Metadata, citation and similar papers at core.ac.uk

Provided by University of Brighton Research Portal

A Security Requirements Modelling Language to
Secure Cloud Computing Environments

Abstract. This paper presents a cloud-enhanced modelling language for
capturing and describing cloud computing environments, enabling devel-
opers to model and reason about security issues in cloud systems from
a security requirements engineering perspective. Our work builds upon
concepts from the Secure Tropos methodology, where in this paper we in-
troduce novel cloud computing concepts, relationships and properties in
order to carry out analysis and produce cloud security requirements. We
illustrate our concepts through a case study of a cloud-based career office
system from the University of the Aegean. Finally we discuss how our
cloud modelling language enriches cloud models with security concepts,
guiding developers of cloud systems in understanding cloud vulnerabili-
ties and mitigation strategies through semi-automated security analysis.

Key words: Cloud modelling language, meta-model, Cloud Security
Requirements, Security Requirements Engineering

1 Introduction

The premise of the cloud computing paradigm is that computing resources are
offered by third party providers as a form of commodity accessed through net-
work connections [II, 2]. In comparison to traditional IT solutions, this lowers
capital costs and abstracts away implementation and infrastructure details by
allowing cloud users to select from pre-configured computing services. However
one of the prerequisites for cloud computing; outsourcing data and processes to
third parties, raises several security [3, 4] and legal questions [5]. To the cloud
user, cloud computing is a black box where the user has little to no control over
how or where their data is processed. Multi-tenancy in cloud computing refers
to multiple cloud users running independent logical processes but sharing the
same physical components, such as CPU, RAM and storage. Virtualisation is the
enabling technology for virtual machines, which emulates a physical server and
is managed through software known as hypervisors. Therefore a single physical
server can host a hypervisor managing one or more virtual machines. Each vir-
tual machine is then allocated to a cloud user and runs cloud services. However
from a cloud computing context, the mutual distrust in multi-tenancy environ-
ments brings up questions about the security of user data when sharing physical
infrastructure [6l [7]. For example consider the scenario where two companies
are using virtual machines hosted on the same physical server. A VM escape
vulnerability [§] can be exploited, enabling one company to access the sensitive
data of another company. This attack has been practically demonstrated in [9],
in order to extract information from a target co-residing virtual machine.

https://core.ac.uk/display/188259047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we present a cloud modelling language to capture cloud com-
puting concepts from a security requirements engineering perspective, with en-
hanced properties and attributes to describe the cloud environment as a system
as-is and a system to-be. This work builds upon the modelling language pro-
posed in previous work [?], and is part of an on-going research effort to create a
framework for holistically modelling secure cloud computing systems, grounded
in security requirements engineering and cloud computing security concepts. Our
contributions in this paper are:

— (C1: A cloud meta-model aligning concepts from security requirements engi-
neering and cloud computing.

— (C2: Definitions for cloud concepts, relationships and properties to holistically
model secure cloud computing environments.

— (C3: Instance syntax notation to facilitate cloud security analysis by enriching
cloud models with security vulnerabilities and mitigation strategies.

The rest of the paper is structured as follows. The cloud meta-model, cloud
modelling language and security-enhanced cloud computing concepts are defined
in Section 2] A motivating case study based on a cloud system for the University
of the Aegean Career Office is presented in Section [3] In Section [4 we discuss
the respective related work. Finally we conclude the paper in Section p| noting
the on-going work and contributions.

2 The Secure Cloud Modelling Language

In this section we present our secure cloud modelling language, which enables
the expression of concepts and relationships of cloud computing systems from a
security requirements engineering perspective. We first present the meta-model
of the cloud modelling language, which builds upon concepts from the Secure
Tropos methodology [12]. Therefore when referring to concepts such as goal, re-
source and actor, the definitions are found in [I2] unless specified otherwise. We
then present our novel cloud concepts, relationships and properties in subsec-
tion Our extensions to the existing concepts in Secure Tropos are expanded
in subsection [2.2] and the extensions to existing relationships are described in
subsection [2:3] Finally we present the concrete and instance syntax of the cloud
concepts in subsection [2.4]

We create a meta-model following UML elements in order to define the con-
cepts and relationships required to model cloud computing systems from a se-
curity requirements perspective. Our cloud meta-model is part of an on-going
thesis and has been refined through several iterations of published work, the lat-
est appearing in [?]. Our cloud meta-model is shown in Figure |1} illustrating the
concepts as boxes, relationships as shaded boxes and properties as attributes
inside boxes. Specifically we have highlighted the novel cloud computing con-
cepts and relationships proposed in this paper as boxes with thick outlines.
Concepts extended from the Secure Tropos methodology is shown as boxes with
thin outlines. Boxes with dashed outlines denote existing concepts which has

