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Abstract. The rise of the Internet facilitates an ever increasing growth of virtual, i.e. digital 

spaces which co-exist with the physical environment, i.e. the physical space. In that, the 

question arises, how physical and digital space can interact synchronously. While sensors 

provide a means to continuously observe the physical space, several issues arise with respect to 

mapping sensor data streams to digital spaces, for instance, structured linked data, formally 

represented through symbolic Semantic Web (SW) standards such as OWL or RDF. The 

challenge is to bridge between symbolic knowledge representations and the measured data 

collected by sensors. In particular, one needs to map a given set of arbitrary sensor data to a 

particular set of symbolic knowledge representations, e.g. ontology instances. This task is 

particularly challenging due to the vast variety of possible sensor measurements. Conceptual 

Spaces (CS) provide a means to represent knowledge in geometrical vector spaces in order to 

enable computation of similarities between knowledge entities by means of distance metrics. 

We propose an approach which allows to refine symbolic concepts as CS and to ground 

ontology instances to so-called prototypical members which are vectors in the CS. By 

computing similarities in terms of spatial distances between a given set of sensor measurements 

and a finite set of CS members, the most similar instance can be identified. In that, we provide 

a means to bridge between the physical space, as observed by sensors, and the digital space 

made up of symbolic representations.  

Keywords: Conceptual Spaces, Sensor Data, Virtual Space, Ontology. 

1 Introduction 

The rise of the Internet facilitates an ever increasing growth of virtual, i.e. digital 

spaces – distributed digital data which is loosely connected through cross-references, 

for instance hyperlinks, and which forms a set of distinct coherent information spaces 

which co-exist with the physical environment, i.e. the physical space. While the 

notion of digital space is often applied to virtual networking environments such as 

MySpace1 or SecondLife2, our definition of the term comprises any kind of structured 

                                                           
1 http://www.myspace.com 



knowledge or information space on the Web, whether it is made up of data stored via 

XML or relational database models, or structured linked data, formally represented 

through Semantic Web (SW) standards such as OWL [28] or RDF [29].  

In that, the question arises, how physical and digital space can interact 

synchronously, what is particularly important when considering the fact that digital 

spaces in many cases represent physical ones, and hence, evolution of the physical 

space requires synchronous evolution of the digital one and vice versa.  

Current and next generation wireless communication technologies encourage 

widespread use of well-connected sensor-driven devices which in fact produce sensor 

data by observing and measuring physical environments. This has already lead to 

standardization efforts, such as the ones by the Sensor Web Enablement Working 

Group3 of the Open Geospatial Consortium (OGC)4. While sensors provide a means 

to continuously observe physical environments, several issues arise with respect to 

mapping sensor data to digital spaces, i.e. knowledge representations as described 

above. 

Whereas sensor data usually relies on measurements of perceptual characteristics 

to describe real-world phenomena, knowledge representations represent real-world 

entities through symbols. The symbolic approach – i.e. describing symbols by using 

other symbols, without a grounding in perceptual dimensions of the real world – leads 

to the so-called symbol grounding problem [12] and does not entail meaningfulness, 

since meaning requires both the definition of a terminology in terms of a logical 

structure (using symbols) and grounding of symbols to a perceptual level [3][17]. 

 In that, the challenge is to bridge between formal symbolic knowledge 

representations and the measured data collected by sensors by mapping a given set of 

arbitrary sensor data to a particular set of symbolic representations. This task is 

particularly challenging due to the vast variety of possible data sets.  

Conceptual Spaces (CS) [10] follow a theory of describing knowledge in 

geometrical vector spaces which are described by so-called quality dimensions to 

bridge between the perceived and the symbolic world. Representing instances as 

vectors, i.e. members in a CS provides a means to compute similarities by means of 

spatial distance metrics.   

We propose a two-fold knowledge representation approach which extends 

symbolic knowledge representations through a refinement based on CS. This is 

achieved based on an ontology which allows to refine symbolic concepts as CS and to 

ground instances to so-called prototypical members, i.e. prototypical vectors, in the 

CS. The resulting set of CS is formally represented as part of the ontology itself. By 

computing similarities in terms of spatial distances between a given set of sensor 

measurements and the finite set of prototypical members, the most similar instance 

can be identified. In that, our approach provides a means to bridge between the real-

world - as observed and measured by sensor data - and symbolic representations 

within the digital space. 

