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Abstract 

 

Despite of aggressive surgical resections and combinatorial chemoradiations, certain highly malignant 

populations of tumor cells resurrect and metastasize. Mixed-grade of cancer cells refuses to standard-of-care 

therapies by developing intrinsic chemoresistance and subsequently ends-up in tumor relapse. 

Macroautophagy is a membrane trafficking process that underwrites to drug resistance and tumorigenesis in 

most of the breast cancers. Manipulating the cellular homeostasis by a combinatorial nanotherapeutic model, 

one can evaluate the crosstalk between type-I and type-II cell death and decipher the fate of cancer therapy. 

Here, we present a multi- strategic approach of cancer targeting to mitigate the autophagic flux with 

subcellular toxicity via lysosome permeation, accompanied with mitochondrial perturbation and apoptosis. 

With this means, a nanoformulation is developed with a unique blend of a lysosomotropic agent, an 

immunomodulating sulfated-polysaccharide, an adjuvant chemotherapeutic agent, and a monoclonal 

antibody as a broad-spectrum complex for combinatorial nanotherapy of all breast cancers. The manuscript 

illustrates the applications of advanced microscopic techniques like electron tomography, 3D rendering and 

segmentation of the sub-cellular interactions and fate of multifunctional therapeutic gold nanocages 

specifically targeted towards the breast cancer cells for the first time to best of our knowledge.  

 

 

 

 

 

Key words: Autophagy; cancer targeting; breast cancer; TROP2; mitochondrial targeting; combination 

therapy; electron tomography 
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Introduction 

 

Drug resistant population of cancer cells exists despite of active chemoradiations and surgical resections.1,2 

Macroautophagy (hereafter referred to as autophagy) underwrites as a major reason for several 

chemotherapy resistant cancer recurrence and metastasis.3–5 Autophagy is a catabolic membrane trafficking 

process, by which the cell digests, impaired subcellular entities and aberrant bodies.6,7 However, in certain 

cases autophagy machinery indirectly ropes tumorigenesis by inducing resistance against chemotherapeutic 

agents.8–12 Inhibiting drug-induced autophagy by multiple-drug infusions evidenced excellent therapeutic 

benefits. Nevertheless, they showed lethal side effects and toxicities as well. To subdue these challenges, 

strategies comprising combinatorial therapeutic approaches have to be initiated. We present a multi- strategic 

approach of cancer killing by impairing autophagy and parallel induction of apoptosis/necrosis (Fig. 1). This 

was addressed by nano formulating Therapeutic gold nanocages (TANs), encompassing a central gold 

nanocage (AuNcg) core coated with mauran (MR) polysaccharide, functionalized with 4-hydroxytamoxifen 

(4OHT) and anti-TROP-2 monoclonal antibodies (MAb).  

 

Bioinert AuNcgs13 are biocompatible and optically privileged14,15 nanoparticles with impeccable properties 

and applications in cancer theranostics.16–20 Meanwhile, gold nanoparticles are shown as lysosomotropic 

agents that can alkalinize the key subcellular acidic organelle, lysosome.21 These suicidal bags, regulates 

the cell homeostasis through several mechanisms like digestion of cell debris, plasma membrane repair, 

intracellular signaling for energy metabolism and so on.22 Lysosomal dysfunction ends up in massive 

lysosomal membrane permeabilization (LMP) leading to alternative cell death pathways through bypassing 

autophagic resistance.23–25 Inhibition of autophagic flux by preventing autophagosome-lysosome fusion after 

altering the lysosomal function can lead to autophagic cell death.21,25 Destabilization of lysosomal membrane 

by nanoparticle toxicity results in the release of hydrolytic enzymes like cathepsins, cytosolic acidification and 

reactive oxygen species (ROS), which triggers mitochondrial mediated intrinsic apoptotic pathways.23,25 

Mitochondrial perturbation can in turn result in mitochondrial membrane permeabilization (MMP) that 

seriously injures the cells by triggering several death cascades resulting in apoptosis/ necrosis. Therefore 

lysosomes and mitochondria are considered as apparent targets for site- directed cancer therapies.22,23,26–28 

Here, Pr1E11, a MAb that specifically binds to TROP-2 glycoprotein receptor type-I, which is also known as 

tumor associated calcium signal transducer protein (TACSTD2) was used as a target for TAN therapy.29 

TROP-2 receptors are highly expressed in a variety of carcinomas and epithelial cancers; but less expressed 

in normal somatic cells. Recently, it was unveiled that TROP-2 could be a potential biomarker and an 

attractive target for drug- Mab therapy against EsR+ and EsR- breast cancers, including the triple negative 

subtypes30. Moreover, it was found that 99% of the breast cancers have this TACSTD2 expression in its ON 

state, suggesting it as a better target for breast cancer therapy. MCF7 cells are recognized as EsR+ and 

TACSTD2+ breast cancer cells. 4OHT is an active metabolite of tamoxifen and an antagonist of estrogen 

that binds to EsR receptors. 4OHT was functionalized to MR along with Pr1E11 antibody. MR is an 

immunomodulating anticancer polysaccharide used as a passivation and functionalization polymer over 

AuNcgs.31,32 With these means, TANs hold a highly assuring blend of multiple therapeutic modules in a single 

nano entity for devising a novel combinatorial formulation. Here, we present the subcellular actions of TANs 

viz. lysosome impairment, autophagic dysfunction and induction of mitochondrial permeation that leads to 

parallel type-I and type-II cell death in MCF7 breast cancer cells. We demonstrate the modification of 

autophagy and subcellular interactions of nanocages leading to severe cellular insult using 3D tomographic 

reconstruction and rendering along with specific microscopic studies, immunofluorescence and western blot 

assays.  