3

Secure CML

SIEMJ0S adnn

ereq abuis
adA1821n0say Koueua|

<<uopelaWNUI>>| <<uoneRWNUI>>

ISIBIUM mwmwm
sipoelg
T ¥OX Seed
foueusL Aoueuod] sees
adALapon odAL| as S
apoN asmonnseyul | T w3>> <<uopeIsWNUI>>

uuonoIpsUNe

TuUoRIIPSINE

s108101d

uonolpsung
<<uonesswnuI>>

I i

+ 0
Anunwwod F
PUOAH | | | o - »0 _r. 1] Auadoid Aunoas :Auadoid Aundas |
aeAud - 1 Buins BN WSIUBYIIN
aiand | 1] adALiopypnop adAL | 1 ; “ Bums :uonduosag |
dog] Buins :japopiuawioldaq | [T]uonoipsung :uoneso [«"T] @21n0s8Y [ENUIA BIRQ dA180inosay :adAL| | r “
| 07 wsiueyosy Awnoss
<<uopelswnuz>> " 1012y pnojo " aimannselyu) [ea1skud sojeawlad 821n0S3Y [ENUIA e H —
||||| % . +70 4
+0
0 <
T +'0
0 T "o
o T diyssaumo :Aujigisuodsay, * 5
0 T T saysies suawaldu
Aouapuadaq |sapuads) Joy 0 sumo —_ — — -
P 4 o1 potodun T 7T AsToig Aies, Tmadord Fmoss | 0
T 0 Buis :omeW AuqesauinA | T B
["T] POUIONDIOBNY :POUIBIN HoENY el = — — — ————
. T Buins :uondudsaq “ o - _r 1] Auadoid Aundss :Auadoid b:_.amm._
SR T 109§ 0 | Bus o8N 2Anvalg
- [9PONSDINIDS :[9POI BINIDS Aunigesauina Buns
[SPONSIINISS :[SPON JINOSH .r| 1 W \on0puawioldag :jepop wuswAoidaq| | |
Qa :[8PoW JawAoldaq Buuis Aungeden I anndalqo Aundas
USI8UMO [edIsAud B2IAI3S PNOJD :9IIAIBS PNO|D)| N e
eleqg 20118 PNOjD
1018310 BIRQ sabeuepy
diysisumo 7|.V
<<uopelsaWNuUI>> -0 T
| I———— . S
T | [, T)Auedoidhnnoss :Auadoid AiLnoss | —— s Japuadag S @spuadag
Bus a|
urensuo) Aunsas 1
———p——————— -
T H | 19)|14dS :Auadoid Anoas 8l |
«'0
| saunbay I__l T L T T T
L B Frea—————— Buins Tomian 1 Kouapuadaq aindas| T
| Buing :sopuap |
A Buing adky |
1019 SnolIeN soeBuN [« T)uadoiginoas :Auadold Anoss |
T) Je0d :anfeA | Koemud S
k1 | Buus :uonduosaq | uoneipndai-uoN HmB.QM
sesod .p T T | Awonuayiny anduion,
B ——_——————— ————
1 [Tikuado. “Auadoid a:_.smmnm wnpuadaq 80Inosay 1 A
. ToUpNY PNoi> | Buis :uonduosaq | T Z.:MM_:m_o_Mw« adA1apoN
TPOUBIYIENY Jal11eD PO I JeaIL | . -0 ens <<uonesswNUI>>
124018 Pnoio b —————— =- - Aujenuapyuod
poBIoERY JaWNSU0D pnojd T X0 i !
<<uonelawnu3>>| J19PIAOId BINIBS PNOID 0 AuadoidAnoss
adA100ypnojD | | 0 <<uonessWNUT>>
<<uopesswNUI>> _ 1 ShllEER|

syojdx3

| uesjoog :vjqeiusnald |

O aeig |

surejuod

Fig. 1. The cloud meta-model with security requirements engineering and cloud com-

puting concepts

4

been extended in our research, in order to address the limitations in existing
work. We now present our novel cloud computing concepts.

2.1 Proposed Cloud Computing Concepts

In this subsection we introduce our concepts for modelling cloud computing
systems, in the context of security requirements engineering.

Cloud Service: A cloud service provides a specific computing capability, is
managed and owned by actors and requires virtual and physical resources in or-
der to deliver its capability. The cloud service concept is a specialisation of the
goal concept found in the Secure Tropos methodology [12], which represents a
way to achieve a specific need. The Cloud service concept has the properties Ca-
pability, Deployment Model and Service Model, indicating the specific computing
capability, cloud service deployment model and the service model. The capabil-
ity property is of type string, which provides a description of the strategic value
or work the cloud service is capable of delivering. The Deployment Model prop-
erty specifies which type of cloud service deployment model is deployed by the
cloud service, where the enumeration DeploymentModel includes the values Pub-
lic, Private, Hybrid and Community. The Service Model property specifies the
service model of the cloud service, where the enumeration ServiceModel includes
the values SaaS, PaaS, IaaS and XaaS.

