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Reconstructing the sediment concentration of a
giant submarine gravity flow
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Submarine gravity flows are responsible for the largest sediment accumulations on the

planet, but are notoriously difficult to measure in action. Giant flows transport 100s of km3 of

sediment with run-out distances over 2000 km. Sediment concentration is a first order

control on flow dynamics and deposit character. It has never been measured directly nor

convincingly estimated in large submarine flows. Here we reconstruct the sediment con-

centration of a historic giant submarine flow, the 1929 “Grand Banks” event, using two

independent approaches, each validated by estimates of flow speed from cable breaks. The

calculated average bulk sediment concentration of the flow was 2.7–5.4% by volume. This is

orders of magnitude higher than directly-measured smaller-volume flows in river deltas and

submarine canyons. The new concentration estimate provides a test case for scaled

experiments and numerical simulations, and a major step towards a quantitative under-

standing of these prodigious flows.
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Submarine gravity flows are mixtures of sediment and water.
They are driven downslope by their excess density, which is
generated from sediment suspended within the flow. They

entrain ambient seawater at their head and upper interface, and
either erode or deposit on the seabed. As the principal agent for
transporting sediment across the Earth’s surface, they have a
significant influence on global sediment cycling and nutrient
fluxes into the ocean1, and are responsible for the largest sedi-
ment accumulations on the planet2. They also pose a major
geohazard to seafloor infrastructure, such as telecommunication
cables that carry >95% of global internet traffic3, and oil and gas
pipelines upon which our economies depend4.

The concentration of sediment within a flow dictates almost all
aspects of flow dynamics and style of deposition5. However,
sediment concentration is a poorly constrained flow property.
This is because there are few in situ measurements of natural
submarine flows in action. These are restricted to small-volume
(<107 m3 of sediment) flows within slope canyons and fjord river
deltas6–13. Therefore, our understanding of submarine flow
dynamics is primarily inferred through analysis of their deposits,
using insights from scaled physical experiments and numerical
simulations.

Submarine gravity flows are vertically stratified, whereby a
higher-concentration, coarser-grained lower layer is overlain by a
thicker dilute upper layer transporting finer-grained material6, 13–
15. In turn, the lower layer is continuously stratified with
increasing sediment concentrations and grain sizes towards the
bed16. When flows pass through confining topography, the
character of their sediment deposits and the height to which they
drape the confining slopes is a proxy for the vertical distribution
of sediment in the flow17–23, with the upper limit of erosion or
deposition termed a trimline.

Previous work has used such constraints from medium scale
ancient flows (107–1010 m3 of sediment) to reconstruct flow
properties, yielding a wide range of potential depth-averaged
sediment concentrations between 0.0007 and 2.5%
vol.18, 19, 21, 22, 24. Crucially, these studies lack directly measured
flow properties so that equations relating sediment concentration
to dynamic flow properties, such as velocity, cannot be solved. In
this case, flow velocities are approximated via the grain size of
deposits18, 21 or channel morphology21, 24, which introduce
considerable uncertainty. As a consequence, estimates of sedi-
ment concentration from flow deposits are wide-ranging and lack
validity.

Large-volume submarine flows (>1010 m3 of sediment) are
even less well-understood. These giant flows are highly destruc-
tive and transport vast amounts of sediment (some >100 km3)
over tens of thousands of square kilometres25–27. Such volumes of
sediment eclipse the annual global river discharge of sediment
into the ocean by an order of magnitude25, 27. The concentration
of giant submarine flows has never been convincingly estimated
due to virtually no directly measured flow properties and a lack of
high-quality field data. This leaves our understanding funda-
mentally limited; rooted in qualitative interpretations.

Here we examine a classic historic giant submarine flow where
velocity is known from timing of seafloor cable breaks28. Using
new sediment cores and multibeam bathymetry, together with
legacy submersible and core data29, we establish the erosional
trimline through a submarine channel network and then use
these data to reconstruct the bulk sediment concentration of the
flow.

