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PURPOSE: To analyze the sharpness of the posterior optic edge and edge 

thickness of intraocular lenses (IOLs) marketed with a square-edged profile. 

SETTING: University of Brighton & Brighton & Sussex University Hospitals 

NHS trust, Brighton, UK. 

DESIGN: Laboratory study 

METHODS: Fourteen square-edged 20.0 diopter IOLs analyzed included 9 

hydrophobic IOLs [AF-1 (AF-1), AF-1 iSert (AF-1-iS), Clareon (Cl), One-

Crystal (Cr), CT-Lucia (CT), Envista (En), One (One), Vivinex iSert (Vi-iS) and 

RayOne Hydrophobic (R-Phobic)] and 5 hydrophilic [Asphira (As), CT-

Asphina (CT-A), Incise (In), Synthesis (Sy) and RayOne hydrophilic (R-philic)].  

All the lenses were scanned following a previously published standardized 

technique using environmental scanning electron microscopy. Posterior optic 

edges were scanned at a magnification of x500 and x200 to measure radius-

of-curvature of the posterior optic edges and optic edge thickness. 

RESULTS:  The radius-of-curvature of the posterior optic edges ranged from 

4.6 to 20.6µm. Except for In (7.7µm) all hydrophilic IOLs [Sy (10.6µm), As 

(13.7µm), R-philic (14.0µm), CT-A (13.7µm)] had radius-of-curvature >10.0µm. 

For hydrophobic IOLs, Cl (7.9µm), Cr (4.7µm), Vi-iS (7.6µm) and CT (4.6µm) 

were <10.0µm [except the En (19.7µm), One (13.7µm) AF-1 iS (19.7µm), AF-

1 (19.7µm) and R-phobic (20.6µm)]. The Vi-iS (150.5µm) and In (218.2µm) 

were the thinnest IOLs and R-phobic (375.8µm) and R-philic IOLs (477.1µm) 

were thickest in hydrophobic and hydrophilic IOLs respectively. 

CONCLUSIONS:  Commercially marketed square-edged IOLs still differed in 

the sharpness of the posterior optic edge. More hydrophobic IOLs have 

rounder edges than those studied 10 years ago. Variations in edge profile of 
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hydrophobic IOLs were by far greater compared to the hydrophilic IOLs . 
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Introduction 

Posterior capsule opacification (PCO) still remains the main 

complication of cataract surgery. Its development is multifactorial, involving 

patient factors, surgical technique,1-3  intraocular lens (IOL) design, and IOL 

biomaterial.4-8 Clinical studies show that IOLs with a square-edged optic 

profile are associated with less PCO than those with a round-edged profile.9-14  

Nishi and Nishi11  suggest this is because a square-edged IOL optic produces 

a sharp bend in the posterior capsule. When migrating lens epithelial cells 

(LECs) meet this sharp, discontinuous bend, they are subject to contact 

inhibition and stop proliferating and migrating (the contact inhibition theory).6, 7 

Bhermi et al.15 suggest an alternative hypothesis whereby the square edge 

produces an increased pressure profile at the point on the posterior capsule 

where the posterior edge is compressed against the posterior capsule; this 

creates a physical pressure barrier to LEC migration (the capsule 

compression theory). Tetz and Wildeck,14 using different edge designs with a 

poly(methyl methacrylate) (PMMA) block in cell culture, showed that sharper 

optic edges more effectively prevented the migration of LECs. Most 

manufacturers produce square-edged IOLs; however, it has become apparent 

that there are variations in square-edge profiles of different IOLs.16 

Scanning electron microscopy (SEM) has a long track record in IOL 

evaluation.17-24 With advancing technology, environmental SEM can now scan 

water-containing materials with high precision without causing any 

deformation of the specimen. In our previous publication16 nearly a decade 

ago, we looked at 17 different ‘square-edged’ IOLs using a standardized 

environmental SEM. We found that commercially marketed square-edged 
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IOLs differed in the sharpness of the posterior optic edge, which may have 

some bearing on the variation in the PCO performance of different IOLs. 