Virtual Resource: A virtual resource represents intangible assets in a cloud
computing system. In order to differentiate between tangible and intangible re-
sources, we create a specialisation of the resource concept to represent intangible
resources as virtual resources. An example of an intangible resource is patient
data, which has an owner representing an entity that produces the original copy
as well as responsible parties representing entities handling the data. The Vir-
tual Resource concept has the properties Type and Visibility. The Type property
denotes the type of resource using the enumeration Resource Type, with values;
Data and Software. The Visibility property denotes the level of visibility of a re-
source, using the enumeration Visibility with values; Public, Private and Group.

Physical Infrastructure: A physical infrastructure represents a tangible
system which, given a geographical location, hosts a group of physical assets
within its local proximity. We define this concept as a specialisation of the re-
source concept, given that cloud computing resources are hosted in physical
infrastructure such as a data-centre. This is essential as properties belonging to
the physical infrastructure contain fields such as geographical location, owner-
ship and responsible parties; which is required for performing security analysis.
The Physical Infrastructure concept has the properties Jurisdiction. The Lo-
cation property denotes one or more jurisdictional constraints on the physical
infrastructure using values defined in the enumeration Jurisdiction Type, which
consists of the values; GDPD.

Infrastructure Node: An infrastructure node represents a single instance
of a computing component such as a server, data storage or network connection.
In this case a tangible resource is defined as a specialisation of the resource
concept using the notion of an infrastructure node. Each infrastructure node is

Secure CML 5

part of a physical infrastructure, to conceptually represent that a infrastructure
node is physically hosted within a structure or area. This allows us to capture
the properties of individual nodes through fields such as multi-tenancy, physical
location and responsible parties. This is essential for capturing cloud computing
concepts at the physical components level, in order to facilitate cloud security
analysis from a security requirements engineering perspective. The Infrastruc-
ture Node concept has the properties Type and Tenancy. The Type property
denotes the type of infrastructure node, which is defined through the enumer-
ation NodeType using the values Compute, Network and Storage. The Tenancy
property denotes the tenancy of the infrastructure node, which is enumerated
through Tenancy with the values Single and Multiple. The tenancy indicates
whether a infrastructure node only involves a single unique user or if multiple
users are involved. The NodeID provides a unique identifier for each instance
of an infrastructure node in a cloud model. The enumeration JurisdictionType
consists of the following items: US, UK, EU and Asia. This represents which ju-
risdiction the asset falls under, and therefore has to adhere to. The enumeration
Tenancy indicates whether a process is limited to a single tenant or if one or
more users are involved.

Permeates: This indicates the relationship which interrelates data-in-transit
and data-at-rest from the virtual resource concepts to the infrastructure node and
physical infrastructure, and from the infrastructure node to another instance of
the infrastructure mode or a physical infrastructure. A virtual resource is said
to be traceable to a infrastructure node if the physical component hosts the
virtual resource. For example if user data is stored on a physical hard drive,
the data is traceable to the hard drive. A virtual resource is also traceable to a
physical infrastructure given the traceable link to a infrastructure node that is
part of the physical infrastructure. An infrastructure node can also be traceable
to another infrastructure node or physical infrastructure given an exchange of
information between the instances, for example a computation node requesting
and processing data on a storage node.

Owns: Owns indicates an actors level of responsibility as a relationship where
the initiating actor possess ownership over a physical asset, is the creator of a
virtual asset or has data ownership over a virtual asset. This relationship is
used to depict the level of responsibility an actor posses in relation to a cloud
service or resource. It is important to define the difference between the data
creator, data ownership and physical ownership. The data creator refers to the
case where an actor produces data, and thus is the creator of the data in the
legal sense. Data ownership refers to the case where data is physically stored on
assets owned by third party providers, therefore the third party providers are
responsible for the handling of the data. Physical ownership refers to the case
where an actor is the owner of a physical asset, such as a server or data-centre.
The Owns relationship has the property Responsibility, which indicates the type
of ownership an actor possess in relation to a cloud service or a resource and its
specialisations. The enumeration Qwnership contains the following values; data
creator, data ownership and physical ownership.

Manages: Manages indicates an actors level of responsibility as a relation-
ship, in the configuration and delivery of a cloud service. An actor can have zero
or more Manages relationships, indicating that some actors are not involved
in the management of cloud services. A cloud service can be the target of one
or more Manages relationships from a range of actors, indicating that a cloud
service is managed by one or more actors.