Results
Field data. Our study is based on the analysis of sediment cores, a
submersible dive transect, and bathymetric and backscatter data

taken from deep-water offshore the Grand Banks, Newfoundland
(Fig. 1a) (Supplementary Fig. 1). In 1929, a MW 7.2 earthquake
triggered a large-sediment-volume (175 km3) submarine flow and
a tsunami that killed 28 people30. The flow travelled down slope
through several channel systems, sequentially breaking seafloor
cables in its path. The cable breaks provide a direct measure of
frontal flow velocity at several locations along the flow
pathway28, 29, 31 (Fig. 1a).

Deposits of the 1929 event are recorded in the tops of sediment
cores located in 4000–5000 m water depth across the Eastern
Valley channel network (Fig. 2). The underlying stratigraphy is
correlated between cores (Supplementary Figs 1 and 2)32, which
enables us to recognize the extent of erosion and deposition by
the 1929 flow. Within the channel thalwegs and lower channel
margins, 1929 deposits consist of an erosional surface >2 m deep
overlain by thick (>1 m) structureless gravels or by a thin (5 cm)
coarse-sand lag and sandy mud (Supplementary Fig. 2). Such
deposits indicate a high-energy erosive flow with thin lags
representing the majority of sediment that bypassed and was
deposited farther downslope30, 33. Across inter-channel highs and
upper parts of channel margins, 1929 flow deposits comprise dark
brown, thin (up to 20 cm), fine sandy muds, which drape a
regional olive grey hemipelagic mud (Supplementary Fig. 2).
Hence, at these localities the 1929 flow is interpreted to have been
non-erosive, low-energy and transporting only fine-grained
sediments.
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Fig. 1 Bathymetry of the Grand Banks slope shown via a General
Bathymetric Chart of the Oceans (GEBCO) base map, which is overlain by
higher-resolution swath bathymetry collected aboard Cruise MSM47 in
2015. Several major channel systems were pathways for the 1929 flow:
Western Valley (WV), Grand Banks Valley (GB), and Eastern Valley (EV),
which splits into two smaller channels: East Branch (EB) and South Branch
(SB). Delayed cable breaks provide a direct measure of flow speed (19.1 ms
−1). A down slope profile (Fig. 4) runs through the Eastern Valley channel
system with 7 channel cross-section profiles (T1-T7) (Fig. 3). Insert map
uses satellite imagery from Google Earth ProTM
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Submersible dive 1723 started on the floor of the Eastern Valley
and traversed up its western margin (Fig. 2). The boulder-strewn
channel floor was cut by a 40 m deep scour at the foot of the
valley wall29. The lower valley wall comprised fresh (angular)
outcrop of mudstones. At 230 m above the valley floor the
angularity (‘freshness’) of the outcrop decreased with a coincident
appearance of immobile epifauna. This is interpreted to represent
the erosional trimline from the 1929 flow13.

Acoustic backscatter data show sharp boundaries between
zones of high-backscatter and low-backscatter intensity that run
along the channel margins (Fig. 2). Submersible dive observations
and sediment cores ground-truth these backscatter boundaries in
several places. The combination of well-compacted muds below
the erosion surface and the sand deposits above it result in high
acoustic backscatter, in contrast to the low backscatter from
recently deposited hemipelagic and fine sandy muds. Thus the
backscatter boundaries are interpreted as erosional trimlines of
the 1929 flow. Their elevation above the channel thalwegs can be
measured across the Eastern Valley channel network (T1–T7;
Figs. 2 and 3).

Reconstructing flow concentration. We interpret the erosional
trimlines to represent the thickness of the higher-concentration
lower layer of the flow. The lower layer transported all the coarse-
grained sediment load, which was responsible for most of the
sediment concentration in the flow5, 8, 17, 34. The sandy mud
deposits from shallower than the erosional trimlines are inferred
to have been deposited from the overlying dilute, fine-grained,

upper-layer of the flow. These field data are now used to recon-
struct the bulk concentration of the 1929 event.

