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Abstract A wide range of dynamic models, including those of heating, evapo-
ration and ignition processes in fuel sprays, is characterised by large differences
in the rates of change of variables. Invariant manifold theory is an effective
technique for investigation of these systems. In constructing the asymptotic
expansions of slow invariant manifolds it is commonly assumed that a limit-
ing algebraic equation allows one to find a slow surface explicitly. This is not
always possible due to the fact that the degenerate equation for this surface
(small parameter equal to zero) is either a high degree polynomial or tran-
scendental. In many problems, however, the slow surface can be described in
a parametric form. In this case, the slow invariant manifold can be found in
parametric form using asymptotic expansions. If this is not possible, it is neces-
sary to use an implicit presentation of the slow surface and obtain asymptotic
representations for the slow invariant manifold in an implicit form. The re-
sults of development of the mathematical theory of these approaches and the
applications of this theory to some examples related to modelling combustion
processes, including those in sprays, are presented.
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1 Introduction

Modelling of the processes in sprays is a challenging task. It includes the anal-
ysis of equations describing coupled fluid dynamics, heat/mass transfer, and
ignition/combustion (in the case of fuel sprays) processes in a complex geome-
try. To take into account the complexity of this geometry, the enclosures (e.g.
internal combustion engine chambers) should be split up into millions of cells.
The parameters of the continuous phase in each of these cells are constant,
but they change over time and from one cell to another. Moreover, the dy-
namics of the dispersed phase (fuel droplets) and chemical reactions in each
cell need to be taken into account. The number of these droplets and chemical
reactions in each cell can be many thousands in the general case (e.g. [1,2,
3]). These features of the modelling of spray processes make it impossible to
perform their rigorous quantitative analysis. Two main approaches have been
developed to deal with this complexity. The first approach is based on the
application of rather simplistic physical models of individual processes, but
the geometry of the enclosure is approximated as accurately as possible. This
approach is incorporated in most commercial Computational Fluid Dynamics
(CFD) codes and is most widely used in engineering applications. The sec-
ond approach is focused on in-depth development of the physical models of
individual processes, ignoring the complexities of the geometry and details of
interactions between various processes [4]. These two approaches are not con-
tradictory but rather complementary. In a series of our papers, summarised in
[4], an attempt was made to develop the third approach to this modelling. This
approach is based on establishing a hierarchy of the processes involved (recog-
nising multiple scales in time and space) and finding a compromise between
the accuracy of the models and their computer efficiency.

An alternative approach to modelling multi-scale spay processes in indi-
vidual cells could be based on the theory of invariant manifolds, in which the
original system is replaced by another system on an invariant manifold of lower
dimension. Despite its obvious attractiveness, this approach is still rarely used
in engineering applications (as one of few exceptions we can refer to the old
paper [5]). The main reasons for this are: that this approach is still based on a
number of assumptions, the applicability of which to engineering systems is far
from obvious; the mathematical complexity of the theory; and non-familiarity
with this theory by the engineering community at large. The main aim of this
paper is to address all three of these factors which will hopefully make this
approach more ‘friendly’ to the engineering community. Further developments
of the theory will be performed. Many details of the mathematical analysis,
commonly omitted in mathematical publications, will be presented, and the
paper is submitted to a journal with mainly engineering readership.

The lowering of the dimensions of the original system describing coupled
heat/mass transfer, and ignition/combustion processes in sprays (fluid dy-
namic processes are not considered) occurs due to decomposition of the original
system in the vicinity of the invariant surface into ‘slow’ and ‘fast’ subsystems.
If the slow invariant manifold is attractive then the analysis of the original
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system can be replaced with the analysis of the slow subsystem. Asymptotic
expansions of slow invariant manifolds in the vicinity of slow surfaces were
suggested in [6]-[8]. In terms of perturbation theory slow invariant manifolds
are associated with outer (slow) solutions, while fast invariant manifolds are
associated with the boundary layer (fast) corrections.

An asymptotic method using slow invariant manifolds in an implicit form
was suggested in [9] (see also [10] and [11]). This approach is related to the
method of intrinsic low-dimensional manifolds (ILDM) proposed by Maas and
Pope [11]. The iterative method was proposed by Fraser [12], and further
developed by Fraser and Roussel [13] for autonomous systems that are linear
with respect to fast variables in the case of scalar slow and fast variables. This
method was extended to the nonautonomous systems with vector variables in
[11].

All these methods are related to the invariant manifold method. The links
between these methods were demonstrated in [14], where an overview of reduc-
tion methods in chemical kinetics was presented (see [11] for further details).

A slow invariant manifold of a singularly perturbed system can be presented
as an explicit, implicit or parametric function. To illustrate this, let us consider
the following system:

dx

dt
= y, ε

dy

dt
= x− y2, (1)

the exact slow invariant manifold of which could be presented in an explicit
form. A possible parametric presentation of this manifold is as follows

x = v2 + ε/2, y = v,
dv

dt
=

1

2
.

It is well known that any curve or surface can be parameterised in an infinite
number of ways. The method chosen above has the advantage that one of the
variables of the system under consideration plays the role of a parameter.

In the case shown in Fig. 1, the slow invariant manifold consists of two
leaves; the explicit form of the stable (attractive) leaf is y =

√
x− ε/2,

dx
dt =

√
x− ε/2, and the explicit form of the unstable (repelling) leaf is

y = −
√
x− ε/2, dx

dt = −
√
x− ε/2.

