
 There is a galactokinase-like protein in F. hepatica
 The protein lacks enzymatic activity with galactose and N-acetylgalactosamine
 The protein binds ATP
 Some trematodes may lack a bone fide galactokinase
 Therefore, they may be unable to metabolise galactose via the Leloir pathway



Galactose + ATP             Galactose 1-phosphate +ADP
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Abstract

Galactokinase catalyses the ATP-dependent phosphorylation of galactose.  A 

galactokinase-like sequence was identified in a Fasciola hepatica EST library.  

Recombinant expression of the corresponding protein in Escherichia coli resulted in a 

protein of approximately 50 kDa.  The protein is monomeric, like galactokinases from 

higher animals, yeasts and some bacteria.  The protein has no detectable enzymatic 

activity with galactose or N-acetylgalactosamine as a substrate.  However, it does 

bind to ATP.  Molecular modelling predicted that the protein adopts a similar fold to 

galactokinase and other GHMP kinases.  However, a key loop in the active site was 

identified which may influence the lack of activity.  Sequence analysis strongly 

suggested that this protein (and other proteins annotated as “galactokinase” in the 

trematodes Schistosoma mansoni and Clonorchis sinensis) are closer to N-

acetylgalactosamine kinases.  No other galactokinase-like sequences appear to be 

present in the genomes of these three species.  This raises the intriguing possibility 

that these (and possibly other) trematodes are unable to catabolise galactose 

through the Leloir pathway due to the lack of a functional galactokinase.

Keywords:  GHMP kinase; Leloir pathway; fascioliasis; galactokinase; N-

acetylgalactosamine; trematode metabolism
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1.  Introduction.

Galactokinase (EC 2.7.1.6) catalyses the ATP-dependent phosphorylation of α-D-

galactose (Caputto, et al., 1949, Cardini and Leloir, 1953, Holden, et al., 2004, Trucco, 

et al., 1948).  The reaction is required in the Leloir pathway of galactose catabolism.  

This pathway enables galactose to be converted in to the glycolytic intermediate 

glucose 6-phosphate (Frey, 1996, Holden, et al., 2003).  Thus, the reaction catalysed 

by galactokinase is essential for the utilisation of the six carbon atoms in galactose in 

energy metabolism.  In humans and some other mammals, mutations in the gene 

encoding galactokinase can result in the inherited metabolic disease type II 

galactosemia (Holden, et al., 2004, Stambolian, 1987, Timson, 2016, Timson, et al., 

2009).  The symptoms of this disease are considered to be relatively mild:  early 

onset cataracts which can be resolved by surgery or diet (Bosch, et al., 2002).  In 

recent years, a number of promising and selective inhibitors of human galactokinase 

have been identified (Lai, et al., 2014, Liu, et al., 2015, Odejinmi, et al., 2011, Tang, et 

al., 2012, Tang, et al., 2010, Wierenga, et al., 2008).

Sequence and structural analysis shows that galactokinase is part of the GHMP 

(galactokinase, homoserine kinase, mevalonate kinase, phosphomevalonate kinase) 

family (Bork, et al., 1993, Timson, 2007).  The enzyme’s structure is formed from two 

lobes, with the active site in the cleft between the lobes (Hartley, et al., 2004, 

Holden, et al., 2004, Thoden and Holden, 2003, Thoden, et al., 2005, Thoden, et al., 

2005).  Despite the solution of high resolution structures of the enzymes from 

several species and numerous kinetic studies, the catalytic mechanism of 

galactokinase remains controversial.  Initially, it was believed that an aspartate 
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residue in the active site abstracts a proton from the substrate and the resulting, 

strongly nucleophilic, alkoxide ion attacks the γ-phosphate of ATP.  Site-directed 

mutagenesis studies on rat galactokinase showed that alteration of the potentially 

catalytic active site reduced the activity to undetectable levels (Chu, et al., 2009).  