We employ two independent approaches: downslope gravita-
tional driving force and super-elevation of a flow around a bend.
Assuming a uniform steady flow through a straight channel
(T1–T3 and T5–T7; Fig. 2), flow thickness can be related to
parameters of velocity, slope and sediment concentration
through18, 19, 21, 35:

U2 ¼ RgCHf sin θ
Cd þ Ew

ð1Þ

where R is specific density of sediment in seawater (1.53); C is
sediment concentration; Hf, the height of the velocity maximum
from the bed (¼ of flow thickness)36; θ, the downstream slope
angle; Ew, the water entrainment coefficient across the upper flow
interface (0.072sinθ/1000; see 'Discussion')18, and Cd, the basal
friction coefficient (estimated between 0.003 and 0.0045; see
'Methods')37.

At a channel bend (T4), the following cross-flow momentum
equation can be derived18, 21, 37:

ptU
2

Q
¼ gΔp

dH
dr

± ptfU ð2Þ

The three terms in Eq. 2 represent, from left to right, the
centrifugal force, the pressure gradient and the Coriolis force,
where pt is the density of the lower layer of the flow; Δp is the
flow excess density with respect to seawater; U, the depth-
averaged downstream flow velocity (3.8 ms−1; see 'Methods'); g,
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the acceleration due to gravity; Q, the channel-bend radius; dH/
dr, the slope of the upper interface of the flow along the radial
direction (dH, the height difference between inner-bend and
outer bend trimline, dr, the width of the channel); and f, Coriolis
acceleration (f= 2ΩsinΦ, Φ= 42°N, Ω is the angular speed of the
Earth’s spin).

Equations (1) and (2) yield bulk sediment concentrations for
the flow between 0.5–4.8% through South Branch, and 0.5–10.2%
through East Branch (Fig. 4). Flow concentration progressively

increases along the flow pathway (T1–T7) because the measured
flow speed is an average value over a changing slope. This means
that as the slope decreases, there must be a concomitant increase
in sediment concentration to balance Eq. (1). Therefore, we
estimate the bulk sediment concentration of the 1929 flow as an
average of these values: 2.7% through South Branch and 5.4%
through East Branch. As the deposit volume of the 1929 flow is
constrained (~175 km3)30, a concentration of 2.7–5.4% indicates
the duration of the flow through the Eastern Valley channel
network was 4–8 h (see 'Methods').

Discussion
There are assumptions and limitations to our approach that
deserve consideration. Equation (1) is particularly sensitive to the
input parameters governing basal friction (Cd) and upper surface
water entrainment (Ew). These terms are not well-constrained by
field data and hence introduce uncertainty to estimates of sedi-
ment concentration. The basal friction coefficient (Cd) is esti-
mated using bed roughness (skin friction) derived from the grain
sizes measured along the thalweg of the Eastern Valley (see
'Methods'). However, the 1929 flow has eroded and remoulded
the Eastern Valley, meaning that it is difficult to assess exactly
what sediments were present pre-1929. Upper and lower esti-
mates of Cd are used to reflect this uncertainty. The small range in
values we use for Cd (0.003–0.0045) results in error in flow
concentration estimates of between 0.3–1.5% vol. The degree of
error increases downslope due to decreasing flow thickness
(Fig. 4).

Our formulation of water entrainment across the upper surface
of the flow (Ew) is extrapolated from experiments38, 39. However,
numerical simulations suggest entrainment in natural flows is
likely to be 3–4 orders of magnitude less than predicted from
experiments40, 41, or so low that it would be considered
negligible34, 42. As an approximation we reduce our upper surface
entrainment value by 3 orders of magnitude, which typically
decreases the estimates of sediment concentration by approxi-
mately 0.03% vol. (up to ~1% vol.).