2.2 Extended Concepts

In this subsection we outline the extensions we make to the existing concepts
of the Secure Tropos methodology, linking together concepts from the cloud
computing and security requirements engineering domains. These extensions are
carried out by adding properties to the existing concepts, which allows the lan-
guage to express richer levels of information. We now define the extensions to
the concepts in our modelling language.

Cloud Actor: The cloud actor concept has two properties; DeploymentModel
representing deployment model and CloudActorType to determine the types of
cloud actors an instance plays. The DeploymentModel property represents the
type of deployment model, which is of type String. The Cloud Actor Type prop-
erty represents the role the cloud actor plays in a cloud computing context. The
enumerated values are based on the five types of cloud actors defined by NIST
in [2]; Cloud Service Provider, Cloud Consumer, Cloud Broker, Cloud Carrier
and Cloud Auditor. The type of the cloud actor determines the level of respon-
sibility in a manages or owns relationship. The type of the cloud actor also
constrains the validity of relationships with other concepts, based on pre-defined
logic or a set of rules defined by the developer. The Cloud Actor Type property
consists of one or more values from the enumeration CloudActorType. This rep-
resents the case where a cloud actor may play more than one role simultaneously.

Resource: The Resource concept has the properties Description, Value, Se-
curity property, Type, Vendor and Version. The Description property of type
string provides a description of the resource. The Value property of type float
represents a numerical value associated with user-defined metrics, which assists
developers in carrying out semi-automated analysis. The Security property de-
scribes one or more security properties of the security constraint, which is se-
lected from the enumeration SecurityProperty consisting of; Confidentiality, In-
tegrity, Availability, Accountability, Auditability, Authenticity, Non-repudiation
and Privacy. The SecurityProperty enumeration also accepts custom values
which is optionally added by developers.

Security Constraint: The Security Constraint concept has the properties
Description and Security Property. The Description property is of type string,
which provides a description of the security constraint. The Security Property
property describes one or more security properties of the security constraint,
which is selected from the enumeration SecurityProperty.

Threat: The Description property is of type string, which provides a descrip-
tion of the threat. The Security Property property describes one or more security
properties of the security constraint from the enumeration SecurityProperties.

Secure CML 7

Vulnerability: The Description property of type string provides a descrip-
tion of the wvulnerability. The Attack Method property describes one or more
attack methods targeting an instance of the vulnerability, using the enumeration
AttackMethods consisting of default values and optionally values defined by the
user. The Vulnerability Metric property of type string allows the user to define
a numerical value associated with user-defined metrics, which assists them in
carrying out semi-automated analysis. The Security Property property describes
one or more security properties of the security constraint, which is selected from
the enumeration SecurityProperty.

Security Mechanism: The Security Mechanism concept has the properties
Description, Mechanism Metric and Security Property. The Description prop-
erty of type string provides a description of the security mechanism. The Mecha-
nism Metric of type string allows the user to define a numerical value associated
with user-defined metrics, which assists them in carrying out semi-automated
analysis. The Security Property property describes one or more security prop-
erties of the security constraint, which is selected from the enumeration Secu-
rityProperty. The Mechnism Metric property of type string allows the user to
define a numerical value associated with user-defined metrics, which assists them
in carrying out semi-automated analysis.

Security Objective: The Security Objective concept has the properties De-
scription, Security Property and Objective Metric. The Description property of
type string provides a description of the security objective. The Security Prop-
erty property describes one or more security properties of the security constraint,
which is selected from the enumeration SecurityProperty. The Objective Metric
property of type string allows the user to define a numerical value associated
with user-defined metrics.

2.3 Extended Relationships

In this subsection we outline the extensions we make to existing relationships
from the Secure Tropos methodology, similar to the extensions carried out in the
previous subsection. These extensions to the relationships allows our modelling
language to capture the nature of a relationship at the cloud computing level,
which isn’t supported in existing approaches. We now define the extensions to
the relationships in our modelling language.

Requires: A goal, cloud service or resource requires a cloud service or re-
source, in order to satisfy a stakeholder need, fulfil a capability or collaborate
with other resources or cloud services. This relationship indicates the resource
or cloud service instances required by a goal, cloud service or resource.

The Filter Security Property property denotes the type of filter used to deter-
mine the security properties inherited in the Requires relationship. The purpose
of this property is to allow the Requires relationship to associate security prop-
erties from the source concept to the target concept.

Impacts: A goal, cloud service or resource is impacted by a threat, which
threaten their security properties. This relationship indicates the resource or

8

cloud service instances impacted by a specific instance of a threat. A threat
may impact one or more goals, cloud services or resources.