Similar results were seen in the human enzyme, although these were partly due to 

protein misfolding rather than any direct effect on catalysis (Megarity, et al., 2011, 

Tang, et al., 2010).  Recently further mutagenic studies combined with careful 

measurement of the pH effects on activity have suggested that the pKa of Asp-183 in 

Lactococcus lactis galactokinase is raised to approximately 7, and that the pKa of the 

C1-OH on galactose is lowered by the proximity of Arg-36.  These radically altered pKa 

values would facilitate the proton transfers required for a base-catalysed mechanism 

(Reinhardt, et al., 2013).  Molecular dynamics studies suggested a mechanism in 

which the aspartate polarises, but does not break, the bond between the hydrogen 

and oxygen atoms of C1-OH on galactose (Huang, et al., 2013, Megarity, et al., 2011).  

This is aided by a number of other, charged residues in the active site and facilitates 

a direct reaction between the galactose and ATP (Huang, et al., 2013).

Interestingly, some fungi, including the budding yeast Saccharomyces cerevisiae, 

have two galactokinase-like proteins.  Gal1p is a functional galactokinase with similar 

structure and enzymology to the human enzyme (Thoden, et al., 2005, Timson and 

Reece, 2002).  In contrast, Gal3p appears to be catalytically inactive; however, 

insertion of two additional amino acid residues into the active site gives the protein a 

low level of activity (Platt, et al., 2000).  Its overall structure is similar to Gal1p (Lavy, 

et al., 2012).  Gal3p functions in gene regulation, acting as ligand sensor and gene 
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activator for the GAL genetic switch which controls the expression of genes 

associated with galactose metabolism (Sellick, et al., 2008, Timson, 2007).  This 

demonstrates that galactokinase-like structures can act in non-catalytic roles, 

including signal transduction.

The common liver fluke (Fasciola hepatica) is parasitic organism is of considerable 

medical and veterinary importance since it infects millions of humans (primarily in 

the developing world) and also farm animals causing billions of dollars of agricultural 

losses annually (Boray, 1994, Robinson and Dalton, 2009, Schweizer, et al., 2005).  

Resistance is emerging to current drugs and so there is interest in characterising liver 

fluke proteins in order to help assess their potential as drug targets (Brennan, et al., 

2007).  We postulated that galactokinase might be an interesting potential target 

given the occurrence of galactose moieties in tegumental glycoproteins of the liver 

fluke (Hanna, 1976).  Furthermore, the existence of several groups of compounds 

with proven ability to inhibit human galactokinase suggests that it would be possible 

to design inhibitors for the fluke enzyme (Lai, et al., 2014).  Here we describe the 

characterisation of a galactokinase-like protein from F. hepatica (FhGALK).  

Interestingly this protein has no detectable enzymatic activity although it does bind 

to ATP.  Our findings have wide implications for the mechanisms and functions of 

galactokinases.

2.  Materials and Methods

2.1  Cloning, expression and purification of F. hepatica galactokinase-like protein
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The coding sequence for a F. hepatica galactokinase-like protein was identified in a 

part-annotated liver fluke EST library (Ryan, et al., 2008) and amplified using PCR.  

The amplicon was inserted into pET46 Ek/LIC (Merck, Nottingham, UK) according to 

the manufacturer’s instructions such that FhGALK would be expressed with an N-

terminal hexahistidine tag.

Recombinant FhGALK was expressed using a method based on that used for human 

N-acetylgalactosamine kinase (Agnew and Timson, 2010).  The recombinant plasmid 

was transformed into Escherichia coli Rosetta(DE3) and a colony resulting from this 

transformation picked and grown overnight in 100 ml LB supplemented with 100 μg 

ml-1 ampicillin and 34 μg ml-1 chloramphenicol with shaking at 37 °C.  This culture 

was diluted into 1 l of LB (supplemented with 100 μg ml-1 ampicillin) and grown, 

shaking at 37 °C until mid-log phase (as judged by A600 nm=0.6-1.0, typically 4 h).  At 

this point the culture was cooled to 20 °C and induced with 2 mM IPTG and grown, 

shaking at 20 °C for 18 hours.  The cells were harvested by centrifugation (4200 g for 

15 min), resuspended in buffer R (50 mM Hepes-OH, pH 7.4, 150 mM NaCl, 10%(v/v) 

glycerol) and frozen at -80 °C.