Our approach also assumes conservation of mass and neglects
deposition or entrainment of sediment (erosion) along the flow’s
pathway. Evidence of erosion by the 1929 flow extends along the
length of the Eastern Valley channel system (Fig. 2). Therefore, it
is likely that a significant volume of sediment was added to the
flow, which in turn, would progressively increase its sediment
concentration downslope43–46. This trend is seen in our results
and is probably, in part, a product of flow bulking from erosion
(Fig. 4). However, the measured flow speed is an average over a
changing slope, which manufactures a similar trend via Eq. (1).
To resolve the relative contributions of these factors, more closely
spaced measures of flow velocity would be required.

We estimate the lower-layer (~70–230 m thick; Fig. 3) of the
1929 flow as having a bulk sediment concentration between 2.7
and 5.4% vol. As gravity flows are vertically stratified, this bulk
value represents a concentration gradient with lower concentra-
tions in the upper parts of the flow and increasing sediment
concentrations towards its base. Direct measurements of fine-
grained (silt and fine-sand), dilute (<0.04% vol.) and low sedi-
ment volume submarine flows estimate near-bed sediment con-
centrations 3–12 times higher than depth-averaged
values6, 8, 9, 13. Applying these gradients to our depth-averaged
estimates from the 1929 flow suggests that near-bed sediment
concentrations were likely to have been significantly higher than
10% vol. At these high sediment concentrations the flow becomes
stratified into a concentrated near-bed grain flow layer that is
sharply overlain by the overriding, more dilute, part of the
flow14, 47–50 (Fig. 5).
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Significant debate has surrounded the fundamental character of
submarine gravity flows: Are they dilute and turbulent or highly-
concentrated with suppressed turbulence5, 49, 51–54? This ele-
mentary characterization underpins how models approach pre-
dicting flow behaviour and resulting sedimentation patterns. For
example, the near ubiquitously recognised ‘high-concentration
gravity flow’ model is defined as having a variety of sediment

concentrations between 5 and 9%52, >10%5, or 7 and 45%55.
Without valid constraints on sediment concentration in natural
flows, such models have remained conceptual.

Our estimates of depth-averaged sediment concentration for
the 1929 flow of 2.7–5.4% vol. are 2–3 orders of magnitude higher
compared to most small-volume dilute flows that have been
measured in slope canyon systems and fjord deltas (~0.002–0.5%
vol.)6, 8, 9, 12, and exceed the upper range of sediment con-
centrations derived from submarine gravity flow deposits
(~0.0007–2.5% vol.)18, 19, 21, 22, 24. Limitations in physical scaling
and computational power have traditionally restricted experi-
mental and numerical simulations to a similar range of dilute flow
conditions53, 56–58. The few experiments that have modelled high-
concentration flows have used depth-averaged concentrations in
the range of 15–40% vol.14, 36, 47, 59. Our work shows that depth-
averaged concentrations in the 1929 flow fall between these dilute
and high-concentration experimental conditions. However, flow
stratification likely resulted in a hyperconcentrated base (>10%
vol.) and more dilute upper parts (<1% vol.). Hence, dilute and
high-concentration experiments have similar concentrations to
either the upper or lower layer of the flow respectively. This
suggests that current scaling approaches do not appropriately
relate sediment concentration to other flow properties throughout
the depth of the flow. Vertical stratification may be a crucial
overlooked factor in realistic modelling of natural-scale sub-
marine flows16, 60.

Our work provides the first validated estimates of sediment
concentration for a giant submarine flow. The 1929 event had
depth-averaged sediment concentrations between 2.7 and 5.4%
vol. These concentrations were high enough to produce a strati-
fied flow with a hyperconcentrated base (>10% vol.) overlain by a
layer with progressively decreasing sediment concentrations. It
provides a test case for scaled experiments and numerical simu-
lations, and is a major step towards quantitative links between
submarine gravity flow processes and their deposits.
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Methods
Bathymetry and backscatter. Bathymetry was collected aboard RV Maria S.
Merian on Cruise MSM47 between 30/09/2015 and 30/10/2015. A hull-mounted
Kongsberg EM122 operating at a nominal frequency of 12 kHz at a maximal swath
width of 130° was used to collect bathymetric and backscatter data. Processing of
the data included the application of sound velocity profiles, the application of
manual and automatic methods to remove outliers and the correction for the
angular dependence of backscatter intensities. Data were then gridded to a reso-
lution of 60 m using a Gaussian weighted mean filter. Processing was done using
the open source software mbsystem61.