 

 

Results & Discussions 

 

Cell binding and internalization of TANs  

AuNcgs were synthesized via microwave oven method and were passivated with MR, which was then 

functionalized with 4OHT and pr1E11 Abs to acquire the hybrid multivalent TANs. The characterization of 
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TANs was performed using HRTEM (Supplementary Fig. 1a- 1e; 2a-2k and 3a), SEM (Supplementary Fig. 

1f-1i), DLS (Supplementary Fig.1j), UV-Visible spectroscopy (Supplementary Fig. 3b) and XPS 

(Supplementary Fig. 3c-3f). Specificity of Pr1E11 antibody to TROP2+ cell lines were confirmed with TROP2+ 

and TROP2- cell lines via FACS analysis (Fig. 2a & 2b). Immunofluorescence was captured using confocal 

microscopy to ensure the site- specific binding of targeted nanoparticles with TROP2+, MCF7 cells and their 

cellular uptake (Fig.2c- 2e). 3D volume image shows the collective number of nanoparticles specifically 

bound to the cell receptors present on the surface of cancer cells as a whole (Fig. 2f-2m). Here, SkBr3 

(TROP2+, EsR-, HER2+) cells were demonstrated to bind TANs effectively as like MCF7 cells (Fig.2a-2b). 

Thus, TANs demonstrated the specificity to bind to other breast cancer subtypes with TROP2+ and EsR-, 

which emphasizes the capability of TAN to treat other types of breast cancers irrespective of the common 

cell receptors studied, EsR, PR and HER.  

 TEM sectioning revealed that TAN treatment of MCF7 cells forms elongated cell membrane ruffles 

and membrane blubbing for acquiring the nanoparticles bound to their surface receptors (Fig.2o-2p). 

Generally, cells undergo receptor mediated endocytosis21 or macropinocytotsis33 for engulfing AuNps and 

large clusters respectively.34 NC cells does not show any morphological changes like protruding cell 

membrane blubs and abnormal cellular organelles(Fig.2n). However, TAN treated cells show the nuclear and 

cell membrane invaginations occurring due to the specific interaction of nano-cargo after receptor mediated 

endocytosis (Fig. 2o-2p). Most of the nanoparticles (yellow arrows) are found within the cell cytoplasm, 

nevertheless, few of them were found inside the nucleus as well. Nuclear entry of TANs over 70nm size can 

be explained unambiguously by the TEM data obtained (Fig. 2d). Functionalization and design of nanoparticle 

based on the saccharide containing polymer units can mimic the natural process of transporting glycosylated 

proteins from ER to nucleus. Thus, increasing the chances of nuclear localization by membrane 

invaginations. Here, MR functionalization could probably mimic similar functions that could enhance 

herniation or the entrapment of nanoparticles by nuclear membrane invaginations.35,36 

Internalized TANs were clustered over cell cytoplasm (Fig. 2q-2r) and interacts with several 

organelles leading to the alteration of cellular homeostasis. TEM data shows the accumulation of TANs 

throughout the cell with specific interaction occurring with mitochondria and lysosome vesicles (Figure 2s). 

Tendency of TANs to specifically interact with mitochondria could be attributed to EsR receptors present in 

the mitochondrial surface, which can harbor the drug, 4OHT.37 4OHT is the active metabolite of selective 

estrogen receptor modulator (SERM), tamoxifen that has been used for the adjuvant therapy of EsR+ breast 

cancers. Interaction of 4OHT with mitochondria induces mitochondrial mediated apoptosis and release of 

cytochrome C (CytC) along with several proapoptotic proteins like caspases.38 Similarly, lysosome 

destabilization by TANs causes the release of cargo from a defective lysosome (Fig.2s, blue arrow). Previous 

studies showed that AuNps are capable of a alkalinizing the lysosomes along with increasing their sizes.21 It 

was reported that AuNps can cause lysosome alkalinization through dissociation of V1 protein from the 

lysosome – resident V0 protein of vacuolar Hp(V)- ATPase. Additionally, TAN mediated lysosomal impairment 

resulting in LMP has been further explained with lysosensor assay, later in this work. Effect of TANs in the 

mitochondrial mediated apoptosis and lysosomal mediated autophagic dysfunction has been studied to 

evaluate the anticancer activity of TANs.  

 

Defective autophagy and impairment of autophagosome -lysosome fusion  

Electron micrographic studies of ultra-thin sections of TAN treated MCF7 cells revealed different 

stages of cell undergoing autophagic, apoptotic or necrotic cell deaths (Figure 3).  Internalized TANs interact 

with several organelles in the cell cytoplasm, especially with mitochondria, lysosomes, endoplasmic reticulum 

(ER) and nucleus (Fig. 3b- 3g, supplementary Fig. 4). Induction of autophagy is highly dynamic, and it occurs 

with respect to several physiological stress stimuli. Autophagosome formation involves nucleation, elongation 

and closure of an isolation membrane (IM) entrapping damaged organelles (Fig. 3a).39 IM is generally 

developed as a double membranous extension from ER under stress condition. AuNps exert oxidative stress 

on ER and mitochondria on internalization.40 Thus, IM is formed and detaches from ER to form a phagophore, 

which matures and engulfs damaged mitochondria, ER and other aberrant bodies present inside the cell (Fig. 

