameter will be optimised using numerical tests here. Before

doing this, an absorption coefficient describing the efficiency of the radiation condition is

defined. That is:

C" 1-^/qo (8 . 3 . 3)

where Co is the absorption coefficient; AO is the amplitude of the wave without

reflection and dAr is the amplitude of the reflected wave. If there is no reflection, i.e.

AA, = 0, then Ca = 1; on the other hand if the wave is completely reflected, Ca = 0.

Neither AO nor AA, is available prior to the simulation; both are determined

numerically. AA, is estimated by AA, = +Ao - A, I ,where Ar is the amplitude of the wave

including the reflection. Ar is measured from the envelope of the wave history recorded

at point x =

2

- (Ld,,, + 0.2A) which is situated just before the left edge of the damping

zone. AO is approximated by the amplitude of the waves in a longer tank, recorded at

the same point as that for A, .

In order to find the optimum value of vo , a series of cases are tested with w being

in the range from 0.5 to 3.0, which covers the frequency of practical interest, as
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suggested by Clement (1996). For each frequency, vo changes from zero to a value

which leads to a rapid decrease in C„ . In the shorter tank, the initial distance between

the wave maker and the left edge of the damping zone is set at about 4/1; and the

distance in the longer tank is about three times as long in the shorter tank. The

calculation is made over about 14 periods. The corresponding amplitudes of the wave

maker are specified in such a way that the resulting waves have steepness

E = Hl^, = 0.005 according to the numerical tests.

C.

^l

0 . 95

0 . 85

0.8

0 . 2 2 . 5
0 . 4 ^ .. ^

15

wV
0 . 8 1 0 . 5 1

(a) Ca via w and vo (b)Maximum C. via 0)

Figure 8.3.1 Absorption coefficient for different w and vo

3(0

Figure 8.3.1a shows the absorption coefficient against frequency w and parameter

vo . For each frequency, one can find a maximum absorption coefficient from this figure,

as shown in Figure 8.3.1b. The values of vo corresponding to each of the maximum

absorption coefficients are then determined for every frequency. These values against

the frequency are plotted as stars in Figure 8.3.2. The discrete numerical values can be

fitted into a third order polynomial:

vo = 0.04960v 3 -0.175 1a)2 + 0.2352t,v -0.0699, (8.3.4)

which is illustrated as the solid line in Figure 8.3.2. This expression provides a

convenient way to implement the damping zone and allows us to set up the radiation

1 .0 0 -

0 .95

0 .85 -----

0 .80

0 . 5 1 1 . 5 2 2 . 5
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condition in the computer program by choosing parameter vo automatically once the

frequency is specified.

V0
0.5 r

0 . 4 -------------

0 .3 --------^---^-

02 -----------

0 . 1 -------- /---

^*
0

0 . 5 1 1 . 5 2 2 . 5 3 w

Figure 8.3.2 Optimum vo against co
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Figure 8.3.3 Absorption coefficient against wave steepness

(vo evaluated by equation 8.3.4)

As shown in Figure 8.3.1b, the absorption coefficient can be very close to unity if

parameter yo is determined by equation (8.3.4). However, that equation is obtained by

numerical tests on waves with small steepness. In order to check if it is suitable to waves

of larger steepness, the cases with various values of E are also simulated. For each of

these cases, the frequency is kept constant. Figure 8.3.3 plots the obtained absorption

coefficients. It can be seen that the absorbing efficiency is still very good even when the

wave steepness becomes quite large, although the efficiency decreases slightly with the

increase of the steepness.
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8.3.2 Monochromatic waves

With the implementation of the above radiation condition and the optimum value of

the parametervo, some details about the waves generated by the wave maker moving in a

manner defined by equation (8.3.1) are presented in this section. The efficiency of the

radiation condition will be alternately demonstrated by the wave history and by profiles.

Figure 8.3.4 Typical mesh of the wave-maker tank

Convergence study

Before discussing the details, an investigation on the convergence property in a

similar manner to that used in section 7.3.3 is first presented. The cases for this purpose,

with different mesh sizes and time steps, are listed in Table 8.3.1. In each case, the

frequency and the amplitude of the wavemaker motion are w = 1.45 and a = 0.064,

respectively. The steepness of the resulting wave is approximately E = 0.07. The

dimensions of the tank are specified as L = 14.64 and B = 0.2. The tank length is

approximately 5X and the wave period is T = 4.3. Convergence is examined by

comparing the wave history for these cases, which is recorded at point x = 3.74. The

mesh is generated with different divisions along the length and depth, but the divisions

along the width are fixed because the resulting wave is now two dimensional. An

illustration of a typical mesh is given in Figure 8.3.4.
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Table 8.3.1 Parameters for convergence study

case M, M2 N d2

c l 146 4 12 0.021666

c2 292 4 20 0.021666

c3 195 4 12 0.021666

c4 195 4 16 0.021666

c5 195 4 16 0.010833
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Figure 8.3.5 Time history of the wave elevation for different mesh sizes
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Figure 8.3.6 Time history of the wave elevation for different time steps

Figure 8.3.5 gives the time history of the wave elevation at the point specified above

for cases cl-c4, where the mesh varies but the time step is fixed. Figure 8.3.6

presents the time history of the wave elevation for cases c4 and c5, where the mesh is the

same but the time steps are different. It can be seen that the results obtained using
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different meshes and time steps are hardly visible. This suggests that about 40 divisions

in each wave length and 200 time steps in each period may be required to obtain

convergent results. As already mentioned in the case of sloshing waves, this requirement

may be dependent on the time period over which the calculation is made and on other

factors such as the wave amplitude. The results given in this chapter are obtained in a

similar way to those for the sloshing waves, that is element sizes and time steps are

chosen in such a way that the same degree of accuracy can be achieved.
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-1
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- - - numerical

20 30 40 50 60
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Figure 8.3.7 Comparison of the wave history with the analytical solution at x = 3.74
for the case with co = 1.45 and a = 0.0041

Comparison with the analytical solution

For the wave with very small steepness, a linearised analytical solution may be found

(see Eatock Taylor, Wang and Wu, 1994). This solution can be used as a check on the

numerical method. To do so, the numerical and analytical results for the time history of

wave elevation at x = 3.74 are shown in Figure 8.3.7 for the case with the same

frequency as in Figure 8.3.5 but a smaller amplitude (a = 0.0041). In Figure 8.3.8, the

profiles at two instants are plotted for the same case. The numerical analysis is carried

out using the same mesh and time step as those in c4 above. The figures show that the

numerical results are in very good agreement with the corresponding analytical solutions,

although the difference in the profiles is slightly greater within the damping zone, as is

expected. The cases with other frequencies and amplitudes used as the damping zone

investigation in section 8.3.1 have also been compared with the analytical solution. The

results for all of them are in a similar agreement with the analytical solution to that seen

in these two figures.
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Figure 8.3.8 Comparison of the wave profiles with the analytical solution for the case
with co = 1.45 and a = 0.0041. The damping zone begins at Xd = 4.32.

(solid line: analytical solution; dashed line: numerical results)

Repeatability

Harmonic waves are often required to estimate the wave loading on structures. For

this kind of wave, the wave profile should repeat itself (approximately in practice) from

one period to next. The repeatability strongly depends on the property of the radiation

condition at the far end. If there are large reflections from this end, the wave profiles

will apparently differ in successive periods, even when the wave maker oscillates

harmonically with a constant amplitude over a long time. Due to this connection

between reflection and repeatability, She, Greated & Easson (1992) and Arai, Paul,

Cheng & Inoue (1993) used repeatability to demonstrate the effectiveness of the

radiation condition applied in their numerical simulation.