The Impact Metric property defines a metric denoting the consequences of
a goal or resource being compromised by the threat. The purpose of this prop-
erty is to allow the developer to provide a metric for the impact of a threat on
goals or resources when performing analysis on the cloud system. The Proba-
bility property defines a metric representing the likelihood of the threat having
an impact on a goal or resource. The purpose of this property is to allow the
developer to associate a metric to analysis probability of a threat impacting a
goal or resource.

Exploits: A threat is able to exploit a vulnerability. This relationship indi-
cates that the specific instance of a threat exploits one or more vulnerabilities.

The Preventable property denotes if the relationship of an instance of a threat
exploiting a vulnerability is preventable. This allows the analysis to determine
if mitigation strategies exist.

2.4 Syntax

In this subsection we present the instance and concrete syntax of the cloud mod-
elling language. We define the instance syntax as machine-readable encoding of
instantiated concepts, relationships and properties from our cloud meta-model.
We define the concrete syntax as graphical representations of concepts, proper-
ties and relationships in our meta-model, which provides an unique one-to-one
mapping of a concept from the metamodel to an graphical representation in a
cloud model.

The purpose of the instance syntax is to provide a formal and condensed rep-
resentation of concept instances, which is machine readable in order to perform
analysis on cloud models. Thus the instance syntax allows the unambiguous en-
coding of concepts in a textual format, which describes the instantiated concepts
from a cloud model to facilitate security analysis. The general structure of the
instance syntax is as follows: an instance of a concept is defined with a lower
case abbreviation with parenthesis surrounding the properties and relationships
of the instance, the properties and relationships of the instance is defined with
upper case abbreviations inside the parenthesis.

The concrete syntax is visualised using graphical notation, where each con-
cept in the modelling language is mapped to a unique graphical notation. The
shapes of the graphical notation was chosen arbitrarily in order to distinguish
between Secure Tropos notation and our novel cloud computing concepts.

We now describe the syntax of the modelling language using the following
format: concept, instance syntax, description and concrete syntax.

Cloud Service: The instance syntax of a cloud service is ¢s(D,CAP,DM,SM).
The instance syntax for a cloud service describes the following: cs() describes
an instance of a cloud service with associated concepts encapsulated inside the
parenthesis, D provides a description of the cloud service, CAP describes the
capability of the cloud service, DM is the deployment model selected from a

Secure CML 9

’——\

\ Cloud Service)

Fig. 2. A Cloud Service.

list of enumerated values and SM is the service model selected from a list of
enumerated values.

Figure [2|shows the concrete syntax of a cloud service, which is represented as
a light green rectangle with a solid green outline. The textual description inside
the rectangle denotes the properties of the cloud service instance.

Cloud Actor: The instance syntax of a cloud actor is ca(D,[T]).

Dropbox CloudMore
I - 'i -1 b'l -1 =1
csp csp,cu cu cl cc ca
. I 5 _I 5 _I 5 _I 5 _I

Fig. 3. A Cloud Actor visualised as a light pink circle, with a rectangular box with
dashed outlines on the lower right of the circle.

Figure [3|shows the concrete syntax of a cloud actor, which is represented as a
light pink circle with a rectangular box with dashed outlines on the lower right of
the circle. The text in the centre of the circle denotes the name of the cloud actor
instance. The rectangular box with dashed outlines displays the types of roles
played by the cloud actor. In Figure [3] a range of cloud actor types are shown,
in particular the case of the Dropbox cloud actor which is both a cloud service
provider and a cloud consumer as indicated by the csp,cu textual description.
The instance syntax for a cloud service provider describes the following: D is a
description of the cloud service provider, [T/ is a list denoting one or more roles
played by a cloud actor. The type of role played by a cloud actor is selected from
the enumeration CloudActorType with the following list of roles; Cloud Service
provider(csp), Cloud Consumer(cu), Cloud Broker(cb), Cloud Carrier(cc), and
Cloud Auditor(ca). For example a cloud service provider with the description
hospital is encoded as ca(hospital, [csp]). In case of cloud actors playing multiple
roles, for example dropboxr who is a cloud service provider and also a cloud
consumer is encoded as ca(dropboz, [csp,cu]).

Virtual Resource: The instance syntax of a virtual resource is vr(D,RT, V).
Figure[d]shows the concrete syntax of a virtual resource, which is represented as a
yellow rectangle with a dashed yellow outline. The textual description inside the
rectangle denotes the properties of the virtual resource instance. The instance
syntax for a virtual resource describes the following: D is the description of
the virtual resource instance, RT is the resource type selected from a list of
enumerated values, V is the visibility type selected from a list of enumerated

10

Fig. 4. A virtual resource visualised as a yellow rectangle with a dashed outline.

values. For example the virtual resource Patient data with the resource type
data and visibility type private is encoded as vr(data,private).

