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1 INTRODUCTION 

ABSTRACT: The potential benefits of improving performance prediction through the inte-
gration of health monitoring systems with probabilistic predictive models, and their implications 
on the management of deterioration prone structures are presented in this paper. It is shown us-
ing case studies that the confidence in predicted performance can be considerably improved 
through the use of health monitoring methods and hence, the timing of management activities 
such as inspections, repair and maintenance can be refined to maintain target safety or condi-
tion. A comparison of various models for the input parameters indicate that their effects on the 
performance prediction of deteriorating structures can be minimised through the additional in-
formation gained through in-service health monitoring systems. It is also concluded for the sce-
narios considered that the life-cycle costs (LCC) for the management activities are considerably 
reduced when the decision support system is aided by structural health monitoring (SHM). 

 
 

In the UK, Highways Agency is administering over 9,000 trunk road and motorway bridges that 
are valued at over £20 billion. More than 65% of those are either reinforced or prestressed con-
crete bridges (Mahut & Woodward, 2005). These structures represent 2% of the national net-
work length but 30% of its total asset value. In most developed countries with already estab-
lished, but aging, infrastructure, the investment on maintenance of these structures is either 
approaching, or has already exceeded, the capital spent for new construction. In the UK, 50% of 
the total bridge and large culvert stock were constructed between 1960 and 1980 (Allison & 
Woodward, 2005). The UK’s Highways Agency has a maintenance program of £7 billion from 
2001 to 2010 for their administered transport network (Highways Agency, 2005). The effective 
maintenance management of high value assets such as bridges is of increasing importance and 
significant research is directed towards this area. 

In general, deterioration of concrete structures is associated with the corrosion of reinforce-
ment embedded in concrete (Gaal et al., 2001). This is caused mainly by either carbonation or 
chloride attack. These mechanisms are unique in the sense that the aggressive agents penetrate 
into the concrete without any visual signs of deterioration until they reach the reinforcement 
level and initiate corrosion. In addition to the loss of section in the steel bars, the expansive 
products of corrosion cause delamination and spalling of concrete, which ultimately may lead to 
failure of the structure. Chloride ions have been found to be a major factor contributing towards 
deterioration in reinforced concrete structures (Gaal et al., 2001). 

2 PREDICTIVE MODELLING AND LIMITATIONS 

Generally aggressive agents penetrate from outside sources, e.g., the amount of chloride cast 
into concrete is limited by design codes, but the problem starts as chloride ions ingress from 
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outside. Whatever the source (de-icing salts, marine environment), the ingress is a complex 
phenomenon and involves different transport processes, e.g. initial penetration, absorption and 
capillary suction, and diffusion. The deterioration processes in concrete have been modeled us-
ing a variety of approaches, e.g. based on Fick’s 2nd law of diffusion (Collipardi et al., 1970), 
based on Markov chain process (Cesare et al. 1992), using Neural network models (Elkordy et 
al., 1993), modified solution of Fick’s law assuming a fixed amount of surface contents 
(Frangopol, 1997), modeling diffusion using Nernst-Einstein equation (Chatterji, 1994), ex-
perimental data of cracked concrete (Li, 2002), diffusion as a combination of Kundson and Vis-
cous flow (Li et al., 2003). The models range from empirical (based entirely on experimental re-
sults) to scientific (based entirely on scientific principles and physical laws) including a wide 
range of semi-empirical models (based on simplified scientific models that are calibrated 
through laboratory or field experiments). Several benchmark studies have been carried out to 
standardize the chloride ingress models, e.g. HETEK (1996) and DURACRETE (1998) but con-
sensus regarding any particular phenomenon to be used for modeling has not yet emerged. 
However, the majority of researchers are using Fick’s diffusion law as a representative phe-
nomenon. The fact that deterioration is a time dependent phenomenon (e.g. Stewart & Ro-
sowsky, 1998) adds complexity in the modeling process. Uncertainty in the variables involved 
in the deterioration process is generally modeled using random variables. Spatial variability of 
the deterioration process and lack of knowledge regarding its details also contributes towards 
the complexity in modeling deterioration and associated uncertainty (e.g. Stewart et al. 2004). 
The amount of uncertainty in the chloride induced deterioration is significant and limits the ap-
plicability of the predictive models for long range predictions. A typical model for the time to 
corrosion initiation based on Fick’s second law of diffusion is presented in Eq. (1). 
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Where TI is the time to corrosion initiation at any given depth X; D, Co, Cth, and Emod repre-
sent the effective diffusion coefficient, surface chloride concentration, threshold chloride con-
centrations and model uncertainty factor respectively. Due to uncertainties in the quantification 
of these parameters, probabilistic approach for deterioration modeling is generally adopted, e.g. 
Thoft-Christensen et al. 1996, resulting in a distribution for the corrosion initiation time as 
shown in Fig. 1. The parameter values were obtained from published sources and are detailed in 
Rafiq, 2005.  