In constructing asymptotic expansions of slow invariant manifolds, it is
commonly assumed that the degenerate (limiting) equation allows one to find
a slow surface (invariant manifold in the limit ε→ 0) explicitly, as in the case of
the abovementioned example. In many problems, however, this is not possible
due to the fact that the degenerate equation is either a high degree polynomial
or transcendental. An alternative approach is based on the observation that
the slow surface can be described implicitly and even in a parametric form.
The approaches based on the presentation of slow surfaces in parametric or
implicit forms have never been applied to the analysis of equations describing
fuel spray ignition and combustion, to the best of our knowledge.

The theoretical background of these approaches is discussed in Section 2. In
Section 3, the application of one of these approaches is illustrated for examples
taken from the theory of heating, evaporation, ignition and combustion of fuel
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Fig. 1 The slow invariant manifold (thick curve) and four representative trajectories (thin
curves) of System (1) for ε = 0.1

sprays in Diesel engine-like conditions (see [15] and [16]). The main results of
the paper are summarised in Section 4.

The preliminary results of our analysis were presented in [17]. The approach
described in this paper is complementary to the one suggested in [18].

2 Theoretical background

In constructing asymptotic expansions of slow invariant manifolds it is com-
monly assumed that the degenerate equation (with small parameter ε = 0)
allows one to find an explicit expression for the slow surface. As mentioned
in Section 1, on many occasions this is not possible, but the slow invariant
manifold can be found in a parametric form using asymptotic expansions [11].
Alternatively, one might need to obtain asymptotic representations for the
slow invariant manifold in implicit forms. In what follows, basic principles of
constructing manifolds in both cases are described, and characteristic exam-
ples illustrating this, including those taken from spray combustion theory, are
presented and analysed.

2.1 Explicit and Implicit Slow Invariant Manifolds

Let us consider the following autonomous system:

ẋ = f(x, y)
εẏ = g(x, y)

}
, (2)
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where 0 < ε� 1, x ∈ Rm, y ∈ Rn,Rm+n = Rm×Rn. A surface y = ℵ(x, ε) is
called a slow invariant manifold of System (2) if any trajectory x = x(t, ε), y =
y(t, ε) of System (2) that has at least one common point x = x0, y = y0 with
the surface y = ℵ(x, ε), i.e. y0 = ℵ(x0, ε), lies entirely on this surface, i.e.
y(t, ε) = ℵ(x(t, ε), ε).

This definition is based on the explicit representation y = ℵ(x, ε) of the
manifold. Let the degenerate equation

g(x, y) = 0 (3)

has solution y = φ(x). A surface described as y = φ(x) is called a slow surface
or slow manifold (e.g. [11]). If functions f , g, and φ are sufficiently smooth
and the eigenvalues λi = λi(x) (i = 1, . . . , n) of the matrix gy(x, φ(x)) satisfy
the conditions

|Reλi| ≥ γ > 0, i = 1, . . . ,n, (4)

then the approximation to ℵ(x, ε) can be obtained as an asymptotic expansion
in powers of ε [6]. Note that Condition (4) guarantees that matrix g−1

y (x, φ(x))
exists and its norm is bounded in the corresponding domain in Rm [11]. More-
over, if (4) takes the form of

Reλi ≤ −γ < 0, i = 1, . . . ,n,

then the invariant manifold ℵ(x, ε) is attractive and can be used for order
reduction of System (2).

It is not always possible to find function y = φ(x) = ℵ(x, 0) from the
degenerate equation (Equation (3)). In this case the slow invariant manifold
can be obtained in an implicit form

G(x, y, ε) = 0, (5)

and the flow on this manifold is described by the first equation in System (2),
in which x and y satisfy (5). In this case function G can be found from the
invariance equation [11]:

Gy(x, y, ε)g(x, y) + εGx(x, y, ε)f(x, y) = 0. (6)

This equation is the result of differentiation of (5) remembering (2).
Let us now calculate partial derivatives of function ℵ(x, ε), which describes

the slow invariant manifold y = ℵ(x, ε). Remembering (5) we find

Gx +Gyℵx = 0,

i.e. ℵx = −G−1
y Gx.

Having substituted this expression for the partial derivative of ℵ into the
invariance equation in the form εℵxf = g we obtain

−εG−1
y Gxf = g,

which is identical to Equation (6) under the condition that detGy 6= 0.
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The zeroth approximation to the flow on the slow invariant manifold (slow
surface) is described by the differential-algebraic system:

ẋ = f(x, y), (7)

0 = g(x, y) ≡ G(x, y, 0). (8)

To obtain the first order approximation, one needs to find the full derivative
of g ≡ g(x, y) with respect to time:

d

dt
g =

1

ε
gyg + gxf. (9)

When calculating the right hand side of this equation, (2) was used. Remem-
bering (7)–(9), the slow invariant manifold is described by the following system
of differential-algebraic equations:

ẋ = f(x, y), (10)

gyg + εgxf = 0. (11)

Equation (11) may be rewritten in a more convenient form when det gy 6= 0:

g + εg−1
y gxf = 0. (12)

or

g + εN = 0, (13)

where N = g−1
y gxf. We recover (8) (the zeroth approximation) by setting

ε = 0.
To obtain the second order approximation, we need to set the second deriva-

tive of g(x, y) to zero, using (2). In this case, after differentiating ε(g+εN) = 0
with respect to t, and remembering that gt = 0 and Nt = 0, we obtain:

ε
d

dt
(g + εN) = g + εN + εg−1

y Nyg + ε2g−1
y Nxf.