The protein was purified using the method previously described for F. hepatica triose 

phosphate isomerase (Zinsser, et al., 2013).  Briefly, cells were thawed and then 

disrupted by sonication on ice (three pulses at 100 W for 30 s with 30-60 s gaps for 

cooling).  The extract was clarified by centrifugation (27,000 g for 20 min at 4 °C).  

The supernatant was applied to a 1 ml nickel-agarose column (His-Select, Sigma) 

which had been equilibrated in buffer A (50 mM Hepes-OH, pH 7.4, 500 mM NaCl, 
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10%(v/v) glycerol).  The column was washed with 20 ml of buffer A and the protein 

eluted with three aliquots (2 ml) of buffer C (buffer A supplemented with 250 mM 

imidalzole).  Protein containing fractions were identified by SDS-PAGE and dialysed 

overnight at 4 °C against buffer D (buffer R supplemented with 2 mM DTT).  Where 

SDS-PAGE indicated the presence of some impurities, the protein was repurified on a 

nickel-agarose column (1 ml).  The dialysed protein was applied to the column, which 

had been pre-equilibrated in buffer A.  The column was then washed with 2 ml 

buffer supplemented with 10 mM imidazole and then twice with 2 ml of buffer A 

supplemented with 20 mM imidazole.  The protein was the eluted with two 2 ml 

washes with buffer C.  The elutions were dialysed overnight at 4 °C against buffer D.  

The protein was stored frozen at -80 °C in aliquots of 20-100 µl.

2.2  Galactokinase assay

Galactokinase activity was measured by coupling the production of ADP to the 

reactions catalysed by pyruvate kinase and lactate dehydrogenase, essentially as 

previously described for human galactokinase (McAuley, et al., 2017, Megarity, et al., 

2011, Timson and Reece, 2003, Timson and Reece, 2003).  Reactions (150 μl in 96-

well plates) contained 20 mM Hepes-OH, pH 7.4, 150 mM NaCl, 10% (v/v) glycerol, 1 

mM DTT, 0.2 mM NADH, 5 mM phophoenolpyruvate, 25 mM MgCl2, 3.4 U pyruvate 

kinase, 5.0 U lactate dehydrogenase and variable concentrations of ATP (0-5 mM) 

and monosaccharide (0- 5 mM).  They were pre-incubated at 37 °C for10 min before 

being initiated with 0.5-8000 nM FhGALK.  The rate of change in concentration of 

NADH (which is equivalent to the rate of production of ADP) was monitored at 340 
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nm in a Multiskan Spectrum platereader (Thermo Scientific) for 40 min with readings 

taken every 30 s.

2.3  Analytical methods

Analytical gel filtration was carried out using a Sephacryl S300 (Sigma) column of 

total volume (Vt) 49.5 ml and void volume (V0) 17.0 ml.  Approximately 250 µl of a 10 

µM solution of protein was applied to this column; the flow rate was approximately 

1 ml min-1 and 1 ml fractions were collected.  The elution volume (Ve) of FhGALK was 

estimated by measurement of A280nm and by SDS-PAGE of the fractions.  The partition 

coefficient (Kav) was calculated according to the equation:  Kav=(Ve-V0)/(Vt-V0).  The 

elution volumes of four proteins of known molecular mass were determined and 

these used to determine the linear relationship between Kav and the logarithm of the 

molecular mass as described previously (Zinsser, et al., 2013, Zinsser, et al., 2013, 

Zinsser, et al., 2014, Zinsser, et al., 2014).  This relationship was used to estimate the 

native, solution molecular mass of FhGALK.

Crosslinking with bis(sulphosuccinimidyl) suberate (BS3) were carried out as 

previously described using 16 μM FhGALK (Zinsser, et al., 2013, Zinsser, et al., 2014, 

Zinsser, et al., 2014) and 2-1600 μM BS3 in a final volume of 10 μl.  Reactions were 

allowed to proceed for 30 min, terminated by the addition of SDS-PAGE loading 

buffer (100 mM tris-HCl, pH 6.8, 24%(v/v) glycerol, 8% (w/v) SDS, 0.02%(w/v) 

bromophenol blue, 3%(w/v) DTT) and heating to 95 °C for 3 min.
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Differential scanning fluorimetry (DSF) was performed as previously described using 

3.5 μM FhGALK mixed with 50× Sypro Orange (Sigma; manufacturer’s concentration 

definition) (Zinsser, et al., 2013, Zinsser, et al., 2013, Zinsser, et al., 2014, Zinsser, et 

al., 2014).  Where required ligands (ATP and/or monosaccharides) were added to a 

final concentration of up to 5 mM.  This concentration is consistent with that used in 

similar studies on human galactokinase (McAuley, et al., 2017, McAuley, et al., 2018).  