 
Figure 1: Distribution for the corrosion initiation time. 

 
This curve can be interpreted in two different ways. The ordinate gives the probability that cor-
rosion initiation at rebar level is reached up to any particular point in time (abscissa). If an ac-
ceptable (tolerable) target probability can be specified, the curve could be used to estimate the 



point in time at which certain management actions are to be taken (e.g. if a target probability of 
0.3 is considered, actions would be taken after 10 years). On the other hand, the ordinate may be 
interpreted as the fraction of the area of a member exhibiting corrosion activity normalized by 
the total area. In this case, the target (or threshold) would represent the maximum corrosion 
damage tolerated for any particular member or structure. 

3 SHM-SUPPORTED PREDICTIVE MODELLING 

In a distinct, but related strand of research, health monitoring methods are being developed to 
monitor the performance of deteriorating structures. These range from very simple non-
destructive methods (such as half cell measurements) to more sophisticated technology such as 
corrosion risk sensors possibly with remote sensing capability. These structural health monitor-
ing (SHM) methods can provide real-time information on the deterioration characteristics of 
structures. There are, however, limitations associated with these methods, e.g. the information is 
limited to specific locations at which the sensors are installed, the accuracy is limited depending 
on the sensor type being used and parameter being monitored, and these are costly compared to 
other assessment methods. There are several other issues that must be addressed to facilitate the 
effective use of, and gain full benefits from, SHM. These include optimum number of instru-
mentation locations, type of data obtained through SHM (i.e. discrete vs. continuous) and meth-
ods to interpret the data (relation between the parameter being monitored and the parameter un-
der consideration), methods to handle misinterpreted and unexpected results (if SHM results in 
erroneous or unexpected output), and procedures to incorporate spatial variability, etc.  

The limitations of predictive modeling and those associated with the use of SHM (highlighted 
in Sec. 2 and above) can be considerably reduced by combining the two effectively. A frame-
work has been proposed by the authors which combines the information obtained from SHM 
with predictive deterioration modeling to improve the confidence in the predicted performance 
(Rafiq, 2005). The key elements and benefits from the approach are discussed below. 

4 PERFORMANCE UPDATING 

An important element of the proposed framework is updating which is a powerful and versatile 
approach in dealing with probabilistic evaluation and prediction of systems performance. This 
technique has had a significant impact in nuclear plants assessment and in the health care sys-
tems. More recently, these have been used successfully in offshore structures and steel bridges 
etc for the planning and optimization of inspection and maintenance schedules (e.g. Onoufriou, 
1994; Estes and Frangopol, 1999 and Righiniotis, 2004). However, these applications have fo-
cused on very specific deterioration mechanisms and inspection methods delivering ‘hard’ data, 
e.g. crack size in fatigue analysis of steel structures. The Bayesian updating approach can be 
used to incorporate information obtained from different sources at different points-in-time dur-
ing long service lives, e.g. either from detailed inspections and monitoring or even from the 
qualitative assessment methods i.e. visual inspections or service records, etc.  

4.1 Performance Updating with information through single sensor 
In the present application, Bayesian updating is used to incorporate the information obtained 
from corrosion sensors. For simplicity, it is assumed that the sensor output is discrete. Two sce-
narios are possible in this case. The first scenario is the case when the health monitoring system 
confirms that the predefined limit state has not been attained at the sensor location (confirmation 
of ‘safety’) at a particular point in time (i.e. at the time of monitoring, tm).; the ‘actual time to 
failure’, Ti, of the sensor (located at cover depth, Xi) is not known but is greater than the time of 
monitoring, i.e. Ti > tm. 

When the health monitoring system confirms the attainment of a limit state at the sensor loca-
tion (confirmation of ‘failure’) at a given time (i.e. second updating scenario), the ‘time of fail-
ure’ at the sensor location would be equal to the time of attainment of the limit state, i.e. Ti = tm. 
In order to account for the instrument / measurement uncertainty, assuming that the sensor is not 



perfect. Instead of yielding the ‘exact time to failure’ at the sensor location, two limiting values 
for the ‘time to failure’ are obtained and it can be assumed with reasonable accuracy that below 
the lower time limit the failure has not occurred, and above the upper limit the failure has oc-
curred.  