3h, 3n). Here, the cellular ingestion of TANs induces stress on various cell organelles (supplementary Fig. 4) 

and activates autophagic pathway. Both 4OHT and AuNcgs are previously reported agents that can activate 
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intrinsic autophagic pathways.8,21,41 Nevertheless, 4OHT has been studied for activating autophagy thereby 

developing chemotherapeutic and anti-estrogen resistance in EsR+ breast cancers.8 Thus blocking of 

autophagosome function would reduce the emergence of 4OHT therapeutic resistance by facilitating 

autophagic cell death or type-II programmed cell death.25 Whereas AuNps are identified as potent autophagy 

inducers despite of their capability to block autophagic flux.21 So a combination of AuNcgs with 4OHT could 

be a potent nanotherapeutic formulation that can induce autophagic cell death in EsR+ breast cancer cells.  

Following a lethal cell injury, a series of morphological changes can be observed including 

cytoplasmic vacuolization and lysosomes dilation that will lead to apoptosis and necrosis.42 TAN ingestion 

results in the accumulation of enlarged lysosomes (Fig.3 j), which is a characteristic of cells undergoing 

defective autophagy, lysosome dysfunction and lethal damage.43 TEM data reveals matured autophagosome 

enclosed with damaged ER and mitochondria, preparing for a fusion with lysosome (Fig.3k) However, 

following membrane abrasion and lysosome alkalinization, a massive LMP was observed with lysosomes 

overloaded with TANs (Fig. 4l- 4m). This can be attributed to the TAN toxicity, exerted by AuNcg core on 

lysosomes, leading to the release of lysosomal cargo to the cell cytoplasm. LMP is recognized cell death 

mechanism and it can be partial or massive in nature.21 Partial LMP is associated to ROS generation and 

apoptosis, whereas massive LMP results in cytosolic acidification and necrosis.25 This is due to the hydrolytic 

enzymes, lysosomal-iron and cathepsins released during the process. The associated toxicity exerted by 

TANs resulted in lysosome dysfunction and degradation with blockade of autophagic flux. Previous studies 

shows that AuNps has the potential to alkalinize the lysosomes and cause lysosome impairment.21 

Autophagosome accumulation demonstrates the blockade of autophagic flux and defective autophagy. A 

complete destabilization of cell membrane with apoptotic bodies was observed with cytoplasmic blebs (Fig. 

3q).  Several dilated ER with ER inclusion bodies (ERib) were seen, which is a characteristic of defective 

autophagy and cell death (Fig. 3r- 3s).42,44 Finally, complete necrosis with cytoplasmic shrinkage and 

destabilized nuclear membrane shows the effect of TANs in the induction of defective autophagy and 

lysosomal dysfunction.  

 

Blockade of autophagic flux and autophagic cell death 

Induction of autophagy and accumulation of LC3-II marker protein was evaluated by LC3 turnover 

assay (Fig. 4a-4b). The assay identifies the ability of TAN to induce autophagy by increased accumulation of 

autophagosomes and/or by blocking the autophagosomal maturation to complete the pathway. Among all 

tested samples, treatment of AuNcgs showed only basal activity of LC3 conversion even with its bonafide 

ability of lysosome impairment.21 The balance between LC3-II production and degradation determines the 

total amount of LC3-II present. LC3-II turnover can occur under normal conditions, unless otherwise blocked 

by any lysosome inhibitors like CQ. CQ is generally used to study the LC3 turn over under blocked autophagy 

conditions.  A combination of TAN + CQ showed increased accumulation of LC3-II protein similar to TAN 

alone. This is due to blockage of autophagosome-lysosome fusion by hampering the function of lysosome 

using CQ. Interestingly, cells treated with TAN alone showed much higher LC3-II accumulation, indicating 

the inhibition of LC3 turnover via autolysosome formation. This clearly demonstrates the ability of TAN to 

disrupt the autophagy pathway via lysosome disintegration without any external lysosomotropic agent like 

CQ. The percentage of LC3 turnover and autophagosome formation was evaluated by FACS analysis (Fig. 

4b). Autophagy induced by free drug, 4OHT progresses with autophagic flux and finally ends up with 

autolysosome formation inducing resistance to cancer cells. 4OHT showed much lesser percentage of LC3-

II conversion compared to Rap and CQ, but higher than AuNcgs and NC. Previously, 4OHT was reported to 

induce autophagy mediated chemotherapeutic resistance in EsR+ breast cancers8 and autophagic cell death 

in EsR- cancers.45 This has been overcome by nanodrug delivery using TANs by inducing autophagic cell 

death. Activation of autophagy related genes and production of several associated proteins was evaluated 

using western blot analysis (Fig. 4c). Overexpression of Bcl1 and other Atg genes shows the successful 

activation of autophagy process in TAN treated cells, which is significantly comparative with 4OHT, AuNcgs 

and TAN+ CQ treated cells. However, accumulation of p62 substrate- protein in TAN treated cells reveals 

the blockade of autophagic flux and induction of defective autophagy. Increased production of Bcl1 protein 

can inhibit tumorigenesis in human breast carcinoma.46 Thus, it shows that inducing autophagy and 
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simultaneous impairing the autophagic flux can inhibit the progression of breast cancer and other 

malignancies.12,46   

 

Lysosome alkalinization and LMP  

AuNps are reported to cause lysosome impairment by its alkalinization and enlargement.21 Here, we have 

investigated the action of TANs on lysosomal functions based on the pH alterations (Fig.4d-4e). Lysosomal 

acidification is regulated by acid hydrolases like acid phosphatase and H+(V)-ATPase enzyme that is 

associated with membrane ion transport. MCF7 cells treated with test samples show large expanded clusters 

of yellow fluorescence that denotes increased vacuolization and cytosol acidification.47 Cells treated with 