For the purpose of demonstrating the repeatability here, the profiles for three cases

are presented in Figures 8.3.9 to Figure 8.3.11. They are recorded from 'r =11T to

z = 15T,two profiles in each period (corresponding to z =11T,115T,12T,125T, • • • ).

Figure 8.3.9 is for the case with co = 1.45 and a = 0.0041. The wave steepness in this

case is about E - 0.005, and the shape reflects a typical linear wave. In Figure 8.3.10,
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the case with co = 1.45 and a = 0.082 (E = 0.087) is illustrated while Figure 8.3.11 is

for cv = 2.00 and a = 0.043 (E = 0.085 ). These two cases show some typical features

of steep waves.
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Figure 8.3.9 Profiles from r =11T to 'r = 15T, two in each period

(0) =1.45,a=0.0041, ^=0.005, L=14.64, B=0.14;

damping zone beginning at x,, = 4.32)
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Figure 8.3.10 Profiles from r =11T to z =15T, two in each period

(w=1.45,a=0.082, 80.087, L = 14.64, B = 0.14;
damping zone beginning at Xd = 4.32)

x
Figure 8.3.11 Profiles from r =11T to r = 15T, two in each period

(w=2.0,a=0.043, E0.085, L=9.28, B = 0.08;
damping zone beginning at xd = L64)



It can be seen that the profiles have very good repeatability in both the small

steepness cases and the large steepness cases. Similar repeatability can also be observed

for waves with other frequencies in our calculations. All of these results confirm that the

radiation condition imposed at the far end works well. To further demonstrate this by

profiles, the comparison of results in the shorter and longer tanks at i = 15T for the

above three cases are presented in Figure 8.3.12. Again they are in good agreement in

all of cases, except in the damping zone.

As discussed in Section 8.3.1, the absorption coefficient tends to decrease with

increasing wave steepness. However, the good repeatability and agreement between the

shorter and longer tank results illustrate that the resulting reflection is still not noticeable

even when the steepness is quite large.
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Figure 8.3.12 (a) co = 1.45 , a = 0.0041, E = 0.005, L = 14.64,44.64

damping zone of shorter tank beginning at xd = 4.32
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Figure 8.3.12 (b) co =1.45 , a = 0.082, e = 0.087, L =14.64, 44.64;

damping zone of shorter tank beginning at xd = 4.32
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(c) w=2.0,a=0.043, e =0.085, L=9.28,25.28

damping zone of shorter tank beginning at xd = 1.64

Figure 8.3.12 Wave profiles at 2 = 15T for different length of tank
(solid line: shorter tank; dashed line: longer tank)

Non-linear effects

With increasing the amplitude of the wavemaker, the resulting wave becomes steeper

and the nonlinear effects may become more important. From Figure 8.3.9 and Figure

8.3.10, one can find that the wave profiles in two figures are different. The wave in the

latter case has flatter troughs and sharper crests. Obviously, this is due to nonlinearity.

The nonlinear effects can also be shown by comparing the waves corresponding to the

different amplitudes in one figure. For this purpose, Figure 8.3.13 and Figure 8.3.14 are

plotted. In Figure 8.3.13, the wave history of different amplitudes recorded at a point

before the damping zone is presented for three different frequencies. The corresponding

wave profiles at some instants are illustrated in Figure 8.3.14. In addition to the

nonlinear behaviour mentioned above, it can also be observed from these figures that the

wave with larger steepness travels faster and has longer wavelength than those with a

smaller steepness. This phenomenon of the transient wave is similar to the so-called

amplitude dispersion of Stock's wave as discussed, for example, by Newman (1977).
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(a) L = 14.46; cv = 1.45; recorded at x = 3.74
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(c) L = 7.0; w = 2.5; recorded at x = 0.3

Figure 8.3.13 Wave history for different amplitudes
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Figure 8.3.14 (a) m = 1.45; a = 0.032, 0.064, 0.082, respectively. Damping zone begins

at xd = 4.32 (solid line: a = 0.082; dashed line: a = 0.064; Dotted line: a = 0.032)
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Figure 8.3.14 (b) co =2.0; a= 0.0022, 0.043, respectively. Damping zone begins at

Xd = 1.64 (solid line: a = 0.043; dashed line: a = 0.0022)
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Figure 8.3.14 (c) cc) = 2.5; a = 0.0014, 0.025, respectively. Damping zone begins at

xd =0.5 (solid line: a = 0.025; dashed line: a = 0.0014)

Figure 8.3.14 Wave profiles for different amplitudes

8.4 Bichromatic wave and irregular wave

As shown above, the monochromatic wave can be successfully simulated with the

application of the radiation condition. It should be mentioned again that this radiation

condition is composed of the damping zone and the Sommerfeld condition; the optimum

parameter yo associated with the damping zone and the parameter c in the Sommerfeld

condition depend on the wave frequency, as discussed in 8.3.1. In order to apply the

same technique to simulate the bichromatic wave and irregular wave, the first task is

obviously to find the proper frequency which determines the damping coefficient and the

value of c. A suggestion about this will be made in the following two sections for the

bichromatic and irregular waves, respectively.

8.4.1 Bichromatic wave

The motion of the wave maker in this case consists of two components and can be

defined by:
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S(2') = -a, cos((o,2-') - aZ cos(wZz), (8.4.1 )

where S(z) is the displacement of the wave maker as before; a, and a2 are the

amplitudes corresponding to the components of frequency cep, and cot , respectively.

The corresponding velocity is then written as:

U(z) =a, 60, sin(Co,'r)+azm2 sin(coZz). (8.4.2)

For the bichromatic case, it is suggested that the frequency, co , used in the radiation

condition is taken as the frequency corresponding to the component with a larger

amplitude, i.e.:

coy, a, > a2

co =

CvZ, az >a,

^/ai

2-

1
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(8.4.3)
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Figure 8.4.1 Wave history recorded at x = 3.74 (a, = 0.016, w =1.45;

a2 =0.2a, , (02 =2.03; shorter tank L = 14.64;longer tank L = 44.64;

damping zone beginning at xd = 4.32; solid line: shorter tank; dashed line: longer tank)
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Figure 8.4.2 Wave history recorded at x =1.33 (a, = 0.02, c), = 2.0;

a2 =0.2a,,0)2= 1.4 ; shorter tank L = 9.28 ; longer tank L = 25.28 ;

damping zone beginning at Xd = 1.64 ; solid line: shorter tank; dashed line: longer tank)
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This suggestion is based on an assumption: the wave component with a larger amount of

wave energy will be subjected to a bigger reflection. Whether the suggestion works or

not needs to be examined by comparison of the waves generated in the two tanks with

different length.
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Figure 8.4.3 Wave history recorded at x = 3.74 (a, = 0.016, w, =1.45;

a2 =0.5a, , (02 =2.03; shorter Tank L = 14.64;longer Tank L = 44.64;

damping zone beginning at xd = 4.32; solid line: shorter; dashed line: longer)

It seems reasonable to expect that the frequency chosen in this manner may lead to

good results when one of the components is obviously dominant over another. To justify

this, the wave history for two cases is illustrated in Figure 8.4.1 and Figure 8.4.2. In

both cases, a2 / a, = 0.2 but in the first case the frequency is w, = 1.45 while in the

second case co, = 2.0. Therefore, the frequency for the radiation condition in both cases

is taken as co = co, . The length of the shorter tank in these simulations is about 5A(co) ,

where X(w) is the wave length of a linear wave corresponding to the frequency oo.