Setting the right hand side of this equation to zero we find:

g + ε
[
N + g−1

y Nyg
]

+ ε2g−1
y Nxf = 0. (14)

Since the second order approximation differs from the first one by the terms
of order O(ε2), we expect εg−1

y Nyg = O(ε2). This can be proven remembering
that g = −εN (see Expression (13)). In this case, εg−1

y Nyg = −ε2g−1
y NyN .

Hence, Equation (14) can be rewritten as:

g + εN + ε2g−1
y (Nxf −NyN) = 0. (15)

This is the second order approximation to the slow invariant manifold, the
flow on which is described by Equation (10).
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A stability analysis of slow invariant manifolds is presented in Section 2.2
of [11] in the general case. In the case of scalar y the condition for attractivity
of these manifolds is simplified to the statement:

∂g(x, y)

∂y
< 0 (16)

on the slow manifold g(x, y) = 0.

Note that if functions f = f(x, y, ε) and g = g(x, y, ε) in (2) are sufficiently
smooth, then the above formulae for the approximations to the slow invariant
manifold are still valid. There is no need to take into account terms of order
O(ε) in the zero order approximation, and terms of order O(ε2) in the first
order approximation. In the general case, in the k–order approximation all
higher order terms in the expansions can be ignored.

As an illustration, we consider the following system describing the classical
heat explosion model with reactant consumption [21,22,23]:

dη

dτ
= −ηeθ = f(η, θ), (17)

ε
dθ

dτ
= ηeθ − αθ = g(η, θ), (18)

where θ, η and τ are dimensionless temperature, fuel concentration, and time,
respectively. This system is autonomous and the theory described above can
be applied to it.

The zero-order approximation to the slow invariant manifold is:

g = ηeθ − αθ = 0, (19)

which implies that η(θ) = αθe−θ. This manifold is stable when ηeθ − α < 0
(see Condition (16)). As Equation (19) cannot be explicitly solved with respect
to the fast variable θ, its implicit solution is used to obtain approximations to
the slow invariant manifold.

The first order approximation g + εgηf/gθ = 0 can be rewritten as:

ηeθ − αθ − εηe2θ/gθ = 0,

where gθ = ηeθ − α. The equation for the second order approximation g +
εN + ε2g−1

θ (Nηf −NθN) = 0 can be presented as:

ηeθ − αθ − εηe2θ/gθ − ε2
(
αηe3θ/g3θ + η2e4θ(ηeθ − 2α)/g4θ

)
= 0,

since N = gηf/gθ = −ηe2θ/gθ, Nη = αe2θ/g2θ , Nθ = −
(
η2eθ − 2αη

)
e2θ/g2θ .

These approximations are compared in Fig. 2. As can be seen from this figure,
none of the approximations are really good near the critical point θ = 1, where
gθ = 0. Except in the vicinity of this point, the difference between the slow
invariant manifold and its first- and second-order approximation is small and
can be ignored in most engineering applications.
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(a) (b)

Fig. 2 (a) The slow invariant manifold (solid thick curve), the slow curve (dotted), the first-
order approximation (dashed), the second-order approximation (dash–dotted) to the slow
invariant manifold of (17); ε = 0.01, α = 1. (b) Zoomed part of the plots for 0.27 < η < 0.3.

2.2 Parametric Representation of Invariant Manifolds

As mentioned earlier, in many problems, the analysis of which is based on
invariant manifolds, it is not possible to find an explicit solution to equation
g(x, y, 0) = 0, but this solution can be found in a parametric form:

x = χ0(v), y = ϕ0(v),

where v ∈ Rm, and the following identity holds

g(χ0(v), ϕ0(v), 0) ≡ 0.

In this case, the slow invariant manifold may also be found in a parametric
form:

x = χ(v, ε), y = ϕ(v, ε),

where χ(v, 0) = χ0(v), ϕ(v, 0) = ϕ0(v). The flow on the invariant manifold is
described by the following equation:

v̇ = F (v, ε), (20)

where function F (v, ε) is determined later. Functions χ, ϕ, and F can be pre-
sented as the following asymptotic expansions:

χ(v, ε) = χ0(v) + εχ1(v) + . . .+ εkχk(v) + . . . ,

ϕ(v, ε) = ϕ0(v) + εϕ1(v) + . . .+ εkϕk(v) + . . . , (21)

F (v, ε) = F0(v) + εF1(v) + . . .+ εkFk(v) + . . . .
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Remembering (2) and (20), we obtain:

dx

dt
=

dχ(v, ε)

dt
=
∂χ

∂v
F = f(χ, ϕ, ε), (22)

ε
dy

dt
= ε

dϕ(v, ε)

dt
= ε

∂ϕ

∂v
F = g(χ, ϕ, t, ε). (23)

Equating coefficients before powers of small parameter ε we obtain equa-
tions:

∂χ0

∂v
F0 = f(χ0, ϕ0, 0), g(χ0, ϕ0, 0) = 0,

(zero order approximation) and

∂χ1

∂v
F0 +

∂χ0

∂v
F1 = fx(χ0, ϕ0, 0)χ1 + fy(χ0, ϕ0, 0)ϕ1 + f1,

∂ϕ0

∂v
F0 = gx(χ0, ϕ0, 0)χ1 + gy(χ0, ϕ0, 0)ϕ1 + g1,

(first order approximation), where

f1 =
∂f

∂ε

∣∣∣∣
χ0,ϕ0,0

, g1 =
∂g

∂ε

∣∣∣∣
χ0,ϕ0,0

.