4OHT alone show punctuated localization staining with less yellow florescence denoting normal lysosomal 

function and is highly comparable with NC. Whereas AuNcgs and TAN treated cells were showing eccentric 

pattern of Lysosensor localization with bright yellow fluorescence throughout the cytosol. Lysosomal 

impairment and massive LMP, resulting in cytosolic acidification is directly proportional to the yellow 

fluorescence observed. Both the test samples, AuNcgs and TANs were showing a similar pattern as observed 

with the positive control, CQ. CQ is a lysosome inhibitor that causes its enlargement by blocking the 

enzymatic functions and altering the pH conditions. After 48 hrs of incubation, yellow fluorescence was 

increased as result of massive lysosomal leakage. TAN treated cells were highly comparable with cells 

treated with TAN + CQ and CQ alone. By this it was evident that treatment of MCF7 cells with TAN alone is 

highly efficient in lysosome impairment to cause massive LMP. Accumulation of TAN and its biopersistence 

could be the major reason for lysosomal accumulation and related dysfunction. Increased accumulations of 

unmetabolized metal nanoparticles containing chemotherapeutic agents are always toxic for normal 

lysosomal functions and enzyme actions.  This will result in autophagic dysfunction, LMP and defective 

cellular trafficking.  LMP increases the presence of several ROS factors and hydrolytic enzymes, which could 

trigger apoptosis and necrosis.41 High concentrations of lysosomal- iron, cathepsin like enzymes and 

hydrolases in the cytosol would damage the membrane phospholipids present in the mitochondrial 

membrane, which in turn can induce MMP. MMP resulting from partial LMP is associated with ROS 

generation and apoptosis, whereas MMP resulting from massive LMP can end up in cytosolic acidification 

and necrosis.25 Thus, demonstrated that TAN mediated cell cytotoxicity would cause massive cytosolic 

acidification that triggers necrosis via massive LMP and ROS accumulation.  

 

ROS generation and mitochondrial membrane depolarization 

 ROS generation was detected using fluorescing dihydroethidium (DHE) assay. DNA binding was 

observed by high orange fluorescence and the amount of fluorescence was measured using FACS analysis 

(Fig. 4f). The FACS data for DHE intensity measured for different samples based on the amount of ROS 

generated was compared with the NC. It was observed that TAN interaction induced ROS generation from 

24 to 48 hrs. FACS data demonstrates the formation of sub-G0/G1 peak in almost all samples when 

compared to NC. It denotes the amount of ROS generated within 48 hrs can induce apoptosis in cancer cells 

by oxidative damage and other coupled mechanisms. Determination of the cell cycle and percentage of 

apoptosis induced is later discussed in this paper. 

 Mitochondrial damage by nanoparticles are recognized as a lethal mechanism for cell deaths via 

apoptosis/ necrosis.27 Au nanorods with cetyltrimethyl ammonium bromide has been previously reported to 

induce mitochondria-mediated apoptosis in cancer cells.48 Mitochondrial damage can be attributed to the 

nanoparticle toxicity via ROS generation through several means, including direct interaction of nanoparticles 

with mitochondrial membranes and ROS released as a result of LMP and ER stress. Here, we are 

demonstrating the depolarizing effect of TANs on inner membrane (InM) and outer membrane (OM) of 

mitochondria by measuring the ΔΨm. Change in ΔΨm is considered as a crucial parameter to decide the 

mitochondrial destabilization and MMP. Interaction of TANs and their specific entry to mitochondria has been 

successfully shown by TEM images (Fig. 3b- 3e and Supplementary Fig. 4). TAN entry to mitochondrial 

matrix can be demonstrated with a reduction in matrix ΔΨm. InM permeabilization can be manifested via 

dissipation of proton gradient responsible for transmembrane potential and OM permeabilization via release 

of membrane proteins like CytC. Mitochondrial depolarization was assessed using lipophilic cationic 

fluorochrome, DiOC6 (3,3’- tetraethylbenzimidazolylcarbocyanine iodide), which accumulate in mitochondrial 
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matrix based on the driving force exerted by ΔΨm.49 A decrease in the fluorescence intensity or shift in 

fluorescence emission spectrum is interpreted as an indication of ΔΨm dissipation (Fig.4g). Decreased 

intensity of DiOC6 was measured in case of all test samples except CQ after 24 hrs of incubation. This 

indicates a low ΔΨm when compared to its corresponding NC. OM permeabilization is considered as an 

important feature associated with permanent loss of ΔΨm. The reduction in ΔΨm observed is a true indication 

of the loss of OM integrity. After 48 hrs of incubation it was observed that the intensity of DiOC6 fluorescence 

was further reduced in most of the samples except 4OHT. A drastic increase in ΔΨm was observed with 

4OHT showing the induction drug resistance causing cell survival.50 However, an apoptotic (subG0/G1) peak 

was observed in every test samples treated for 48 hrs while FACS analysis. Thus, reduction in ΔΨm clearly 

demonstrates the damage of mitochondria by membrane depolarization on TAN treatment. Depolarization of 

mitochondrial membrane is responsible for MMP leading to superoxide and peroxide release (ROS 

generation). This in turn leads to mitochondrial mediated apoptosis and necrosis.  

 

Electron tomography of Mitochondrial perturbation and ER stress 

 TEM tomography illustrates the close association of TAN with mitochondrial OM and InM leading to 

MMP. Similarly, tomographic reconstruction and segmentation of mitochondria revealed the degree of 

damage observed within OM. The segmented mitochondrial image illustrates differential thickness of the 

mitochondrial wall and ruptured OM with several fissures (Fig.5a- 5k) Toxicity imparted by TAN and its 

association with mitochondria can be observed as a combined effect offered by 4OHT and AuNcgs together. 