The longer tank has approximately three times the length of the shorter one. The waves

are recorded at a point, about 0.2A(o)) before the left edge of the damping zone of the

shorter tank. These two figures show that the results for the two tanks with different

lengths are in good agreement.
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Figure 8.4.4 (d)
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Figure 8.4.4 Wave profiles at different time instants (a, = 0.016, w, = 1.45;

a2 =0.5a, , coZ = 2.03; shorter tank L = 14.64;longer tank L = 44.64;

damping zone beginning at xd = 4.32; solid line: shorter; dashed line: longer)

In order to investigate the situation where the two amplitudes are closer in value, we

consider a case where a2 /a, = OS, and the same frequencies and tank length is used as

in Figure 8.4.1. The corresponding wave history is presented in Figure 8.4.3 and the

wave profiles at several time instants are depicted in Figure 8.4.4. The agreement of the

results between the shorter and longer tanks is still very good.

In the critical case of a, = a2 , the frequency may be chosen as w = co, or w = 0)2

The two choices have been used to simulate waves generated with parameters a, = a2 l

co, = 1.45 and cv2 = 2.03, in the same tank as in Figure 8.4.1. The wave history at the

corresponding point is shown in Figure 8.4.5. Again the results are in excellent

agreement, although the discrepancy in Figure 8.4.5b is slightly more pronounced. The

larger difference in the latter figure may suggest that the frequency w should be taken as

the smaller one, when the amplitudes of the two components are about same.

-3 -1 1
x

Figure 8.4.4 (e)
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Figure 8.4.5 Wave history for different choice of a) when a2 = a, = 0.016 (CO, = 1.45;

cot =2.03; shorter tank L = 14.64;longer tank L = 44.64;

solid line: shorter; dashed line: longer)

All of the results show that although the choice of the frequency in equation (8.4.3.)

for the radiation condition is somewhat artificial, the reflection generated from the far

end is small, and the choice appears to be acceptable for the problems of the kind dealt

with here. If we think this frequency should correspond to the dominant component of

the bichromatic waves, it is somewhat unexpected that it can give some good results

even when the two components have similar amplitudes.

8.4.2 Irregular waves

Irregular waves may be generated by the random motion of the wavemaker. The

random motion may be expressed as a Fourier expansion with respect to time. In

laboratory, the motion is sometime considered as a sum of the finite number of
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monochromatic components with random phases. From this point of view, the

bichromatic motion is a particular example of this case. Experience in the simulation of

the bichromatic waves suggests that the frequency associated with the radiation

condition for irregular wave simulation may be chosen as the one corresponding to the

component with the largest energy. It is therefore recommended in this case that the

frequency w for the radiation condition is determined according to the wave spectrum.

Specifically, the frequency corresponding to the maximum value of the wave spectrum is

taken as o).

In order to demonstrate whether or not the frequency chosen in this way is suitable,

irregular waves in two tanks of different length are examined, which are generated by the

wave maker subject to the displacement and velocity shown in Figure 8.4.6. The data

given in this figure is up to r = 60. In fact, the wave maker is set to be at rest after

z = 58. This motion of the wave maker consists of about 50 components of different

frequency. Fourier analysis performed on these data shows that the frequency

corresponding to the maximum in the wave spectrum is about 1.20, which is chosen

for av in the radiation condition. The tank length is taken as L = 20 and L = 40 for the

shorter and longer tank, respectively.
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Figure 8.4.6 The displacement and velocity of the wave maker generating irregular
waves
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Figure 8.4.7 shows the wave history recorded at x = 3.436 for different lengths of the

tank. Figure 8.4.8 presents the profiles at three different time steps and clearly indicates

that the wave front has already reached the damping zone (xd = 7.0 in the shorter tank).

The good agreement of the results obtained by the shorter and longer tank signifies that

the effectiveness of the radiation condition is maintained for this case. This is further

demonstrated in Figure 8.4.9 which shows that the wave has obviously died away in the

tank, implying the wave is transmitted through the far end with little reflection.
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Figure 8.4.7 The history of an irregular wave recorded at x = 3.436

for different tank lengths (solid line: shorter tank; dashed line: longer tank;
damping zone beginning at Xd = 7.0)
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Figure 8.4.8 Profiles of irregular wave at three particular time steps
for different tank lengths (solid line: shorter tank; dashed line: longer tank;

damping zone beginning at Xd = 7.0)

Evaluating co from the wave spectrum for the radiation conditon is always an

approximation. As a result, the sensitivity of the numerical results to this frequency must

be investigated. For this purpose, the same case as in Figure 8.4.7 is also simulated by
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choosing co = 1.0 and o) = 1.3,respectively. The results obtained are plotted in Figure

8.4.10, together with those corresponding to w = 1.20. One can see that the difference

between the three cases is not graphically noticeable, which indicates that the wave

absorption is not very sensitive to the choice of o).

Although the effectiveness of the radiation condition in the simulation of the irregular

wave with various spectra may need to be investigated more extensively, the evidence

gathered here seems to show that this condition can work well for the problems

considered in this thesis, particularly for waves of the narrow band spectra. This sort of

irregular waves is often dealt with in offshore and naval architecture engineering.
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Figure 8.4.9 Irregular wave profiles at different time steps
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Figure 8.4.10 The history of an irregular wave at x = 3.436
for the difference frequencies co used in the radiation condition
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8.5 Interaction between waves and a circular cylinder

The problem of the interaction between waves and a vertical cylinder is now

considered. This problem is of interest in offshore engineering since similar structures

are widely used in this field. To carry out the investigation, waves are generated in a

tank in the manner described in Sections 8.2 and 8.3. A surface-piercing vertical circular

cylinder is mounted on the bottom of the tank. The sketch of the problem with the

definitions of some dimensions is shown in Figure 8.5.1. A similar coordinate system to

that used in Section 8.2 is also defined in the figure, with its origin here being at the

centre of the cylinder.

According to linear theory (see, e.g. Eatock Taylor et al, 1994), the wave generated

by a wave maker may be divided into two parts: the progressive wave and the local

wave. The progressive wave travels to infinity whereas the local wave exists only in a

region near the wave maker, and decreases with distance from the wave maker at a rate

n (x x°)e z
(see Crapper, 1984), where xo is the position of the wave maker. The

interaction between the progressive wave and the cylinder is of concern here. The

interaction of the cylinder with the local wave should be avoided. This can be achieved

by putting the cylinder sufficiently away from the wave maker. As suggested by Crapper

(1984), the effects of local waves can be negligible when x - zo > 2. In the following,

use is made of Lw, > Ro + 3 to approximately eliminate the local wave interaction; Lwc
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is the length between the centre of the cylinder and the wavemaker. When the

progressive waves reach the cylinder, they will be reflected and transmitted. The

reflected waves from the cylinder travel back towards to the wave maker. The

interaction between the reflected waves and the wave maker may distort the original

progressive waves. Ideally this type of interaction should be removed. In our work, the

cylinder is put at an appropriate position away from the wave maker and the calculation

stops before the distorted waves have travelled back to the cylinder. The maximum

computational time is estimated by 3LW,ICg , where Cg is the group velocity of the

wave. Clearly if long-time calculation is required, the value of L,,,, should be made

sufficiently large. This arrangement is very similar to the situation in laboratory

experiments, although the influence of the reflected wave may not be avoided

completely.

The transmitted waves will propagate towards the far end of the tank. In order to

eliminate the reflection from that end, the same radiation condition suggested in Sections

8.2 and 8.3 is imposed. However it should be noted that the transmitted waves are three

dimensional. Although the damping zone may be applicable for three dimensional waves,

the Sommerfeld condition implemented implies that the waves are two dimensional as the

phase velocity of the wave and the moving velocity of the truncated boundary are

assumed to be constant across the tank. Therefore it is necessary to investigate the

effectiveness of the radiation condition in the three dimensional cases.