An apparent dissociation constant (Kd,app) for ATP was determined by plotting the 

change in melting temperature (ΔTm) against concentration of the ligand ([ATP]).  

These data were then fitted to the equation ΔTm=(ΔTm,max × [ATP])/(Kd,app + [ATP]), 

where ΔTm,max is the maximum possible value of ΔTm, using non-linear curve fitting as 

implemented in GraphPad prism 6.0 (Graphpad Software, CA, USA).

Protein concentrations were determined by the method of Bradford, using BSA as a 

standard (Bradford, 1976).

2.4  Bioinformatics, molecular modelling and molecular dynamics

Similar proteins were identified using BLAST searches (Altschul, et al., 1990).  The 

draft genomes for F. hepatica and other trematode species were searched using 

WormBase ParaSite (http://parasite.wormbase.org/) (Howe, et al., 2016, Howe, et 

al., 2017).  Sequence alignments were calculated using ClustalW as implemented in 

MEGA5 (Kumar, et al., 2008, Larkin, et al., 2007, Tamura, et al., 2011).  Phylogenetic 

trees were also calculated in MEGA5.  Protein molecular masses and isoelectric 

points were estimated using ProParam from the Expasy suite of programs 

(http://web.expasy.org/protparam/) (Gasteiger, et al., 2005).
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Phyre2 (http://www.sbg.bio.ic.ac.uk/phyre2/) (Kelley, et al., 2015) was used in the 

intensive mode to generate a model of FhGALK.  This model was then 

computationally solvated and energy minimised using YASARA 

(http://www.yasara.org/minimizationserver.htm) (Krieger, et al., 2009) to produce 

the final model of the apo-protein.  Ligand binding sites were predicted using 

3DLigandSite (http://www.sbg.bio.ic.ac.uk/~3dligandsite/) (Wass, et al., 2010).  A 

model with galactose and MgATP bound was generated by aligning the structure to 

S. cerevisiae Gal3p (PDB:  3V2U (Lavy, et al., 2012)) and saving a new pdb file which 

contains FhGALK and the ligands.  This structure was then minimised using YASARA.  

The two models are presented as supplementary data to this paper.

3.  Results and Discussion

3.1  F. hepatica expresses a galactokinase-like protein

A DNA sequence with similarity to galactokinase-encoding genes from other species 

was identified through BLAST searches carried out on a F. hepatica EST library (Ryan, 

et al., 2008).  This enabled the design of specific primers, amplification of the full 

length DNA sequence and verification of the sequence which was named FhGALK.  

This sequence has been submitted to GenBank with the accession number 

KF700238.  The predicted protein has 494 amino acids, a molecular mass of 53.5 kDa 

and an estimated isoelectric point of 5.93.  The protein sequence showed greatest 

similarity to a galactokinase-like protein from Clonorchis sinensis (77% similarity).  A 

similar sequence is coded for by a transcript predicted by the draft F. hepatica 

genome (Cwiklinski, et al., 2015).  This predicted transcript, a product of gene 



11

BN1106_s1298B000178 is somewhat longer (688 amino acids; 72 kDa) than the 

actual transcript in the EST library.  This longer sequence has a 38 amino insert 

between Asn-217 and Ala-217 and a 33 amino acid insert between Met-351 and Thr-

352.  One exon also appears to be repeated in the sequence predicted from the draft 

genome.  Therefore, the different lengths of the two sequences presumably results 

either from incorrect prediction of introns or the existence of alternatively spliced 

variants.  The two sequences also differ at a small number of points.  In the EST 

sequence, residue 351 is methionine (compared to isoleucine in the genome-derived 

sequence), residue 376 is leucine in the EST library and arginine in the genome-

derived sequence and residue 447 is serine in the EST library and glycine in the 

genome-derived sequence.