The remainder of the paper is organized as follows: Section 2 introduces the 

symbol grounding problem in the context of sensor data, while our representational 

                                                                                                                                           
2 http://www/secondlife.com 
3 http://www.opengeospatial.org/projects/groups/sensorweb 
4 http://www.opengeospatial.org/ 



approach based on CS is proposed in Section 3. In Section 4, we introduce an 

application to a use case in the medical domain. Finally, we discuss and conclude our 

work in Section 5.  

2 Sensor Data, Symbol Grounding and Spatial Representations 

This section motivates our approach by introducing the so-called symbol grounding 

problem in the context of our work and introduces some background knowledge on 

metric-based spatial knowledge representation. 

2.1. Sensor Data and the Symbol Grounding Problem 

Sensor data usually consists of measurements which describe observations of 

phenomena in real-world environments. In order to ensure a certain degree of 

interoperability between heterogeneous sensor data, recent efforts, such as the 

OpenGIS Observations and Measurements Encoding Standard (O&M)5, propose a 

standardized approach to represent observed measurements based on a common XML 

schema. However, in order to provide comprehensive applications capable of 

reasoning in real-time on observed phenomena in the physical space, i.e. the 

contextual knowledge produced by sensor-driven devices, one needs to bridge 

between the measurements provided by sensors and the formally specified knowledge 

as, for instance, exploited by the Semantic Web [24]. Figure 1 illustrates the desired 

progression from observed real-world phenomena, e.g. a certain color, to 

measurements provided by sensors, for instance, measurements of the hue, saturation 

and lightness (HSL) dimensions, to symbolic knowledge entities such as a particular 

OWL individual representing a specific color.   

...

<owl:Class rdf:ID="Color">

<rdfs:subClassOf>

<owl:Class rdf:ID="PhysicalQuality"/>

</rdfs:subClassOf>

</owl:Class>

<Color rdf:ID="Lilac"/>

...

01010010100… {211; 169; 127}

11100010001… {228; 197, 8}

10001110100… {237; 177; 73}

Observed real-world 

parameter (e.g. color)

Sensor-data based on measurements

(e.g. HSL values)

Ontological Knowledge

(e.g. OWL individual of particular color)  

Fig. 1. Envisaged progression from observations in the physical space to ontological 

representations through sensor data.  

However, whereas sensor data usually relies on measurements of perceptual 

characteristics to describe phenomena in the physical space, ontological knowledge 

presentations represent real-world entities through symbols what leads to a 

representational gap. Hence, several issues have to be taken into account. The 
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symbolic approach – i.e. describing symbols by using other symbols, without a 

grounding in the real world or perceptual dimensions what is known as the symbol 

grounding problem [12] – of established SW representation standards, leads to 

ambiguity issues and does not entail meaningfulness, since meaning requires both the 

definition of a terminology in terms of a logical structure (using symbols) and 

grounding of symbols to a perceptual level [3][12]. Moreover, describing the complex 

notion of any specific real-world entity in all its facets through symbolic 

representation languages is a costly task and may never reach semantic 

meaningfulness.  

Hence, in order to bridge between physical and digital space, the challenge is to 

map a given set of sensor observation data to semantic (symbolic) instances which 

most appropriately represent the observed physical entity within an ontology. In this 

respect, it is particularly obstructive that a vast amount of real-world phenomena, i.e. 

measurement data, needs to be mapped to a finite and much less comprehensive set of 

knowledge representations, e.g. ontological concepts or instances.    

2.2. Exploiting Measurements through spatial Knowledge Representations 

Sensor data usually consists of sets of measurements being observed from the 

surrounding environment in the physical space. In that, spatially oriented approaches 

to knowledge representation which exploit metrics to describe knowledge entities 

naturally appear to be an obvious choice when attempting to formally represent sensor 

data. Conceptual Spaces (CS) [10] follow a theory of describing entities in terms of 

their quality characteristics similar to natural human cognition in order to bridge 

between the perceived and the symbolic world. CS foresee the representation of 

concepts as multidimensional geometrical Vector Spaces which are defined through 

sets of quality dimensions. Instances are supposed to be represented as vectors, i.e. 

particular points in a CS. For instance, a particular color may be defined as point 

described by vectors measuring HSL or RGB dimensions. Describing instances as 

points within vector spaces where each vector follows a specific metric enables the 

automatic calculation of their semantic similarity by means of distance metrics such 

as the Euclidean, Taxicab or Manhattan distance [15] or the Minkowsky Metric [25]. 