Physical Infrastructure: The instance syntax of a physical infrastructure
is pi(D,L).

Physical Infrastructure

Fig. 5. A physical infrastructure visualised as a yellow rectangle with thick outlines.

Figure [5| shows the concrete syntax of a physical infrastructure, which is rep-
resented as a yellow rectangle with a solid black outline. The textual description
inside the rectangle denotes the properties of the physical infrastructure instance.
The instance syntax for a physical infrastructure describes the following: D is
the description of the physical infrastructure, L is an enumerated list of juris-
dictions which the physical infrastructure falls under. For example the physical
infrastructure hospital information system with the jurisdiction General Data
Protection Regulation (GDPR) is encoded as pi(hospital_is,gdpr).

Infrastructure Node: The instance syntax of a cloud service is in(D,NT,TE).

| Infrastructure Node |
L]

Fig. 6. An infrastructure node visualised as a yellow rectangle with dashed outlines.

Figure [f] shows the concrete syntax of an infrastructure node, which is repre-
sented as an aqua cylinder with a black outline. The textual description inside
the cylinder denotes the properties of the infrastructure node. The instance
syntax for an infrastructure node describes the following: D is the descrip-
tion of the infrastructure node, NT determines the type of the infrastructure
node from a list of enumerated values, TE determines the type of tenancy
from a list of enumerated values. For example the infrastructure node ama-

Secure CML 11

zon server 1 with the compute node type and single tenancy is encoded as
in(amazon_serverl,compute,single).

3 Career Office System Case Study

In this paper we present a case study based on the University of the Aegean
Career Office, which is an existing cloud-based system. This case study was
presented in a previous collaborative publication by the author in [?]. The main
objective of the University of the Aegean Career Office system is boundary man-
agement, i.e. helping students to manage the choices and transitions they need
to make upon completing their studies, in order to proceed effectively to the next
step of their careers [II]. The Career Office creates the survey and outsources
its hosting and the gathering of responses to a cloud service provider. Once the
results are collected, they are send back to the Career Office in order to be anal-
ysed and be made available to the university graduates for discussion. There
are several existing security needs, specifically that only authorised university
members are able to access the survey system and that the data should have
guaranteed availability. Thus we are interested in modelling and understand-
ing the potential security issues in this cloud-based system, when the process is
outsourced to a third party cloud service provider.

Cloud service
provider

Career office satisfies

niversity graduate:

restricts mitigates

restricts

] .]] 1 0OS 1 Windows
. VR1 Student response . N © VMllinstance HP | + Type: Operating System)
[< Type: Virtual machine :~ - Vendor: Microsoft 1 exploits

"""""""" permeates” " UR T
festricts Permeates ermeates

- . .
< CSP instance: l

Compute

| Multi-tenant P
e s amm o e

t : 1 * Version: [Windows 10, 1511] *

protects

satisfies
protects

CSP Datacentre

. satisfies
EU implements

implements

Fig. 7. A security enhanced cloud model of the University of the Aegean Career Office
System

12

Due to space constraints we have modelled the cloud concepts concerning
one specific organisational goal of the system, the conduction of a survey of the
university’s graduates. The cloud model generated using our cloud modelling
language proposed in this paper is shown in Figure [7] First we describe actors
and their cloud roles, such as “Career office admin” who play the role of a cloud
service provider and cloud user. The relationship between the actors and cloud
concepts include the managers and owns relationships, for example indicating
the level of responsibility the cloud service provider has when they own a cloud
service. We model the cloud services where one cloud service requires the other,
indicating the dependency and therefore propagation of responsibilities to the
associated actors. Specifically we are able to see that the cloud service “C'S2: On-
line survey response management” requires the virtual resource “VR1 student
response”, which is owned by the actor “University graduates”. The security
constraint “SC1 Ensure data is kept available” restricts “VR1” and due to the
requires relationship from CS2, we can infer that the actor responsible for man-
aging “CS2” is also responsible for ensuring the security constraint “SC17 is
addressed. We then describe the resources required by the cloud services, identi-
fying the properties of a virtual machine instance in order to examine vulnerabil-
ities which affects the system given a specification of resources used. Specifically
the virtual resource “VM 1 Instance HP” of type Virtual machine has the virtual
resource “OS 1 Windows” associated, which provides additional levels of detail.
Thus given the the type, vendor and version properties in the virtual resource
“OS 1 Windows”, we are able to describe and model the vulnerability affecting
this particular configuration. At the high level we model the vulnerability “Vaul:
Hypervisor weakness” which affects the virtual resource “VM 1 Instance HP”
due to the type Virtual machine. But as the model provides more information
through the virtual resource “OS 1 Windows”, we are able to model at a lower
level of granularity and describe the technical details of the vulnerability, in this
case the vulnerability “Hypervisor Code Integrity Security Feature Bypass” with
the Common Vulnerabilities and Exposures(CVE) ID “CVE-2016-0181” which
affects version 1511 of the type Operating System Windows 10 by the vendor
Microsoft. The mitigation concepts are then generated in the model, including
the security mechanisms and security objective addressing the specific security
property of the vulnerability and the associated security constraint. Specifically
we are able to model two alternative security mechanisms “SM1: Npn-bypassable
memory lockdown” and “SM2: Restricted pointer indexing”, which protects the
vulnerability “CVE-2016-0181”. These vulnerabilities are implemented through
the security objective “SO1: Implement Hypersafe on bare-metal”, which rep-
resents the security policy that should be enforced as part of the mitigation
strategy. The “/I]” property in the concepts discussed previously indicates that
the security property Integrity is associated with these concepts. Thus given a
threat “VM escape [I]”, this threat exploits the integrity property of the vulner-
ability “Hypervisor weakness”, which itself affects the integrity property.