The coding sequence for FhGALK was inserted into the expression vector pET46 

Ek/LIC.  This vector directed the expression of a protein of approximately 50 kDa 

(Figure 1a).  Approximately 0.5 mg of protein was produced per litre of bacterial 

culture.  No protein-protein crosslinking was observed with BS3 (data not shown).  In 

an analytical gel filtration experiment, FhGALK eluted with a Kav of 0.23 which 

corresponds to an apparent molecular mass of 48 kDa (Figure 1b).  Taken together 

these results show that FhGALK is a monomeric protein like galactokinases from 

most bacteria, yeast, trypanosomes and mammals, but unlike those from plants and 

some unicellular eukaryotes, which are dimeric (Ballard, 1966, Dey, 1983, Foglietti 

and Percheron, 1974, Lavine, et al., 1982, Lobo-Rojas, et al., 2016, Schell and Wilson, 

1977, Sherman and Adler, 1963, Thoden and Holden, 2003, Thoden, et al., 2005, 

Timson and Reece, 2003, Walker and Khan, 1968).
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3.2  FhGALK binds ATP but does not catalyse the phosphorylation of galactose or 

other common sugars

When FhGALK (0.5-8000 nM) was assayed with ATP (5 mM) and D-galactose (0.5-16 

mM), no activity was detected.  Activity has been previously detected with yeast and 

human galactokinases under the same conditions with enzyme concentrations at the 

lower end of this range (15-200 nM) (Megarity, et al., 2011, Timson and Reece, 

2002).  This equates to a detection limit for the specific activity of 4 nmol min-1 µg-1 

(assuming an absorbance change of at least 0.1 over 40 min).  Thus the activity is 

either zero or negligible with this substrate.

FhGALK also lacked detectable activity with N-acetylgalactosamine, D-galactosamine, 

2-deoxy-D-galactose, D-fucose (6-deoxy-D-galactose), D-mannosamine, L-arabinose, 

N-acetyl-D-mannosamine and N-acetyl-D-glucosamine.  This suggests that either the 

protein has activity with a substrate not tested, or that it does not function as an 

enzyme.

In the absence of ligands, the protein had a melting temperature (Tm) of 67.8±0.4 °C 

(Figure 2a).  No significant difference was seen when D galactose was added (1mM, 

5mM or 10 mM).  Similar results were observed with N-acetyl-D-galactosamine, 2-

deoxy-D-galactose and N-acetyl-D-glucosamine (data not shown).  However, addition 

of ATP increased the Tm of FhGALK in a concentration dependent manner, 

demonstrating that this molecule binds to, and stabilises, the protein (Figure 2b).  

The apparent dissociation constant (Kd,app) derived from this method was 1.4 ± 0.3 
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mM.  Care should be taken in interpreting this value as it is an indirect measure of 

the affinity based on the effect of the ligand on the protein’s thermal stability.  

However, it is one to three orders of magnitude greater than the Michaelis constants 

(Km) reported for fungal and animal galactokinases which are typically in the range 

10-500 µM (Ballard, 1966, Lobo-Rojas, et al., 2016, Timson and Reece, 2002, Timson 

and Reece, 2003, Walker and Khan, 1968).  However, it is similar to the Km values 

reported for plant galactokinases, which tend to be in the low millimolar range (Dey, 

1983, Foglietti and Percheron, 1976).  As with all enzymes, it cannot be assumed that 

Km is equal to the dissociation constant.  Nevertheless, this suggests that, while 

FhGALK does interact with ATP, it does so with lower affinity than some functional 

galactokinases.  Galactose and ATP together (both 5 mM) had no greater effect than 

ATP alone.  The same result was seen with N-acetyl-D-galactosamine, 2-deoxy-D-

galactose and N-acetyl-D-glucosamine (data not shown).

3.3  The predicted structure of the galactokinase-like protein reveals a key difference 

at the active site

A molecular model of FhGALK was built and this predicted that the protein adopts a 

typical GHMP kinases fold.  Two globular domains are orientated in a “v”-shape, with 

a cleft between the two.  The predicted MgATP binding site is in this cleft (Figure 3a).  

