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Abstract. The offline evaluation of recommender systems is typically based on 

accuracy metrics such as the Mean Absolute Error (MAE) and the Root Mean 

Squared Error (RMSE), while on the other hand Precision and Recall is used to 

measure the quality of the top-N recommendations. However, it is difficult to 

reproduce the results since there are different libraries that can be used for run-

ning experiments and also within the same library there are many different set-

tings that if not taken into consideration when replicating the result might vary. 

In this paper, we show that it is challenging to reproduce results using a different 

library but with the use of the same library an explanation based approach can be 

used to assist in the reproducibility of experiments. Our proposed approach has 

been experimentally evaluated using a real dataset and the results show that it is 

both practical and effective. 
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1 Introduction 

Recommender systems are widely known for their use in e-Commerce for recommend-

ing products to users, thus reducing the overall searching time of the user and increase 

sales. Furthermore, it is a technology used in various other less known domains such as 

music recommendation or people to people recommendation in social media [1]. How-

ever, the increasingly use and popularity of recommender systems research both in ac-

ademia and in industry has lead us to the development of new algorithms and their 

experimental evaluation. While this is important to do, it should be noted that the prob-

lem of reproducing the results exists and it is considered important [2]. For the offline 

evaluation of recommender systems various metrics can be used such as MAE and 

RMSE for predicting the accuracy error and information retrieval metrics such as Pre-

cision and Recall can be used for measuring the quality of the top-N recommendations 

[3]. While, there are more metrics it is outside of the scope of this paper to discuss them 

however further details can be found in [3]. In the literature there are different libraries 

that can be used for developing and testing a recommendation algorithm and include 

Recommender101, Apache Mahout, LensKit and MyMediaLite among others [1] [4]. 
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In the work by [1] it has been shown that reproducing the experimental results of an 

algorithm is very difficult when using a different library because of different settings 

and parameters that exist between them. However, it is shown that if a set of carefully 

selected guidelines is followed with the use of the same library then the results can be 

replicated with a very small and non-noticeable different in the output value. 

To assist in solving the problem of reproducibility of experiments with the use of the 

same recommendation library we have: 

 

1. Developed an explanation based approach that can be used towards this 

direction. 

2. Experimentally evaluated the above approach using a publicly available 

recommendation library and a real dataset. 

 

The rest of the paper is organized as follows: Section 2 provides the relevant back-

ground, section 3 delivers the proposed approach, section 4 presents the experiments 

and section 5 contains the conclusions.  

2 Background 

Evaluating recommender systems in offline environments can be done using prediction 

accuracy or information retrieval metrics. However, the problem arises when in a re-

search output of a new algorithm the source code is not made publicly available or when 

the exact settings for replicating the code and the experiments are missing. In the liter-

ature there are related works that have done important steps towards the solution of the 

reproducibility problem. In [1] a very good analysis of the main problems is identified, 

which include the name and the source code of the recommendation library, the details 

of the algorithm, the dataset used and the details of how the dataset has been used. 

Moreover, in the same work a set of guidelines is proposed that can be followed to 

assist in the reproducibility. Another similar work that identifies a set of best practices 

for recommender systems can be found in [5], while in [6] the importance of the repro-

ducibility of experiments in recommender systems evaluation was highlighted with the 

organization of a workshop in 2013. Furthermore, the outcome of this workshop can be 

found in a relevant report with its future directions being theoretical only [7]. One other 

relevant approach can be found in [8] and it is about the improvement of statistical 

power of the 10-fold cross validation scheme in recommender systems. A more relevant 

but more software oriented approach is Rival [9]. In this approach a toolkit provided 

different stages in the process such as data splitting, item recommendation and evalua-

tion. It is not however a framework or a library but a toolkit that can be used in Apache 

Mahout, LensKit and MyMediaLite and it provides a user interface. Other researchers 

however having knowing about the reproducibility problem have decided to develop 

and propose their own evaluation metrics. For example, in [10] the authors proposed a 

general evaluation metric that operate over a set of sessions, while another proposed 

metric can be found in [11] where the authors propose the modified Reciprocal Hit 

Rand Metric (mRHR) which is a hit rank metric. 
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In addition to the related works, the most common recommendation method is Col-

laborative Filtering (CF) and the most know CF method is Pearson Correlation Coeffi-

cient (PCC). PCC is defined in equation 1 and Sim (a, b) is the similarity between users 

a and b, also ra,p is the rating of user a for product p, rb,p is the rating of user b for product 

p and 𝑟́𝑎 and 𝑟́𝑏 represent the user's average ratings. P is the set of all products. More-

over, the similarity value ranges from -1 to 1 and higher is better. 

 

 

𝑃𝐶𝐶
𝑎, 𝑏

=
∑ 𝑝 ∈ 𝑃(𝑟𝑎, 𝑝 − 𝑟́𝑎)(𝑟𝑏, 𝑝 − 𝑟́𝑏)

√∑ 𝑝 ∈ 𝑃(𝑟𝑎, 𝑝 − 𝑟́𝑎)2 √∑ 𝑝 ∈ 𝑃(𝑟𝑏, 𝑝 − 𝑟́𝑏)2
(1) 

 

 

Furthermore, to measure the prediction error, MAE it typically be used and is defined 

in equation 2 where pi is the predicted rating and ri is the actual rating in the summation. 

This method is used for the computation of the deviation between the predicted ratings 

and the actual ratings. It should also be noted that lower values are better.  