Both regular and irregular waves are considered. The interaction between the waves

and the cylinder is studied by investigating the force on and the wave around the

cylinder. The force is calculated by the direct method, that is the time derivative in the

fluid pressure is obtained by solving a boundary value problem. Although the moment

of the force can be simultaneously evaluated, the discussion is focused on the force here.

The discretisation of the fluid domain is performed in a manner slightly different from

that in Figure 8.3.4. That is, in a subdomain around the cylinder, the two vertical planes

are now radial and circumferential. In other areas, the mesh is the same as before. A

typical mesh around the cylinder is illustrated in Figure 8.5.2.

Convergence studies have been carried out in a similar way to those in Section 8.3.2,

but the details will not be presented here. The parameters corresponding to the spatial
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and temporal discretisation have also be chosen to ensure that the same degree of

accuracy as that shown in Section 8.3.2 can be maintained.

Figure 8.5.2 Mesh around a cylinder

8.5.1 Interaction between regular waves and a circular cylinder

Effectiveness of the Radiation Condition

As in Section 8.3, the effectiveness of the radiation condition is examined by

comparing the results obtained using different length tanks, but here the different lengths

are established by changing the distance between the cylinder and the far end, Ld. The

cases presented are distinguished by different sizes of the tank and the cylinder, and by

different amplitudes and frequencies of the wave maker. In the first case, a = 0.016 and

w = 1.45. The distance between the wave maker and the centre of the cylinder is taken

as L„,, = 10. Lid = 6 and Lid =16 are used for the shorter and longer tanks,

respectively, and B = 0.5 in both cases. The radius of the cylinder is Ro = 0.05.

F
The force history is shown in Figure 8.5.3, where f = xZ .Figure 8.5.4 illustrates

pgRoa

the time history of the wave runups on the front side of the cylinder surface (- Ro,O) .
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Figure 8.5.3 The time history of the force in the x-direction for a = 0.016 and

co = 1.45 (solid line: shorter tank; dashed line: longer tank)
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Figure 8.5.4 The time history of runup on the front side of the cylinder surface

for a = 0.0 16 and co =1.45 ( solid line: shorter tank; dashed line: longer tank)
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Figure 8.5.5 Snapshots of the free surface at several time steps

It can be seen from these two figures that there is little difference between the results for

the two different values of Lid . Figure 8.5.5 gives the snapshots of the free surfaces at

2n
several time steps, where T =

co
is the wave period. This figure shows that after about
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z = lOT , the wave profile almost repeats itself. All of these indicate that the reflection

from the far end is not significant in this case.

In the second case, the various parameters are specified as a = 0.01, co = 2.0,

Ro = 0.1416, B = 0.62, LN,, = 7.0, L^.d = 5.0 for the shorter tank and L«, = 10.0 for

the longer tank. The obtained forces and wave runups are presented in Figure 8.5.6 and

Figure 8.5.7, respectively. Again the results corresponding to tanks of different lengths

are in good agreement.
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Figure 8.5.6 The time history of the force in the x-direction
for B = 0.62, a = 0.01 and co = 2.0 (solid line: shorter tank;

dashed line: longer tank)
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Figure 8.5.7 The time history of the runup on the front side of the vertical surface
of the cylinder for B = 0.62, a = 0.01 and w = 2.0
( solid line: shorter tank; dashed line: longer tank)

Figure 8.5.8 and Figure 8.5.9 show the results for the same case as the above except

that the amplitude of the wave maker is a = 0.043. The agreement between these two

figures suggests the effectiveness of the radiation condition is retained even when the

wave becomes steeper.

In the third case, most of the parameters retain the same as those for Figure 8.5.6 and

Figure 8.5.7, except that the width of the tank is now taken as B = 1.0, which is bigger.

Similar results are plotted in Figures 8.5.10 and 8.5.11. The agreement between the
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results corresponding to the shorter and the longer tank is also as good as in Figure 8.5.6

and Figure 8 . 5 . 7 .
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Figure 8.5.8 The time history of the force in the x-direction
for B = 0.62, a = 0.043 and co = 2.0 (solid line: shorter tank;

dashed line: longer tank)
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Figure 8.5.9 The time history of the runup on the front side of the vertical

surface of the cylinder for B = 0.62, a = 0.043 and w = 2.0

( solid line: shorter tank; dashed line: longer tank)
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Figure 8.5.10 The time history of the force in the x-direction
for B = 1.0, a = 0.01 and w = 2.0 (solid line: shorter tank;

dashed line: longer tank)

In addition to the above cases, other cases with different frequencies and amplitudes

have been simulated. Although the details are not provided here, they also seem to show
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that the radiation condition used in the previous sections may be effective in many three

dimensional situations.
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Figure 8.5.11 The time history of the runup on the front side of the vertical
surface of the cylinder for B = 1.0, a = 0.01 and cv = 2.0

(solid line: shorter tank; dashed line: longer tank)

Comparisons with an analytical solution based on linear theory

When a vertical cylinder is mounted in the open sea and is subject to a small incident

harmonic wave, an analytical solution was reported by MacCamy & Fuchs (Sarpkaya &

Isaacson, 1981) in the frequency domain based on linear theory. Their solution is used

here for comparison with our numerical results.

Table 8.5.1 Cases for comparison with the analytical solution

R. B RB o W a kR0 symbol in

Fig 8 .5 . 12

0.05 0 .5 10 . 0 1 .45 0 .004 1 0 . 108 0

0 . 1416 1 . 119 7 .9 1 .45 0 .0041 0 .306 0

0 . 1416 0 .62 4 .4 2 .00 0 .0022 0 .566 p

0. 1416 0.90 6 .4 2 .0(} 0 .0022 0.566 i-

0 . 1 75 0.90 5 . 1 2.00 0 . 0022 0. 701
0

0 . 19 0 .90 4 .7 2 .00 0.0022 0.761
0

0.20 0 .90 4 .5 2 .00 0.0022 0 .801 0

Various cases listed in Table 8.5.1 have been simulated for this purpose. In these

cases, different values of k,Ro are obtained by changing the radius of the cylinder and the

wave number k , where k is the soliition of [c)2 = k tanh(k). In order to obtain the

linear force amplitude, Fourier analysis is performed on the time history of the force in
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the periodic state wherein the amplitude of the force does not change significantly from

one period to another. The amplitude of the first component is expressed as Fu . Figure

8.5.12 gives the comparison between the numerical results and the analytical solution of

MacCamy & Fuchs. To be consistent with the data given by Sarpkaya &

Isaacson(1981), the force in this figure has been nondimensionalised to

F" ,where H is the wave height from the trough to the crest,
pgHad [tanh(kd) / kd

which is also determined by Fourier analysis from the wave history but without the

cylinder. It can be seen that the agreement between the numerical and analytical results

is quite good, although a slightly larger difference is observed in the last five cases of

Table 8.5.1. As can be seen from the table, the radii in these cases are relatively larger

but the ratios of the tank width to the radii are relatively smaller. Therefore, the larger

difference in Figure 8.5. 1 2 may be partly due to the effects of the side walls of the tank.

Some comments on these effects wi l l be given in Section 8.6.

