LIGHT ENGINE AND OPTICS FOR HELIUM3D AUTO-STEREOSCOPIC LASER SCANNING DISPLAY

Kaan Akşit¹, Selim Ölçer¹, Erdem Erden¹, Kishore V.C.¹. Hakan Urey¹, Eero Willman², Hadi Baghsiahi², Sally E. Day², David R. Selviah², F. Aníbal Fernández², Phil Surman³

¹Koc University, Optical Micro-systems Laboratory, Department of Electronic & Electrical Engineering, Istanbul, Turkey

²University College London, Department of Electronic & Electrical Engineering, London, U.K.

³De Montfort University, Department of Computer Technology, Leicester, U.K.

3DTV-CONFERENCE, Antalya, Turkey, 16-18 May, 2011

(∃) э

Introduction HELIUM3D

- Glasses-free architecture
- Multi-user support
- High Power Laser based light engine architecture
- Novel light engine design & Implementation
- Special lens design of Transfer Screen
- User Tracking ability

A simplified system-level diagram.

Prototype I Introduction

Sketch of the first prototype (top-view).

Low power laser set combined using dichroic mirrors and projected into two LCoS units using mirrors.

Introduction

Optical design of the prototype II (top-view).

< 🗗 >

< ≣⇒ ≣

What is new?

High power multi-emitter laser set combined using dichroic mirrors with fibre coupling.

Beam Shaping Optics.

Improved Shutter Glasses implementation.

New transfer screen (Gabor Superlens).

Vibrating the fibre for speckle reduction

50mm 150mm 250mm Objective Sketch of the experiment (top-view).

Output of the fibre coupling for different channels. Verifies the need of homogenization

fibreuideo

< 🗗 >

< ∃⇒

2

Output of the beam shaping optics after fly's eye homogenizer and focusing with a cylindrical lens

Transfer Screen

Shutter glasses approach

Transfer Screen Exit pupils Projection Transfer Screen Viewer

Schematic diagram showing the shutter glasses used to control the light directions from the front screen.

Outputs:

- pyusbir is developed during the development phase.
- A shutter glass is built with two pairs.

Exit pupil formation with Fresnel lens and vertical diffuser.

Used transfer screens:

- Fresnel Lens + Vertical Diffuser
- Gabor Superlens

Transfer Screen

Dynamic Exit Pupil Formation

part2

Illustration that shows how dynamic exit pupil is formed.

< 🗗 > < ≣ > < ≣ > æ

What happens at viewing zone?

What happens at viewing zone?

Different views at viewing zone at 120cm distance from the screen.

- Brightness $15 \sim 20 Cd/m^2$
- Viewable in a low level illuminated environment.

< A7 > < ∃⇒ æ

Final system

Prototype II in action

fibrevideo

Second prototype in action.

< 🗗 > < ≣ > く注→ æ

Conclusion

Summary & Future Work

What is achieved?

- Glasses-free architecture
- Single-user support
- High Power Laser based light engine architecture
- Special lens design of Transfer Screen
- Novel light engine design & Implementation
- Successful User-trials

Future work?

▶ With the new SLM & user-tracker, multi-user support will be in place.

Thank you very much for paying attention, Questions?

HELIUM3D Web site: http://www.cse.dmu.ac.uk/~heliumusr/