Combining the two scenarios and using Bayesian event updating framework, the posterior 
distribution for the ‘time to failure’ for a total of ‘n’ no. of sensors would become (Rafiq et al. 
2004); 
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Where   F”T(t) = posterior cumulative distribution function for the ‘time to failure’. 
Xi   = location of sensor no. i  
T(X = Xi) = priori predicted ‘time to failure’ at location Xi. 
M(Xi)  = safety margin for expected ‘time to failure’ at Xi at a given time tm. 
      = T(X = Xi) – tm, when ‘safety’ is confirmed at location Xi.  
      = T(X = Xi) – (Ti - tins) when ‘failure’ is confirmed at location Xi and the ‘time to fail-

ure’ of sensor i, Ti, becomes known.  
Mi   = Safety margin between predicted and actual ‘time to failure’, when the ‘time to fail-

ure’ of sensor i becomes known.     
    = T(X = Xi) - Ti  and  
    = 0 for the ‘safety’ confirmation case. 
Ti   = time at which ‘failure’ is detected by the sensor i.  
tins   = time interval between the two events i.e. ‘confirmation of failure’ and ‘confirmation 

of safety’ that reflects the inability of monitoring instruments to detect exact corrosion initiation 
time. 

The prior and posterior (updated) distributions for corrosion initiation time at the rebar level 
(assumed at 40mm cover depth), given the sensor at 10mm cover depth indicates initiation con-
firmation at different times (taken as 0.5 years to 4.0 years), are plotted in Fig. 2a. Similarly the 
distributions for the rebar corrosion initiation times when the sensor confirms ‘passivity’ at dif-
ferent times (taken as 1.0, 2.0 and 4.0 years) are plotted in Fig. 2b. 

 

 

Fig. 2a 
Fig. 2b 

Figure 2: Posterior corrosion initiation time at rebar level. a) Initiation confirmation  b) Passivity confir-
mation  

 
It can be seen from Fig. 2 that uncertainty is reduced with the availability of additional informa-
tion (both ‘passivity’ or ‘initiation’ confirmation) which is represented by the reduction in coef-
ficient of variation (COV) in the posterior distribution compared to the prior. Also it is evident 
that the reduction in uncertainty level is dependent on the quality of information obtained 



through health monitoring. Confirmation of ‘initiation’ yields a tighter distribution because the 
actual time to initiation of the sensor becomes available which is not the case in ‘passivity’ con-
firmation where the only available information is that the corrosion initiation time is greater 
than the time of monitoring.  

4.2 Performance Updating with information through multiple sensors 
An inherent assumption in the above methodology is that there is only need to consider one lo-
cation at which both prior and posterior (i.e. using monitored data) distributions are considered. 
In practice, the extent of deterioration varies considerably from one location to another. These 
variations can be attributed to the temporal and spatial effects of different variables involved in 
the deterioration process, within the element and/or for different elements of a system or a net-
work etc. The actual performance in such cases could be different for different elements of a 
system and even at different locations of the same element. In order to explore the application of 
the Bayesian methodology in cases where spatial influences are dominant, it is assumed that the 
monitored domain can be subdivided into a number of smaller zones with the possibility of in-
stalling sensors within each zone. The distance between the sensors, and hence the physical size 
of the zone, should be large enough to avoid any spatial correlation on sensor outputs. On the 
other hand, the zone should be small enough to justify the assumption of uniform prior perform-
ance over its entire physical size. Another scenario where multiple sensors may be required is, 
when more confidence in performance prediction is required at some critical location or more 
robust / redundant monitoring system is required because of the critical nature of the zone. Of 
course, the two cases could also exist in combination, as shown schematically in Figure 3.  

 
 

Sensors       

Figure 3 : A structural member divided into five zones. 
 
The details of the updating methodologies for the two cases can be found in Rafiq et al. (2005a). 
The posterior predicted performance (corrosion initiation time distributions) assuming five sen-
sors (at 10mm cover depth) distributed along the plan (i.e. a member divided into five zones) is 
shown in Fig. 4 whereas the posterior predicted performance assuming 1, 2 and 3 sensors in-
stalled within the same zone is plotted in Fig. 5. 

 
Figure 4 : Corrosion initiation time at rebar level for different no. of sensors showing initiation (at 10mm 
depth). 

 



 The scenario examined in Fig. 4 is that the number of sensors at 10mm depth indicating corro-
sion initiation at 1.0 years varies from zero to five. It is clear from the figure that if all the sen-
sors show the same output i.e. either corrosion initiation or passivity confirmation at a given 
point in time, the uncertainty associated with predicted performance is considerably less than 
the case where even one sensor shows diverse results. This reduced level of uncertainty (COV 
for the posterior performance prediction) in the former case is due to the fact that there are no 
dominating spatial effects in the system as reflected by the same output from all the sensors.  