This process can continue to obtain higher order approximations.
Two vector equations, describing the zero order approximation, contain

three unknown vector functions χ0, ϕ0 and F0. This is equivalent tom+n scalar
equations containing m+n+m unknown scalar functions. The number of free
unknown functions coincides with the dimension of vector v (dimensionality of
vector x or function χ). The same statement applies to the equations describing
the first order approximation.

In the general case, Equations (22) and (23) contain unknown functions χ,
ϕ, F . In some specific problems it is possible to consider one of these functions,
or any scalar components of χ, ϕ and F, as known functions. The remaining
functions may be found from (22) and (23). Moreover, it is possible at any
step of the calculation of the coefficients in (21) to choose any m components
of these coefficients as given functions. In the case when F is a given or known
function, Equations (22) and (23) can be used to calculate the coefficients in
the asymptotic expansions of χ and ϕ. If it is possible to predetermine function
χ, these equations allow us to calculate F and ϕ. To clarify this we consider
several examples.

If y on the manifold can be presented in the explicit form y = ℵ(x, ε), we
can assume that x = v and write

χ = v, ϕ = ℵ(v, ε), F = f(v,ℵ(v, ε), ε),

since v̇ = ẋ = f . Then Equation (23) takes the form

ε
∂ℵ
∂v
f(v,ℵ, ε) = g(v,ℵ, ε).
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Let us now assume that y = v, provided that dim x = dim y (dimensions of
x and y are the same). In this case, ϕ = v and

∂χ

∂v
F = f(χ, v, ε), g(χ, v, ε) = εF. (24)

When deriving this equation, (20) and the second equation in System (2)
(see also (22)) were used. The equation for χ follows directly from Equation
(24):

∂χ

∂v
g(χ, v, ε) = εf(χ, v, ε).

Assuming that det(∂χ0

∂v ) 6= 0, it is possible to calculate χ using its asymp-
totic expansion with respect to ε. Note that the condition g(χ0, ϕ0, 0) = 0
implies that Equation (20) is regularly perturbed with respect to ε. This fol-
lows from the fact that F = O(1) as ε→ 0 (see the second equation in (24)).

Three cases of effective parameterization for System (2) with slow variable
x (dimx = m) and fast variable y (dim y = n) are considered in the Appendix.

3 Spray ignition and combustion model

In this section some of the mathematical tools described above are applied to
the analysis of the system of equations for spray ignition and combustion.

The analysis is based on the model developed in [16], where spray igni-
tion and combustion are considered as an explosion process. The endothermic
(droplet evaporation) versus exothermic (combustion in the gaseous phase)
competition determines explosion regimes. The analysis is focused on a spa-
tially homogeneous mixture of an optically thin, combustible gas with a mono-
dispersed spray of evaporating fuel droplets. Both convective and radiative
heating of droplets are taken into account. The effect of droplets on the inci-
dent radiation and the effects of droplet movement are ignored. It is assumed
that the incident radiation is absorbed inside semi-transparent droplets. The
system is assumed to be adiabatic and gas pressure is assumed to be constant.
The thermal conductivity of the liquid phase is assumed to be infinitely large.
The effects of the Stefan flow on droplet heating and evaporation are ignored
(Nu=Sh=2). The heat transfer coefficient of the mixture is assumed to be
controlled by the thermal properties of the gaseous component. The ignition
and combustion processes are described by the first order exothermic reac-
tion, taking place in the gaseous phase. See [4] and [20] for further discussion
of these assumptions.

Given these assumptions the spray ignition and combustion process is de-
scribed by the following equations [16]:

cpgρgϕg
dTg
dt

= ω̇MfQfϕg − 4πR2
dndqc, (25)
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dCf
dt

= −νf ω̇ + 4πR2
dnd

(qc + qr)

LMfϕg
(1− ζ(Td)) , (26)

dCox
dt

= −νoxω̇, (27)

cfmd
dTd
dt

= 4πR2
d(qc + qr)ζ(Td), (28)

d

dt

(
4

3
πR3

dρf

)
= −4πR2

d

(qc + qr)

L
(1− ζ(Td)) , (29)

with the initial conditions

Td(0) = Td0, Tg(0) = Tg0, Rd(0) = Rd0, Cf (0) = Cf0, Cox(0) = Cox0,

where

ω̇ = Caff CbxoxA exp

(
− E

RTg

)
, ζ(Td) =

Tb − Td
Tb − Td0

, qc = hc(Tg − Td),

hc =
λg
Rd

, qr = k1σT
4
ext, k1 = aRbd,

a = a0 + a1

(
Text
103

)
+ a2

(
Text
103

)2

, (30)

b = b0 + b1

(
Text
103

)
+ b2

(
Text
103

)2

. (31)

Gas is assumed to be optically thin (radiative temperature is equal to the ex-
ternal temperature Text). We assume that ρgϕg = const and the process takes
place at constant pressure (approximation of Diesel engine-like conditions).