Hydrophobic acrylic and silicone IOLs had sharper posterior optic square 

edge than most hydrophilic acrylic IOLs. 16 

We designed this study, employing the same methodology as our 

previous study,16 to look at the posterior optic ‘square-edge’ sharpness of the 

newer IOLs marketed as square-edge IOLs since our last publication a 

decade ago. 

 

Methods 

Fourteen IOLs of different design and material were selected from 

prominent European manufacturers. A 20.0 diopter (D) IOL from each 

manufacturer was used in the study. The IOLs were mounted and scanned 

using a Zeiss EVO LS15 environmental scanning electron microscope 

(ESEM) (Carl Zeiss, Germany) equipped with a variable pressure chamber 

and Zeiss variable pressure secondary electron (VPSE) detector. Each IOL 

was processed individually as described in our previous publication.16 

This study included 14 different IOLs, 9 of which were hydrophobic 

acrylic [Alcon Clareon (Cl), Bausch & Lomb Envista (En), Bausch & Lomb Eye 

Cee One (One), Bausch & Lomb Eye Cee One Crystal (Cr), Hoya PS AF-1 

(AF-1), Hoya PS AF-1 iSert 251 (AF-1-iS), Hoya Vivenex iSert XC1 (Vi-iS), 

Rayner RayOne Hydrophobic (R-phobic) & Zeiss CT Lucia (CT)] and 5 

hydrophilic acrylic IOLs [Bausch & Lomb Incise (In), Cutting Edge Synthesis 

(Sy), Human Optics Asphira (As), Rayner RayOne hydrophilic (R-philic), Zeiss 

CT Asphina (CT-A)]. The IOLs were carefully mounted by an experienced 
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electron microscopist (JS) using a simple microscope on a customized 

platform with a clamp. Leit-C Plast conductive adhesive paste (Agar scientific 

- http://www.agarscientific.com/leit-c-plast.html) was used in the clamp (Figure 

1). The IOL was then slotted in the groove and the adhesive paste so that one 

end of the IOL optic stood vertically embedded in the adhesive paste within 

the clamp and the other end protruded beyond the platform edge (Figure 1). 

Utmost care was taken to identify the anterior and posterior optic edges 

before the IOLs were mounted so that the posterior optic edge appeared left 

on the scan (Figure 2). Some IOLs, such as the In, Sy and CT-A required 

cutting of the haptic for stable mounting to obtain the best scans of the IOL 

optic edge. To obtain the necessary views, the rim was removed using an 

ultrasharp 3.0 mm disposable skin biopsy punch (Figure 3).  

As per our previous study,16 a chamber pressure of 93.3 Pa (0.7 torr), 

an ambient SEM chamber temperature, an accelerating voltage of 15 kV, and 

magnifications of x500 and x200 were standardized for all IOL scans. 

Repeated scanning was done until the clearest images were obtained. The 

mean processing time for each IOL was 25 minutes from when the IOL pack 

was opened to when the IOL was placed back in the pack.  

The IOL was aligned to minimize tilt using a geometric scale (to ensure 

exact perpendicularity) on the computer monitor screen of the environmental 

SEM. This microscope allows the user to adjust the tilt and alignment of the 

object on the platform inside the chamber. The posterior optic edge was then 

sharply focused, and the resultant image, which included a 200 mm scale 

marker at x500 magnification, was digitized at a resolution of 2048 dpi x 1760 

dpi and saved as an uncompressed image in tiff format. The posterior optic 
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edge radius of curvature and thickness of the IOL at the optic edge were 

measured using the principles and techniques described in our previous 

publication.16 In brief, the optic edge profile is a line of varying curvature that 

can mathematically be conceived to be represented by multiple sections of the 

edge, each with a varying local radius of curvature; thus, the sharpness of the 

edge profile can be quantified by measuring the local radius of curvature at the 

point on the posterior edge with the smallest radius of curvature. To measure 

the local radius of curvature of the optic edge, one assumes that each point on 

an edge profile is a point of an incomplete circle and 3 adjacent points on the 

profile define the circle and hence estimate the local radius of curvature. An 

angle of 45 degrees between the radii is sufficient to produce a robust 

estimate of the curvature and to define a circle. The edge sharpness was 

defined as the smallest radius of curvature found at the posterior optic edge.16 

This was standardized for all IOLs. This whole process was repeated at least 

3 times, and the mean of the radius of curvature was obtained. For the edge 

thickness measurement, the midpoint of the curvature of the posterior and 

anterior edges was plotted on X200 magnification image, and the distance 

between them was calculated in microns with Photoshop CS (Adobe, USA). 