Hence, semantic similarity is implicit information carried within a CS representation 

what is perceived as one of the major contribution of the CS theory. Soft Ontologies 

(SO) [14] follow a similar approach by representing a knowledge domain D through a 

multi-dimensional ontospace A, which is described by its so-called ontodimensions. 

An item I, i.e. an instance, is represented by scaling each dimension to express its 

impact, presence or probability in the case of I. In that, a SO can be perceived as a CS 

where dimensions are measured exclusively on a ratio-scale.  

However, several issues have to be taken into account. For instance, CS as well as 

SO do not provide any notion to represent any arbitrary relations [23], such as part-of 

relations which usually are represented within symbolic knowledge models. 

Moreover, it can be argued, that representing an entire knowledge model through a 

coherent CS might not be feasible, particularly when attempting to maintain the 

meaningfulness of the spatial distance as a similarity measure. In this regard, it is 



even more obstructive that the scope of a dimension is not definable, i.e. a dimension 

always applies to the entire CS/SO [23]. 

3 Grounding Ontological Concepts in Conceptual Spaces  

We propose the grounding of ontologies in multiple CS in order to bridge between the 

measurements provided by sensor-driven devices and symbolic representations of the 

SW.  

We claim that CS represent a particularly promising model when being applied to 

individual concepts instead of representing an entire ontology in a single CS. By 

representing instances as so-called prototypical members in CS, arbitrary sensor-data 

can be associated with specific ontology instances in terms of the closest – i.e. the 

most similar – prototypical member representation. 

We propose a two-fold representational approach – combining SW vocabularies 

with corresponding representations based on CS – to enable similarity-based 

matchmaking between a given set of sensor data and ontological representations. In 

that, we consider the representation of a set of n concepts C of an ontology O through 

a set of n Conceptual Spaces CS. Instances of concepts are represented as prototypical 

members in the respective CS. The following Figure 2 depicts this vision: 

 

Instance I1j Instance I1i 

Concept C1x 
is-a 

refined-as-cs 

refined-as-prototypical-member refined-as-prototypical-member 

d1 

d2 

d3 

is-a 

Ontology O1 

Conceptual Space CS1x  

Fig. 2. Representing ontology instances through prototypical members in CS. 

While benefiting from implicit similarity information within a CS, our hybrid 

approach allows overcoming CS-related issues by maintaining the advantages of 

ontology-based knowledge representations and provides a means to ground 

knowledge entities to cognitive dimensions based on measurements. To give a rather 

obvious example, a concept describing the notion of a geospatial location could be 

grounded to a CS described through quality dimensions such as its longitude and 

latitude. In previous work [4][5], we provided more comprehensive examples, even 

for rather qualitative notions, such as particular subjects or learning styles.  

Provided our refinement of ontology concepts as CS and of instances as 

prototypical members, a given set of sensor data which measures the quality 

dimensions of a particular CSi represents a vector v in CSi which can be mapped to an 

appropriate ontology instance I in terms of the spatial distance of the prototypical 

member of I and v.  Figure 3 illustrates the approach based on the color example 



introduced in Section 2.1. While measurements obtained from sensors are well-suited 

to be represented as vectors, i.e. members, in a CS, we facilitate similarity-based 

computation between a given set of sensor data and sets of prototypical members 

which represent ontological instances. For instance, the example in Figure 3 depicts 

the utilisation of a CS based on the HSL dimensions to map between color 

measurements obtained through sensors and prototypical members representing 

certain color instances. Based on the spatial distance between one measured color 

vector and different prototypical members, the closest vector, i.e. the most similar one 

is identified. In that, CS provide a means to bridge between observed sensor data and 

symbolic ontological representations. 

 L 

S 

H 

...

<owl:Class rdf:ID="Color">

<rdfs:subClassOf>

<owl:Class rdf:ID="PhysicalQuality"/>

</rdfs:subClassOf>

</owl:Class>

<Color rdf:ID="Lilac"/>

...