Introducing the dimensionless variables:

θg =
E

RTd0

Tg − Td0
Td0

, θd =
E

RTd0

Td − Td0
Td0

, r =
Rd
Rd0

, η =
Cf
Cff

, ξ =
Cox
Cox0

,

τ =
t

treact
, treact =

1

ACaf−0.5
ff Cbx−0.5

ox0

exp

(
1

β

)
, β =

RTd0
E

,

γ =
cpgTd0ρgβ

(Cox0Cff )0.5QfMf
, Cff =

4π

3
R3
d0ρfnd

1

Mf
(1 + ωf ), ωf � 1,

ε1 =
4πRd0ndλg0Td0β

CafffC
bx
ox0AQfϕgMf

exp

(
1

β

)
, ε2 =

(Cox0Cff )
0.5
QfϕgMf

ρfLϕf
,

ε3 =
4T 3

d0σRd0k10
λg0

, ε4 =
cfTd0β

L
,

ν̃f =
1

νf

√
Cff
Cox0

, ν̃ox =
1

νox

√
Cox0
Cff

,
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we can rewrite Equations (25)–(29) as

dθg
dτ

=
1

γ

(
P1(θg, η, ξ)− P2(θg, θd, r)

)
, (32)

dη

dτ
=

1

ν̃f

[
−P1(θg, η, ξ) +

ψ

νf
P23(θg, θd, r)

(
1− ζ(θd)

)]
, (33)

dξ

dt
= − 1

ν̃ox
P1(θg, η, ξ), (34)

dθd
dτ

=
ε2
ε4r3

P23(θg, θd, r)ζ(θd), (35)

d
(
r3
)

dτ
= −ε2P23(θg, θd, r)

(
1− ζ(θd)

)
, (36)

with the initial conditions:

θg(0) = θg0 6= 0, θd(0) = θd0 = 0,

r(0) = r0 = 1, η(0) = η0, ξ(0) = ξ0 = 1,

where

P1(θg, η, ξ) = ηaξb exp

(
θg

1 + βθg

)
, P2(θg, θd, r) = ε1r

√
Td0(1 + βθg)

Tg0
(θg−θd),

P3(r) =
ε1ε3
4β

r2+b
(
1 + βθextg

)4
, P23(θg, θd, r) = P2(θg, θd, r) + P3(r),

θextg =
1

β

Text − Td0
Td0

, ζ(θd) =
Tb − Td0 (1 + βθd)

Tb − Td0
.

We assume that System (32)–(36) is singularly perturbed with gas temper-
ature (θg) being the fast variable (γ → 0), while η, ξ, θd, r are slow variables.
Although we appreciate that this is a rather artificial (but not unrealistic) case
from the point of view of applications to modelling the processes in Diesel en-
gines, it allows us to illustrate the application of mathematical tools described
earlier in this paper.

Although it is not possible to explicitly solve the degenerate equation

P1(θg, η, ξ)− P2(θg, θd, r) = 0 (37)

with respect to the fast variable θg, we can use the implicit or parametric
forms to obtain an approximation to the slow invariant manifold.

Before focusing on the formal analysis of this equation let us rewrite it in
the form:

ηaξb = ε1r

√
Td0(1 + βθg)

Tg0
(θg − θd) exp

(
− θg

1 + βθg

)
.
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Using the original dimensional variables this equation can be rewritten as:

CafC
b
ox = µRdT

0.5
g (Tg − Td) exp

(
E

RTg

)
, (38)

where

µ =
4πndλg0C

a
ffC

b
ox0

CafffC
bx
ox0AQfϕgMfT 0.5

g0

=
4πndλg0C

a−af
ff Cb−bxox0

AQfϕgMfT 0.5
g0

.

Formula (38) gives us an explicit expression for fuel vapour and oxidiser con-
centrations as a function of gas and droplet temperatures, and droplet radius.
The approximations of higher order to the slow invariant manifold can be
considered as an improvement of this formula.

An implicit form of the first order approximation of (37) can be presented
as:[
P1(θg, η, ξ)

1
(1+βθg)2

− P2(θg, θd, r)
(

β
2(1+βθg)

− 1
θg−θd

)] (
P1(θg, η, ξ)− P2(θg, θd, r)

)
+γ
[
− a
ν̃fη

P 2
1 (θg, η, ξ) + aψ

ν̃fνfη
P1(θg, η, ξ)P23(θg, θd, r)

(
1− ζ(θd)

)
− b

ν̃oxξ
P 2
1 (θg, η, ξ)

+ ε2
r3P2(θg, θd, r)P23(θg, θd, r)

(
ζ(θd)

ε4(θg−θd) + 1−ζ(θd)
3

)]
= 0. (39)

The process described by this equation is stable when

ηaξb exp

(
θg

1 + βθg

)
1

(1 + βθg)2
− ε1r

√
Td0(1 + βθg)

Tg0

(
1 +

β(θg − θd)
(1 + βθg)

)
< 0.

The flow on the manifold is described by System (33)–(36) where the terms
of order o(γ) (γ → 0) are ignored.