The contribution here is that by associating security properties to our con-
cepts, we are able to refine the specific security need of each concept in the

Secure CML 13

context of the model. The benefit is two-fold: firstly this provides a guideline
for developers to understand the security impact of various concepts, given a
set of security constraints embodying the security needs of the system. Secondly
this facilitates security analysis, in collaboration with the our proposed proper-
ties so that we are able to semi-automate the generation of vulnerabilities and
mitigation strategies dependent on the cloud model. Therefore the cloud model
of the career office system in Figure [7] illustrates the relationships between the
actors, cloud services and required resources, where we enrich the model with
security concepts specific to the cloud deployment details. Specifically we are
able to model in detail the data required by the cloud service, how the data
permeates through the physical components of the cloud system, the jurisdic-
tion due to the physical location, and the specific information of the enabling
cloud components including multi-tenancy and virtual machines. Based on the
information elicited through these concepts, we are then able to model the cloud
security concepts such as vulnerabilities in the cloud system, threats, security
constraints and mitigation strategies through security mechanisms and security
objectives. Thus our work provides a cloud modelling language enabling devel-
opers of cloud computing systems to express and model cloud security needs,
understanding the relationship between concepts from a security requirements
engineering perspective.

4 Related Work

Research in cloud security primary focuses on mitigating mechanisms and soft-
ware solutions at the implementation level, which targets software systems that
are already implemented and operational [I7]. This approach is counter to our
argument that security is a factor that is most effective when integrated as early
as possible in the software development life-cycle [10]. In existing requirements
engineering approaches we are able to capture high level concepts such as stake-
holders, goals and resources [I3], and security concepts such as vulnerabilities,
threats and security constraints [12]. However the approaches in [13] and [12]
lack the expressive power to support developers in modelling the relationship
between their organisational, business and security needs in a cloud computing
environment. Specifically existing approaches lack an language expressive enough
to model cloud-specific concepts such as multi-tenancy, virtualisation and cloud
services in the context of cloud security. Beckers et al. proposes a pattern-based
method to elicit cloud security requirements aimed at guiding cloud customers
during the process of modelling cloud systems [14]. However their approach is
focused on establishing an Information Security Management System (ISMS) ac-
cording to the ISO 27001 standard, without considering the propagation of users
cloud security needs. Li et al. provides a holistic security requirements-eliciting
approach towards socio-technical systems [16]. However their work lacks expres-
sive power for capturing cloud-specific properties, which is essential for inferring
cloud security issues, impact on resources and mitigation strategies. Review ef-
forts indicates that while most work covers multiple security sub-areas, they

14

only target cloud computing issues in isolation, for example considering security
properties in software systems or human factors on a social level but failing to
provide direct correlation between different conceptual layers [18] [19].

Our proposed approach ensures that the system-under-design incorporates
security from the early requirements stage, by providing an expressive mod-
elling language able to capture cloud computing concepts and characteristics.
We achieve this by building upon existing work in security requirements en-
gineering that lacks the capability to capture or reason about cloud-specific
security issues from a holistic point of view [I5, 12]. Thus our modelling lan-
guage captures essential cloud characteristics and security implications in order
to progress towards addressing the security problem in cloud computing [5].
Specifically we model cloud characteristics such as multi-tenancy, describe cloud
service configurations, identify cloud-specific threats and vulnerabilities, in ad-
dition to modelling the impact of attacks on physical and virtual resource within
the context of a cloud computing system.