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑟𝑖| (2)

𝑛

𝑖=1

 

However, there are numerous settings found in a recommendation library that can affect 

the result, such as the number of the nearest neighbors, if a cross-fold evaluation took 

place or the dataset what split into a training and testing part and the minimum ratings 

per item or if a threshold of minimum ratings that a user has submitted for an item will 

be applied. In table 1 we can see the results of PCC using different neighborhood size, 

the MovieLens 1 million dataset [12], 80% training and 20% testing evaluation and the 

Recommender101 library. Furthermore, in table 2 it is shown that if the minimum 

number of ratings per user is different the output can vary significantly on a 5-fold cross 

validation.  

 

 Number of k nearest neighbours 

60 80 100 200 300 400 

PCC 0.870 0.862 0.841 0.811 0.785 0.761 

Table 1. MAE results for Recommender101 
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Settings Min number of 

ratings per user 

(30) 

Min number of 

ratings per user 

(Not known and not 

specified – Default 

value used by the 

library) 

PCC 0.872 0.890 

Table 2. 5-fold cross-fold with different settings MAE results based on Recommender101 

3 Proposed approach 

In previous research it has been shown that it is very difficult to reproduce results using 

different evaluation libraries due to differences that exist between the implementations 

of algorithms and metrics [1]. However, with the use of the same library the possibility 

of reproducing correctly an algorithm and an experimental evaluation is high if the 

same settings and parameters are used.  

Thus, for our proposed approach we use the Recommender101 library in combina-

tion with a set of explanations that accompany the output log file of the result. The 

library is comprised from a set of components for offline evaluation as shown in figure 

1. The settings used such as the algorithm used, the number nearest neighbors, type of 

validation (cross fold or test/train) and the algorithm evaluated are passed in an external 

configuration file. Moreover, it supports well known metrics such as MAE, RMSE, 

Precision, Recall, NDCG among others and when the experiment is finished the result 

is printed on the screen and saved in a log file. We extend the Recommender101 library 

to print on the screen and also save in the log file a set of explanations in simple lan-

guage that can be used to guide a future researcher to reproduce an experiment.  

In addition to the settings used it should be noted that it is difficult to exactly repli-

cate an experiment since in most cases a dataset is randomly divided to training and 

testing parts. However and despite of this minor issue if the other settings and parame-

ters are properly applied then the result will be close to identical. 
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Fig 1. Recommender101 [4] 

 

3.1 Explanations 

We define explanations as a set of details that accompany the output result, thus making 

it clear to the research what needs to be included in a research output. In Recom-

mender101 a number of settings and parameters are available in the configuration file 

(recommender101.properties under the conf directory). If these parameters are not 

properly mentioned by researchers in their work then the output result could vary sig-

nificantly [1]. 

      

3.2 The proposed approach 

In the proposed approach we: 
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1. Retrieve information from the configuration file 

2. Write the information in the log file along with evaluation result and explain 

what this is 

 

The settings retrieved from the configuration file are the following and are presented in 

the same way that are saved in the log file: 

 

1. The configuration parameters and settings can be set at the configuration file 

recommender101.properties that be found under the conf directory of Recom-

mender101 

2. The filename of the dataset is (name of the file goes here) 

3. The minimum number of ratings per user to be considered is (number) 

4. The minimum number of ratings per considered item is (number) 

5. This experiment has used all users OR This experiments has used (number) 

users 

6. The minimum rating value applied is (number e.g. between 1 to 5) 

7. The maximum rating value applied is (number e.g. between 1 to 5) 

8. This experiment is based on a (number e.g. 5 or 10) cross fold validation OR 

this experiment is based on a training/test approach using (number %) for 

training and (number %) for testing  

9. The number of nearest neighbors used is (number) 

10. The algorithm used is (name) 

11. The metrics used for this experiments are (This is already implemented in rec-

ommender101) 

12. The results are (This is already implemented in recommender101) 

 

 

4 Experimental evaluation 

The experimental evaluation has been based on the MovieLens 1 million dataset [12], 

which consists of 6040 users, 4000 movies and 1 million ratings in a 1-5 scale. Further-

more the Recommender101 library has been used [4]. Furthermore, we have used PCC 

as the algorithm and MAE as the evaluation metric to perform an experiment with 80% 

of the dataset used for training and 20% for testing and reproduce the result. Further-

more for each user to be considered a threshold of 20 ratings was applied. 

 For the experiments we asked two different researchers to perform an experiment 

each. Both were instructed to download and install Recommender101 in Eclipse. The 

first one was instructed to perform an experiment and the second one was instructed to 

use the log file of the first and reproduce the experiment. The results of the first exper-

iment are presented in table 3 and the results of the second in table 4. The log file 

included the MAE result using 100, 200 and 300 k nearest neighbors and all the settings 

explained in section 3.2. 
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 Number of k nearest neighbors 

100 200 300 

PCC 0.841 0.811 0.785 

Table 3. First MAE experiment 

 

 Number of k nearest neighbors 

100 200 300 

PCC 0.842 0.810 0.784 

Table 4. Second MAE experiment 

5 Conclusions and future work 

In this paper we highlighted the problem of reproducibility in recommender systems 

evaluation. Although, it is shown in previous research that it is difficult to reproduce 

results using different offline evaluation libraries, the reproducibility of results becomes 

achievable if the correct settings and parameters are used within the same library. Thus, 

we have proposed an approach that is based on explanations that can be used to assist 

researchers in reproducing the results of an experimental evaluation. The initial evalu-

ation results are promising and can assist towards this direction and our approach can 

be straightforwardly implemented by researchers in other libraries. Furthermore, in our 

future work we aim to provide a visualized approach of the explanations. 
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