4OHT present on the surface of TANs could possibly interact with EsRα and EsRβ receptors present in the 

mitochondria as they mimic the functions of estrogen. It has been reported that estrogen can enhance the 

transcription and protein expression of nuclear respiratory factor-1 and upregulates mitochondrial biogenesis 

in MCF7 cells.51 However, the interaction of 4OHT alone with membrane bound EsR can substitute the 

function of estrogen molecules and could increase the transcription of mitochondrial DNA under certain 

conditions. Nevertheless, TAN mediated delivery of 4OHT has been demonstrated successfully as lethal to 

MCF7 cells by binding and accumulating in mitochondrial matrix and inducing depolarization as well as MMP. 

Depolarization of mitochondrial membrane was further confirmed by the isolation of CytoC by western blot 

analysis (Fig. 5m). A significant difference in the amount of Cyto C release was observed from TAN treated 

cells compared to other test samples (Fig.5n). Similarly, AuNps are previously reported as agents capable of 

causing mitochondrial stress and damage that can lead to apoptosis and necrosis.27,48 In addition, TANs 

impart extreme stress to ER that initiates IM to form phagophore.52 Dilated SER and RER gives rise to double 

membrane autophagosomes to engulf damaged subcellular organelles and foreign bodies (Fig. 5o- 5w and 

Supplementary Fig. 6). It was evident that TANs specifically interact with ER, mitochondria, and lysosomes, 

which relates to type-I and type-II cell death simultaneously.  

 

Cell cycle analysis: Apoptosis and necrosis 

Apoptosis and necrosis are the two major processes that lead to cell death after lethal cellular injury. Here, 

we have analyzed the amount of cell death via evaluating the content of DNA by cell cycle analysis using 

propidium iodide (PI) staining (Fig. 6a-6b). It was observed that test samples were showing sub-G0/G1 peak, 

which corresponds to a population undergoing apoptosis in comparison with NC. Similarly, the double diploid 

or the M- phase for TANs were very less compared to the NC. TAN+CQ showed similar results. However, 

the cells undergoing M-phase was comparatively a little higher than TAN alone. Thus, it was evident that 

cells treated with TANs are undergoing serious apoptosis after 48 hrs of incubation. Similarly, apoptosis and 

necrosis were further confirmed using ethidium homodimer staining III (EthD-III) and analysis via flow 

cytometry (Fig. 6c) and visualized using confocal microscopy (Fig.6d). Data observed was supporting the cell 

cycle analysis; almost all cells were undergoing apoptosis in comparison with NC. Furthermore, many 

necrotic cells were also observed with TAN, TAN+CQ, 4OHT and AuNcgs. Confocal microscopy data shows 

that TAN and TAN+CQ showed a massive necrosis compared to NC and AuNcg samples (Fig.6d). Thus, the 

ability of TANs to promote efficient cell death via apoptosis and necrosis by inducing LMP and MMP was 

successfully demonstrated here.  

 

Conclusion 

Page 7 of 19 Nanoscale Advances

N
an

os
ca

le
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
D

ec
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 1

2/
13

/2
01

8 
12

:1
4:

28
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/C8NA00222C

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c8na00222c


 8 

Defective autophagy and lysosomal dysfunction are the major emerging mechanisms ascribed to 

nanomaterial toxicity.25,40 Perhaps, it could be a collective result of several other combined toxic effects like 

oxidative stress and inflammation induced by nanomaterials. Endocytosis of nanoparticles mostly ends up 

with lysosome internalization. The lysosomal acidic environment can be extremely hostile for most of the 

foreign materials engulfed except the highly biopersistent nanoparticles like AuNps.25 AuNps are well studied 

for their ability to activate autophagy, an intrinsic pathway to digest the damaged organelles and aberrant 

bodies inside the cells via lysosomal degradation. In this present study, TANs were targeted against TROP2 

and EsR receptors present on the surface of MCF7 cells. Generally, cellular ingestion of nanoparticles would 

increase the interaction of these moieties with cell organelles and induce ROS generation by several 

mechanisms.41 ROS generation will result in ER stress and mitochondrial damage and triggers autophagic 

pathway for digesting damaged organelles and proteins. Interestingly, this double-targeted AuNcgs gets 

accumulated in lysosome and mitochondria after receptor mediated endocytosis. TAN exerts severe stress 

against ER and mitochondria and induces autophagy.  Internalization of TANs can induce autophagic 

pathway via similar mechanism to digest ROS damaged mitochondria and ER. However, the lysosomal 

impairment will block the autophagic flux and leads to autophagic cell death by cytosolic acidification. 

Similarly, nanoparticle generated ROS can depolarize the mitochondrial membrane to trigger mitochondria 

mediated apoptosis.25 Hence ROS generation plays a crucial role in LMP, MMP and autophagy induction in 

cell death. We investigated the potential of TANs to induce the ROS generation and destabilization of 

mitochondrial membrane by altering the membrane potential (ΔΨm). Induction of simultaneous LMP and 

MMP by TAN can be attributed to two of its major inclusions: AuNcgs21 and 4OHT.12 Solid AuNps have been 

previously demonstrated to impart stress over ER, mitochondria and lysosomes.48 Here, we have shown the 

ability of cellular and subcellular-targeted hollow AuNcgs in inducing defective autophagy accompanied with 

massive LMP and MMP with subsequent apoptosis and necrosis leading to type-I (apoptotic/necrotic) and/or 

type-II cell death (autophagic cell death).25,53,54 Enhanced autophagic activity is generally correlated to 

metastatic potential and therapeutic resistance in several types of cancers.10 However, lysosomal dysfunction 

and associated toxicity culminating in defective autophagy, can be positively steered to establish 

nanotherapeutic efficiency in cancer treatment. Drugs that act on cathepsins and induce partial or massive 