At least 3 measurements were done, and the mean of these was calculated. 

Data were entered into an Excel spreadsheet (Microsoft). All further 

evaluation was performed using standard software (Excel, Microsoft Office 

2011).  Mean, standard deviation and range of the radii of curvature of 

hydrophobic and hydrophilic IOLs were calculated. Although the sample size 

was small the normality of the data was confirmed. A P value less than 0.05 

was considered significant. 
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Results 

Images of the edge profile of the hydrophobic IOLs are shown Figure 

4-12 and hydrophilic IOLs are shown in Figure 13-17. The radii of curvature 

and the thickness of the optic edge of the 14 IOLs are shown in Table 1. The 

mean radius of curvature in the hydrophobic acrylic and hydrophilic acrylic 

groups was 12.6  ± 7.1µ  (range 4.6 to 20.6µ) and 12.0  ± 4.9µ  (range 7.7 to 

14.0µ) respectively (P=0.82). 

All hydrophobic acrylic had a radius of curvature less than 10.0 µ, 

except the En, AF-1 and AF-1-iS and R-phobic (Table 1). All hydrophilic 

acrylic IOLs had a radius of curvature greater than 10.0 µ except the In IOLs 

(Table 1). 

The mean thickness at the optic edge in hydrophobic acrylic and 

hydrophilic acrylic groups was 250.4 ± 86.8 mm (range 150.5 to 375.8 mm) 

and 305.6 ±99.3 mm (range 218.2 to 477.1 mm) respectively (P=0.33) (Table 

1). The Vi-iS and In were the thinnest IOLs and Ray-phobic and Ray-philic 

IOLs were thickest in hydrophobic and hydrophilic IOLs respectively. (Table 1) 

 

Discussion 

This study found that there are variations in ‘square-edge’ of the 

commercially marketed square-edge IOLs with majority of hydrophilic acrylic 

IOLs with rounder edges. However, some of the hydrophobic acrylic IOLs in 

our study were also shown to have rounder edge. Since our previous study,16 

approximately 10 years ago, newer IOLs have come into the market but the 

situation with sharpness of the ‘square-edged’ hasn’t changed.   
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The sharp optic edge was first postulated by Hoffer25  in the early 

1980s as a major inhibitory factor of LEC migration. It has dominated the 

literature in recent years.26, 27 Its key PCO-preventing effect seems largely 

independent of the IOL material,28  although other studies found a trend 

toward less PCO with silicone IOLs.29-32 and one study even showing better 

PCO performance with round edge silicone IOLs compared to acrylic IOLs.33 

However, since past 2 decades, there is a trend toward the use of 

hydrophobic and hydrophilic IOLs only. There is evidence that eyes with 

hydrophilic acrylic IOLs are more likely to develop visually significant PCO 

over time.5, 7 Whereas some studies suggested that the IOLs with a square 

posterior optic edge have been associated with better PCO prevention than 

round-edged IOLs, regardless of the material used in their manufacture.27, 34-37 

This might be a consequence of the manufacturing process. Hydrophilic 

acrylic IOLs are lathe cut from dehydrated blocks, which are then rehydrated. 

This blunts the square edge as the IOL swells and may account for the 

rounder edge profile.16  

In our previous study16 we found that IOLs with a radius of curvature of 

<10.0 µ appear to have good PCO performance. The AF-1 IOL, with a radius 

of 19.9 µ, has comparatively poor PCO performance.38 This indicates that the 

minimum edge profile (radius of curvature) of the posterior optic edge should 

be in the region of 10.0 µ, and the IOLs with a greater radius of curvature will 

have a comparatively poorer PCO performance.16  

We searched the literature for prospective, randomized, comparative 

studies on PCO between the IOL models analyzed in this study and could 

only find a prospective, randomized study by Leydolt et al.39 who concluded 
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that the median PCO scores were comparable between AcrySof IQ and 

Bausch & Lomb EyeCee One IOLs at 3 years. There are many single armed, 

non-prospective randomized, non-comparative studies on the IOLs looking at 

the PCO performances but due to the non-comparative and non-randomized 

nature of these studies it is not possible to give a comparative evaluation of 

PCO profiles of the latest IOLs analyzed in this study. Therefore, we 

encourage all IOL companies to published prospective, randomized, 

comparative studies looking at PCO. 