01010010100… {211; 169; 127}

11100010001… {228; 197, 8}

10001110100… {237; 177; 73}

Similarity-based mapping through 

Conceptual Color Space

Sensor-data based on measurements

(e.g. HSL values)
Ontological Knowledge

(e.g. OWL individual of particular color)  

Fig. 3. Similarity-based mapping between distinct sets of sensor-based color measurements and 

ontological color instances based on a common CS using the HSL dimensions.    

In order to be able to refine and represent ontological concepts through CS, we 

formalised the CS model into an ontology, currently being represented through 

OCML [16]. Hence, a CS can simply be instantiated in order to represent a particular 

concept.   

Referring to [10][21], we formalise a CS as a vector space defined through quality 

dimensions di of CS. Each dimension is associated with a certain metric scale, e.g. 

ratio, interval or ordinal scale. To reflect the impact of a specific quality dimension on 

the entire CS, we consider a prominence value p for each dimension. Therefore, a CS 

is defined by  

( ){ }ℜ∈∈= iinn

n pCSddpdpdpCS ,,...,, 2211
 

where ℜ  is the set of real numbers. However, the usage context, purpose and domain 

of a particular CS strongly influence the ranking of its quality dimensions. This 

clearly supports our position of describing distinct CS explicitly for individual 

concepts. Please note that we do not distinguish between dimensions and domains 

[10] but enable dimensions to be detailed further in terms of subspaces. Hence, a 

dimension within one space may be defined through another CS by using further 

dimensions [21]. In this way, a CS may be composed of several subspaces and 

consequently, the description granularity can be refined gradually. Dimensions may 

be correlated. For instance, when describing an apple the quality dimension 

describing its sugar content may be correlated with the taste dimension. Information 

about correlation is expressed through axioms related to a specific quality dimension 

instance. 

A particular (prototypical) member – representing a particular instance – is 

described through a vector ( )nvvv ,...,, 21
 in the CS   



( ){ }MvvvvM in

n ∈= ,...,, 21
 

where M is set of the valued dimensions vi of the CS. 

With respect to [21], we define the semantic similarity between two members of a 

space as a function of the Euclidean distance between the points representing each of 

the members. Hence, given a CS definition and two members v and u defined by 

vectors v0, v1, …,vn and u1, u2,…,un of vector sets V and U, within CS, the distance 

between V and U can be calculated as: 

∑
=

−=
n

i

ii vzuzvud
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22
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where z(ui) is the so-called Z-transformation or standardization from ui. Z-

transformation facilitates the standardization of distinct measurement scales which are 

utilized by different quality dimensions in order to enable the calculation of distances 

in a multi-dimensional and multi-metric space. The z-score of a particular observation 

ui in a dataset is calculated as follows: 

u

i
i

s
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where u  is the mean of a dataset U and su is the standard deviation from U. 

Considering prominence values pi for each quality dimension i, the Euclidean distance 

d(u,v) indicating the semantic similarity between u and v can be calculated as follows: 

∑
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For a detailed description of a formal procedure on how arbitrary ontologies can be 

represented through CS, please refer to [7]. 

4 Use Case: Bridging between Sensor Data and Ontologies in the 

Medical Domain 

Within the medical domain, the traditional reasoning is based on (a) retrieving 

(diagnostic) measurements, then (b) classifying measurements along exemplary 

diagnostic values. The measurements can be directly mapped to prototypical members 

of a CS in order to map arbitrary measurements to classifications within a medical 

ontology O. Much effort is invested in building medical ontologies. For example, 

SNOMED CT [13] is a medical ontology that contains within its English version 

more than 300000 concepts, 900000 descriptions and 1300000 relations with 

increasing tendency. To reduce ambiguities in medicine it is essential to solve the 

symbol grounding problem. However, for most medical areas an adequate formal 

framework for this does not exist. Therefore we recommend that the development of 

formal descriptions is considerably intensified, so that more and more medical 

concepts are based on reproducible measurement results in order to improve the 

accurateness of medical diagnostics. In this Section, we refer to a use case of 

cephalometric diagnostics [1][22] in Orthodontics to illustrate how medical ontologies 



can be based on well defined CS in order to bridge between medical sensor 

measurements and symbolic medical data. 