F

pgH ad[tan h(kd)/kd^

2 .50
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1 . 50

1 . 00

0 . 50
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+ numerical
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0 .50 1 . 00 1 . 50 2 . 00

kRo

Figure 8.5.12 Comparison of the numerical force in the x-direction
with the analytical solution of MacCamy & Fuchs
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Figure 8.5.13 Forces for different motion amplitudes of the wave maker

co(=1.45 , shorter tank; f =
Fx
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Figure 8.5.14 Forces for different motion amplitudes of the wave maker
Fx

(w = 2.0, short tank; f = )
PgRoQ

Nonlinear effects:

50

Figures 8.5.13 and 8.5.14 are plotted to show the nonlinear effects in the time history

of the wave forces. The motion of the wave maker for the results in Figure 8.5.13 is the

same as in Figure 8.5.3, except that the amplitudes are changed from 0.016 to 0.048, and

the tank is the shorter one. Figure 8.5.14 is obtained by re-plotting the two solid lines in

Figures 8.5.6 and 8.5.8, together with another case of amplitude a = 0.02. No

significant difference between the results in Figure 8.5.13 has been observed. However,

in Figure 8.5.14, the nonlinear effects are clearly visible. That is, the crest is larger than

the trough when the wave becomes steeper. In addition, the transient period of the force

history corresponding to the steeper wave becomes shorter. This implies that the steeper

wave travels faster, reflecting the amplitude dispersion due to nonlinearity as discussed in

Section 8.3.2. To further show the nonlinear behaviour of the wave force, Fourier

analysis on the time history of the force within the periodic stage of Figures 8.5.13 and

8.5.14 is performed. The nonlinear contributions can be obtained by subtracting the first

harmonic component from the total force. Figures 8.5.15 and 8.5.16 depict the nonlinear

contribution, fh , for various cases as well as the corresponding total force in each case.

These figures clearly show that the nonlinear contributions become more and more

important with increase in amplitude of the wavemaker

contributions may account for 20% of the total force.

In some cases, these
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Figure 8.5.15 (b) a = 0.032
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Figure 8.5.15 Nonlinear contributions to the force obtained by Fourier analysis
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Figure 8.5.16 (a) a = 0.01
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Figure 8.5.16 Nonlinear contributions to the force obtained by Fourier analysis
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Figure 8.5.17 The time history of the wave runup on the front side
of the cylinder surface for different amplitudes of the wave maker

(co =1.45145, shortank)

To show the nonlinear effects on waves around the cylinder, the wave runups on the

front side of the cylinder surface are plotted in Figures 8.5.17 and 8.5.I8, corresponding

to Figures 8.5.15 and 8.5.16, respectively. The oscillations with high frequency can be

clearly observed in these figures when the waves become steep. In order to demonstrate

the behaviour of the wave along the entire waterline of the cylinder, some profiles of the
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free surface on the cylinder at several time steps are presented in Figure 8.5.19 and

Figure 8.5.20 for a = 0.01 and a = 0.043, respectively, with the same frequency
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Figure 8.5.18 The time history of wave runup on the front side

of the cylinder surface for different amplitudes of the wave maker

((o = 2.0, shorter tank)
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Figure 8.5.19 Wave profiles on the waterline of the cylinder

at different time steps (co = 2.0 and a = 0.01)

0

w = 2.0. The angle 0 = -180 corresponds to the front side, while 0 = 0' is the lee side

in these figures. Very different wave profiles for small and large amplitudes can be seen

in these two figures. In particular, in Figure 8.5.20, quite steep wave profiles appear,

which are more or less similar to the bores observed in a sloshing tank in Chapter 7.

Stansberg (1997) gave us some figures of waves around a cylinder, plotted using his

experimental data. The wave patterns in their figures are very similar to those at

z = 39.286 and r = 40542 in Figure 8.5.20. Krokstad & Stansberg (1995) also

reported some bore-like waves (named as `hydraulic jumps' in their work) around the
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cylinder observed during their experiments. Precise comparison with their work is

difficult since the information they gave for wave generation is not sufficient for us to

generate identical waves. Nevertheless, the above facts show some similarity between

the numerical simulation and their experimental work when the nonlinearity becomes

evident. However, further comparison with experiments is clearly required in future

work.

To demonstrate the behaviour of the profiles in three dimensions, some `snapshots'

around the cylinder corresponding to Figure 8.5.20 are presented in Figure 8.5.21. The

short and steep waves are more clearly observed around the cylinder surface. This is

certainly due to the nonlinear effects, and these waves may be part of the nonlinear

contribution to the force.
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Figure 8.5.20 Wave profiles on the waterline of the cylinder

at different time steps(o) = 2.0 and a = 0.043)

Figure 8.5.21
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Figure 8.5.21 Snapshots of wave profiles around the cylinder

((o = 2.0 and a = 0.043)

8.5.2 Interaction between a circular cylinder and irregular waves

The same motion of the wave maker as that in Figure 8.4.6 is used to generate

irregular waves. The damping zone and the Sommerfeld condition are applied at the far

end of the tank in the same way as in Section 8.4.2 with the frequency for the radiation

condition being taken as cv = 1.2. As in the regular wave cases, the effectiveness is also

re-examined by comparing results for the different lengths of the tank. The tank

geometry is defined by B = 1.119, L,„, = 13.436 and different distances Lid (L^d = 856

for the shorter tank while Lid =1656 for the longer tank). The cylinder in the tank has

radius Ro = 0.1416. With these specifications, the centre of the cylinder is located at the

same point as that where the wave history in Figure 8.4.7 is recorded. Thus the wave in

that figure can be considered as the incident wave on the cylinder.
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The time histories of the force and the runup on the front side of the cylinder surface

are presented in Figure 8.5.22 and Figure 8.5.23, respectively. Good agreement between

the results using the different tank lengths is shown, confirming that the radiation

condition works well for these cases.
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Figure 8.5.22 The time history of the force in x-direction acting
on the cylinder in irregular waves(Solid line: shorter tank;

Dashed line: longer tank; and f =
FX
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Figure 8.5.23 The time history of the runup on the front side of the cylinder

in irregular waves(Solid line: shorter tank; Dashed line: longer tank)

Furthermore, it can be seen from the two figures that there are two peaks in the time

histories of the force and the runup. The history of the runup is very similar to the wave

history in Figure 8.4.7, that is the amplitudes of the two large peaks are about the same.

However, the time history of the force behaves quite differently, where the second peak

is obviously larger than the first. Moreover, both peaks of the force occur before the

corresponding runup peaks.

Some snapshots of the wave profiles around the cylinder are plotted in Figure 8.5.24.

As in Figure 8.5.21, a short and steep wave is also created here when a larger wave

passes the cylinder. It may also be noticed, by comparing this figure with Figure 8.5.22,
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that when the wave front of the steep wave is travelling half way across the cylinder

surface, the largest peak in force history occurs.
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Figure 8.5.24 Snapshots of the wave profiles

around the cylinder for irregular waves
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8.6 Interaction between waves and two circular cylinders

Two surface-piercing vertical circular cylinders are mounted on the bottom of the

tank, and thus the interaction between the waves and the two cylinders can be

considered. This problem is also of interest to offshore engineering, like the single-

cylinder problem dealt with in previous sections, because the four-cylinder platform

subject to the head sea can be investigated using this model. The main difference

between the problem involving two cylinders and that involving a single cylinder is that

influence of the neighbouring cylinder on the wave loading may exist in the former due to

one cylinder being situated in the diffracted wave field of the other. Considerable effort

has been made to estimate the influence. Some reviews were given by McIver and Evans

(1984) on the linear theory, and by Huang & Eatock Taylor (1997) on the second order

theory. However, there are far fewer results for the multiple cylinders based on the fully

nonlinear theory.