It was interesting to note that in our study we found some differences in 

the edge profile calculation and appearance of Bausch & Lomb Eye Cee One 

and Bausch & Lomb Eye Cee One Crystal lenses (Figure 6, 7 and table 1). 

Although the difference should only be the yellow tint in the IOL, we found that 

the quality of finish on the optic edges varied. This is in concurrence with a 

study by Werner et al.40 who also found several differences in edge finishing 

between the IOLs analyzed, not only between different designs but also 

between different powers of the same design. In their paper, Werner et al.40 

obtained pictures of the optic edge at x100, x250 and x1000 magnificaiton.  

They used the first 2 magnifications to document the overall orientation of the 

specimen, and the x1000 magnification photographs for the microedge 

analysis. In our study we used x500 magnification for measurement of the 

edge sharpness and x200 magnification for edge thickness. Werner et al. 

used two circles of fixed radii of 40 microns and 60 microns for the edge 

profile assessment. These reference circles of known radii divided in 4 

quadrants by 2 perpendicular lines passing through its center and this was 

projected onto the photograph. They adjusted the position of the circle so that 
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the end of both perpendicular lines would touch the lateral and posterior IOL 

optic edges. The area between the perpendicular radii and the lateral and 

posterior edge of the IOL was measured in square microns.40 Therefore, there 

was a difference in the methods used by Werner et al.40 and by us in this 

study.  

Another interesting issue is the difference between a ‘square edge’ 

(Figure 18) and a sharp but not a square edge (Figure 18). In our study CT-A 

had a sharp edge but not a perfect square edge. Tetz and Wildeck14  used 

purpose-made PMMA blocks that were tumble polished for varying lengths of 

time to give an increasing round edge profile. They found (using a different 

measurement of edge profile) that the sharpest edges prevented LEC 

migration. However, there are no studies comparing IOLs with ‘sharp but not 

square edge’ (such as CT-A) versus a ‘sharp and square edge’ IOL (such as 

In).  

It is apparent that the same manufacturer may manufacture IOLs for 

different companies in the same factory (personal communication with various 

companies). We found differences in the IOLs square-edge produced by the 

same manufacturer for different companies. This was interesting. In the past 

years, IOL manufacturers have marketed aspheric, multifocal, toric, and blue 

light– filtering IOLs to enhance visual function, fulfill individual needs, and 

improve the patient's quality of life. Development of IOLs requires 

consideration of many design and material parameters before the product can 

be translated to the assembly line and this could be the reason for the 

difference in edge design quality of various IOLs manufactured by the same 

manufacturer for different companies.  
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In summary, even after a decade since we last studied the square 

edges of the IOLs in the market, the analysis of the newer ‘square-edge’ IOLs 

is not dissimilar. The hydrophilic acrylic IOLs still have rounder edges 

compared to the hydrophobic material and there is huge variation in designs 

of the IOLs and the thickness of the IOLs. But more hydrophobic acrylic IOLs 

have rounder edges than in our previous study.  

 

 

What was known before? 

• Commercially marketed square-edged IOLs differed in the sharpness 

of the posterior optic edge.  

• Hydrophobic acrylic and silicone IOLs have sharper posterior optic 

square edge than most hydrophilic acrylic IOLs.  

• Differences in posterior optic edge profile may explain variation in 

posterior capsule opacification performance with different IOLs and 

materials. 

 

What this paper adds: 

• Commercially marketed square-edged IOLs still differ in the sharpness 

and thickness of the posterior optic edges 

• More hydrophobic acrylic IOLs had rounder edges compared to the 

same study 10 years ago. 

• The quality of edge profile of hydrophobic acrylic IOL had huge 

variations compared to hydrophilic acrylic IOLs.  
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Figures: 

Figure 1: Mounting of intraocular lenses 

Figure 2: Schematic diagram to show the mounting of IOL with reference to 

posterior optic edge. 