To construct the slow invariant manifold in the parametric form, it is con-
venient to use η, ξ, θd, and θg as parameters:

r = χ(η, ξ, θd, θg, γ) = χ0(η, ξ, θd, θg) + γχ1(η, ξ, θd, θg) + . . . , (40)

where

χ0(η, ξ, θd, θg) =
ηaξb

ε1(θg − θd)

√
Tg0

Td0(1 + βθg)
exp

(
θg

1 + βθg

)
. (41)

Having substituted Expression (40) into the invariance equation

∂χ

∂η

1

ν̃f

[
−P1(θg, η, ξ) +

ψ

νf
P23(θg, θd, χ)

(
1− ζ(θd)

)]
− ∂χ

∂ξ

1

ν̃ox
P1(θg, η, ξ)

+
∂χ

∂θd

ε2
ε4χ3

P23(θg, θd, χ)ζ(θd) +
∂χ

∂θg

1

γ

(
P1(θg, η, ξ)− P2(θg, θd, χ)

)
= −

ε2
(
1− ζ(θd)

)
3χ2

P23(θg, θd, χ),
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and equating the coefficients before the powers of γ, we obtain the expressions
for coefficients in asymptotic expansion (40). Indeed, equating the coefficients
before γ0, we find

χ1(η, ξ, θd, θg) =

{
∂χ0

∂η

1

ν̃f

[
−P1(θg, η, ξ) +

ψ

νf
P23(θg, θd, χ0)

(
1− ζ(θd)

)]
− ∂χ0

∂ξ

1

ν̃ox
P1(θg, η, ξ) + P23(θg, θd, χ0)

[
ε2ζ(θd)

ε4χ3
0

∂χ0

∂θd
+
ε2
(
1− ζ(θd)

)
3χ2

0

]}

×

[√
Td0(1 + βθg)

Tg0
(θg − θd)

∂χ0

∂θg

]−1

, (42)

where

∂χ0

∂η
=

aηa−1ξb

ε1(θg − θd)

√
Tg0

Td0(1 + βθg)
exp

(
θg

1 + βθg

)
,

∂χ0

∂ξ
=

bηaξb−1

ε1(θg − θd)

√
Tg0

Td0(1 + βθg)
exp

(
θg

1 + βθg

)
,

∂χ0

∂θd
=

ηaξb

ε1(θg − θd)2

√
Tg0

Td0(1 + βθg)
exp

(
θg

1 + βθg

)
,

∂χ0

∂θg
= χ0

[
1

(1 + βθg)2
− 1

θg − θd
− β

2(1 + βθg)

]
.

Hence, Expressions (40)–(42) give us the first-order approximation to the slow
invariant manifold in the parametric form in the case r 6= 0. The flow on this
manifold is determined by the system

dθg
dτ

= −ε1χ1(η, ξ, θd, θg)

√
Td0(1 + βθg)

Tg0
(θg − θd) +O(γ), (43)

dη

dτ
=

1

ν̃f

[
−P1(θg, η, ξ) +

ψ

νf
P23(θg, θd, χ(η, ξ, θd, θg))

(
1− ζ(θd)

)]
, (44)

dξ

dt
= − 1

ν̃ox
P1(θg, η, ξ), (45)

dθd
dτ

=
ε2

ε4χ3(η, ξ, θd, θg)
P23(θg, θd, χ(η, ξ, θd, θg))ζ(θd). (46)

System (43)-(46) has at least three advantages compared with the origi-
nal model described by Equations (32)–(36). Firstly, System (43)-(46) contains
four equations instead of five variables in the original system, i.e. its dimension
is lower than that of the original system. Secondly, System (43)-(46) makes
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it possible to eliminate the stiffness of the original system due to the pres-
ence of singular perturbations.1 Thirdly, the analytic expression (38) for the
slow invariant manifold gives a relationship between the original dimensional
variables of the system of differential equations. This relationship can be re-
garded as a first integral for this system and a kinetic law, analogous to the
Michaelis-Menten kinetic law [26], applied to the spray combustion model.

4 Conclusions

New effective techniques for investigation of singularly perturbed differential
systems based on the application of the invariant manifolds theory are de-
scribed. It is shown that in some cases the slow invariant manifold can be
found in parametric form as a result of asymptotic expansions. If this is not
possible, one needs to use an implicit presentation of the slow surface and ob-
tain asymptotic representations for the slow invariant manifold in an implicit
form. The results of the development of the mathematical theory of these
approaches and the application of this theory to the analysis of the system
of equations describing heating, evaporation, ignition and combustion of fuel
sprays are presented. It is shown that the application of this new mathemat-
ical technique can allow one to reduce the number of equations describing
these processes in sprays and eliminate the stiffness of the original system of
equations.
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Appendix

Effective methods of parameterisation

Case m = n

Let us assume that the degenerate equation (3) can be solved with respect to

x in the form x = χ0(y) and matrices A(y) = ∂χ0(y)
∂y and B(y) = gx(χ0(y), y)

are invertible with bounded norms of inverse matrices. In this case, the fast
variable y can be chosen as a parameter and the slow invariant manifold of
System (2) can be found in the parametric form

x = χ(y, ε) = χ0(y) + εχ1(y) + ...+ εkχk(y) + ... . (47)

From (2) and (47) we obtain the invariance equation

∂χ

∂y
g(χ, y) = εf(χ, y). (48)

Using the asymptotic representations

f(χ0 + εχ1 + ε2..., y) = f(χ0, y) + ε...,

g(χ0 + εχ1 + ε2..., y) = g(χ0, y) + εgx(χ0, y)χ1 + ε2... = εgx(χ0, y)χ1 + ε2... ,

and the assumption that g(χ0, y) = 0, Equation (48) allows us to obtain the
following equation:

A(y)B(y)χ1 = f(χ0, y).