LMP are recently investigated as nanotechnological therapeutic targets.23 TAN as a single nanodepot holds 

a promising combination of adjuvant chemotherapeutic agent (4OHT), lysosomotropic agent (AuNcgs), MAb 

(Anti-TROP2 Ab) and an immunomodulating-sulfated polysaccharide (MR) for dual targeted combination 

therapy of breast cancer. Specificity of TANs to TROP2+ breast cancer cells shows the potential of TAN 

prototype nanoformulation as an exclusive hybrid nanoparticle for breast cancer targeting irrespective of their 

expression of EsR, PR and HER.30,55 Our data suggests that tetravalent inclusions of TAN can lethally target 

the cancer cell and its subcellular entities leading to necrosis. These finding establishes for the first time on 

the possibilities of developing novel nanotherapeutic strategies for inducing several simultaneous killing 

mechanisms in cancer combination therapeutic strategies using chemically modified multi-targeted AuNcgs. 

Future investigations are progressing to unveil the specificity of TAN for other cancers that express TROP2 

receptors and the possible death mechanisms involved in the molecular level.  
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Figure captions 
 

1. Figure 1. Schematics showing the mechanism of action and effects of TANs in breast cancer cells due 
to distinct pathways. The representation demonstrates the specific interaction of TANs with subcellular 
organelles like mitochondria, ER and lysosomes leading to autophagic/ apoptotic cell deaths. 
 

2. Figure 2. FACS analysis, confocal imaging, and TEM ultrathin section analysis to show the interaction, 
targeted binding, accumulation and uptake of TANS with breast cancer cells- a-b, FACS data showing 
the specificity of free-TROP2 antibody for successful targeting. a, MCF7 cells (TROP2+ cells). b, MiaPaca 
(TROP2- cells). c, confocal image of Negative Control (NC) cells, without TANs, showing blue (Hoechst) 
and red (Lysotracker) only. d, confocal image of MCF7 cells (TROP2+ and ER+) treated with TANs after 
24h of incubation, green immunofluorescence (TAN binding) is observed from secondary antibody 
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bound to anti-TROP2 antibody (Pr1E11) present on the surface of TANs interacting with TROP2 receptor 
present on the surface of cancer cells. e, magnified image of MCF7 cells showing TAN binding. 
Corresponding fluorescence intensities of 2D confocal images were also shown (c1, d1, and e1). f, 3D 
volume of Z- stacked confocal images obtained from a series of sections, showing the volume of TANs 
bound to the TROP2 receptors present on the surface of MCF7 cells by green immunofluorescence. g, 
top view of the Z-stacked volume of MCF7 cells with TAN accumulation. h, tilted view of surface 
rendering of Z-stacked volume of MCF7 cells with TAN accumulation. i, topography of the surface 
rendered image-e, showing the position of nanoparticles in the Z- stack. j-m, confocal images of SkBr3 
cells (TROP2+ and ER-) showing the broad targeting range of TANs irrespective of ER, PR or HER 
expressions. j, 3D volume of Z- stacked confocal images obtained from a series of sections, showing the 
volume of TANs bound to the TROP2 receptors present on the surface of SkBr3 cells. SkBr3 possess over 
expression of TROP2 receptor proteins. k, top view of the Z-stacked volume of SkBr3 cells with TAN 
accumulation. l, tilted view of surface rendering of Z-stacked volume of SkBr3 cells with TAN 
accumulation. m, topography of the surface rendered image-r, showing the position of nanoparticles in 
the Z- stack. n, NC cells without vacuolization and organelle damage. o, MCF7 cells treated with TANs 
showing accumulation of TANs (high contrast areas shown in yellow arrows) inside nucleus and 
cytoplasm. Yellow arrows depict the TANs and red arrow shows the membrane protrusions. p, 
membrane invaginations protruding to engulf nanoparticles. q, nuclear invaginations were formed to 
engulf the nanoparticles and TANs were found inside nucleus. r, MCF7 cells showing accumulation of 
TANs inside the cell and interaction with several organelles. s, release of TANs from the lysosome 
compartment (blue arrow).  m= mitochondria, n=nucleus. 
 