wave

maker

B/2

• --4----- -
Far end

first second

Figure 8.6.1 Sketch of the two-cylinder problem

It is not intended to extensively investigate the interaction between the two cylinders

here. Application of the method developed in this thesis to this problem is to further

validate it and to demonstrate its flexibility. When the numerical method is used for the

two-cylinder problem, no new techniques are required rather than those used for dealing

with the single-cylinder problem, although the mesh generation for the two-cylinder case

is slightly more complicated. For these reasons, the following presentation will be

focused on the numerical results for The case with the various parameters defined as

follows: the frequency and the amplitude of the wavemaker are specified as co = 1.6748

203



and a = 0.004, respectively; two identical vertical circular cylinders of radii Ro = 0.1416

(corresponding to kRo = 0.4) are situated at the centreline of the tank with the distance

(1) between their centres being varied; the distance from the wavemaker to the centre of

the first cylinder is about 6.35 while the distance from the centre of the second cylinder

to the far end is about 5; the width of the tank is set as B = 2.832. All of the given

parameters have been nondimensionalised as in equation 7.4.17. The sketch of the

problem is illustrated in Figure 8.6.1.

A linearised analytical solution for multiple cylinders in the open sea has been

presented by Spring & Monkmeyer (1974) based on the exact formulation, and by

McIver & Evans (1984) based on an approximation. In particular, the latter paper gave

various results for two cylinders. According to the examples presented therein, the

force on the first cylinder is clearly affected due to the presence of the second cylinder,

while the influence of the first cylinder on the second is almost negligible when kl ? 2.

Their solution is used here for comparison with our numerical results. To do so, the

Fourier analysis is performed on the time history of the force in the periodic state to

obtain the first harmonic component.
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Figure 8.6.2 Comparison of the numerical force
on the first cylinder with the analytical solutions

ki
10

The comparison between the numerical results and the analytical solutions is

presented in Figure 8.6.2, where the solid line is for the analytical solution taken from

McIver & Evans (1984). In this figure, X, = Fx, IF, is the ratio of the force (F,) ill

204

1 2 3 4 5 6 7 8 9



the x-direction on the first cylinder to the same force (F,) on a single cylinder. The

numerical results of X, are calculated from the force F1, and FX obtained in the same

tank without the second cylinder. This figure shows that the results agree well with the

analytical solution, although some difference is visible. It should be noticed that the solid

line corresponds to the force in the open sea, and thus the difference may result from the

effects of the walls of the tank. A body of work has been devoted to the effects of the

walls by considering an array of cylinders in a channel, based on the linear theory. One

of the papers is that by Linton and McIver (1996), who used the multipole method and

presented the analytical results for the force on two cylinders against different values of

k2" for 2RJB = 1/ 12 and 21/B = 0.5. They carried out some additional calculations

for the case concerned here, and kindly provided and agreed for us to publish their

results which are also plotted as triangles in Figure 8.6.2. Evidently the numerical force

is closer to the solution of Linton and McIver (1996).

It is also useful to present other results from the numerical simulation, such as the

time history of the force and the wave profiles, but it is not attempted to give all the

results corresponding to different values of k1. In the following, results of this type are

presented only for the case with kl = 2. Figure 8.6.3 illustrates the time history of the

forces on the two cylinders, while Figure 8.6.4 illustrates the time history of the moments

on the cylinders about the bottom of each. The moments are nondimensionalised as

N ti,
where NY is the component of the moment in the y-direction. It can be

PgadRo ,

seen that the shapes of the curve of the moment history are very similar to those of the

force history. For this reason, we present only the force for most cases in this thesis. In

order to illustrate the three dimensional views of the wave in the tank, Figures 8.6.5 and

8.6.6 are plotted. The former shows the wave profiles in the whole tank, while the latter

is the corresponding local view around the cylinders.
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Figure 8.6.5 (c)
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Figure 8.6.5 (d)
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Figure 8.6.5 (e)
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Figure 8 . 6 . 5 (f)

Figure 8.6.5 Snapshots of the wave profiles in whole tank (kl = 2)
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9. CONCLUSION AND RECOMMENDATIONS

In this study, a methodology and the corresponding numerical algorithm have been

developed to simulate the three dimensional interaction between structures and steep

waves by the time marching procedure based on fully nonlinear potential theory. The

main feature is that the boundary value problem at each time step is solved by a finite

element method. The problem is numerically formulated by transforming the Laplace

equation and the boundary conditions of the fluid flow into an integral equation, and by

imposing the equation on tetrahedral elements discretising the fluid domain. On each

element, the unknown velocity potential is simply assumed to be linear, and is determined

by the potential values at the nodes. These nodal values are solved from an algebraic

equation, in which the influence coefficients are easily evaluated, as shown in Chapter 5.

The computer code has been developed during the course of this study and has been

applied to two kinds of wave problems which are of interest to the offshore engineers

and naval architects.

Numerical results have been compared with analytical solutions in several cases and

good agreement has been achieved. The flexibility of the numerical method has been

demonstrated by different computational domains, such as circular domains, rectangular

domains and their combinations. It has also been illustrated by varying different methods

to generate waves, including the initial free surface elevation, the motion of the tank and

the motion of a wave maker, and by dealing with different types of waves: standing

waves, sloshing waves, progressive waves (monochromatic, bichromatic or irregular), or

their combination. All of the results presented in this thesis have been obtained on Alpha

workstations.

In conclusion, the developed methodology based on the finite element method is

shown to be a good alternative to the existing techniques for the simulation of steep

waves. Its accuracy, flexibility and efficiency demonstrated by various numerical

examples appears to be quite favourable.
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9.1 Numerical algorithm

In addition to the numerical formulation of the boundary value problem using the

finite element method, other associated numerical techniques are also discussed. The

technique for the time integration, necessary to update the information on the free

surface, is based on an open trapezoidal rule, in which the information at two time steps

are used. The tests carried out in this work suggests that the scheme works well,

although it is relatively simple.

The fluid velocity is evaluated by a differential method, using the nodal values of the

velocity potential. Various cases tested showed that this method is easy to use and can

give very accurate results. However, the method is suitable only for the type of mesh

used in this thesis.

A patch recovery technique is adopted to postprocess the finite element solutions.

The main idea of the technique is that the velocity is assumed to be fitted by a

polynomial over a patch of elements on the free surface. The coefficients included in the

polynomial are obtained by a least-square method. This technique can improve the

accuracy of numerical results without increasing the number of elements, as shown in

Chapter 5.

The efficiency of the numerical simulation of concern in this thesis largely depends

upon the efficiency of solving the algebraic equations. There are a large number of

techniques available for solving the equations, but the efficiency of each method is indeed

problem-dependent. Application of FEM to steep-wave problems is currently being

investigated. In order to chose an efficient solver, a direct method and an iterative

method with two different preconditioners have been studied and compared with each

other. The results obtained so far suggest that the conjugate-gradient iterative method

with SSOR preconditioner is the most suitable to the problems of concern here. An

artificial coefficient is included in this preconditioner, a proper value of which has been

recommended following numerical tests. Compared to the Choleski factorisation direct

method, the iterative method requires ten times as little CPU time and storage memory in

some cases considered in this thesis.

In order to calculate the hydrodynamic forces (and the moments), an integrated

method is suggested , in which the integration over the body surface is replaced by the

integration over the free surface, the truncated surface (fixed) and the body surface. As
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discussed in Chapter 4, this method can overcome the difficulties associated with treating

the time derivative of the velocity potential, but it can only be used in cases where the

integration over the truncated surface can be conveniently obtained. A direct-force

method is also examined, in which the time derivative of the velocity potential is found

by solving a boundary value problem similar to that for the potential itself. This method

requires a higher computational cost than the former one, but the limitations with the

former do not exist here. The test case used in Chapter 7 shows that these two methods

can give graphically indistinguishable results. The comparisons made in Chapter 8

confirm that the calculated forces agree well with corresponding analytical solutions.