Hence
χ1 = B−1(y)A−1(y)f(χ0, y).

Thus, we obtain the first order approximation to the slow invariant manifold
in the form:

x = χ(y, ε) = χ0(y) + εχ1(y) = χ0(y) + εχ1 = B−1(y)A−1(y)f(χ0, y).

The higher order approximations can be obtained in a similar way.
Returning to the classical combustion problem, described by Equations

(17) and (18), consider the degenerate equation (19) which implies that

η = χ0(θ) = αθe−θ.

Fast variable θ is used as parameterising variable v, see Subsection 2.2.
In the general case when

η = χ(θ) = χ0(θ) + εχ1(θ) + ε2χ2(θ) + . . . ,

we can rewrite Equation (18) as:

ε
dθ

dτ
= ε(χ1(θ) + εχ2(θ) + . . .)eθ ≡ εF. (49)
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Remembering that η = χ(θ) does not explicitly depend on time, we have
∂χ
∂t = 0. This allows us to simplify Equation (24) to:

∂χ

∂θ
F = −χ(θ, ε)eθ. (50)

Remembering the definition of F in (49), we can rewrite Equation (50) as:(
∂χ0

∂θ
+ ε

∂χ1

∂θ
+ ε2

∂χ2

∂θ
+ . . .

)
(χ1(θ) + εχ2(θ) + . . .) eθ

= −
(
χ0(θ) + εχ1(θ) + ε2χ2(θ) + . . .

)
eθ.

Equating the coefficients before powers of ε, we find

∂χ0

∂θ
χ1 = −χ0,

∂χ0

∂θ
χ2 +

∂χ1

∂θ
χ1 = −χ1,

∂χ0

∂θ
= α(1− θ)e−θ.

Hence, explicit formulae for χ1 and χ2 can be presented as:

χ1 =
θ

θ − 1
, χ2 = eθ

θ2(θ − 2)

α(θ − 1)4
.

This allows us to obtain the following expression for η:

η = χ(θ, ε) = αθe−θ + ε
θ

θ − 1
+ ε2eθ

θ2(θ − 2)

α(θ − 1)4
+O(ε3).

This representation is correct outside a certain neighbourhood of θ = 1. It
gives us an approximation of the attractive (repulsive) one-dimensional slow
invariant manifold if 0 ≤ θ < 1 (θ > 1).

Case m < n

Let us present vector y in the form y = (y1, y2)T , where dim y1 = n−m and
dim y2 = m, and vector g in the form g = (g1, g2)T , where dim g1 = n − m
and dim g2 = m. In this case, System (2) can be rewritten as

ẋ = f(x, y1, y2),

εẏ1 = g1(x, y1, y2), (51)

εẏ2 = g2(x, y1, y2).

Let us assume that the solution to the degenerate equation g(x, y) = 0 can
be presented as:

x = χ0(y2), y1 = ψ0(y2).

In this case, the slow invariant manifold can be found in the following para-
metric form

x = χ(y2, ε), y1 = ψ(y2, ε). (52)
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From (52) and (51) we have the invariance equations

∂χ

∂y2
g2(χ, ψ, y2) = εf(χ, ψ, y2),

∂ψ

∂y2
g2(χ, ψ, y2) = g1(χ, ψ, y2).

These equations can be rewritten as:

A1(y2)(K3(y2)χ1(y2) +K4(y2)ψ1(y2)) = f(χ0(y2), ψ0(y2), y2), (53)

A2(y2)(K3(y2)χ1(y2) +K4(y2)ψ1(y2)) = K1(y2)χ1(y2) +K2(y2)ψ1(y2), (54)

where A1(y2) = ∂χ0(y2)
∂y2

, A2(y2) = ∂ψ0(y2)
∂y2

.

When deriving (53) and (54) the following asymptotic representations for
χ(y2, ε), ψ(y2, ε), f(χ, ψ, y2), g1(χ, ψ, y2), and g2(χ, ψ, y2) were used:

χ(y2, ε) = χ0(y2) + εχ1(y2) + ...,

ψ(y2, ε) = ψ0(y2) + εψ1(y2) + ...,

f(χ0(y2)+εχ1(y2)+ ..., ψ0(y2)+εψ1(y2)+ ..., y2) = f(χ0(y2), ψ0(y2), y2)+ε...,

g1(χ0(y2) + εχ1(y2) + ..., ψ0(y2) + εψ1(y2) + ..., y2)

= g1(χ0(y2), ψ0(y2), y2)) + εK1(y2)χ1(y2) + εK2(y2)ψ1(y2) + ε2...,

g2(χ0(y2) + εχ1(y2) + ..., ψ0(y2) + εψ1(y2) + ..., y2)

= g2(χ0(y2), ψ0(y2), y2)) + εK3(y2)χ1(y2) + εK4(y2)ψ1(y2) + ε2...,

where

K1(y2) =
∂g1
∂x

(χ0, ψ0, y2), K2(y2) =
∂g2
∂x

(ϕ0, ψ0, y2),

K3(y2) =
∂g1
∂y1

(ϕ0, ψ0, y2), K4(y2) =
∂g2
∂y1

(ϕ0, ψ0, y2).