Figure 3: Punching of the intraocular lenses with 3mm skin biopsy punch to 

get the profile view of the posterior optic edges 

Figure 4: Alcon Clareon (Cl),  

Figure 5: Bausch & Lomb Envista (En),  

Figure 6: Bausch & Lomb EyeCee One (One),  

Figure 7: Bausch & Lomb EyeCee One-Crystal (Cr),  

Figure 8: Hoya AF-1 (AF-1),  

Figure 9: Hoya AF-1 iSert 251 (AF-1-iS),  

Figure 10: Hoya Vivinex iSert XC1 (Vi-iS)   

Figure 11: Rayner RayOne Hydrophobic (R-Phobic) 

Figure 12: Zeiss CT-Lucia (CT) 

Figure 13: Bausch & Lomb Incise (In),  

Figure 14: Cutting Edge Synthesis (Sy), 

Figure 15: Human Optics Asphira (As),  

Figure 16: Rayner RayOne hydrophilic (R-philic)  

Figure 17: Zeiss CT-Asphina (CT-A). 

Figure 18: Variations in ‘square’ edges.  
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Table 1. Radii of curvature of posterior optic edge and edge thickness 

 
2008 Study16 Current study 

 
Name of the IOL 

Radii of 
curvature 

(µm) 

Edge 
thickness 

(µm) 

 
Name of the IOL 

Radii of 
curvature 

(µm) 

Edge 
thickness 

(µm) 

  
Alcon AcrySof® 

SN60WF 

 
8.5 

 
197.7 

 
Alcon Clareon (Cl) 

 
7.9 

 
167.2 

 
 
 
 
 
 
 
 
 
 

Hydrophobic 
Acrylic IOLs 

 
Alcon AcrySof® 

SN60AT 

 
8.4 

 
198.7 

 
Bausch & Lomb 

Envista (En) 

 
19.7 

 
250 

 
Alcon AcrySof® 

MA60AC 

 
9.9 

 
306.8 

Bausch & Lomb 
EyeCee One 

(One) 

 
8.6 

 
313.3 

 
AMO Sensar® 

AR40e 

 
8.3 

 
361.1 

 
Bausch & Lomb 
One Crystal (Cr) 

 
4.7 

 
306.2 

Hoya® AF-1(UY) 19.9 259.9 Hoya AF-1 iSert 
(AF-1-iS) 19.7 174.3 

   Hoya PS AF-1 
(AF-1) 19.7 172.5 

   
Hoya Vivenex- 

iSert (Vi-iS) 

 
7.6 

 
150.5 

   Rayner RayOne 
Hydrophobic (R- 

phobic) 

 
20.6 

 
375.8 

   Zeiss CT-Lucia 
(CT) 4.6 344.1 

 
 
 
 
 
 
 
 
 

Hydrophilic 
Acrylic IOLs 

® 
Rayner  C-flex 
(thickest ridge) 

19.6 * 
Bausch & Lomb 

Incise (In) 7.7 218.2 

® 

Rayner Superflex 
(thinnest ridge) 

 
15.6 

 
379.3 Cutting Edge 

Synthesis (Sy) 

 
10.6 

 
279.8 

® 
Rayner Superflex 

(thickest ridge) 

 
10.6 

 
* Human Optics 

Asphira (As) 

 
13.7 

 
280.8 

Bausch & Lomb 
® 

Akreos 

 
15.9 

 
375.1 Rayner RayOne 

(R-philic) 

 
14.0 

 
477.1 

Bausch & Lomb 
® 

Akreos AO MI60 

 
14.3 

 
181.3 

Zeiss CT-Asphina 
404 (CT-A) 

 
13.7 

 
272.1 

® 
HumanOptics 

1CU 
8.6 73.8 

   

® 
HumanOptics MC 

611 MI-B 
9.1 189.3 

   

® 

Tetraflex 23.1 209.8    
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The hydrophilic intraocular lenses (IOLs) still have rounder edges compared 
to hydrophobic IOLs with huge variations in edge designs and the thickness 
which may lead to variation in PCO profiles. 