Interestingly, 3DLigandSite did not predict a binding site for galactose or any other 

monosaccharide (data not shown).  The highest ranked template used by Phyre2 to 

build the model was the galactokinase-like protein from Saccharomyces cerevisiae, 

Gal3p (PDB: 3V5R; (Lavy, et al., 2012)).  Alignment of these two structures resulted in 

a root-mean square deviation (rmsd) of 3.045 Å over 1865 equivalent atoms.
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Alignment with the human galactokinase structure (1WUU; (Thoden, et al., 2005)) 

identified Asp-205 as the structurally equivalent residue to the putative active site 

base in human galactokinase (Asp-186).  Interestingly this residue is also conserved 

in the catalytically inactive Gal3p (as Asp-209).  An adjacent arginine (Arg-37 in the 

human enzyme) is also considered to be important in catalysis.  This is conserved in 

FhGALK as Arg-45 and Gal3p as Arg-47.  Therefore, the presence of these residues is 

necessary, but not sufficient, for galactokinase activity.  In addition to these two 

residues, the structure of human galactokinase revealed that the sidechains of Glu-

43, Asp-46 and Try-236 and the backbone groups of His-44 and Gly-183 are involved 

in sugar recognition and binding (Thoden, et al., 2005).  Analysis of the model of 

FhGALK suggests that these are conserved as Glu-51, Asp-46, Tyr-257, His-52 and 

Gly-202.  Thus, the lack of suitable binding residues does not explain the lack of 

detectable interaction with galactose.  It is, of course, possible that the methods 

used here were not sensitive enough to detect interaction.  It is also possible that 

subtle differences in the conformation of the putative binding site (or orientation of 

the side chains of these conserved residues) may account for the lack of affinity.  It 

should be noted that such subtle structural differences would not be predicted by 

homology modelling since this technique uses known, experimentally determined 

structures as templates and thus tends to replicate conformations in flexible regions 

(such as active sites) and the orientations of side chains.  The three residues (Met-

351, Leu-376 and Ser-447) which differ from the sequence derived from the draft 

genome sequence are all distant from the active site.
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Gal3p functions as a ligand sensor in a genetic switch which responds to galactose 

(Bajwa, et al., 1988, Murthy and Jayadeva Bhat, 2000, Platt and Reece, 1998, Sil, et 

al., 1999, Suzuki-Fujimoto, et al., 1996, Torchia and Hopper, 1986, Yano and 

Fukasawa, 1997).  In this switch, Gal3p binds to the same ligands as Gal1p (galactose 

and MgATP).  S. cerevisiae also expresses a functional galactokinase, Gal1p 

(Miyajima, et al., 1984, Vollenbroich, et al., 1999).  A key sequence difference 

between Gal1p and Gal3p lies in the active site.  Sequence alignments show that two 

residues (Ser-171 and Ala-172 in Gal1p) are “missing” in Gal3p.  Insertion of a serine 

and alanine into the corresponding location in the Gal3p sequence converted this 

enzymatically inactive protein into a galactokinase, albeit one with lower activity 

compared to Gal1p (Platt, et al., 2000).  Inspection of Gal1p structure showed that 

the Ser-Ala dipeptide lies in a helical segment adjacent to the adenine ring of the 

bound ATP.  The sequence immediately before this helix forms an extended loop, 

approximately in the shape of a “w”.  Unexpectedly, the helical segment is 

structurally conserved in Gal3p, despite the absence of the Ser-Ala dipeptide.  In 

effect the helix draws residues in from the extended loop and is thus formed from 

different residues to the structurally equivalent helix in Gal1p.  As a consequence, 

the loop becomes “stretched” and changes in conformation from “w”-shaped to “u”-

shaped (Figure 3b).  Based on the available structural evidence, it therefore seems 

that alteration of the shape and length of this loop rather than loss of the helix are 

responsible for the lack of catalytic activity in Gal3p.  In both Gal1p and Gal3p, the 

loop and helical segment of the protein begin with a proline residue and end with a 

phenylalanine; in Gal1p this segment spans 12 amino acids and in Gal3p it spans 10 

amino acid residues.  In FhGALK, the segment contains 11 residues.  Many N-
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acetylgalactosamine kinases (GALK2; EC 2.7.1.157) also have 11 residues in this 

segment (Thoden and Holden, 2005).  Thus, in terms of structural similarity in this 

segment, FhGALK lies between the inactive Gal1p and the active Gal3p and appears 

to be more similar to GALK2, despite lacking activity with N-acetylgalactosamine in 

our experiments.