System (53) and (54) is a linear algebraic system for χ1(y2) and ψ1(y2).
If the determinant of this system is not equal to zero, we can find the first
approximation to the slow invariant manifold in the form:

x = χ0(y2) + εχ1(y2), y1 = ψ0(y2) + εψ1(y2).

The higher order approximations can be obtained in a similar way.
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Case m > n

Let us present vector x in the form x = (x1, x2)T , where dimx1 = n and
dimx2 = m − n, and vector f in the form f = (f1, f2)T , where dim f1 = n
and dim f2 = m− n. In this case, System (2) can be rewritten as

ẋ1 = f1(x1, x2, y),

ẋ2 = f2(x1, x2, y), (55)

εẏ = g(x1, x2, y).

Let us assume that the solution to the degenerate equation g(x, y) = 0 can
be presented as: x1 = χ0(x2, y). In this case, the slow invariant manifold can
be found in the following parametric form

x1 = χ(x2, y, ε). (56)

From (56) and (55) we obtain the invariance equation

ε
∂χ

∂x2
f2(χ, x2, y, ε) +

∂χ

∂y
g(χ, x2, y) = εf1(χ, x2, y). (57)

From (57) we obtain

∂χ0

∂x2
f2(χ0(x2, y), x2, y) + L(x2, y)M(x2, y)χ1(x2, y) = f1(χ0(x2, y), x2, y).

(58)
When deriving (58) the following asymptotic representations for χ, f1, f2,

and g were used:

χ(x2, y, ε) = χ0(x2, y) + εχ1(x2, y) + ε2...,

f1(χ0(x2, y) + εχ1(x2, y) + ε2..., x2, y) = f1(χ0(x2, y), x2, y) + ε...,

f2(χ0(x2, y) + εχ1(x2, y) + ε2..., x2, y) = f2(χ0(x2, y), x2, y) + ε...,

g(χ0(x2, y) + εχ1(x2, y) + ε2..., x2, y), x2, y) = εM(x2, y)χ1(x2, y) + ε2...,

where L(x2, y) = ∂χ0

∂y , M(x2, y) = gx1
(χ0, x2, y). Assuming that matrices L

and M are invertible, function χ1 = χ1(x2, y) can be found in the form:

χ1(x2, y) = M−1(x2, y)L−1(x2, y)

(
f1(χ0(x2, y), x2, y)− ∂χ0

∂x2
f2(χ0(x2, y), x2, y)

)
.

The higher order approximations can be obtained in a similar way.
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Let us illustrate this approach in the case of a system of three differen-
tial equations, which can be considered as a simplified version of the system
describing spray combustion analysed in Section 3:

ẋ1 = x2, ẋ2 = y, εẏ = −y − ey − x1 − x2.

This system has an attractive slow invariant manifold since (see Condition
(16))

∂

∂y
(−y − ey − x1 − x2) = −1− ey < 0.

The degenerate equation

0 = −y − ey − x1 − x2

cannot be solved with respect to the fast variable y, but it can be solved with
respect to one of the slow variables x1 or x2. Thus, the fast variable y and the
slow variable x2 can be chosen as parameters and the slow invariant manifold
can be represented in the form

x1 = χ(x2, y, ε) = χ0(x2, y) + εχ1(x2, y) + ε2χ2(x2, y) +O(ε3),

where χ0(x2, y) = −y− ey − x2. The flow on this manifold is described by the
equations

ẋ2 = y, εẏ = −χ1(x2, y)− εχ2(x2, y) +O(ε2).

The invariance equation

dχ

dt
=

∂χ

∂x2

dx2
dt

+
∂χ

∂y

dy

dt

in this case can be presented as

∂χ

∂x2
y +

∂χ

∂y

1

ε
(−y − ey − χ− x2) = x2.

This equation can be rewritten as:(
∂χ0

∂x2
+ ε

∂χ1

∂x2
+ . . .

)
y +

(
∂χ0

∂y
+ ε

∂χ1

∂y
+ . . .

)
(−χ1 − εχ2 − . . .) = x2.

Equating the coefficients before the powers of ε we obtain

χ1 =
x2 + y

1 + ey
, χ2 =

(
−∂χ1

∂x2
y +

∂χ1

∂y
χ1

)
/(1 + ey).

When deriving these equations we took into account that ∂χ0

∂y = −1− ey.
Note that in all cases considered so far, some systems variables are used

for the parameterisation of slow invariant manifolds. In some cases, however,
this approach turned out to be impossible or ineffective. This is illustrated for
the following system of equations:

ẋ = y, εẏ = 4x2 + y2 − 9, (59)
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Fig. 3 The slow curve (dashed) and the exact slow invariant manifold (solid) of (59);
ε = 0.1.

The parametric form of the slow invariant manifold for this system can be
presented as:

x =
r

2
cos θ − ε

2
, y = r sin θ,

where r =
√

9− ε2, θ is the polar angle. The flow on this slow invariant
manifold is described by the equation θ̇ = −2.

The implicit form of this slow invariant manifold can be described by the
following equation:

4
(
x+

ε

2

)2
+ y2 = 9− ε2.

The part of this ellipse, shown in Fig. 3, with y < 0 is attractive and the part
with y > 0 is repulsive.


	Introduction
	Theoretical background
	Spray ignition and combustion model
	Conclusions