3. Figure 3. TEM evaluation of subcellular interactions and fate of TANs on MCF7 cells. a, Schematic 
representation of TAN interaction with subcellular organelle, ER and initiation of IM, leading to 
phagophore formation and resulting in defective autophagy. b, binding and accumulation of TANs 
around and within the MCF7 cells respectively. Entrapment of TANs within cytoplasm, nucleus, 
mitochondria and ER. c, many TANs interacting and trapped inside lysosomes and mitochondria, more 
specifically (highlighted in blue circles). d, demonstrates the interaction of TANs with several organelles, 
especially with mitochondria. e, magnified section of image-d, showing the mitochondrial perturbation 
by TANs. The average size of the TANs entrapped inside the cells were measured to be ~90 nm, which is 
highly par with the size measured for bare Nanocages. f-h, cellular trafficking of TANs after 24 hrs 
treatment with MCF7 cells. f, interaction and binding of TAN to mitochondria- nanocage perturbation 
causes severe damage to outer and inner mitochondrial membrane. g, magnified section of image-f, 
yellow arrows depicts the TANs. h, interaction of TANs with various mitochondrial matrix and 
membrane. i, formation of autophagosome by entrapping two damaged mitochondria. A double layered 
IM or phagophore is surrounding the damaged mitochondria. j, vacuolization of cytoplasm and 
enlargement of lysosomes. k, magnified section of image-k, showing the fusion stage of autophagosome 
and lysosome without TANs. TAN damaged lysosomes are restricted to carry out autolysosome 
formation as they get damaged by the action of nanocages. l, enlarged lysosomes accumulated with 
several TANs. m, magnified section of image-l, showing massive LMP and release of lysosomal content 
to cytoplasm. This causes the acidification of cytoplasm leading to apoptosis/necrosis. n-s, cellular 
trafficking of TANs after 48 hrs treatment with MCF7 cells. Red arrows depict the fusion process. n, 
accumulation of damaged lysosomes showing denatured acid phosphatase enzymes inside (dark 
accumulations). This resulted in defective autophagy leading to massive LMP. o, autophagosome- robust 
lysosome fusion occurred in areas where nanocages were not interacted, however, ER dilation and 
cytoplasmic blebbing was observed. p, enormous accumulation of autophagosomes occur due to lack 
of robust lysosome available for fusion, leading to apoptosis/ necrosis. Clumping of nuclear materials 
were also observed. q, cell membrane damage and cytoplasmic clearing causes cell death. r, concentric 
ring structured anomalous mitochondria and ERibs can be seen with clearing cell cytoplasm. s, dead cell 
showing degraded cytoplasm and devoid of cellular organelles. M= Mitochondria, N=Nucleus, 
L=Lysosome, A= Autophagosome, ER= Endoplasmic reticulum, IM= Isolation membrane, ERib= 
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Endoplasmic reticulum inclusion bodies,                  
               

4. Figure 4. (a-c) Immunofluorescence assay and western immunoblot analysis for autophagy related 
proteins (Atg) to show the induction of autophagy. a, confocal images showing the induction of 
autophagy by green fluorescence accumulation. Cyto ID green detection reagent accumulates in the 
perinuclear region, where the LC3 conversion occurs during autophagy induction. Increased bright green 
fluorescence is observed during the progression of autophagy and blue (Hoechst) represents the 
nucleus. 6 sets of test samples were analyzed, viz. Rapamycin (Rap- 500 nM) (+Ctrl), Chloroquine (CQ- 
20 µM), TAN (32 µM, 100µl), TAN+CQ (1:1, 100 µl), bare AuNcgs (32 µM, 100 µl), 4-hydroxytamoxifen 
(4OHT- 0.01 mM)) and NC. Autophagy induction was observed by accumulation of green fluorescence 
in TAN and TAN+CQ treated cells at higher extend, which is much higher than the +Ctrl, Rap. Similarly, 
4OHT and AuNcgs treated cells also showed green fluorescence, but to a lesser extent only. 
Corresponding fluorescence intensity of images recorded were also shown adjacent to each merged 
image. b, FlowCellect autophagy LC3 antibody based LC3 turnover assay detects the conversion of 
cytoplasmic LC3I to membranous LC3II by measuring the translocated LC3 in the autophagosomes. The 
amount of LC3II can be correlated with the number of autophagosomes formed. FACS analysis showed 

that TANs have the highest capability of LC3I to LC3II conversion, which is about ̴ 32.9 ±0.065 %, 

followed by TAN+CQ (̴ 28.9 ± 2.39%), CQ (̴ 24.1 ± 2.5%), RAP (̴ 20.1 ± 2.57%), 4OHT (̴ 14.2 ± 

0.52%), AuNcgs (̴ 9.7 ± 0.6%) and NC (̴ 9.6 ± 2.6%). All values were plotted with mean ± SE (n=3) and 
statistical significance was represented with p<0.05 (*) and p<0.01 (**). c, Formation of 
autophagosomes involves ubiquitin- like conjugation system with several proteins like Atg5, Atg12, 
Atg16L1, Atg7, Atg3, Beclin-1(bcl1), LC3A/B, and p62 (SQSTM1). MCF7 cells were treated with test 
samples (TAN, 4OHT, AuNcgs, TAN+CQ, CQ and NC) for 24 hrs and Western blotted with respective 
primary rabbit antibodies and anti-rabbit IgG, HRP-linked secondary antibody from goat. Over 
expression of Atg proteins and Bcl1 accumulation in TAN treated cells indicates the induction of 
autophagy. However, the accumulation of p62 substrate protein shows that TANs directs to defective 
autophagy by interfering with autolysosome formation, leading to autophagic cell death (Type II cell 
death). GAPDH served as the loading control. Immunoblot results were analyzed, and relative band 
intensities were measured and plotted using ImageJ analysis software. All values were plotted with 
mean ± SE (n=2). d-e, Immunofluorescence assay to show lysosome impairment, following alkalinization 
by TANs. d- e, Confocal images of lysosome impairment assay performed using Lysosensor DND- 160 
Yellow/blue dye. MCF7 cells were treated with test samples (TAN, 4OHT, AuNcgs, TAN+CQ, CQ (+ctrl) 
and NC) for 24- 48 hrs and at the end of incubation, cells were stained with Lysosensor DND- 160 
followed by confocal imaging. NC and 4OHT showed punctate pattern of yellow fluorescence depicting 
normal lysosomes, whereas other test samples showed eccentric pattern of yellow fluorescence 
throughout cytoplasmic region due to cytosolic acidification by damaged lysosomes. Results were 
consistent with both 24 (d) and 48 (e) hrs test samples. f, FACS measurement of ROS generated using 
dyhidroethidium (DHE, 5 µM) fluorescence. Cancer cells treated with test samples, viz. TAN (red), 4OHT 
(yellow), AuNcgs (purple), TAN+CQ (blue), CQ (magenta) and NC (green) for 24 – 48 hrs were analyzed 
for ROS generation after DHE staining. All the test samples showed ROS generation in comparison to NC 

with a sub G0 peak showing an apoptotic population as well. g, FACS measurement of△Ѱm by 3,3- 
dihexyloxacarboxyanine iodide (DiOC6) staining. MCF7 cells treated with test samples were incubated 

for 24- 48 hrs and treated with DiOC6 (5 µM) for evaluation change in △Ѱm the due to CytC release. 