Slope stratigraphy. Sediment cores recovered stratigraphy similar to that pre-
viously documented across the Grand Banks continental slope32. From top to
bottom: the 1929 event; a Holocene hemipelagic drape of olive-green foraminiferal
ooze; a mud-dominated unit of mixed red and green turbidites of latest Pleistocene
age, a thick red sticky mud unit, and stiff light grey unit of thin-bedded muddy
turbidites. Deposits of the 1929 event are found in the topmost parts of the cores,
overlying foraminiferal ooze or an erosion surface that cuts deeper in the strati-
graphy. Using this stratigraphic framework we correlate between cores, which
allows us to document the depositional and erosional record of the 1929 event as it
passed through the channel system (Supplementary Fig. 2).

Flow velocity conversions. Direct measurements of natural small-volume sub-
marine flows8 show that maximum frontal velocity (Umax) is approximately five
times higher than depth-averaged flow velocity (U). We apply this ratio to convert
the frontal flow velocity of the 1929 event (Umax= 19.1 ms−1) measured by cable
breaks to a depth-averaged flow velocity (U= 3.8 ms−1).

Estimates of Cd. The terms for frictional retardation of the flow have to be esti-
mated using approximations from experimental and shallow water flows. The basal
friction coefficient (Cd) is a ratio of bed roughness (skin friction and form drag) vs.
the thickness of the flow passing over it. The 1929 flow has eroded and remoulded
the Eastern Valley thalweg and margins, which makes it difficult to assess what
sediments and bedforms were present pre-1929. Present day sediment waves found
within the Eastern Valley are thought to have been formed by the 1929 flow, hence,
would not have contributed to form drag. Therefore, we assume skin friction made
up the majority of the basal friction beneath the 1929 flow. In channel confined
turbidity currents skin friction values are generically estimated at 0.00337. However,
from our data a more robust estimate is possible for the Eastern Valley using62:

Cd ¼
k

Bþ ln Zo
h

� �
2
4

3
5
2

ð3Þ

where, k is the Von Karmen constant (0.4), B is 1, h is the height of the velocity
maximum of the flow taken as 57 m, and Zo the bed roughness from grain size
(Zo= 2.5 × D50/30). Downslope through T2–T7, channel thalweg cores recover
gravels with an average D50 of 0.5–2 mm (Supplementary Fig. 2). Assuming these
sediments are representative of bed roughness pre-1929, the resulting values for Cd

are between 0.003 and 0.0045 respectively.

Flow duration. The majority of the 1929 flow passed through three channel sys-
tems: the Western Valley, Eastern Valley and Grand Banks Valley31. The total
estimated volume of the deposited sediment is ~175 km3, calculated from deposits
across the lower Grand Banks slope and Sohm Abyssal Plain30. Assuming a
packing density of 0.6, this equates to 105 km3 of sediment. If 1/3 of the flow passed
through each channel system, the Eastern Valley below its confluence with Grand
Banks Valley was a conduit for ~70 km3 of sediment (V). The cross-sectional area
of the flow passing through Eastern Valley at T2 is: 23,000 m wide (channel
margins) and 201 m high (trimline elevation), which is 4,634,500 m2 (A). Flow
duration= V/UAC. Hence, concentration estimates of 2.7–5.4% vol. result in flow
durations of approximately 4 to 8 h.

Data availability. The datasets presented in the current study are available from
the corresponding author at reasonable request.
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