5 Conclusion

The proposed cloud modelling language in this paper enables developers to re-
alise organisational needs in a cloud computing context, capturing the needs
of the system as-is and expressing the system to-be. Addressing the contribu-
tion points C1 and C2, we have defined a cloud modelling language to capture
cloud security concepts. We argue that by enhancing the proposed cloud con-
cepts with detailed relationships and properties, the language is able to represent
cloud computing systems through both abstract and fine-grained perspectives.
For the contribution in C38 we have provided the concrete and instance syntax
of our cloud concepts. The concrete syntax allows us to visually differentiate
between instances of unique components in cloud systems, assisting the develop-
ers understanding of a cloud system. The instance syntax facilitates support for
semi-automated cloud security analysis, providing a machine-readable format of
cloud models in order to identify threats, vulnerabilities and mitigation strate-
gies. Future work will focus on enhancing the support for semi-automated anal-
ysis techniques, using information from vulnerability databases and expert secu-
rity knowledge to generate a security mitigation strategy given a cloud model.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., ...
& Zaharia, M. (2010). A view of cloud computing. Communications of the ACM,
53(4), 50-58.

2. Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

3. Subashini, S., & Kavitha, V. (2011). A survey on security issues in service delivery
models of cloud computing. Journal of network and computer applications, 34(1),
1-11.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Secure CML 15

Sengupta, S., Kaulgud, V., & Sharma, V. S. (2011, July). Cloud computing
security—trends and research directions. In Services (SERVICES), 2011 IEEE
World Congress on (pp. 524-531). IEEE.

Almorsy, M., Grundy, J., & Mller, I. (2010, November). An analysis of the cloud
computing security problem. In Proceedings of APSEC 2010 Cloud Workshop,
Sydney, Australia, 30th Nov.

Lombardi, Flavio, and Roberto Di Pietro. ” Secure virtualization for cloud comput-
ing.” Journal of Network and Computer Applications 34.4 (2011): 1113-1122.

Li, Y., Cuppens-Boulahia, N., Crom, J. M., Cuppens, F., & Frey, V. (2016, May).
Expression and Enforcement of Security Policy for Virtual Resource Allocation in
IaaS Cloud. In IFIP International Information Security and Privacy Conference
(pp. 105-118). Springer International Publishing.

Luo, Shengmei, et al. ” Virtualization security for cloud computing service.” Cloud
and Service Computing (CSC), 2011 International Conference on. IEEE, 2011.
Ristenpart, T, Tromer, E., Shacham, H., & Savage, S. (2009, November). Hey, you,
get off of my cloud: exploring information leakage in third-party compute clouds.
In Proceedings of the 16th ACM conference on Computer and communications
security (pp. 199-212). ACM.

Kissel, R., Stine, K., Scholl, M., Rossman, H., Fahlsing, J., & Gulick, J. (2008).
Security considerations in the system development lifecycle [Computer software
manual]. (NIST Special Publication 800-64 Revision 2)

C. Kalloniatis, E. Kavakli and S. Gritzalis, “Dealing with privacy issues during the
system design process”, Proceedings of the Fifth IEEE International Symposium
on Signal Processing and Information Technology, pp. 546-551, 2005.

Mouratidis, H., & Giorgini, P. (2007). Secure tropos: a security-oriented exten-
sion of the tropos methodology. International Journal of Software Engineering and
Knowledge Engineering, 17(02), 285-309.

Eric, S. Yu. ”Social Modeling and i*.” Conceptual Modeling: Foundations and
Applications. Springer Berlin Heidelberg, 2009. 99-121.

Beckers, K., Coté, 1., Fabender, S., Heisel, M., & Hofbauer, S. (2013). A pattern-
based method for establishing a cloud-specific information security management
system. Requirements Engineering, 18(4), 343-395.

Fabian, B., Giirses, S., Heisel, M., Santen, T., & Schmidt, H. (2010). A comparison
of security requirements engineering methods. Requirements engineering, 15(1), 7—-
40.

Li, T., Horkoff, J., Beckers, K., Paja, E., & Mylopoulos, J. (2015). A holistic
approach to security attack modeling and analysis. In Proceedings of the Eighth
International i* Workshop (2015, to be published).

Modi, C., Patel, D., Borisaniya, B., Patel, A., & Rajarajan, M. (2013). A survey on
security issues and solutions at different layers of Cloud computing. The Journal
of Supercomputing, 63(2), 561-592.

Sengupta, S., Kaulgud, V., & Sharma, V. S. (2011, July). Cloud computing
security—trends and research directions. In Services (SERVICES), 2011 IEEE
World Congress on (pp. 524-531). IEEE.

Iankoulova, I., & Daneva, M. (2012, May). Cloud computing security requirements:
A systematic review. In Research Challenges in Information Science (RCIS), 2012
Sixth International Conference on (pp. 1-7). IEEE.

	A Security Requirements Modelling Language to Secure Cloud Computing Environments
	