Decrease in the △Ѱm was observed for all test samples in comparison with NC, however a slight increase 

in △Ѱm was observed for 4OHT at 48 hrs. Irrespective of that it was observed that TAN and other test 

samples were causing mitochondrial damage by altering the △Ѱm.  
 

5. Figure 5. Electron tomographic demonstration of mitochondrial and ER damage by TANs. a, 
Ultramicrotomed TEM image of 24 hrs TAN treated MCF7 cells showing nanocage interactions with 
mitochondria and ER. b, corresponding tomographic reconstruction and segmentation of mitochondrial 
and ER interactions with TANs. ER (blue), mitochondria (green) and TANs (yellow). c, TEM image showing 
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the binding of TANs with cell membrane and their interaction with smooth ER and mitochondria. d, 
segmented tomographic image of ER with nanocage in the cleft. e, segmented tomographic image of 
dilated ER as a result of TAN interaction. Dilation and development of isolation membrane (IM) from ER 
occurs as a prime step involved in autophagy pathway. f- i, TEM images of nanocages perturbing 
mitochondria. It was observed that TANs could bind to outer membrane of mitochondria and cause 
serious damage to it. This was explained by measuring the variation in membrane potential and western 
blot analysis of CytC released.  Once the particles enter, the matrix gets damaged and leads to massive 
mitochondrial membrane permeation (MMP). MMP can generate apoptotic enzymes that in turn induce 
apoptotic cell death (Type I cell death). Yellow arrow depicts nanoparticles, whereas red arrows show 
the damage caused to the outer membrane (OM) and inner membrane (InM). j-k, mitochondrial 
membrane damage was demonstrated using segmented tomographic reconstruction of mitochondria. 
Difference in the thickness of mitochondrial membrane was shown in the inset of figure j, along with 
abrasions occurred. Scraped membrane regions are shown with red arrows. l, schematic representation 
showing the fate of the cells after mitochondrial and ER damage by TANs. Simultaneous damage causing 
to the ER, mitochondria and lysosomes can lead to type I and/or type II cell death in cancer cells. m-n, 
western blot analysis of CytC, shows an increased release of the membrane protein from TAN treated 
cells. GAPDH was used as the loading control. Immunoblot results were analyzed, and relative band 
intensities were measured and plotted using ImageJ analysis software. All values were plotted with 
mean ± SE (n=2). M= Mitochondria, ER= Endoplasmic reticulum, RER= Rough endoplasmic reticulum, 
SER= Smooth endoplasmic reticulum, IM= Isolation membrane, G= Golgi body. o- p, TEM image and 
corresponding tomographic reconstruction of TAN damaged smooth ER (SER) and rough ER (RER). RER 
(blue) on nanoparticle perturbation develops IM (yellow), which initiates the autophagy pathway (Fig. 
o, p). IM detaches from ER and forms phagophore during this pathway. Most of the SERs are observed 
with dilated morphology. q, TEM image showing complete vacuolization and stressed ER with dilated 
morphology. Dilated ER and autophagosome development (yellow), degrading mitochondria (green) 
and active intact lysosome (purple). r, IM developing from stressed ER. s, damaged mitochondria with 
dumbbell shape. t, mitochondria with disintegrated cristae and matrix. u, dumbbell shaped 
mitochondria. v, autophagosome developing from IM originating from SER. w, undamaged intact 
functional lysosome. M= Mitochondria, ER= Endoplasmic reticulum, RER= Rough endoplasmic reticulum, 
SER= Smooth endoplasmic reticulum, IM= Isolation membrane, G= Golgi body.    
 

6. Figure 6. Cell cycle analysis and apoptosis/necrosis assay. a, MCF7 cells treated for 24 hrs with various 
test samples (NC, CQ, AuNcgs, 4OHT, TANs, TAN+CQ) were subjected to cell cycle analysis using 
propidium iodide staining. Cell cycle analysis revealed that TAN particle treated cells showed a 
population under subG0-G1 phase which corresponds to the apoptotic cells. It was evident that 
apoptosis was higher for TAN treated cells followed by other test samples. However, AuNcgs treated 
cells showed less amount of apoptosis compared with other samples. Thus, it reveals the effect of TAN 
as a combinatorial formulation causing apoptosis in breast cancer cells. b, graphical representation of 
the MCF7 cells undergoing different cell cycle phases as depicted in a. c, FACS analysis of MCF7 treated 
with various test samples for 48 hrs. TAN and TAN+CQ treated cells showed high amount of apoptosis 
and necrosis. EthD-III staining of MCF7 cells treated with various test samples (NC, AuNcgs, 4OHT, TANs, 
TAN+CQ) for 48 hrs, demonstrating necrosis. TAN and TAN+CQ treated cells showed high degree of 
necrosis compared to other test samples. Corresponding intensity plots for every merged confocal 
image was shown adjacent to the respective necrotic images.                 
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