It is well established that the Cephalometric Analysis [1][22] provides useful 

guidelines in orthodontic diagnosis and treatment planning. Here, lateral skull 

radiographs are taken under standardised conditions and multiple measurements are 

retrieved from them, as depicted in Figure 4. 

 

 
Fig. 4. From diagnostic measurements (here: results of Cephalometric Analysis) to ontological 

representations by orthodontic classifications. 

 

We select 6 frequently performed cephalometric angle measurements as dimensions 

of a 6-dimensional CS which represents their possible combined measurement results: 

( ){ }AaaaaACS i ∈== ,,...,, 621

6  

Here, A is a limited interval { }18090 ≤≤−= xxA  for representation of angles. Table 

1 shows for each dimension { }6,...,2,1, ∈iai
 the conventional name of the 

measurement and the proposed metric scale, data type and value range. 
 

Table 1. CS A
6
: Name, metric scale, range and data type of quality dimensions.  

 
ai Name Quality Dimension Metric Scale Data Type Range 

a1 SNA Angle:  Maxilla position Interval Float 0..+180 

a2 SNB Angle: Mandible position Interval Float 0..+180 

a3 Ar-Go-Me Angle: Mandible growth  Interval Float 0..+180 

a4 NL-NSL Angle: Maxilla inclination Interval Float -90..+90 

a5 ML-NSL Angle: Mandible inclination  Interval Float -90..+90 

a6 IOK-IUK Angle: Interincisal angle Interval Float 0..+180 

 

For every dimension ai there is an interval with SVi being frequently used standard 

values. Depending on the measured angle (i.e. “below SVi”, “within SVi” or “above 

SVi”) there are three possible diagnostic classifications for each dimension which 

were considered when representing prototypical members. Let 
iB  denote the medical 

ontology which contains the three diagnostic classifications of dimension i as 

concepts and let O denote the ontology which contains all possible combinations: 

( ){ }ii BbbbbO ∈= ,,...,,: 621
. 

... 

<owl:Class rdf:ID="Cephalogram"> 

 <rdfs:subClassOf> 

  <owl:Class rdf:ID="MedDiagnostics"/> 

 </rdfs:subClassOf> 

</owl:Class> 

<Cephalogram rdf:ID="MaxRetrognathia"/> 

... 

- Example for diagnostic 
measurements in medicine: 

Cephalometric Analysis 

Some measurement results 
(cephalometric angles in degree) 

Ontological Knowledge (e.g. classification 
"maxillary retrognathia" due to SNA < 80) 

SNA:  79.00 

SNB:  76.22 

Ar-Go-Me:  116.75 

NL-NSL:  3.93 

ML-NSL:  29.49 

IOK-IUK:  136.46 

... 



Now we can define for every instance Oc∈  a prototypical member 
6

621 ),...,,( Aaaau ∈=  by defining its dimensions 
621 ,...,, aaa  as listed in Table 2. The 

table contains the interval with standard values in the form SVi=Mi±si. We define 

prototypical members with ai=Mi-2si for an angle below SVi, ai=Mi for an angle 

within SVi, ai=Mi+2si for an angle above SVi. Note that from these three possibilities 

the value ai=Mi is nearest to the angle if and only if the angle is within SVi= Mi±si. In 

that, a close distance to Mi-2si, Mi, or Mi+2si indicates either "below SVi", "within 

SVi" or "above SVi". Because of these three possibilities (concepts), for each 

dimension there are 3
6
=729 prototypical members in CS A

6
 to represent all 729 

diagnostic combinations respectively instances Oc∈ . 

 
Table 2. Values of dimensions ai of prototypical members in case of certain diagnostic 

classifications from the ontology Bi . SV are frequently used standard values  

 
ai SVi Angle below SVi Angle within SVi Angle above SVi 

a1 82 ± 2 Maxillary retrognathy: 

a1= 78 

Normal finding  

of SNA: a1= 82  

Maxillary prognathy:  

a1= 86 

a2 80 ± 2 Mandibular retrognathy: 

a2= 76 

Normal finding 

of SNB: a2= 80  

Mandibular prognathy: 

a2= 84 

a3 126 ± 10 Horizontal growth: 
a3=106 

Normal finding of 
Ar-Go-Me: a3=126 

Vertical growth: 
a3=146 

a4 8.5 ± 3 Anterior incl. of maxilla: 
a4=2.5 

Normal finding 
of NL-NSL: a4=8.5 

Posterior incl. of maxilla: 
a4=14.5 

a5 32 ± 6 Anterior incl. of mandible: 

a5=20 

Normal finding 

of ML-NSL: a5=32 

Posterior incl. of mandible: 

a5=44 

a6 131 ±6 Proclined incisors: 

a6=119 

Normal finding 

of IOK-IUK: a6=131 

Retroclined incisors: 

a6=143 

 