3.5 Conclusions

The absence of detectable catalytic activity in FhGALK suggests that either that the 

protein works with substrate(s) not tested as part of this study or that it does not 

have a role in catalysis.  There are no known examples of Gal3p-like proteins in 

multicellular eukaryotes (and the protein is not present in all fungi).  Nevertheless it 

is tempting to hypothesise that FhGALK has some role in ligand sensing, perhaps 

linked to transcription and/or intracellular signalling.  The interaction with ATP may 

be important in this role and we cannot rule out the possibility of other (as yet 

unidentified) ligands also binding to FhGALK and modulating its function.  It is 

tempting to speculate that the binding of ATP by FhGALK means that it plays some 

role in sensing the energy status of cells in which it is expressed.  If so it would be 

expected to have binding partners involved in the regulation of energy metabolism.  

In this context it should be noted that there is a known example of a GHMP-kinase 

family member acting as a signalling molecule.  The Caenorhabditis elegans protein 

XOL-1 is structurally similar to other GHMP kinase family members; however, it has 

no known enzymatic activity or small molecule binding partners (Luz, et al., 2003).  It 

functions in the control of development, regulating the choice between male or 
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hermaphrodite sexual fate of the worm (Hargitai, et al., 2009, Miller, et al., 1988, 

Rhind, et al., 1995).

Based on the evidence presented here, FhGALK is not the galactokinase of F. 

hepatica.  Since the organism is known to have at least one other Leloir pathway 

enzyme (UDP-galactose 4’-epimerase) it seems possible that may be a bone fide 

galactokinase (Zinsser, et al., 2014).  This has yet to be identified.  Searches of the 

proteins encoded by the F. hepatica draft genome on WormBase ParaSite using 

human galactokinase (NP_000145) and Drosophila melanogaster galactokinase 

(NP_729438) only produced the protein coded for by F. hepatica transcript 

BN1106_s1298B000178 as a hit.  As shown above, the protein product of this 

transcript has high similarity to FhGALK.  Similar results were produced when the 

proteins annotated as galactokinase from the trematodes Schistosoma mansoni 

(XP_018654315) and Clonorchis sinensis (GAA52165) were used.  Interestingly when 

these two proteins were used in a BLAST search against human proteins, the top 

match was N-acetylgalactosamine kinase (GALK2) and not galactokinase (GALK1).  

This suggests that the proteins annotated as galactokinase in these two species may 

actually be N-acetylgalactosamine kinases.  This conclusion is supported by 

neighbour joining analysis of the protein sequences.  The two trematode 

“galactokinases” and FhGALK clearly cluster with N-acetylgalactosamine kinases and 

not with galactokinases (Fig. 4).

Given the lack of detectable enzymatic activity with FhGALK, it would be interesting 

to test the galactokinase-like proteins in these other trematode species for their 
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ability to catalyse the phosphorylation of galactose and/or N-acetylgalactosamine.  

As far as we are aware, this has not yet been done.  Furthermore, searches using 

human or D. melanogaster galactokinase produced no other hits in S. mansoni and C. 

sinensis.  This strongly suggests that all three species of trematode lack a functional 

galactokinase.  Interestingly there appears to be no evidence in the literature for 

metabolism of galactose by the Leloir pathway by any of these species.  Indeed, 

some earlier studies suggest that glucose and glycogen are the sole energy sources 

for adult F. hepatica (Lloyd, 1986).  However, there is evidence for galactose uptake 

and its incorporation into glycoproteins and glycolipids (Dalton and Joyce, 1987, 

Hanna, 1976, Podesta and Dean, 1982, Wuhrer, et al., 2004, Wuhrer, et al., 2003).  