9.2 Application to sloshing waves

The developed method is first applied to simulate sloshing waves, generated either by

the initial free-surface elevation in a circular tank with or without an inner cylinder, or by

the translational motion of a rectangular tank. For the circular tank case, an analytical

solution in time domain is derived based on second order perturbation theory, which

provides a tool for the validation. The numerical results have been compared with this

analytical solution and very good agreement has been found.

For the case of sloshing waves generated by a moving rectangular tank, the obtained

numerical results have been compared with some published data and good agreement has

also been achieved. When simulating the cases in which the tank moves in two and three

directions, some interesting results have been observed. As presented in Section 7.4.3,

the transient waves caused by the vertical oscillation, with an initially prescribed

perturbation in horizontal direction, seem to depend only on the amplitude of the

acceleration of the tank. When the water depth is relatively shallow, the travelling waves

are shown by the numerical simulation. Moreover, in the extremely shallow water, three

dimensional bores with undulations have been seen to occur. All of these demonstrate

significant effects of nonlinearity.

Although these simulations were not directly associated with particular engineering

problems, it seems to be quite straightforward to use the method for the wave motion in

a storage tank and in a reservoir undergoing an earthquake, for the trapped waves in

harbours, and for the liquid motion in a vehicle. It may also be used to simulate the
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motion of the water on deck of ships if the angular motions are included by necessary

extension.

9.3 Application to the interaction between progressive waves and cylinders.

In the second application, the interaction between vertical circular cylinders and

progressive waves is simulated. The wave is generated by a wave maker in a tank. At

the far end (i.e. opposite end to the wave maker), the radiation condition is modelled by

the combination of the damping zone and the Sommerfeld condition. The artificial

viscous coefficient included in the damping zone is optimised and is related to the

frequency by a fitted formula, and thus the coefficient can be automatically evaluated

when the frequency is specified. The numerical results have shown that the reflection

from the far end is negligible in various cases tested, including not only monochromatic

waves but also bichromatic and narrow-band irregular waves.

The nonlinearity has been examined by comparing waves generated by different

amplitudes of the wavemaker. It is shown that when the amplitude is sufficient large, the

so-called amplitude-dispersion phenomenon can be observed in addition to the troughs

and crests becoming flat and sharp, respectively.

The forces have been evaluated for cases where one or two cylinders subject to the

generated waves are involved. When the wave is small, the obtained forces agree very

well with published analytical solutions. The nonlinear effects on the forces are

investigated by using Fourier analysis and the nonlinear contribution is clearly

demonstrated in several cases.

The numerical results have shown that when the incoming wave is large enough, very

steep local waves (somewhat like bores) may appear around the cylinder due to the

nonlinear effects. These local waves seems to contribute to the nonlinear behaviour of

the force.

In this work, some preliminary results for the interaction between cylinders and

waves have been obtained. However, these results indicates that it may be possible to

apply the developed method to many practical problems like the evaluation of ringing-

loading on monotower platforms and four-leg fixed structures. It could also be used to

study the interaction between the columns of the two- or four-leg structures under head

seas.
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9.4 Recommendations

With respect to future work on the development and extension of the numerical

method, the following is recommended:

1). Structured meshes have been used throughout this thesis. They can lead to good

results and can be generated very efficiently. In order to simulate more complicated

situations, such as breaking waves, more sophisticated mesh-generation techniques

should be employed. Adaptive meshes based on an octree technique, as discussed by

Greaves (1995), may be an appropriate option.

2). The method for computing the velocities suggested in Chapter 5 appears to be quite

accurate and efficient, as demonstrated in various cases. Nevertheless, this method may

not be applicable when unstructured meshes are used and when extremely steep waves or

breaking waves are simulated. Galerkin formulation for the velocities or a least-square-

based method may be suitable for these cases, as suggested and used by Wu and Eatock

Taylor (1994) for two dimensional cases. However, their efficiency and accuracy should

be investigated for three dimensional cases.

3). Although the numerical results have been compared with some analytical solutions

and with some experimental data quantitatively and qualitatively, further validation using

experiments are desired, particularly for cases with strong nonlinear effects such as the

bores with undulations and local waves around cylinders.

4). All of the test cases were confined to a tank. The extension to problems in the open

sea may be possible by applying a similar radiation condition discussed in Chapter 8 to all

truncated boundaries.

5). The methodology may also be extended to investigate other problems in many fields

of research. One of these is the interaction of the steep waves with moving bodies, such

as TLPs, ships and mooring storage tanks. Similar wave problems with viscous effects

could be considered by applying the finite element method to the Navier-Stokes

equations. Other moving boundary problems, such as two phase fluid flow, could also

be possible extensions of this method.
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APPENDIX A

Transformation Matrix

Here, the transformation matrix from one Cartisian coordinate system to another will

be derived based on Euler angles. Furthermore, the relationship between angular

velocity and Euler angles as well as their derivatives will also be given. A similar

procedure to that mentioned by Marion(1965) will be employed.

For convenience, we define another coordinate system o, x, y, z, which is moving with

translation. Its origin is the same as that of Ob Xb yg Zb , and x, -, y, - and z, - axis is

parallel to x-, y- and z-axis respectively, at all times. It is apparent that this system

coincides with o,, x,, ybz,, when the body is at rest. However, they will not coincide

generally if the body has rotation, as shown in Figure A. 1.

Suppose that o,x,y,z, can be transformed to ObXbYbZb by the following three

successive rotations:

(1) The first rotation is about the x, -axis (o, x, y, z, to o, x;y;z;) by an angle a. After the

rotation, z,'-axis lies in a plane determined by x, -axis and zb -axis, as shown in Figure

A.2. The transformation relationship is

x, 1 0 0 x; x;

Y1 = 0 cos a - sin a y; _ IT, I Y (A.1.1)

Z, 0 sina cosa z; z;

(2) The second rotation is about the y'-axis (o, x;y;z; to o, x;'y;'z;') by an angle (3

which transforms the z; -axis to the zb -axis, as shown in Figure A.3. Then the

transformation relationship is:

X; cos 0

Y' = 0 1

z; - sin /3 0

sin Q x;' x;'

0 Yip [Tz^ Yip

COS Z" Z,
',

(A. 1.2)
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(3) The final rotation is about the z;^ -axis (that is z,, -axis) by an angle 'y to transform

x -axis ( or -axis) to x,, -axis( or y,, -axis), as shown in Figure A.4. The

transformation relationship is

x cosy -sing 0 x,, Xb

y;' = sin y cos y 0 yh = [7'.1] Yb
z 0 0 1 zn Zn

(A. 1.3)

where a, (3 and y are called Euler angles. The combined transformation matrix from

o,x, yIzI to o,,xbybzb is then:

[T] - LT ][Tz ][T3 1 -

Substituting equations (A.1.1)-(A.1.3) into equation (A.1.4), it follows that

(A.1.4)

cos Qcos y - cos 0 sin y sin 0

[T]= sin a sin pcos y + cos a sin y - sin a sin gsin y + cos a cos y - sin a cos /3

- cos a sin j3 cos y + sin a sin y cos a sin /3 sin y + sin a cos y cosa cos Q

The matrices in equations (A.1.1) to (A.1.3) have the following properties:

[Ti J ^ - LT J (i -1,2,3)

Inverse transpose

and therefore

LTA ' - L TA

(A. 1.5)

(A. 1 .5)

Noting that the systems ox,Y,zl and oxyz are linked through the following relationship:
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-i Xc XI

y = Y, + Y,

Z ZC z,

one can obtain

x xC Xb

y = y, + [T] A
z zC Zb

(A.1.6)

(A.1.7)

Next we will find the relationship between the angular velocity 92 and the Euler

angles as well as their derivatives. It is noted that, similarly to the finite rotation above, a

general infinitesimal rotation associated with the angular velocity S2 can also be

considered as consisting of three successive infinitesimal rotations with angular velocities

a, fi and y . Therefore the angular velocity 92 can be determined by the sum of the

three separate angular velocity vectors

(A . 1 . 8 )

where d, /3 and Y are in the direction of x, -axis, v'-axis and Zb -axis, respectively,

as shown in Figure A.2 to A.4. From the rotational process discussed above, d, f3 and

y can be written in the moving system obxb ybzb as:

a, a

a, 0

0

02 1 T3 1 21

t]3 3 J O
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0

Y,

So that

a cos Q cos y + /3 sin y

SZZ = Pcos y - a cos Q sin y

S23 y+(x sinp

Finally, the expression for
d [fl

used in
dt

dl
[T]-' = [T] the term dt can be written as

dT

dt

d [fl dT
dt dt

dT,,

dt

where

dTZ

dt

dTZZ

dt

dT,,

dt

dT,

dt

dTZ3

dt

dT,3

dt

(A. 1.9)

Section 3.4 is deduced. Since

Al ` _0
dt

sin /3 cos y - y cos (3 sin y ,

A
1 2 = a(cosa sin P cos y - sin a sin y) + /3 sin a cos /3 cos y

dt

+ y(cos a cos y - sin a sin P sin y),

Al 3 _ a(sin a sin /3 cos y + cos a sin y) - ^ cos a cos J3 cos y
dt

+ y(cos a sin P sin y + sin a cos y),

dT21 _^
dt

sin/isiny - ycosP cosy,

229



clT„
_ -a(cosasin /3siny+sinacosy)- (3 sin acosQsiny

(it

- y(sin a sin J3 cos y + cosa sin y),

dT,3
= a(cosa cosy - sin a sin /3sin y) + J3cosacos (3 sin y

dt

+ y(cos a sin Q cos y - sin a sin y),

dTj,
= ^ cos p,

dt

-a cos a cos /3 +^̂3sin a s f3
dt

and

dT13 _ _a sin a cos /3 - /^ cos a sin 13.
dt
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APPENDIX B

Integral Involving the Normal Velocity on a Rigid Boundary

In this appendix, the expression (5.5.10) will be derived. It is assumed that element

ek includes node I and has a common surface (triangle ij-m) with S„ , as shown in the

following figure.

i (1)

P

Figure B.1 Element ek and local coordinate system

For convenience, a local coordinate system osxsys, in the same plane as the triangle i-

j-m, is established in Figure B.1 with the origin os being defined in such a way that:

(B . 1)

where
(X,;, y.,;), (x5.,, ys; ) and (xsM, YS„, ) are the coordinates of node i, j and m in the

local system, respectively. On the triangles' surface, a two dimensional shape

function is defined in the manner:

pie` 2O (asr + bsr xs + cs; YS) (i = i, j, m) , (B.2)

232



where d (corresponding to4,Sr in equation 5.510) is area of the triangle ij-gyn. The

coefficients in (B.2) are determined as:

ZD
ct ,. ; = 3

From equations (B.2) and (B.3), it can be verified that:

eA 1

P = 0
(xs + YS ) = (xs;,Ysr )

(XS I YI) = (Xv, Yv ),(Xsnl I YS"I
i # j,m

(B.3)

(B.4)

and

4A
b.T, Xs, + c .r , Y .,r = 3

20
bar z.^; + cs'Ys; - - 3

20

(B . 5)

As both N;`t in Section 5 . 5 and Pi t here are linear functions, and because both

equations (5 .4 . 7) and (B . 4) hold, the two shape functions must be equal on the triangular

surface i-j-m . Therefore the integration on Ni" can be replaced by the integration on

P. `° over the surface ij-m.

Next we consider the following integral over the surface ij-m:

ff f
P rk P^, ^^Sdys =

1
4aZ fJ

[a s; a i +(a s; bj +as;b=;)x+k;cj +as;Cs,) y
(B.6)

(b31b5jxs + cs; csjys
) + (b51c51 + bs; cs; )xy ^dxs dys

With the use of the following identities (see Zienkiewicz & Taylor 1994):
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ff x.sdx, dY., = ff x.rdz,d_yt = 0
i- J -n i

2 (X2 + X2 + X2,

12 -v'

ff

0(
Si SM12.,.

00

f Xs ysdX.r dY.,^ = 12 (xsi yx i + xsj ysj

+ x ,,,,

yxm ) +

i - 1 - m

and equation (B.5), one can obtain

O
i=j

if P.`4 Pi" dxrdy,
6

j,m

12

(B.7)

(B.8)

In order to calculate B;Z , it is assumed that fn on the triangle ij-m is linear, and can

be expressed as:

on the surface ij-m .

Using equation (B.8), it follows that:

(B.9)

ff Nor` .fndx,dYs =
ff

Pr` .fndxsdvs =
A

`fn l ; + `fn J; + `fj,,, (B.10)
3 2 4 4i-J-m i-J-nt

If f„ is assumed to be constant, i.e. (fn)1 = (fn)j = (f.)m equation (B.10) then

becomes

e
ff Nye;

fndx
sdY s

ff P
ek
fndXsdY s - 3 fn

^-l-m i-1-m

(B.11)
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APPENDIX C

Interpolation in a Triangle on the Free Surface

Here, the interpolation in a triangle on the free surface will be discussed. Suppose

the nodal values (q,, qZ, q,) of a function q(x,y,z) are known on the triangle a,a2a3

which is part of the free surface, as shown in Figure C.l below, where a^aZa; represents

the projection of a,a,a; on the oxy plane.

a,
z

a,

• a3

• Y
a,

a
ax s

Figure C. 1

Similar to the interpolation in an element, the function q(x, y, z) is assumed to be a

linear function over the triangle. Noting that a flat triangle itself can be expressed as

z = z(x, y) which is also a linear function, q(x, y, z) can therefore be rewritten as

q(x, y). Since q(x, y) is a linear function, the interpolation in the triangle a,a2a3 can be

performed in the triangle aia;a;

Let pj (x, y) = a J + 0 jx + yj y be the interpolation function; then q(x, y) is written

as

3

i=1

where pj (x, y) should satisfy:
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I i= j

J

in order to ensure q(x,,;, yJ = q; . From equation (C.2), one can obtain

1
ar = 24 (X;Yni - Y;xn,

^r - 24 \Y' Y„^

2A
(Xi - x

(i, j, m = 1, 2, 3)

where d is the area of the triangle a;a2a3 . The interchange order is:

M

Equation (C.1) can be rewritten in another form, namely:

q(x, y) = a +bx +cy ,

where

a ai Qi Yi 4i

b = a2 ^ Yz q2

C a3 N3 73 q 3

( C . 2 )

(C.3)

(C.4)

(C.5)

Equation (C.4) is frequently used in Chapter 5.

It is should be noted that the above interpolation is not valid when the triangles are

perpendicular to the oxy plane. This situation corresponds to the angle of the wave slope

equal to 900. This case is not considered in this work.

U
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