For example, in case of only normal findings (all angles are within SVi) the 

prototypical member would be CSu ∈= )131,32,5.8,126,80,82( , in case of e.g. 

"Mandibular prognathy", "Vertical growth" (and else normal findings) it would be 

CSu ∈= )131,32,5.8,146,84,82( . Vice versa, based on the prototypical members 

described in Table 2, similarity computation in A indicates that the member 

CSv ∈= )46.136,49.29,93.3,75,116,22.76,79(  which represents measurements of the 

patient in Figure 4, is closest to the prototypical member 

CSu ∈= )131,32,5.4,126,76,78(  which represents the classification "Maxillary 

retrognathy", "Mandibular retrognathy", "Anterior incl. of maxilla" and else normal 

findings. 

The example above illustrates the applicability of our proposed approach to bridge 

between sensor measurements and symbolic representations in the medical domain. 

However, the authors are aware that precise diagnostics in general require more 

complex CS descriptions to consider all  parameters which are relevant for therapeutic 

decisions. Also the standard values (SVi) of the example are averages which could be 

refined and adapted to the individual situation, e.g. by considering the ethnic ancestry 

and age of the patient. Nonetheless, with growing medical data sources, such as [18], 



medical diagnostics could be improved significantly by means of automated 

multidimensional similarity-computations which allow to bridge the gap between 

multiple medical sensor measurements and the medical knowledge captured in 

symbolic representations.  

5 Discussion and Conclusions  

In order to address the blending of physical and digital space we targeted the 

convergence of sensor data and formal knowledge representations as part of the 

Semantic Web. In that, we proposed a representational model which grounds 

ontological representations in CS to overcome the symbol grounding problem. While 

ontological instances are represented as prototypical members within a CS, arbitrary 

sensor data which measures the dimensions of the CS can be associated with the most 

appropriate instance by identifying the most similar, i.e. the closest, prototypical 

member to the vector which represents the sensor data. Our approach is facilitated 

through a dedicated CS Ontology which allows to refining any arbitrary concept 

(instance) as CS (prototypical member). In that, our representational model allows to 

bridge between sensor measurements and symbolic knowledge representations by 

means of similarity computation between vectors within CS and consequently, further 

facilitates the blending of physical and digital space.  

In addition, we have shown an example from the medical domain to illustrate the 

application of our approach and its contribution to solve real-world problems. Here, 

current and future work aims at implementing an initial prototype which facilitates 

medical diagnostic processes based on similarity-computation in CS. The proposed 

approach has the potential to further support interoperability between heterogeneous 

sensor data and symbolic knowledge representations. While our approach supports 

automatic mapping between ontology instances and sensor-based measurements it 

still requires a common agreement on shared CS. In addition, incomplete similarities 

are computable between partially overlapping CS.  

However, the authors are aware that our approach requires considerable effort to 

establish CS-based representations. Future work has to investigate on this effort in 

order to further evaluate the potential contribution of the proposed approach. 

Moreover, whereas defining instances, i.e. vectors, within a given CS appears to be a 

straightforward process of assigning specific quantitative values to quality 

dimensions, the definition of the CS itself is not trivial. Nevertheless, distance 

calculation relies on the fact that resources are described in equivalent geometrical 

spaces. However, particularly with respect to the latter, traditional ontology and 

schema matching methods could be applied to align heterogeneous spaces. In 

addition, we would like to point out that the increasing usage of upper level 

ontologies, such as DOLCE [11] or SUMO [20], and emergence of common schemas 

for sensor data such as the OpenGIS Observations and Measurements Encoding 

Standard, leads to an increased sharing of ontologies at the concept level. As a result, 

our proposed hybrid representational model becomes increasingly applicable by 

further contributing to continuous integration of physical and digital space.  
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