This suggests the intriguing possibility that the Leloir pathway does not operate in 

some (or all) trematode species, primarily due to the absence of the enzyme which 

catalyses the first committed step.

This work also has implications for the mechanism of galactokinases.  It suggests that 

the length of a key loop in the active site of the protein will control whether, or not, 

it is enzymatically active.  The shortening of the loop by two residues in Gal3p 

appears to be correlated with loss of activity in this protein.  In FhGALK, the loop is 

shortened by one residue and this may contribute to the lack of activity in this 

protein.

While the disruption of galactose metabolism (by, for example, the inhibition of 

enzymes involved in glycoprotein synthesis) may be a viable anthelminthic strategy, 

it is not obvious how FhGALK could be exploited in novel therapies.  However, if it 
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does prove to have other enzymatic activity, this may change if the pathway(s) it 

contributes to is vital.  Similarly, if the protein is subsequently shown to have a role 

in transcriptional regulation or signalling then antagonism may prove to be 

pharmacologically interesting.
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Figure legends

Figure 1:  Expression, purification and characterisation of FhGALK.  (a) Recombinant 

expression and purification of FhGALK was monitored by SDS-PAGE.  The upper gel 

shows the initial purification and the lower gel the re-purification (see Materials and 

Methods).  M, molecular mass markers (masses shown to the left of the gel in kDa); 

U, cell extract prior to induction; I, cell extract prior to harvesting; W1, material 

passing through the column following application of the supernatant following 

sonication; W2, material passing through the column following the wash with buffer 

A; E1, E2, E3 three elutions with buffer B; E, protein containing elutions from the first 

purification; W3, material passing through the column following the application of 

the protein solution; W4, W5 material passing through the column following two 

washes with buffer A; E4, E5, two elutions with buffer B.  (b) Analytical gel filtration 

analysis of FhGALK.  The main graph shows the elution of the protein as a single 

major peak with an elution volume (Ve) of 24.7 ml.  The inset shows the calibration 

curve.  The gel shows the material present in fractions 24 and 25. M, molecular mass 

markers (masses shown to the left of the gel in kDa); C, material applied to the 

column.

Figure 2:  Stability of FhGALK is increased by ATP, but not galactose.  (a) First 

derivative curves from the thermal denaturation of FhGALK.  The “melting 

temperature” (Tm) corresponds to the temperature at the peak of the curve.  Note 

how this is shifted to the right in the presence of ATP.  (b) The dependence of the 

change in “melting temperature” (Δ Tm) on ATP concentration.  The points represent 

the mean of the three experimental determinations of the value and the error bars 



21

the standard errors of these means.  The line is a non-linear fit to the equation 

ΔTm=(ΔTm,max × [ATP])/(Kd,app + [ATP]) (see Materials and Methods).

Figure 3:  Predicted structure of FhGALK.  (a) The overall fold of the protein is shown 

in cartoon format with MgATP and shown in space filling format.  (b) Close up of the 

helix and loop structure in the ligand binding site for F. hepatica galactokinase-like 

protein (FhGALK; Trp-154 to Phe-163), human galactokinase (HsGALK1; Pro-134 to 

Leu-145), S. cerevisiae Gal1p (ScGal1p; Pro-163 to Phe-174) and S. cerevisiae Gal3p 

(ScGal3p; Pro-157 to Phe-166).  

Figure 4:  Protein sequence analysis of FhGALK.  A neighbour-joining tree with 2000 

bootstraps was calculated. F. hepatica galactokinase-like protein (FhGALK) was 

compared with the following species.  Galactokinase (GALK): Sm: Schistosoma 

manson; Fh: Fasciola hepatica; Cs: Clonorchis sinensis; As: Ascaris suum; Rn: Rattus 

norvegicus; Hs: Homo sapiens; Mm: Macaca mulatta; Bt: Bos taurus; Cf: Canis 

familiaris; N-acetylgalactosamine kinase (GALK2): Hs: Homo sapien; Pa: Pongo abelii; 

Mm: Macaca mulatta; Bt: Bos taurus; Rn: Rattus norvegicus; Gg: Gallus gallus; and 

As: Ascaris suum.
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