Figure 5 highlights the benefit that can be obtained from increasing the number of sensor 
within the same zone. The updating in Fig. 5 is carried out at 1.0 year assuming all three sensors 
confirm ‘passivity’. Other multiple sensor scenarios were also examined which are available in 
Rafiq et al. (2005a). The increase or decrease in the mean value for the corrosion initiation time 
is dependent on the sensor initiation time. However, it is clear that increasing the number of sen-
sors would increase the confidence regarding the prediction of performance as the COV for the 
corrosion initiation time is reducing continuously.  
 

 
Figure 5 : Effects of Bayesian updating for multiple sensors in the same zone showing Passivity Confir-
mation. 

5 SENSITIVITY ANALYSIS 

In order to establish the robustness of the methodology for different input models, sensitivity 
studies of different input parameters on the corrosion initiation times have been carried out. The 
results for the sensitivity study are presented in detail in Rafiq et al. (2006).  

Two distinct types of behavior have been identified. In both cases, the COV of the corrosion 
initiation time is reduced with the increase in the number of sensors, indicating increase in con-
fidence. However, for the results shown in Fig. 6, which refer to different assumptions for the 
model uncertainty distribution, the posterior COV reduces for various input models whereas for 
the results shown in Fig. 7, which refer to different assumptions regarding exposure conditions, 
the posterior COV for various input models reduces and converges to a single value. It has also 
been concluded from this study that the posterior performance prediction is considerably less 
sensitive to variations in the input parameters when compared to the prior predictions which is 
one of the benefits of the proposed approach. 



    
Figure 6: Effect of number of sensors in reducing uncertainty for time to corrosion initiation. 

 
   

 
Figure 7: Effects of no. of sensors on uncertainty associated with exposure conditions. 

6 LIFE-CYCLE COST ANALYSIS 

As highlighted in the previous sections, the increase in confidence can provide justification for 
the delay in major intervention activities (i.e. detailed inspections and/or major repair activity). 
To demonstrate the effects of such delays in the major interventions on the life-cycle costs 
(LCC) and the effects of SHM-supported predictive models on the decision support system, a 
comparison of four management strategies is carried out using life-cycle cost analysis. A system 
(consisting of four members) subjected to chloride induced deterioration is assumed and using 
hypothesized inspection results and compatible data for SHM. The management strategies com-
pared in this study are; 

Strategy A: Decisions based only on regular inspections. 
Strategy B: Decisions based on predictive models supported through regular inspections. 
Strategy C: Decisions based on predictive models supported through optimized inspection. 
Strategy D: Decisions based on predictive models supported through SHM. 
 

The details regarding this analysis are available in (Rafiq et al., 2005b and Rafiq, 2005). The re-
sults obtained for these strategies are summarized in Figure 8. The costs considered in this study 
are the direct costs related to inspections and repairs only. It is recognized that indirect costs 
(e.g. traffic management and user delays, etc) may have a significant influence in the results. 

The figure clearly indicates that strategy A has the least costs under the particular hypothe-
sized inspection outcomes considered. However, it is not possible to maintain a target perform-
ance level, and hence the probability of failure would be higher compared to the other cases 
where a target performance level is maintained throughout the service life. This example high-



lights the inability of current practice of regular inspections to maintain consistent performance 
levels in structures. 
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Figure 8 : Life cycle cost comparison for the members and the overall system 

 
Among strategies B, C, and D where a target performance level is maintained throughout, 

strategy D is generally the most economic. Figure 8 also demonstrates that the cost of repair is 
the major factor contributing towards the life cycle costs. The inspection and monitoring cost is 
small compared to the repair costs for the ratios examined herein (CR/CI=75, CM/CI=2). The re-
sults for other CM/CI ratios examined are available in Rafiq (2005). 

7 CONCLUSIONS 

 Predicting future condition and reliability of the deteriorating structures is vital for their effec-
tive management. As the input parameters of the deterioration models developed to serve the 
purpose are uncertain, this limits their use of these models for long range predictions. On the 
other hand, state-of-the-art health monitoring systems have been developed to obtain structure 
specific information regarding deterioration characteristics and loading etc. The potential bene-
fits of improving performance prediction through the integration of health monitoring systems 
with probabilistic predictive models, and their implications on the management of deterioration 
prone structures are presented in this paper through the development of an integrated methodol-
ogy. It is shown, through application case studies, that the confidence in predicted performance 
can be significantly increased through the use of SHM-supported modeling of deterioration and 
the major inspection and maintenance activities can be delayed on the account of increased con-
fidence in the predicted performance. A sensitivity study of various input parameters on the 
predicted performance concluded that the effects of different input models are considerably re-
duced through the developed updating methodology. A life-cycle cost analysis for various man-
agement strategies (with and without the use of SHM) highlighted the safety and cost benefits 
that can be obtained through the use of SHM-supported predictive models. Clearly more work is 
needed in this area including field data collection to reduce the uncertainties associated with 
some of the assumptions made.  
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